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Abstract
The existence of a smooth complete strictly locally convex hypersurface with prescribed
scalar curvature and asymptotic boundary at infinity in H

3 is proved under the assumption
that there exists a strictly locally convex subsolution.

Mathematics Subject Classification 53C21 · 35J66 · 58J32

1 Introduction

In this paper, we are concerned with the asymptotic Plateau type problem in hyperbolic space
H

n+1: to find a complete strictly locally convex hypersurface � with prescribed curvature
and asymptotic boundary at infinity. For hyperbolic space, we will use the half-space model

H
n+1 = {(x, xn+1) ∈ R

n+1
∣
∣ x = (x1, . . . , xn) ∈ R

n, xn+1 > 0}
equipped with the hyperbolic metric

ds2 = 1

x2n+1

n+1
∑

i=1

dx2i .

The ideal boundary at infinity of Hn+1 can be identified with

∂∞H
n+1 = R

n = R
n × {0} ⊂ R

n+1

and the asymptotic boundary � of � is given at ∂∞H
n+1, which consists of a disjoint col-

lection of smooth closed embedded (n − 1) dimensional submanifolds {�1, . . . , �m}. Given
a positive function ψ ∈ C∞(Hn+1), we are interested in finding a complete strictly locally
convex hypersurfaces � in H

n+1 satisfying the curvature equation

f (κ) = σ
1/k
k (κ) = ψ1/k(x) (1.1)
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as well as with the asymptotic boundary

∂� = �, (1.2)

where x is a conformal Killing field which will be specified in Sect. 6, κ = (κ1, . . . , κn) are
the hyperbolic principal curvatures of � at x, and

σk(λ) =
∑

1≤i1<...<ik≤n

λi1 · · · λik

is the k-th elementary symmetric function defined on k-th Gårding’s cone

�k ≡ {λ ∈ R
n | σ j (λ) > 0, j = 1, . . . , k}.

σk(κ) is the so called k-th Weingarten curvature of �. In particular, the 1st, 2nd and n-th
Weingarten curvature correspond to mean curvature, scalar curvature and Gauss curvature
respectively. We call a hypersurface� strictly locally convex (locally convex) if all principal
curvatures at any point of � are positive (nonnegative).

In this paper, all hypersurfaces are assumed to be connected and orientable. We will see
from Lemma 2.1 that a strictly locally convex hypersurface in H

n+1 with compact (asymp-
totic) boundary must be a vertical graph over a bounded domain in R

n . We thus assume the
normal vector field on � to be upward. Write

� = {(x, u(x)) ∈ R
n+1+

∣
∣ x ∈ 	},

where 	 is the bounded domain on ∂∞H
n+1 = R

n enclosed by �. Consequently, (1.1)–(1.2)
can be expressed in terms of u,

{

f (κ[ u ]) = ψ
1
k (x, u) in 	,

u = 0 on �.
(1.3)

The essential difficulty for the Plateau type problem (1.3) is due to the singularity at u = 0.
When ψ is a positive constant, problem (1.3) has been extensively investigated in [1–5] (see
also the references therein for some previous work). Their basic idea is: first, to prove the
existence of a solution uε to the approximate Dirichlet problem

{

f (κ[ u ]) = ψ
1
k (x, u) in 	,

u = ε on �,
(1.4)

and then, to show these uε converge to a solution of (1.3) after passing to a subsequence.
For general ψ , Szapiel [6] studied the existence of strictly locally convex solutions to (1.4)
for f = σ

1/n
n , but he also assumed a very strong assumption on f (see (1.11) in [6]) which

excluded the case f = σ
1/n
n . As far as the author knows, there is no literature which gives

an existence result for the asymptotic Plateau type problem (1.3) for general ψ .
Our first task in this paper is to improve the result of [6]. As in [7], we assume the existence

of a strictly locally convex subsolution u ∈ C4(	), that is,
{

f (κ[ u ]) ≥ ψ
1
k (x, u) in 	,

u = 0 on �.
(1.5)

Different from [2–6], we take a new approximate Dirichlet problem
{

f (κ[ u ]) = ψ
1
k (x, u) in 	ε,

u = ε on �ε,
(1.6)
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where the ε-level set of u and its enclosed region in Rn are respectively

�ε = {x ∈ 	
∣
∣ u(x) = ε } and 	ε = {x ∈ 	

∣
∣ u(x) > ε }.

Wemay assume the dimension of �ε is (n − 1) by Sard’s theorem, and in addition, �ε ∈ C4.
A crucial step for proving the existence of a strictly locally convex solution to (1.6) is

to establish second order a priori estimates for strictly locally convex solutions u of (1.6)
satisfying u ≥ u on 	ε . An essential difference from [2–5] is that we allow the C2 bound to
depend on ε. This looser requirement gives us more flexibility to apply techniques for general
Dirichlet problem and with less technical assumptions (for example, there is no prescribed
upper bound for ψ). For C2 boundary estimates, we change the variable from u to v by
u = √

v (see [8] for a similar idea for radial graphs), which is the main difference from [2,6]
and fundamentally improves the result in [6].

One reason that we purely study strictly locally convex hypersurfaces is due to C2 bound-
ary estimates. In [3], Guan-Spruck assumed� to bemean convex. Then the solution u behaves
nicely near � and therefore k-admissible solutions can be studied in their framework. How-
ever, without any geometric assumptions on �ε , C2 boundary estimates can only be obtained
for strictly locally convex hypersurfaces.

In order to apply continuity method and degree theory to prove the existence of a strictly
locally convex solution to (1.6), the strict local convexity has to be preserved during the
continuity process. This is true when k = n in view of the nondegeneracy of (1.6), while
for 1 ≤ k < n, we have to impose certain assumptions on 	, u and ψ to guarantee the full
rank of the second fundamental form on locally convex � up to the boundary. In this paper,
we want to apply the constant rank theorem developed in [9–11] to Dirichlet boundary value
problems when assuming a subsolution. For this, we assume

{( u

f (κ[u])
)

xαxβ

}

n×n
≥ 0, (1.7)

⎛

⎝

k+1
k

ψxα ψxβ
ψ

− ψxα xβ − kψ

u2
δαβ + ψu

u δαβ
k+1

k
ψxα ψu

ψ
− ψxαu − ψxα

u
k+1

k
ψxα ψu

ψ
− ψxαu − ψxα

u
k+1

k
ψ2

u
ψ

− ψuu − k ψ

u2
− ψu

u

⎞

⎠ ≥ 0. (1.8)

Besides, we also need a condition which can guarantee that locally convex solutions to the
associated equations of (1.6) are strictly locally convex near the boundary �ε . However, we
did not find such a condition. Therefore, our existence results are limited to k = n.

Theorem 1.1 Under the subsolution condition (1.5), for k = n, there exists a smooth strictly
locally convex solution uε to the Dirichlet problem (1.6) with uε ≥ u in 	ε .

Our second task in this paper is to solve (1.3). A central issue is to provide certain uni-
form C2 bound for uε . Different from [2–5], where the authors derived uniform bound for
certain quantities regarding solutions of (1.4) under certain assumptions, we use (1.6) as an
approximate Dirichlet problem and tolerate the ε-dependent C2 bound for solutions to (1.6),
since we are able to use the idea of Guan-Qiu [12], who established C2 interior estimates for
convex hypersurfaces with prescribed scalar curvature in R

n+1. We extend their estimates
to H

n+1, which, together with Evans-Krylov interior estimates (see [13,14]) and standard
diagonal process, lead to the following existence result. Since the pure C2 interior estimates
can only be derived up to scalar curvature equations (see Pogorelov [15] and Urbas [16] for
counterexamples when k ≥ 3), we hope to investigate the cases k ≥ 3 in future work by
other means. Meanwhile, interior C2 estimates are limited to hypersurfaces satisfying cer-
tain convexity property (see [12]), which also explains why we only focus on strictly locally
convex hypersurfaces.
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Theorem 1.2 In H
3, for f = σ

1/2
2 , under the subsolution condition (1.5), there exists a

smooth strictly locally convex solution u ≥ u to (1.3) on 	, equivalently, there exists a
smooth complete strictly locally convex vertical graph solving (1.1)–(1.2).

This paper is organized as follows: in Sect. 2, we provide some basic formulae, properties
and calculations for vertical graphs. The C2 estimates for strictly locally convex solutions
of (1.6) are presented in Sects. 3 and 4. In Sect. 5, we prove Theorem 1.1 via continuity
method and degree theory. Section 6 provides the interior C2 estimates for convex solutions
to prescribed scalar curvature equations in Hn+1, which finishes the proof of Theorem 1.2.

2 Vertical graphs

Suppose � is locally represented as the graph of a positive C2 function over a domain
	 ⊂ R

n :

� = {(x, u(x)) ∈ R
n+1+

∣
∣ x ∈ 	}.

Since the coordinate vector fields on � are

∂i + ui ∂n+1, i = 1, . . . , n where ∂i = ∂

∂xi
,

thus the upward Euclidean unit normal vector field to �, the Euclidean metric, its inverse
and the Euclidean second fundamental form of � are given respectively by

ν =
(−Du

w
,
1

w

)

, w =
√

1 + |Du|2,

g̃i j = δi j + ui u j , g̃i j = δi j − ui u j

w2 , h̃i j = ui j

w
.

Consequently, the Euclidean principal curvatures κ̃[�] are the eigenvalues of the symmetric
matrix:

ãi j := 1

w
γ ikuklγ

l j ,

where

γ ik = δik − ui uk

w(1 + w)

and its inverse

γik = δik + ui uk

1 + w
, γikγk j = g̃i j .

For geometric quantities in hyperbolic space, we first note that the upward hyperbolic unit
normal vector field to � is

n = u ν = u
(−Du

w
,

1

w

)

and the hyperbolic metric of � is

gi j = 1

u2 (δi j + ui u j ). (2.1)
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To compute the hyperbolic second fundamental form hi j of �, applying the Christoffel
symbols in H

n+1,

�k
i j = 1

xn+1

(− δikδn+1 j − δk jδn+1 i + δk n+1δi j
)

, (2.2)

we obtain

D∂i +ui ∂n+1

(

∂ j + u j ∂n+1
) = − u j

xn+1
∂i − ui

xn+1
∂ j +

( δi j

xn+1
+ ui j − ui u j

xn+1

)

∂n+1,

where D denotes the Levi-Civita connection in H
n+1. Therefore,

hi j = 1

u2w
(δi j + ui u j + uui j ).

The hyperbolic principal curvatures κ[�] are the eigenvalues of the symmetricmatrix A[u] =
{ai j }:

ai j = u2γ ikhklγ
l j = 1

w
γ ik(δkl + ukul + uukl) γ l j = 1

w
(δi j + uγ ikuklγ

l j ).

Remark 2.1 The graph of u is strictly locally convex if and only if the symmetric matrix {ai j },
{hi j } or {δi j + ui u j + uui j } is positive definite.
Remark 2.2 From the above discussion, we can see that

hi j = 1

u
h̃i j + νn+1

u2 g̃i j , (2.3)

where νn+1 = ν · ∂n+1 and · is the inner product in Rn+1. This formula indeed holds for any
local frame on any hypersurface � (which may not be a graph). The relation between κ[�]
and κ̃[�] is

κi = u κ̃i + νn+1, i = 1, . . . , n. (2.4)

We observe the following phenomenon for strictly locally convex hypersurfaces in Hn+1

(see also Lemma 3.3 in [2] for a similar assertion).

Lemma 2.1 Let � be a connected, orientable, strictly locally convex hypersurface in H
n+1

with a specially chosen orientation. Then � must be a vertical graph.

Proof Suppose � is not a vertical graph. Then there exists a vertical line (of dimension 1)
intersecting � at two distinct points p1 and p2. Since � is orientable, we may assume that
νn+1(p1) · νn+1(p2) ≤ 0. Since � is connected, there exists a 1-dimensional curve γ on
� connecting p1 and p2. Among the tangent hyperplanes (of dimension n) to � along γ ,
choose a vertical one which is tangent to � at a point p3. At p3, νn+1 = 0 and u > 0.
By (2.4), κ̃i > 0 for all i at p3. On the other hand, let P be a 2-dimensional plane passing
through p1, p2 and p3. If P ∩� is 1-dimensional and has nonpositive (Euclidean) curvature
at p3 with respect to ν, we reach a contradiction; otherwise we take a different orientation
of �, then � is either not strictly locally convex or we reach a contradiction. If P ∩ � is
2-dimensional, then any line on P ∩ � through p3 leads to a contradiction. 
�

Equation (1.1) can be written as

f (κ[ u ]) = f (λ(A[ u ])) = F(A[ u ]) = ψ1/k(x, u). (2.5)
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Recall that the curvature function f satisfies the fundamental structure conditions

fi (λ) ≡ ∂ f (λ)

∂λi
> 0 in �k, i = 1, . . . , n, (2.6)

f is concave in �k, (2.7)

f > 0 in �k, f = 0 on ∂�k . (2.8)

3 Second order boundary estimates

In this section and the next section, we derive a priori C2 estimates for strictly locally convex
solution u to the Dirichlet problem (1.6) with u ≥ u in 	ε . By Evans-Krylov theory [13,14],
classical continuity method and degree theory (see [17]) we prove the existence of a strictly
locally convex solution to (1.6). Higher-order regularity then follows from classical Schauder
theory.

Let u ≥ u be a strictly locally convex function over 	ε with u = u on �ε . We have the
following C0 estimate:

u ≤ u ≤
√

ε2 + (diam	)2 in 	ε. (3.1)

In fact, by Remark 2.1, for any x0 ∈ 	ε , the function u2 + |x − x0|2 is Euclidean strictly
locally convex in 	ε , over which, we have

u2 ≤ u2 + |x − x0|2 ≤ max
�ε

(u2 + |x − x0|2) ≤ ε2 + (diam	)2.

Therefore we obtain (3.1).
For the gradient estimate, we perform a transformation u = √

v. Denote

W =
√

4v + |Dv|2.
The geometric quantities in Sect. 2 can be expressed in terms of v,

γ ik = δik − vivk

W (2
√

v + W )
, γik = δik + vivk

2
√

v(2
√

v + W )
,

hi j = 2√
v W

(

δi j + 1

2
vi j
)

, ai j = 2
√

v

W
γ ik(δkl + 1

2
vkl
)

γ l j .

Since the graph is strictly locally convex, v satisfies
{

�v + 2n > 0 in 	ε,

v = ε2 on �ε,

where � is the Laplace-Beltrami operator in R
n . Let v be the solution of

{

�v + 2n = 0 in 	ε,

v = ε2 on �ε.

By the comparison principle,

u2 = v ≤ v ≤ v in 	ε.

Consequently,

|Dv| ≤ C on �ε, (3.2)
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where C is a positive constant depending on ε. Hereinafter in this section, C always denotes
such a constant which may change from line to line. Equivalently,

|Du| ≤ C on �ε. (3.3)

For global gradient estimate, consider the test function

W =
√

4v + |Dv|2.
Assume its maximum is achieved at an interior point x0 ∈ 	ε . Then at x0,

W Wi = (vki + 2δki
)

vk = 0, i = 1, . . . , n.

Since the matrix
(

vki + 2δki
)

is positive definite, thus vk = 0 for all k at x0. Along with (3.1)
and (3.2), we obtain

max
	ε

|Dv| ≤ max
	ε

√

4v + |Dv|2 ≤ max
{

max
�ε

√

4ε2 + |Dv|2, 2max
	ε

√
v
}

≤ C . (3.4)

Equivalently,

max
	ε

|Du| ≤ C . (3.5)

For second order boundary estimate, we change Equ. (2.5) under the transformation u =√
v into

G(D2v, Dv, v) = F(ai j ) = f (λ(ai j )) = ψ(x, v). (3.6)

By direct calculation, we obtain the following formulae.

Lemma 3.1

Gst = ∂G

∂vst
=

√
v

W
Fi jγ isγ t j ,

Gv =∂G

∂v
=
( 1

2v
− 2

W 2

)

Fi j ai j + vivq

W 2v
Fi j aq j ,

Gs = ∂G

∂vs
= − vs

W 2 Fi j ai j − Wγ isvq + 2
√

vγ qsvi√
vW (2

√
v + W )

Fi j aq j .

In addition,

|Gs | ≤ C and |Gv| ≤ C .

Proof Since

G(D2v, Dv, v) = F
(2

√
v

W
γ ik(δkl + 1

2
vkl
)

γ l j
)

,

we have,

Gst = ∂ F

∂ai j

∂ai j

∂vst
=

√
v

W
Fi jγ isγ t j .

To compute Gv , note that

∂W

∂v
= 2

W
and

∂γik

∂v
= − vivk

4v3/2W
.
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Consequently,

∂γ ik

∂v
= γ i p vpvq

4v3/2W
γ qk .

Hence,

Gv = Fi j
( ∂

∂v

(2
√

v

W

)

γ ik(δkl + 1

2
vkl)γ

l j + 4
√

v

W

∂γ ik

∂v
(δkl + 1

2
vkl)γ

l j
)

=
( 1

2v
− 2

W 2

)

Fi j ai j + γ i pvpvq

2v3/2W
Fi j aq j .

We then obtain Gv in view of

γ i pvp = 2
√

v vi

W
.

For Gs , note that

∂W

∂vs
= vs

W
,

∂γ ik

∂vs
= −γ i p ∂γpq

∂vs
γ qk, and

∂γpq

∂vs
= δpsvq + δqsvp

2
√

v(2
√

v + W )
− vpvqvs

2
√

v(2
√

v + W )2W
= δpsvq + vpγ

qs

2
√

v(2
√

v + W )
.

It follows that

Gs = Fi j
(

− 2
√

vvs

W 3 γ ik(δkl + 1

2
vkl)γ

l j + 4
√

v

W

∂γ ik

∂vs
(δkl + 1

2
vkl)γ

l j
)

= − vs

W 2 Fi j ai j − Wγ isvq + 2
√

vγ qsvi√
vW (2

√
v + W )

Fi j aq j .


�
For an arbitrary point on �ε , we may assume it to be the origin ofRn . Choose a coordinate

system so that the positive xn axis points to the interior normal of �ε at the origin. There
exists a uniform constant r > 0 such that �ε ∩ Br (0) can be represented as a graph

xn = ρ(x ′) = 1

2

∑

α,β<n

Bαβ xαxβ + O(|x ′|3), x ′ = (x1, . . . , xn−1).

Since

v = ε2 on �ε,

or equivalently

v(x ′, ρ(x ′)) = ε2,

we have

vα + vn ρα = 0 (3.7)

and

vαβ + vαnρβ + (vnβ + vnnρβ)ρα + vnραβ = 0.

Therefore,

vαβ(0) = −vn(0) ραβ(0), α, β < n.
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Consequently,

|vαβ(0)| ≤ C, α, β < n, (3.8)

where C is a constant depending on ε.
For the mixed tangential-normal derivative vαn(0) with α < n, note that the graph of u is

strictly locally convex on 	ε . Hence we have

I + 1

2
D2v ≥ 3 c0 I

for some positive constant c0. Let d(x) be the distance from x ∈ 	ε to �ε in R
n . Consider

the barrier function

� = A V + B |x |2

with

V = v − v + τd − Nd2,

where the positive constant N , τ , B and A are to be determined.
Define the linear operator L = Gst Dst + Gs Ds . By the concavity of G with respect to

D2v,

LV = Gst Dst (v − v − N d2) + τ Gst Dst d + Gs Ds(v − v + τ d − N d2)

≤ G(D2v, Dv, v) − G
(

D2(v + N d2)− 2c0 I , Dv, v
)

+ (Cτ − 2c0)
∑

Gii + C(1 + τ + Nδ).

Note that

I + 1

2
D2(v + N d2)− c0 I ≥ 2c0 I + N Dd ⊗ Dd − C Nδ I := H.

Denote γ = (γ ik). We have

G
(

D2(v + N d2)− 2c0 I , Dv, v
)

= F
(2

√
v

W
γ
(

I + 1

2
D2(v + N d2)− c0 I

)

γ
)

≥ F
(2

√
v

W
γ H γ

)

= F
(2

√
v

W
H1/2 γ γ H1/2

)

≥ F(c̃ H),

where c̃ is a positive constant. Hence

LV ≤ −F(c̃ H) + (Cτ − 2c0)
∑

Gii + C(1 + τ + Nδ).

Note that H = diag
(

2c0 − C Nδ, . . . , 2c0 − C Nδ, 2c0 − C Nδ + N
)

. We can choose N

sufficiently large and τ , δ sufficiently small (δ depends on N ) such that

Cτ ≤ c0, C Nδ ≤ c0, −F(c̃ H) + C + 2c0 ≤ −1.

Hence the above inequality becomes

LV ≤ −c0
∑

Gii − 1. (3.9)

We then require δ ≤ τ
N so that

V ≥ 0 in 	ε ∩ Bδ(0).
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By Lemma 3.1,

L
(|x |2) ≤ C

(

1 +
∑

Gii ).

This, together with (3.9) yields,

L� ≤ A
(− c0

∑

Gii − 1
)+ BC

(

1 +
∑

Gii ) in 	ε ∩ Bδ(0). (3.10)

Now, we consider the operator

T = ∂α +
∑

β<n

Bαβ(xβ∂n − xn∂β).

Note that for δ > 0 sufficiently small,

|T v| ≤ C in 	ε ∩ Bδ(0).

Also, in view of (3.7),

|T v| ≤ C |x |2 on �ε ∩ Bδ(0).

To compute L(T v), we need the following lemma (see [2]).

Lemma 3.2 For 1 ≤ i, j ≤ n,

(L + Gv − ψv)(xiv j − x jvi ) = xiψx j − x jψxi .

Proof For θ ∈ R, let

yi = xi cos θ − x j sin θ,

y j = xi sin θ + x j cos θ,

yk = xk, k �= i, j .

Since G − ψ is invariant for the rotations of Rn , we have

G(D2v(y), Dv(y), v(y)) = ψ(y, v(y)).

Differentiate with respect to θ and change the order of differentiation,

(L + Gv − ψv)|y
∂v

∂θ
= ψyi

∂ yi

∂θ
+ ψy j

∂ y j

∂θ
.

Set θ = 0 in the above equality and notice that at θ = 0,

y = x,
∂ yi

∂θ
= −x j ,

∂ y j

∂θ
= xi ,

∂v

∂θ
= xiv j − x jvi .

We thus proved the lemma. 
�
By Lemma 3.2 and 3.1, we have

|L(T v)| ≤ C . (3.11)

Choose B sufficiently large such that

� ± T v ≥ 0 on ∂(	ε ∩ Bδ(0)).

From (3.10) and (3.11) we have

L(� ± T v) ≤ A
(− c0

∑

Gii − 1
)+ BC

(

1 +
∑

Gii )+ C .
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Choose A sufficiently large such that

L(� ± T v) ≤ 0 in 	ε ∩ Bδ(0).

By the maximum principle,

� ± T v ≥ 0 in 	ε ∩ Bδ(0),

which implies

|vαn(0)| ≤ C . (3.12)

Up to now, we have proved that

|vξη(x)| ≤ C, |vξγ (x)| ≤ C, ∀ x ∈ �ε,

where ξ and η are any unit tangential vectors and γ the unit interior normal vector to �ε on
	ε . It suffices to give an upper bound

vγγ ≤ C on �ε. (3.13)

Motivated by [18] (see also [19,20]), we derive (3.13).
First recall some general facts. The projection of �k ⊂ R

n onto Rn−1 is exactly

�′
k−1 = {(λ1, . . . , λn−1) ∈ R

n−1 | σ j (λ1, . . . , λn−1) > 0, j = 1, . . . , k − 1}.
Let κ ′ = (κ ′

1, . . . , κ
′
n−1) be the roots of

det(κ ′
ζ gαβ − hαβ) = 0, (3.14)

where (hαβ) and (gαβ) are the first (n − 1) × (n − 1) principal minors of (hi j ) and (gi j )

respectively. Then κ[v] ∈ �k implies κ ′[v] ∈ �′
k−1, and this is true for any local frame field.

Note that κ ′[v] may not be (κ1, . . . , κn−1)[v].
For x ∈ �ε , let the indices in (3.14) be given by the tangential directions to�ε and κ ′[v](x)

be the roots of (3.14). Define

d̃(x) = √
v W dist(κ ′[v](x), ∂�′

k−1) and m = min
x∈�ε

d̃(x).

Choose a coordinate system in Rn such that m is achieved at 0 ∈ �ε and the positive xn axis
points to the interior normal of �ε at 0. We want to prove that m has a uniform positive lower
bound.

Let ξ1, . . . , ξn−1, γ be a local frame field around 0 on 	ε , obtained by parallel translation
of a local frame field ξ1, . . . , ξn−1 around 0 on �ε satisfying

gαβ = δαβ, hαβ(0) = κ ′
α(0) δαβ, κ ′

1(0) ≤ . . . ≤ κ ′
n−1(0)

and the interior, unit, normal vector field γ to �ε , along the directions perpendicular to �ε

on 	ε . We can see that this choice of frame field has nothing to do with v (or equivalently,
u). In fact, if we denote

ξα =
n−1
∑

β=1

ηβ
α eβ, α = 1, . . . , n − 1,
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where e1, . . . , en−1 is a fixed local orthonormal frame on�ε , and consider a general boundary
value condition, say v = ϕ on �ε , then on �ε ,

gαβ = 1

u2

(

ξα · ξβ + Dξα u Dξβ u
)

= 1

ϕ

(

ξα · ξβ + Dξα (
√

ϕ) Dξβ (
√

ϕ)
)

= 1

ϕ

n−1
∑

τ,ζ=1

ητ
α

(

δτζ + Deτ ϕ Deζ ϕ

4ϕ

)

η
ζ
β .

Note that there exist ητ
α for α, τ = 1, . . . , n − 1 such that gαβ = δαβ on �ε . By a rotation,

we can further make (hαβ(0)) to be diagonal.
By Lemma 6.1 of [21], there exists μ = (μ1, . . . , μn−1) ∈ R

n−1 with μ1 ≥ . . . ≥
μn−1 ≥ 0 such that

n−1
∑

α=1

μ2
α = 1, �′

k−1 ⊂ {λ′ ∈ R
n−1 | μ · λ′ > 0} and

m = d̃(0) = √
v W

∑

α<n

μα κ ′
α(0) =

∑

α<n

μα

(

Dξαξα v + 2 ξα · ξα

)

(0). (3.15)

Since v is strictly locally convex near �ε and
∑

μα ≥ 1,
∑

α<n

μα

(

Dξαξα v + 2 ξα · ξα

)

(0) ≥ 2 c1

for a uniform positive constant c1. Consequently,

(v − v)γ (0)
∑

α<n

μα dξαξα (0) =
∑

α<n

μα Dξαξα (v − v)(0)

=
∑

α<n

μα

(

Dξαξα v + 2 ξα · ξα

)

(0) −
∑

α<n

μα

(

Dξαξα v + 2 ξα · ξα

)

(0) ≥ 2 c1 − d̃(0).

(3.16)

The first line in (3.16) is true, since we can write v − v = ω d for some function ω defined
in a neighborhood of �ε in 	ε . Differentiate this identity,

(v − v)i = ωi d + ω di , (v − v)γ = ωγ d + ω dγ ,

(v − v)i j = ωi j d + ωi d j + ω j di + ω di j .

Note that dξα (0) = 0 and dγ (0) = 1. Thus,

Dξαξα (v − v)(0) = (v − v)γ (0) dξαξα (0).

We may assume d̃(0) ≤ c1, for, otherwise we are done. Then from (3.16),

(v − v)γ (0)
∑

α<n

μα dξαξα (0) ≥ c1.

Since 0 < (v − v)γ (0) ≤ C ,
∑

α<n

μα dξαξα (0) ≤ − 2 c2
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for some uniform constant c2 > 0. By continuity of dξαξα (x) at 0 and 0 ≤ μα ≤ 1,
∑

α<n

μα

(

dξαξα (x) − dξαξα (0)
)

<
∑

α<n

μα

c2
n − 1

≤ c2 in 	ε ∩ Bδ(0)

for some uniform constant δ > 0. Thus
∑

α<n

μα dξαξα (x) < −c2 in 	ε ∩ Bδ(0). (3.17)

On the other hand, by Lemma 6.2 of [21], for any x ∈ �ε near 0,
∑

α<n

μα

(

Dξαξα v + 2 ξα · ξα

)

(x) =
∑

α<n

μα

√
v W hαα(x)

≥ √
v W

∑

α<n

μα κ ′
α[v](x) ≥ d̃(x) ≥ d̃(0).

Thus for any x ∈ �ε near 0,

(v − ϕ)γ (x)
∑

α<n

μα dξαξα (x) =
∑

α<n

μα Dξαξα (v − ϕ)(x)

=
∑

α<n

μα

(

Dξαξα v + 2 ξα · ξα

)

(x) −
∑

α<n

μα

(

Dξαξαϕ + 2 ξα · ξα

)

(x)

≥ d̃(0) −
∑

α<n

μα

(

Dξαξαϕ + 2 ξα · ξα

)

(x).

(3.18)

In view of (3.17), define in 	ε ∩ Bδ(0),

� = 1
∑

α<n
μα dξαξα

(

d̃(0) −
∑

α<n

μα

(

Dξαξαϕ + 2 ξα · ξα

)
)

− (v − ϕ)γ .

By (3.17) and (3.18), � ≥ 0 on �ε ∩ Bδ(0). In addition, we have in 	ε ∩ Bδ(0),

L(�) ≤ C
(

1 +
∑

Gii )− L
(

D(v − ϕ) · Dd
)

≤ C
(

1 +
∑

Gii ). (3.19)

This is because 0 ≤ μα ≤ 1 and
∣
∣
∣L
(

D(v − ϕ) · Dd
)
∣
∣
∣ =

∣
∣
∣Dd · L

(

D(v − ϕ)
)+ D(v − ϕ) · L(Dd) + 2Gst (v − ϕ)isdit

∣
∣
∣

≤ C
(

1 +
∑

Gii ) +
∣
∣
∣2 Gst dit

( W√
v
γkiγslakl − 2δis

)∣
∣
∣

= C
(

1 +
∑

Gii ) +
∣
∣
∣2 γki ditγ

t j Fl j akl − 4Gst dst

∣
∣
∣ ≤ C

(

1 +
∑

Gii ).

By (3.10) and (3.19), we may choose A >> B >> 1 such that� +� ≥ 0 on ∂(	ε ∩ Bδ(0))
and L(�+�) ≤ 0 in	ε ∩Bδ(0). By themaximumprinciple,�+� ≥ 0 in	ε ∩Bδ(0). Since
(� + �)(0) = 0 by (3.18) and (3.15), we have (� + �)n(0) ≥ 0. Therefore, vnn(0) ≤ C ,
which, together with (3.8) and (3.12), gives a bound |D2v(0)| ≤ C , and consequently a
bound for all the principal curvatures at 0. By (2.8),

dist(κ[v](0), ∂�k) ≥ c3

and therefore on �ε ,

d̃(x) ≥ d̃(0) = √
v W dist(κ ′[v](0), ∂�′

k−1) ≥ c4,
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where c3 and c4 are positive uniform constants.
By a proof similar to Lemma 1.2 of [21], we know that there exists R > 0 depending

on the bounds (3.8) and (3.12) such that if vγγ (x0) ≥ R and x0 ∈ �ε , then the principal
curvatures (κ1, . . . , κn) at x0 satisfy

κα = κ ′
α + o(1), α < n,

κn = hnn − g1nhn1 − . . . − gnn−1hnn−1

gnn − g2
1n − . . . − g2

nn−1

(

1 + O
( gnn − g2

1n − . . . − g2
nn−1

hnn − g1nhn1 − . . . − gnn−1hnn−1

))

in the local frame ξ1, . . . , ξn−1, γ around x0. When R is sufficiently large, we have

G(D2v, Dv, v)(x0) > ψ(x0, ε
2),

contradicting with Equ. (3.6). Hence vγγ < R on �ε . (3.13) is proved.

4 Global curvature estimates

For a hypersurface � ⊂ H
n+1, let g and ∇ be the induced hyperbolic metric and Levi-Civita

connection on � respectively, and let g̃ and ∇̃ be the metric and Levi-Civita connection
induced from R

n+1 when � is viewed as a hypersurface in R
n+1. The Christoffel symbols

associated with ∇ and ∇̃ are related by the formula

�k
i j = �̃k

i j − 1

u
(uiδk j + u jδik − g̃klul g̃i j ).

Consequently, for any v ∈ C2(�),

∇i jv = (vi ) j − �k
i jvk = ∇̃i jv + 1

u
(uiv j + u jvi − g̃klulvk g̃i j ). (4.1)

Note that (4.1) holds for any local frame.

Lemma 4.1 In R
n+1, we have the following identities.

g̃klukul = |∇̃u|2 = 1 − (νn+1)2, (4.2)

∇̃i j u = h̃i jν
n+1 and ∇̃i j xk = h̃i jν

k, k = 1, . . . , n, (4.3)

(νn+1)i = −h̃i j g̃ jkuk, (4.4)

∇̃i jν
n+1 = −g̃kl(νn+1h̃il h̃k j + ul ∇̃k h̃i j ), (4.5)

where τ1, . . . , τn is any local frame on �.

Proof To prove (4.2), we may write

∂n+1 =
n
∑

k=1

akτk + bν. (4.6)

Taking inner product of (4.6) with ν in R
n+1, we obain

νn+1 = ∂n+1 · ν = b.

Taking inner product of (4.6) with τ j in R
n+1, we have

u j = (X · ∂n+1) j = ∂n+1 · τ j = akτk · τ j = ak g̃k j ,
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where X is the position vector field of� (note that this is different from the conformal Killing
field when using half space model for Hn+1). Thus,

ak = u j g̃
jk .

Therefore,

∂n+1 = u j g̃
jkτk + νn+1ν = ∇̃u + νn+1ν,

which implies (4.2).
For (4.3), note that

∇̃i j (X · ∂k) = ((X · ∂k) j
)

i − �̃l
i j (X · ∂k)l

= (τ j · ∂k)i − �̃l
i j τl · ∂k = D̃τi τ j · ∂k − �̃l

i j τl · ∂k

= (∇̃τi τ j + h̃i jν) · ∂k − �̃l
i j τl · ∂k = h̃i jν · ∂k, k = 1, . . . , n + 1.

Here we have applied the Gauss formula for � as a hypersurface in R
n+1.

For (4.4), by the Weingarten formula for � as a hypersurface in R
n+1, we have

(νn+1)i = (ν · ∂n+1)i = D̃τi ν · ∂n+1 = −h̃ik g̃klτl · ∂n+1 = −h̃ik g̃klul .

Finally, (4.5) follows from (4.4), (4.3) and the Codazzi equation for � as a hypersurface
in R

n+1. In fact,

∇̃i jν
n+1 = −g̃kl(ul ∇̃i h̃ jk + h̃ jk∇̃il u) = −g̃kl(ul ∇̃k h̃i j + νn+1h̃il h̃ jk).


�

Lemma 4.2 Let � be a strictly locally convex hypersurface inHn+1 satisfying equation (2.5).
Then in a local orthonormal frame on �,

Fi j∇i jν
n+1 = − νn+1Fi j hikhk j + (1 + (νn+1)2

)

Fi j hi j − νn+1
∑

fi

− 2

u2 Fi j h jkui uk + 2νn+1

u2 Fi j ui u j − uk

u
ψk .

(4.7)

Proof By (4.1), (4.5),

Fi j∇i jν
n+1

= Fi j
(

∇̃i jν
n+1 + 1

u

(

ui (ν
n+1) j + u j (ν

n+1)i − g̃klul(ν
n+1)k g̃i j

))

= −νn+1

u2 Fi j h̃ik h̃k j − uk

u2 Fi j ∇̃k h̃i j − 2

u3 Fi j h̃ jkui uk − uk

u
(νn+1)k

∑

fi .

(4.8)

Since � can also be viewed as a hypersurface in R
n+1,

F(gil hl j ) = F
(

u2 g̃il( 1

u
h̃l j + νn+1

u2 g̃l j
)) = F

(

u g̃il h̃l j + νn+1δi j

)

= ψ.

Differentiate this equation with respect to ∇̃k and then multiply by uk
u ,

u2
k

u3 Fi j h̃i j + uk

u2 Fi j ∇̃k h̃i j + uk

u
(νn+1)k

∑

fi = uk

u
ψk .
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Take this identity into (4.8),

Fi j∇i jν
n+1 = −νn+1

u2 Fi j h̃ik h̃k j − 2

u3 Fi j h̃ jkui uk + u2
k

u3 Fi j h̃i j − uk

u
ψk .

In view of (2.3), we obtain (4.7). 
�

For global curvature estimates, we use the method in [4]. Assume

νn+1 ≥ 2 a > 0 on �

for some constant a. Let κmax(x) be the largest principal curvature of � at x. Consider

M0 = sup
x∈�

κmax (x)
νn+1 − a

.

Assume M0 > 0 is attained at an interior point x0 ∈ �. Let τ1, . . . , τn be a local orthonormal
frame about x0 such that hi j (x0) = κi δi j , where κ1, . . . , κn are the hyperbolic principal
curvatures of � at x0. We may assume κ1 = κmax (x0). Thus, ln h11 − ln(νn+1 − a) has a
local maximum at x0, at which,

h11i

h11
− ∇iν

n+1

νn+1 − a
= 0, (4.9)

h11i i

h11
− ∇i iν

n+1

νn+1 − a
≤ 0. (4.10)

Differentiate equation (2.5) twice,

Fii hii11 + Fi j, rshi j1hrs1 = ψ11 ≥ −Cκ1. (4.11)

By Gauss equation, we have the following formula when changing the order of differen-
tiation for the second fundamental form,

hii j j = h j jii + (κi κ j − 1) (κi − κ j ). (4.12)

Combining (4.10), (4.11), (4.12) and (4.7) yields,

(

κ2
1 − 1 + (νn+1)2

νn+1 − a
κ1 + 1

) ∑

fi κi + aκ1

νn+1 − a

(∑

fi +
∑

fi κ2
i

)

− Fi j,rs hi j1 hrs1 + 2κ1
νn+1 − a

∑

fi
u2

i

u2

(

κi − νn+1)− Cκ1 ≤ 0.

(4.13)

Next, take (4.4), (2.3) into (4.9),

h11i = κ1

νn+1 − a

ui

u
(νn+1 − κi ),

and recall an inequality of Andrews [22] and Gerhardt [23],

−Fi j,rs hi j1 hrs1 ≥
∑

i �= j

fi − f j

κ j − κi
h2

i j1 ≥ 2
∑

i≥2

fi − f1
κ1 − κi

h2
i11.
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Therefore, (4.13) becomes,

0 ≥
(

κ2
1 − 1 + (νn+1)2

νn+1 − a
κ1 + 1

) ∑

fi κi − Cκ1 + aκ1

νn+1 − a

(∑

fi +
∑

fi κ2
i

)

+ 2 κ2
1

(νn+1 − a)2

∑

i≥2

fi − f1
κ1 − κi

u2
i

u2 (νn+1 − κi )
2 + 2κ1

νn+1 − a

∑

fi
u2

i

u2

(

κi − νn+1).

(4.14)

For some fixed θ ∈ (0, 1) which will be determined later, denote

J = {i : f1 ≥ θ fi , κi < νn+1}, L = {i : f1 < θ fi , κi < νn+1}.
The second line of (4.14) can be estimated as follows.

2 κ2
1

(νn+1 − a)2

∑

i≥2

fi − f1
κ1 − κi

u2
i

u2 (νn+1 − κi )
2 + 2κ1

νn+1 − a

∑

fi
u2

i

u2

(

κi − νn+1)

≥ 2κ2
1

(νn+1 − a)2

∑

i∈L

fi − f1
κ1 − κi

u2
i

u2 (νn+1 − κi )
2 + 2κ1

νn+1 − a

(∑

i∈L

+
∑

i∈J

) fi u2
i

u2

(

κi − νn+1)

≥ 2(1 − θ)κ1

(νn+1 − a)2

∑

i∈L

fi u2
i

u2 (νn+1 − κi )
2 + 2κ1

νn+1 − a

∑

i∈L

fi u2
i

u2

(

κi − νn+1)− 2

θa

∑

fiκi

= 2κ1
νn+1 − a

∑

i∈L

fi u2
i

u2

( (νn+1 − κi )
2

νn+1 − a
+ κi − νn+1

)

− 2 θκ1

(νn+1 − a)2

∑

i∈L

fi u2
i

u2 (νn+1 − κi )
2 − 2

θa

∑

fiκi

≥ − 2κ1
νn+1 − a

∑

i∈L

fi u2
i

u2 · νn+1 + a

νn+1 − a
κi − 4θκ1

a(νn+1 − a)

∑

fi
(

1 + κ2
i

)− 2

θa

∑

fiκi

≥ − 4θκ1

a(νn+1 − a)

∑

fi
(

1 + κ2
i

)−
( 2

θa
+ 4κ1

a2

)∑

fiκi .

Here we have applied g̃klukul = δkl
u2

ukul = 1 − (νn+1)2 due to (4.2) in deriving the above

inequality. Choosing θ = a2
4 and taking the above inequality into (4.14), we obtain an upper

bound for κ1.

5 Existence of strictly locally convex solutions to (1.6)

The convexity of solutions is a very important prerequisite in this paper, due to the following
two reasons: first, the C2 boundary estimates derived in Sect. 3 require the condition of
convexity; second, the C2 interior estimates for prescribed scalar curvature equations in
Sect. 6 need certain convexity assumption (see [12]). Therefore, the preservation of convexity
of solutions is vital in order to perform the continuity process. In this section, we first give a
constant rank theorem in hyperbolic space (see [9–11,24]).

Theorem 5.1 Let � be a C4 oriented connected hypersurface in H
n+1 satisfying the pre-

scribed curvature equation

σk(κ) = �(x1, . . . , xn, u) > 0. (5.1)
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Assume that the second fundamental form {hi j } on � is positive semi-definite, and for any
x ∈ � and a local orthonormal frame τ1, . . . , τn around x with {hi j (x)} diagonal,

∑

i∈B

(

�i i − k + 1

k

�2
i

�
+ k �

)

(x) � 0, (5.2)

where the symbol � is defined in [10] and B is the set of bad indices of x. Then the second
fundamental form on � is of constant rank.

Let � be a locally convex hypersurface to equation (5.1) for k < n with boundary ∂�. If
we can find a condition (we call it Condition I) to guarantee that � is strictly locally convex
in a neighbourhood of the boundary ∂�, then together with condition (5.2) in Theorem 5.1,
we can prove that � is strictly locally convex up to the boundary. However, we did not find
a suitable Condition I. Still, we proceed to prove the existence as if we have had Condition I
in order to show how (5.2) and Condition I play the roles in the continuity process.

Nowweprove the existence.Weuse the geometric quantities in Sect. 2which are expressed
in terms of u and write Equ. (2.5) as

G(D2u, Du, u) = F(ai j ) = f (λ(ai j )) = σ
1/k
k (κ) = ψ1/k(x, u). (5.3)

For convenience, denote

G[u] = G(D2u, Du, u), Gi j [u] = Gi j (D2u, Du, u), etc.

Let δ be a small positive constant such that

G[u] = G(D2u, Du, u) > δ u in 	ε. (5.4)

For t ∈ [0, 1], consider the following two auxiliary equations (see also [27]).
⎧

⎨

⎩

G(D2u, Du, u) =
(

(1 − t)
u

G[u] + t δ−1
)−1

u in 	ε,

u = ε on �ε.

(5.5)

⎧

⎨

⎩

G(D2u, Du, u) =
(

(1 − t) δ−1 u−1 + t ψ−1/k(x, u)
)−1

in 	ε,

u = ε on �ε.

(5.6)

Lemma 5.1 Let ψ(x) be a positive function defined on 	ε . For x ∈ 	ε and a positive C2

function u which is strictly locally convex near x, if

G[u](x) = F(ai j [u])(x) = f (κ)(x) = ψ(x) u,

then

Gu[u](x) − ψ(x) < 0.

Proof By direct calculation,

Gu = Fi j 1

w
γ ikuklγ

l j = 1

u

(∑

fiκi − 1

w

∑

fi

)

.

Since
∑

fiκi ≤ ψ(x) u by the concavity of f and f (0) = 0,

Gu[u](x) − ψ(x) ≤ − 1

wu

∑

fi < 0.


�
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Lemma 5.2 For any t ∈ [0, 1], if U and u are respectively any positive strictly locally convex
subsolution and solution of (5.5), then u ≥ U. In particular, the Dirichlet problem (5.5) has
at most one strictly locally convex solution.

Proof We only need to prove that u ≥ U in 	ε . If not, then U − u achieves a positive
maximum at x0 ∈ 	ε , at which,

U (x0) > u(x0), DU (x0) = Du(x0), D2U (x0) ≤ D2u(x0). (5.7)

Note that for any s ∈ [0, 1], the deformation u[s] := s U + (1− s) u is strictly locally convex
near x0. This is because at x0,

δi j + u[s] · γ ik[u[s]] · (u[s])kl · γ l j [u[s]] ≥ δi j + u[s] γ ik[U ] · U kl · γ l j [U ]
= (1 − s)

(

1 − u

U

)

δi j + u[s]
U

(

δi j + U · γ ik[U ] · U kl · γ l j [U ]
)

> 0.

Denote

θ(x, t) =
(

(1 − t)
u

G[u] + t δ−1
)−1

(5.8)

and define a differentiable function of s ∈ [0, 1]:
a(s) := G

[

u[s]
]

(x0) − θ(x0, t) u[s](x0).

Note that

a(0) = G[u](x0) − θ(x0, t) u(x0) = 0

and

a(1) = G[U ](x0) − θ(x0, t) U (x0) ≥ 0.

Thus there exists s0 ∈ [0, 1] such that a(s0) = 0 and a′(s0) ≥ 0, i.e.,

G
[

u[s0]
]

(x0) = θ(x0, t) u[s0](x0) (5.9)

and

Gi j [u[s0]
]

(x0) Di j (U − u)(x0) + Gi [u[s0]
]

(x0) Di (U − u)(x0)

+
(

Gu
[

u[s0]
]

(x0) − θ(x0, t)
)

(U − u)(x0) ≥ 0.
(5.10)

However, the above inequality can not hold by (5.7), (5.9) and Lemma 5.1. 
�
Theorem 5.2 Under assumption (1.7) and Condition I, for any t ∈ [0, 1], the Dirichlet
problem (5.5) has a unique strictly locally convex solution u, which satisfies u ≥ u in 	ε .

Proof Uniqueness is proved in Lemma 5.2. For existence of a strictly locally convex solution,
we first verify that � = (θ(x, t) u)k = �(x, t) uk satisfies condition (5.2) in the constant
rank theorem. By direct calculation,

�i i − k + 1

k

�2
i

�
+ k �

=
n
∑

α,β=1

(

�xα xβ − k + 1

k

�xα�xβ

�

)

(xα)i (xβ)i uk +
n
∑

α=1

�xα (xα)i i uk

− 2
n
∑

α=1

�xα (xα)i uk−1ui − 2k �uk−2u2
i + � k uk−1uii + k � uk .
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By (4.1), (4.3), (2.3) and (4.2), for i ∈ B and α = 1, . . . , n, we have

(xα)i i ∼ − νn+1 u να + 2

u
(xα)i ui − 1

u

n
∑

l=1

ul (xα)l

= − u (ν · ∂n+1)(ν · ∂α) − u
n
∑

l=1

(τl

u
· ∂n+1

) (τl

u
· ∂α

)+ 2

u
(xα)i ui

= 2

u
(xα)i ui

(5.11)

and

uii ∼ 2

u
u2

i − u. (5.12)

Therefore by (1.7),

∑

i∈B

(

�i i − k + 1

k

�2
i

�
+ k �

)

∼ −k �
1
k +1

∑

i∈B

n
∑

α,β=1

(

�− 1
k

)

xαxβ

(xα)i (xβ)i uk ≤ 0.

Next, we use the standard continuity method to prove the existence. Note that u is a
subsolution of (5.5) by (5.4). We have obtained the C2 bound for strictly locally convex
solution u (satisfying u ≥ u by Lemma 5.2) of (5.5), which implies the uniform ellipticity of
Equ. (5.5). ByEvans-Krylov theory [13,14],we obtain theC2,α estimatewhich is independent
of t ,

‖u‖C2,α(	ε ) ≤ C . (5.13)

Denote

C2,α
0 (	ε ) := {w ∈ C2,α(	ε ) | w = 0 on �ε},

U :=
{

w ∈ C2,α
0 (	ε )

∣
∣
∣ u + w is strictly locally convex in 	ε

}

.

We can see that C2,α
0 (	ε ) is a subspace of C2,α(	ε ) and U is an open subset of C2,α

0 (	ε ).
Consider the map L : U × [0, 1] → Cα(	ε ),

L(w, t) = G[u + w] − θ(x, t) (u + w).

Set

S = {t ∈ [0, 1] |L(w, t) = 0 has a solution w in U }.
Note that S �= ∅ since L(0, 0) = 0.

We claim that S is open in [0, 1]. In fact, for any t0 ∈ S, there exists w0 ∈ U such that
L(w0, t0) = 0. The Fréchet derivative of L with respect to w at (w0, t0) is a linear elliptic
operator from C2,α

0 (	ε ) to Cα(	ε ),

Lw

∣
∣
(w0,t0)

(h) = Gi j [u + w0] Di j h + Gi [u + w0] Di h

+
(

Gu[u + w0] − θ(x, t0)
)

h.

By Lemma 5.1, Lw

∣
∣
(w0,t0)

is invertible. By implicit function theorem, a neighborhood of t0
is also contained in S.
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Next, we show that S is closed in [0, 1]. Let ti be a sequence in S converging to t0 ∈ [0, 1]
and wi ∈ U be the unique (by Lemma 5.2) solution corresponding to ti , i.e. L(wi , ti ) = 0.
By Lemma 5.2, wi ≥ 0. By (5.13), ui := u +wi is a bounded sequence in C2,α(	ε ), which
possesses a subsequence converging to a locally convex solution u0 of (5.5). By Condition I
and Theorem 5.1, we know that u0 is strictly locally convex in 	ε . Since w0 := u0 − u ∈ U
and L(w0, t0) = 0, thus t0 ∈ S. 
�

From now on we may assume u is not a solution of (1.6), since otherwise we are done.

Lemma 5.3 If u ≥ u is a strictly locally convex solution of (5.6) in 	ε , then u > u in 	ε

and (u − u)γ > 0 on �ε .

Proof To keep the strict local convexity of the variations in our proof, we rewrite (5.6) in
terms of v,

{

G(D2v, Dv, v) = ψ t (x, v) in 	ε,

v = ε2 on �ε.
(5.14)

Since u is a subsolution but not a solution of (5.6), equivalently, v is a subsolution but not a
solution of (5.14), thus,

G[v] − G[v] ≥ ψ t (x, v) − ψ t (x, v). (5.15)

Denote v[s] := s v + (1 − s) v, which is strictly locally convex over 	ε for any s ∈ [0, 1]
since

δi j + 1

2

(

v[s])i j = s
(

δi j + 1

2
vi j

)

+ (1 − s)
(

δi j + 1

2
vi j

)

> 0 in 	ε.

From (5.15) we can deduce that

ai j (x)Di j (v − v) + bi (x)Di (v − v) + c(x)(v − v) ≥ 0 in 	ε,

where

ai j (x) =
∫ 1

0
Gi j [v[s]](x) ds, bi (x) =

∫ 1

0
Gi [v[s]](x) ds,

c(x) =
∫ 1

0
Gv

[

v[s]](x) − ψ t
v(x, v[s]) ds.

Applying the Maximum Principle and Lemma H (see p. 212 of [25]) we conclude that v > v

in 	ε and (v − v)γ > 0 on �ε . Hence the lemma is proved. 
�

Theorem 5.3 Under assumption (1.7), (1.8) and Condition I, for any t ∈ [0, 1], the Dirichlet
problem (5.6) possesses a strictly locally convex solution satisfying u ≥ u in 	ε . In particular,
the Dirichlet problem (1.6) has a strictly locally convex solution uε satisfying uε ≥ u in 	ε .

Proof We first verify that

� =
(

(1 − t) δ−1 u−1 + t ψ−1/k(x, u)
)−k
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satisfies condition (5.2) in the constant rank theorem. In fact, by assumption (1.8), (5.11) and
(5.12),

k ψ
1
k +1

∑

i∈B

((

ψ− 1
k
)

i i − ψ− 1
k

)

∼
∑

i∈B

τ T
i

⎛

⎝

k+1
k

ψxα ψxβ
ψ

− ψxα xβ + uψu−kψ

u2
δαβ

k+1
k

ψxα ψu
ψ

− ψxαu − ψxα
u

k+1
k

ψxα ψu
ψ

− ψxαu − ψxα
u

k+1
k

ψ2
u

ψ
− ψuu − k ψ

u2
− ψu

u

⎞

⎠ τi ≥ 0,

and consequently,

∑

i∈B

(

�i i − k + 1

k

�2
i

�
+ k �

)

= −k �
k+1

k
∑

i∈B

(

(1 − t)δ−1
(

(u−1)i i − u−1
)

+ t
(

(ψ−1/k)i i − ψ−1/k
))

� 0.

We have established C2,α estimates for strictly locally convex solutions u ≥ u of (5.6),
which further imply C4,α estimates by classical Schauder theory,

‖u‖C4,α(	ε)
< C4. (5.16)

In addition, we have

dist(κ[u], ∂�k) > c2 > 0 in 	ε, (5.17)

where C4, c2 are independent of t . Denote

C4,α
0 (	ε ) := {w ∈ C4,α(	ε ) | w = 0 on �ε}

and

O :=

⎧

⎪⎪⎨

⎪⎪⎩

w∈C4,α
0 (	ε)

∣
∣
∣
∣
∣
∣
∣
∣

w > 0 in 	ε, wγ > 0 on �ε, ‖w‖C4,α(	ε)
< C4 + ‖u‖C4,α(	ε)

{δi j + (u + w)i (u + w) j + (u + w)(u + w)i j } > 0 in 	ε,

dist(κ[u + w], ∂�k) > c2 in 	ε

⎫

⎪⎪⎬

⎪⎪⎭

,

which is a bounded open subset of C4,α
0 (	ε ). Define Mt (w) : O × [0, 1] → C2,α(	ε),

Mt (w) = G[u + w] −
(

(1 − t) δ−1 · (u + w)−1 + t ψ−1/k(x, u + w)
)−1

.

Let u0 be the unique strictly locally convex solution of (5.5) at t = 1 (the existence and
uniqueness are guaranteed by Theorem 5.2 and Lemma 5.2). Observe that u0 is also the
unique solution of (5.6) when t = 0. By Lemma 5.2, w0 := u0 − u ≥ 0 in 	ε . By
Lemma 5.3, w0 > 0 in 	ε and w0

γ > 0 on �ε . Also, u + w0 satisfies (5.16) and (5.17).
Thus,w0 ∈ O. By Condition I, Theorem 5.1, Lemma 5.3, (5.16) and (5.17),Mt (w) = 0 has
no solution on ∂O for any t ∈ [0, 1]. Besides,Mt is uniformly elliptic on O independent of
t . Therefore, we can define the t-independent degree of Mt on O at 0:

deg(Mt ,O, 0).

To find this degree, we only need to compute deg(M0,O, 0). By the above discussion, we
know that M0(w) = 0 has a unique solution w0 ∈ O. The Fréchet derivative of M0 with
respect to w at w0 is a linear elliptic operator from C4,α

0 (	ε) to C2,α(	ε),

M0,w|w0(h) = Gi j [u0] Di j h + Gi [u0] Di h + (Gu[u0] − δ )h. (5.18)
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By Lemma 5.1, Gu[u0]− δ < 0 in 	ε and thusM0,w|w0 is invertible. By the degree theory
established in [17],

deg(M0,O, 0) = deg(M0,w0 , B1, 0) = ±1 �= 0,

where B1 is the unit ball in C4,α
0 (	ε). Thus deg(Mt ,O, 0) �= 0 for all t ∈ [0, 1], which

implies that the Dirichlet problem (5.6) has at least one strictly locally convex solution u ≥ u
for any t ∈ [0, 1]. 
�

6 Interior second order estimates for prescribed scalar curvature
equations inHHHn+1

Let uε ≥ u be a strictly locally convex solution over 	ε to the Dirichlet problem (1.6). For
any fixed ε0 > 0, we want to establish the uniform C2 estimates for uε for any 0 < ε < ε0

4
on 	ε0 , namely,

‖uε‖C2(	ε0 ) ≤ C, ∀ 0 < ε <
ε0

4
. (6.1)

In what follows, let C be a positive constant which is independent of ε but depends on ε0.
By (3.1), we immediately obtain the uniform C0 estimate:

ε0 ≤ uε ≤ C on 	ε0 , ∀ 0 < ε < ε0. (6.2)

For uniform C1 estimate on 	ε0 , we make use of the Euclidean strict local convexity of
(uε)2 + |x |2 (see [26] for a similar idea) to obtain

max
	ε0

∣
∣D
(

(uε)2 + |x |2)∣∣ ≤
C(n) max

	ε0/2

(

(uε)2 + |x |2)

dist(�ε0/2,	ε0)
, ∀ 0 < ε <

ε0

2
.

It follows that,

‖uε‖C1( 	ε0 ) ≤ C, ∀ 0 < ε <
ε0

2
. (6.3)

We are now in a position to prove
∣
∣D2uε

∣
∣ ≤ C on 	ε0 , ∀ 0 < ε <

ε0

4
, (6.4)

which is equivalent to

max
	ε0

∣
∣κi [uε]∣∣ ≤ C, ∀ 0 < ε <

ε0

4
. (6.5)

Choose r = dist(	ε0 , �ε0/2), and cover 	ε0 by finitely many open balls B r
2
with radius

r
2 and centered in 	ε0 . Note that the number of such open balls depends on ε0. In addition,
the corresponding balls Br are all contained in 	ε0/2, over which, we are able to apply the
gradient estimate due to (6.3):

‖uε‖C1(	ε0/2)
≤ C, ∀ 0 < ε <

ε0

4
.

If we are able to establish the following interior C2 estimate on each Br :

sup
Br/2

∣
∣κi [uε]∣∣ ≤ C(‖uε‖C1(Br )

), ∀ 0 < ε <
ε0

4
,
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then (6.5) can be proved. Since the principal curvatures κi [uε], i = 1, . . . , n and the gradient
Duε are invariant under the change of Euclidean coordinate system, we may assume the
center of Br is 0. For convenience, we also omit the superscript in uε and write as u.

In what follows, we will use Guan-Qiu’s idea [12] to derive the interior C2 estimate

sup
Br/2

|κi (x)| ≤ C (6.6)

for strictly locally convex hypersurface � in H
n+1 to the following equation

σ2(κ) = ψ(x), (6.7)

where Br ⊂ R
n is the open ball with radius r centered at 0 and C is a positive constant

depending only on n, r , ‖�‖C1(Br )
, ‖ψ‖C2(Br )

and infBr ψ .
For x ∈ Br and ξ ∈ S

n−1 ∩ T(x,u)�, consider the test function

�(x, u, ξ) = 2 ln ρ(x) + α
( u

νn+1

)2 − β
( x · ν

νn+1

)

+ ln ln hξξ ,

where ρ(x) = r2−|x |2 with |x |2 =∑n
i=1 x2i andα, β are positive constants to be determined

later. At this point, we remind the readers that · means the inner product in Rn+1 while 〈 , 〉
represents the inner product in H

n+1.
The maximum value of� can be attained in an interior point x0 = (x1, . . . , xn) ∈ Br . Let

τ1, . . . , τn be a normal coordinate frame around (x0, u(x0)) on � and assume the direction
obtaining themaximum to be ξ = τ1. By rotation of τ2, . . . , τn wemay assume that

(

hi j (x0)
)

is diagonal. Thus, the function

2 ln ρ(x) + α
( u

νn+1

)2 − β
( x · ν

νn+1

)

+ ln ln h11

also achieves its maximum at x0. Therefore, at x0,

2 ρi

ρ
+ 2α

u

νn+1

( u

νn+1

)

i
− β

( x · ν

νn+1

)

i
+ h11i

h11 ln h11
= 0, (6.8)

2σ i i
2 ρi i

ρ
− 2σ i i

2 ρ2
i

ρ2 + 2ασ i i
2

(( u

νn+1

)2

i
+
( u

νn+1

)( u

νn+1

)

i i

)

− βσ i i
2

( x · ν

νn+1

)

i i
+ σ i i

2 h11i i

h11 ln h11
− (1 + ln h11)

σ i i
2 h2

11i

(h11 ln h11)2
≤ 0.

(6.9)

To compute the quantities in (6.8) and (6.9), we first convert them into quantities inHn+1,
and apply the Gauss formula and Weingarten formula

Dτi τ j = ∇τi τ j + hi j n,

ni = −hi j τ j .

We also note that in Hn+1,

Dy ∂n+1 = − 1

u
y,
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where y is any vector field in H
n+1. This implies that ∂n+1 is a conformal Killing field in

H
n+1. By straightforward calculation, we obtain

( u

νn+1

)

i
=
( 1

〈n, ∂n+1〉
)

i
= κi

τi · ∂n+1

(νn+1)2
, (6.10)

( u

νn+1

)

i i
= hii j

τ j · ∂n+1

(νn+1)2
+ κ2

i
u

νn+1 − u

(νn+1)2
κi + 2κ2

i
(τi · ∂n+1)

2

u(νn+1)3
. (6.11)

Now we choose the conformal Killing field x in H
n+1 to be

x = xn+1

n
∑

i=1

xi∂i + 1

2

(

x2n+1 − |x |2
)

∂n+1.

We can verify that

Dy x = φ y, φ = x2n+1 + |x |2
2 xn+1

,

where y is any vector field in H
n+1.

Again, by straightforward calculation, we find that

( x · ν

νn+1

)

i
= κi

u νn+1

(
(x · ν) (τi · ∂n+1)

νn+1 − x · τi

)

, (6.12)

(
x · ˚
νn+1

)

i i
= −

( φ u

νn+1 + x · ν

(νn+1)2

)

κi + 2κi (τi · ∂n+1)

uνn+1

( x · ν

νn+1

)

i

+ 1

u(νn+1)2

(

(x · ν)(τ j · ∂n+1) − (x · τ j )ν
n+1
)

hii j .

(6.13)

Also, since

|x |2 = 1 − 2〈x, ∂n+1〉
〈∂n+1, ∂n+1〉 ,

by direct calculation we obtain

ρi = 2u3〈τi , ∂n+1〉〈x, ∂n+1〉 − 2u〈x, τi 〉
= 2

u

(

(τi · ∂n+1)(x · ∂n+1) − x · τi

)

,
(6.14)

ρi i = κi

(

(u2 − |x |2)νn+1 − 2x · ν
)

+ 4u2 − 2|x |2
u2 (τi · ∂n+1)

2 − 4

u2 (τi · x)(τi · ∂n+1) − 2u2.

(6.15)

Differentiate (6.7) twice,

σ i i
2 hiik = ψk, (6.16)

∑

i �= j

hii1h j j1 −
∑

i �= j

h2
i j1 + σ i i

2 hii11 = ψ11 ≥ −Cκ1. (6.17)
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Now taking (6.15), (6.10), (6.11), (6.13), (6.8), (6.16), (4.12), (6.17) into (6.9), we obtain

− C

ρ
σ1 − Cα − Cβ − 2σ i i

2 ρ2
i

ρ2 + 2α
u2

(νn+1)2
σ i i
2 κ2

i − 2σ i i
2 κi (τi · ∂n+1) h11i

u νn+1κ1 ln κ1

+
∑

i �= j h2
i j1 −∑i �= j hii1h j j1

κ1 ln κ1
− Cσ1

ln κ1
− σ i i

2 κ2
i

ln κ1
− (1 + ln κ1

) σ i i
2 h2

11i

(κ1 ln κ1)2
≤ 0.

(6.18)

By Theorem 1.2 of [28] (see also Lemma 2 of [12]), we have

−
∑

i �= j

hii1h j j1 ≥ 1

2σ2

(n − 1)
(

2σ2 h111 − κ1 ψ1
)2

(n − 1)κ2
1 + 2(n − 2)σ2

− ψ2
1

2σ2
.

Also,

−2σ i i
2 κi (τi · ∂n+1) h11i

u νn+1κ1 ln κ1
≥ − u2

(νn+1)2
σ i i
2 κ2

i − (τi · ∂n+1)
2

u4

σ i i
2 h2

11i

(κ1 ln κ1)2
.

Thus, when κ1 is sufficiently large, (6.18) reduces to

− C

ρ
σ1 − 2 σ i i

2 ρ2
i

ρ2 + (2α − 2)
u2

(νn+1)2
σ i i
2 κ2

i + σ i i
2 h2

11i

20 κ2
1 ln κ1

≤ 0. (6.19)

As in [12], we divide our discussion into three cases. We show all the details to indicate
the tiny differences due to the outer space Hn+1.

Case (i): when |x |2 ≤ r2
2 , we have

1
ρ

≤ 2
r2
. Then (6.19) reduces to

−Cσ1 + (2α − 2)
u2

(νn+1)2
(σ2σ1 − 3σ3) ≤ 0.

Choosing α sufficiently large we obtain an upper bound for κ1.

Next, we consider the cases when |x |2 ≥ r2
2 , which implies ρ ≤ r2

2 . We observe that

ρi = −2

u

(

x − (x · ∂n+1) ∂n+1

)

· τi = −2

u

n
∑

j=1

(x · ∂ j ) (∂ j · τi ). (6.20)

Therefore,
∑

i

ρ2
i = 4

u2

∑

jk

(x · ∂ j )(x · ∂k)
∑

i

(∂ j · τi )(∂k · τi )

= 4
∑

jk

(x · ∂ j )(x · ∂k)
(∑

i

(

∂ j · τi

u

)τi

u

)

· ∂k

= 4
∑

jk

(x · ∂ j )(x · ∂k)
(

∂ j − (∂ j · ν)ν
)

· ∂k

≥ 4
(∑

j

(x · ∂ j )
2 −

∑

j

(x · ∂ j )
2
∑

j

(∂ j · ν)2
)

= 4
∑

j

(x · ∂ j )
2(νn+1)2 = 4u2|x |2(νn+1)2 ≥ 2 r2u2(νn+1)2.

(6.21)

Case (ii): if for some 2 ≤ j ≤ n, we have |ρ j | > d , where d is a small positive constant
to be determined later.
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By (6.8), (6.10) and (6.12), we have

h11 j

κ1 ln κ1
= −2 ρ j

ρ
+
(

β
(x · ν)(τ j · ∂n+1) − (x · τ j ) νn+1

u(νn+1)2
− 2α

u(τ j · ∂n+1)

(νn+1)3

)

κ j .

It follows that

h2
11 j

κ2
1 (ln κ1)2

≥ 2 ρ2
j

ρ2 − C(α + β)2 κ2
j ≥ d2

ρ2 + 4 d2

r4
− C(α + β)2

κ2
1

≥ d2

ρ2

when κ1 is sufficiently large. Consequently, (6.19) reduces to

−C σ1

ρ2 + d2

20 ρ2 σ
j j
2 ln κ1 ≤ 0.

Since σ
j j
2 ≥ 9

10 σ1 when κ1 is sufficiently large, we obtain an upper bound for κ1.
Case (iii): if |ρ j | ≤ d for all 2 ≤ j ≤ n, from (6.21) we can deduce that |ρ1| ≥ c0 > 0.

By (6.8), (6.10) and (6.12), we have

h111

κ1 ln κ1
= βκ1 b1

(νn+1)2
− 2 ρ1

ρ
− 2αuκ1(τ1 · ∂n+1)

(νn+1)3
, (6.22)

where

b1 = (x · ν)
(τ1

u
· ∂n+1

)

−
(

x · τ1

u

)

νn+1

= νn+1

2
ρ1 +

(τ1

u
· ∂n+1

)(

x · (ν − (ν · ∂n+1)∂n+1
))

= νn+1

2
ρ1 + 1

νn+1

(τ1

u
· ∂n+1

)

(ν · ∂n+1)
∑

i

(ν · ∂i )(x · ∂i )

= νn+1

2
ρ1 + 1

νn+1

∑

i

((τ1

u
· ∂n+1

)

∂n+1

)

·
(

(∂i · ν)ν
)

(x · ∂i )

= νn+1

2
ρ1 + 1

νn+1

∑

i

(τ1

u
−
∑

j

(τ1

u
· ∂ j
)

∂ j

)

·
(

∂i −
∑

k

(

∂i · τk

u

)τk

u

)

(x · ∂i )

= νn+1

2
ρ1 + 1

νn+1

∑

i

(

− τ1

u
· ∂i +

∑

jk

(τ1

u
· ∂ j
)(

∂i · τk

u

)(

∂ j · τk

u

))

(x · ∂i )

= νn+1 ρ1

2
+ ρ1

2 νn+1 − 1

2 νn+1

∑

jk

(τ1

u
· ∂ j
)(

∂ j · τk

u

)

ρk .

Note that in the last equality we have applied (6.20). Hence

|b1| ≥ νn+1

2
|ρ1| − 1

2 νn+1

∑

k �=1

|ρk | ≥ c1 > 0

and (6.22) can be estimated as
∣
∣
∣

h111

κ1 ln κ1

∣
∣
∣ ≥ βc1 κ1

2(νn+1)2
− C

ρ
≥ βc1 κ1

4(νn+1)2
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when β >> α and κ1ρ is sufficiently large. Taking this into (6.19) and observing that

σ 11
2 κ2

1 ≥ 9

10 n
σ2 σ1

as κ1 is sufficiently large, we then obtain an upper bound for ρ2 ln κ1.
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