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Abstract

The existence of a smooth complete strictly locally convex hypersurface with prescribed
scalar curvature and asymptotic boundary at infinity in H? is proved under the assumption
that there exists a strictly locally convex subsolution.

Mathematics Subject Classification 53C21 - 35J66 - 58732
1 Introduction

In this paper, we are concerned with the asymptotic Plateau type problem in hyperbolic space
H"*!: to find a complete strictly locally convex hypersurface X with prescribed curvature
and asymptotic boundary at infinity. For hyperbolic space, we will use the half-space model

H'™ = {(x, %) € R [ = (k1,0 0) € RY, x> 0)

equipped with the hyperbolic metric
n+1

1
2 _ 2
ds® = - E dx;.
Xn+1 i=1

The ideal boundary at infinity of H"*! can be identified with
aOOHn+l — R" = R" x {0} C Rn-H

and the asymptotic boundary I of X is given at d,oHH"T!, which consists of a disjoint col-
lection of smooth closed embedded (n — 1) dimensional submanifolds {I'y, ..., I';,}. Given
a positive function ¥ € C>®(H"*!), we are interested in finding a complete strictly locally
convex hypersurfaces ¥ in H"+! satisfying the curvature equation

1/k

f0) = o ) = y*x) (1.1)
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as well as with the asymptotic boundary
T =T, (1.2)

where x is a conformal Killing field which will be specified in Sect. 6, k = (x1, ..., k) are
the hyperbolic principal curvatures of ¥ at x, and

Uk()") - Z )\il o ')"ik

I<ii<..<ix<n
is the k-th elementary symmetric function defined on k-th Garding’s cone
Ty={eR"o;(0) >0, j=1,... k).

oy (k) is the so called k-th Weingarten curvature of X. In particular, the 1st, 2nd and n-th
Weingarten curvature correspond to mean curvature, scalar curvature and Gauss curvature
respectively. We call a hypersurface X strictly locally convex (locally convex) if all principal
curvatures at any point of X are positive (nonnegative).

In this paper, all hypersurfaces are assumed to be connected and orientable. We will see
from Lemma 2.1 that a strictly locally convex hypersurface in H"*! with compact (asymp-
totic) boundary must be a vertical graph over a bounded domain in R”. We thus assume the
normal vector field on X to be upward. Write

T = {(x, u(x)) e R | x e @},

where Q is the bounded domain on d.oH" ! = R” enclosed by I'. Consequently, (1.1)-(1.2)
can be expressed in terms of u,

{f(fc[u]) Vi, u)  in Q

(1.3)
u=20 on T.

The essential difficulty for the Plateau type problem (1.3) is due to the singularity atu = 0.
When v is a positive constant, problem (1.3) has been extensively investigated in [1-5] (see
also the references therein for some previous work). Their basic idea is: first, to prove the
existence of a solution u€ to the approximate Dirichlet problem

[f(fc[u]) Yix,u)  in @

(1.4)
u =€ on I,
and then, to show these u€ converge to a solution of (1.3) after passing to a subsequence.
For general ¢, Szapiel [6] studied the existence of strictly locally convex solutions to (1.4)
for f = o, / ", but he also assumed a very strong assumption on f (see (1.11) in [6]) which
excluded the case f = a,: / " As far as the author knows, there is no literature which gives
an existence result for the asymptotic Plateau type problem (1.3) for general /.

Our first task in this paper is to improve the result of [6]. As in [7], we assume the existence
of a strictly locally convex subsolution u € C*(Q), that is,

W(x, u) in Q,

flul) = (15)
u=20 on T.
Different from [2-6], we take a new approximate Dirichlet problem
1 .
fklul) = ¥r(x, u) in Q, (1.6)
u = ¢€ on [,
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where the e-level set of 1 and its enclosed region in R” are respectively
=fxeQ|ux) =€} and Q= {xeQ|ukx > €}.

We may assume the dimension of I'¢ is (n — 1) by Sard’s theorem, and in addition, I'c € C 4,

A crucial step for proving the existence of a strictly locally convex solution to (1.6) is
to establish second order a priori estimates for strictly locally convex solutions u of (1.6)
satisfying # > u on Q.. An essential difference from [2-5] is that we allow the C2 bound to
depend on €. This looser requirement gives us more flexibility to apply techniques for general
Dirichlet problem and with less technical assumptions (for example, there is no prescribed
upper bound for ). For C? boundary estimates, we change the variable from u to v by
u = /v (see [8] for a similar idea for radial graphs), which is the main difference from [2,6]
and fundamentally improves the result in [6].

One reason that we purely study strictly locally convex hypersurfaces is due to CZ bound-
ary estimates. In [3], Guan-Spruck assumed I" to be mean convex. Then the solution u behaves
nicely near I" and therefore k-admissible solutions can be studied in their framework. How-
ever, without any geometric assumptions on I'c, C? boundary estimates can only be obtained
for strictly locally convex hypersurfaces.

In order to apply continuity method and degree theory to prove the existence of a strictly
locally convex solution to (1.6), the strict local convexity has to be preserved during the
continuity process. This is true when k = n in view of the nondegeneracy of (1.6), while
for 1 < k < n, we have to impose certain assumptions on €2, # and ¥ to guarantee the full
rank of the second fundamental form on locally convex X up to the boundary. In this paper,
we want to apply the constant rank theorem developed in [9—-11] to Dirichlet boundary value
problems when assuming a subsolution. For this, we assume

{( oy } >0, (1.7)
f(K[M]) XaXp nxn
vfwx - .
S el R LU L sk e TR o P
k+l ‘/’xa Yu w Ve k+1 ‘/fu w _ kY Y - ’
* Xo U u uu 2 u

Besides, we also need a condition which can guarantee that locally convex solutions to the
associated equations of (1.6) are strictly locally convex near the boundary I'c. However, we
did not find such a condition. Therefore, our existence results are limited to k = n.

Theorem 1.1 Under the subsolution condition (1.5), for k = n, there exists a smooth strictly
locally convex solution u® to the Dirichlet problem (1.6) with u¢ > u in Q..

Our second task in this paper is to solve (1.3). A central issue is to provide certain uni-
form C? bound for u€. Different from [2—5], where the authors derived uniform bound for
certain quantities regarding solutions of (1.4) under certain assumptions, we use (1.6) as an
approximate Dirichlet problem and tolerate the e-dependent C> bound for solutions to (1.6),
since we are able to use the idea of Guan-Qiu [12], who established C 2 interior estimates for
convex hypersurfaces with prescribed scalar curvature in R"+!. We extend their estimates
to H" !, which, together with Evans-Krylov interior estimates (see [13,14]) and standard
diagonal process, lead to the following existence result. Since the pure C? interior estimates
can only be derived up to scalar curvature equations (see Pogorelov [15] and Urbas [16] for
counterexamples when k > 3), we hope to investigate the cases k > 3 in future work by
other means. Meanwhile, interior C? estimates are limited to hypersurfaces satisfying cer-
tain convexity property (see [12]), which also explains why we only focus on strictly locally
convex hypersurfaces.
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Theorem 1.2 In H?, for f = 021/2, under the subsolution condition (1.5), there exists a
smooth strictly locally convex solution u > u to (1.3) on 2, equivalently, there exists a

smooth complete strictly locally convex vertical graph solving (1.1)—(1.2).

This paper is organized as follows: in Sect. 2, we provide some basic formulae, properties
and calculations for vertical graphs. The C? estimates for strictly locally convex solutions
of (1.6) are presented in Sects. 3 and 4. In Sect. 5, we prove Theorem 1.1 via continuity
method and degree theory. Section 6 provides the interior C? estimates for convex solutions
to prescribed scalar curvature equations in H"*!, which finishes the proof of Theorem 1.2.

2 Vertical graphs

Suppose ¥ is locally represented as the graph of a positive C2 function over a domain
QCR™
T = {(x, u(x)) e RY |x € Q).

Since the coordinate vector fields on X are

0 +ui dpt1, i=1,...,n where 0; = —,
0x;

thus the upward Euclidean unit normal vector field to X, the Euclidean metric, its inverse
and the Euclidean second fundamental form of ¥ are given respectively by

-D 1
v=( u,—), w =+/14+ |Dul?,

w w

- ~ii ujnj ~ Uijj
=8 +uju;, U —=§:: — , hi: = .
8ij = 0ij T Uil 8 0T T2 =
Consequently, the Euclidean principal curvatures [ X] are the eigenvalues of the symmetric

matrix:

1. .
_ ko
aij = —y"uny",
w

where
ik Uitk
=8 —
14 ik w(l + w)
and its inverse
ujug ~
Yik = Sik + T YikVij = 8ij-

For geometric quantities in hyperbolic space, we first note that the upward hyperbolic unit
normal vector field to X is

—Du 1
n=uv= (720 1)
w w
and the hyperbolic metric of X is
1
8ij = —7 (Gij +uiuj). 2.1
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To compute the hyperbolic second fundamental form £;; of X, applying the Christoffel
symbols in H"+!,

I} = (= 8ikBnt1j — SjSnt1i + Sknt18ij). (2.2)
Xn+1
we obtain
uj u; ij UiUj
Dy, ;901 (9) + 1j Ony1) = _ijH 0 — xnl+1 dj + <xnljrl +uij — ﬁ) Ont1

where D denotes the Levi-Civita connection in H"*!, Therefore,
1
hij = 2y Bi Huin o+ uuij).

The hyperbolic principal curvatures « [ X] are the eigenvalues of the symmetric matrix A[u] =
{aij}:

) 1 T 4 .
aij = w?y™*hy' = El/’k(fskz + gy + uuy) YV = E((S’j + uy*ugyy.

Remark 2.1 The graph of u is strictly locally convex if and only if the symmetric matrix {a;;},
{hij} or {8;j +ujuj + uu;;} is positive definite.

Remark 2.2 From the above discussion, we can see that

1 - 1)n—H _
hijzghij‘f‘iuz 8ij» (2.3)

where v"t! = v .3, and - is the inner product in R"*!. This formula indeed holds for any
local frame on any hypersurface ¥ (which may not be a graph). The relation between «[X]
and K[X] is

K= u;+v" =1, n. (2.4)

We observe the following phenomenon for strictly locally convex hypersurfaces in H"*+!
(see also Lemma 3.3 in [2] for a similar assertion).

Lemma2.1 Let X be a connected, orientable, strictly locally convex hypersurface in H'T!
with a specially chosen orientation. Then ¥ must be a vertical graph.

Proof Suppose X is not a vertical graph. Then there exists a vertical line (of dimension 1)
intersecting ¥ at two distinct points p; and p;. Since ¥ is orientable, we may assume that
v (p) - v (py) < 0. Since ¥ is connected, there exists a 1-dimensional curve y on
¥ connecting p; and p>. Among the tangent hyperplanes (of dimension n) to ¥ along y,
choose a vertical one which is tangent to X at a point p3. At p3, v"T! = 0 and u > 0.
By (2.4), k; > 0 for all i at p3. On the other hand, let P be a 2-dimensional plane passing
through p1, py and p3. If P N X is 1-dimensional and has nonpositive (Euclidean) curvature
at p3 with respect to v, we reach a contradiction; otherwise we take a different orientation
of X, then X is either not strictly locally convex or we reach a contradiction. If P N X is
2-dimensional, then any line on P N X through p3 leads to a contradiction. O

Equation (1.1) can be written as

flelul) = fFO(A[u]) = F(A[ul) = ¢"*(x, u). 2.5)
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Recall that the curvature function f satisfies the fundamental structure conditions

af(n
filv) = g)f)>0 inly, i=1,...,n, (2.6)
i
f is concave in Iy, 2.7
f >0 in Iy, f =0 ondl%. (2.8)

3 Second order boundary estimates

In this section and the next section, we derive a priori C? estimates for strictly locally convex
solution u to the Dirichlet problem (1.6) with u > u in Q.. By Evans-Krylov theory [13,14],
classical continuity method and degree theory (see [17]) we prove the existence of a strictly
locally convex solution to (1.6). Higher-order regularity then follows from classical Schauder
theory.

Let u > u be a strictly locally convex function over Q2. with u = u on I'c. We have the
following C estimate:

u <u<+e2+ (diamQ)? in Q. 3.1

In fact, by Remark 2.1, for any xog € €2, the function u? + lx — x0|2 is Euclidean strictly
locally convex in €2¢, over which, we have

uw? <u®+ [x — )c0|2 < nllwax(u2 + [x — x0|2) <2+ (diamQ)z.
€

Therefore we obtain (3.1).
For the gradient estimate, we perform a transformation u = +/v. Denote

W = /4v + |Dv|2.

The geometric quantities in Sect. 2 can be expressed in terms of v,

g Uik st Vi vk

YT T Wawewy TR T A+ wy
2 1 2Jv 1 li

hij = Jow (8 + 3 vij),  aij = WV (8t + 3 ver)y

Since the graph is strictly locally convex, v satisfies

Av+2n >0 in Q,
v=¢e? on I,
where A is the Laplace-Beltrami operator in R". Let v be the solution of

Av+2n=0 in Q,

on ..

By the comparison principle,

Consequently,

|[Dv| < C on T, 3.2)
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where C is a positive constant depending on €. Hereinafter in this section, C always denotes
such a constant which may change from line to line. Equivalently,

|Du| <C on T.. (3.3)
For global gradient estimate, consider the test function
W = +/4v + |Dv|2.
Assume its maximum is achieved at an interior point xo € 2. Then at xo,
WW; = (vki +28i)ue =0, i=1,...,n.

Since the matrix (vki + 28kl~) is positive definite, thus vy = 0 for all k at xo. Along with (3.1)
and (3.2), we obtain

max | Dv| < max v/4v + |Dv|? < max { rIlLaX\/462 + |Dv|?, 2 max ﬁ} <C. (34
Qe Qe e Q.

Equivalently,

max |Du| < C. (3.5
Qe

For second order boundary estimate, we change Equ. (2.5) under the transformation u =

/v into
G(D*v, Dv,v) = F(a;j) = f(Maij)) = ¥(x, v). (3.6)

By direct calculation, we obtain the following formulae.

Lemma 3.1
G ﬁ A .
Gst — = YRyl t]’
oy, wo Y
3G 1 2 .- l)i'l)q ..
=% = (55— ) Pl + gy e,
s 090G Fil g, WyiSv, +2/vy®y; Fiig .
=5 = Tw2 ij = dgj-
Ay 114 JIWQRJv + W)

In addition,

|G°| < C and |G,| < C.

Proof Since

20 1 .
G(D?v, Dv,v) = F(%y’k(&d + 3 Ukl))/lj)a

we have,
G — OF 9aij _ ﬂFuy:‘s},u‘
8aij 3Ust w '
To compute G, note that
W _ 2 vk v
v w v 4032w
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Consequently,
ik
ay' — yir VpVy Sk
v 4v3/2W
Hence,
0 2 4 /v ay'k 1 <
G, = F”(— ik S - 1j S - lj)
v 8v( W) (S + vkl))/ + =y gy Gk Su)y
1 2 y yp Vg
= (E — W)Fuall + mF”anz
We then obtain G, in view of
Yy, = 2/v;
p W
For G*, note that
oW ayik D
= 27 Y _yin 2 y?*, and
Ay w dvg Jdvg
9¥pq _ SpsVg +84svp UpUqUs Spsvg +vpy?”

s 2J0RVU W) 20V + W)W 22 Ju + W)

It follows that

N 1 4/v dyik 1 ,
G = F’/( f *y ™ 8+ kaz))/lj + Wf a)/ (O + Evk/)yl/)
_ _LSZFijaij Wy + 20y iy,
W JIWRSv+ W)

[}

For an arbitrary point on I'¢, we may assume it to be the origin of R”. Choose a coordinate
system so that the positive x,, axis points to the interior normal of I'¢ at the origin. There
exists a uniform constant r > 0 such that I' N B, (0) can be represented as a graph

1
X =p() =5 D7 Bapaxp + O(X'D), 2= (x1,oesxu).

a,f<n

Since

or equivalently

v, p(x")) = €2,

we have
Vg + Uy pe =0 3.7
and
Vap + VanPp + (Ung + VunPp)Pa + Vnpap = 0.
Therefore,

VaB (0) = _vn(o) paﬂ(o)» o, /3 <n.
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Consequently,
[vap(0)] < C, o, p <n, (3.8)

where C is a constant depending on €.
For the mixed tangential-normal derivative vy, (0) with ¢ < n, note that the graph of u is
strictly locally convex on 2. Hence we have

[T
I+ 3 D“v > 3¢l
for some positive constant cg. Let d(x) be the distance from x € Q¢ to I'c in R”. Consider
the barrier function
W=AV+B|x]?
with
V = v—g—i—td—Ndz,

where the positive constant N, T, B and A are to be determined.
Define the linear operator L = G*' Dy, + G* D;. By the concavity of G with respect to
Dzv,

V=G"Dy(v—v—Nd*)+1G"Dyd +G*Ds(v —v+1d—Nd*
=G(D*, Dv,v) = G(D*(v+ N d?) 21, D, v)
+(Ct—2c0) Y G+ C(1 + 17+ Né).
Note that
I+ % D*(v+Nd*) —col = 2col + NDd ® Dd — CNSI :=H.
Denote y = (y*%). We have

G(D*(u+ N d?) =20l Dv,v) = F(zf (1

2w 2Vv i 12 -
= F(SFvmy) = F(SEHZyy o) = Fen,

where ¢ is a positive constant. Hence

+ 5 Dz(v +Nd) = col)y)

LV < —F@H) + (Ct — 2cp) ZG” +C(1+ 1+ N§).

Note that H = diag<2co —CNS§, ..., 2co— CN§, 2¢9 — CNS + N). We can choose N
sufficiently large and 7, § sufficiently small (6 depends on N) such that
Ct <cp, CN§<cyp, —F(CH)+C+2c=<-—1.
Hence the above inequality becomes
LV <—cy G —1. (3.9)
We then require § < % so that

V >0 in QN Bs0).
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By Lemma 3.1,
L(1x]?) < c(1+)_G").
This, together with (3.9) yields,
LY < A(—co) G"—1)+BC(1+) G") in QN Bs(0). (3.10)
Now, we consider the operator
T =8y + » Bup(xpdn — Xa0p).
B<n
Note that for § > 0 sufficiently small,
[Tv| < C in Q¢ N Bs(0).
Also, in view of (3.7),
ITv] < Clx]>  on TN Bs0).
To compute L(T'v), we need the following lemma (see [2]).
Lemma3.2 Forl <i,j <n,
(L+ Gy = Yu)(Xivj — xjvi) = XiYx; — XYy,
Proof For 6 € R, let
yi =x;cosf — x;siné,
yj =Xx;sin@ + x; cos 0,
Yk =Xk, k#Ei,J.
Since G —  is invariant for the rotations of R”, we have
G(D*v(y), Dv(y), v() = ¥ (¥, v(V)).
Differentiate with respect to 6 and change the order of differentiation,
(L Go =Wy 50 =y, Ty, 2L
Set 8 = 0 in the above equality and notice that at 6 = 0,
ay; dy; av
y =x, 30 = %0 59 =N ag — Xivi T Xjui.
We thus proved the lemma. O
By Lemma 3.2 and 3.1, we have
[L(Tv)| < C. (3.11)

Choose B sufficiently large such that
Y+Tv>0 on 9(2 N Bs(0)).
From (3.10) and (3.11) we have

LW £Tv) < A(=co) G"—1)+BC(1+) G")+C.
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Choose A sufficiently large such that
L(W£Tv) <0 in QN Bs(0).
By the maximum principle,
W+Tv>0 in QN Bs(0),
which implies
[ven (0)] < C. (3.12)
Up to now, we have proved that
lven(X)| <€, Jugy () =C,  V x el

where & and 7 are any unit tangential vectors and y the unit interior normal vector to I'c on
Q. It suffices to give an upper bound

vyy <C on Tl (3.13)

Motivated by [18] (see also [19,20]), we derive (3.13).
First recall some general facts. The projection of I’y C R” onto R"~! is exactly

T = {1, de) €R o0, s hye1) >0, j=1,...k—1}.
Let«" = (ki, ..., kj_,) be the roots of
det(’(é 8ap — haﬁ) =0, (3.14)

where (hqp) and (gqp) are the first (n — 1) x (n — 1) principal minors of (h;;) and (g;;)
respectively. Then «[v] € Ty implies «’[v] € T',_,, and this is true for any local frame field.
Note that «’[v] may not be («1, ..., ky—1)[v].

For x € T, letthe indices in (3.14) be given by the tangential directions to I'c and «’[v](x)
be the roots of (3.14). Define

d(x) = Ju W dist(c'[v](x), 8T} ;) and m= )ICIélrn d(x).
Choose a coordinate system in R” such that m is achieved at 0 € I'c and the positive x,, axis
points to the interior normal of I'¢ at 0. We want to prove that m has a uniform positive lower
bound.
Leté&y,...,&,—1, y bealocal frame field around O on €2¢, obtained by parallel translation
of a local frame field &1, ..., &,—1 around O on I'¢ satisfying

8aup = 8aps  hap(0) =k (0)8ap,  «1(0) < ... <k, 1(0)
and the interior, unit, normal vector field y to I'¢, along the directions perpendicular to I'¢

on 2. We can see that this choice of frame field has nothing to do with v (or equivalently,
u). In fact, if we denote

n—1
Sa=2n5€5, a=1,....,.n—1,
B=1
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whereey, ..., e,—1 is afixed local orthonormal frame on I'¢, and consider a general boundary
value condition, say v = ¢ on I'¢, then on I,

ap =13 (50 & + Dy D) = (sa & + Dz, (V9) De, (V)

n—1

1 e,@ De;ﬁa ¢
; Z ( 4¢ )77/3~
7,¢=1
Note that there exist n}, for @, 7 = 1,...,n — 1 such that g4 = dup on I'c. By a rotation,
we can further make (%44 (0)) to be diagonal.
By Lemma 6.1 of [21], there exists © = (i1,..., Un—1) € R with g > ... >

MUn—1 = 0 such that

Sui=1 Ty, CeRu-2'>0 and

m=d0)= VoW > pax,(0) =Y o (Dee,v+2& - £)0).  (3.15)

a<n a<n
Since v is strictly locally convex near ¢ and Y 1 > 1,
> ta(Dee, v+ 28 - £)(0) = 2¢)
a<n
for a uniform positive constant c;. Consequently,

@ =0)y(0) > pade,e, (0) =Y g Deye, (0 — )(0)

a<n a<n

= Y ta(Deye,v+ 28 - £)(0) = > pta(De,e, v + 280 - £)(0) = 2¢1 — d(0).
oa<n oa<n

(3.16)

The first line in (3.16) is true, since we can write v — v = w d for some function w defined
in a neighborhood of I'¢ in Q2. Differentiate this identity,

v-—vi=wdtod, @-v)=0d+tod,
v—v)j=wjd+owd +vjd +od;.

Note that dg, (0) = 0 and d,, (0) = 1. Thus,
De,e, (v —0)(0) = (v — v)y (0) dg,z, (0).

We may assume d (0) < ¢y, for, otherwise we are done. Then from (3.16),

=)y (0) Y tade,e, (0) = c1.

a<n

Since 0 < (v —v),(0) < C,

> o de,e, (0) < —2c)

a<n
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for some uniform constant ¢; > 0. By continuity of dg ¢, (x) atOand 0 < g <1,

2 .
> o (dey, (1) = dey, ) < Y —2= <erin QN B5(O)
a<n

a<n
for some uniform constant § > 0. Thus
D Madee, (x) < —c3in Qe N Bs(0). (3.17)
a<n

On the other hand, by Lemma 6.2 of [21], for any x € I'c near 0,

> te (Pestv 4280 8) @) = 3 stano W haa ()

> VoW Y e vl(x) = d(x) = d(0).

Thus for any x € I'c near 0,

W= 9)y() Y tadee,(6) =Y o Deye, (v — @) (x)

a<n a<n

=Y ta(Das v +260 &) 0 = 3 tta (D + 26 &)@ (315

a<n a<n

= d0) = ) pa(Dep + 26 ) 0.

a<n

In view of (3.17), define in 2, N Bg(0),

1 -
* S Yt (d(o)‘ZMa(DsasmHsmsa)) —W—g),.

a<n
a<n

By (3.17) and (3.18), ® > 0 on I'c N B;s(0). In addition, we have in Q2 N Bs(0),
L@ = C(1+YG") = L(Dw-¢)-Dd) = C(1+Y°G").  (319)
This is because 0 < py < 1 and

‘L(D(v —9)- Dd)‘ = ’Dd L(DO = ¢)) + D — ¢) - L(Dd) +2G* (v — ¢)iydis

IA

” w
c(1+ ZG”) + ‘2 G" dit(%)’ki)’slakl - 25is)

=C(1+)_G") + ‘2Vkidit7/tj FYay —4G* dy

<c(1+) 6.

By (3.10) and (3.19), we may choose A >> B >> 1 suchthat ¥ 4+ ® > 0 on 9(2. N Bs(0))
and L(W+®) < 0in QN Bs(0). By the maximum principle, W+ ® > 0in QN B;(0). Since
(¥ + ®)(0) = 0 by (3.18) and (3.15), we have (¥ + @), (0) > 0. Therefore, v,,(0) < C,
which, together with (3.8) and (3.12), gives a bound |D*v(0)] < C, and consequently a
bound for all the principal curvatures at 0. By (2.8),

dist(x[v](0), aT%) > c3
and therefore on I,

d(x) = d(0) = /v Wdist(c'[v](0), 8T}_,) > c,
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where ¢3 and ¢4 are positive uniform constants.

By a proof similar to Lemma 1.2 of [21], we know that there exists R > 0 depending
on the bounds (3.8) and (3.12) such that if v, (x9) > R and xo € I'¢, then the principal
curvatures (k1, .. ., kp) at xo satisfy

Ky :K(;—i-o(l), oa<n,
hpn — &nhnt — - — gun—1hun—1 8nn — g%n e T gizm—l
Kp = 2 5 1+0
&nn — gln — ... gnn_l hnn - glnhnl T e T gnn—lhnn—l
in the local frame &1, ..., &,_1, y around xo. When R is sufficiently large, we have

G(D*v, Dv, v)(xg) > ¥(xp, €2),

contradicting with Equ. (3.6). Hence v,,, < R onI'. (3.13) is proved.

4 Global curvature estimates

For a hypersurface ¥ C H"+!, let g and V be the induced hyperbolic metric and Levi-Civita
connection on X respectively, and let g and V be the metric and Levi-Civita connection
induced from R"*! when ¥ is viewed as a hypersurface in R"*!. The Christoffel symbols
associated with V and V are related by the formula

~ 1 5 5
l"l]-(j = szj — ;(uiﬁk_,' +ujdik — gklulg,-‘,').
Consequently, for any v € C2(Z),
- 1 5 B
Vijv = (v;)j — Flkjvk =V;jv+ ;(u,'vj +ujv — gklulvkg,'j)‘ “4.1)
Note that (4.1) holds for any local frame.

Lemma4.1 In R™! we have the following identities.

gluguy = |Vul? = 1 - ("2, 4.2)
@iju=ﬁ,~jv"+1 and 6,-jxk=fz,'jvk, k=1,...,n, (4.3)
" = —hij g ug, (4.4)
V"t = =g " hahyg + wi Vi), 4.5)
where 11, ..., T, is any local frame on X.

Proof To prove (4.2), we may write
n
g1 =Y arti +bv. (4.6)
k=1

Taking inner product of (4.6) with v in R™*1 we obain
VI = 9,00 v =b.
Taking inner product of (4.6) with 7; in R"*!, we have

uj = (X-041)j =0py1 - Tj = ATk - Tj = ar8kj»
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where X is the position vector field of £ (note that this is different from the conformal Killing
field when using half space model for H"*!). Thus,

~ k
ar =u;g’".
Therefore,
_ . .=jk n+l,. G n+1
Opp1 = u;j g e + V" v =Vu 0"y,

which implies (4.2).
For (4.3), note that

Vij (X - 0) = ((X - 9p);), — Tf (X - d)
= (tj - )i —ﬁfj T -0 = f)ritj-ak —l:llj T - O
=(Vgtj+hv) - =T m - =hijv-0,  k=1,....n+1.

Here we have applied the Gauss formula for ¥ as a hypersurface in R+
For (4.4), by the Weingarten formula for ¥ as a hypersurface in R"*!, we have

W = (0 s1)i = Dy - 1 = —hik 81 - 9y = —hig uy.

Finally, (4.5) follows from (4.4), (4.3) and the Codazzi equation for ¥ as a hypersurface
in R"*! In fact,

Vi = =g i Vih o+ b V) = =88 i Vihip + 0" hih ).
O

Lemma4.2 Let X be a strictly locally convex hypersurface in "' satisfying equation (2.5).
Then in a local orthonormal frame on %,

FUV v = — v F T g 4+ (1 + 0" TH2) Flpg — o Z fi

2 B 2vn+l B (47)
— quUhjkuiuk + 2 F’Ju,-uj — l;lwk

Proof By (4.1), (4.5),

Fljvl]vn"r]
o 1 - ~
= FY (V,-_/ 4 ;(ui(v”l)j + uj(v”+l)i - gklul(v”“)kgi_/)) (4.8)
prEl Up i= = 2 i ug
= = Fhichij — -5 F'Vichij = -3 Fhjruiue — 7(\)"“% > h

Since ¥ can also be viewed as a hypersurface in R+,

. a1~ vn'H B o~
F(gllhlj) = F(uzgll(; hij + e glj)) = F(u gll hij + V"+15ij) =Y.

g
u

Differentiate this equation with respect to Vj and then multiply by
2
Uy o~ Ug ic =~ Ui ug
T{]; Fhi; + ﬁFl]thij + I(Un+l)k E fi = o Y.
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Take this identity into (4.8),

.. v”'H i o~ 2 ... M2 s~ Uy
F”V,'jv"+l:— 5 F”hikhkj—EF”hjkuiuk-i—uf;F”hij—Ilﬂk.
In view of (2.3), we obtain (4.7). ]

For global curvature estimates, we use the method in [4]. Assume
vt > 2450 on T

for some constant a. Let kmax (X) be the largest principal curvature of ¥ at x. Consider

Kmax (X)
My =sup ———.
xeg vl —q
Assume My > 0 is attained at an interior pointxXg € X. Let 7y, ..., 7, be alocal orthonormal
frame about x¢ such that 7;;(xo) = «; ;;, where k1, ..., k, are the hyperbolic principal

curvatures of ¥ at Xo. We may assume K1 = Kmax (Xo). Thus, Inhy; — In(w"t! — q) has a
local maximum at X, at which,

hui o Vit
_ Vv, 4.9
hll v+l g ( )

hyuii o Vit
- — <0. 4.10
hii pntl g ( )

Differentiate equation (2.5) twice,

F' hiiny + F7 " hijihesy = Y11 > —Crey. 4.11)

By Gauss equation, we have the following formula when changing the order of differen-
tiation for the second fundamental form,

hiijj =hjjii+(l(,‘ Kj— 1) (ki —Kj). 4.12)
Combining (4.10), (4.11), (4.12) and (4.7) yields,
1+ (vn+l)2
(- = K1+1) Yo fikit (Y S+ ) find)

Fijrs hl]lhlvl+ Zfl _vn+l)_CK1 <0.

(4.13)

Next, take (4.4), (2.3) into (4.9),

K1 uj; 1
hiy = — " — k),

Tt g oy

and recall an inequality of Andrews [22] and Gerhardt [23],

Fli-rs fi—fi i
5 h,/lhrsl = Z Jhl_/l = Zf fl htll

t;ﬁj J i>2
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Therefore, (4.13) becomes,

, L+ th?
OZ<K prrS K1+1)qu<l Cin+ o — Zﬁ+2ﬁ
2"1 Ji it 24 n+1
T ot — a2 Z,q_,{l 2( )T Zf’ =)
4.14)
For some fixed 6 € (0, 1) which will be determined later, denote
J={i: iz0fi, i<V,  L={i:fi<0fi, i <V}
The second line of (4.14) can be estimated as follows.
24?7 fi
1 L n+1 . K — n+1
(U”+]—a)2 ZK]—K, uz(v _Kl) + Z.fl v )
2Kl fl fl n+l 2 n+1
> — K v
- (Vl’l+1 _a)Z ; Kl —Ki U K’) + Un+l ,eL ,EJ )
2(1 = O)ky n+1 2 2y ﬁ n+1
= T Z ) - Z ( R ZEZL 02 (ki —v Zfl"l
2k1 f,-u[ (W — k)2 et
=vn+1_a§uz( ol —, TV )
20k fl 11 2 2
T —g)? 4 Z %) SO k)T - oa > fiki
2k1 ﬁui vty g 40K
_anrl_a; w2 'U”H—alq_a(v”*l G)Zﬁl_i_'( _72}0"{’

40k 4K
a(v"“l—a)zfl + ) ( I)Zf’K’

Here we have applied gklukul = i%lukul =1— "H2 due to (4.2) in deriving the above

inequality. Choosing 6 = % and taking the above inequality into (4.14), we obtain an upper
bound for k.

5 Existence of strictly locally convex solutions to (1.6)

The convexity of solutions is a very important prerequisite in this paper, due to the following
two reasons: first, the C2 boundary estimates derived in Sect. 3 require the condition of
convexity; second, the C? interior estimates for prescribed scalar curvature equations in
Sect. 6 need certain convexity assumption (see [12]). Therefore, the preservation of convexity
of solutions is vital in order to perform the continuity process. In this section, we first give a
constant rank theorem in hyperbolic space (see [9-11,24]).

Theorem 5.1 Let & be a C* oriented connected hypersurface in H't! satisfying the pre-
scribed curvature equation

or(k) = V(xy,...,x,u) > 0. 5.1
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Assume that the second fundamental form {h;;} on X is positive semi-definite, and for any

X € X and a local orthonormal frame <y, ..., v, around X with {h;;j(x)} diagonal,
k+1w?
; (Wi - —— - +K¥)® S 0. (5.2)
L

where the symbol < is defined in [10] and B is the set of bad indices of x. Then the second
fundamental form on X is of constant rank.

Let X be a locally convex hypersurface to equation (5.1) for k < n with boundary 9 X. If
we can find a condition (we call it Condition I) to guarantee that X is strictly locally convex
in a neighbourhood of the boundary 0%, then together with condition (5.2) in Theorem 5.1,
we can prove that ¥ is strictly locally convex up to the boundary. However, we did not find
a suitable Condition I. Still, we proceed to prove the existence as if we have had Condition I
in order to show how (5.2) and Condition I play the roles in the continuity process.

Now we prove the existence. We use the geometric quantities in Sect. 2 which are expressed
in terms of u and write Equ. (2.5) as

k
G(Du, Du,u) = F(aij) = fOaip) = o () = "% (x, ). (5.3)
For convenience, denote
Glu] = G(D*u, Du,u), G'[u] = GY(D*u, Du,u), etc.

Let é be a small positive constant such that

Glul = G(D*u, Du, u) >8u in Q. (54
For ¢ € [0, 1], consider the following two auxiliary equations (see also [27]).
2 u 1\ ! .

G(D%u, Du, u) =((1 P ) « in Q.
Glu] (5.5)

U =¢€ on Ie.

-1
G(D%u, Du, u) = ((1 —nslu! +t1/f_1/k(x,u)) n Qo
U =c¢€ on [.

Lemma 5.1 Ler ¥ (x) be a positive function defined on Q. For x € Q¢ and a positive C2
function u which is strictly locally convex near x, if

Glul(x) = F(ajj[ul)(x) = f)(x) = ¥ (x) u,
then
Gulu](x) — ¥ (x) <0.
Proof By direct calculation,
Gu = Fij%)/ikukwlj = %(me‘ - %Zﬁ)
Since Y fiki < ¥ (x) u by the concavity of f and f(0) =0,

1
Gululx) = ¥ (x) = —— > fi<o.
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Lemma5.2 Foranyt € [0, 1], if U and u are respectively any positive strictly locally convex
subsolution and solution of (5.5), then u > U. In particular, the Dirichlet problem (5.5) has
at most one strictly locally convex solution.

Proof We only need to prove that u > U in Q. If not, then U — u achieves a positive
maximum at xo € £2,, at which,

U(xo) > u(xo), DU(x0) = Du(x), D>U(x0) < D*u(xo). (5.7

Note that for any s € [0, 1], the deformation u[s] := s U + (1 —s) u is strictly locally convex
near xq. This is because at xg,

8ij + uls] y™[uls1] - wlsDu - v [uls]] = 8 + uls] y'*[U] - Uy, - yY U]
— (=9 (1= 2 )y + o+ UM Uy v 01) 20
Denote

9(x,t):((l—t)ﬁ+t8 ) l (5.8)

and define a differentiable function of s € [0, 1]:

a(s) = Guls]|(xo) = 6o, 1) uls](x0).
Note that

a(0) = Glul(xo) — O(x0,1) u(xp) =0
and

a(1) = G[U](xo) — 0(x0, 1) U(xo) = 0.

Thus there exists so € [0, 1] such that a(sg) = 0 and a’(s¢) > 0, i.e.,

Gulsol](x0) = 6(x0. 1) ul[so](xo) (5.9
and
G [uls0]](x0) Dij(U — u)(x0) + G [uls0]](x0) Di(U — u)(x0)
+ (Gu[ulsol]x0) = 60, 1) )W ~ w)(x0) = 0. e
However, the above inequality can not hold by (5.7), (5.9) and Lemma 5.1. m]

Theorem 5.2 Under assumption (1.7) and Condition I, for any t € [0, 1], the Dirichlet
problem (5.5) has a unique strictly locally convex solution u, which satisfies u > u in Q.

Proof Uniqueness is proved in Lemma 5.2. For existence of a strictly locally convex solution,
we first verify that ¥ = (6(x, t) w)* = O(x, r) u* satisfies condition (5.2) in the constant
rank theorem. By direct calculation,

k+1 W
\IJ” - T F + k )4
n
k+1 Oy,
= Z (®xax,3 T u X )(xot) (xﬂ)lu +Z®xo,(xa)ll
a,f=1 a=1

n
=2 Oy, (xo)i tFuy = 2k OUF U + Okt + kOt

a=1
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By (4.1), (4.3), (2.3) and (4.2), fori € Band«a =1, ..., n, we have

2 I
()it ~ = V" v + S — = Yy ()i
u u =1

n

2
=—u@- )V -3) —u Z (% “On+1) (% “0y) + ;(xa)i w O

=1
= —(Xa)i U;
u
and
Ujj ~ —u; —Uu. (5.12)

Therefore by (1.7),
Z(\D--—k+1 +k\D)~—k®k+IZZ ( Z) (xa)i(xp)i uF <0
' ii k raxp al)i\XB)i = V.
ieB i€B a,f=1

Next, we use the standard continuity method to prove the existence. Note that u is a
subsolution of (5.5) by (5.4). We have obtained the C? bound for strictly locally convex
solution u (satisfying u > u by Lemma 5.2) of (5.5), which implies the uniform ellipticity of
Equ. (5.5). By Evans-Krylov theory [13,14], we obtain the C>¢ estimate which is independent
of ¢,

lullcae gy < C. (5.13)
Denote
Co(Qe) == {we C*(Q)|w=0onT},

U= {w € Cé""(STé) u + w is strictly locally convex in 9761 .

We can see that Cg’a(@) is a subspace OEZ""(STG) and I/ is an open subset of Cg’a(STE).
Consider the map £ : U x [0, 1] = C*( Q¢ ),

Lw, 1) =Glu+w] — 0, 1) (u+w).
Set
S={te[0,1]]| L(w,t) =0 has a solution w in U }.

Note that S # ¢ since £(0, 0) = 0.

We claim that S is open in [0, 1]. In fact, for any #y € S, there exists wg € U such that
L(wo, tp) = 0. The Fréchet derivative of £ with respect to w at (wo, fp) is a linear elliptic
operator from CS’W(STG) to C4( Q¢ ),

Lo g1y = G [+ wol Dijh + G'[u+ wol Dih

—l—(Gu[g—l— wol — 6(x, to))h.

By Lemma 5.1, £, ’(wo 0
is also contained in S.

is invertible. By implicit function theorem, a neighborhood of £y
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Next, we show that S is closed in [0, 1]. Let #; be a sequence in S converging to 7o € [0, 1]
and w; € U be the unique (by Lemma 5.2) solution corresponding to #;, i.e. L(w;, t;) = 0.
By Lemma 5.2, w; > 0. By (5.13), u#; := u + w; is a bounded sequence in Cz'“(STe), which
possesses a subsequence converging to a locally convex solution uq of (5.5). By Condition I
and Theorem 5.1, we know that u is strictly locally convex in .. Since wq := 1o —u € U
and L(wy, t9) = 0, thus fp € S. ]

From now on we may assume u is not a solution of (1.6), since otherwise we are done.

Lemma 5.3 Ifu > u is a strictly locally convex solution of (5.6) in Q, then u > u in Q¢
and (u —u), > O0onT..

Proof To keep the strict local convexity of the variations in our proof, we rewrite (5.6) in
terms of v,

5 (5.14)

G(D?v, Dv,v) = ¥'(x, v) in Q,
vV=¢€ on I..

Since u is a subsolution but not a solution of (5.6), equivalently, v is a subsolution but not a
solution of (5.14), thus,

Glvl - Gv] = ¥ (x, v) — ¥' (x, v). (5.15)

Denote v[s] := sv + (1 — s) v, which is strictly locally convex over Q. for any s € [0, 1]
since

1 1 1 .
5,'./' + E(U[S])ij = s(S,-A,- + Eyij) + (1 — S)(S,‘j + 5 v,'j) >0 in ..
From (5.15) we can deduce that
aij(x)Dij(v —v) +bi(x)Di(v —v) +c(x)(x—v) =0 in €,

where
1 ' 1 .
a;j(x) =/ G"[vls]](x) ds. bi(x)=/ G'[vls]](x) ds,
0 0

1
c(x) = /o Gv[v[s]](x) — 1//’v(x, v[s]) ds.

Applying the Maximum Principle and Lemma H (see p. 212 of [25]) we conclude that v > v
in Q¢ and (v — v),, > 0 on I'c. Hence the lemma is proved. ]

Theorem 5.3 Under assumption (1.7), (1.8) and Condition I, for any t € [0, 1], the Dirichlet
problem (5.6) possesses a strictly locally convex solution satisfying u > u in Q.. In particular,

the Dirichlet problem (1.6) has a strictly locally convex solution u€ satisfying u¢ > u in Q..

Proof We first verify that
1 -1 1/k —*
v = ((1—;)5— u ey (x,u))
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satisfies condition (5.2) in the constant rank theorem. In fact, by assumption (1.8), (5.11) and
(5.12),

Ky (1), — v F)

ieB
k] Vxa ¥ upu—k k1 Yxg ¥ ¥
~ Z . z o;b B WXaXﬁ + %(Sa <kF sz u wxau _ ;a =0
4 k+] ‘/fxawu ,(// _ h k+] wu w _ kl _ ﬂ L=
ieB Tk Xalt u uu u? u

and consequently,
k+1 W
Z (\IJii T \p + k \IJ)
ieB
= k0T Y (=057 (@ D —u ) + 1 (@ - v ) 0.
ieB
We have established C>* estimates for strictly locally convex solutions u > u of (5.6),
which further imply C*¢ estimates by classical Schauder theory,

ltllctaar) < Co. (5.16)
In addition, we have
dist(«[u], 3T%) > c2 > 0 in Q, (5.17)
where C4, ¢, are independent of 7. Denote
Co®(Qec) :={weC*(Q)|w=0onT}
and
w>0in Q¢, wy >0o0n T, ”w”C“«“(STe) < Cq+ ”EHC‘W(STE)
O:=JweCq™ @) | (8 + (+w) @+ w); + @+ w)+w);} > 0in O, :
dist(k [ + w], aT%) > ¢ in Q¢

which is a bounded open subset of Cg’a(STE). Define M, (w) : O x [0, 1] = C**(Q,),
-1
M) = Glu+w] = (A =08 @+w™ + ry ™ utw)

Let u° be the unique strictly locally convex solution of (5.5) at + = 1 (the existence and
uniqueness are guaranteed by Theorem 5.2 and Lemma 5.2). Observe that u° is also the
unique solution of (5.6) when ¢+ = 0. By Lemma 5.2, w° := 4% — 4 > 0 in Q.. By
Lemma 5.3, w® > 0in Q¢ and w®, > 0 on I'c. Also, u + w? satisfies (5.16) and (5.17).
Thus, w° € O. By Condition I, Theorem 5.1, Lemma 5.3, (5.16) and (5.17), M;(w) = 0 has
no solution on 9O for any ¢ € [0, 1]. Besides, M; is uniformly elliptic on O independent of
t. Therefore, we can define the ¢-independent degree of M; on O at O:

deg(M;, O, 0).

To find this degree, we only need to compute deg(My, O, 0). By the above discussion, we
know that Mo(w) = 0 has a unique solution w? € 0. TE Fréchet diﬂvative of My with
respect to w at w? is a linear elliptic operator from Cg’a(Qe) to C2*(Q,),

Mo.wlyoh) = GY[u’] Dijh + G'[u®] Dih + (G, [u®] — 8)h. (5.18)

@ Springer



Convex hypersurfaces of prescribed curvature and... Page230f29 45

By Lemma 5.1, G, [u°] — § < 0in Q¢ and thus Mg |0 is invertible. By the degree theory
established in [17],

deg(Mo, O, 0) = deg(M 0, Bi,0) = £1 # 0,

where Bj is the unit ball in Cg’“(STé). Thus deg(M;, O,0) # 0 for all + € [0, 1], which
implies that the Dirichlet problem (5.6) has at least one strictly locally convex solution u > u
forany ¢ € [0, 1]. ]

6 Interior second order estimates for prescribed scalar curvature
equations in H"t1

Let u€ > u be a strictly locally convex solution over Q¢ to the Dirichlet problem (1.6). For
any fixed €9 > 0, we want to establish the uniform C? estimates for u€ for any 0 < € < %"

on Q,, namely,

€0
||u6||C2(Q—€0) <C, V 0<e < R 6.1)

In what follows, let C be a positive constant which is independent of € but depends on €.
By (3.1), we immediately obtain the uniform C? estimate:
€ < u° < C on Q, YV 0<e€<e. (6.2)

For uniform C! estimate on Q,, we make use of the Euclidean strict local convexity of
(u)? + |x|? (see [26] for a similar idea) to obtain

C(n) max ((u)? + |x|?)

Qey/2

max |D((u)* + [x?)| < : S , V 0<e<—
) dlSt(reg/L Qeo)
It follows that,
€ . EO
lu ”Cl(Qeo) < C, V 0<e< > (6.3)
We are now in a position to prove
2 € re €0
|D*u¢| < C on Q. YV 0<e<, (6.4)
which is equivalent to
€0
max |k;[u€]] < C, YV O0<e< (6.5)

€0

Choose r = dist(Qieo, [¢y/2), and cover 9760 by finitely many open balls B% with radius
% and centered in 2. Note that the number of such open balls depends on €. In addition,
the corresponding balls B, are all contained in £2¢,,2, over which, we are able to apply the
gradient estimate due to (6.3):

€0
IIue”C](m) <C, V 0<e < T

If we are able to establish the following interior C> estimate on each B, :

€0
sup |ii[u€]] < C([ucllc1(p,) V 0<e<—,
Br/2 4
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then (6.5) can be proved. Since the principal curvatures «;[u€],i = 1, ..., n and the gradient
Du€ are invariant under the change of Euclidean coordinate system, we may assume the
center of B, is 0. For convenience, we also omit the superscript in #€ and write as u.

In what follows, we will use Guan-Qiu’s idea [12] to derive the interior C? estimate

sup |ki(x)| < C (6.6)
B2

for strictly locally convex hypersurface = in H"*! to the following equation

o2(k) = Y (x), (6.7)

where B, C R” is the open ball with radius r centered at 0 and C is a positive constant
depending only on n, r, | Zll¢c1p,ys 1V 1lc2(p,) and infp, .
Forx € B, and ¢ € s1n T(x,u) Z, consider the test function

OCx, u, &) = 21np(x)+a( n“H)Z—ﬁ(XnH) +Inln e,

where p(x) = r2—|x|? with [x|? = Z?:l )cl.2 and «, B are positive constants to be determined
later. At this point, we remind the readers that - means the inner product in R+ while (,)
represents the inner product in H"*!.

The maximum value of ® can be attained in an interior point x%=(x1,...,x,) € By.Let
71, ..., T, be a normal coordinate frame around (x°, u(xo)) on X and assume the direction
obtaining the maximumto be £ = 7. By rotation of 1, . . ., 7, we may assume that (hi | (xo))
is diagonal. Thus, the function

21n p(x) —I—(x(vnM_H)z - B (an) +Inlnhq

also achieves its maximum at x°. Therefore, at x°,

2 pi u u XV hi1;
o e (un+1),~ — B <Un+1)i + Wk 0, (6.8)
20‘5’-,0” 20” 2 rwo u \2 u u
P N (v"ﬂ)i - <v"+1)(W)n‘ (6.9)
) . )
i (X V) 03 hii oiihd,
- — (1 +Inhy)——"—
oy (vn-'rl + hiinhy (I +1n 11)(1’111 mh)?

To compute the quantities in (6.8) and (6.9), we first convert them into quantities in H L,
and apply the Gauss formula and Weingarten formula

Dr,-Tj = Vfi‘tj +/’l,’j n,

n; = —/’l,'j Tj.

We also note that in H*t!,
Dy 8n+1 =Y
u

@ Springer



Convex hypersurfaces of prescribed curvature and... Page 250f29 45

where y is any vector field in H"*!. This implies that 8, is a conformal Killing field in

H"*!. By straightforward calculation, we obtain

(14)_( 1 )_K'Ti'alH»l
vt ) T N, B /i T (o)

W pnyz TR T T ety K +

< u ) Tl | o oU u ) 5 (G - 1)’
N ki PSR
ii u(v )

vn+l

Now we choose the conformal Killing field x in H"*! to be

n
1
X=Xyl Y X+ 3 (xr21+] - |x|2> Ont1-
i=1

We can verify that

2 2
Xop +1x]
Dyx = ¢y, p=-"—

3

2 Xp41

where y is any vector field in H"*1.
Again, by straightforward calculation, we find that

(X-V) K (X-v) (T - Ony1) '
ot ) T ol e X T,

x-° B du X-V 26 (T » Opg1) /X -V
(vn+l>ii - (VnJrl + (vn+1)2)Ki + uyn+l1 <\)”+1 >i

1
+ m((x V) (Tj - Ipp1) — (X rj)vn+l>hiij.

Also, since
|X|2 — 1- 2(X, 3n+1)
(an—Ha an+1) '

by direct calculation we obtain

pi = 20 (T, By} (X, 1) — 2u(X, T;)
2
= ;((r,- ) (X D) — X 7).
pii = ki (0 =[x = 2xv)

4u* —2|x|?
+ -

4
(@ ) — (T X B) — 20,

Differentiate (6.7) twice,

o3 hiik = Y,

Zhiilhjjl _thzjl + i hi = Y1 = —Cry.
i#j i#]

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)
(6.17)
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Now taking (6.15), (6.10), (6.11), (6.13), (6.8), (6.16), (4.12), (6.17) into (6.9), we obtain
c 205 o} Wy 2046t Opst) b
T T T T R T T T T I (6.18)
2 _ U A K2 ji 2 ’
n Dizj i — Xigj hiithjji _ Co Uﬁl — (1 +1Inky) oy hiy <0
k1 Inkg In k4 In kg (k11Inkq)?
By Theorem 1.2 of [28] (see also Lemma 2 of [12]), we have
2
_Zh P 1 (n—1DQ2o2h111 —k191) _ﬁ
< iithjj1 = 20_2 n— 1)/(12 201 — 20 2, .
Also,
209 (G ) i W olic? — On)®  03'hiy;
wu vl Ink = ()22 ut (k1 Inkp)?’
Thus, when k| is sufficiently large, (6.18) reduces to
¢ 203 p} u’ ’ 3 iy
— —0 —74- 200 — ”K-—I—il <0. 6.19
P ] p? ( )( nt1)272 T 20«7 Inky ©.19)

As in [12], we divide our discussion into three cases. We show all the details to indicate
the tiny differences due to the outer space H"*1,

Case (i): when |x|2 < %, we have 1 < r% Then (6.19) reduces to

2

u
—Co1 + Qa — )( )2 (0201 — 303) <0O.

Choosing « sufficiently large we obtain an upper bound for «

. 2 L 2
Next, we consider the cases when |x|* > ’7, which implies p < % ‘We observe that

2 2 o
pi= == (X = % Beg) B ) = == D (X 0) (0 - ).
u u i

(6.20)
Therefore,
S P = % SO0 90 3 - Tk - )
i ik i
:4;(x-aq,)(x-ak)<2i:(aj-%)%)-ak
—4Z(x 0 00 () = ) - v)v) - by 6.21)

>4(Z(x 8))° —Z(x 0, Z(a v?)
= 4Z<X~8j) (v"+1>2 — 4| (v"+1) > 2,222
J

Case (ii): if for some 2 < j < n, we have |p;| > d, where d is a small positive constant
to be determined later.
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By (6.8), (6.10) and (6.12), we have

huj — 2p; n (/3 (X - V)(T) - Bpg1) — (x - T;) VT B zau(fj . 3n+1)> '
k1 Inkp 0 u(unt1)2 (v1thH3 J
It follows that
h2 . 2[02 dZ 4d2 C 2 d2
S S carpiadz Sate oS
ki (Ink)*> =~ p o r K7 J

when « is sufficiently large. Consequently, (6.19) reduces to

Co d? ii
——zl—i— 202"/ Ink; <0.
P 20p
Since 02/' /> % o1 when « is sufficiently large, we obtain an upper bound for «.

Case (iii): if |pj| < d forall 2 < j < n, from (6.21) we can deduce that |p1]| > ¢y > 0.

By (6.8), (6.10) and (6.12), we have
hir Bk by 2p1  2auk(ty - Opt1)

i1 Inky = (V12 - 7 - (V13 ’ (6.22)
where
T
b= v) (5 B ) = (x- =) v

n+1 T
= VZ p1+ (;1 : 3n+1)(x : (V - (- 8n+1)an+l))

n+1 1 T
= 5ot s (G )0 ) 30 000 3)

1

ptl 1 7]
= — p1+v,ﬁlz((;-an+l)an+l)-((a,--v)v)<x-a,~)
_ phtl 1 T T 9 3 9 Tk Tk 3
=5 pl*wl,Z(u‘Z,;(u' 2 ,)-(,—;(,7);)@. g
ot 1 T, Toa(s . (g 5
=t D G )0 ))e

vy p1 1 7 T
=7 + g pntl — pyntl -~ (;'3/)(31 : ;)pk

Note that in the last equality we have applied (6.20). Hence

prtl 1
b1l = —— o1l = S5 D o lekl = e > 0
k#1

and (6.22) can be estimated as

‘ hir ’> Bei ki 9 Ber ki
0

— > - @
kilnkg ! = 2(11’”'1)2 - 4(v”+1)2
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when 8 >> « and k| p is sufficiently large. Taking this into (6.19) and observing that

9
0'211K12 > WU2 (oa]
n

as k1 is sufficiently large, we then obtain an upper bound for p2 In k.
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