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Abstract
We consider theminimization of an energy functional given by the sum of a density perimeter
and a nonlocal interaction of Riesz type with exponent α, under volume constraint, where
the strength of the nonlocal interaction is controlled by a parameter γ . We show that for a
wide class of density functions the energy admits a minimizer for any value of γ . Moreover
these minimizers are bounded. For monomial densities of the form |x |p we prove that when
γ is sufficiently small the unique minimizer is given by the ball of fixed volume. In contrast
with the constant density case, here the γ → 0 limit corresponds, under a suitable rescaling,
to a small mass m = |�| → 0 limit when p < d − α + 1, but to a large mass m → ∞ for
powers p > d − α + 1.
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1 Introduction

We consider the nonlocal isoperimetric problems

e(γ ) := inf
{
Eγ (�) : |�| = 1

}
(1.1)

over sets of finite perimeter � ⊂ R
d with given volume, where | · | denotes the Lebesgue

measure in R
d , and the energy functional Eγ is defined as

Eγ (�) :=
ˆ

∂∗�
a(x) dHd−1 + γ

ˆ
�

ˆ
�

1

|x − y|α dx dy (1.2)

for γ > 0, α ∈ (0, d). Here ∂∗ denotes the reduced boundary of a set. The first term in the
energy functional is the perimeter of � with density a : Rd → [0,∞), whereas the second
term is a Riesz-type nonlocal interaction energy.

The minimization problem (1.1) is a variant of the classical liquid drop model introduced
by Gamow in [26]. Gamow’s model is simply given by (1.1) with a ≡ 1. The most important
feature of this geometric variational problem is that the two terms present in the energy
functional are in direct competition. For a ≡ 1, the surface energy is minimized by a ball
whereas the repulsive termdoes not admit aminimizer and prefersminimizing sequenceswith
multiple vanishingly small components diverging infinitely apart in order to disperse themass.
The parameter of the problem, that is γ , sets a length scale between these competing forces
and drives the competition between the short- and long-range interactions. This problem has
generated considerable interest in the calculus of variations community (see e.g. [3,7,14,20–
22,29,30,32–34,38,42] as well as [15] for a review) with several papers studying parameter
regimes of existence and nonexistence of minimizers. Results of [21,32,34], for example,
show that for large values of γ , the energy Eγ with a ≡ 1 does not admit a minimizer.
There are also several studies characterizing the minimizing sequences [3,7,33] even when
minimizers fail to exist. In particular, in [3], the authors use a “regularization” of the energy
by adding an attractive external potential which guarantees the existence of minimizers for
all values of γ .

Also very recently there has been studies on the extensions of the liquid drop model
to the anisotropic setting where the surface energy is replaced by an anisotropic surface
tension [8,13,36]. In these models the surface energy is given by

´
∂∗� ψ(ν�) dHd−1 for

some convex, one-homogeneous function ψ where ν� denotes the outward unit normal to
the reduced boundary ∂∗�. Such anisotropic extensions do not annihilate the translation
invariance of the liquid drop model and a simple scaling argument heuristically justifies that
for large γ values minimizers still fail to exist. In contrast, the inclusion of a translation
variant density in the perimeter functional “regularizes” the liquid drop model in the sense
that the problem admits a minimizer for all values of γ .

Isoperimetric problems defined via weighted perimeters

Pa(�) :=
ˆ

∂∗�
a(x) dHd−1(x) (1.3)

have been studied for various choices of densities a. Problems where the volume constraint
is also weighted either by the density a or by some other function have especially attracted
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significant interest (see e.g. [5,6,10–12,17–19,24,37,40,41,44] and references therein). The
main questions regarding these problems have been existence, boundedness and regularity of
isoperimetric sets. These questions have been studied not only for specific densities (radial,
monomial, Gauss-like) but also for rather general densities satisfying some boundedness and
continuity conditions. To our knowledge, perturbations of density perimeter (either by long-
range interactions or by external potentials) have not yet been considered in the literature.

As pointed above, the inclusion of a confining density in the perimeter functional provides
a different type of “regularization” of the problem (1.1). Our first main result establishes the
compactness of any minimizing sequence with global convergence to a minimizer for any
γ ≥ 0 and for a wide class of densities, satisfying a simple coercivity condition:

A1 a ∈ C0(Rd), a(0) = 0, a(x) > 0 for all x 	= 0, and lim|x |→∞ a(x) = +∞.

In order to state the existence result, we recall that sets�n → � globally if |�n
�| → 0,
that is, their characteristic functions χ�n → χ� in the L1(Rd)-norm.

Theorem 1.1 (Existence of minimizers) Let a be any density satisfying the assumption (A1),
and fix any γ ≥ 0. Then any minimizing sequence {�n}n∈N for the problem (1.1) admits
a subsequence which converges globally to a minimizer �γ ⊂ R

d with |�γ | = 1 and
χ�γ ∈ BVloc(Rd\{0}).
Remark 1.2 The proof of the existence result in Theorem 1.1 can be extended to a somewhat
broader class of densities a satisfying

a ∈ C0(Rd), a−1({0}) = Z, a > 0 in R
d\Z, and lim|x |→∞ a(x) = +∞,

for any finite set Z = {z1, . . . , zm} ⊂ R
d with m ∈ N. We present the proof in the case

Z = {0}. In this general situation, any minimizer �Z ⊂ R
d is such that χ�Z ∈ BVloc(Rd\Z).

We remark that the coercive nature of a at infinity ensures the existence of minimizers
for (1.1), essentially because the splitting of mass off to infinity (the main reason for non-
compactness in nonlocal isoperimetric problems) is rendered too costly. However it does not
ensure that minimizers need be connected sets. Indeed, for large γ the nonlocal interactions
should become large enough to favor the fragmentation of sets, which will repel but be con-
tained at finite distance. This behavior is also observed in nonlocal isoperimetric problems
with a confining term [3].

Our existence result relies on a modified version of the relative isoperimetric inequality
on annulli and requires only the minimal assumption (A1) on the densities a. On the other
hand, proving boundedness of minimizers is rather technical and we prove it under one of
the following additional structural assumptions:

(A2a) a ∈ C0,1
loc (Rd) and there exists constants Ca ≥ 1 and Ra ≥ 1 such that for every

R ≥ Ra it holds

0 < sup
B2R\BR

a ≤ Ca inf
B2R\BR

a. (1.4)

(A2b) a ∈ C0,1
loc (Rd), a(x) = a(|x |) and there exists Ra ≥ 1 such that a is non-decreasing

for |x | ≥ Ra.

For densities satisfying either of the additional conditions (A2a) or (A2b), using regularity
results of quasi-minimizers, such as density bounds,we obtain the boundedness ofminimizers
of the problem (1.1).
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Theorem 1.3 (Boundedness of minimizers) For any density a satisfying (A1) and either
(A2a) or (A2b), and for any γ ≥ 0, any minimizer �γ of (1.1) is essentially bounded.

Remark 1.4 We require the assumption (A1) in Theorem 1.3 only to obtain the existence
of a minimizer to (1.1). If the existence of a minimizer could be obtained under some other
conditions, either (A2a) or (A2b)would be sufficient to obtain the boundedness ofminimizers.

Remark 1.5 (Almost polynomial densities) Let a ∈ C0,1
loc (Rd) satisfy the following condi-

tions:

(i) a(0) = 0 and a(x) > 0 for x 	= 0.
(ii) There exist p > 0, R0 > 0 and C1,C2 > 0 such that C1|x |p ≤ a(x) ≤ C2|x |p for all

|x | > R0.

Then a satisfies the assumptions (A1) and (A2a); hence, Theorems 1.1 and 1.3 hold for such
densities.

For homogeneous densities, which satisfy the condition a(t x) = t p a(x) for some p > 0,
a simple scaling argument shows that the minimization problem (1.1) is equivalent to the
problem

inf
{
E1(�) : |�| = m

}
(1.5)

with the correspondence

γ = m−(p+α−d−1)/d , p 	= p∗ := d − α + 1.

It is interesting to observe that for homogeneous weights the large mass/small mass behavior
of theminimization problem depends on the specific power p. In particular, when p > p∗, the
corresponding value of γ varies inversely with mass. Thus, with p > p∗ the nonlocal energy
is dominated by the perimeter term Pa for large mass m, and the nonlocal term dominates
for small m, exactly the opposite of the behavior for constant a. For subcritical p < p∗ the
opposite is true, and the energy is perimeter-dominated for small m. At the critical value
p = p∗ the two problems (1.1) and (1.5) are not equivalent, and (1.5) is scale invariant:
the minimizers at any mass m are all rescaled copies of the same set. Since Theorem 1.1
guarantees the existence of a minimizer for all values of m (or γ ), an interesting question
is the characterization of minimizers for a range of values of the parameters. We provide a
partial answer to this question in the next theorem.

Theorem 1.6 (Global minimizers in the small γ regime) Let a(x) = |x |p with p > 0. For
γ sufficiently small the ball B ⊂ R

d of volume one, centered at the origin is the unique
minimizer of e(γ ).

For p < p∗, the γ → 0 limit is equivalent to the small m regime in (1.5), and the
optimality of the spherical ball for small mass is well-known for the unweighted a ≡ 1 case
(see [7,29–32]). With p > p∗, the situation is reversed and Theorem 1.6 shows that the ball
minimizes for all sufficiently large m. Such a are very coercive at infinity, and the situation
is similar to the case studied by Généraux and Oudet in [27], where the problem (1.5) with
constant density is supplemented with a confining term. In that case they also prove the
minimality of the ball for very large m.

The proof of Theorem 1.6 relies on a penalization technique, similar to those used in
several geometric variational problems involving the perimeter functional (see [1,7,16,20,
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39]). Utilizing results from the regularity theory for density perimeters [18,41] we reduce
the minimizers of the nonlocal problem to nearly spherical or isoperimetric sets in the small
γ regime. The novelty here is, though, that we cannot directly apply the results from the
literature due to the degeneracy of the density a at the origin and the possibility of small
nonsmooth components of ∂∗�γ near the origin. Once we reduce the problem to nearly
spherical sets we use a Fuglede-type argument (see [23]) to control the isoperimetric and
nonlocal deficits between minimizers and the ball and show that for small γ > 0 these
quantities have to be identically zero.

The regime of large γ is also very interesting, but its analysis requires a very different
approach.While the existence ofminimizers is guaranteed byTheorem1.1, in this regime, the
nonlocal term is dominant and prefers theminimizer to break into smaller pieces distributed in
a compact set whose size is determined by the confining term a. Hence, the characterization
of minimizers (i.e., the shape of the disconnected components as well as their locations)
depends on the delicate balance between the preferred shapes dictated by the density perimeter
and the inter-component interactions. A similar phenomenon is also observed in models of
copolymer/homopolymer blends. While existence of minimizers is obtained for all values of
m in [9], only in the small m regime the minimizers are uniquely characterized leaving the
question of the precise morphology of minimizing configurations for large m open.

Structure of the paper

The paper is organized as follows. In Sects. 2 and 3 we prove Theorems 1.1 and 1.3, respec-
tively. Section 4 is devoted to the proof of Theorem 1.6.

Notation

Throughout the paper ωd denotes the volume of the unit ball B1(0) in R
d and we write

Br := Br (0) to denote the ball of radius r centered at zero. Constants, denoted by C , can
change from line to line (unless otherwise noted). We will denote the a-volume measure and
the a-surface area measure, respectively, by

|�|a :=
ˆ

�

a(y) dy, and Hd−1
a (�) :=

ˆ
�

a(y) dHd−1(y).

The relative weighted perimeter of E in F will be denoted by either Pa(E, F) or´
F a(x)|∇χE |, where χE is the characteristic function of the set E and |∇χE | is the total

variation of χE . The weighted perimeter of E in F (or the a-perimeter) is defined as

Pa(E, F) := sup

{ˆ
E
div

(
a(x)X(x)

)
dx : X ∈ C∞

c (F;Rd), ‖X‖L∞ ≤ 1

}
.

In particular, Pa(E, F) = Hd−1
a (∂∗E ∩ F). We will say that χE ∈ BVa(F) if Pa(E, F) <

+∞. Perimeters of sets in the whole space (i.e., when F = R
d ) are denoted by Pa(E) or´

Rd a(x)|∇χE |. We will denote the Euclidean perimeter (when a ≡ 1) by simply P . Finally,
we will denote the nonlocal term by V , i.e.,

V(�) :=
ˆ

�

ˆ
�

dx dy

|x − y|α ,

for any α ∈ (0, d).
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2 Existence of minimizers

In this sectionwe present the proof of Theorem 1.1. It relies on the followingmodified version
of the relative isoperimetric inequality on annulli.

Lemma 2.1 Let Ar ,R = {
x ∈ R

d : r ≤ |x | < R
} = BR\Br denote the half-open annulus of

inner radius r and outer radius R. Then, there exists a dimensional constant cd > 0, so that

min
{
|� ∩ A1,2|(d−1)/d , |A1,2\�|(d−1)/d

}
≤ cd P(�, A1,2) (2.1)

for every set of finite perimeter � ⊂ R
d .

Remark 2.2 Inequality (2.1) is still valid with the same constant cd over any annulus A2 j ,2 j+1

with j ≥ 1, as the inequality is invariant under scalings.

The relative isoperimetric inequality is typically stated for balls in R
d (see e.g. [47, Thm

5.4.3],) but in fact the same proof verifies that it holds in any domain for which one can prove
the validity of the Poincaré inequality,

(ˆ
A1,2

|u − ūr ,R | d
d−1 dx

) d−1
d

≤ C1,2

ˆ
A1,2

|∇u| dx,

where ūr ,R := fflAr,R u dx is the average on annuli. The latter can be found in [2].
We now turn to the proof of the existence of minimizers for e(γ ). For translation-invariant

nonlocal isoperimetric problems existence is a delicate issue, as minimizing sequences can
split, with pieces diverging to infinity. The increasing weight a(x) raises the cost of splitting,
an effect which is quantified in our proof via the relative isoperimetric inequality, Lemma 2.1.

Proof of Theorem 1.1 Let {�n} ⊂ R
d be a minimizing sequence of (1.1):

Eγ (�n) → e(γ ) as n → ∞, and |�n | = 1 for any n ≥ 1.

We first show that {�n} is uniformly bounded in BV (Rd\Bε) for all ε > 0 sufficiently
small. To see this, note that lim|x |→∞ a(x) = +∞ implies that there exists R1 > 0 such that
a ≥ 1 in R

d\BR1 . Define δε := min{a(x) : ε ≤ |x | ≤ R1} for 0 < ε < 1 small enough so
that δε ≤ 1 (as lim|x |→0 a(x) = 0). Then, for any such choice of ε, a(x) ≥ δε > 0 for all
x ∈ R

d\Bε, and we deduce

δε P(�n,R
d\Bε) < Pa(�n,R

d\Bε) < Eγ (�n) = e(γ ) + on(1),

which confirms uniform boundedness in BV (Rd\Bε).
We next show local convergence of {�n} to a limiting set�γ . Invoking compactness results

of sets with uniformly bounded perimeter, there exists�ε ⊂ R
d so that�n�

→ �ε locally in
R
d\Bε , as � → ∞. Running a diagonalization argument over a sequence εk = 1/k → 0+,

there exists a subsequence n� → ∞ such that for all k ≥ 1,�n�
→ �1/k locally inRd\B1/k ,

as � → ∞. In particular, �1/(k+ j)\B1/k = �1/k\B1/k for any j ≥ 1. Defining the limit set
as �γ := ⋃∞

k=1(�
1/k\B1/k), we claim that up to subsequence,

�n → �γ locally in R
d as n → ∞, and

χ�n → χ�γ pointwise a.e. in R
d as n → ∞.

(2.2)

Assuming the claim, we may conclude that P(�γ ,Rd\Bε) ≤ lim inf
n→∞ P(�n,R

d\Bε) for

0 < ε � 1, which shows χ�γ ∈ BVloc(Rd\{0}).
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To verify (2.2), let K ⊂ R
d be a compact set and for ε > 0, fix k ≥ 1 so that |B1/k | ≤ ε.

Then

|(�n
�γ ) ∩ K | = |(�n
�1/k) ∩ (K\B1/k)| + |(�n
�γ ) ∩ K ∩ B1/k |
≤ on(1) + ε.

Since ε > 0 is arbitrary small, we conclude (2.2). The aforementioned convergence along
with the lower semicontinuity of the a-perimeter functional, together with Fatou’s Lemma
shows that

Eγ (�γ ) = Pa(�γ ) + γV(�γ ) ≤ lim inf
n→∞ (Pa(�n) + γV(�n)) = e(γ ).

We are only left to show that �γ is admissible in (1.1), from which it will follow that
Eγ (�γ ) ≥ e(γ ); thus obtaining the existence of a minimizer.

We observe that |�γ | ≤ 1 in view of Fatou’s Lemma, once again. We claim that in fact
|�γ | = 1. Suppose, on the contrary, that |�γ | < β for some β ∈ (0, 1).

The local convergence (2.2) shows that for all R > 0, |�n∩BR | = |�γ ∩BR |+on(1) < β

for all but finitely many n. Thus, the sets �n have very thick tails, which will introduce huge
energy cost via the relative isoperimetric inequality. By running a diagonalization argument
over {Rk = 2k}, there exists an increasing subsequence nk → +∞ such that for all k ≥ 1,

inf
n≥nk

|�n\B2k | > 1 − β. (2.3)

On the other hand, as a(x) → +∞ as |x | → ∞, for M > 1 arbitrarily large, for all n ≥ 1,
and every k ≥ kM sufficiently large,

Eγ (�n) ≥ Pa(�n,R
d\B2k ) ≥ MP(�n,R

d\B2k ). (2.4)

Intuitively, when j is large we expect |�n ∩ A2 j ,2 j+1 | to be much smaller than its com-
plement |A2 j ,2 j+1\�n | in the annulus. Indeed, we claim that there exists j0 ∈ N such that
for all j ≥ j0 and for all but finitely many n we have

|�n ∩ A2 j ,2 j+1 | < (2 j+1)−d |A2 j ,2 j+1\�n |. (2.5)

For otherwise, there would exist increasing sequences j� → +∞ and n� → +∞ for which
|�n�

∩ A2 j� ,2 j�+1 | ≥ (2 j�+1)−d |A2 j� ,2 j�+1\�n�
|, for every � ≥ 1. This would imply that

|�n ∩ A2 j ,2 j+1 | ≥ 1

1 + 2( j+1)d
|A2 j� ,2 j�+1 |,

and hence,

1 = |�n�
| ≥

∞∑
�=1

|�n�
∩ A2 j� ,2 j�+1 |

≥
∞∑

�=1

1

1 + (2 j�+1)d
|A2 j� ,2 j�+1 | >

∞∑
�=1

1

2

(
1 − 1

2d

)
ωd = +∞,

establishing the claim.
Wenowfix any k ≥ max{kM , j0} andn � 1 sufficiently large to obtain the validity of (2.4)

and of (2.5) for all j ≥ k. Utilizing the relative isoperimetric inequality on {A2 j ,2 j+1 : j ≥ k}
(see Remark 2.2), we get the lower bound
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cd P(�n,R
d\B2k ) =

∞∑
j=k

cd P(�n, A2 j ,2 j+1)

≥
∞∑
j=k

|�n ∩ A2 j ,2 j+1 | d−1
d

≥
( ∞∑

j=k

|�n ∩ A2 j ,2 j+1 |
) d−1

d = |�n ∩ (Rd\B2k )|
d−1
d

Increasing the value of n ≥ nk if necessary, it follows from (2.3) and (2.4) that

+∞ > e(γ ) + on(1) ≥ MP(�n,R
d\B2k ) ≥ M

cd
(1 − β)

d−1
d ,

with M > 1 arbitrarily large. Thus, we reach a contradiction. Hence, |�γ | = 1, and we have
proven that �γ attains the minimum in the nonlocal isoperimetric problem (1.1).

Finally, by the identity |�n
�γ | = 2|�γ \�n | + |�n | − |�γ | together with |�n | = 1 =
|�γ | and (2.2), we deduce the global convergence of the subsequence {�n}, as (by local
convergence,)

|�γ \�n | ≤ |(�γ \�n) ∩ Br | + |�γ \Br | ≤ |(�γ \�n) ∩ Br | + or (1).

Thus, every minimizing sequence �n for e(γ ) contains a subsequence which converges
globally (in L1(Rd)) to a minimizer of e(γ ). ��

3 Boundedness of minimizers

In this section we prove Theorem 1.3. Since the assumptions (A2a) and (A2b) characterize
different types of densities, the proof of the theorem requires two different approaches. For
densities which are polynomial-like and have bounded oscillations (i.e., densities satisfying
(A2a)) we make use of a series of technical lemmas establishing uniform density bounds for
quasi-minimizers of the weighted perimeter functional where the density is measured with
respect to weighted volumes. For radial and monotone densities (i.e., densities satisfying
(A2b)), on the other hand, we utilize a regularity result, called ε − ε(d−1)/d property, which
basically says that a set of finite perimeter can be locally modified where one increases its
volume by ε, while the perimeter increases at most by a constant multiple of ε(d−1)/d . We
present the proof in two subsections.

3.1 Densities with bounded oscillations

We start with densities satisfying the assumptions (A1) and (A2a). First, we prove that any
minimizer �γ of (1.1) has finite a-volume.

Lemma 3.1 For any density a satisfying (A1) and (A2a) any minimizer�γ of (1.1) has finite
a-volume, i.e., |�γ |a < +∞.

Proof By passing to the limit �n → �γ in (2.5),

|�γ ∩ A2 j ,2 j+1 | ≤ (2 j+1)−d |A2 j ,2 j+1\�γ |, (3.1)
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for all j ≥ j0, for some j0. Fix ja ∈ N with ja ≥ j0, such that Ra < 2 ja where Ra is given
as in (1.4). Using (1.4), (3.1), and the relative isoperimetric inequality (see Remark 2.2) we
have:

ˆ
�γ \B2 ja

a(x) dx =
∞∑
j= ja

ˆ
�γ ∩A2 j ,2 j+1

a(x) dx

≤
∞∑
j= ja

(
sup

A2 j ,2 j+1

a
)|�γ ∩ A2 j ,2 j+1 |

≤
∞∑
j= ja

Ca
(

inf
A2 j ,2 j+1

a
)|�γ ∩ A2 j ,2 j+1 | d−1

d |�γ \B2 j | 1d

≤ Ca |�γ \B2 ja | 1d
∞∑
j= ja

(
inf

A2 j ,2 j+1
a
)
cd

ˆ
A2 j ,2 j+1

|∇χ�γ |

≤ cd Ca |�γ \B2 ja | 1d
∞∑
j= ja

ˆ
A2 j ,2 j+1

a(x)|∇χ�γ |.

Hence, as |�γ | ≤ 1, we conclude that
ˆ

�γ \B2 ja
a(x) dx ≤ cd Ca

ˆ
Rd\B2 ja

a(x)|∇χ�γ |. (3.2)

Since �γ has finite a-perimeter, we obtain that |�γ |a < +∞. ��
At the heart of the proof of Theorem 1.3 lies the regularity of quasi-minimal sets with

a volume constraint. In order to establish this we will largely follow the argument carried
out by Rigot in [43, Chapter 2], where the author studies the case of standard perimeter
functional a(x) ≡ 1. As in [43, Chapter 1] and [35, Chapter 21], given a function g :
(0,+∞) → (0,+∞) with g(x) = o(x (d−1)/d) for x close to 0, we will say that �γ is a
volume constrained quasi-minimal set for a-perimeter if

Pa(�γ ) ≤ Pa(F) + g(|F
�γ |)
for any F ⊂ R

d with χF ∈ BVa(Rd), |F | = 1 and F
�γ ⊂⊂ R
d .

Minimizers of isoperimetric problems with a Riesz-type nonlocal term are also volume
constrained quasi-minimizers for the perimeter functional with the choice gγ (x) � γ x .
Indeed, as argued in [32, Proposition 2.1], we define the potential of a Borel set E ⊂ R

d by

vE (x) :=
ˆ
E

1

|x − y|α dy

and consider aminimizer�γ of (1.1) togetherwith a set F with prescribedmass and F
�γ ⊂
Br (0) for some r > 0. A simple argument shows that the interaction energy V is Lipschitz
with respect to symmetric difference:

V(F) − V(E) =
ˆ
F

ˆ
F

1

|x − y|α dx dy −
ˆ
E

ˆ
E

1

|x − y|α dx dy

≤
ˆ
E
F

(vE + vF ) dx

≤ C |E
F |

(3.3)
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with C = 2
´
B1

dy
|y|α + 2.

Hence, any minimizer �γ of Eγ must satisfy

Pa(�γ ) ≤ Pa(F) + Cγ |F
�γ |, (3.4)

for any suitable competitor F as above.
We will now present some technical lemmas essentially studied in [43, Chapter 2] and

adapt these results to the case of weighted perimeters. The next lemma, proven for a = 1 by
Giusti (see [28, Lemma 2.1]), shows that any set of positive perimeter can be approximated
in L1 by another set without substantially increasing the weighted perimeter. We denote by
[ · ]1,D the Lipschitz seminorm in D.

Lemma 3.2 Let D ⊂ R
d be a bounded domain, L ⊂ R

d with χL ∈ BVa(Rd) for a density
a ∈ C0,1(D), infD a > 0, and such thatˆ

D
a(x)|∇χL | > 0.

Then there exist ε > 0 and Qa > 0, depending on L ∩ D and D only, such that, Qa �(
supD a

)(
1 + [a]1,D

)
, and for every v ∈ (−ε, ε), there exists F ⊂ R

d with F = L in a
neighborhood of Rd\D satisfying

|F | = |L| + v,ˆ
D
a(x)|∇χF | ≤

ˆ
D
a(x)|∇χL | + Qa|v|,

ˆ
D

|χF − χL | ≤ Qa|v|.

Proof By definition of a-perimeter, there exists w ∈ C1
c (D;Rd), |w(x)| ≤ a(x) a.e. in D,

such that ˆ
D

χL divw dx ≥ 1

2

ˆ
D
a(x)|∇χL | > 0. (3.5)

Note that, since a > 0 in D, BVa(D) ⊂ BV (D). For t ∈ (0, 1) we put ηt = x + tw(x)
and K := sptw ⊂⊂ D. Then ηt ≡ I in R

d\K , and for |t | small enough, ηt : D → D is a
diffeomorphism. Letting Lt := ηt (L), we claim:

|Lt | =
ˆ
L

| det Dηt | dx
ˆ
D
a(x)|∇χLt | ≤

ˆ
D
a(x) ft (x)|∇χL | + |t |( sup

K
a
)[a]1,K

ˆ
K

ft (x)|∇χL |
(3.6)

where ft (x) := | det Dηt (x)||(Dηt )
−1(x)|. Indeed, the first equality is clear, and the inequal-

ity below it is obtained by noting,ˆ
D
a(x)|∇χLt | ≤

ˆ
D
(a ◦ ηt )(x) ft (x)|∇χL |

≤
ˆ
D
a(x) ft (x)|∇χL | +

ˆ
K

ft (x)
∣∣a ◦ ηt (x) − a(x)

∣∣ |∇χL |

and estimating, for x ∈ K ,

|a ◦ ηt (x) − a(x)| = |a(x + tw(x)) − a(x)| ≤ [a]1,K |tw(x)| ≤ |t | [a]1,K
(
sup
K

a
)
.
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A nonlocal isoperimetric problem with density perimeter Page 11 of 27 1

Also, det Dηt = 1 + t divw + t2A(x, t) and (Dηt )
−1 = I − t H(x, t), with |A| and |H |

bounded uniformly by a constant, which depends exclusively on L ∩ D and D. For |t | small
enough, ft (x) ≤ 1 + t(divw + |H |) + O(t2), and so (3.6) shows

|Lt | = |L| + t
ˆ
D

χL divw dx + t2
ˆ
D

χL A(x, t) dx, (3.7)

and ˆ
D
a(x)|∇χLt |

≤ (
1 + |t | · ‖ divw + |H |‖L∞(D)

)ˆ
D
a(x)|∇χL |

+ |t |[a]1,D
(
sup
D

a
)ˆ

D
|∇χL | + O(t2)

≤
ˆ
D
a(x)|∇χL | + |t |( sup

D
a
)
(C + [a]1,D)

ˆ
D

|∇χL | + O(t2).

(3.8)

In view of (3.5), there exists ε′ > 0 sufficiently small so that for any choice of v ∈ (−ε′, ε′)
the relation t

´
D χL divw dx + t2

´
D χL A(x, t) = |v| in (3.7) holds true for some tv , and

moreover |tv| ≤ C ′|v|, with C ′ depending on L ∩ D and D only. We take F := Ltv and
observe that F satisfies the first two statements of the lemma, in light of (3.7)–(3.8), for the
value Qa = 2(supD a)(C + [a]1,D)

´
D |∇χL |, by decreasing the value of ε′ if necessary, in

order that C ′ε′ ≤ 2.
To verify the final statement, for g ∈ C1(D) let gt := g ◦ η−1

t , so gt − g = gt − gt ◦ ηt .
Then

ˆ
D

|gt − g| dx = −
ˆ
D

ˆ 1

0
tw(x) · ∇gt (x + tsw(x)) ds dx

≤ |t |
ˆ 1

0

ˆ
D
a(x)|∇gt ◦ ηts | dx ds

≤ |t |
ˆ
D
a(x)|∇g| dx + |t |2 [a]1,D

ˆ
D

|∇g| + O(|t |3), (3.9)

where the last inequality will be derived below. Observe the third bound in the statement of
Lemma 3.2 holds for Qa = 2(supD a)(1 + [a]1,D)

´
D |∇χL |, upon decreasing the value of

ε′ if necessary. An approximation argument justifies estimate (3.9) for g ∈ BVa(Rd) and so
in particular for g = χL and gt = χL ◦ η−1

t = χLt . First, note thatˆ
D
a(x)|∇gt ◦ ηts | dx =

ˆ
D
(a ◦ η−1

ts )(x)|∇gt | | det D(η−1
ts )| dx

≤(1 + |t | ‖H‖∞)

ˆ
D
(a ◦ η−1

ts )(x)|∇(g ◦ η−1
t )| dx

≤(1 + |t | ‖H‖∞)

ˆ
D
a(η−1

ts ◦ ηt )(x)|(Dηt )
−1| |∇g| | det Dηt | dx

≤(1 + |t | ‖H‖∞)2
(
1 + |t | ‖ divw‖∞

+ |t | ‖H‖∞ + O(t2)
)ˆ

D
a(η−1

ts ◦ ηt )(x)|∇g| dx .
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Also, it can be checked that |a(η−1
ts ◦ ηt )(x) − a(x)| � [a]1,K |t | for x ∈ K , since we have

that |(η−1
ts ◦ ηt )(x) − x | � |t |(1 + |s|)‖w‖L∞(K ). Hence,ˆ

D
a(η−1

ts ◦ ηt )(x)|∇g| dx ≤
ˆ
D
a(x)|∇g| dx + C |t | [a]1,K

ˆ
D

|∇g|,
where the constant C depends on D only. Recalling (3.7)–(3.8)–(3.9), and the fact that
|tv| ≤ C ′|v|, we can choose

Qa = 2(sup
D

a)(max{1,C} + [a]1,D)

ˆ
D

|∇χL |

and this concludes the proof. ��
Remark 3.3 We note that in the proof of Lemma 3.2 above we only use the Lipschitzianity
of a.

Let us continue with an adaptation of a classical notion in geometric measure theory, to
our setting with weight function a. Given x ∈ R

d and r > 0 let us define the weighted
relative density function of the set �γ as

ha(x, r) := min

{ |�γ ∩ Br (x)|a
|Br (x)|a ,

|Br (x)\�γ |a
|Br (x)|a

}
.

The rest of the proof is devoted to establishing a uniform lower bound of the form ha(x, r) ≥
ε0 > 0 for any point x ∈ ∂∗�γ , as long as r is taken sufficiently small. From here we will
conclude the boundedness of the minimizer �γ of Eγ .

Now, in view of the behavior of the density at infinity, lim|x |→∞ a(x) = +∞, the constant
Ra ≥ 1 in condition (1.4) can be chosen large enough so thatRd\BRa ⊂ {x ∈ R

d : a(x) ≥ 1}.
If �γ ⊂ B2Ra , then the minimizer is essentially bounded and we are done. Therefore, in
the following we may assume that the total variation measure |∇χ�γ | = H d−1 ∂∗�γ is
nonvanishing in R

d\BRa . We may also fix a constant t0 ∈ (0, 1) and balls B1 and B2, each
of radius t0, for which

3B1 ∩ B2 = ∅, 3B1 ∪ B2 ⊂⊂ R
d\BRa and

ˆ
Bi

a(x)|∇χ�γ | > 0 for i = 1, 2.

(3.10)

In what follows, B1 and B2 are to be used as reference sets, inside of which we will
perform small deformations of our minimizer �γ in order to create a competitor set F with
|F | = |�γ | (see Lemma 3.2 above with D being B1 or B2, by analyzing two cases). This
will allow us to exploit the volume constrained quasi-minimality of �γ with respect to the
a-perimeter, to derive a delicate growth estimate for the weighted relative density function
of �γ as a function of the radius r , which will ultimately justify the uniform lower bound on
ha that was claimed above.

Before we continue, let us remark that for densities a satisfying the assumptions (A1) and
(A2a) (hence, in particular, the condition (1.4)), the a-volume of any two sets F1, F2 ⊂⊂
B2R̄\BR̄ are uniformly comparable:

C−1
a

|F1|
|F2| ≤ infF1 a

supF2 a
|F1|
|F2| ≤ |F1|a

|F2|a ≤ supF1 a

infF2 a
|F1|
|F2| ≤ Ca

|F1|
|F2| (3.11)

for any R̄ > Ra. In particular, for any set F ⊂⊂ R
d\BRa ,

|F | =
ˆ
F
1 dx ≤

ˆ
F
a(x) dx = |F |a (3.12)
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These facts will be used in the following technical results.
The first lemma establishes a bound on the growth rate of the weighted relative density

function, for any minimizer �γ of Eγ , as a function of the radius r on balls having small
a-volume, provided that the set �γ or its complement Rd\�γ have small density on that
ball.

Lemma 3.4 For every γ > 0 there exist 0 < ε′ < 1withmax{1, γ d}ε′ � 1, and 0 < t0 < 1,
such that, for any minimizer �γ of Eγ and for any ball Br (x) ⊂⊂ R

d\BRa with 0 < r < t0
and Ra as in condition (1.4), there holds: If ha(x, r) < ε′ and 0 < |Br (x)|a ≤ 1, then

ha
(
x,

r

2

)
≤ 1

2
ha(x, r).

Proof Let x ∈ R
d and 0 < r < t0. Loosely speaking, the main strategy is the following.

If ha(x, r) = |�γ ∩ Br (x)|a/|Br (x)|a is small, we would like to delete the portion of �γ

that is inside of Bt∗(x) for some t∗ ∈ (r/2, r) appropriately chosen. In a similar fashion,
if ha(x, r) = |Br (x)\�γ |a/|Br (x)|a is small, we would like to append the ball Bt∗(x) to
�γ . In these two cases, the resulting set has an additional portion of its boundary located
inside Bt∗(x), when compared to �γ ∩ Br (x) or Br (x)\�γ . As ha(x, r) is assumed small,
we lose in the volume term in (3.4) less than what we are adding on the boundary (F in (3.4)
is our resulting set). We must then analyze the contribution of the boundary term in Bt∗(x).
We choose t∗ in such a way that we can control Hd−1

a (�γ ∩ ∂Bt∗(x)) in the first case, and

Hd−1
a (∂Bt∗(x)\�γ ) on the second case, in terms of |Br (x)|(d−1)/d

a ha(x, r).
We distinguish four cases.

Case 1: Assume that ha(x, r) = |�γ ∩ Br (x)|a/|Br (x)|a and Br (x) ∩ B1 = ∅, where
B1 denotes the fixed ball in (3.10). By Fubini and Chebyshev inequalities one can find
t∗ ∈ (r/2, r) and C = C(d) > 0 such that

Hd−1
a (�γ ∩ ∂Bt∗(x)) ≤ C

(supBr (x) a)
1/d

|Br (x)|1/da

|�γ ∩ Br (x)|a, (3.13)

Indeed, using Chebyshev’s inequality withMθ := (
θ |Br (x)|1/da

)−1|�γ ∩Br (x)|a, for θ > 0,
yields
∣∣∣{t ∈ (r/2, r) : Hd−1

a (�γ ∩ ∂Bt (x)) > Mθ }
∣∣∣ ≤ 1

Mθ

ˆ r

r/2
Hd−1

a (�γ ∩ ∂Bt (x)) dt

≤ 1

Mθ

|�γ ∩ (Br (x)\Br/2(x))|a

≤ θ |Br (x)|1/da ≤ θ

(
sup
Br (x)

a
)1/d

ω
1/d
d r <

r

2

for θ := (4dωd supBr (x) a)
−1/d . On the other hand, note that

ˆ
Rd

a(y)|∇χ�γ \Bt∗ (x)| =
ˆ
Rd\Bt∗ (x)

a(y)|∇χ�γ | + Hd−1
a (�γ ∩ ∂Bt∗(x)).

With D = B1, as defined in (3.10), and L = �γ , we apply Lemma 3.2 to obtain values ε and
Qa satisfying the conclusions of that lemma. The constants ε and Qa depend on �γ ∩ B1

and B1 only, so, in particular, they are independent of x and r (and t∗). Fix ε′ ∈ (0, ε) for the
time being, and choose r ∈ (0, t0) sufficiently enough so that ha(x, r) < ε′ and |Br (x)| < ε.
Later on ε′ will be reduced accordingly (independent of r ).
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Let �′ := �γ \Bt∗(x) and observe, by hypothesis, that �
′ ∩ B1 = �γ ∩ B1. This means

that the same constants ε and Qa still work for Lemma 3.2 when applying it with L = �′
and D = B1. Applying Lemma 3.2 to L = �′, D = B1 and v = |�γ ∩ Bt∗(x)| (note that
|v| < |Br (x)| < ε), we find a set F ⊂ R

d such that F = �′ in a neighborhood of Rd\B1,
|F | = |�′| + |�γ ∩ Bt∗(x)| = 1 and for whichˆ

B1
a(y)|∇χF | ≤

ˆ
B1

a(y)|∇χ�′ | + Qa|�γ ∩ Bt∗(x)|
and |F
�′| ≤ Qa|�γ ∩ Bt∗(x)|,

(3.14)

where Qa �
(
supB1 a

)(
1 + [a]1,B1

)
is fixed and independent of x and r .

In light of (3.12), we have |�γ ∩ Bt∗(x)| ≤ |�γ ∩ Bt∗(x)|a, and in addition, using
ha(x, r) < ε′ and |Br (x)|a ≤ 1, we deduce that

|�γ ∩ Bt∗(x)|a ≤ |�γ ∩ Br (x)|a
= |Br (x)|a ha(x, r) ≤ |Br (x)|(d−1)/d

a ha(x, r) < ε′. (3.15)

Since F = �′ in a neighborhood of Rd\B1, we haveˆ
Rd\B1

a(y)|∇χF | =
ˆ
Rd\B1

a(y)|∇χ�′ |.

Combining these facts, we obtainˆ
Rd

a(y)|∇χF | ≤
ˆ
Rd

a(y)|∇χ�′ | + Qa|�γ ∩ Bt∗(x)|a
(3.15)≤

ˆ
Rd

a(y)|∇χ�′ | + Qa|Br (x)|(d−1)/d
a ha(x, r).

In addition,ˆ
Rd

a(y)|∇χ�′ | =
ˆ
Rd\Bt∗ (x)

a(y)|∇χ�γ | + Hd−1
a (�γ ∩ ∂Bt∗(x))

(3.13)≤
ˆ
Rd\Bt∗ (x)

a(y)|∇χ�γ | + C
(supBr (x) a)

1/d

|Br (x)|1/da

|�γ ∩ Br (x)|a
(3.15)≤

ˆ
Rd\Bt∗ (x)

a(y)|∇χ�γ | + C ( sup
Br (x)

a)1/d |Br (x)|(d−1)/d
a ha(x, r).

Assuming, without loss of generality, that supBr (x) a � 1, the above estimate yields
ˆ
Rd

a(y)|∇χF | ≤
ˆ
Rd\Bt∗ (x)

a(y)|∇χ�γ | + C
(
sup
Br (x)

a
)1/d |Br (x)|(d−1)/d

a ha(x, r)(3.16)

On the other hand, recalling (3.12), (3.14), and (3.15), we have

|F
�γ | ≤ |F
�′| + |�′
�γ | ≤ (1 + Qa)|�γ ∩ Bt∗(x)|
≤ (1 + Qa)|�γ ∩ Bt∗(x)|a ≤ (1 + Qa)|Br (x)|a ha(x, r) ≤ C ε′.

Recall now that �γ is a volume constrained quasi-minimal set for a-perimeter with gγ (x) �
γ x = o(x (d−1)/d); see (3.4). By reducing the value of ε′ in such a way that max{1, γ }ε′ 1d �
1, we obtain

gγ (|F
�γ |) ≤ η|Br (x)|
d−1
d

a ha(x, r)
d−1
d ,
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where η will be chosen below (independent of ε′). Since �γ is a volume constrained quasi-
minimizer for the a-perimeter, the above inequality and (3.16) yield the following estimate:

ˆ
Bt∗ (x)

a(y)|∇χ�γ | ≤
(
C

(
sup
Br (x)

a
)1/d

ha(x, r) + η ha(x, r)
d−1
d

)
|Br (x)|

d−1
d

a . (3.17)

In view of (3.17), using the standard isoperimetric inequality on balls, we obtain that

|Br/2(x)|a ha (x, r/2)

= min
{|�γ ∩ Br/2(x)|a, |Br/2(x)\�γ |a

}

≤ sup
Br/2(x)

a · min
{|�γ ∩ Br/2(x)|, |Br/2(x)\�γ |}

(1.2)≤ (
Ca inf

Br/2(x)
a
) · C

(ˆ
Br/2(x)

|∇χ�γ |
) d

d−1

≤ C Ca
(

inf
Br/2(x)

a
)− 1

d−1

(ˆ
Bt∗ (x)

a(y)|∇χ�γ |
) d

d−1

≤ C Ca ( inf
Br/2(x)

a)−
1

d−1

(
C

(
sup
Br (x)

a
)1/d

ha(x, r) + η ha(x, r)
d−1
d

) d
d−1 |Br (x)|a

≤ C Ca ( inf
Br/2(x)

a)−
1

d−1

((
sup
Br (x)

a
) 1
d−1 ha(x, r)

1
d−1 + η

d
d−1

)
ha(x, r)|Br (x)|a

≤ C Ca

(
supBr (x) a

infBr/2(x) a

) 1
d−1 (

ε′ 1
d−1 + η

d
d−1

)
ha(x, r)|Br (x)|a

(3.11)≤ C C2
a

(
ε′ 1

d−1 + η
d

d−1

)
ha(x, r)

(
2d Ca |Br/2(x)|a

)
.

In other words, we conclude that

ha
(
x,

r

2

)
≤ C C3

a

(
ε′ 1

d−1 + η
d

d−1

)
ha(x, r) ≤ 1

2
ha(x, r),

provided 0 < η < (4CC3
a)

− d−1
d is chosen small enough; and possibly reducing the value of

ε′ � min{ε, (4CC3
a )

−(d−1)}, independently of x and r .

Case 2: Suppose ha(x, r) = |�γ ∩ Br (x)|a/|Br (x)|a and Br (x) ∩ B1 	= ∅. Under the
hypotheses, Br (x) ⊂ 3B1, and (3.10) ensures that Br (x) ∩ B2 = ∅. We proceed exactly as
in the argument in the first case, with B1 replaced by B2.
Case 3: Assume that ha(x, r) = |Br (x)\�γ |a/|Br (x)|a and Br (x) ∩ B1 = ∅. We will
proceed analogously as the first case, but with

�′ := �γ ∪ Bt∗(x)

for a certain t∗ to be determined below. Again, by Fubini and Chebyshev inequalities, we can
find t∗ ∈ (r/2, r) in such a way that

Hd−1
a (∂Bt∗(x)\�γ ) ≤ C

(supBr (x) a)
1/d

|Br (x)|1/da

|Br (x)\�γ |a. (3.18)
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Also, we have thatˆ
Rd

a(y)|∇χ�γ ∪Bt∗ (x)| =
ˆ
Rd\Bt∗ (x)

a(y)|∇χ�γ | + Hd−1
a (∂Bt∗(x)\�γ ). (3.19)

Fix now ε′ as in the previous cases so that ha(x, r) < ε′ < ε and |Br (x)| < ε. Note that (3.12)
yields |�′\�γ | ≤ |�′\�γ |a. Also, recalling that |Br (x)|a ≤ 1, we have

|�′\�γ |a ≤ |Bt∗(x)\�γ |a ≤ |Br (x)\�γ |a
≤ |Br (x)|a ha(x, r) ≤ |Br (x)|(d−1)/d

a ha(x, r) < ε′.

Because of the choice of ε′, we can apply Lemma 3.2 to L = �′, D = B1 and v = −|�′\�γ |
(with |v| ≤ |Br (x)| < ε) to obtain the existence of a set F ⊂ R

d such that F = �′ in a
neighborhood ofRd\B1 and |F | = |�′|− |�′\�γ | = 1. Moreover, F satisfies the estimates

ˆ
B1

a(y)|∇χF | ≤
ˆ
B1

a(y)|∇χ�′ | + Qa|�′\�γ |

≤
ˆ
B1

a(y)|∇χ�′ | + Qa |Br (x)|(d−1)/d
a ha(x, r),

and

|F
�′| ≤ Qa |�′\�γ |,
where Qa �

(
supB1 a

)(
1 + [a]1,B1

)
is fixed, and independent of x and r .

Then, just like in the first case, we deduceˆ
Rd

a(y)|∇χF | ≤
ˆ
Rd

a(y)|∇χ�′ | + C |Br (x)|(d−1)/d
a ha(x, r). (3.20)

Thus, utilizing (3.19) and (3.18), we can estimate
ˆ
Rd

a(y)|∇χ�′ | ≤
ˆ
Rd\Bt∗ (x)

a(y)|∇χ�γ | + C
(supBr (x) a)

1/d

|Br (x)|1/da

|Br (x)\�γ |a

≤
ˆ
Rd\Bt∗ (x)

a(y)|∇χ�γ | + C ( sup
Br (x)

a)1/d |Br (x)|(d−1)/d
a ha(x, r),

which can be combined with (3.20), in turn, to obtainˆ
Rd

a(y)|∇χF | ≤
ˆ
Rd\Bt∗ (x)

a(y)|∇χ�γ | + C ( sup
Br (x)

a)1/d |Br (x)|(d−1)/d
a ha(x, r).

On the other hand,

|F
�γ | ≤ |F
�′| + |�′
�γ |
≤ (Qa + 1)|�′\�γ | ≤ (Qa + 1)|�′\�γ |a
≤ (Qa + 1) |Br (x)|a ha(x, r) ≤ C ε′.

We reach the conclusion like in the first case, utilizing the volume constrained quasi-
minimality of �γ , the relative isoperimetric inequality on balls, and the fact that the weight
has uniformly bounded oscillation (condition (1.4)).
Case 4: Suppose ha(x, r) = |Br (x)\�γ |a/|Br (x)|a and Br (x) ∩ B1 	= ∅. We employ the
same construction as in the third case, with B1 replaced by B2, to conclude the proof of this
lemma. ��
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Lemma 3.5 Given γ > 0, there exist 0 < ε0 < 1 with max{1, γ d}ε0 � 1, and 0 < t0 < 1,
such that for any minimizer�γ of Eγ and any ball Br (x) ⊂⊂ R

d\BRa , for which 0 < r ≤ t0,
and for Ra as in (1.4), the following holds: If ha(x, r) < ε0 and 0 < |Br (x)|a ≤ 1, then

either
∣∣�γ ∩ Br/2(x)

∣∣ = 0 or
∣∣Br/2(x)\�γ

∣∣ = 0.

Remark 3.6 We note that, in particular, for any point x ∈ ∂∗�γ and any ball Br (x) as above,
one has

ha(x, r) = |�γ ∩ Br (x)|a
|Br (x)|a ≥ ε0 > 0.

Proof Under the hypotheses of this lemma, for any y ∈ Br/2(x)we write dk := ha(y, 2−kr).
Choose

ε0 := (2dCa)
−1 min{ε′, 1/2},

with ε′ > 0 given as in Lemma 3.4. If ha(x, r) = |Br (x)|−1
a |�γ ∩ Br (x)|a, then

d1 := |Br/2(x)|a−1|�γ ∩ Br/2(y)|a ≤ 2dCa ha(x, r) < min{ε′, 1/2}
where we used the estimate (3.11). Since d1 < ε′, by Lemma 3.4 we deduce that

d2 = ha
(
y,

r

4

)
≤ 1

2
ha

(
y,

r

2

)
= d1

2
.

In particular, d2 < min{ε′, 1/2}. Hence, by induction it follows that, for all k ≥ 1, we have
dk+1 ≤ d1/2k .

Hence, for any y ∈ Br/2(x), and by virtue of condition (1.4), for all k ≥ 1, we have

ε′

2k−1 ≥ |�γ ∩ B2−kr (y)|a
|B2−kr (y)|a

≥ infBr (y) a
supBr (y) a

|�γ ∩ B2−kr (y)|
|B2−kr (y)|

≥ C−1
a

|�γ ∩ B2−kr (y)|
|B2−kr (y)|

Thus, y is not a point of density of �γ , which yields |�γ ∩ Br/2(x)| = 0.
Otherwise, if ha(x, r) = r−d |Br (x)\�γ |a, it can be shown in the same fashion that, for

any k ≥ 1 and any y ∈ Br/2(x),

dk = |B2−kr (y)|−1
a |Br (y)\�γ |a < 2d Ca ε < min{ε′, 1/2} and dk+1 ≤ dk

2
.

Therefore,

C−1
a · |B2−kr (y)\�γ |

|B2−kr (y)|
≤ |B2−kr (y)\�γ |a

|B2−kr (y)|a
≤ ε′

2k−1 −→
k→∞ 0.

and so y is not a density point of Rd\�γ . This shows that |Br/2(x)\�γ | = 0. ��
Proof of Theorem 1.3 (Part 1) We now finish the argument to establish the essential bounded-
ness of the minimizer �γ in Theorem 1.3 under the hypotheses (A1) and (A2a). Let ε0 and
t0 > 0 be given as in Lemma 3.5, and let ja ∈ N be such that Ra < 2 ja .

Let {R1, . . . , RN } ⊂ (2 ja ,+∞) be any finite collection for which

∂∗�γ ∩ (BRi+1\BRi ) 	= ∅ and Ri+1 − Ri ≥ 1, for all i .

Then we can select balls Bri (x
i ) ⊂⊂ BRi+1\BRi with xi ∈ ∂∗�γ and ri ≤ t0 < 1 taken

suffieciently small so that

1

2
≤ |Bri (xi )|a < 1.
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In view of (3.2), and employing Remark 3.6 over each ball, we derive the following bound

cd Ca

ˆ
Rd\B2 ja

a(x)|∇χ�γ | ≥ |�γ \B2 ja |a ≥
N∑
i=1

|�γ ∩ (BRi+1\BRi )|a

≥
N∑
i=1

|�γ ∩ Bri (x
i )|a ≥

N∑
i=1

ε0 |Bri (xi )|a

≥ 1
2ε0 N

thus proving that the maximal number of such radii {Ri }must be finite. This shows that there
exists Rmax ∈ (Ra,+∞), depending on a, for which ∂∗�γ ∩ (Rd\BRmax) = ∅. Since �γ is
assumed to be essentially closed, then

�γ ⊂ BRmax .

This establishes Theorem 1.3 under the hypotheses (A1) and �� (A2a).

3.2 Radial andmonotone densities

Now we turn to densities a satisfying the assumptions (A1) and (A2b). A key ingredient in
the second part of the proof of Theorem 1.3 is the ε − ε(d−1)/d property recently proved by
Pratelli and Saracco [41]. We state this result as a lemma here for the convenience of the
reader.

Lemma 3.7 (cf. Theorem A in [41]) For any set of finite perimeter E ⊂ R
d and for any ball

B such that Hd−1(B ∩ ∂∗E) > 0 there exists ε > 0 and CE > 0 such that for any |ε| < ε

there is a set F ⊂ R
d satisfying

F
E ⊂⊂ B, |F | − |E | = ε, Pa(F) − Pa(E) ≤ CE |ε|(d−1)/d . (3.21)

Moreover the constant CE can be chosen arbitrarily small up to possibly choosing ε smaller.

Now we will finish the proof of Theorem 1.3 following an argument similar to [37,
Theorem 5.9] and [32, Lemma 5.1].

Proof of Theorem 1.3 (Part 2) Assume, for a contradiction, that �γ is not bounded. Then
|�γ \Br | > 0 for all r > 0. In particular, for r ≥ Ra,

|�γ \Br |a ≥ a(Ra)|�γ \Br | > 0.

Now let

�(r) := �γ ∩ Br , �r := �γ ∩ ∂Br , Pa(r) := Hd−1
a (∂∗�γ \Br ), and Va(r) := |�γ \Br |a.

By the proof of Theorem 4.3 of [37],

Pa(�(r)) < Pa(�γ ) for r ≥ Ra.

This follows fromanifty argument involving projection onto the sphere Br and for the reader’s
convenience we include the details here. Consider the projection map � : ∂∗�γ \Br → ∂Br .
Clearly, � is strictly 1-Lipschitz and its image Im(�) satisfies

∂∗�(r)\∂∗�γ ⊂ Im(�).
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This inclusion would be trivially true for bounded �γ ; however, since we assumed that
�γ is unbounded it contains the whole cone C = {λx : λ ≥ 1, x ∈ H} where H =(
∂∗�(r)\∂∗�γ

) \ Im(�). But since a is increasing for large values of |x |, the cone C , and
hence the set �γ , have infinite volume, unless Hd−1(H) = 0. Thus H = ∅ up to Hd−1-
measure zero.

Since a is eventually increasing, for r ≥ Ra, by the co-area formula we get that

Pa(�(r)) =
ˆ

∂∗�γ ∩Br
a(|x |) dHd−1(x) +

ˆ
∂∗�(r)\∂∗�γ

a(θ) dHd−1(θ)

<

ˆ
∂∗�γ ∩Br

a(|x |) dHd−1(x) +
ˆ

∂∗�γ \∂Br
a(�(x)) dHd−1(x)

≤
ˆ

∂∗�γ

a(|x |) dHd−1(x) = Pa(�γ ).

Also, note that

Pa(�(r)) = Pa(�γ ) − Pa(r) + Hd−1
a (�r ).

This, combined with Pa(�(r)) < Pa(�γ ), implies that

Pa(r) > Hd−1
a (�r ). (3.22)

For r ≥ 1, the standard isoperimetric inequality in the sphere yields that for any subset
Er of the sphere ∂Br having area at most half of the sphere, we have Hd−2(∂∗Er ) ≥
c
(Hd−1(Er )

)(d−2)/(d−1) for some constant c > 0 where ∂∗Er denotes the reduced boundary
of Er inside ∂Br . In fact, as �γ has finite volume, for r sufficiently large, Hd−1(�r ) ≤
1
2Hd−1(∂Br ). Since the density a is constant on ∂Br , we get

Hd−2
a (∂∗�r ) ≥ c

(
Hd−1

a (�r )
) d−2

d−1 (
a(r)

) 1
d−1 . (3.23)

Combining (3.22) and (3.23), we obtain

(Pa(r)
) 1
d−1 Hd−2

a (∂∗�r ) >
(Hd−1

a (�r )
) 1
d−1 Hd−2

a (∂∗�r ) ≥ cHd−1
a (�r )

(
a(r)

) 1
d−1 .

Since a(r) ≥ a(Ra) for r ≥ Ra, the estimate above becomes

Hd−2
a (∂∗�r ) ≥ c

(Pa(r)
)− 1

d−1 Hd−1
a (�r ). (3.24)

Also, observe that

− d

dr
Pa(r) =

∣∣∣∣
d

dr
Pa(r)

∣∣∣∣ ≥ Hd−2
a (∂∗�r ) and − d

dr
Va(r) = Hd−1

a (�r ). (3.25)

Hence, by (3.24), we get

− d

dr

((Pa(r)
) d
d−1

)
≥ −c

d

dr
Va(r).

Since both Pa(r), Va(r) → 0 as r → ∞, integrating both sides from r to ∞ yields

(Pa(r)
) d
d−1 ≥ c Va(r). (3.26)
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Now, let R ∈ R be such that �γ ∩ BR 	= ∅. Then by Lemma 3.7, there exists ε and
C�γ > 0 such that for all |ε| < ε there exists �ε satisfying

�ε
�γ ⊂⊂ BR, |�ε| − |�γ | = ε, Pa(�ε) − Pa(�γ ) ≤ C�γ |ε|(d−1)/d .

(3.27)

By choosing ε smaller, if necessary, by Lemma 3.2 and Remark 3.3, we can take �ε such
that

|�ε
�γ | < Cε. (3.28)

Let r > R be such that ε := Va(r) < ε and define �ε(r) = �ε ∩ Br . Then |�ε(r)| =
|�γ | = 1 and �ε(r) is competitor in (1.1). So,

Pa(�ε(r)) = Pa(�ε) − Pa(r) + Hd−1
a (�r )

(3.26),(3.27)≤ Pa(�γ ) + C�γ ε
d−1
d − c ε

d−1
d + Hd−1

a (�r )

≤ Pa(�ε(r)) + γ

(
V(�ε(r)) − V(�γ )

)
+ C�γ ε

d−1
d − c ε

d−1
d + Hd−1

a (�r )

(3.3)≤ Pa(�ε(r)) + cγ |�ε(r)
�γ | + C�γ ε
d−1
d − c ε

d−1
d + Hd−1

a (�r ).

Since, as noted in Lemma 3.7, we can choose C�γ arbitrarily small, and since (3.27) and
(3.28) hold, for ε sufficiently small, we have

Hd−1
a (�r ) ≥ Cε

d−1
d

for some C > 0. Then, by (3.25), − d
dr Va(r) ≥ Cε(d−1)/d = C

(
Va(r)

)(d−1)/d , i.e.,

d

dr

((
Va(r)

)1/d) ≤ −C .

This contradicts the fact that Va(r) > 0 for all r > Ra and we establish Theorem 1.3 under
the hypotheses (A1) and (A2b). ��

4 Global minimizers in the small � regime

In this section we will prove Theorem 1.6. The proof of this theorem relies on the regularity
of almost-minimizers of the perimeter functional. As in [1, Definition 2.5], we will call a set
in E ⊂ R

d an ω-minimizer of the Euclidean perimeter functional P in an open set O ⊂ R
d

with ω > 0 if for every ball Br (x) ⊂ O and for every set of finite perimeter F ⊂ R
d such

that E
F ⊂⊂ Br (x) we have

P(E) ≤ P(F) + ωrd .

This definition also coincides with the definition of almost-minimizers according to [45,
Section 1.5] with α(r) = ωr , although it is weaker than the (ω, r)-minimizers as defined in
[35]. Nevertheless, by the regularity theory developed in [45], it will be sufficient to justify
passage to a limit as γ → 0.

First we show that any minimizer of the energy Eγ is an ω-minimizer of the Euclidean
perimeter functional P in any open set that does not contain the origin.
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Lemma 4.1 Let �γ ⊂ R
d be a solution of the problem (1.1). Then �γ is ω-minimal for the

Euclidean perimeter functional P in O = R
d\Bδ for any δ > 0.

Proof We first note that the constraint |�γ | = 1 may be replaced by a penalization term in
the energy. Namely, arguing as in Step 1 of the proof of [7, Theorem 2.7] we obtain that there
exists a constant λ > 0 such that

minFλ
γ = Fλ

γ (�γ ) = Eγ (�γ )

where

Fλ
γ (E) = Eγ (E) + λ

∣∣|E | − 1
∣∣

for any E ⊂ R
d .

Fix r > 0 such that Br (x)∩Bδ = ∅ and let F ⊂ R
d be any set such that�γ 
F ⊂⊂ Br (x).

Since Eγ (�γ ) = Fλ
γ (�γ ) ≤ Fλ

γ (F), using (3.3) we obtain that

Pa(�γ ) ≤ Pa(F) + ω|�γ 
F |
for some constant ω depending only on γ and λ.

Let m := max{a(y) : y ∈ Br (x)}. Since a is Lipschitz there exists a constant C > 0 such
that a(y) ≥ m − Cr for all y ∈ Br (x). Then

(m − Cr)P(�γ , Br (x)) ≤ Pa(�γ , Br (x)) ≤ Pa(F, Br (x)) + ω|�γ 
F |
≤ mP(F, Br (x)) + ω|�γ 
F |.

Hence,

P(�γ , Br (x)) ≤ P(F, Br (x)) + Crd

provided P(�γ , Br (x)) ≤ Crd−1. This establishes that �γ is an ω-minimizer of the
Euclidean perimeter in Rd\Bδ .

It now remains to prove that P(�γ , Br (x)) ≤ Crd−1. Note that �γ satisfies the
ε − ε(d−1)/d property given by (3.21) in Lemma 3.7. Let B1 and B2 be two disjoint balls,
intersecting ∂∗�γ in a set of positive Hd−1-measure. Let C1, C2 > 0 and 0 < ε1, ε2 < 1
be the corresponding constants satisfying the conditions in (3.21). Take C = max{C1,C2},
ε = min{ε1, ε2}, and r = min

{
(ε/ωd)

1/d , dist(B1, B2)
}
.

If r < r , then ε := |Br (x) ∩ �γ | < ωdrd ≤ ε, and Br (x) cannot intersect both B1 and
B2. Without loss of generality, assume that Br (x) ∩ B1 = ∅. For this ε, let F ⊂ R

d be the
set of finite perimeter satisfying (3.21). Clearly, we also have

Pa(F) ≤ Pa(�γ ) + Cε ≤ Pa(�γ ) + Cωdr
d .

Now, let G = F\Br (x). Then |G| = |�γ | = 1 and G is admissible for (1.1). By
minimality of �γ and Lipschitzianity of V (see (3.3)) we obtain

Pa(�γ ) ≤ Pa(G) + γ
(V(G) − V(�γ )

)

≤ Pa(F) − Pa(�γ , Br (x)) + dωd R
p
maxr

d−1 + Cγ |G
�γ |
≤ Pa(�γ ) + Cωdr

d − Pa(�γ , Br (x)) + dωd R
p
maxr

d−1 + Cγ rd

≤ Pa(�γ ) − Pa(�γ , Br (x)) + C rd−1

with a constant depending only on d , Rmax, and γ , where Rmax is the constant obtained in
the proof of Theorem 1.3. Recalling that a(x) ≥ δ p in R

d\Bδ we have that

P(�γ , Br (x)) ≤ δ−pPa(�γ , Br (x)) ≤ Crd−1.
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If r ≥ r , on the other hand, then

P(�γ , Br (x)) ≤ δ−pPa(�γ , Br (x)) ≤ δ−pPa(�γ ) ≤ δ−pPa(�γ )

rd−1 rd−1.

Hence, in either case we obtain that P(�γ , Br (x)) ≤ Crd−1, completing the proof of the
lemma. ��

Since the density a(x) = |x |p is vanishing at zero we cannot conclude that �γ is an
ω-minimizer of the perimeter in R

d . Nevertheless, combining [45, Sections 1.9 and 1.10]
(see also [4,46]), we obtain the following regularity result for any ω-minimizer of perimeter
in open sets.

Lemma 4.2 Let O ⊂ R
d be an open set.

(i) If E ⊂ R
d is an ω-minimizer of Euclidean perimeter in O then ∂∗E ∩ O is a C1,α

hypersurface for any α ∈ (0, 1/2).
(ii) If En ⊂ R

d is a sequence of uniformly ω-minimizers of Euclidean perimeter in O and if
En → E in L1(O), then ∂En → ∂E in C1,α and ∂En is a C1,α graph over ∂E.

We are now ready to present the proof of global minimality of balls in the small γ regime.

Proof of Theorem 1.6 We fix r0 = (1/ωd)
1/d with |Br0 | = 1, and recall (see e.g. [5,10]) that

Br0 is the unique minimizer of the local weighted isoperimetric problem e(0). By Theo-
rem 1.1, for any γ > 0, there exists �γ ⊂ R

d , |�γ | = 1, minimizing Eγ . We first claim that
�γ → Br0 in L1(Rd). Indeed, clearly e(0) ≤ E0(�γ ) ≤ Eγ (�γ ) for all γ > 0, while on the
other hand,

lim sup
γ→0

Eγ (�γ ) ≤ lim sup
γ→0

Eγ (Br0) = E0(Br0) = e(0).

Thus, {�γ }γ>0 give minimizing sequences for e(0). By Theorem 1.1 it follows that for every
sequence γn → 0 there is a subsequence along which {�γn } is compact in L1(Rd), and
converges to the minimizer Br0 of e(0). As the minimizer of the limit problem is unique, we
conclude �γ → Br0 in L1(Rd) as claimed.

Next, by Lemma 4.1 �γ is an ω-minimizer of the Euclidean perimeter in O = R
d\Bδ for

any δ > 0; hence, by Lemma 4.2(ii) ∂∗�γ ∩ O is a C1,α-graph over the limit set Br0 . Note
in particular that Lemma 4.2(ii) assures that for any δ > 0, there exists γδ > 0 so that

∂∗�γ ∩ (Br0−δ\Bδ) = ∅ (4.1)

for all 0 < γ < γδ . However, since we cannot conclude quasi-minimality (hence, regularity)
of �γ in the whole space we cannot a priori assume that ∂�γ ∩ Bδ is empty for all δ > 0.
Assume for a contradiction that for some δ > 0, ∂�γ ∩ Bδ is non-empty; from (4.1) we
may conclude that |�c

γ ∩ Bδ| > 0 for all 0 < γ < γδ , and hence �γ is multiply-connected,

and its boundary is disconnected into disjoint components. That is, �γ = �̃γ \�0
γ , where

�̃γ is simply connected, with smooth boundary, and �0
γ := �c

γ ∩ Bδ , and thus ∂∗�γ =
∂�̃γ ∪ ∂∗�0

γ , a disjoint union. We define mγ := |�0
γ |. As |�γ 
Br0 | → 0 it follows that

mγ → 0 and |�̃γ | = 1 + mγ . Moreover, let Rγ =
(
1+mγ

ωd

)1/d
so that |BRγ | = 1 + mγ . In

fact, using a Fuglede-type argument (cf. [23]), we will prove that mγ = 0 for γ sufficiently
small, and therefore �γ = Br0 for all small γ .
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Since ∂�̃γ is a graph over ∂Br0 we can think of it as a graph over ∂BRγ given by

∂�̃γ = {
x̃(1 + ψγ (̃x)) : x̃ ∈ ∂BRγ

}

for some ψγ ∈ C1,α(∂BRγ ) such that
´
∂BRγ

ψγ dHd−1 = 0. Now, we can write both ∂�̃γ

and ∂BRγ over the unit sphere Sd−1. Namely,

∂�̃γ = {
Rγ x(1 + uγ (x)) : x ∈ S

d−1} and ∂BRγ = {
Rγ x : x ∈ S

d−1},
where uγ (x) = ψγ (Rγ x). Note that

´
Sd−1 uγ dHd−1 = R1−d

γ

´
∂BRγ

ψγ dHd−1 = 0. Com-

puting the perimeter, we have

Pa(�̃γ ) = Rd−1
γ

ˆ
Sd−1

a
(
Rγ x(1 + uγ (x))

)
(1 + uγ )d−1

√
1 + |∇τuγ |2

(1 + uγ )2
dHd−1,

where ∇τ denotes the gradient with respect to Sd−1. Likewise,

Pa(BRγ ) = Rd−1
γ

ˆ
Sd−1

a(Rγ x) dHd−1.

Putting these two together,

Pa(�̃γ ) − Pa(BRγ ) = Rd−1
γ

ˆ
Sd−1

(1 + uγ )d−1a
(
Rγ x(1 + uγ (x))

)
[√

1 + |∇τuγ |2
(1 + uγ )2

− 1

]
dHd−1

+ Rd−1
γ

ˆ
Sd−1

[
(1 + uγ )d−1a

(
Rγ x(1 + uγ (x))

) − a(Rγ x)
]
dHd−1

=: Rd−1
γ I1 + Rd−1

γ I2.

Now we will estimate I1 and I2. Let ε > 0 be small so that 1 + uγ ≥ 1/2 and

‖uγ ‖C1(Sd−1) ≤ ε for γ sufficiently small. Using the estimate
√
1 + t ≥ 1 + t

2 − t2
8 , we get

that

I1 ≥
ˆ
Sd−1

Rp
γ (1 + uγ )p+d−1

[
1

2

|∇τuγ |2
(1 + uγ )2

− 1

8

|∇τuγ |4
(1 + uγ )4

]
dHd−1

≥
(
1

2
− Cε

)ˆ
Sd−1

Rp
γ (1 + uγ )p+d−3|∇τuγ |2 dHd−1

≥ C
ˆ
Sd−1

|∇τuγ |2 dHd−1

for ε sufficiently small.
Since

´
Sd−1 uγ dHd−1 = 0 and (1 + t)q ≥ 1 + qt , we have

I2 =
ˆ
Sd−1

Rp
γ

(
(1 + uγ )p+d−1 − 1

)
dHd−1 ≥ 0.

These two estimates imply that

Pa(�̃γ ) − Pa(BRγ ) ≥ C‖uγ ‖2H1(Sd−1)
(4.2)

for some constant C > 0 independent of γ .
As for the nonlocal term, [20, Lemma 5.3] (see also [25, Remark 3.2]) implies that

V(BRγ ) − V(�̃γ ) ≤ C‖uγ ‖2H1(Sd−1)
.
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Furthermore,

V(BRγ \�0
γ ) − V(�γ ) ≤ V(BRγ ) − V(�̃γ ) + Cmγ ≤ C

(‖uγ ‖2H1(Sd−1)
+ mγ

)
. (4.3)

To see the first estimate above, let R > 0 be large enough such that �γ , BRγ ⊂ BR for all
γ > 0. For I(E, F) = ´E

´
F |x − y|−α dx dy, we have

V(BRγ \�0
γ ) − V(�γ ) = V(BRγ ) − V(�̃γ ) + 2I(�0

γ , �̃γ ) − 2I(�0
γ , BRγ ).

Since

∣∣I(�0
γ , �̃γ ) − I(�0

γ , BRγ )
∣∣ ≤
ˆ

�0
γ

ˆ
�̃γ 
BRγ

1

|x − y|α dx dy

≤ |�0
γ | sup

x∈BR

ˆ
�̃γ 
BRγ

1

|x − y|α dx dy ≤ Cmγ ,

the first estimate in (4.3) follows.
Again, using minimality of �γ , i.e. Eγ (�γ ) ≤ Eγ (BRγ \�0

γ ), and the lower and upper
bounds (4.2) and (4.3) we get that

C‖uγ ‖2H1(Sd−1)
≤ Pa(�̃γ ) − Pa(BRγ ) = Pa(�γ ) − Pa(BRγ \�0

γ )

≤ γ
(V(BRγ \�0

γ ) − V(�γ )
) ≤ Cγ

(‖uγ ‖2H1(Sd−1)
+ mγ

)
.

Thus, for γ sufficiently small,

‖uγ ‖2H1(Sd−1)
≤ Cγ mγ . (4.4)

This, in turn, implies that

Eγ (BRγ \�0
γ ) − Eγ (�γ ) ≤ Cγ mγ . (4.5)

The last step in the argument is a lower bound on the above difference. In fact, we will
show that replacing the domain �γ = �̃γ \�0

γ by the sphere Br0 results in a much larger
energy difference, due to the reduction of the radius Rγ to r0. We observe this right away, in
estimating the difference in perimeter,Pa(BRγ )+Pa(�

0
γ )−Pa(Br0). Let ργ = (mγ /ωd)

1/d

and note that

Rγ = (rd0 + ρd
γ )1/d = r0

(
1 +

(
ργ

r0

)d
)1/d

.

Now, for mγ (hence, for ργ /ωd ) small, we have

Pa(BRγ ) + Pa(�
0
γ ) − Pa(Br0 ) ≥ Pa(BRγ ) + Pa(Bργ ) − Pa(Br0 )

= dωd (R
d−1+p
γ + ρd−1+p

γ − rd−1+p
0 )

= dωdr
d−1+p
0

⎛
⎝

[
1 +

(
ργ

r0

)d
](d−1+p)/d

+
(

ργ

r0

)d−1+p

− 1

⎞
⎠

= dωdr
p−1
0

(
1 + p − 1

d

)
ρd

γ + O(ρd−1+p
γ )

= C̄ mγ + o(mγ ).
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Combining this estimate with (4.3) and (4.4), and recalling that the ball maximizes the Riesz
potential, for sufficiently small γ , we get

Eγ (BRγ \�0
γ ) − Eγ (Br0) = Pa(BRγ ) + Pa(�

0
γ ) − Pa(Br0) + γ

(V(BRγ \�0
γ ) − V(Br0)

)

≥ (C̄ − γC)mγ ≥ Cmγ . (4.6)

Now (4.5) and (4.6) imply that

Cmγ + Eγ (Br0) ≤ Eγ (BRγ \�0
γ ) ≤ Eγ (�γ ) + Cγ mγ ≤ Eγ (Br0) + Cγ mγ .

Hence, for γ sufficiently small, Cmγ ≤ 0, i.e., mγ = 0. This implies that �0
γ = ∅ for γ

small and that ∂�γ is a graph over ∂Br0 .
Therefore, running through the Fuglede-type argument one more time, we get

C‖uγ ‖2H1(Sd−1)
≤ Pa(�γ ) − Pa(Br0) ≤ γ

(V(Br0) − V(�γ )
) ≤ Cγ ‖uγ ‖2H1(Sd−1)

.

Hence, for γ sufficiently small uγ ≡ 0, i.e., �γ = Br0 . ��
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