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Abstract

In this paper, we systematically study the heat kernel of the Ricci flows induced by Ricci
shrinkers. We develop several estimates which are much sharper than their counterparts
in general closed Ricci flows. Many classical results, including the optimal Logarithmic
Sobolev constant estimate, the Sobolev constant estimate, the no-local-collapsing theorem,
the pseudo-locality theorem and the strong maximum principle for curvature tensors, are
essentially improved for Ricci flows induced by Ricci shrinkers. Our results provide many
necessary tools to analyze short time singularities of the Ricci flows of general dimension.
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1 Introduction

A Ricci shrinker is a triple (M", g, f) of smooth manifold M", Riemannian metric g and a
smooth function f satisfying

Rc-l—Hessf:%g. ()
By a normalization of f, we can assume that
R+IVFI? =1, )
/ e~ (4m)~2dv
where u is the functional of Perelman. As usual, we define

Ma(A)={(M", g, /)| n=—A}. @)

Lying on the intersection of critical metrics and geometric flows, the study of Ricci
shrinkers has already become a very important topic in geometric analysis. Up to dimen-
sion 3, all Ricci shrinkers are classified. In dimension 2, the only Ricci shrinkers are R2, §2
and RP? with standard metrics, due to the classification of Hamilton [25]. In dimension 3,
we know that R3, $2 xR, S and their quotients are all possible Ricci shrinkers, based on the
work of Perelman [46], Petersen—Wylie [47], Naber [43], Ni-Wallach [45] and Cao—Chen—
Zhu [8]. If we assume the curvature operator to be nonnegative, then the Ricci shrinkers are
also classified, see Munteanu—Wang [42]. However, an important motivation for the study
of the Ricci shrinkers is that the Ricci shrinkers are models for short time singularities of
the Ricci flows. In dimension 3, by the Hamilton—-Ivey pinch [25,26,30], one may naturally
assume that the Ricci shrinker has nonnegative curvature operator. If the dimension is strictly
greater than 3, the loss of pinch estimate makes the nonnegativity of curvature operator
an unsatisfactory condition and should be dropped. Also, it is well known (cf. Haslhofer—
Miiller [27]) that most interesting singularity models are non-compact. Therefore, to prepare
for the singularity analysis of high dimensional Ricci flow, we shall focus only on the study
of non-compact Ricci shrinkers without any curvature assumption. Since M is non-compact,
the inequality

et 3

sup |[Rm| < oo (5)
M

may fail. The failure of Riemannian curvature bound causes serious consequences. Many
fundamental analysis tools, e.g., maximum principle and integration by parts, cannot be
applied directly without estimates of the manifold at infinity.

In this paper, we shall provide a solid foundation for many fundamental analysis tools
in the Ricci shrinkers. We shall mostly take the point of view that Ricci shrinkers are time
slices of self-similar Ricci flow solutions. After a delicate choice of cutoff functions and
calculations, we show that most of the fundamental tools, including maximum principle,
existence of (conjugate) heat solutions, uniqueness and stochastic completeness, integration
by parts, etc., work well on the Ricci shrinker spacetime. Then we use these fundamental
tools to study the geometric properties of the Ricci flows induced by the Ricci shrinkers.
Therefore, we are able to check that most known important properties of the compact Ricci
flows, including monotonicity of Perelman’s functional, no-local-collapsing and pseudo-
locality theorem of Perelman, curvature tensor strong maximum principle of Hamilton, do
apply on noncompact Ricci shrinkers. Furthermore, since the Ricci flows induced by the Ricci
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shrinkers are self-similar, we obtain many special properties of the Ricci shrinkers. The first
property is the estimate of sharp Logarithmic Sobolev constant, which can be regarded as an
improvement of the fact that Perelman’s functional is monotone along each Ricci flow.

Theorem 1 (Optimal Logarithmic Sobolev constant) Let (M", p, g, f) be a Ricci shrinker.
Then (g, t) is a continuous function for t > 0 such that u(g, t) is decreasing for t < 1
and increasing for t > 1. In particular, we have

v(g):= 32{)#(& ) = un(g). (6)

Consequently, the following properties hold.

— Logarithmic Sobolev inequality. In other words, for each compactly supported locally
Lipschitz function u and each t > 0, we have

/uzlogude - </ u2dV> log (/ ude> + (IL +n+ %log(4nr)) / u*dv
< r/ [4|Vul* + Ru*}av. @)

— Sobolev inequality. Namely, for each compactly supported locally Lipschitz function u,
we have

(/u%z dv> ' §Ce—27”f{4|vM|2+Ru2}dv ®)

for some dimensional constant C = C(n).

In geometric analysis, it is a fundamental problem to estimate uniform Sobolev constant.
When the underlying manifold is noncompact, the uniform Sobolev constant in general does
not exist. However, (8) says that there is a uniform (Scalar-)Sobolev constant, depending
only on n and p. In particular, if the scalar curvature is bounded, i.e., sup,; R < oo, then
there exists a classical Sobolev constant. Namely, for each u € CZ°(M), we have

n—2
(/.un%dV) ECe—ZT”/{|W|2+u2}dV

for some C = C(n, sup,,; R). Note that the term e’zTu is almost | B(p, 1)|’% by Lemma 2.5
of [34].

The proof of Theorem 1 follows a similar route as done in Proposition 9.5 of [34], by using
the monotonicity of Perelman’s functional along Ricci flow and the invariance of Perelman’s
functional under diffeomorphism actions.

Secondly, we can improve the no-local-collapsing theorem of Perelman on the Ricci
shrinker Ricci flow. By the fundamental work of Perelman [46], the Ricci flow spacetime can
be regarded as a “Ricci-flat” spacetime in terms of reduced volume and reduced distance.
Now we can regard Ricci shrinker as a special time slice of the induced Ricci flow. On a
Ricci flat manifold, an elementary comparison argument shows that Igg B‘I grows at most
Euclideanly and at least linearly (cf. [59,64], and Theorem 2.5 of [35]). This comparison
geometry picture has a spacetime version which is used to illustrate the no-local-collapsing
(cf. [46,53]). Although the comparison argument (even the space-time version) does not
apply directly in the Ricci shrinker case, we can still show that similar phenomena hold for
Ricci shrinkers.
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Fig.1 Propagation of - el

non-collapsing on Ricci-shrinkers N
Bw»/))

B(p,r)

Theorem 2 (Improved no-local-collapsing theorem) Suppose (M", p, g, f) is a Ricci
shrinker, r > 1. Then

L 1B@.

—r< < Cr", 9a
c"= 1Bl (%2)
o I
inf p"B(g.p) > ~IB(p. D). (9b)
pe(0,r71) C

Here q is any point on dB(p, r), and C is a dimensional constant.

Although the volume estimate (9a) behaves like the Ricci-flat case, its proof is totally
different and much more involved. The proof builds on the the Sobolev inequality (8) and an
improvement (cf. Remark 8) of the induction argument due to Munteanu and Wang [41]. The
non-collapsing estimate (9b) in general does not hold for Ricci-flat manifold. This indicates
that Ricci shrinkers are more rigid than Ricci-flat manifold. See Figure 1 for intuition.

The proof of (9b) relies on (6) and an effective volume estimate in [53]. The scale p €
(0, 1) is chosen such that R p2 < C(n) inside B (g, r). If we further assume scalar curvature
is uniformly bounded on M, then we shall obtain that every unit ball on the Ricci shrinker
M 1is uniformly non-collapsed. Theorem 2 can be regard as a special case of Theorem 23
and Theorem 23, which are more general versions of the no-local-collapsing. In particular,
it indicates that any Ricci shrinker must be «-noncollpased for some constant « > 0, see
Remark 7. The proof of Theorems 2, 22 and 23 can be found in Sect. 9. Note that Theorem 2
indicates that the Ricci shrinkers are similar to the Ricci-flat manifolds. Actually, there exist
many other similarities between the Ricci-flat manifolds and the Ricci Shrinkers. For example,
in [29,34], it is proved that each sequence of non-collapsed Ricci shrinkers sub-converges to a
limit Riemannian conifold Ricci shrinker. Such results are analogue of the weak compactness
theorem of non-collapsed Ricci-flat manifolds, by the deep work of Cheeger, Colding and
Naber (cf. [12,14,20]).

Thirdly, the pseudo-locality theorem of Perelman has an elegant version on the Ricci
shrinker Ricci flow. The pseudo-locality theorem of Perelman [46] is a fundamental tool
in the study of Ricci flow. It claims that the Ricci flow cannot turn an almost Euclidean
domain to a very curved region in a short time period. In the literature, it is known that
the pseudo-locality theorem hold for Ricci flow with bounded Riemannian curvature, which
condition is clearly not available in the current setting. However, using the existence of special
cutoff function, we can show maximum principle and stochastic completeness for conjugate
heat kernel. By carefully checking the integration by parts, we obtain that the traditional
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Fig.2 u(g, ) of a Ricci shrinker u(g, 7
with bounded geometry

HeE ) =p

T=T0 1=

pseudo-locality theorem holds on the Ricci flow spacetime induced by the Ricci shrinker.
Furthermore, the pseudo-locality has the following special version for Ricci shrinkers.

Theorem 3 (Improved pseudo-locality theorem) Suppose that (M", p, g, f) is a non-flat
Ricci shrinker. Then we have

< —=do (10)

for some small positive constant 8o = 8o(n). Furthermore, the following properties are
equivalent.

(a) M has bounded geometry. Namely, the norm of Riemannian curvature tensor is bounded
from above and the injectivity radius is bounded from below.
(b) The infinitesimal functional satisfies

lim p(g,t)=0. (11)
>0t
(c) The infinitesimal functional satisfies the gap
lim w(g, t) > —do. (12)
=0t
If one of the above conditions hold, we can define
to:=sup {t|pu(g,s) > =, Vs e (0, 1)}. 13)

Then for some positive constant C = C(n), we have the following explicit estimates

sup |Rm|(x) < Cty', (14a)
xeM

o 1

;215 inj(x) > C VTo- (14b)

We remark that the gap inequality (10) is not new. It was first proved by Yokota in [57,58].
However, our proof of (10) is completely different and is the base for the proof of (11),
(12) and (14). Theorem 3 also indicates that the bounded geometry for Ricci shrinkers is
equivalent to the gap inequality (12). This criterion has divided all Ricci shrinkers into two
categories characterized by their graphs of entropies, which are illustrated by Figure 2 and
Figure 3. Note that Figure 2 represents the functional behavior of a typical Ricci shrinker,
for example, the cylinder S¥ x R"~* for k > 2. Figure 3 represents the functional behavior
of a Ricci shrinker with unbounded geometry. However, it is not clear whether such Ricci
shrinker exists. For Ricci shrinkers with bounded geometry, it follows from (13) and (14)
that the number ,/7( can be understood as the regularity scale. Actually, under the scale /7,
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Fig.3 u(g, ) of a Ricci shrinker u(g, 1)
with unbounded geometry

He ) =p

k

all the higher curvature derivatives norm | V¥ Rm| are bounded by C (n, k)7, -2 , in light of
the estimates of Shi [49].

There exist several other special versions and consequences of the pseudo-locality theo-
rems. The proof of all of them, including the proof of Theorem 3, can be found in Sect. 10.

Fourthly, the curvature tensor strong maximum principle, developed by R. Hamilton,
works on Ricci shrinker Ricci flows and also has an improved version. Using the curvature
tensor maximum principle, Hamilton shows that the nonnegativity of curvature operator is
preserved under the Ricci flow and the kernel space is parallel. Therefore, the manifold splits
as product when kernel space is nontrivial. Since different time slices of a Ricci shrinker Ricci
flow are the same up to scaling and diffeomorphism, the preservation of curvature conditions
is automatic. The interesting problem on Ricci shrinker is to show the strong maximum
principle, i.e., the splitting of the manifold when eigenvalues of curvature operator satisfy
some nonnegativity condition. On this perspective, we can improve the traditional strong
maximum principle of curvature operator to the following format.

Theorem 4 (Improved strong maximum principle of curvature tensor) Suppose (M", g, f)
is a Ricci shrinker and Ay < Ly < --- are the eigenvalue functions of the curvature operator
Rm. Then the following properties hold.

— If Ay > O as a function, then thereisa k € {0, 1,2, ..., n} and a closed symmetric space
N¥ such that (M", g) is isometric to a quotient of N* x R" ¥,

— If A2 > 0 as a function and hy > 0 at one point, then (M", g) is isometric to a quotient
of round sphere S".

The statement in Theorem 4 should be well known to experts in Ricci flow if we replace 1,
by A;.In fact, by the work of Munteanu—Wang [42] and Petersen—Wylie [47], we know that the
same geometry conclusion hold if we replace A, in Theorem 4 by X1 + A,. Their proof builds
on the celebrated work of Bohm—Wilking [5] on the closed Ricci flow satisfying A1 +12 > 0
and also relies on a weighted Riemannian curvature integral estimate [ |Rm [Pe=fdV < co.
If X1 + A2 > 0, the Riemannian curvature integral estimate can be deduced from the Ricci
curvature integral bound | |Rc|>¢=/dV < oo, which follows from a clever integration-by-
parts. In Theorem 4, with only condition A, > 0, Riemannian curvature integral estimate
Ik |Rm|?e~/dV < oo becomes nontrivial. As done in [34], we apply local conformal trans-
formations and the classical Cheeger—Colding theory to study the local structure of Ricci
shrinkers. Combining the L2-curvature estimate of Jiang—Naber [31] with the improved no-
local-collapsing Theorem 2, we are able to show that f [Rm|*e=fdV < oo always holds
true (i.e., Theorem 26). Consequently, the work of Petersen—Wylie [47] applies and the cur-
vature tensor strong maximum principle holds for Ricci shrinkers. Then we are able to obtain
A1 > 0 from the condition A, > 0. Clearly, the condition Ay > 0 is weaker than A1 + 12 > 0
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and Theorem 4 is an improvement of the results of Munteanu—Wang [42] and Petersen—
Wylie [47]. Note that Ao > 0 is a novel condition in the Ricci flow literature. It is not clear
whether Ay > 0 is preserved by the Ricci flow on a closed manifold. Actually, in Theorem 4,
the same conclusion holds if one replace the condition A, > 0 by an even weak condition

)\'2
ho > —e—L
R —2A1]
for some € = €(n). The details can be found in Theorem 27. The proof of Theorems 4 and 27
appear in Sect. 11.
The proof of the previous four theorems requires some elementary, but delicate, geometric
and analytic facts on Ricci shrinkers.

— The level sets of f are comparable with geodesic balls.

— A special cutoff function.

Special heat solution and conjugate heat solution on the Ricci shrinker Ricci flow.

— The existence of heat kernel and stochastic completeness of the backward heat solution.
— The existence and uniqueness of bounded (conjugate) heat solutions.

After the above estimates are developed, we check that the entropy of Perelman is monotone
along the Ricci flow induced by the Ricci shrinker, whose proof needs more delicate integra-
tion by parts. Then the proof of Theorem 1 follows a similar route as the one in Proposition
9.5 of [34], with more involved technique. From Theorem 1, we can obtain Theorem 2 by
repeatedly choosing proper test function #. When integration by parts are assumed, one can
formally follows the routine of Perelman to obtain the differential Harnack inequality (i.e.,
Theorem 21), and then the traditional pseudo-locality theorem. Combining with a standard
localization technique, one can deduce Theorem 3. However, as the functional derivatives
contain quadratic Ricci curvature term, many terms concerning high order derivatives need
to be carefully handled to verify the integration by parts. This causes many technical dif-
ficulties. One key difficulty is the delicate heat kernel estimate to derive the differential
Harnack inequality. Therefore, the following heat kernel estimate is in the central position
for developing fundamental analytic estimates on Ricci shrinker.

Theorem 5 (Heat Kernel estimate) Let (M", g, f) be a Ricci shrinker in M,,(A). Then the
following properties hold.
(i) (Heat kernel upper bound)
el
@r(t—s5)?

(ii) (Heat kernel lower bound) For any 0 < 6 < 1, D > 1 and 0 < € < 4, there exists a
constant C = C(n, §, D) > 0 such that

CéereD d*(x,y)
§)> ——exp| ———F—F——
(4m(t — s))"/2 4—e)t—-ys)
foranyt e [=87', 1 —8)and d;(p, y) + /T —s < D.
(iii) (Heat kernel integral bound) For any 0 < § < 1, D > 1 and € > 0, there exists a
constant C = C(n, A, 8, D, €) > 1 such that

H(x,t,y,5) <

H(x,t,y,

f H(x,1,y,5)dVy(y) < Ce ( (’_1)2)
X, 1,y,8 K = X —
M\ By (x,r/1=5) Y Y P 4(1+¢€)

foranyt € [—8_1, 1—-36]di(p,x)+/t—s <Dandr > 1.
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We briefly discuss the proof of Theorem 5. Notice that the Logarithmic Sobolev inequality

for all scales implies the ultracontractivity of the heat kernel by Davies’ methods (see Chapter
2 of [21]). We prove that the same result (i) holds for Ricci shrinkers. The lower bound of
the heat kernel can be estimated by considering the reduced distance (i.e., Theorem 16). We
first obtain an on-diagonal lower bound of the heat kernel, in which case the estimate of the
reduced distance is straightforward. Then we derive the general off-diagonal lower bound by
exploiting a Harnack property (i.e., (200)). To prove the integral upper bound, we consider the
probability measure vs(y):=H (x,t, y,s)dVs(y). Following the work of Hein—Naber [28],
we show that v satisfies a type of Logarithmic Sobolev inequality (i.e., Theorem 13). The
equivalence of the Logarithmic Sobolev inequality and the Gaussian concentration (i.e.,
Theorem 14) then shows that we can estimate the integral upper bound of the heat kernel by
its pointwise lower bound.
Organization of the paper In Sect. 2, we review the definition of the Ricci flows induced by
the Ricci shrinkers. We also present the estimates of the potential function and volume upper
bound. In Sect. 3, we introduce a family of cutoff functions and prove a maximum principle
(i.e., Theorem 6) on Ricci shrinker spacetime. Moreover, we prove the existence and other
basic properties of the heat kernel on spacetime. In Sect. 4, we prove the monotonicity of
Perelman’s entropy (i.e., Theorem 10). In Sect. 5, we prove Theorem 1. In Sect. 6, we prove
the logarithmic Sobolev inequality (i.e., Theorem 13) and the Gaussian concentration (i.e.,
Theorem 14) of the probability measure induced by the heat kernel. In Sect. 7, Theorem 5 is
proved. In Sect. 8, we prove the differential Harnack inequality (i.e., Theorem 21) by using
the heat kernel estimates. In Sect. 9, we provide the proof of Theorem 2. In Sect. 10, we
prove the pseudo-locality theorem (i.e., Theorems 24) and 3. In the last section, we obtain
an L2-integral bound of the Riemannian curvature (i.e., Theorem 26). As a consequence, we
prove Theorem 4.

2 Preliminaries

For any Ricci shrinker (M", g, f), let ' : M — M be a 1-parameter family of diffeomor-
phisms generated by X (1) = ﬁvg f. Thatis
Dyt = v f (0 ) (1)
or 1—¢ ¢ ’

By a direct calculation, see [18, Chapter 4], the rescaled pull-back metric g(¢):=(1 —
1)(¥")*g and the pull-back function f(z):=(")* f satisfy the equation

Re(g(1)) + Hessgr) f(1) = g(), (16)

2(1 —1)
where {(M, g(t)), —oo < t < 1} is a Ricci flow solution with g(0) = g, that is,
drg = —2Rc((0)). (17)

For notational simplicity, we will omit the subscript g(¢) if there is no confusion. From
(16) and (17), it is easy to show that

Wf=IVf>A (18)
R+ Af = (19)

n
2(1—1)’
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f

R+WfF=Tj? (20)
Now we define
T=1—1, F(x,t)=7f(x,1) and o(x,1) = (4x7) e 1D, 1)
It follows from (18), (19) and (20) that
F=7|Vf|* - f = —1R, (22)
TR+ AF =2, (23)
2R+ |VF*=F. (24)
Now we define
O:=9, — A, (25)
O%=—08 — A+ R. (26)
We have special heat solution and conjugate heat solution:
n
D<F+§Q:0, 27)
O*s = 0. (28)
Note that (27) is equivalent to
OF = —3. (29)

Now we have the following estimate of F by using the same method as [9,27].

Lemma 1 There exists a point p € M where F attains its infinum and F satisfies the
quadratic growth estimate

1 1 2
7 @ p)=5nF =42 < FGen) < 5 (ditr. p) + V2n7) (30)
forallx € M andt < 1, where ay := max{0, a}.

Proof This originates from the work of Cao—Zhou [9, Theorem 1.1]. We follow the argument
of Haslhofer—Miiller [27]. It follows from [15] that for any Ricci shrinker R > 0 since its
corresponding Ricci flow solution is ancient. So from (24), we have

IVF|? < F. (1)

It implies that «/F is %—Lipschitz, since

VVF
WAI=5 | 7F < >

On the other hand, for any x, y € M, we choose a minimizing geodesic y(s),0 < s <
d = d;(x, y) joining x = y(0) and y = y(d). Assume that d > 2, we construct a function

ds)=11, l<x<d-1
d—s. d—1<x<d
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The second variation formula for shortest geodesic implies that

d d
/ ¢*Re(y', y')ds < (n — 1)/ ¢?ds =2(n—1). (32)
0 0
Note that from the Eq. (16),
1
TRe(y’,y) = 5 HessF(y',y'). (33)

Therefore from (24) we have

d 2 <, ;o
——==2tn—1) < ¢ HessF(y', y)ds
2 3 0

1 d
< —2/ ¢Vy/Fds+2/ ¢V, F ds
0 d—1

< sup |V F[+ sup [V, F]

s€l0,1] seld,d—1]
Fx)+vFOy) +1, (34)

where we used (31) in the last inequality. It is now immediate from (34) that ' has a minimum
point p. It is clear that [VF| = 0 and AF > 0 at the point p by the minimum principle.
Hence from (23) and (24) we have

F(p) =T°R <T(fR+ AF) = —

For any ¢ € M such that d;(p, q) = d, it is straightforward from (31) and (34) that

2

(d—5 1—4)+<1<d—9—41(n—1)—«/znf> §F(q)§l<d+«/2nf)2.
4 3 N 4

O

Note that F (-, t) is a pull-back function of f (-, 0) up to the scale T, we can choose a base
point p € M such that p is a mlnlmum point for all F (-, #). Now from Lemma 1, F (-, t) can

be regarded as an approximation of
With Lemma 1, we have the followmg volume estimate whose proof follows from [9,
Theorem 1.2].

Lemma 2 There exists a constant C = C(n) > 0 such that for any Ricci shrinker (M", g, f)
with p € M a minimum point of f,

Celr™ if r >24/1n;

Bi(p. )l =
1B:(p. )l cr' if r<2yJtn.

Proof We set p = 24/F and D(r) = {x € M | p < r}. Moreover we define V(r) =
fD(r) dV;and x (r) = fD(r) R(t) dV,. It follows from a similar computation as [9, (3.5)], by
using (23) and (24), that

4T
nV—rV/—er—i)( (35)

If we set ro = +/27(n + 2), by integrating (35) we obtain, see [9, (3.6)] for details, that
V(r) <2r'rg" V(o)
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for any r > 2+/7n. Then it follows from Lemma 1 that for any r > 2+/7n,
Bi(p. 0l < V (7 +v/20F) = V@) < 25"V (o).

By definition, we have

D(nﬁ:{xeM‘Fﬁﬂ%—i_z)}

={xeM‘f(x,t)snziz}z{xeM‘f(l/f’(x)K#}.

Moreover, since g(t) = T(¥')*g,

_n

Ve =t [ av =g s < a2,
fo<"$2

For any x such that f(x) < (n + 2)/2. it follows from Lemma 1 that d(p, x) < co(n).
Therefore for any r > 2+/7n,

|Bi(p. 1)l <= CM)|B(p, co)lr" < C(mekr",

where the last inequality follows from [34, Lemma 2.3].

Finally, the case r < 2./Tn follows from the comparison theorem [55, Theorem 1.2]
by using (16). Indeed, for any x with d,(p, x) < 2+/%n, it follows from Lemma 1 that
f(x,1) = T7'F(x,t) < C. Therefore, from (20) we obtain |V f|(x,t) < CT~ /2. Now it
follows from [55, (1.5) of Theorem 1.2] that for any s < r,

n n
/ e D gy, < ec"f_l/zr—n/ e D gy, < C% e D gy,
Bi(p.r) ST JBi(p.s) ST JBi(p.s)
Then the conclusion follows if we let s — 0. ]

3 Cutoff functions, maximum principle and heat kernel

Now we construct a family of cutoff functions which is important when we perform integra-
tion by parts throughout the paper.

Fix a function n € C*°([0,00)) suchthat 0 < n < 1,n = 1on[0,1]and n = 0 on
[2, 00). Furthermore, —C < 77’/17% < 0and |n”|+|n"”'| < C for a universal constant C > 0.

For each r > 1, we define
, F
¢":=n ) (36)

Then ¢” is a smooth function on M x (—oo, 1). The following estimates of ¢” will be
repeatedly used in this paper.

Lemma 3 There exists a constant C = C(n) such that

@) Ve F < cr !, (37)
lp/| < Ct71, (38)

|A¢"| < CE 1l (39)

I0¢"| < Cr Y, (40)
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O*¢ | <C(r ' +77 +77%). (41)

Proof Note that F < 2r on the support of ¢, it follows from the assumption of n and (31)
that

V|2
¢
This finishes the proof of (37). Similarly, by using (22), (24), (29) and (31), we can prove

r 2Py WEPP <cr?F < crl.

g7l =r"'WFl<Cr'tR<Cr e F<Ct!,
0671 =10 — A)¢"| = r "/ OF —r 29" |\VF? = | —nr ="y /2 = r 20" |VFIP| < Cr 7",
So (38) and (40) are proved. Then we have
|A¢"| = | —O¢" +3,¢"| < [O¢"| + 1| < CET~ " +r 7.
Hence we obtain (39). Finally, using (24) again, we have
IO | = (=8 —A+R)¢"| = (O —23 + R)¢"|
< |0¢"| +2i¢]| + R¢" < |0¢"| +2¢ | + T *F¢"
sCc(r '+ 4+,
which proves (41). O

Now we move on to show the maximum principle on general Ricci shrinkers. On a closed
manifold, maximum principle holds automatically. If the underlying manifold is noncompact,
then some additional assumptions are needed in order the maximum principle to hold. For
example, in [35, Theorem 15.2], a condition

b
/ /ui(x, e~ ® qv di < oo (42)
a

is needed for the maximum principle of the static heat equation subsolution «. In our current
setting of Ricci shrinker spacetime, the metrics are evolving under Ricci curvature. Then
the distance distortion of different time slices is not easy to estimate directly without Ricci
curvature bound. Fortunately, we can replace d> by f and obtain a maximum principle under
a condition similar to (42).

Theorem 6 (Maximum principle on Ricci shrinkers) Let (M", g, f) be a Ricci shrinker.

Given any closed interval [a, b] C (—o0, 1) and a function u which satisfies Ju < 0 on
M x [a, b], suppose that

b 3
/ /ui(x, t)efo(x,t)th(x) dt < oo. “3)
Ifu(-,a) <c, thenu(-,b) <c.

Proof From Lemmas 1 and 2, it is easy to see

b
/ /efzf“»”dv,(x) dt < 0.
a

Therefore, we only need to prove the special case when ¢ = 0, by considering u — c.
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Multiplying both sides of Ou < 0 by uy(¢")>e~>/ and integrating on the spacetime
M x |[a, b], then we obtain

b 2 b
/ /(”;) @")2e 2 av, dts/ /Auu+(¢’)ze_2de,dt. (44)
a ¢ a
For the left side of (44), we have
b w2 )
f / =) @)% av,dr
a 2/,
“%r 2 -2 b 2 2f
:/7(¢r) e~ deh—/ /u+¢r¢tre7 I dv, dt
b . b 2 .
+/ /ui(gb’)zf,e*” av, dt+/ /%(¢’)2Re*2f dv, dt
u2 i b )
> / 7+(¢’)2e*2f dvy, — / / ut ¢ pre > dv, d
a
b
+/ /ui(qsf)zwfﬂe—zf dVv,dt, (45)
a

where we have used R > 0, f; = |Vf|2 and uy (-, a) = 0. For the right side of (44), we
have

b
/ /Auu+(¢’)2e—2f dv, dt
b . b ,
=f /—|V(u+¢’)|2e*2f dV,dt+/ /|v¢’|2u2+e*2f dv, dt
a a
b
+/ [2(Vu+,Vf)qu(qbr)ze_zde,dt
a
b b
= / / —IV(up g v, di + / / Vg 1Pu e~ dV, di
h 3
+/ /2(V(u+¢’),Vf>u+¢’e*2f dv, dt
a
b
—/ /2<V¢’,Vf>u1¢re—2f dv, dt. (46)
a
Combining (45) and (46), we obtain
u2
/ @) avy <1 +11, (47)

where

b b
I=- / / W2 @V fI2e 2 dV, di f / IV Gy g Pe 2 av, di

a a

b
+f f2(V(u+¢r),Vf)u+¢re_2f dV;dt <0, (48)
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and
b b
11:/ /u2+¢r¢;e—2fdv,dt+/ /|V¢r|2u1e_2det dt
a a

b
—/ /2<v¢f,Vf)ui¢’e—2fdvt dt. (49)

From our construction of ¢", it is easy to see that all functions involved in last three integrals
are supported in the spacetime set

K, ={r < F(x,t) <2r,a <t <b}. (50)

Moreover, all the cutoff function terms can be estimated by (37) and (38). For example, we
have

(Vo' , VA<t Vo' IVFI < Ctr V2JVF <Cc(1—b)~" onk,.
Plugging (37), (38) and the above inequality into (49), we arrive at
IH=c(a-n"'+r // ute  dv,dr. (51)
K,

It follows from (47), (48) and (51) that

2
/%(¢r)2€_2fd‘/b <C(1—-p7" —i—r_l)// ute 2 av, dr.
K,

Note that the left hand side of the above inequality is independent of r. Letting r — 4-00,
the finite integral assumption (43) implies that

u? .
/ —+e2ldv, < 0.
2
Therefore, u(-, b) < 0 by the continuity of u and positivity of =2/ 2, O

The condition (43) is satisfied in many cases. For example, if u is a bounded heat solution.
The technique used in the proof of Theorem 6 will be repeatedly used in this paper.
Now we control the spacetime integral of |Hess F|>.

Lemma4 Forany A > 0, a < b < 1, there exists a constant C = C(a, b, A) such that
b
/ /IHess Fl*e*Fav,dt < C.
a

Proof From (29) and direct computations,
O|VF|> = —2|Hess F|°.

Multiplying both sides of the above equation by ¢" e~ and integrating on the spacetime
M x [a, b], we obtain

b
2/ /|Hess F*¢" e av, dt
a

= (/ |VF|2¢’e**FdV,>

b b
+/ /D*¢’|VF|2e*”dvtdt
a a
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b
+ k/ / (¢"(MVF|* — F, — AF) — 2(V¢', VF)) [VF|*¢" dV, dt

<- (/ |VF|2¢’e*”dV,>

b
+A/ /((A+2f*‘)F+2r*%F%) FeF av, dr.
a

b b
+/ /|D*¢’|Fe”\FdV, dt
a a

Now we let r — o0 and the conclusion follows from Lemmas 1 and 2. O

Theorem 7 On the Ricci flow spacetime M x (—oo, 1) induced by a Ricci shrinker (M, g, f),
there exists a positive heat kernel function H(x,t,y,s) forallx,y € M ands,t € (—o0o, 1)
with x # y and s < t. It satisfies

O H(x, t,y,8):=(3 —Ax) H(x,t,y,5) =0, (52)
OF (H(x, 1, y,8):= (=8 — Ay + R(y,5)) H(x,1,y,5) =0, (53)
lim H(x,t,y,s) =4,, 54
t—st
lim H(x,t,y,s) = 0x. (55)
s—>1"

Furthermore, the heat kernel H satisfies the semigroup property

H(x, t,y,s)= / H(x,t,z,p)H(z,p,y,5)dV,(z), Yx,yeM, pe(s,t)C(—0o0,1),

(56)

and the following integral relationships
/H(x,t,y,s)dV,(x) <1, 57)
/H(x,t,y,s)dVS(y)zl. (58)

Proof We shall divide the proof of Theorem 7 into four steps.
Step 1. Existence of a heat kernel function H solving heat equation and conjugate heat
equation.

Fix a compact interval I = [a, b] C (—o0, 1) and a compact set £2 C M with smooth
boundary, there exists a Dirichlet heat kernel. The proof can be found in in [19, Chapter 24,
Sect. 5]. Regarding (—oo, 1) as the union of [—2", 1— 2_/‘], it is easy to see that the Dirichlet
heat kernel actually exists on §£2 x (—oo, 1). Now we let {§2;} be an exhaustion of M by
relatively compact domains with smooth boundary such that £2; C £2;,1. Let H;(x, , v, s)
be the Dirichlet heat kernel of (£2;, g). Then the following properties hold.

0 Hi(x,1,y,8) = Ax 1 Hi(x,1,y,5), (59)
OsHi(x,t,y,8) =—AysHi(x,1,y,5) + R(y,s)Hi (x,t,y,5); (60)
lim H;(x,t,y,s) = 8y, (61)
1N\
lim H; (x,t,y,s) = §,. (62)
s/t
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Let n be the outward normal vector of 9£2;, then the positivity of H; implies that d{% <0.
Since R > 0 on Ricci shrinkers, direct computation shows that

0H;
81?/ Hi(x,t,y,S)th(x)zf (Ax: —R) Hi(x,t,y,S)dVr(x)E/ - doy(x) <O0.
2 2 92, om
(63)
Hence from (61), we have
f Hi(x,t,y,5)dV,(x) < 1. (64)
£2;
Similarly, we have
oH;
s Hi(x,t,y,8)dVs(y) = — Ay,sHi(xst»y,s)st(y):_ dos(y) = 0,
2 2 9, on
(65)
which implies that
Hi(x,t,y,5)dVs(y) < 1. (66)
£2;
As H; > 0on £2; x (—o0, 1), it follows from the classical maximum principle that
0<H; < Hiy (67)
on £2; X £2; x (—o0o, 1). Now we define the heat kernel on M x (—o0, 1) by
H(x,t,y,5):= lim H;(x,t,y,s). (68)
11— 00

From the well-known mean value theorem (cf. Theorem 25.2 in [19]) the interior regularity
estimates for the heat equation and conjugate heat equation, it follows from (64) and (66)
that H; is uniformly bounded when s, ¢ are fixed. Threfore, H exists as a smooth function.
Its positivity is guranteed by (67). The regularity estimates also imply that the convergence
from H; to H is locally smooth. In particular, we can take limit of (59) and (60) to obtain
that H solves heat equation and conjugate heat equation on M x (—oo, 1). In other words,
(52) and (53) are satisfied.

Step 2 The heat kernel is a fundamental solution of heat equation and conjugate heat equation.

Let ¢ be a smooth function on M with compact support K. For fixed y and s, we have

0 /Q Hi(x,t,y,8)¢(x)dV(x)

5 (Axi = R)Hi(x, 1.y, 5)p(x) dV;(x)

< ‘[ Hi(x. 1.y, $) Ad(x) dV; (x)
2;

+‘/ RHi(x7tsy’S)¢(x)dVl(x)
£2;

=C Hi(x,t,y,s)dVi(x)

£2;

=C, (69)

where C is independent of H;. Notice that the last two inequalities hold since we just need
to restrict the integral on K, and for a fixed s, when ¢ is close to s, the metrics are uniformly
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equivalent on K X [s, ¢]. Combining (61) with (69), we obtain

<C(-ys). (70)

‘/ Hi(x,t,y,5)¢(x)dVi(x) —¢(y)
£2;
Since ¢ has compact support, it is clear that

lim Hi(x,t,y,5)¢p(x)dV;(x) = / H(x,t,y,5)p(x)dV;(x).

1—>0 J 0.

Plugging the above equation into (70) yields that

’/ H(x,t,y,9)9x)dVi(x) —¢()| = C@t —),

which means that

lim /H(x, t,y,8)o(x)dVi(x) = ¢(y).

t—st

By the arbitrary choice of ¢, we obtain (54). Therefore, H is a fundamental solution of the
heat equation. Similary, we can use the limit argument to derive (55) and claim that H is a
fundamental solution of the conjugate heat equation.
Step 3 The heat kernel satisfies the semigroup property.

From its construction, H; satisfies the semigroup property:

Hi(x,t,y,5) =/ Hi(x,t,z,0)Hi(z, p,y,5)dV,(z), Vx,y€ 82, pe(s,t)C(—00,1).
£2;
(71)

For each compact set K C M, it is clear that K C £2; for large i. By the positivity of each
H;, we have

H(x,t,y,s)= lim Hi(x,t,y,s)= lim / H;(x,t,2,p)H;(z,p,y,5)dV,(2)
1—>00 1—>00 Qi
> lim | Hi(x,t,z, p)Hi(z,p,y,S)de(z)=/ H(x,t,z, 0)H(z, p,y,5)dV,(2).
1—>00 K K

By the arbitrary choice of K C M, the above inequality implies that

H(x,1,y,5) > /H(x, t,z,p)H(z, p,y,s)dV,(2). (72)
By (67), (68) and the positivity of H, we have

Hi(X,tvy,S):/ Hi(xvtaZ;P)Hi(Z,P7Y7S)de(Z)f/ H(XJ,ZMO)H(Z,Pv)’as)dvp(z)
.Q,' 2;

< / H(x,t,z, p)H(z, p,y,5)dV,(2),

whose limit form is
Hs by = [ Bz pHG. 930,000 %)

Therefore, the semigroup property (56) follows from the combination of (72) and (73).
Step 4 The integral relationships (57) and (58) are satisfied.
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On each compact set K C M, since K C §2; for large i and each H; is positive on §2;,
we have

/ H(x,t,y,s)dV;(x)= lim / Hi(x,t,y,s)dV;(x)< lim f Hi(x,t,y,5)dV;(x)<1,
K 1—>0 JK 1—>00 $2;
where (64) is applied in the last step. The arbitrary choice of K then yields that
/H(x,t, y,8)dVi(x) <1,
which is nothing but (57). Similar reasoning can pass (66) to obtain
[ Heysavio <1, (74)
K

where the inequality will be improved to equality (58) in the following argument. In fact, let
¢" be the cutoff function defined in (36). For any fixed x and ¢, it follows from the cutoff
function estimate (40) that

8S/H(x7t7 )’»S)d’r(%s)dvs(y)‘

= ‘/H(xatvy!S)Dy,S(br(y’s)dVA‘(y)‘ SCV_I/H(x,t’yJ)st()’)

Plugging (74) into the above inequality, we obtain

8.Y/H(x,t,y,S)¢’(y, S)st(y)‘ <crl

When r is large, x is covered by the support of ¢" at the time ¢. Using (55), the above
inequality implies that

‘/ H(x,t, 9,58 (y,5)dVs(y) — 1‘ <cr i@ —s).
Since r could be arbitrarily large in the above inequality, we obtain (58) by letting r — oco.
O
Lemma5 Suppose [a,b] C (—oo, 1) and u, is a bounded function on the time slice

(M, g(a)). Then

u(x, t)::/ Hx,t,y,))ua(y)dV,(y), Vtela,b] (75)

is the unique bounded heat solution with initial value u,.

Proof Clearly, u is a well-defined heat solution with the initial value u,. Suppose i is another
heat solution with initial value u,. Then u — # is a bounded heat solution with initial value
0. Therefore, we can apply maximum principle Theorem 6 on £ (u# — i) to obtain that

u—u=0 onM x [a,b].
In other words, & = u and the uniqueness is proved. O

Corollary 1 Suppose u, is a smooth, bounded, integrable function on (M, g(a)). Let u be the
unique bounded heat solution on M X [a, b] starting from u,. Then we have

sup [Vu(-, )| < sup [Vu(:, a)|. (76)
M M
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Proof Fixr >> 1and multiply both sides of Ju = 0 by u (¢")?and integratingon M x [a, b],

we obtain
b b
—/ /u2¢’¢;dv,dt:/ /{—|V(u¢>r)|2+|V¢>r|2u2}dV,dt.
a a

By Lemma 5 we know

u=/H(x,t,y,a)ua(y)dVa.

Then it follows from (57) that u is bounded and integrable. Consequently, u? is integrable.
It follows from (37) and (38) that by letting r — 00, we obtain from (77)

b
1
//|Vu|2dv,dt§—<§/u2dv,> +C7~ //u dV,dt < .
a

Therefore, the assumption of Theorem 6 is satisfied. Since O|Vu|> = —2|Hessu|? < 0,
following the maximum principle, we arrive at (76). O

Proposition 1 Suppose u is a heat solution and w is a conjugate heat solution on M x [a, b]
for [a, b] C (—o0, 1) such that

sup /|w|dV, sup |u| < C < oo.
tela,b] M x[a,b]

Then we have
/uwdv,, :/udea. (78)
Proof Fix r >> 1. We calculate
at/wuqb’d\/, =f{wD<u¢’)—(u¢’>D*w} dv, =/wD (ug”) dvi
= / w{u0e¢" + ¢"Ou —2(Vu, V¢')} dV;
=/w{u|:l¢r —2(Vu, V¢")} dVv. (79)

Note that [Vu| < C by Corollary 1. Plugging the cutoff function estimates (37) and (40) into
the above inequality, we obtain

(fovor)

Taking r — o0, the right hand side of the above inequality tends to zero, the left hand side

converges to
/wudVb—/wudVa,

since u is bounded and w is integrable. Consequently, we arrive at (78). O

b
<Cer 4.

a
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Lemma 6 Suppose [a,b] C (—o00, 1) and wy is an integrable function on the time slice
(M, g(b)). Then

w(y,s)::/H(x,b,y,s)wb(x)dVb(x) (80)
is the unique conjugate heat solution with initial value wy, such that
sup /|w|th < 0. (81)
tela,b)

Proof Fix atime ag € [a, b] and let i be an arbitrary smooth function with compact support.
Then we solve the heat equation starting from 4 to obtain a unique bounded function u as

u(x. ) =/H<x,r,y,a>h(y>dva<y).

Since w is given by (80), it follows from (58) that w satisfies (81). Suppose w is another
conjugate heat solution starting from wy, satisfying (81). Then we can apply Lemma 5 to the
couple of # and w — w to obtain that for any ¢ € [ag, b],

/(ﬁ)(x, t)—wx, ) ulx,t)dV,(x) =0.

In particular,
/ (W(x, ap) — w(x, ap)) h(x)dVyy(x) =0.

By the arbitrary choice of &, we obtain w(:, ag) — w(-, agp) = 0. Then by the arbitrary choice
of ag, we see that

w(,t) =w(,t), Vtela,bl
Therefore, the uniqueness is proved. O

Lemma 7 Suppose w is a bounded function on M x [a, b] satisfying [(7*w < 0 and (81).
Then we have

supw(-,a) < supw(-,b). (82)
M M
Proof Without loss of generality, by adding a constant, we may assume that sup w(-, b) = 0.
M
Then it suffices to show that
supw(-,a) <O0. (83)
M

At the time slice # = a, we choose an arbitrary nonnegative smooth function /# with compact
support. Then we solve the forward heat solution starting from /2 and denote the function by
u. It is clear that u > 0. Similar to the proof of Proposition 1, we obtain that

/w(x,a)h(x)dVa(x) < /w(x,b)u(x,b)dVb(x) <0,

since at time t = b we have u > 0 and w < 0. Therefore, the inequality (83) follows from
the arbitrary choice of /. O

@ Springer



Heat kernel on Ricci shrinkers Page210f84 194

Theorem 8 (Bounded heat solution) Suppose ty € (—o0, 1) and h is a bounded function on
the time-slice (M, g(tp)). On M x (ty, 1), starting from h, there is a unique heat solution u
which is bounded on each compact time-interval of [ty, 1). The solution is

u(x,t) = / H(x,t,y,t0)h(y)dVy(y), YxeM, te(t,]). (84)

Similarly, for any bouned integrable function h, starting from h there is a unique conjugate
heat solution w which is bounded and integrable uniformly on each compact time interval
of (—o0, to]. The solution is

w(x,t) = / H(y, to,x,)h(y)dV;(y), Yx e M, t € (—00,1). (85)

Theorem 9 (Maximum principle of bounded functions) Suppose u is a bounded super-heat-
solution, i.e., Ju < 0on M x [a, b]. Then

supu(-, b) < supu(-, a). (86)
M M

Similarly, if w is a bounded super-conjugate-heat-solution, i.e., *w < 0 on M x [a, b]
satisfying (81). Then

supw(-, b) > supw(:, a). (87)
M M

From (27) and (28) from previous section, on the space-time M x (—oo, 1), there are
standard heat solution and conjugate heat solutions F + %t and 9= @n(1—1)"2¢ /. We
can apply Theorems 6 and 9 to compare other supersolutions or subsolutions with F + 5t

and v = (4 (1 — t))_%e_f . In particular, we have the following Lemma.

Lemma 8 Given a smooth function ¢ with compact support on a Ricci shrinker (M", g, f).
Forany b < 1, let w(x,t) = f H(y,b,x,t)¢(y)dVy(y) be the bounded solution of con-
jugate heat equation with w(-,b) = ¢. Then there exists a constant C > 0 such that for
t<b

e

UJ(.X, t) < Cl_)(x, t) = CW

(88)

Lemma 8§ tells us that starting from a compact supported function, the solution of the
conjugate heat equation is at least exponentially decaying.

4 Monotonicity of Perelman’s entropy

Recall that on any compact Riemannian manifold (M", g), Perelman’s W entropy [46] is
defined as o

(46 v (89)

W(g,¢,r)=f(r(|V¢|2+R>+¢— n)

for ¢ a smooth function and v > 0. Let u*> = we can rewrite above functional as

= G

Wig, u, 1) = /‘L’(4|VM|2 + Ru®) — ulogudV — (n + glog(4n1)) / WdVv. (90)
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For a general Ricci shrinker (M", g, f), we define the pu-functional as
wig, v) = inf {W(g, u,7) lu e W)}, 1)

where

whim) = {u

/qu|2dV < o0, /ude = land /dz(p, Y dV < oo}. (92)

The last integral condition f d? (p, ')uz dV < oo is imposed for two reasons. First, it
follows from Lemma 1 and (20) that

/Rude < 0. (93)

Second, the term f u? log u? dV in the definition of W(g, u, t) is well defined. Indeed, if we

consider the rescaled measure d V::e’dz(f”x) V, then it follows from the volume estimate
Lemma 2 that V(M) is finite. Givenau € W*l’z, weset A:={x € M | u(x) < l}andit:=xau,
where y 4 is the characteristic function of the set A. Thenitis clear that f d*( D, Xi2x)dV <
oo. By a direct calculation,

/ﬁzlogfﬂdv :/ﬁzlogﬁde —/dz(p, Natdv, (94)

) . . .
2 = j2¢4°(P) By Jensen’s inequality, we obtain

- - 1 -
/ﬁzlogﬁzdv > </ﬁ2dV> log< - /ﬁde) > —00
V(M)

since [ 4% d V= [#*dV € [0, 1]. Therefore it follows from (94) that

where 1

/122 logii?>dV > —oo.

In other words, it implies that for any u € W*l‘z(M), the negative part of u?logu? is
integrable and W(g, u, t) € [—o0, +00). In fact, it will be proved later, see Proposition 15
that W(g, u, ) cannot be —oo.

Remark 1 The space W*I’Z(M ) can be regarded as a collection of probability measure v such
that

(1) v = pV, thatis, v is absolutely continuous with respect to the volume form V.
(ii) v has finite moment of second order (v € P>(M)), that is, for any point g € M,

/dz(q, Ydv < oo.
(iii) The Fisher information
F(,o):=4/ \V/p?dV < co.

Now we show that for any Ricci shrinker, we can always restrict the infimum on all smooth
functions with compact support.

Proposition 2 For any Ricci shrinker (M", g, f),

n(g, ) =inf {W(g, u,7) |u € C°(M) and /ude =1 } . (95)
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Proof For any function u € Wﬁ’z(M) such that W(g, u, T) is finite, we define a positive
constant

cf::/u%¢ﬁde.
It is clear from the definition that ¢, < 1 and lim,_, », ¢, = 1. From direct computations,
Wi, cr_luqﬁr, 7)
-2 _ _ n
= /c, T4V up)* + Rwd”)?) — (c; 'ug")? log(c; 'ugp™?dv —n — 3 log(4mT)
::/4n;2«¢UQVuP+4V¢q%ﬂ+4m¢wvmv¢w)+qﬂrRm¢Ude
- /(c;1¢f)2u2 logu® + (¢ '¢")? log (¢")?u*dV + logc? —n — %log(4nr).
Now by the definition of W*l'2 and the dominated convergence theorem,
lim W(g, ¢, 'ug”, 1) = W(g.u., 1)
F—>00
=—lim [ (1—(c'¢"?) ulogu®dv.
r—00
Since u? log u? is absolutely integrable, by the dominated convergence theorem,
lim | (1—(c;'¢"?) u’logu*dV =0
r—> 00
and hence
lim W(g, ¢, 'ug”, v) = W(g, u, 7).
r—00
Similarly, if W(g, u, t) = —oo, then
lim W(g, c; 'ug”, t) = —oc.
r—00

For a fixed r, it is not hard to choose a sequence of smooth functions u; with compact
support by the usual smoothing process such that

lim W(g, us, 1) = W(g, ¢, 'ug”, 7).
§—>00

]
Now we prove the celebrated monotonicity theorem of Perelman on Ricci shrinkers.
Theorem 10 For any Ricci shrinker (M", g, f) and t > 0,
n(g), 7 —1) (96)

is increasing for t < min{1, t}.

Proof We fix a time #; < min{l, 7} and an nonnegative smooth function v/ with compact
support such that f wdV;, = 1. By defining

wix.1) = / Hy. 11, x, () dVi, (), ©7)
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it is straightforward to check that

/W(x, 1) dVi(x) :/ H(y,t1,x,)w(y)dVi(x)dV; (y) = / w(y)d Vi (y) =1,
where we have used stochastic completeness (58) for the last equality.

Lemma9 For any time ty < t,

11 ] \V4 2
4/(/W¢Eﬁmun=/ /'u”d%dr<w. (98)
to )

w

Proof of Lemma 9: By direct computations,
] v 2
/ /Lﬁiwdwm
1o w
n
:/ /(V(log w), Vw)e" dV,; dt
0

1 1
= —/ /(logw)Aw¢’ dV, dt —/ /log w(Vw, Vo' ) dV, dt
1o 1o
=1+1I. (99)

We estimate [ first.

1
I::—/ /(logw)AwW dV, dt
0]

t t
:fl/(logw)wﬂpr dV,dt—/I/(logw)Rw¢r dV;dt
1 1
! n tlo t
= (/(logw)wd)r dV,) —[ /(logw),wd)r dV, dt —/ /(log w)we; dV; dt
10 ] fo
n 1
+/ /(log w)Rwe" dV; dt —/ /(log w)Rwe" dV; dt
1 1
. n t ; 1
= (/(logw)wd)r dV,) —/ /w,d)rth dt —/ /(log w)we; dV; dt
1 1
j(]) ’ 131 !
= (/(logw)uxj)rd\/,) - </ wqﬁrdV,)
10 1o
1 151 n
+/ /w@dwm—/1/ﬁmwdwm—/‘/mgmwddwm
to 19

fo

Now it is easy to show that all integrals in / are bounded. Indeed, from Lemma 8, there
exists a constant C such that

w(x, 1) < Ce D

on M X [tg, t1], where C depends only on ¢, t; and the upper bound of w(-, #1).
Therefore for t € [1g, 1]

/|w(10gw)|dV,SC/wl/z—i—wde,§C/e_f/2+e_fdv,§C.
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Moreover, by using (20),

1 1
/ /wRdV,dth/ /fe_detdtgc.
to 1o

Now we estimate /7 in (99).

1] =

1
/ /log w(Vw, Vo' dV, dt
0]

n
5/ /IlogwIIVwIIVWIdedt
1o

o IVl V4] o
_/IO /|1ogwﬂmﬁ\/¢7dv,dt

1 1 \v4 2 1 1 \V4 r2
< 7/ /' il ¢rthdt+7/ /w|logw|2| L dVv,dt. (100)
2 fo 2 to ¢V

w

r2
By our construction of ¢, % is uniformly bounded. Reasoning as before,

n 5 Vo' 2 12 2 ~f12 4 —f
w|log w| P dVydt < C w4+ wdVidt < C e +e /1 dVidr <C.
0]

r

Now it is easy to see from (99) and (100) that

f |Vw|2 .
¢"dV,dt < C,
1o w

where C depends only on 7y, 1 and the upper bound of w(-, #1). By taking r — oo, we have
proved Lemma 9.
Now we define the function ¢ as

e~ ¢

VDT G

By direct computations, see Theorem 9.1 of [46], that if we set
v=((t =)Q2Ap — Vo[> + R) + ¢ — n) w,

then forr < 7,

2
O*v = —2(r — 1) |Rc + Hess ¢ — w <0, (101)
2(t — 1)
that is, v is a subsolution of the conjugate heat equation.
We set 11 = 11(¢) = t — ¢t for simplicity. By the definition,
Vw]? n
v=1 (24w + Y Rw)—wlogw — (n+§10g(4nr1)) w. (102)

Now we multiply both sides of (101) by ¢" so that

1 1 1
/ /v,qﬁ’dV,dt > —/ /Avqb’th dz—i—/ /qus’dv,dt. (103)
1o to fo
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The left side of (103) is

1 3| n
/ /v,(ﬁrthdt:—/ /U(ﬁtrthdt—l—/ /qubrdvtdt—i- (/ U¢rdV[>
to ) fo

The right side of (103) is

1 151 1 11
—/ /Avd)rdV,dH—/ /Rv¢>"dV,dt:—/ /quS’dV,dt—l—/ /Rq)rdV,dt
10 ) 1o )

n

fo

(104)

(105)
Therefore, we have
n 1
(/ v¢>rth> Zf /deb’dV,dt. (106)
) 10
Now it is important to use the exact expression of [l¢", that is,
O¢" = —nr~'y'/2 = r 29|V F|%. (107)
We consider the first term of v and prove the following lemma. O
Lemma 10
1
lim / /AwD¢>’ dV,dt =0. (108)
r=00 Jy

Proof of Lemma 10: From (107), we have

1 1 i
/ /Awa)’dV, dt = —1/ /Awn’th dt—r_Z/ [Awn”|VF|2th dt
to 2}’ o to

=1+11I.

n 1 n n
|I| = ‘——/ /Awn/dV,dt 7/ /(VW,VU/)thdt

2r Ji 2r Jyy

SRV EI WwdV, di

f
(Vw, VF)y" dV; di| < 2”—2/ /le||VF||n”|dV,dt
r* Ji
n /’1
22 ), Jw

1 \v4 2 1/2 1 172
<= / [Vl dVv, dt / /|VF|2|77”|2de,dt . (109)
2r2 \Jy, w "

Now the first integral of (109) is bounded by (98) while the second

1 1 131
f /|VF|2|n”|2wdv, dt < c/ /Fwdv,dt < c/ /Fe_f dv,dt < C (110)
to fo fo

where the last constant C depends only on 7o, #; and the upper bound of w(-, #1).
It is immediate that from (109) by taking r — oo that lim,_,» I = 0.

[Vl

— —

@ Springer



Heat kernel on Ricci shrinkers Page 27 of 84 194

We continue to estimate /7.

3l
11| = ‘—r—Z/ /Awn”|VF|2dV,dt
)

=

+

n
r*Z/ /(Vw,Vn”)|VF|2dV, dt
fo

=111+ 1V.

n
r*Z/ /(Vw,V|VF|2>n”dv, dt
0]

Now we have

n
111 = r_Z/ /(Vw,Vn”)|VF|2dV,dt
19

1
§r_3/ /|Vw||VF|3|n”’|dv,dz
0]

oVl
< Cr_3/ L \VFPVwdV, dt
fo Y% w '

1 |Vw|2 1/2 1 1/2
<cr? <f thdt> </ /lVF|6de,dt> <C
10 w fo
1 1
f /|VF|6wdv,dz 5/ /F%*fdvtdt <C.
10 0]

Therefore lim, _,, 111 = 0.
Similarly,

since

1V =

f
r_zf /(Vw,V|VF|2>n”th dt
o

4l
ECr_Z/ /|Vw|lVF|lHessF||n”|dv,dr
0]

f n \v4
< Cr*3/2/ /lellHessFldV,dt = Cr*W/ /ﬂlHessFl«/ﬁde dt
o f Jw

11 \v4 2 1/2 n 1/2
< cr32 (/ /I w| dedt> (/ /|HessF|2de,dt> .
fo w fo

Now from Lemma 4 the last integral is bounded since w < C e/, solimy oo IV = 0.
Therefore, Lemma 10 is proved.

We can estimate the integral of v[J¢".

From the expression of v in (102), we have

n
/ /U‘:’¢r dVl dt
10

h [Vw|? n p
- T(=24Aw + + Rw) —wlogw — (n+§log(4nt1))w O¢"dV, dt.
fo

w

Since we have |0J¢"| < Cr~! from (40) and all terms except the first above have bounded
integral on spacetime, it is easy to show, by taking into account of the claim, that

5]
lim/ /quﬁ’dV,dt:O. (111)
r—o0 Juo
Now from (106),
lim [ v¢" dV,, > lim /v¢’ dVy,. (112)
r— 00 r—00
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Since we choose +/w (-, t1) to be a smooth function with compact support, it is immediate
that

lim [ vg"dV, =W(gt1), Vw(, 1), T —1). (113)
r—>00
O
Lemma 11
V(1) € Wh?
and
lim | Aw¢"dV,, =0. (114)
r— 00

Proof of Lemma 11: From the definition of v,

lim [ v¢" dV;,

r—00

r—o0

Vw2
= lim / <(r1 (—2Aw + V| + Rw) —wlogw — (n + = log(4nr1))w> ¢"dVy,.
w

All terms except for the first two in the above integral are absolutely integrable, due to
w<Ce ' and R < t72F.
Combining with (112), we conclude that

r—00

2
lim (—2Aw+| vl >¢ dVvi,
w

is bounded above.
Then we have

v 2
lim (—2Aw+| wl >¢’dV,0
w

r—00

- fo, IVl

= lim | 2(Vw,V¢")+ —¢" dV,,
r—00 w
. Vwl? |V ? Vw|* ,

R

\V/ 2

— - lim /' Y 4 av, (115)

2 r—o0

where we have used

r—>0o0

r2
lim/| (ZH wdVy, =0.

To prove (114), for any € > 0,

= hm ’/ Vw, V¢")dV,,

. Vwl* V')
sim e Pt Ly

l1m ’/Awq& dVy| =

w thO
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|Vw|?
=€ dVl()
w

By taking ¢ — 0, we conclude that (114) holds. Therefore, the proof of Lemma 11 is
complete.
Therefore,

lim v¢r d‘/to = W(g(to), \/E(’ t0)7 T— tO)'

r—0Q
In summary, we have shown from (112) that
W(gt), Vw(-, 1), T —11) = W(g(to), Vw(-, 10), T — 19) = p(g(to), T — t0).

Since , #y, t; and \/w(-, #1) are arbitrary, the proof of Theorem 10 is complete. ]

Corollary 2 On a Ricci shrinker (M", g, f), the functional p(g, t) is decreasing for 0 <
Tt < 1 and increasing for T > 1.

Proof The same argument appeared in Step 1, Proposition 9.5 of [34]. We repeat the argument
here for the convenience of the readers.
For a fixed constant 79 > 1, from Theorem 10,

(1), 70— 1) = p((1 = P g, 70— 1) = b (ga tf__tt)

is increasing for < 1. Now as ¢ goes from O to 1, Tl":f goes from 7o to co. As tgp > 1 is

arbitrary, we have proved that u(g, 7) is increasing for all T > 1. Similarly, for any 7oy < 1,
as t goes from O to 79, fl‘)—__t' goes from 1 to 0. Therefore, u(g, t) is decreasing forall T < 1.

O
5 Optimal logarithmic Sobolev constant—part |
For any Ricci shrinker (M", g, f) with the normalization (2), we define
e_f

It follows from a direct calculation that e* is comparable to the volume of the unit ball
B(p, 1).

Lemma 12 (cf. Lemma 2.5 of [34]) For any Ricci shrinker (M™, g, f), there exists a constant
C = C(n) > 1 such that

C'e" < |B(p. )| < Cet.

Next we recall from [1] some standard definitions and properties of the space which
satisfies the curvature-dimension estimate.

Definition 1 A Riemannian manifold (M, g, v), equipped with a reference measure v =
e WV where W € C? and V is the standard volume form, satisfies the C D(K, co) condition
if the generalized Ricci tensor

Ricw:=Ric +Hess W > Kg.
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In particular, on a Ricci shrinker (M", g, f), if we define

fo=f+n+ glog(4n), (117)

vo=e fov (118)

then vy is a probability measure and (M, g, vg) € C D(%, 00). Then the following celebrated
theorem of Bakry—Emery can be applied on Ricci shrinkers.

Theorem 11 (Bakry—Emery theorem [2]) For any Riemannian manifold (M , g, v) satisfying
the CD(K, 00) condition for some K > 0, the following logarithmic Sobolev inequality

holds
/ log pdv < /|Vp|2d (119)
0 v — v,
plogpdv < 7 | —

where v and p v are probability measures which have finite moments of second order and p
is locally Lipschitz.

The original proof by Bakry and Emery is complete for compact manifolds. A proof
using the optimal transport by Lott and Villani for the general case can be found in [39,
Corollary 6.12], see also [52, Theorem 21.2]. For the self-containedness, we give a proof of
the Bakry—Emery theorem for Ricci shrinkers.

Theorem 12 For any Ricci shrinker (M", g, f) and any nonnegative function p such that
VP € WM, vo) and [ d*(p,-)p dvy < oo,

\v4 2
/plogpdvo—(/pdvg)log</pdvo) 5/' | dvg
P

If the equality holds, then either p is a constant or (M", g) splits off a R factor.

Before we prove Theorem 12, we prove the following two lemmas.

Lemma 13 For any smooth function u(t, x) on M x [0, T] such that
Ofu:=( — Ap)u <0,

and for some constant a > 0,

T
/ /uz(t,x)e_“dz(p'x) dvodt < 00,
0
ifu(-,0) <c, thenu <conM x [0, T].

Proof The proof follows from [35, Theorem 15.2] verbatim by using A ; and the measure
vg instead of A and the volume form V. ]

We define a new familiy of cutoff functions by setting

¢ :=n <£> ,
r

where 7 is the same function as in (36) and f is the potential function at time 0. A direct
calculation shows that

— _ _ _ _ n
A =r VP T AL =T VP4 G =
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Then it is clear that Afar is supported on {f > r} and there exists a constant C = C(n)
such that

1A < C. (120)
Lemma 14 For any smooth bounded function u on M,
lim / (Afu)g dvg = 0.
r—0o0 N
Proof From the integration by parts,
lim f(Afu)a’ dvyp = lim / u(Ard")dvy =0,
r—00 r—00
where the last equality holds since u is bounded and vy is a probability measure. O

Proof of Theorem 12: We only prove the inequality for pg such that ./p, is a compactly sup-
ported smooth function and the general case follows from approximations as in Proposition
95. In addition, we assume that | pg dvp = 1.

Given such pg, we consider the heat flow with respect to the measure vg, that is,

hp=Arp,
p(0, ) = po.

It is clear that there exists a constant C such that p < C on M x [0, co). Now we set

E(t):= </ plog,odvo> (1).

d, / plog p)g dvo = / pr(log p + D dvo

By direct computations

:/Afp(log,o—i-l)ardvg

IVpl*— -
— [ LG+ as0 10608 e

Therefore, for any 7 > 0,

( / plog p)§ dvo) (T) - ( / pllog 0)F dvo> 0)

T v 2 .
=/ /—' ::l ¢ + Ar(plogp)g” dugd.
0

It follows from Lemma 14 that

T \v4 2
/ /l PE dvedt < oo (121)
0 P)
and
(T [ 1Vp?
E(T) — E(0) = — duodt. (122)
0 P
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We compute

2 2 2
at/ 'V/f' a’dv():fmf(w;' >$’+Af<w£| >$’dvo. (123)

From Bochner’s formula,

3|Vpl* =2(VAsp, Vp)
= Af|Vp|2 — 2|Hess ,o|2 —2(Rc + Hess f)(Vp, Vp)
= As|Vpl* —2|Hess p|* — |Vpl?,

where we have used the Ricci shrinker equation for the last equality.
Therefore,

O¢|Vpl* = —2[Hess p|*> — |Vp|*. (124)

A direct calculation shows that

Vol 2 do®@dpl|* |Vpl?
Dfl ol — 2 |Hessp — p®dp |~ | pll (125)
P P P o
It follows from (124) and Lemma 13 that there exists a constant C > 0 such that
Vo2
Vol _ ¢ (126)
P
Therefore, by (123) and Lemma 14, forany 7 > S > 0,
Vol Vol?
(/ [Vpl dvo) Ty — ( Vol dv0> )
o P
T o2 dp®dpl* |Vpl?
:/ /—f‘Hessp— pOAp\ Vel dvodt. 127)
s o o
It follows from (122) that for any # > 0,
/ |VP|2
E'(t) = — dvg | (1) <0 (128)
P
Moreover, for any t > s > 0, it follows from (127) that
t
—E() +E'(s) < f E'(2)dz <0. (129)
N
Then it is easy to see from (129) that
E'(t) > E'(0)e". (130)

Now we claim that E () — 0ift — oo. Since E(t) is decreasing by (128), we only need
to prove the claim by considering a sequence t; — o0o. We define u; = +/p(t;, -), then

/u,?dvo =1 (131)
and by (130),

/ [Vu;|? dvy — 0. (132)
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Then by taking a subsequence, we claim that u; converges to u~, weakly in WLZ(M, vp).
It is clear from (131) and (132) that u,, = 1. Since we can assume that u; converges to 1
almost everywhere,

lim [ u?logu? dvy =0 (133)
i—00
by the dominated convergence theorem. Therefore, E(t) — 0if t — oo.
It follows from (122) and (130) that

[e'S) 00 2
/ / —t |Vp0|
pologpodvg =E©0)=— | E'®)dt <—E'©) | e 'dt= dvo.
0 0 £o

If the equality holds and pg is not a constant, it follows from (127) that
1 d d
Hess(log p) = — (Hessp — m) =0.
p p

Therefore, (M™, g) splits off a R factor.
In summary, the proof of Theorem 12 is complete.
Using the Bakry—Emery theorem, Carrillo and Ni have proved in [10] the following result.
O

Proposition 3 (Carrillo-Ni [10]) For any Ricci shrinker (M", g, f), we have

N S
Wig. e 7, 1) =p(g, 1) =p, (134)

where fy is the normalization of f defined in (117).

Proof We shall follow the argument of Carrillo and Ni. The proof is given for the self-
containedness.

For any Ricci shrinker (M", g, f) and any smooth function u on M with compact support
such that f u?dV =1, we define w = u2e/0. Then it is clear that both vy and wvg belong
to P,(M) from the estimates of f and dV.

It follows from Theorem 12 that

|Vuw|?
wlogw dvy < dvy. (135)

w

By rewriting (135) in terms of u, we have

/Lﬂ logu®dv + / fou?dV < /4|Vu|2 + |V fol?u? +4(Vu, V fo)udV.  (136)
It follows from the integration by parts for the last term that (136) becomes

/uzloguzdv +p+ glog(4n) < /4|Vu|2 +ul (V[ =2Af — f)dV. (137)

It follows from the [V f|> + R = f and Af + R = § that [Vf|> = 2Af — f = R — f.
Therefore, by (137) that

Yy 2 2_ .2 2 n
Wi(g,u, 1) = / {4IVul* + Ru” — u”logu”} dV —n — 51og(471) > .
By the arbitrary choice of u, the above inequality means that

n(g. 1)z p. (138)
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y
On the other hand, if we set u; = e’TO, it follows from direct calculation that
W(g,uy, 1) = / (IVfI2 + R+ f—n) e odv + .

Recall that R+ |V f|> = fand R+ Af = % on a Ricci shrinker. So the above equation can
be simplified as

Wig, ui, 1) —p = / Qf =n) e foav = —2/(Aff)e*f0dv = —2/(Af0f)e*f0dv =0.
Then it follows from definition that

(g, 1) <W(g,ui, 1) = p. (139)
Therefore, (134) follows from the combination of (138) and (139). O

Corollary 3 For any Ricci shrinker (M", g, f), if there exist more than one minimizer u €
W,,}’z Jor W(g, u, 1), then (M, g) must split off a R factor.

. . _flo .
Proof If u is a minimizer other than e~ 2 , then the same proof as Proposition 3 shows that

[Vw|?
wlogw dvy = dvy,

w

where w = ue/0. Then the conclusion follows from the equality case of Theorem 12. O

Proposition 3 indicates that g is the optimal log-Sobolev constant for (M", g, f) on scale
1. We shall improve (134) by showing that g is in fact the optimal log-Sobolev constant for
all scales. Note that the same result has already been proved for compact Ricci shrinkers in
Proposition 9.5 of [34].

Proposition 4 For any Ricci shrinker (M", g, f), we have

v(g):=inf p(g, ) = p. (140)
>0
We first show two important intermediate steps before we prove Proposition 4.

Lemma 15 For each t € (0, 1), we have
n(g,t)=p=p(g ). (141)

Proof Fix ng € (0, 1). Let w be a nonnegative, compactly supported smooth function satis-
fying the normalization condition [ w dV = 1. We now regard w as a smooth function on the
time slice ¢+ = 0 and solve the conjugate heat equation (J*w = 0. Then w is a smooth function
on the space-time M x (—o0, 0). It follows from Lemma 8 that there exists a constant C > 0
such that

wx,t) < CAn(1—1) 2e /@D VxeM, t e (—o0,0]. (142)

By the diffeomorphism invariance of the WW-functional, it is easy to see that

W (8, V0,10 — 1) =W (1= D@ g 0,0 = 1) =W (g, ut 0, 00)
(143)
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where we have used the notation

uG,1):=(1— 03/ (W)~ Drw(, 1), (144)

o="—". (145)

Notice that [ u?>dV = 1 according to our construction. It follows from definition and direct
calculations that

W (g, u(-,1),0(1))

_ / {0 (41Vu + Ru®) =l logu®} dV —n — %log(4n9)
=9:/{(4|Vu|2+Ru2) —uzloguz}dV—n—glogMn)}
2 2 n n
+@ -1 u”logu dV+n+§log(4ﬂ) —ElogQ

> 0u(g, 1)+ @6 —1) {/ W2 logudV +n + glog(4n)} - %loge‘ (146)
By (144), the inequality (142) can be understood as
wr(x, 1) < Ce IO

for some constant C indepenent of 7. Consequently, as f > 0, we obtain

/u21ogu2dv < /{—f—}-logC}ude <logC — f fu*dVv <logC.
Note that (r) < 1 when ¢ < 0. Plugging the above inequality into (146), and noting that

W (80, V(0. m0) = W (g0). Vwlin)m —1) . Vi€ (=00,0),
we can use (143) to obtain

W(g(O), w(-, 0), 770) >0u(g, D+@O -1 {logC +n+ glog(éhr)] — gloge.

From (145), it is clear that , lim 6(z) = 1. On the right hand side of the above inequlaity,
——00

letting t — —o0, we arrive at

W (£(0), i 0).m0) = mlg. D).

Since w(-, 0) could be arbitrary smooth nonnegative function satisfying the normalization
condition, and g = g(0), in light of (95), it is clear that (141) follows from the above
inequality. O

Lemma 16 For each t € (1, 00), we have
n(g,v) = p=np(g D). (147)

Proof For any u € W*l’2 andt > 1,

Wig, u, 7) =/{z(4|Vu|2+Ru2)—u2logu2}dv—n— glog(4nr)

@ Springer



194 Page 36 of 84 Y. Li, B. Wang

> / [@Vul® + Ru?) — u*logu?} dV —n — %10g(47rf)
> (g 1) — =1 |
,1)— <-logr =p— < logr.
= K(g 2 g n ) 2
By the arbitrary choice of u € W*l ’2, it follows that
n
nig,7)>pn— glog T.
Let t — 171, we obtain that
liminf p(g, 7) > p.
T—1t

By Corollary 2, we know that u(g, 7) is an increasing function of t for t € (1, o). Then it
is clear that (147) follows directly from the above inequality. O

Proof of Proposition 4: 1t follows from the combination of Lemmas 15 and 16. O

Lemma 17 Suppose (M, g) is a complete Riemannian manifold with Sobolev constant Cgs.
Namely, for each smooth function u with compact support, we have

(/uff"zdv)T < CRS/ {4]Vu® + Ru*}dv. (148)
Then for each positive t, the following estimates hold for any u € Wi’z,
e < f/ {41Vul* + Ru*} dV < max |n? 2E}, (149)
where
E=W(g,u,1t)+ glog(4nezCRS). (150)

Proof By Jensen’s inequality, we know that

2 2 n—72 2 4 n—2 o
u”logu dV=T u-logun=2dV < 5 log un2dv ).

Plugging the Sobolev inequality (148) into the above inequality yields that

2 2 n n 2 2
u*logu®dv < ZlogCRS—i- 2log {4IVul® + Ru*}dv. (151)

It follows that

Wi(g,u, 1) > / {t@|Vul* + Ru?) — u*logu?} dV —n — %log(4j‘rr)
> /1: [41Vul? + Ru?}dV — %mg/  {41Vul + Ru2}dV —n — glog(4nCRs).
Letx = [ (4|Vu|> + Ru*) dV. The above inequality can be rewritten as
X — glog(rx) <Wi(g,u,7)+n+ %log(4nCRs) —E. (152)

Since tx > 0, it follows from (152) that

x> e iE (153)
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On the other hand, it is clear that
n N 2
s—ilogs > 3 on [n~°, 00). (154)

Suppose 7x > n2, then the combination of (152) and (154) implies that tx < 2E. Conse-
quently, we always have

tx < max {n? 2E}. (155)
Clearly, (149) follows from the combination of (153) and (155). ]

Corollary 4 (Sobolev inequality) Let {(M”, g()), t € (—oo, 1)} be the Ricci flow solution

of a Ricci shrinker (M", p, g, f), there exists a constant C = C(n) such that at any time
t <1,

(/u%z dv,) " §Ce—27“/{4|Vu|2+Ru2}dvt (156)

Sfor any smooth function u with compact support.

Proof We consider the Schrodinger operator H = —2A + % and the quadratic forms
Q(u)::f(Hu)u dV; with its corresponding Markov semigroup {e=Hs s > 0. Since
n(g®), 1) = n(g, 1=) = |, we have

/uzloguth < 70W) + ()

for any fude, = 1, where B(r) = —5 — 7log(4mt) — p. Then it follows from [21,
Corollary 2.2.8] that for any s > 0,
le™ 5 flon < M < Cs7He7 8, (157)

where M(s)::% f(f B(t)dt. Now we use the same argument as in [21, Theorem 2.4.2] to
derive the Sobolev inequaltiy. It follows from (157) that for any u € L2,

le™ o u oo < CsHe™ T ulla. (158)
Since e~ is self-adjoint, by taking the conjugation of (158) we obtain
le™ully < Cs™4e™ % full. (159)
Therefore, for any s > 0,
le™#oullog < Cs™ 8™l S ulla < Cs™Ee M ull. (160)

Combining (160) with the fact that e~ % is a contraction on L™, it follows from the
Riesz-Thorin interpolation that for any g € [1, oc].

_n K
le™#ulloo < Cs™ 2 e @ |lully. (161)
‘We now write

H_%u:a—l—b
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where
1

T
a= 1"_1(1/2)/ sT2e My ds,
0

o0
b= F71(1/2)/ s=re M5y ds.
T

It follows from (161) that

1 n

> 1 n
15l = CF_I(I/Z)/ ST H T ull, ds = ce” @ ull, T2 %
T

iy 1_n .
for some constant ¢ = c¢(n). Given A > 0, we define T > 0 by % =ce 9|ul,T? 2. 1Itis
clear that

e [H72u@)] = 2] < Jx s lao)] = 4/2)] < 237 al < CA7ITE |lul),

since e % is a contraction on L4. For any 1 < g < n, we set % = % — %, then it follows
from our choice of A that
1 _rq
Hx o [H 2u(x)| = A} < Ce a7 lully.
In other words,
_1 _ Mg
1H 2ull;w < Ce "= |lull, (162)
where || - ||, denotes the weak L" space. Therefore, it follows from the Marcinkiewicz
interpolation theorem that
_1 2 _r
1H™2ullp, < Ce Po=2|lullz = Ce™ n |[ull2, (163)
where % = % - % Therefore, (156) is a direct consequence. O

Remark 2 1t follows from the above corollary that the Yamabe invariant of (M", g, f)

o [ Vu? + RutdV
Y([g):= inf — > 0. (164)
ueCg® (M)

2n n
( Jur2d V) !
Here Y depends only on the conformal class of g. Hence it implies some connections between
a Ricci shrinker and its conformal class. Note that it is shown in [63] that each Ricci shrinker
has a conformal metric such that its Ricci curvature has local bound depending only on the
dimension. This fact plays a key role in [34].

Proposition 5 Ona Ricci shrinker (M", g, f), the functional u(g, t) is a continuous function
of T € (0, 00).

Proof Fix 79 € (0, 00). We need to show both the upper semi-continuity and the lower
semi-continuity as 7.
The upper-semicontinuity is more or less standard. Fix u € W*1 ’2, we have

limsup (g, 7) < lim supW(g, u, )

T—=7) T—7)

= lim sup/ ‘K(4|Vu|2 + Ruz) —u? loguzdv —n— %log(4nr)

T—T1)
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2 2 2 2 n
= /10(4|Vu| + Ru”) —u“logudV —n — Elog(47rfo)
=W(g, u, 10).
By taking the infimum among all qualified #’s, we have

lim sup p(g, 7) < p(g, 70). (165)

T—10

Hence u(g, 7) is upper semicontinuous.
The lower semicontinuity relies on the estimate (149) in Lemma 17. Actually, for arbitrary
ue W*l’2 satisfying the normalization condition, direct calculation shows that

— — 2 2 n T
W(g, u, 7) =WI(g, u, 1) + (t — 10) | {4|Vul*+ Ru }dV—Elog —

70
2 2 n T
> p(g. 1) — |t — w0l | {4IVul®> + Ru*}dV — 51og — . (166)
70
For any t; — 79, we choose u; € WJ’Z such that
W(g, ui, 1) — (g, ) < i (167)
Together with (165), this implies that
lim sup W(g, u;, 7;) = limsup u(g, ;) < p(g, 10). (168)

i—00 i—00
By Corollary 4, the Sobolev constant on each Ricci shrinker is finite. It follows from (149)
and (150) that f(4|Vui 12 + Rul.z) dV is uniformly bounded. In (166), replacing u by u; and
letting i — 00, we obtain

liminf W(g, u;, %) > p(g, 7).
11— 00
Combining the above inequality with (167), we obtain that
liminf u(g, ©;) > u(g, 1),
11— 00

which is the lower semi-continuity at 7p. The continuity of p(g, v) with respect to 7 at 7o
follows from the combination of the above inequality and (165). O

6 Optimal logarithmic Sobolev constant—partli

We first prove the log-Sobolev inequality for the conjugate heat kernel following [28]. The
proof in [28] is for spacetime with bounded geometry. Since we do not impose any curvature
restriction here, more should be done due to the integration by parts.

Theorem 13 For any Ricci shrinker (M", g, f) with its heat kernel H(x,t,y, s),

/ (foan)ue(f o) <u=o [ 52
plogpdvs — pdvg ) log pdvg | < (t—s) p duvy.

Here dvg(y) = H(x,t,y,s)dVs(y) foranyx € M ands <t < 1 and p is any nonnegative
Sfunction such that \/p € WL2(M, vy) and fdz (p, )pdvs < oo. If the equality holds, then
either p is a constant or (M", g) splits off a R factor.
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Proof By a similar approximation process as in Sect. 4, we only need to prove the inequality
for any p such that ,/p is a compactly supported smooth function. Without loss of generality,
we assume s = 0 and fix 7 > 0 and ¢ € M. Moreover, we set w(x,t) = H(q, T, x,1),
dv =w(y,0)dVy(y) and p(x, t) is the bounded solution of the heat equation starting from
p(x). In the proof, we denote p(x, t) by p with the time ¢ implicitly understood. We also
assume that o is uniformly bounded by 1 on M x [0, T'].

It is clear from the definition of w that

hm/p(logp)qu dV, = plq. T)log p(q. T) = (/pdv) log (fpdv)

/p(Ing)w¢’dVo =/pIng¢’dv.

and

Therefore, we have

T
/plogqu’dv— (/pdv) log (/pdv) :/ —atfp(logp)wqb’dvtdt.
0

By direct computations
— 0 / p(log p)we” dV;
- f pi(log p + Dwe” + p(log p)w,¢p" + p(log p)we; — Rp(log p)we” dV;
~ [ Aptiogp + Vg’ ~ pllog p) Awg” + pllog p)ug av;
Vo2 , -
= / 7w¢ 4+ 2w(V(plogp), Vo') — p(log p)wllep" dV;. (169)
Similarly,

Vpl? Vpl? Vpl? Vpl?
a,/l ol w¢rdvt:/5<ﬂ>w¢r_2w<v<l ol >’V¢r>+| P o av,.
P o P o

Since

dp®dp [’ (170)

Vpl? 2
D' Pl = —— ‘Hessp—
o o

we have for any s € [0, T'],

2
/mwdfdvs
0
2 2
IVpI / / (lel ),Vg/)’)dV,dt
//' ol wl¢” dV, d — // ‘ fdp we’ dV,dr. (171)

With (169) and (171), we have proved so far that if r is sufficiently large,
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[ prospan=([ oar)ios(f o) -7 [

plogpdv — pdv | log pdv )| —T . d
T T

=/ /Zw(V(pIOgP),Vqﬁr)dV,dt—/ /p(log,o)wa)rdV,dt
2 2
/ //'Vm wig dV,dtdv—/ // <|Vp| ),v¢">dv,dzds
_/ / /f HCSSP_M

o Jo P

=I+11+11I+1V+V,

w¢" dV, dt ds

where

T
I=/ /Zw(V(plogp),VW)dV,dt,
0

T
=/ f—p(logp)wﬂfb’th dt,

2
:/ //' PE 06" dv,dtds,
v IVpl2 v
,Vo"ydVidrds,
dp®dp 2
V:/ /‘/—f‘Hessp—i
0o Jo P P

It remains to show that when r — oo the sum is less or equal to 0.
We first notice that as p is smooth with compact support, by using (170) and the maximum
principle,

we” dV, dids.

IVol?
0

Here the assumption in Theorem 6 can be checked as (98).
Now we have for the first term /

<C.

T
lim |I| < lim 2/ /w|v,o|(1+|1ogp|)|v¢’|dv, dt < lim cr~'?2 =0.
r—0o0 r—0o0 0 r—00
For the second term 717,

lim |[I]] < hm/ /w,o|10g,o||D¢ |dVidt < hm crl=o.

r—o0

Similarly for the third term /11,

T K |V,0|2 |
Tim [711] < hm/ / / w|0¢"|dV,dtds < lim Cr~' =0.
0 p r— 00

r—00

The fourth term 7V is more involved, by computation we have

Vpl? H v Vp|? H —pldo®dp,V Vp|?
v| ol :2< essp, Vo) | /;I Vp:2< essp—p dp®dp p>+| /;I vp.
2 J2 P P J2
(172)
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From (172), we have

Tops h||V Vpl?
|IV|§/ / /2w|v¢’|(zl”’fp'+| 7 )dV,dtds
0

2 2 r2 3
Vo2 |V
///26—” ¢+2—1|p||;’| |v¢||’o| dV,dids

3
<—eV+Celr y2r —1/2/ / / p' dV,dtds

where we denote Hess p — p~'dp @ dp by hand € € (0, 1).
To deal with the last integral, we notice from Lemma 18 that

3/2
Vol _ Vo2 Vol € 1/610g% P_c
02 032 3 (374

— 13/4

and hence

s \v/ 3 K
/ /w%d\/tdtfcf 3 dr < C.
0 P 0

Therefore, lim,_, o V is finite and lim, o0 [/ V]| < —€ (lim, . V). By taking ¢ — 0,
we obtain that lim, .o, [/ V| = 0 and hence

Vol
plogpdv — pdv | log pdv )| —T dv (173)
P
T prs 2
2 d d
_/ f ff Hess p — L8 4P
0 0 1Y

If the equality holds and p is not a constant, it follows from (173) that
1 d d
Hess(log p) = — <Hessp - &) =0.
o o

Therefore, (M", g) splits off a R factor. ]

wdVydtds <0. (174)

For fixed x,t and s, Theorem 13 implies that the probability measure dvs(y) =
H(x,t,y,s)dVs(y) satisfies the log-Sobolev inequality with the constant 20%3 Itis a stan-
dard fact that log-Sobolev condition implies the Talagrand’s inequality and equivalently, the
Gaussian concentration, see [52, Theorems 22.17, 22.10]. In particular we have the following
theorem, see also [28, Theorem 1.13].

Theorem 14 (Gaussian concentration) For any Ricci shrinker (M", g, f) with its heat kernel
H(x,t,y,s) and reference measure dvg(y) = H(x,t,y,s)dVs(y) and any o > 0

1 r
v ()07 (B) < exp (—m)

where A and B are two sets on M such that dy(A, B) > r > 0.

Proof From Theorem (13), we have for any probability measure pd vy,

\v4 2
/plogpdvsg(t—s)/l PE g, (175)
0
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By a further approximation, we can assume (175) holds for any locally Lipschitz p. Now it
follows from [52, Theorem 22.17] that dv; satisfies the T, Talagrand inequality, that is,

1/2
Wa(n, vs) < /41 —5) (/pIngdvs> (176)

for any measure n € P>»(M), where W is the Wasserstein distance of second order. For any
two sets A and B on M such that d;(A, B) > r > 0. We setn = ﬁvx and v = %vs.
Then on the one hand, '

Wa(n,v) < Wa(n, vg) + Wa(v, vy)

<J4(—s) LT S v s g 18 "
=vaE=9) (/ v (A) 2 ug(A) ”S> +<f ve(B)  uy(B) ”3)

Lo\ 12 1\ 12
= /4@ —s) ((log vS(A)) + (log vS(B)> )

2 ) ] 172 (
W3 (n.v) < 4(t s)((logvs(A)> M)

<4t —s) ((1 + o) log

and hence

>1/2)2
L Uto)log— )
vs(A) R NV A

On the other hand, it follows from the definition of W» that

W2(n, v) = /df(x, Ve, y) = 2,

where 7 is the optimal transport between 7 and v.
Therefore by computation

1 r?
v (A)v? (B) < exp (—m)
O

In fact, with the Gaussian concentration, we can prove that v has finite square-exponential
moment.

Corollary 5 Forany Ricci shrinker (M", g, f) withits heat kernel H (x, t, y, s) and reference
measure dvs(y) = H(x,t,y,s)dVs(y), ifa < ﬁ, then

2
/e“ds P%) gy, < oo.

Proof We choose a constant o > 0 such that a < m. It follows from Theorem 14
that for any integer k > 2,

k—1)?
Vs (M\Bs (p, k) = exp (—m)
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Hence

¢}

[ecrra <c(ivy | AP g,
k=2 ¢ Bs(p.k+D\By(p.k)

00 . 2_&
§C+C];(k+1) exp (a(k+1) 4(1+a)(t—S))

ghere we have used Lemma 2. Since a < m, it is easy to show that the last sum is
nite. m]

7 Heat kernel estimates

We first prove a pointwise upper bound for the heat kernel H. The idea of the proof is from
[21, Chapter 2], see also [61].
Theorem 15 (Ultracontractivity) For any Ricci shrinker (M", g, f),
et
H(x,t,y,8) < ———.
Ar(t —s))2

Proof We fix x € M and two constants s < T < 1. For notational simplicity, we assume
that t = T — ¢t and 0; = —9,. We also fix a function p(tr) = ST fort € [0, T — s). For
any nonnegative smooth function z with compact support we define

w(y, 1) = / Hx,T,y, T —t)h(x)dVr(x), (177)

then (*w = 0.
Now we compute,

1
p(T)
Bellw” llpiey = or ( / (wg )P dvy-_f)

= P( ) (/(qu YO dvy_ )
P

o ( / (wg! Y OdVy_ ) ! ( / (wfb’)“”(logw¢'>p/<r>dvm)

o
o ( / (wg" PO dVy_ ) " ( / p<r><w¢’>”(”*1<w¢’>,+R<w¢*>”‘”dvm).

If we multiply both sides above by pz(r) [lwe" | |Z23 and use the fact
(w¢")r = Awg” — Rwe” + we; = A(wg") — Rwe" — (L")w — 2(Vw, Vg'),
(178)

then we have

PRONwg" 117 0c [ || per)
1
= —p' (Ol lwe 1|75 log ( / (wg")P® dvh>

+ PP O oy / (wd" )P log(we") dVr_,
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= PO = Dllod o) [ e 02T we"P dvr
— (p(@) = DI llpiey / R(wg")P® dVp_, + X, (179)
where
X = p*(O)l|we" || p(r) / (wg"HP O~ (=[O Hw — 2(Vw, V")) dVr_-.
Now we divide both sides of (179) by ||wg" || y(r)» then
PO 1w 125)3; log [[we || o)
= —p'()llwe" 1|17 log ( / (we")P® dvm)
+ PP @ [ woH ogwe) dvi-—
—4(p(x) — 1)/ IV (") 5 P dVr_.
—(p(x) =1 / R(we )P dVr_, +7, (180)
where

Y = p(0) / WO (=(Oed"w — 2(Vw, V¢)) dVr .

We denote v = (w¢’)$/||(w¢’)# ||2 so that [[v]||2 = 1. Now by direct computations,
v?log v = p(1)v? log(wg') — 207 log || (we") 2" |2.
So (180) becomes
P ()3 log [lwe’ || per)

=p/(v) / v logv? dVr—r — 4(p(t) — 1)/ Vol dVr_; — (p(t) — 1)/Rv2afvT_r +Zz

where

2
s—_ PO f (we" )P~ (=[O ¢"Hw — 2(Vw, V¢')) dVr_.

p(7)
w115 )

Now we obtain

p(r) —1
p'(T)

PP ()3 log [[we' || o) = p'(x) (/ v’ logv?dVr . — /4|Vv|2 + Rv2dvT_f) +Z.

(181)

p(m)—1 _ t(T—s—1)

Since O = T

> 0, we have from (181)

P? ()0 log [ |1,r) = p'(x) (=i —n — 5 logldm(p(r) = /p/(x)) + 2. (182)
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Now we divide both sides by p%(1), we have

3 log [lwg' || ey < 2 (@) <—[L —n—"log(dn) — glog (M» + U,

P 2 P
(183)
where
1
U@ = s o) (- @ - 2w, V97) Vi,
||w¢r||p(r)

Now we integrate both sides of (183) and estimate the two terms of right side separately.
For a number L < T — s, we integrate (183) from O to L so that

log [lwg" [ pz) — log [lwe" [

L 7 .

=I1(L)+II(L). (184)

By direct computations,

T—s 7/ B
(T —s) = / P o) (—u —n— 2 tog4m) — Slog (M» dr
0

p*(v) p'(7)
n n
= —3 log(T —5) —p — 3 log(4m). (185)
Now we consider the term U (7).
1
U@ < W/w')(”mm +2|Vw||Ve'|dVr—. (186)
llwer 1260)

Since we construct w through a smooth function with compact support,
w<C e/

for a constant C uniformly on M x [T —s — L, T — s]. On the other hand, by Lemma 11
Jw € Wl forany T > 0, in particular

[Vwl?
dVT_f < Q.
w

Now the second term in (186) can be estimated as

Vw 2
/|Vw||V¢’|de _ [y wave_, < (

1 1
sz 2 7
= [ dvm) (/|V¢>’|2wdvm) .

For any fixed L, itis easy to say U () is uniformly bounded forany v € [T —s—L, T —s]
and r > 1. By taking r — oo in (184), from the dominated convergence theorem,

log [|wllpr) — log|lw]ly < I(L).

Now by taking L — T — s we have

n n
log|[wlloo —loglwll = =7 log(T —5) — p — = log(4m).
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Therefore,

/ Hx,T,y,s)h(x)dVr(x) < H(x,T,y,s)h(x)dVr(x)dVs(y)

e M
@r(T — s))"/? /

e

Since A (x) can be any smooth function with compact support, we derive that
e M

Hx,T,y,s) < W

]

Now we derive the lower bound of H. Recall that the reduced distance between (x, ¢) and
(v, s) are defined as

len(y,s) = 2\/[]? inf {L(y): y :[s,t] > M between (x, t) and (y, s)}, (187)
where
t
£ = [ VIR @F + R@).2) d (188)

Now we have the following important estimate, see Corollary 9.5 of [46]. The proof is
motivated by [16, Proposition 1].
Theorem 16 For any Ricci shrinker (M", g, f),

el (:8)
H(x,t,y,8) > ————.
Am(t —s))2

Proof We set
el (3:9)

Lx,t,y,8) = —. (189)
Ar(t —s))2
It follows from the definition of I(x 1) (y, §), see [46] and [56], that
—0sL(x,1,y,8) < Ay sL(x,t,y,5) — R(y,s)L(x,t,y,s) (190)
and
lim L(x,t,y,s) = 6. (191)
s/t

Forany x,y € M, s < T and small € > O we have
/L(x, T,2,T —e)H(Ez, T —¢€,9,5)¢9 (2, T —e)dVy_e(2)

- / Lx,T,z,s+€)H(z,s+€,y,5)¢ (2,5 +€)dVsie(2)

T—e
:/ 0y (fL(x, T,z,)H(z,t,y,8)¢" (z, t)dV,) dt

s+e

T—e T—e
=/ /L,H¢’dv,dt+/ /LH,qb’dV, dt
s+e s+€
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T—e T—e
+/ /LH(;&,’thdt—/ /LH¢’RdV,dt
s+e s+e

T—e T—e T—e
> —f /ALH¢’dV,dz+/ /LAH¢’dV,dr+/ /LH¢,’dwdt.
s+e€ s+e€ s+e

(192)

Here and after we omit all z, ¢ for notational simplicity.
By the integration by parts, we have

T—e¢ T—e
—/ /ALH¢’dV, dt = —f /L (AH¢" + HAY" +2(VH,V¢")) dV, dt
s+e s+e

(193)
Therefore,
/L(x, T.oT —OHGT — €.y, 98" . T — ) dVr—c(2)
- / Lx,T,z,s +e)H(z,s+¢€,y,5)0 (2,5 +€)dVsi1c(2)
T—e
3/ /LHD¢’ —2L(VH,V¢")dV,dt. (194)
+e

Now we multiply both sides of JH = 0 by (¢")>H and do the integration.

T—¢ T—€ T—€ H2
/ /lV(¢’H)|2dV,dt 5/ /|V¢’|2H2dV[dt+/ /—(q&’)?dv,dt
s+e s+e s+e 2
T—¢

H2 erV
—(/7@) )

It is immediate by taking » — oo that

s+e€

T—e¢
/ / IVH|?>dV, dt < co. (195)
S+€

For fixed €, we have

T—e€
/ /LHDd)’ —2L(VH,V¢"ydV, dt
s+e

T—e€
5/ /LH|D¢r|+2L|VH||V¢’|dV,dt:I+II. (196)
s+e
For the first term,

T—e

lim [ = lim fLH|D¢’|thdt:0

r—o00 r—>00 Joyo

since L is uniformly bounded on M x [s + €, T — €] and H is integrable.
For the second term,

1

T—e T—e % T—e 2
11:/ [L|VH||V¢’\dV,dr52<[ /L2|V¢’|2dVrdt) (f /|VH|2thdt> :
s4e s+e s+e
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Now we claim

T—e€
/ [devt dt < co. (197)
'€

Indeed, it follows from [58, Eq. (3.3)] thatforany ¢ € [s + €, T — €],

len@n = J—t fen - |2 L )
w1z, 1) > T_tfz, T—tfx’

and hence
L(x,T,z, 1) <me P&,
where
exp< %f(x, T)) 1
ny = _ and 1 — |
(4me)? JT —s5s—ol-s—0

Therefore, it is clear from Lemmas 1 and 2 that the claim (197) holds.
It is immediate from (195) that

T—e % T—e %
lim /7 < lim 2(/ /L2|V¢’|2dV, dt) (/ /|VH|2dV, dt) =0.
r—0o0 r—0o0 s+e s+e
(198)
Now it follows from (194) that by taking r — oo,
/L(x, T,2,T —€)H(zZ, T —€,y,5)dVr_e(z) > /L(x, T,z,s +e€)H(z,s +¢€,y,5)dVitc(2).
(199)

Ase — 0,both H(z, T —e€,y,s)and L(x, T, z, s + €) are uniformly bounded (in terms
of z). We conclude from the definition of § function that by taking ¢ — 0

Hx,T,y,s)>Lx,T,y,s).

We also need the following gradient estimate from [60].

Lemma 18 For any Ricci shrinker (M™, g, f), suppose u is a positive bounded solution of
the heat equation Ou = 0 on M x [0, T], then

[Vu| [/ A
<,/ —/log —
u t u

Proof From a direction computation

where A = maxpyx[0,T] U-

Vul? A 2 du @ du|?
D(z' ul —ulog—) = —— ‘Hessu — du®du <0.
u u u u
Now the theorem follows from Theorem 6 if
T 2
\Y
/ /ﬂe_zfdv, dt < 0.
0 u
Notice that this follows the same proof as Lemma 9. O
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Now we have the following corollary of Lemma 18, see [60, Eq. (3.44)].

Corollary 6 With the same conditions as Lemma 18, for any o > 0,

o 1 dtz(xa y)
u(y,t) < Aou(x, t)o exp . (200)
4ot
Proof We rewrite Lemma 18 as
A
log—| < —=
u
and hence
A A dt (X, )’)
lo < [lo + .
\/ gu(x,t) \/ gLt(y,t) 24/t
By squaring both sides above, we have
di(x,y) ’
A A (X, y
§) < lo +
gu(x,t) ( gu(y, 1) 2./t )
1 +0 d*(x,
<(1+0)log todix.y)
u(y,t) o 4t

Then the conclusion follows immediately. O

We now prove the pointwise lower bound of the heat kernel H.

Theorem 17 For any Ricci shrinker (M", g, f),0 <6 <1, D > 1and 0 < € < 4, there
exists a constant C = C(n, 8, D) > 0 such that

4 4
Ceetc—D d?(x, y)
H(x,t,y,8)> —————— S B
oty 8) = oy eXp( (4—e)(t—s)>
foranyt € (=571, 1-94] and di(p,y) + /t —s < D.

Proof From Theorem 16,

el (3:9)
H(y,t,y,5) 2 ——. (201)
@Ar(t —s))2

By the definition of / and 9, f (y, z) = |V f|*> > 0,

lyn(y,s) < 2F/ Vit —2zR(y, z)dz

ST
< ZF/ f(y z)dz
Sy, 1) Vi—z t—s)
Szm/ 1=z “=3ao o0 (202)
and hence
C
H(y.t,y,

D2 Gr =P
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for some constant C = C(n, 8, D) > 0.
By using (200) for the heat kernel on M x [”” t], we obtain

2
H(y,1,y,s) < e P55 (4n(t — 5)) "3 T HT9 (x, 1, y, s)exp<%)

where we have used the result in Theorem 15 for the upper bound.

Therefore,
CH_U o 1 d2 ,
H(x,t,y,s)> ¢ Sexp (- +odi(x,y) .
(47T(t - S))”/ 4(t _ S)
The conclusion follows by choosing 0 = 4/¢ — 1. o

Remark 3 From the proof a more precise bound is, for any 0 < € < 4,

r(E=1) 42 At —
H(x,1,y, ‘ p(— [y A=)

V2 Gra =y "\ T ou—» 30 —t)ZeF(y’t)) (203)

In order to further estimate the upper bound of H, it is crucial to compare distance
functions from different time slices. We first prove the second order estimate of the heat
equation soluton on Ricci shrinkers, see [3, Lemma 3.1].

Lemma 19 Let (M", g(t)), t € [0, 1) be the Ricci flow solution of a Ricci shrinker and let
u be a postive solution to the heat equation Ju = 0 andu < A on M x [0, T]. Then there
exists a constant C = C(n) such that

|Vu|? cA
|Au| + — AR < - (204)
Proof By rescaling, we assume that A = 1. Let L} = —Au + % — R, then it follows
from [3, Egs. (3.3), (3.4)] that
1 1
OL; < —le + == YR (205)
From (205) we have
O(L1¢") = ¢"0OLy + L10¢" —2(Ve", VL)
r 1 2 1 r r
<@ (——Li+ —5)+ Lide" —2(Ve', VLy)
n e’t
1 1 (V(L1¢"), V') Li|V¢'|?
=¢’(—;L%+W)+L1D¢’—2 = +2 e (206)
Now at the maximum point of L¢", we have
2 re—1;=1y2 Vo' ?
—*(le) )+ (@'e )"+ (L1g") (Oo" +2 e >0, (207)
SO we obtain
. Vo' |? ro-l, 1 1
Li¢" <n(0O¢" +2 e +n et < ey + 7. (208)
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By taking r — oo, we have L] < C(m)t~!. Now if we set L, = Au + % — R, then
similarly

1 142
OL, < ——1L3 z 209
2 = n 2 + 0212 ( )
Therefore by the same method, we prove that Ly < C(n)t ™.
Now the proof is complete. O

By applying the above lemma to the heat kernel, we immediately have from Theorem 15
that

Lemma 20 For any Ricci shrinker (M", g, f), there exists a constant C = C (n) such that
ek 1
[0:H(x,1,y,9)| =]AcH(x,t,y,8)| < C—— | R(x, 1) + —— (210
(t—ys)2 t—=s
foranys <t < 1.

Now we can prove the local distance distorsion on Ricci shrinkers. Notice that a similar
estimate has been obtained on compact manifolds, see [3, Theorem 1.1].

Theorem 18 (Local distance distorsion estimate) For any Ricci shrinker (M", p, g, f) €
My (A),0 <68 < land D > 1, there exists a constant Y = Y (n, A, §, D) > 1 such that for
any two points q and z in M withd;,(p,q) < D and d;(q,z) =r < D,

Y~ds(q,2) < di(g.2) < Ydy(q.2)
foranyt e [, 1 =8 —r?lands € [t — Y~ 'r2 t + Y~ 1r2],

Proof Inthe proof, all constants C; and ¢; dependonn, A, § and D.Fixatime T € [~ 1, 1—
8 —r?], a point ¢ with dr(p,q) < D and r < D, we set w(x,t) = H(x,t,q, T — r?).
It follows from Theorem 17 that w(y, T) > Cr~" for any y with dr(q, y) < r. For any
y € Br(q, r), we have from Lemma 20 that

19w (y, )] < Car "(R(y, 1) +r72) @11)

fort € [T —r%/2, T + r?]. Since dr(p, y) < dr(p,q) +dr(g,y) < 2D, it is clear from

Lemma 1 that F(y, T) < c¢;. Moreover, it follows from (22) and (24) that

F(y, 1)
1—1t¢

[0: F(y, O] = [(L =)R(y, )| = =aF@.n.

Therefore, it is clear thatforany t € [T —r2/2, T +r2], F(y,t) <c3andhence R(y,t) <c4
from (24). Since r < D, we have from (211)
o (y, )] < Cyr™" 2. (212)

Now we set ¢s = C1(2C3)~L, it follows from w(gq,T) > Cir~" and (212) that w(y, 1) >
%r*” on By (g, r) x [T —csr?, T 4 csr?]. On the one hand, it follows from Corollary 6 that
w > Cqr~" on B;(y, r) x {t}. On the other hand, by Lemma 1, F and hence R is bounded
on B;(y,r) x {t}, we conclude from Theorem 23 that

|B;(y,r); = Csr".
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For any point z with dr (g, z) = r, we consider a geodesic y connecting ¢ and z. We claim
that forany t € [T — C5r2, T + C5r2], di(q,z) < Cer, where Cg = 8(C4C5)_1. Otherwise,
we take a maximal set {y,-}lN: | C vy such that B;(y;, r) are mutually disjoint. In particular,

it implies that { B;(y;, 2r)} covers y. Then it is easy to see C¢r < 4Nr and hence N > %.
However, it follows from (57) that

N N
1z/wd%22/ wdV; =) Car™[B,(yi, 1)l = NC4Cs = 2,
B
i=1

1 (yi.r) i=1

which is a contradiction. Now we set ¢g = ¢5(2C¢) 2 and claim that d,(y, z) > (2C¢)~"!r
foranyt € [T — cer?, T + cer?]. Otherwise, we can find a time 7 € [T — cer2, T + cer?]
such that d;(y, z) = (2C¢)~1r. Since cer? = ¢5(2C¢)~2r2, the argument before shows that
r =dr(q,z) < Cedi(q, z) = r/2 and this is impossible.

Therefore, by choosing ¥ = max{cy 1, 2C¢}, the conclusion follows. O

Now we prove that H has the exponential decay in the integral sense.
Theorem 19 For any Ricci shrinker (M™, p, g, f) € M,(A),0 <8 <1, D > lande > 0,

there exists a constant C = C(n, A, §, D, €) > 1 such that

f H(x.1.y.5)dVy(y) < Ce ( (”‘1)2)
X, 0, Yy,8 Ky = X —_——
M\ By (x,r/1—s) Y Y P 4(1 +€)

for any pointx € M, t € [, 1=35], di(p,x)+Jt—s < Dandr > 1.

Proof It follows from Theorem (14) with o = ¢ that

1
(/ Hx.1, y,s)dvs(y>> (f Hx.1, y,s>dvs<y)>
By (x,/1=5) M\ By (x,r/T—5)

< Vi 213
<o (7o) o

for any r > 1. So we only need to prove the first integral to be bounded below.

Theorem 18 shows that there exists a constant Y = Y (n, A, §, D) > 1 such that for any y
with dg (x, y) < 4/t —s, we have d;(x, y) < Y4/t — s. Therefore, it follows from Theorem
17 that

H(x,t,y,s)>C(t—s)""?

for any y with dg (x, y) < /t —s.
It implies that

/ H(x, 1, y,8)dVs(y) = C(t — ) "By (x VT=9)ls = C
Bg(x,/t—5)

where we have used the fact that R is locally bounded. O

As we have proved that all distance functions to the base point p are comparable, we
prove the following weaker upper bound.

Theorem 20 For any Ricci shrinker (M", p, g, f) € My(A), x € M ands <t < 1, there
exist constants C = C(n, A, x,t,s) > landc = c(n, A, x, t,s) > 0 such that

H(x,t,y,s) < Ce—cd5(P.y)
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Proof Fixs <t < 1 and x and we require that all constants in the proof depend on n, x, s, ¢
and A. Notice that since s and ¢ are fixed, f is comparable to dg (p,-) by Lemma 1.
For an € > 0 to be chosen later, we have from the semigroup property

H(x,t,y,S):/H(x,t,z,l)H(z,l,y,S)de(z)

/ H(x,t,z,)H(z,1,y,5)dVi(z)
do(p,z)=edo(p,y)

+/ H(x, 1,2, DH(, 1Ly, s)dVi@) =1 +11
do(p.z)<edo(p.y)

where [ = ‘Tﬂ

Now from Theorem 19
I=/ Hx,t,z,)H(z,l,y,s)dVi(z)
do(p,z)=€do(p.y)
< / H(x,1,2,1)dV)(z) < Coe™ 1<%, (214)
do(p.2)=edo(p.y)
Note that here we can always assume that edy(p, y) is large.

We choose ¢ which is identical 1 on Bj(p, caedo(p,y)) and supported on
Bi(p,2c2edo(p, y)) where we choose ¢, that Bo(p, edo(p, y)) C Bi(p, c2edo(p, y)).

If we set w = W, there are ¢3 and ¢4 that for any z € M
c3e“Ch PNz 1) = ¢ (2). (215)
Now, we have
II:/ H(x,t,z,l)H(z,l,y,s)dVl(z)565[ H(z,l,y,5)dVi(z)
Bo(p.edo(p.y)) Bi(p,caedo(p,y))

<ocs f H( Ly, )¢() dVi(z) < ceC D Py, ),

where ¢ = cs5c3 and the last inequality follows from Lemma 8. Indeed, if we consider
m(u,s) = f H(z,l,u,s)¢(z)dV(z), then it follows from (215) and Lemma 8 that

m(u,s) < C3e"4€2d§(1”y)w(u, s) (216)

forany u € M and s < /. In particular, (216) holds if u = y.
By the definition of w,

) 8
w(y,s) < C7e—csdo(177}')_
Hence,

11 < 6967(6'876462)613(%)’). (217)
If we choose € = /2%, it follows from (214) and (217) that

H(x,1,y,5) < Ce=cd (),
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8 Differential Harnack inequality on Ricci shrinkers

In this subsection, we prove that Perelman’s differential Harnack inequality holds on Ricci
shrinkers.

For any Ricci shrinker (M", g, f), we fix a point ¢ € M and atime 7' < 1. Moreover,
we set

o—bx.)
,H)=H(q,T,x,t) = —— 218
wee ) =Hg.Tox0 = o (218)
andt =T —1t.
We first prove
Lemma 21 For any r such that ¢" = 1 on an open neighborhood of (q, T),
n
li bwo" dV, = —. 219
tl/rr;f wé dV, = 3 (219

Proof We set K, = supp¢” (1M x [T — 1, T]. Since we only care about the integral on
the compact set K, when ¢ is sufficiently close to 7', we can assume that the distances on
different time slices from ¢ to T are uniformly comparable. Now all constants C’s in the rest
of the proof depend on ¢, T', i and the geometry on K,. In particular, they are independent
of 7.

Now we have from Theorem 19 that

/ w(x, HdV, < Ce 42, (220)
di(q.x)=2AT

Moreover, from Theorem 17,

2
b(x.1) < C (1 + M) (221)

for (x, 1) € K,.
Now we set d; = d;(q, x), then for any A > 1, we have

bwdV; < C/ w + r_ldtzde, < Ce_A2/2
K, N{d;>2A/7}

—I—C‘L'_lf d*wdV;.
K, N{d,>2A/T}

/I;rﬂ{dt>2/4ﬁ}

Now we have

oo

/ diwdV, =) /
LN{d;>2A/7T} 1 Y KNk AT <d, <241 A /T

o0
<) Ak / wdV,

K, N2k AJT<d, <2k A /T)

d*wav,

k=1
o0

< Z 22k+2A26722k‘3A2r'
k=1
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Therefore, we conclude that

bwe’ dV, < f bwdV; < n(A) (222)

/Km[d,zzAﬁ] K N{dy =247}

where n(A) — 0if A — +oo0.
In addition, it follows from Theorem 15 that b(x, ) > w and hence

bwg" dV, > p / wdV, > —Ce= A2 (223)

/K,ﬂ{drzzAﬁ} K, N{d;>2A/7)

where the last inequality is from (220).

The inequalities (222) and (223) indicates that the integral f bw¢" dV; is concentrated
on the scale /.

We take asequence 7; — Oandsetg; () = ri_lg(T—rit) andw; (-, t) = Tl."/zw(-, T —1;t).
Then we have

dw; = Ajw; — Rjw,

where A; and R; are with respect to g;.

Since g; is a blow-up sequence for the metric g and K, has bounded geometry, it is easy
to show that (M, g;, ¢) subconverges to (R", gg,0) and w; converges a positive smooth
function ws, on R” x (0, 00) such that

O Woo = AgpWoo.

Now we can show as (55) that wq is in fact a fundamental solution of the heat equation
on the Euclidean space. Moreover it is easy to see by Fatou’s inequality that

/wwdxfl

for any time ¢ > 1. Now it follows from [22, Corollary 9.6] that w is the heat kernel based
at 0, that is,

_k2
e 4
woo(x, t) = W
From the smooth convergence,
)y LR
. lx|© e 4
lim bwdVr_y = — dx. (224)

i—>00 JK, N{dr_r; <2AT) <24 4 (4m)n/

By direct computations,

x|

2
|x|2 e~ % n

T ann =y

Therefore, it is straightforward from (222), (223) and the fact that ¢" is equal to 1 on a
neighborhood of (g, T') that

n

li " ==
tl/n}/bwq) A >
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Remark 4 The same proof of Lemma 21 shows that if « is a bounded smooth function on
M x [T — 1, T], then

n
li bwu¢” dV, = = 7). 225
tl/n} wud” dVy 2u(q, ) (225)

Now we setd = dr(q, -), it follows from (203) that

e ¢l #—csz
Hg, T,x,t) > C————. (226)
T2
In terms of b, we have
d2
bx,t) <ci— 4+ tF(x,T) +c3 (227)
T

We denote K; = {r < F(-,t) < 2r}, then we have

Lemma 22 There exist constants Co and C| which depend only on u, q and T such that

T
/ / |blwdV, dt < Cy (228)
T-1JK]
foranyr > Cjy.
Proof From Lemma 1, there exists C; > 0 such that for any x € K] where t € [T — 1, T1,
1
$4 (P, X) < Fx,0) < d(p,x)

if r > Cj.
It follows from (227) that |b| < —p + ¢ d72 + ¢2. So we only need to estimate

T
f / d*wdV, dt. (229)
T—1JK!

Now it follows from the definition of ¢" that K] C {csr < d? < csr}if Cy is sufficiently
large, therefore

T T T ear
/ / dPwdV, dt < c/ rf wdV, dt §C/ re~ % dt < Co.  (230)
T—1JK! T—-1 f T—1

Note that here we have used (220). m]
Now we have the following spacetime integral estimate.

Lemma 23
T—e
/ /(lVb|2+R)de, dt < Cloge™", (231)
T—-1

where C depends only on ., n,q and T.

Proof From the evolution equation

ohw = —Aw + Rw, (232)
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we immediately have
b= —Ab+|Vb]> — R + 21 (233)
T

From an elementary computation,
0 / wbe” dV;
= / (brwe” + bw;p” + bwe] — bwe’ R) dV,
= / (—Ab + VB2 — R+ 2"—) wd’ — bAwe” + bwg! dV,
= /(Vb, V(wg") + (Vw, V(b)) + |Vb|*we" — Rwe” + bwe! + zn—rwdfdvt

= /(Vb, Vo Yw + (Vw, V' )b — (IVb|> + R)wd” + bwe) + %wq&’ dv,, (234)

where we have used Vw = —wVb.
On the one hand we have,

/(vzo, Vo' waV, s/|Vb||V¢f|wdvt
1 s V' |*
< - [ VbPwe av, + | ==L wav,. (235)
4 ¢r
On the other hand

ow,qu’)bdw s/|Vw||V¢r|bdvf =/|Vb||V¢’|wbdv,

< i/|Vb|2w¢rdV,+/ W(f:'szde,. (236)
Now (234) becomes
; / wbe" dV, < —% /(|Vb|2 + Rwe¢"dV, + X + % (237)
where

\V4 r2 \V4 r2
X=fbw¢;—| :Z" w— (;fr' b*wdVv;.
Integrate (237) from T — 1 to T — €, we have

T—e
%f /(IVb|2+R)w¢’dv, dt < (/ wb¢’dV,)
T—1

T-1

n glog(l LY (238

T—e
where
T—e¢ r2 r2
\% \%
Y:/ /bw¢;—| ¢r|w—| ¢r|b2wdv,dt.
7-1 ¢ ¢
At the time T — 1, since b = —logw — %log47r, we have

/wbqbrdVT_l - / w (—logw — glog4n) ¢ dVr_, <C (239)
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where the last inequality can be seen from Theorem 20.

Moverover,
/ wb¢" dVr—e > IL/WV dVr_y = p. (240)
Now it follows from Theorem 20 and Lemma 2 that
lim [Y]| =0. (241)
r—00
So if we let r — oo in (238), the proof is complete. O

From Lemma 23, we have

Lemma 24 There exist a sequence t; — 0 and a constant C > 0 such that
Tj f(IVbI2 + RwdVr_y; <C. (242)

Proof 1If the conclusion does not hold, we can find a function C (t) such that lim; o C(7) =
+o00 and

C
/(IVbI2 T+ RwdVy— = S (243)
T
But it obviously contradicts Lemma 23 if € is sufficiently small. O
Lemma25 Forany 6 > 0,
T
f fre(lvln2 + RywdV,dt < 0. (244)
T—1

Proof It follows from Lemma 23 that

T
/ / (IVb1? + Ryw dV, dt
T—-1

00 T2k
:Z/ /r9(|Vb|2+R)detdt
T

k=0 T—27*
00 T—27k1

< 22—0’</ /(|Vb|2+R)de,dt
k=0 -1

20k log PR

M2

=

k=0

[m}

Now we fix a nonnegative function u on the time slice T — 1 such that \/u smooth and
compactly supported. We denote by the same u as its heat equation solution.
Then we have

Lemma 26 There exists a constant C > 0 such that

|Vul|?
<

C
u

on M x [T —1,T].
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Proof The conclusion follows directly from

Vul? 2 du ® du|?
D' ul = —— Hessu—m
u

u

and Theorem 6. Note that the assumption in Theorem 6 can be checked similarly as Lemma
9 O

We also need the following lemma, whose proof is similar to Lemma 4.

Lemma 27 There exists a constant C > 0 such that

T
/ /IHessFlzde, dt < C. (245)
T-1

Proof From the evolution equation LJ|V F |2 = —2|Hess F|?, we have
a / IVF|Pw¢" dV, = /(A|VF|2 — 2[Hess F|H)wg" — |VF|?Awg” + |VF*we! dV;.
Integrate above from 7 — 1 to 7', we get

T
/ /2|Hess Fl>w¢" dV; dt
T—1
T

T
5/ /—2(V|VF|2,V¢’>w+|VF|2wD¢fdv,dt— </|VF|2w¢’dV,>
T-1

T
5/ /IHessF\2w¢r+4|VF|
T-1

From (37) and (40), there exists a constant C independent of r such that

,
wrpYol (‘f ® L vEPIOS | < .

T—1
Ve’ 2 !
2 o L w+ |VFPwOe dV, dt — (/|VF|2w¢’dv,>

T-1

Therefore,

T
/ [ |Hess F|>w¢” dV; dt < C.
T—1
Now the lemma follows by taking r — oo. O
With the same proof, we have

Lemma 28 There exists a constant C > 0 such that

T
/ /IHessulzdetdt <C.
T—1

v=(t(2Ab— VB> + R) +b—n)w

As before, we set

and therefore
2
v =—Av+ Rv+2t Rc—i—Hessb—zi‘ w. (246)
T

Now we prove
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Lemma 29 There exist a sequence t; — 0 and a constant C > O independent of r and i such
that

/vmp’dvpn <cC.

Proof From integration by parts, we have

/ vug" dV, = / (t2Ab — |Vb|*> + R) + b — n) wu¢” dV,
= / —27(Vb, Vw)ug" — 2t(Vb, Vu)we" —2t(Vb, V¢ Ywu dV;
+ / (t(R = |Vb|*) +b —n)wug” dV,
= / (t(IVBI> + R) + b — n) wu¢” — 2t(Vb, Vu)wg" — 2t(Vb, Ve )wu dV;.
In addition,
/ —2t(Vb, Vu)wep" — 21(Vb, V¢ Ywu dV,

< /27:|Vb||Vu|w¢r +2t|Vbh| |V |lwu dV;

\v4 2 \V/ r2
< T/2|Vb|2wug/>’+ [Vl pr 4 VO
u

wu dV;.

-
Now the conclusion follows immediately from Lemmas 21, 24 and 26. O
We are now ready to estimate the squared term in (246).

Lemma 30

T g 2
/ /r’Rc—i—Hessb——‘ wudV;dt < 00.
7-1 2t

Proof We denote A = 2t |Rc + Hess b — 257 |2 w. By computations,
8t/vu¢>rth :/v,uqbr + vu;¢" + uvg] — Ruve” dV;
= / —Avud” + Au¢p” + Auvg” + uvg; dV,
= /uv[lq&’ —2v(V¢", Vu) + Aug” dV;.
Now we have
/ude)rdV,
= / (t(24b — VB> + R) + b — n) wull¢" dV,
= / —2t(Vb, Vw)ull¢" — 27(Vbh, Vu)wlep" — 2t (Vb, V¢ Yuw dV,

+ / (t(R = |Vb|*) + b — n) wullp" dV,
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= / (t(IVBI* + R) + b — n) wullg" dV,

-2t /(Vb, Vu)wOe” + (Vb, VO Yuw dV;. (247)
For the last integral,
zf(w; VuwywOe” dV, 52/|Vb||Vu|w|I:l¢ |dV, < /lVb|2w (= |+| ”' w|O¢" | dV,
and

2/(%, VO YuwdV, < 2/ |Vb||VO luw d V, 5/ IVb|Pwu + |[VO@" Puw dV,.
K/

By the explicit expression (¢" = —nr~'n//2 — r=21" |V F|?, we have
|VOg" | = |—nr*2VFn”/2 - r*3n”’VF|VF| —2r %y Hess F(VF)|
< Cr2|VF| (1 + |Hess F| +r ' |[VF|?).

In addition,
/v(Vd)’,Vu)dV,
= / (t(2Ab — |Vb]* + R) +b —n) w(V¢", Vu)dV,
= / —2t(Vb,Vw){(V¢", Vu) — 2tHess ¢" (Vb, Vu)w — 2tHess u(Vb, Vo Yw dV;
+ / (t(R = |Vb*) + b —n) w(Ve", Vu)dV,
= / (‘c(|Vb|2 4+ R)+b—n)w(Ve", Vu)dV; — 2tHess ¢" (Vb, Vu)w
— 2tHessu(Vb, Vo Hw dV;.

To estimate the last two terms, since |Vu/| is uniformly bounded,

/Hess¢’(Vb, VuywdV; 5/|Hess¢’||vm|w|wdv, < cf [Vb|>w + [Hess ¢ [*w d V.
Kf

Note that we have
Hess¢"| = |[r2n"F;Fj +r 'n'Hess F| < Cr™' (|Hess F| +r~'|VF|?)
and

fHessu(Vb, Vo wdV, §/|Hessu||Vb||V¢’|de, < Cr—%f |Vb 2w + [Hess u|?w d V.
K}

Now we integrate (247) from T — 1to T — 1,

T—1;
f /Au¢)rdV,
T—

< (/ Uu(b dV,)

T—1;
f / Vb2 wu|O¢" |+| uf? w0 | + |Vb|Pwu dV, dt
T—

T—1 T—1;
/ / (VB> + R) + b —n) w(Ve", Vu) —ull¢") dV, dt
T—
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T—1;
+Cr’4/ r/ IVF|* (1 + [Hess FI* + r 2|VF[* uwdV, dt
T—1 ’

T—1;
+c/ r/ |Vb|>w + |Hess u|*w dV, dt
T—1 H

T—1;
+Cr*2/ 1:/ (IHess FI> +r2|VF[*) waV, dt.
T—1 ’

Therefore,

T—T,'

/ Aug” dV,
T-1

< (foe)

T
+/ r/ Cr= (IVbPw + w) + |Vb*w dV, dt
T-1 ’

T—r1; T
+Cr—%f / (x(Vb + R) + |b| + n) wdV, di
T—1 T-1JK;

T
+Cr*2/ r/ (1 + [Hess F|*) uw dV; dt
T—1 r
T
+c/ rf |Vb|*w + [Hess u|>w dV; dt (248)
T—1 T

For a fixed i, from Theorem 20, Lemmas 4, 25, 26 and 27, we have by taking r — oo that

T—1; T—1; T—v
/AudV, = lim /Au¢’ dV, = lim <[ vud)’d%) <C, (249
T—1 r—oo Jr_q r—00 T_1
where the last inequality follows from Lemma 29.
Now the lemma follows from (249) by taking i — oo. O

A consequence of Lemma 30 is

Lemma 31 There exists a sequence tj — O such that

2 3
lim tjz‘Rc+Hessb—2£‘ wu+tj2|Vb|2det:0.
T

j—00
Proof Tt follows from Lemmas 30 and 25 that
g g 2 ! 2
/ /t‘Rc—kHessb——’ wu + 12 |Vbh|*wdV, < oo.
T-1 27
Now the conclusion is obvious. ]

Note that the sequence 7; may not be the same sequence 7; in Lemma 24.
Finally, we can prove Perelman’s differential Harnack inequality.

Theorem 21

T2Ab — |V + R)+b—n < 0.
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Proof As T — 1 can be any time S < T, we just need to provev <0on T — 1.
For the chosen 7; obtained in Lemma 31, we have

/vuqbr dVr_q;
_ / (tj2Ab — [VBP + R) +b — n) wue dVr_o,
- / 7;(Ab+ R — Zi)wmp’ — 1 (Vb, Vu)ywg' dVr_,
Tj ’

+ / —7;{Vb, Vo Yuw + (b — %)wuq{)’ dVT_fj. (250)
On the one hand,

/ 7 (Ab + R — ——)ywu¢" dVr_.,
Z‘Ej /

1

g 2 % 2
<71 (/’Rc—i—Hessb——‘ wudVT,f.) <fwudVT,f,>
2t J J

1

2 g 2 2
§C(/rj ’Rc—l—Hessb——‘ wudVT_,) . (251)
2T J
On the other hand,

/ —7;(Vb, Vu)wo" — 7;(Vb, V¢")uw dVr -,

1 1

3 2 1 2
< CTj/|Vb|deT_Tj <C </ ‘L'j2|Vb|2dVT—Tj) (/ ‘rjzdeT_Tj)

= cff (/ rj%|Vb|2dVT_,j)2. (252)
In addition, it follows from Lemma 21 and Remark 4 that
f b — %)wuqﬁr dVr_g; =0. (253)
Combining (251), (252) and (253), it follows immediately from Lemmas 31 and 21 that
llingo vug” dVr—r; =0.

Now we consider (248), with 7; replaced by 7;, and let j — oo.

f vuqbr dVTfl

1

[S7]

T
SCr_/ /(T(|Vb|2+R)+|b|+n)de,dt
T—1JK]
T
+/ r/ Cr (Vb PPw + w) + |Vb*wdV; dt
T—1 T
T
+Cr*2/ r/ (1 + [Hess F|*) uw dV, dt
T—1 T
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T
+c/ r/ |Vb|>w + [Hess u|*w dV, dt.
T—1 T

It is easy to see all integrals above converge to zero if r — 0o, by Lemmas 22, 26, 27 and
28. Therefore,

/ vu dVT,1 <0.
By the arbitrary choice of # at T — 1, we have proved that v < 0. O

Remark 5 Note that as in Perelman’s paper [46], Theorem 16 is a corollary of Theorem 21.
Our proof of Theorem 21 is different from most literature, for instance [11,44], in that we do
not need a pointwise gradient estimate of the conjugate heat kernel, see [44, Lemma 2.2].

Remark 6 The proof of Theorem 21 shows the following identity. Forany S < T < 1,

T 2
/vust=—/ /.ZWL"RC—i—Hessb—zi wudV; dt.
S T

9 The no-local-collapsing theorems
We need to use the local entropy in [53]. Let us first recall some notations. Let £2 be a domain
in M. Then we define (cf. (91) and (92) and Sect. 2 of [53]):
1(82, g, v):=inf {W(g, u, 7) |u € WS3(M), u is supported on £2 } , (254)
(2,8, 0= inf p(2,g,9). (255)
s€(0,7)

When the meaning is clear in the context, the metric g may be dropped. Note that if £2 does
not appear, it means the default set is M. We shall exploit the argument in [53] to obtain
volume ratio estimate.

Theorem 22 Suppose (M", g, f) is a Ricci shrinker and B = B(x,r) C M is a geodesic
ball with R < A, then we have

FB| > et A (256)
for some ¢ = c(n) > 0. Ifr € (0, 1), then (256) can be improved to
FB| > ¢ et A (257)
Proof We first show (256). By Theorem 3.3 of [53], we know that
FB| > c(n)e” B4, (258)

where v(B, r2) is the local v-functional of B on the scale 2. Since (M, g) is a Ricci shrinker,
it follows from (6) in Theorem 1 that

v(B.r?) = v(M,r?) = inf w(M.,g.1)=p (259)
€(0,r?)

T

If ¥ € (0, 1), then 2 € (0, 1). By the monotonicity in Theorem 1, the above inequality can
be written as

v(B,r%) > (g, r?). (260)
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Therefore, we obtain (256) and (257), after we plugging (259) and (260) into (258) respec-
tively. O

Theorem 23 Suppose (M", g, f) is a Ricci shrinker and B = B(q,r) C M is a geodesic
ball with R < A, then we have

FMB| > ¢ et (1 + Ar?)73. 261)

Proof Choose pg € [0, r] such that iﬁ)f | s~ "|B(q, s)| is achieved at py. There are two cases
sel0,r

po = 0 and pp > 0, which we shall discuss separately.
Case 1 po = 0.
In this case, we have

|B(q,r)| = wpr", (262)
where wj, is the volume of the unit Euclidean ball. Actually, it is not hard to observe that
n=<0. (263)

Lett — 01, itis clear that (M", p, 7~ 'g) converges to (R”, 0, gg) in the Cheeger—Gromov
sense. By Lemma 3.2 of [36], we have

limsup u(g, t) = lim supﬂ,(r_lg, 1) < p(ge,1)=0. (264)

=07t =0t

As (g, 7)isdecreasing on (0, 1) by Lemma 15, then (263) follows from the above inequality.
Consequently, (261) follows from the combination of (262) and (263).
Case 2 pg > 0.

We choose a nonincreasing smooth function 7 on R such that n = 1 on (—o0, 1/2] and 0
on [1, 00). We also define u(x) = n(“4*)). From (156) in Corollary 4, we obtain

21

Bl /DI = e [ aivul + R av

<Ce <p0—2|3(q,r)| +/Ru2dV)
e
< Ce 7w py (1 + ArH)|B(q. po)|

where the last inequality follows from R < A < Ar? 0o 2, According to the choice of pp,
we obtain

|B(q. po/2)| = 27"B(q, po)I-
Combining the previous two steps yields that
|B(q. po)| = 2"|B(q. po/2)| = Cet (1 + Ar) "2 pf.

Recall that r"|B(q, )| > py "|B(q, po)| by our choice of py. Therefore, (261) follows
directly from the above inequality. O

Remark 7 Theorem 23 indicates that any Ricci shrinker is «-noncollapsed for some positive
constant « which depends only on the dimension » and the lower bound of u.
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Note that Theorem 22 is based on the Logarithmic Sobolev inequality, and Theorem 23
relies on the Sobolev inequality. Each of Theorems 22 and 23 has its own advantage and
will be used in the remainder of the section. Bascially, Theorem 22 is sharper when r is very
small and Theorem 23 is more accurate in the situation when Ar? is large.

Using the Sobolev constant estimate in Corollary 4, we can further improve Theorem 6.1
of [41] stating that for any noncompact Ricci shrinker, the volume increases at least linearly.

Proposition 6 For any noncompact Ricci shrinker (M", p, g, f), there exist big positive
constant ry = ro(n) and small positive constant €g = €o(n) such that

|B(p,r)| = egetr, Vr=ry. (265)

Proof Similar to the proof of Lemma 2, we follow the notation of [41] to denote
_2f D(r)={xeM|p<r}, A(s,r)=DFr)\D(s);

V(r):=ID(r)l, x(r):zf RAV.
D(r)

From Lemma 1, V(r) is almost the volume of geodesic ball B(p, r), with the advantage
that the estimate of V (r) is relatively easier than the estimate of | B(p, r)|. Actually, by Egs.
(6.24) and (6.25) of [41], we know that

Vie+1) <2V(Q@), (266)

Vi+1) = V@) < CIQ (267)

whenever ¢t > C; for some dimensional constant C; = Cj(n). Now we define
ro:=max{100n, 10C}. (268)
Therefore, in order to prove (265), it suffices to show that
V(r) = eoefr, Vr=ro, (269)

where €y = €g(n) will be determined later.
We shall prove (269) by a contradiction argument. If (269) were wrong, then there exists
an r > 2rg such that V (r) < €ge*r for €j to be determined later, we claim that

V(tn) <2€0e"ty, tw=r+m, VYmeN. (270)

Indeed, by our assumption the case m = 0 is true. We assume that the conclusion is true for
allm =0,1,2,...,k and proceed to show it holds form = k + 1.
For any ¢ > ry, we define

1 on A(t,t+1),

t+2—px) on A(t+ 1,1+ 2),
u(x):=

px)y—(@—=1) on A@—1,1),

0 otherwise.

Let t = t,, and plug the above u into the Sobolev inequality (156). We obtain

n=2 _2n
A, )| 7 < Cze™ n (|Alm—1, )| + [AGma1s tmr2) | + X Gna2) — X (tn=1))
271)
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for some C3 = C3(n). For 0 < m < k, it follows from our induction assumption and (267)
that

V(tm)

m

|ACtn, tmy )] =V (tms1) = Vitm) = C <2Ciepe’. (272)

Summing (271) from m = 0 to m = k, we have

k k
n=2 2
D A twrDl T < Cze™ 7 Y (Alm—1s t)| + |Altmg1s i) + X (tng2) — X (tm—1))

m=0 m=0

o
<3Cze” 7 (JA(-1, i) + X (tr42)) -

Recall that x (t) < 5V (t) by (3.4) of [9]. Plugging this fact into the above inequality yields
that

‘ n=2 o n 2
> 1Al tws )T = 3C3e™ % (Vi) + 5V (042)) = Cae™ F Vi), 273)

m=0
where C4 = (6 + 3n)C3 = C4(n). Now we choose
€:=(2C) ' 2Cy) ", (274)
Clearly, g = €p(n). Then it follows from (272) that

_2n n=2
2C4e” 7 [Atm, tmyr D] S VAW, tr D17, Ym e {1,2, ..., k}.
It is clear from (273) that
2 _ 2
2C4e” 7 (V(tkr1) — V() < Cae™ 7 V(tiy1)
and hence
V(teg1) <2V (r) < 2€0etr < 2epe’ty41.

Therefore, the induction is complete and (270) is proved. By the arbitrary choice of m,
the total volume of the Ricci shrinker is finite, which contradicts Lemma 6.2 of [41](See
also Theorem 3.1 of [7] by Cao—Zhu). Therefore, the proof of (269) is established by this
contradiction. Consequently, (265) holds by Lemma 1. Note that ¢ and €y are defined in
(268) and (274). Both of them can be calculated explicitly. ]

Remark 8 In [41, Theorem 6.1], the authors have obtained a weaker lower bound
|B(p,r)| = CeFr
for two constants C > 0 and ¢ > 1 depending only on 7.
We are now ready to prove the improved no-local-collapsing, i.e., Theorem 2.
Proof of Theorem 2 Tt follows from Lemma 2 and Proposition 6 that
eor < |B(p,r)le”* <Cr".

By Lemma 12, we know e*|B(p, 1)|~! is uniformly bounded from above and from below.
Multiplying each term of the above inequality by e*|B(p, 1)|~! and adjusting C if necessary,
we arrive at

Lo _1BoOl _ (o

C ~|B(p,q)| ~

’
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which is nothing but (9a). We proceed to prove (9b). Recall that ¢ € dB(p,r) and p €
(0, 7=1) for some r > 1. Triangle inequality implies that

B(q, p) C B(p,2r).

It follows from Lemma 1 that f < Cr? for some C = C(n) on B(p, 2r). Since R+ |V f|> =
f and R > 0, it follows that R < Cr? on B(p, 2r). In particular, we have R,o2 <Rr?<
C(n) on B(q, p). Consequently, we can apply Theorem 23 on the ball B(g, p) to obtain (9b).

O

10 The pseudolocality theorems

In this section, we prove the pseudo-locality theorems on Ricci shrinker and discuss their
applications.

Based on the Harnack estimate, following a classical point-picking, or maximum principle
argument, we are able to obtain the following pseudo-locality theorem.

Theorem 24 There exist positive numbers €y = €g(n) and 8o = do(n) with the following
properties.

Let{(M", g(t)), —oo < t < 1} bethe Ricci flow induced from a Ricci shrinker (M", p, g).
Suppose ty € (—00, 1) and By (1y)(x,r) C M is a geodesic ball satisfying

v(By() (X, 1), g(t0), %) > . (275)

Then for each t € (tg, min{ty + egrz, 1}) and y € Bg(1)(x, 0.5r), we have

IRm|(y, 1) < (t — 1) (276a)
1

inf By, p)lp" > =wn. 276b

o _r_r0| s olp™" 2 sw (276b)

The statement in Theorem 24 is a slight improvement of Theorem 10.1 of [46]. The basic
idea of the proof is already contained in Propositions 3.1 and 3.2 of Tian—Wang [51]. Note
that the isoperimetric constant estimate in Peleman’s statement is only used to (cf. Lemma
3.5 of [53]) estimate the local entropy (i.e., (254) and (255)) v(Byg () (x, 1), g(t0), r2). The
statement (275) seems to be more straightforward. The conclusion (276) follows from a
standard point-picking argument, whenever the differential Harnack estimate, i.e., Theorem
21 holds. More details can be found in [32, Sect. 30], [11, Sect. 8], [19, Chapter 21], or [54].

As Ricci shrinker Ricci flows are self-similar, we can improve the estimate (276) by the
following property.

Theorem 25 Suppose (M", p, g, f) is a Ricci shrinker, B = B(q,r) C M is a geodesic
ball satisfying

v(B.g.r%) > —d. 275)
Then we have

sup  |Rm|(x) < max{l,eyDr} - (eor) 2, (276)
x€B(q,0.5¢pr)

where D = d(p, q) + +/2n.
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Proof of Theorem 25 We fix & < ¢( a small positive number, whose value will be determined
later (i.e., (281)). We set

- €M% =09, D:=d(p,q)+~2n, 277)
where y/* is the diffeormorphism (i.e., (15)) generated by %
Claim By choosing & properly, we have

d(q,§) < %r (278)

By (15) and (2), along the flow line v¥/*(¢) where s goes from ¢ to 0, we compute
0 S S(H
M%®S/IVTWﬁDd</’vT¢?DM. 279)
] — _

From the definition of *, we have

d - _ VPO @) _ fr@)
gy = V@) JW@)
ds 1—s 1—s

For each s > = —(&r)?, the integration of the above inequality yields that

1— 1—¢ 1— D2
FO @) = — Lt @) = S < L2
—s 1-— 1— 4

where we applied (30) in the last step. Therefore, it follows from (279) that

0
d(g.q) < DV1 —z/ %(1 —5) 32 ds = D(«/l - 1).
t

Plugging the fact that 1 = —(&r)? into the above inequality, we arrive at

dq.9 =D (Vi+@Er?-1). (280)

Now we define & as follows.

€0, if Dr < e(;l; -
§i= % if Dr > 60_1. (281)
Therefore, if Dr < ¢, l, it follows from (280) that
D 2

ag, ) = D (V1 ¥ rp —1) = 2 LA

If Dr > €, ', it also follows from (280) that
- B D 2 €or

dq. 9 =D (Vi+Er?—1) = =@ =3

Therefore, no matter what the value of r is, we always have (278). The proof of the Claim is

complete.
We proceed to prove (276). Since g(t) = (1 — t)(")*g, it is clear that

! (B, (q, «/ﬁr)) — B(q.r).
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It follows from the scaling property of v that
v (Boay (3. VT=1r) . g0, (1 = r?) = v(B, .17 > ~.

Therefore, we can apply Theorem 24. For each s € (¢, min{r + (€or)?, 1}] and x €
By(5)(q, 0.5r), we have

IRml(x, s) < (s —0)7"; (284a)
1

inf  [Byo(x, p)l0™" > ~wp. 284b

o _H| s Plp™ 2 5 (284b)

In particular, we can choose s = 0. Since g = g(0), for each x € B(g, 0.5r), we obtain

[Rml(x) < (¢r)7%; (285a)
. N 1
ns
0<1/r}<f§rlBg(x,p)lp 2 5 Wn- (285b)
Note that B(g, 0.5¢or) € B(q, eor) C B(q, 0.5r) by (278). Plugging (281) into (285a),
we obtain (276). ]

Now we apply Theorems 24 and 25 to study the geometric properties of (M, g) in terms
of w. In particular, we are ready to finish the proof of Theorem 3.

Proof of Theorem 3 We divide the proof into several steps.

Step 1 The gap property (10) holds.
It suffices to show that p > —§¢ implies that (M, g) is isometric to the Euclidean space.
Following directly from its definition, as B(x, r) C M, itis clear that

v(B(x,r), 8. 1%) = v(M, g, ") = v(g,r?).
Combining the above inequality with the optimal Logarithmic Sobolev inequality, we obtain
v(B(x,7), 8,17 > . (286)

Therefore, if u > —§p, then each ball B(x, r) will satisfy the condition (275). By choosing
r >> D, we can apply (276) to obtain that

|Rm|(x) < €oDr - (eor) > = Dej 'r ™"

Let r — oo, we obtain that |Rm|(x) = 0. By the arbitrary choice of x, we obtain that

[Rm| = 0. In particular, Rc = 0. Then the Ricci shrinker equation implies that f;; = g%

Therefore, (M, g) is isometric to a metric cone which is also a smooth manifold. This forces

that (M, g) is isometric to the standard Euclidean space (R", gg). Thus, the proof of (10) is

complete.

Step 2 The inequality (12) and (13) imply the curvature and injectivity radius bound (14).
Recall that (10) means p(g, 1) < —38p. If (12) holds, by continuity and monotonicity of

(g, 1), it is clear that there exists some t € (0, 1) such that

IL(g7 T) = _80
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Then the 79 in (14) is well defined. Namely, 7 is the largest T € (0, 1) such that the above
equality holds. It follows from the definition of 7o and v that
v(g, 0) = p(g, T0) = —do. (287)

For each ball By () (x,r) C M, we know v(Bg(0)(x,7), g, 7o) > —Jo. In particular, we can
choose r = ,/79. Now we apply Theorem 24 on the time slice #p = 0, with scale /7o, to
obtain that

|[Rm|(x,1) <t™', VxeM, Vie(,er’]

In particular, we have

2_—1

sup |Rm|(x,e§to) <€ T -
xeM

Up to rescaling, since g(0) = g, we arrive atl

sup |[Rm|g(x) < eazr(;l(l —68‘[0) = 5621(;1 —-1< C(n)r(;l,
xeM

which is nothing but (14a). Plugging (287) into (257) of Theorem 22, we obtain that each

geodesic ball B(-, ,/79) has volume bounded below by c(n)roj. Therefore, the injectivity

radius estimate of Cheeger—Gromov—Taylor [13] applies and we atrive at (14b). The proof

of (14) is complete.

Step 3 The bounded geometry estimate (14) implies the equality (11), i.e., lir(r)1+ n(g,t)=0.
T—>

We shall argue in the way similar to that in Theorem 1.1 of [62], with more details on the
regularity estimate.
Assume otherwise that there exists a sequence 7; — 07 such that

lim (g, ) = foy < 0. (288)
1—>00

If we set g; = ti_lg, then all metrics g; have uniformly bounded geometry. More precisely,
there exist positive constants K and vg such that

[Rm;| < K7, (289a)
IB(q, )lg, = vor"(1 + T;Kr?) 2. (289b)

Notice that for any i, there exists a large domain

B;i= {x ’2\/? < } (290)
for some large r; >> 1 such that
R(Bi, g, 1) — p(gi, 1) = p(Bj, gi, 1) — p(g, w) < i (291)

The geometry bound (289) actually implies higher order derivatives of curvatures and /f
are also uniformly bounded (cf. Sect. 4 of [34]). Therefore, it is not hard to see that d B;
is smooth. All the covariant derivatives of second fundamental forms of 0 B; are bounded
independent of 7.

It follows from [48] that a minimizer u; of w(B;, gi, 1) exists. More precisely, u; €
W(} ’2(B,-) is a positive smooth function on B; satisfying the normalization condition

/ u?dvi =1 (292)
Bi
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and solve the Dirichlet problem

- 411,'14,' + R,‘M,‘ - 214,' log u; — /l,-u,- = O, in Bi; (2938.)
u=0, on OB, (293b)

Here dV;, A; and R; denote the volume form, Laplacian operator and scalar curvature with
respect to g; respectively. The number A; is defined by

n
Aii=n + 3 log(4m) + n(B;, gi, 1).

Recall that lim+ (g, ) < 0 by (264). Then it follows from (291) that A; is uniformly
7—0

bounded. Since curvature is uniformly bounded, the classical L2-Sobolev constant of (B;, g;)
is uniformly bounded. In light of (293), the Moser iteration then implies ||u; || co is uniformly
bounded, see [62, Lemma 2.1(a)] or the proof of Proposition 3.1 of [51]. Then it follows from
[23, Corollary 8.36] that ||u; ||C,< 1 ) are uniformly bounded. Since all d B; have uniformly
higher regularities, the bootstrappinlg, see [23, Theorem 6.19], shows that | u; ”Ck' 1 ) are
uniformly bounded for any k£ > 2. X

Let g; be a point where u; achieves maximum value in B;. By (293), at g; we have
Riu; —2u;logu; — diju; <0,

whence we derive

Ri — i
ui(gi) = exp 2 > ¢o (294)

for some uniform constant cg.

In light of (289) and the discussion below (291), we know that (M", ¢;, g;) subconverges
to Euclidean space (R”, 0, gg) in C*°-Cheeger—Gromov topology. The set B; converges to
a limit set Boo. If d(g;, dB;) — 00, then By, = R". Otherwise, by the estimate of second
fundamental form and its covariant derivatives, d B; converge to a smooth (n —1)-dimensional
set d Bxo. In light of the uniform bound of | u; IICk_ ! and the uniform regularity of 9 B;, by

taking subsequence if necessary, we can assume that u; converges in smooth topology to a
smooth function u, € C*°(By). Furthermore, un, = 0 on 0 Bo.
In view of (294), the convergence process implies that

0<c?= / u2edVeo < 1. (295)
Boo
Furthermore, we have on B, that
—4 Ayl — oo l0gUoo — Aogltoo =0, (296)

where Ao = n + 5 log(4m) + poo. Let it = ¢ uge. Then wa #2dVs = 1. The above
equation becomes

—4Ag, il — 2iilogii — (n + glog(4n) + oo + 21ogc) i=0.
Since ¢ € (0, 1) by (295) and p,, < 0 by (288), then an integration by parts shows that

r(ge, 1) <W(ge, i, 1) = py +2loge < 0,

which is a contradiction. So we finish the proof of Step 3.
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Step 4 The three properties are equivalent.

By Step 2, it is clear that (¢) = (a). Then Step 3 means that (@) = (b). It is obvious that
(b) = (c). Therefore, we obtained the equivalence of properties (a), (b) and (c) in Theorem 3.
The proof of the Theorem is complete. O

Corollary 7 There exists a small positive number € = €(n) > 0 such that for any nonflat
Ricci shrinker (M", p, g, ), we have

dpou {(M", p,g), (R",0,gp)} > e. (297)

Proof We argue by contradiction.
If (297) were wrong, then we can have a sequence of nonflat Ricci shrinkers (M;, pi, gi)
such that

dpcu (M, pi, &), (R",0, gg)) — 0.

By Proposition 5.8 of [34], it is clear that u; = w(M;, p;, gi) is uniformly bounded from
below. Using Theorem 1.1 of [34], the above convergence can be improved to be in the
C°°-Cheeger—Gromov sense

(Mis Pi, gl) — (Rna 07 gE) .

It is not hard to see that u is continuous with respect to the above convergence (cf. Theorem
1.2(c) of [34]). Therefore, we have

wp = n(M;, pi,g) — p®R",0,gg) =0.

It follows that u; > —§& for large i. Therefore, each (M;, g;) is isometric to Euclidean space
by Theorem 3. This contradicts our choice of (M;, g;). The proof of (297) is established by
this contradiction. ]

Corollary 8 Let (M", g, f) be a Ricci shrinker and let g € M be a point such that
V(B(q, €5 1), 8, €5%) > —do.

Then there exist a positive constant C = C(n) such that

J(x)
JW(x)

forany x € B(q, %e_CDD_%) andt € [0, 1), where D = d(p, q) + ~/2n.

|Rm|(y'(x)) < CD(1 —1) <CD

Proof By the assumption, it follows from Theorem 24 by choosing r = €, ! that

—_—

[Rm|(x,1) < " (298)
forany 7 € (0, 1) and dg(1)(g, x) < %60_1. In addition, from Theorem 25 we have
|[Rm|(x) < D (299)

for any x € B(q, %). From (298), (299) and [15, Theorem 3.1] that there exist a positive
constant C = C(n) such that for any x € B;(q, %D_%),

|Rm|(x,1) < CD. (300)
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From (300), it is easy to see by comparing the distances that

1 —cpp-t 11
B\gq, 26 D72 ) C B q,zD 2 (301)

forany ¢ € [0, 1).
Therefore, for any x € B(q, %e‘CDD*%),

|Rm|(¢' (x)) = (1 — )| Rm|(x,1) < CD(1 —1). (302)
Along the flow line of ¥’ (x),
IV FI2(! (x)) - f@'(x)

d t
el = , 303
W) T (303)
and hence by solving the corresponding ODE,
(x)
F@'(x) < {7_t (304)
Combining (302) and (304), the conclusion follows. ]

Since f is almost %2 by Lemma 1, Corollary 8 shows that the curvature is quadratically

decaying along the flow line. Next we prove that if there exists a tubular neighborhoold
of some level set of f whose isoperimetric constant is almost Euclidean, then globally the
curvature is quadratically decaying.

Corollary 9 For any Ricc shrinker (M", g, f), if there exists an a > 0 such that for any
xe [,

V(B(x, 5 "), g.€5%) > —Bo,

then the curvature is quadratically decaying and each end has a unique smooth tangent cone

at infinity.

Proof We can assume that (M, f) is nonflat, otherwise there is nothing to prove. Now we
reparametrize ¥’ by defining for any s € (—00, 00)
5

&s — wl—e’ )

It is clear from the definition of v’ that
d 78 7.8
Elﬂ (x) = V@ ).

In other words, v/* is the one-parameter group of diffeomorphisms generated by V f. Now
we set

1 1
€] = €] (Cl, I’l) = §€7CD1 Dl 2,
where D = 2\/a +5n + +/2n + 4.
We claim that any x € T, (f ~'(a)):=UJ
Otherwise, it follows from Corollary 8 that

gef-@) B(g, €1) is not a stationary point of 1/}5.
|[Rm|(x) = |[Rm|(}* (x)) < CDje™*
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for any s > 0. However, when s — oo, |[Rm|(x) = 0 and this contradicts our nonflatness
assumption.

Now we choose ¢ < a < d such that for any x € BT% (f_l(a)), either f(x) < ¢
or f(x) > d. By continuity, there exists a positive constant € < € such that for any
x € T.(fY @), f(x) € (c+¢€,d —€). We set U:=T€(f_1(a)) and claim that for any
y € U, there exists an x € f‘l(a) such that @S(x) = y for some s. If f(y) = a, then the
claim is obvious. If f(y) < a, we consider the flow line ¥* (y) for s > 0. Notice that by the
definition of 1}‘ s

d , - -
S F@ N =V 2 0.
N

Therefore, by the local compactness and our previous no stationary argument, the ﬂow will
continue and along the flow f is strlctly increasing as long as 1// (y) staysin T, (f~ La)). we
set s to be the first time such that w‘ (y) reaches 8Tq (f~Ya)).In particular, f(l//s ) <c

o F(F*(3) = d. Since f(y) € (¢ +€.d — ), it must be F(F(3)) = d. As [(y) < a <
(0 (y)), there exists an s € (0, so) such that f(J*(y)) = a by continuity. Therefore, if
wesetx = ¥°(y) € f~'(a), then ¢ —*(x) = y and the claim follows. Similarly, for the case
f(y) > a, the claim is also true.

Next we prove that for any y such that f(y) > a, there exists an x € U such that
1/~/S(x) = y for some s. Fix such y, we choose any curve {y(z) : z € [0, 1]} such that
y(0) = p and y(1) = y. In particular, since p is the minimum point of f, there exists a
z0 € [0, 1) such that y(z¢) € f_l(a) and for all z € (zp, 1], f(y(z)) > a. Now we define
I C [zo, 1] such that z € I if and only if there exists an x € U such that 1}“ (x) = y(z) for
some s. In particular, 7 is not empty as zg € I. It is clear that [ is open, since U is open.
Now we prove the closedness of /. For a sequence z; € I such that z; — zoo € [20, 1],
f(zi) > aif i is sufficiently large. By our definition of / and the claim with its proof, there
exists x; € f’l(a) and s; > O such that &Si (xj) = y(zi). Note that 5; must be bounded.
Indeed, by Corollary 8,

|Rm|(y (z)) = |[Rm|(§% (x;)) < CDye™.

If 5; — oo, then it forces |Rm|(y (z0)) = 0 and this is a contradiction. By compactness
and taking the subsequence, there exist xoo € f ~1(a) and so > 0 such that x; — xo and
S;i — Sxo. By continuity, &SW (xi) = ¥(Zc0)- To summarize, I = [z¢, 1] and in particular,
¥ (x) = y(1) = y for some x € U and s € R. By the claim again, we have proved that for
any y with f(y) > a, there exists an x € f~!(a) such that y*(x) = y for some s > 0.

Therefore, for any point y outside the compact set { f < a}, it follows from Corollary 8
that

3
\Rm|(y) < CDja SCmax{l,aZ}. (305)
VAGY) VAGY)

See Figure 4 for intuition in the case a > 1.

In other words, the curvature is quadratically decaying. Since a Ricci shrinker can be
regarded as an ancient Ricci flow, it follows from Shi’s local estimates [50] that

VERmI(3) < s

- dk+2( . y)
forallk =1, 2, .. .. It follows immediately that any tangent cone at infinity must be smooth.
Finally, the uniqueness follows from [17, Theorem 2], see also [33, Lemma A.3]. O
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Fig.4 The quadratic decay of IRm| < Ca> £~
curvature ’
V(B(x, €,'), 8. 65%) > =69

flow line of Vf

Remark 9 The proof of Corollary 9 shows that the manifold {x € M | f(x) > a}is
diffeomorphic to f~!(a) x [0, 1).

11 Strong maximum principle for curvature operator

The purpose of this section is to prove Theorem 4. We remind the readers that all constants
C’s in this section depend only on the dimension 7.

We first show an L2-integral estimate of Riemannian curvature.

Theorem 26 Suppose (M™, p, g, f) isaRicci shrinker satisfying p > — A, and )\ is a positive
number. Then we have

/ |[Rm|?e ™ dVv <1 (306)

forsome I = 1(n, A, L) < o0.
Theorem 26 is the consequence of the improved no-local-collapsing theorem (i.e., Theo-
rem 2), the local conformal transformation technique (cf. Sect. 3 of [34]), and the curvature

estimate of Jiang—Naber (i.e., [31]).

Lemma 32 For any Ricci shrinker (M", p, g, ) and any constant D > 100n, we have
/ IRc|?e=f AV < Cet D2~ D5 (307)
A(D,2D)
where A(D, 2D) is the annulus B(p,2D)\B(p, D).

Proof Fix a cutoff function ¥ on R such that ¢» = 1 on [1, 2] and ¥ = 0 outside [%, 3]. By
defining n(x) = W(%), we compute

/n2|Rclzefde = /nz(g — Hess f, Re)e ™/ dv

1
= / <§n2R +2nRc(Vn, Vf)) e dv

1 1
5f<§n2R+§n2|R6|2+2|Vn|2|Vf|2> el av
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where for the second line we have used div(Rc e~/) = 0. Consequently, by Lemmas 1 and 2,
we have

/n2|Rc|2e—f dv < / (PR + 41V |VfI*) e/ av < c/ fe=lav.
A(D/2,3D)

Plugging the estimates in Lemmas 1 and 2 into the above inequality, we arrive at (307). 0O

In the proof of Lemma 32, if we choose i such that v = 1 on (—o0, 1] and ¥ = 0 on
[2, 00), then a similar argument shows the following Lemma.

Lemma 33 For any Ricci shrinker (M", p, g, f), we have
f |Rc|?e™/ dV < Cet. (308)

The details of the proof of Lemma 33 is almost identical to that of Lemma 32. So we
leave it to interested readers. Note that Lemma 33 provides an explicit upper bound of [40,
Theorem 1.1]. Starting from Lemmas 32 and 33, we are ready to prove Theorem 26.

Proof of Theorem 26: We only prove the case when A = 1. The general case is similar and is
left to interested readers. B
For any point g € M such thatd(p, q) = D > 100n, we setr = %, f=f—f(q)),then

. _ _2r
under the conformal transformation g:=e™ -2 g, we have

Rc= n%Z {df@df+(n— 1 —f)e%g}, (309)
= _ 2 1 (df®df g V£ Re
fm = Z[R’“m(ﬁ*E(“n_z>‘n_2>@g]’ G0

where the proof and the definition of the Kulkarni-Nomizu product (® can be found in [4,
Theorem 1.165]. It follows from [34, Lemma 3.5] that

B; (q,e_n%r) C B(g,r) C B; (q,eﬁr» 311)

Therefore, by the same proof as in [34, Lemma 3.7], we have
I/l<C and |Re|, <CD* on B (q,eﬁr). 312)
Since R < CD? on B(q, r), it follows from Theorem 23 that |B(g, r)| > Ce”r" and hence
‘Bg (q,eﬁr)‘g > Celr". (313)

One can also use Theorem 2 to obtain the above estimate directly.
~ 1 1
By defining g:=r—2z, we have [Rclz < C on Bz(gq,en2) and |B;(q,e"2)|; > Cek.
By shrinking balls to its half size if necessary, it follows from [31, Theorem 1.6] that

r4_"f 1 |W|2dvg:/ L [Rm*dV; < I (314)
Bg(g.,en=2r) Bz(q,en=2)

for some constant Iy = Iy(n, A).
From (310), we have on B(q, r),

|Rm|*> < C (IRm|> + |V fI* + |Re|?) < C (IRm* + %+ Rc]?).
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Therefore, we have

/ |Rm|*e=/ dV
B(q.r)

<C / . |Rm| e_deg—i-/ f2e—fdv+/ |Rc|?e=f dV
Bi(q.en=2r) B(q.r) B(q.r)

2
< Ce 5 (D¥" Iy + D2k

where we have used Lemma 32 and (314). Consequently, there exists /1 = I(n, A) such
that

2
/ |RmPe™! aV < 1,D"+2e= 5. (315)
B(q.r)
For any constant D > 100n, we apply Vitali’s lemma for the covering { B(q, ﬁ)}qe A(D,2D)-

If we assume that {B(qg;, i)}lsisk is a maximal collection of mutually disjoint sets, then
{B(qi, %)}15,-51( cover A(D, 2D). Itis clear from definition that

21 (o55)

i=1
By Lemma 2 and (313), we obtain k < C D?". Combining (315) with the above inequality
implies that

< |A(D,2D)| < |B(p,2D)|.

k
2 2
/ |Rm|>e= dV < Z/ |Rm|2e=/ dV < kI D" 2e=5 < CI, D3 +2e= 5
A(D2D) iZ1 /B@i.3p)
(316)

Similarly, by exploiting Lemma 33, we have
/ [Rm|>e~Tdv < I, (317)
B(p, Do)

where Dy = 100n and I» = I(n, A).
Now we set D; = 2' Dy and decompose the integral as

/|Rm|2e*fdv :/ |Rm|2e*fdv+2/ [Rm|>e~T dv.
B(p.Dy) i=0 JAWD:2D;)

Plugging (316) and (317) into the above equation, we arrive at
. D} . 4 p}
/ IRmPe™/dV <L+ CLD]"Pe™% =L+ CL Yy 210D pint2e—s =),
i>0 i>0

Since both /; and I depend only on n and A, it is clear that [ relies only on n and A and we
arrive at (306). The proof of Theorem 26 is complete. O

From (306) and [40, Theorem 1.2], a direct corollary of Theorem 26 is the following
estimate.
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Corollary 10 For any Ricci shrinker (M", g, f) € M, (A), there exists a constant I =
I(n, A) < oo such that

/|VRC| e fav =/|diu(Rm)|2e—f dv <.

Theorem 26 is an important step for verifying maximum principle on curvature operators.
The curvature operator on two-forms are defined as R : A2 — A% : R(e! Ael, ek Ael) =
R;ji. The two-form e' A e/:=e' ® ¢/ — ¢/ ® €' and the inner product on A2 is defined as
(A, B):= — %tr(AB) for A, B € A2 = s0(n). In other words, for w = % Zi,j wijei Ael,
we have

1
R(w)ij = ERijklwkl-

In the setting of Ricci shrinker (M", g, f), the following equation (see [24]) holds:
AfR=R—-20(R).
Here Q(R)::R2 + R* and R¥ is defined as
R#(u, v) = —%tr(adu Rad, R)
for any u, v € A%, If we choose an orthonormal basis {¢;} of A2, then
R¥(u,v) = —% S RGN, ¢51 )[R (). il v).
ij

If we assume A < Ay < -.- are all eigenvalues of R on A2, then we have the following
rigidity theorem.

Theorem 27 There exists a constant ¢ = €(n) > 0 such that for any Ricci shrinkers
22

M", g, ), if .y > —em, then A1 > 0. Consequently, (M", g) is isometric to
—2M

a quotient of N¥ x R"™* for some 0 < k < n, where N* is a closed symmetric space.

Proof Tt suffices to prove A1 > 0. Namely, (M", g) has nonnegative curvature operator. The
further conclusion follows from [42, Corollary 4].

We fix a point ¢ and assume that ¢ is an eigenvector of A;. Extending ¢ by parallel
transport on a small neighborhood of ¢, we have

AfR(@1, ¢1) = R(d1, ¢1) — 2Q(R) (b1, P1).

Therefore if we assume that ¢; are eigenvectors of A;, then in the barrier sense,

Aphi < 0= [ 225 = D {IR@), 971, $(R)). b1, d1)

ij
=h— |25+ ) Clrikj (318)
i.J
where C; j = ([¢i, ¢;], ¢1). Notice that C; ; =0ifi =1lorj =1.
We claim that |C; ;| < 2. Indeed, if we assume that ¢;, ¢; and ¢; are represented by

the antisymmetric matrices A, B and C respectively, then C; ; = —%tr((AB — BA)C) =
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—tr(ABC). By choosing a basis such that Aox—1 2x = ax = — Aok 2k—1 fork < [n/2] and O
otherwise, we have

tr(ABC)| < Y lakl| Bak 1 Cro—1 — Bok—1.1C1.2]
k.l

1 P P P P
3 Z(BZk,l + Ciog1 + By—1; + Ciyg)
kol

IA

IA

1
5(|B|2 +1C1H) = 2.

Here we have used the fact that |A|? = |B|?> = |C|* = 2.

Next we prove that if € is properly chosen, then we have

P:=2)7+ Y Clrirj = 0.
i,j

From the definition of A;, we notice that > A; = R/2. Therefore, we fix A; and A, and
minimize P under the restriction )  A; = R/2. We can assume that A < 0, otherwise P > 0
from its definition. We also set ¢, = n(n — 1)/2 and assume that A < Ap < --+ < Agy are
all eigenvalues smaller than 0. Therefore,

P > P1::2)L%+2 Z Cizj)\i)uj.

2<i<s+1
s+2<j<c,
It is easy to show that P; is minimized when A = A3 =--- = Agp1and Ay = -+ = A,
It follows that
Py > U e, (R/2 — A1 — sA2)
2 =M1 : c,,—s—l”’2 ! 2
2<i<s+1
s+2<j<cy,

>AT 4 4sh(R/2 — A — sha).

By solving the above quadratic inequality, we obtain that P; and hence P are nonnegative if

F—r—JE -2+

2s

A2 >

If we choose € = , then it is clear that forany 1 < s < ¢, — 2,

.
(14++/2)(cn—2)

22 E—nm—yE-a2+27 2-n-JE -2+ a2
> > :

Ay > —€ > >
R — 2 2(cn —2) 2s
Therefore, from (318) we obtain AA; < Ap. Since A1 € L%*(e~/ dV) by (306), then it
follows from [47, Theorem 4.4] that A; > 0. O

We conclude this section by the proof of Theorem 4.

Proof of Theorem 4: Since A, > 0, we can apply Theorem 27 to obtain A1 > 0. Therefore,
M" is a finite quotient of N¥ x R"~¥_Note that only the case k = n is possible. For otherwise
the second smallest eigenvalue must be 0. Since N is a compact Einstein manifold such that
the curvature operator is 2-positive, it follows from [5] that its universal covering must be
A O
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