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Abstract
In this paper, we systematically study the heat kernel of the Ricci flows induced by Ricci
shrinkers. We develop several estimates which are much sharper than their counterparts
in general closed Ricci flows. Many classical results, including the optimal Logarithmic
Sobolev constant estimate, the Sobolev constant estimate, the no-local-collapsing theorem,
the pseudo-locality theorem and the strong maximum principle for curvature tensors, are
essentially improved for Ricci flows induced by Ricci shrinkers. Our results provide many
necessary tools to analyze short time singularities of the Ricci flows of general dimension.
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1 Introduction

A Ricci shrinker is a triple (Mn, g, f ) of smooth manifold Mn , Riemannian metric g and a
smooth function f satisfying

Rc + Hess f = 1

2
g. (1)

By a normalization of f , we can assume that

R + |∇ f |2 = f , (2)∫
e− f (4π)−

n
2 dV = eμ, (3)

where μ is the functional of Perelman. As usual, we define

Mn(A):= {(Mn, g, f ) | μ ≥ −A
}
. (4)

Lying on the intersection of critical metrics and geometric flows, the study of Ricci
shrinkers has already become a very important topic in geometric analysis. Up to dimen-
sion 3, all Ricci shrinkers are classified. In dimension 2, the only Ricci shrinkers are R2, S2

and RP2 with standard metrics, due to the classification of Hamilton [25]. In dimension 3,
we know thatR3, S2×R, S3 and their quotients are all possible Ricci shrinkers, based on the
work of Perelman [46], Petersen–Wylie [47], Naber [43], Ni–Wallach [45] and Cao–Chen–
Zhu [8]. If we assume the curvature operator to be nonnegative, then the Ricci shrinkers are
also classified, see Munteanu–Wang [42]. However, an important motivation for the study
of the Ricci shrinkers is that the Ricci shrinkers are models for short time singularities of
the Ricci flows. In dimension 3, by the Hamilton–Ivey pinch [25,26,30], one may naturally
assume that the Ricci shrinker has nonnegative curvature operator. If the dimension is strictly
greater than 3, the loss of pinch estimate makes the nonnegativity of curvature operator
an unsatisfactory condition and should be dropped. Also, it is well known (cf. Haslhofer–
Müller [27]) that most interesting singularity models are non-compact. Therefore, to prepare
for the singularity analysis of high dimensional Ricci flow, we shall focus only on the study
of non-compact Ricci shrinkers without any curvature assumption. Since M is non-compact,
the inequality

sup
M

|Rm| < ∞ (5)

may fail. The failure of Riemannian curvature bound causes serious consequences. Many
fundamental analysis tools, e.g., maximum principle and integration by parts, cannot be
applied directly without estimates of the manifold at infinity.

In this paper, we shall provide a solid foundation for many fundamental analysis tools
in the Ricci shrinkers. We shall mostly take the point of view that Ricci shrinkers are time
slices of self-similar Ricci flow solutions. After a delicate choice of cutoff functions and
calculations, we show that most of the fundamental tools, including maximum principle,
existence of (conjugate) heat solutions, uniqueness and stochastic completeness, integration
by parts, etc., work well on the Ricci shrinker spacetime. Then we use these fundamental
tools to study the geometric properties of the Ricci flows induced by the Ricci shrinkers.
Therefore, we are able to check that most known important properties of the compact Ricci
flows, including monotonicity of Perelman’s functional, no-local-collapsing and pseudo-
locality theorem of Perelman, curvature tensor strong maximum principle of Hamilton, do
apply on noncompact Ricci shrinkers. Furthermore, since theRicci flows induced by theRicci
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shrinkers are self-similar, we obtain many special properties of the Ricci shrinkers. The first
property is the estimate of sharp Logarithmic Sobolev constant, which can be regarded as an
improvement of the fact that Perelman’s functional is monotone along each Ricci flow.

Theorem 1 (Optimal Logarithmic Sobolev constant) Let (Mn, p, g, f ) be a Ricci shrinker.
Then μ(g, τ ) is a continuous function for τ > 0 such that μ(g, τ ) is decreasing for τ ≤ 1
and increasing for τ ≥ 1. In particular, we have

ν(g):= inf
τ>0

μ(g, τ ) = μ(g). (6)

Consequently, the following properties hold.

– Logarithmic Sobolev inequality. In other words, for each compactly supported locally
Lipschitz function u and each τ > 0, we have
∫

u2 log u2dV −
(∫

u2dV

)
log

(∫
u2dV

)
+
(
μ + n + n

2
log(4πτ)

) ∫
u2dV

≤ τ

∫ {
4|∇u|2 + Ru2} dV . (7)

– Sobolev inequality. Namely, for each compactly supported locally Lipschitz function u,
we have

(∫
u

2n
n−2 dV

) n−2
n ≤ Ce− 2μ

n

∫ {
4|∇u|2 + Ru2} dV (8)

for some dimensional constant C = C(n).

In geometric analysis, it is a fundamental problem to estimate uniform Sobolev constant.
When the underlying manifold is noncompact, the uniform Sobolev constant in general does
not exist. However, (8) says that there is a uniform (Scalar-)Sobolev constant, depending
only on n and μ. In particular, if the scalar curvature is bounded, i.e., supM R < ∞, then
there exists a classical Sobolev constant. Namely, for each u ∈ C∞

c (M), we have

(∫
u

2n
n−2 dV

) n−2
n ≤ Ce− 2μ

n

∫ {|∇u|2 + u2} dV

for some C = C(n, supM R). Note that the term e− 2μ
n is almost |B(p, 1)|− 2

n by Lemma 2.5
of [34].

The proof of Theorem 1 follows a similar route as done in Proposition 9.5 of [34], by using
the monotonicity of Perelman’s functional along Ricci flow and the invariance of Perelman’s
functional under diffeomorphism actions.

Secondly, we can improve the no-local-collapsing theorem of Perelman on the Ricci
shrinker Ricci flow. By the fundamental work of Perelman [46], the Ricci flow spacetime can
be regarded as a “Ricci-flat” spacetime in terms of reduced volume and reduced distance.
Now we can regard Ricci shrinker as a special time slice of the induced Ricci flow. On a
Ricci flat manifold, an elementary comparison argument shows that |B(x,r)|

|B(x,1)| grows at most
Euclideanly and at least linearly (cf. [59,64], and Theorem 2.5 of [35]). This comparison
geometry picture has a spacetime version which is used to illustrate the no-local-collapsing
(cf. [46,53]). Although the comparison argument (even the space-time version) does not
apply directly in the Ricci shrinker case, we can still show that similar phenomena hold for
Ricci shrinkers.
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Fig. 1 Propagation of
non-collapsing on Ricci-shrinkers

Theorem 2 (Improved no-local-collapsing theorem) Suppose (Mn, p, g, f ) is a Ricci
shrinker, r > 1. Then

Here q is any point on ∂ B(p, r), and C is a dimensional constant.

Although the volume estimate (9a) behaves like the Ricci-flat case, its proof is totally
different and much more involved. The proof builds on the the Sobolev inequality (8) and an
improvement (cf. Remark 8) of the induction argument due to Munteanu andWang [41]. The
non-collapsing estimate (9b) in general does not hold for Ricci-flat manifold. This indicates
that Ricci shrinkers are more rigid than Ricci-flat manifold. See Figure 1 for intuition.

The proof of (9b) relies on (6) and an effective volume estimate in [53]. The scale ρ ∈
(0, r−1) is chosen such that Rρ2 ≤ C(n) inside B(q, r). If we further assume scalar curvature
is uniformly bounded on M , then we shall obtain that every unit ball on the Ricci shrinker
M is uniformly non-collapsed. Theorem 2 can be regard as a special case of Theorem 23
and Theorem 23, which are more general versions of the no-local-collapsing. In particular,
it indicates that any Ricci shrinker must be κ-noncollpased for some constant κ > 0, see
Remark 7. The proof of Theorems 2, 22 and 23 can be found in Sect. 9. Note that Theorem 2
indicates that the Ricci shrinkers are similar to the Ricci-flat manifolds. Actually, there exist
manyother similarities between theRicci-flatmanifolds and theRicci Shrinkers. For example,
in [29,34], it is proved that each sequence of non-collapsed Ricci shrinkers sub-converges to a
limit Riemannian conifold Ricci shrinker. Such results are analogue of the weak compactness
theorem of non-collapsed Ricci-flat manifolds, by the deep work of Cheeger, Colding and
Naber (cf. [12,14,20]).

Thirdly, the pseudo-locality theorem of Perelman has an elegant version on the Ricci
shrinker Ricci flow. The pseudo-locality theorem of Perelman [46] is a fundamental tool
in the study of Ricci flow. It claims that the Ricci flow cannot turn an almost Euclidean
domain to a very curved region in a short time period. In the literature, it is known that
the pseudo-locality theorem hold for Ricci flow with bounded Riemannian curvature, which
condition is clearly not available in the current setting. However, using the existence of special
cutoff function, we can show maximum principle and stochastic completeness for conjugate
heat kernel. By carefully checking the integration by parts, we obtain that the traditional
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Fig. 2 μ(g, τ ) of a Ricci shrinker
with bounded geometry

pseudo-locality theorem holds on the Ricci flow spacetime induced by the Ricci shrinker.
Furthermore, the pseudo-locality has the following special version for Ricci shrinkers.

Theorem 3 (Improved pseudo-locality theorem) Suppose that (Mn, p, g, f ) is a non-flat
Ricci shrinker. Then we have

μ < −δ0 (10)

for some small positive constant δ0 = δ0(n). Furthermore, the following properties are
equivalent.

(a) M has bounded geometry. Namely, the norm of Riemannian curvature tensor is bounded
from above and the injectivity radius is bounded from below.

(b) The infinitesimal functional satisfies

lim
τ→0+ μ(g, τ ) = 0. (11)

(c) The infinitesimal functional satisfies the gap

lim
τ→0+ μ(g, τ ) > −δ0. (12)

If one of the above conditions hold, we can define

τ0:= sup {τ | μ(g, s) ≥ −δ0, ∀ s ∈ (0, τ )} . (13)

Then for some positive constant C = C(n), we have the following explicit estimates

We remark that the gap inequality (10) is not new. It was first proved by Yokota in [57,58].
However, our proof of (10) is completely different and is the base for the proof of (11),
(12) and (14). Theorem 3 also indicates that the bounded geometry for Ricci shrinkers is
equivalent to the gap inequality (12). This criterion has divided all Ricci shrinkers into two
categories characterized by their graphs of entropies, which are illustrated by Figure 2 and
Figure 3. Note that Figure 2 represents the functional behavior of a typical Ricci shrinker,
for example, the cylinder Sk × R

n−k for k ≥ 2. Figure 3 represents the functional behavior
of a Ricci shrinker with unbounded geometry. However, it is not clear whether such Ricci
shrinker exists. For Ricci shrinkers with bounded geometry, it follows from (13) and (14)
that the number

√
τ0 can be understood as the regularity scale. Actually, under the scale

√
τ0,
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Fig. 3 μ(g, τ ) of a Ricci shrinker
with unbounded geometry

all the higher curvature derivatives norm |∇k Rm| are bounded by C(n, k)τ
−1− k

2
0 , in light of

the estimates of Shi [49].
There exist several other special versions and consequences of the pseudo-locality theo-

rems. The proof of all of them, including the proof of Theorem 3, can be found in Sect. 10.
Fourthly, the curvature tensor strong maximum principle, developed by R. Hamilton,

works on Ricci shrinker Ricci flows and also has an improved version. Using the curvature
tensor maximum principle, Hamilton shows that the nonnegativity of curvature operator is
preserved under the Ricci flow and the kernel space is parallel. Therefore, the manifold splits
as product when kernel space is nontrivial. Since different time slices of a Ricci shrinker Ricci
flow are the same up to scaling and diffeomorphism, the preservation of curvature conditions
is automatic. The interesting problem on Ricci shrinker is to show the strong maximum
principle, i.e., the splitting of the manifold when eigenvalues of curvature operator satisfy
some nonnegativity condition. On this perspective, we can improve the traditional strong
maximum principle of curvature operator to the following format.

Theorem 4 (Improved strong maximum principle of curvature tensor) Suppose (Mn, g, f )

is a Ricci shrinker and λ1 ≤ λ2 ≤ · · · are the eigenvalue functions of the curvature operator
Rm. Then the following properties hold.

– If λ2 ≥ 0 as a function, then there is a k ∈ {0, 1, 2, . . . , n} and a closed symmetric space
N k such that (Mn, g) is isometric to a quotient of N k × R

n−k .
– If λ2 ≥ 0 as a function and λ2 > 0 at one point, then (Mn, g) is isometric to a quotient

of round sphere Sn.

The statement in Theorem 4 should be well known to experts in Ricci flow if we replace λ2
byλ1. In fact, by thework ofMunteanu–Wang [42] andPetersen–Wylie [47],we know that the
same geometry conclusion hold if we replace λ2 in Theorem 4 by λ1 +λ2. Their proof builds
on the celebrated work of Böhm–Wilking [5] on the closed Ricci flow satisfying λ1+λ2 > 0
and also relies on a weighted Riemannian curvature integral estimate

∫ |Rm|2e− f dV < ∞.
If λ1 + λ2 ≥ 0, the Riemannian curvature integral estimate can be deduced from the Ricci
curvature integral bound

∫ |Rc|2e− f dV < ∞, which follows from a clever integration-by-
parts. In Theorem 4, with only condition λ2 ≥ 0, Riemannian curvature integral estimate∫ |Rm|2e− f dV < ∞ becomes nontrivial. As done in [34], we apply local conformal trans-
formations and the classical Cheeger–Colding theory to study the local structure of Ricci
shrinkers. Combining the L2-curvature estimate of Jiang–Naber [31] with the improved no-
local-collapsing Theorem 2, we are able to show that

∫ |Rm|2e− f dV < ∞ always holds
true (i.e., Theorem 26). Consequently, the work of Petersen–Wylie [47] applies and the cur-
vature tensor strong maximum principle holds for Ricci shrinkers. Then we are able to obtain
λ1 ≥ 0 from the condition λ2 ≥ 0. Clearly, the condition λ2 ≥ 0 is weaker than λ1 + λ2 ≥ 0
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and Theorem 4 is an improvement of the results of Munteanu–Wang [42] and Petersen–
Wylie [47]. Note that λ2 ≥ 0 is a novel condition in the Ricci flow literature. It is not clear
whether λ2 ≥ 0 is preserved by the Ricci flow on a closed manifold. Actually, in Theorem 4,
the same conclusion holds if one replace the condition λ2 ≥ 0 by an even weak condition

λ2 ≥ −ε
λ21

|R − 2λ1|
for some ε = ε(n). The details can be found in Theorem 27. The proof of Theorems 4 and 27
appear in Sect. 11.

The proof of the previous four theorems requires some elementary, but delicate, geometric
and analytic facts on Ricci shrinkers.

– The level sets of f are comparable with geodesic balls.
– A special cutoff function.
– Special heat solution and conjugate heat solution on the Ricci shrinker Ricci flow.
– The existence of heat kernel and stochastic completeness of the backward heat solution.
– The existence and uniqueness of bounded (conjugate) heat solutions.

After the above estimates are developed, we check that the entropy of Perelman is monotone
along the Ricci flow induced by the Ricci shrinker, whose proof needs more delicate integra-
tion by parts. Then the proof of Theorem 1 follows a similar route as the one in Proposition
9.5 of [34], with more involved technique. From Theorem 1, we can obtain Theorem 2 by
repeatedly choosing proper test function u. When integration by parts are assumed, one can
formally follows the routine of Perelman to obtain the differential Harnack inequality (i.e.,
Theorem 21), and then the traditional pseudo-locality theorem. Combining with a standard
localization technique, one can deduce Theorem 3. However, as the functional derivatives
contain quadratic Ricci curvature term, many terms concerning high order derivatives need
to be carefully handled to verify the integration by parts. This causes many technical dif-
ficulties. One key difficulty is the delicate heat kernel estimate to derive the differential
Harnack inequality. Therefore, the following heat kernel estimate is in the central position
for developing fundamental analytic estimates on Ricci shrinker.

Theorem 5 (Heat Kernel estimate) Let (Mn, g, f ) be a Ricci shrinker in Mn(A). Then the
following properties hold.

(i) (Heat kernel upper bound)

H(x, t, y, s) ≤ e−μ

(4π(t − s))
n
2
.

(ii) (Heat kernel lower bound) For any 0 < δ < 1, D > 1 and 0 < ε < 4, there exists a
constant C = C(n, δ, D) > 0 such that

H(x, t, y, s) ≥ C
4
ε eμ( 4

ε
−1)

(4π(t − s))n/2 exp

(
− d2

t (x, y)

(4 − ε)(t − s)

)

for any t ∈ [−δ−1, 1 − δ] and dt (p, y) + √
t − s ≤ D.

(iii) (Heat kernel integral bound) For any 0 < δ < 1, D > 1 and ε > 0, there exists a
constant C = C(n, A, δ, D, ε) > 1 such that∫

M\Bs (x,r
√

t−s)
H(x, t, y, s) dVs(y) ≤ C exp

(
− (r − 1)2

4(1 + ε)

)

for any t ∈ [−δ−1, 1 − δ], dt (p, x) + √
t − s ≤ D and r ≥ 1.
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We briefly discuss the proof of Theorem 5. Notice that the Logarithmic Sobolev inequality
for all scales implies the ultracontractivity of the heat kernel byDavies’ methods (see Chapter
2 of [21]). We prove that the same result (i) holds for Ricci shrinkers. The lower bound of
the heat kernel can be estimated by considering the reduced distance (i.e., Theorem 16). We
first obtain an on-diagonal lower bound of the heat kernel, in which case the estimate of the
reduced distance is straightforward. Then we derive the general off-diagonal lower bound by
exploiting aHarnack property (i.e., (200)). To prove the integral upper bound, we consider the
probability measure vs(y):=H(x, t, y, s) dVs(y). Following the work of Hein–Naber [28],
we show that vs satisfies a type of Logarithmic Sobolev inequality (i.e., Theorem 13). The
equivalence of the Logarithmic Sobolev inequality and the Gaussian concentration (i.e.,
Theorem 14) then shows that we can estimate the integral upper bound of the heat kernel by
its pointwise lower bound.
Organization of the paper In Sect. 2, we review the definition of the Ricci flows induced by
the Ricci shrinkers. We also present the estimates of the potential function and volume upper
bound. In Sect. 3, we introduce a family of cutoff functions and prove a maximum principle
(i.e., Theorem 6) on Ricci shrinker spacetime. Moreover, we prove the existence and other
basic properties of the heat kernel on spacetime. In Sect. 4, we prove the monotonicity of
Perelman’s entropy (i.e., Theorem 10). In Sect. 5, we prove Theorem 1. In Sect. 6, we prove
the logarithmic Sobolev inequality (i.e., Theorem 13) and the Gaussian concentration (i.e.,
Theorem 14) of the probability measure induced by the heat kernel. In Sect. 7, Theorem 5 is
proved. In Sect. 8, we prove the differential Harnack inequality (i.e., Theorem 21) by using
the heat kernel estimates. In Sect. 9, we provide the proof of Theorem 2. In Sect. 10, we
prove the pseudo-locality theorem (i.e., Theorems 24) and 3. In the last section, we obtain
an L2-integral bound of the Riemannian curvature (i.e., Theorem 26). As a consequence, we
prove Theorem 4.

2 Preliminaries

For any Ricci shrinker (Mn, g, f ), let ψ t : M → M be a 1-parameter family of diffeomor-

phisms generated by X(t) = 1

1 − t
∇g f . That is

∂

∂t
ψ t (x) = 1

1 − t
∇g f

(
ψ t (x)

)
. (15)

By a direct calculation, see [18, Chapter 4], the rescaled pull-back metric g(t):=(1 −
t)(ψ t )∗g and the pull-back function f (t):=(ψ t )∗ f satisfy the equation

Rc(g(t)) + Hessg(t) f (t) = 1

2(1 − t)
g(t), (16)

where {(M, g(t)),−∞ < t < 1} is a Ricci flow solution with g(0) = g, that is,

∂t g = −2Rc(g(t)). (17)

For notational simplicity, we will omit the subscript g(t) if there is no confusion. From
(16) and (17), it is easy to show that

∂t f = |∇ f |2, (18)

R + Δ f = n

2(1 − t)
, (19)
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R + |∇ f |2 = f

1 − t
. (20)

Now we define

τ̄ = 1 − t, F(x, t) = τ̄ f (x, t) and v̄(x, t) = (4πτ̄ )−n/2e− f (x,t). (21)

It follows from (18), (19) and (20) that

∂t F = τ̄ |∇ f |2 − f = −τ̄ R, (22)

τ̄ R + ΔF = n

2
, (23)

τ̄ 2R + |∇F |2 = F . (24)

Now we define

�:=∂t − Δt , (25)

�∗:= − ∂t − Δt + R. (26)

We have special heat solution and conjugate heat solution:

�
(

F + n

2
t
)

= 0, (27)

�∗v̄ = 0. (28)

Note that (27) is equivalent to

�F = −n

2
. (29)

Now we have the following estimate of F by using the same method as [9,27].

Lemma 1 There exists a point p ∈ M where F attains its infimum and F satisfies the
quadratic growth estimate

1

4
(dt (x, p) − 5nτ̄ − 4)2+ ≤ F(x, t) ≤ 1

4

(
dt (x, p) + √

2nτ̄
)2

(30)

for all x ∈ M and t < 1, where a+ := max{0, a}.
Proof This originates from the work of Cao–Zhou [9, Theorem 1.1]. We follow the argument
of Haslhofer–Müller [27]. It follows from [15] that for any Ricci shrinker R ≥ 0 since its
corresponding Ricci flow solution is ancient. So from (24), we have

|∇F |2 ≤ F . (31)

It implies that
√

F is 1
2 -Lipschitz, since

|∇√
F | = 1

2

∣∣∣∣∇F√
F

∣∣∣∣ ≤ 1

2
.

On the other hand, for any x, y ∈ M , we choose a minimizing geodesic γ (s), 0 ≤ s ≤
d = dt (x, y) joining x = γ (0) and y = γ (d). Assume that d > 2, we construct a function

φ(s) =

⎧⎪⎨
⎪⎩

s, s ≤ 1

1, 1 ≤ x ≤ d − 1

d − s. d − 1 ≤ x ≤ d
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The second variation formula for shortest geodesic implies that
∫ d

0
φ2Rc(γ ′, γ ′) ds ≤ (n − 1)

∫ d

0
φ′2 ds = 2(n − 1). (32)

Note that from the Eq. (16),

τ̄Rc(γ ′, γ ′) = 1

2
− HessF(γ ′, γ ′). (33)

Therefore from (24) we have

d

2
− 2

3
− 2τ̄ (n − 1) ≤

∫ d

0
φ2HessF(γ ′, γ ′) ds

≤ −2
∫ 1

0
φ∇γ ′ F ds + 2

∫ d

d−1
φ∇γ ′ F ds

≤ sup
s∈[0,1]

|∇γ ′ F | + sup
s∈[d,d−1]

|∇γ ′ F |

≤ √F(x) +√F(y) + 1, (34)

wherewe used (31) in the last inequality. It is now immediate from (34) that F has aminimum
point p. It is clear that |∇F | = 0 and ΔF ≥ 0 at the point p by the minimum principle.
Hence from (23) and (24) we have

F(p) = τ̄ 2R ≤ τ̄ (τ̄ R + ΔF) = τ̄n

2
.

For any q ∈ M such that dt (p, q) = d , it is straightforward from (31) and (34) that

1

4
(d − 5nτ̄ − 4)2+ ≤ 1

4

(
d − 10

3
− 4τ̄ (n − 1) − √

2nτ̄

)2
+

≤ F(q) ≤ 1

4

(
d + √

2nτ̄
)2

.

�
Note that F(·, t) is a pull-back function of f (·, 0) up to the scale τ̄ , we can choose a base

point p ∈ M such that p is a minimum point for all F(·, t). Now from Lemma 1, F(·, t) can

be regarded as an approximation of d2
t
4 .

With Lemma 1, we have the following volume estimate whose proof follows from [9,
Theorem 1.2].

Lemma 2 There exists a constant C = C(n) > 0 such that for any Ricci shrinker (Mn, g, f )

with p ∈ M a minimum point of f ,

|Bt (p, r)|t ≤
{

Ceμrn if r ≥ 2
√

τ̄n;
Crn if r < 2

√
τ̄n.

Proof We set ρ = 2
√

F and D(r) = {x ∈ M | ρ ≤ r}. Moreover we define V (r) =∫
D(r)

dVt and χ(r) = ∫D(r)
R(t) dVt . It follows from a similar computation as [9, (3.5)], by

using (23) and (24), that

nV − r V ′ = 2τ̄χ − 4τ̄ 2

r
χ ′. (35)

If we set r0 = √
2τ̄ (n + 2), by integrating (35) we obtain, see [9, (3.6)] for details, that

V (r) ≤ 2rnr−n
0 V (r0)
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for any r ≥ 2
√

τ̄n. Then it follows from Lemma 1 that for any r ≥ 2
√

τ̄n,

|Bt (p, r)|t ≤ V
(

r + √
2nτ̄
)

≤ V (2r) ≤ 2n+1rnr−n
0 V (r0).

By definition, we have

D(r0) =
{

x ∈ M

∣∣∣∣F ≤ τ̄ (n + 2)

2

}

=
{

x ∈ M

∣∣∣∣ f (x, t) ≤ n + 2

2

}
=
{

x ∈ M

∣∣∣∣ f (ψ t (x)) ≤ n + 2

2

}
.

Moreover, since g(t) = τ̄ (ψ t )∗g,

V (r0) ≤ τ̄
n
2

∫
f (x)≤ n+2

2

dV ≤ τ̄
n
2 |{x | f (x) ≤ (n + 2)/2}|.

For any x such that f (x) ≤ (n + 2)/2. it follows from Lemma 1 that d(p, x) ≤ c0(n).
Therefore for any r ≥ 2

√
τ̄n,

|Bt (p, r)|t ≤ C(n)|B(p, c0)|rn ≤ C(n)eμrn,

where the last inequality follows from [34, Lemma 2.3].
Finally, the case r ≤ 2

√
τ̄n follows from the comparison theorem [55, Theorem 1.2]

by using (16). Indeed, for any x with dt (p, x) ≤ 2
√

τ̄n, it follows from Lemma 1 that
f (x, t) = τ̄−1F(x, t) ≤ C . Therefore, from (20) we obtain |∇ f |(x, t) ≤ C τ̄−1/2. Now it
follows from [55, (1.5) of Theorem 1.2] that for any s ≤ r ,∫

Bt (p,r)

e− f (x,t) dVt ≤ eCr τ̄−1/2 rn

sn

∫
Bt (p,s)

e− f (x,t) dVt ≤ C
rn

sn

∫
Bt (p,s)

e− f (x,t) dVt .

Then the conclusion follows if we let s → 0. �

3 Cutoff functions, maximum principle and heat kernel

Now we construct a family of cutoff functions which is important when we perform integra-
tion by parts throughout the paper.

Fix a function η ∈ C∞([0,∞)) such that 0 ≤ η ≤ 1, η = 1 on [0, 1] and η = 0 on
[2,∞). Furthermore, −C ≤ η′/η 1

2 ≤ 0 and |η′′|+ |η′′′| ≤ C for a universal constant C > 0.
For each r ≥ 1, we define

φr :=η

(
F

r

)
. (36)

Then φr is a smooth function on M × (−∞, 1). The following estimates of φr will be
repeatedly used in this paper.

Lemma 3 There exists a constant C = C(n) such that

(φr )−1|∇φr |2 ≤ Cr−1, (37)

|φr
t | ≤ C τ̄−1, (38)

|Δφr | ≤ C(τ̄−1 + r−1), (39)

|�φr | ≤ Cr−1, (40)
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|�∗φr | ≤ C
(
r−1 + τ̄−1 + τ̄−2r

)
. (41)

Proof Note that F ≤ 2r on the support of φr , it follows from the assumption of η and (31)
that

|∇φr |2
φr

= r−2η′2η−1|∇F |2 ≤ Cr−2F ≤ Cr−1.

This finishes the proof of (37). Similarly, by using (22), (24), (29) and (31), we can prove

|φr
t | = r−1|η′ Ft | ≤ Cr−1τ̄ R ≤ Cr−1τ̄−1F ≤ C τ̄−1,

|�φr | = |(∂t − Δ)φr | = |r−1η′�F − r−2η′′|∇F |2| = | − nr−1η′/2 − r−2η′′|∇F |2| ≤ Cr−1.

So (38) and (40) are proved. Then we have

|Δφr | = | − �φr + ∂tφ
r | ≤ |�φr | + |φr

t | ≤ C(τ̄−1 + r−1).

Hence we obtain (39). Finally, using (24) again, we have

|�∗φr | = | (−∂t − Δ + R) φr | = | (� − 2∂t + R) φr |
≤ |�φr | + 2|φr

t | + Rφr ≤ |�φr | + 2|φr
t | + τ̄−2Fφr

≤ C
(
r−1 + τ̄−1 + τ̄−2r

)
,

which proves (41). �
Now we move on to show the maximum principle on general Ricci shrinkers. On a closed

manifold,maximumprinciple holds automatically. If the underlyingmanifold is noncompact,
then some additional assumptions are needed in order the maximum principle to hold. For
example, in [35, Theorem 15.2], a condition

∫ b

a

∫
u2+(x, t)e−cd2(x) dV dt < ∞ (42)

is needed for the maximum principle of the static heat equation subsolution u. In our current
setting of Ricci shrinker spacetime, the metrics are evolving under Ricci curvature. Then
the distance distortion of different time slices is not easy to estimate directly without Ricci
curvature bound. Fortunately, we can replace d2 by f and obtain a maximum principle under
a condition similar to (42).

Theorem 6 (Maximum principle on Ricci shrinkers) Let (Mn, g, f ) be a Ricci shrinker.
Given any closed interval [a, b] ⊂ (−∞, 1) and a function u which satisfies �u ≤ 0 on
M × [a, b], suppose that

∫ b

a

∫
u2+(x, t)e−2 f (x,t) dVt (x) dt < ∞. (43)

If u(·, a) ≤ c, then u(·, b) ≤ c.

Proof From Lemmas 1 and 2, it is easy to see
∫ b

a

∫
e−2 f (x,t) dVt (x) dt < ∞.

Therefore, we only need to prove the special case when c = 0, by considering u − c.
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Multiplying both sides of �u ≤ 0 by u+(φr )2e−2 f and integrating on the spacetime
M × [a, b], then we obtain

∫ b

a

∫ (
u2+
2

)

t

(φr )2e−2 f dVt dt ≤
∫ b

a

∫
Δuu+(φr )2e−2 f dVt dt . (44)

For the left side of (44), we have

∫ b

a

∫ (
u2+
2

)

t

(φr )2e−2 f dVt dt

=
∫

u2+
2

(φr )2e−2 f dVb −
∫ b

a

∫
u2+φrφr

t e−2 f dVt dt

+
∫ b

a

∫
u2+(φr )2 ft e

−2 f dVt dt +
∫ b

a

∫
u2+
2

(φr )2Re−2 f dVt dt

≥
∫

u2+
2

(φr )2e−2 f dVb −
∫ b

a

∫
u2+φrφr

t e−2 f dVt dt

+
∫ b

a

∫
u2+(φr )2|∇ f |2e−2 f dVt dt, (45)

where we have used R ≥ 0, ft = |∇ f |2 and u+(·, a) = 0. For the right side of (44), we
have

∫ b

a

∫
Δuu+(φr )2e−2 f dVt dt

=
∫ b

a

∫
−|∇(u+φr )|2e−2 f dVt dt +

∫ b

a

∫
|∇φr |2u2+e−2 f dVt dt

+
∫ b

a

∫
2〈∇u+,∇ f 〉u+(φr )2e−2 f dVt dt

=
∫ b

a

∫
−|∇(u+φr )|2e−2 f dVt dt +

∫ b

a

∫
|∇φr |2u2+e−2 f dVt dt

+
∫ b

a

∫
2〈∇(u+φr ),∇ f 〉u+φr e−2 f dVt dt

−
∫ b

a

∫
2〈∇φr ,∇ f 〉u2+φr e−2 f dVt dt . (46)

Combining (45) and (46), we obtain

∫
u2+
2

(φr )2e−2 f dVb ≤ I + I I , (47)

where

I = −
∫ b

a

∫
u2+(φr )2|∇ f |2e−2 f dVt dt −

∫ b

a

∫
|∇(u+φr )|2e−2 f dVt dt

+
∫ b

a

∫
2〈∇(u+φr ),∇ f 〉u+φr e−2 f dVt dt ≤ 0, (48)
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and

I I =
∫ b

a

∫
u2+φrφr

t e−2 f dVt dt +
∫ b

a

∫
|∇φr |2u2+e−2 f dVt dt

−
∫ b

a

∫
2〈∇φr ,∇ f 〉u2+φr e−2 f dVt dt . (49)

From our construction of φr , it is easy to see that all functions involved in last three integrals
are supported in the spacetime set

Kr :={r ≤ F(x, t) ≤ 2r , a ≤ t ≤ b}. (50)

Moreover, all the cutoff function terms can be estimated by (37) and (38). For example, we
have

|〈∇φr ,∇ f 〉| ≤ τ̄−1|∇φr ||∇F | ≤ C τ̄r−1/2
√

F ≤ C(1 − b)−1 on Kr .

Plugging (37), (38) and the above inequality into (49), we arrive at

I I ≤ C
(
(1 − b)−1 + r−1) ∫∫

Kr

u2+e−2 f dVt dt . (51)

It follows from (47), (48) and (51) that
∫

u2+
2

(φr )2e−2 f dVb ≤ C
(
(1 − b)−1 + r−1) ∫∫

Kr

u2+e−2 f dVt dt .

Note that the left hand side of the above inequality is independent of r . Letting r → +∞,
the finite integral assumption (43) implies that

∫
u2+
2

e−2 f dVb ≤ 0.

Therefore, u(·, b) ≤ 0 by the continuity of u and positivity of e−2 f (·,b). �
The condition (43) is satisfied in many cases. For example, if u is a bounded heat solution.

The technique used in the proof of Theorem 6 will be repeatedly used in this paper.
Now we control the spacetime integral of |Hess F |2.

Lemma 4 For any λ > 0, a < b < 1, there exists a constant C = C(a, b, λ) such that
∫ b

a

∫
|Hess F |2e−λF dVt dt ≤ C .

Proof From (29) and direct computations,

�|∇F |2 = −2|Hess F |2.
Multiplying both sides of the above equation by φr e−λF and integrating on the spacetime
M × [a, b], we obtain

2
∫ b

a

∫
|Hess F |2φr e−λF dVt dt

= −
(∫

|∇F |2φr e−λF dVt

)∣∣∣∣
b

a
+
∫ b

a

∫
�∗φr |∇F |2e−λF dVt dt
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+ λ

∫ b

a

∫ (
φr (λ|∇F |2 − Ft − ΔF) − 2〈∇φr ,∇F〉) |∇F |2φr dVt dt

≤ −
(∫

|∇F |2φr e−λF dVt

)∣∣∣∣
b

a
+
∫ b

a

∫
|�∗φr |Fe−λF dVt dt

+ λ

∫ b

a

∫ (
(λ + 2τ̄−1)F + 2r− 1

2 F
1
2

)
Fe−λF dVt dt .

Now we let r → ∞ and the conclusion follows from Lemmas 1 and 2. �

Theorem 7 On the Ricci flow spacetime M ×(−∞, 1) induced by a Ricci shrinker (M, g, f ),
there exists a positive heat kernel function H(x, t, y, s) for all x, y ∈ M and s, t ∈ (−∞, 1)
with x �= y and s < t . It satisfies

�x,t H(x, t, y, s):= (∂t − Δx ) H(x, t, y, s) = 0, (52)

�∗
y,s H(x, t, y, s):= (−∂s − Δy + R(y, s)

)
H(x, t, y, s) = 0, (53)

lim
t→s+ H(x, t, y, s) = δy, (54)

lim
s→t−

H(x, t, y, s) = δx . (55)

Furthermore, the heat kernel H satisfies the semigroup property

H(x, t, y, s) =
∫

H(x, t, z, ρ)H(z, ρ, y, s) dVρ(z), ∀ x, y ∈ M, ρ ∈ (s, t) ⊂ (−∞, 1),

(56)

and the following integral relationships

∫
H(x, t, y, s) dVt (x) ≤ 1, (57)

∫
H(x, t, y, s) dVs(y) = 1. (58)

Proof We shall divide the proof of Theorem 7 into four steps.
Step 1. Existence of a heat kernel function H solving heat equation and conjugate heat
equation.

Fix a compact interval I = [a, b] ⊂ (−∞, 1) and a compact set Ω ⊂ M with smooth
boundary, there exists a Dirichlet heat kernel. The proof can be found in in [19, Chapter 24,
Sect. 5]. Regarding (−∞, 1) as the union of [−2k, 1−2−k], it is easy to see that the Dirichlet
heat kernel actually exists on Ω × (−∞, 1). Now we let {Ωi } be an exhaustion of M by
relatively compact domains with smooth boundary such that Ωi ⊂ Ωi+1. Let Hi (x, t, y, s)
be the Dirichlet heat kernel of (Ωi , g). Then the following properties hold.

∂t Hi (x, t, y, s) = Δx,t Hi (x, t, y, s), (59)

∂s Hi (x, t, y, s) = −Δy,s Hi (x, t, y, s) + R(y, s)Hi (x, t, y, s); (60)

lim
t↘s

Hi (x, t, y, s) = δy, (61)

lim
s↗t

Hi (x, t, y, s) = δx . (62)
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Let n be the outward normal vector of ∂Ωi , then the positivity of Hi implies that ∂ Hi
∂n ≤ 0.

Since R ≥ 0 on Ricci shrinkers, direct computation shows that

∂t

∫
Ωi

Hi (x, t, y, s) dVt (x)=
∫

Ωi

(
Δx,t − R

)
Hi (x, t, y, s) dVt (x)≤

∫
∂Ωi

∂ Hi

∂n
dσt (x)≤0.

(63)

Hence from (61), we have
∫

Ωi

Hi (x, t, y, s) dVt (x) ≤ 1. (64)

Similarly, we have

∂s

∫
Ωi

Hi (x, t, y, s) dVs(y) = −
∫

Ωi

Δy,s Hi (x, t, y, s) dVs(y) = −
∫

∂Ωi

∂ Hi

∂n
dσs(y) ≥ 0,

(65)

which implies that
∫

Ωi

Hi (x, t, y, s) dVs(y) ≤ 1. (66)

As Hi > 0 on Ωi × (−∞, 1), it follows from the classical maximum principle that

0 ≤ Hi ≤ Hi+1 (67)

on Ωi × Ωi × (−∞, 1). Now we define the heat kernel on M × (−∞, 1) by

H(x, t, y, s):= lim
i→∞ Hi (x, t, y, s). (68)

From the well-known mean value theorem (cf. Theorem 25.2 in [19]) the interior regularity
estimates for the heat equation and conjugate heat equation, it follows from (64) and (66)
that Hi is uniformly bounded when s, t are fixed. Threfore, H exists as a smooth function.
Its positivity is guranteed by (67). The regularity estimates also imply that the convergence
from Hi to H is locally smooth. In particular, we can take limit of (59) and (60) to obtain
that H solves heat equation and conjugate heat equation on M × (−∞, 1). In other words,
(52) and (53) are satisfied.
Step 2The heat kernel is a fundamental solution of heat equation and conjugate heat equation.

Let φ be a smooth function on M with compact support K . For fixed y and s, we have
∣∣∣∣∂t

∫
Ωi

Hi (x, t, y, s)φ(x) dVt (x)

∣∣∣∣
=
∣∣∣∣
∫

Ωi

(Δx,t − R)Hi (x, t, y, s)φ(x) dVt (x)

∣∣∣∣
≤
∣∣∣∣
∫

Ωi

Hi (x, t, y, s)Δφ(x) dVt (x)

∣∣∣∣+
∣∣∣∣
∫

Ωi

RHi (x, t, y, s)φ(x) dVt (x)

∣∣∣∣
≤ C

∣∣∣∣
∫

Ωi

Hi (x, t, y, s) dVt (x)

∣∣∣∣ ≤ C, (69)

where C is independent of Hi . Notice that the last two inequalities hold since we just need
to restrict the integral on K , and for a fixed s, when t is close to s, the metrics are uniformly
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equivalent on K × [s, t]. Combining (61) with (69), we obtain
∣∣∣∣
∫

Ωi

Hi (x, t, y, s)φ(x) dVt (x) − φ(y)

∣∣∣∣ ≤ C(t − s). (70)

Since φ has compact support, it is clear that

lim
i→∞

∫
Ωi

Hi (x, t, y, s)φ(x) dVt (x) =
∫

H(x, t, y, s)φ(x)dVt (x).

Plugging the above equation into (70) yields that
∣∣∣∣
∫

H(x, t, y, s)φ(x) dVt (x) − φ(y)

∣∣∣∣ ≤ C(t − s),

which means that

lim
t→s+

∫
H(x, t, y, s)φ(x) dVt (x) = φ(y).

By the arbitrary choice of φ, we obtain (54). Therefore, H is a fundamental solution of the
heat equation. Similary, we can use the limit argument to derive (55) and claim that H is a
fundamental solution of the conjugate heat equation.
Step 3 The heat kernel satisfies the semigroup property.

From its construction, Hi satisfies the semigroup property:

Hi (x, t, y, s) =
∫

Ωi

Hi (x, t, z, ρ)Hi (z, ρ, y, s) dVρ(z), ∀ x, y ∈ Ωi , ρ ∈ (s, t) ⊂ (−∞, 1).

(71)

For each compact set K ⊂ M , it is clear that K ⊂ Ωi for large i . By the positivity of each
Hi , we have

H(x, t, y, s) = lim
i→∞ Hi (x, t, y, s) = lim

i→∞

∫
Ωi

Hi (x, t, z, ρ)Hi (z, ρ, y, s) dVρ(z)

≥ lim
i→∞

∫
K

Hi (x, t, z, ρ)Hi (z, ρ, y, s) dVρ(z) =
∫

K
H(x, t, z, ρ)H(z, ρ, y, s) dVρ(z).

By the arbitrary choice of K ⊂ M , the above inequality implies that

H(x, t, y, s) ≥
∫

H(x, t, z, ρ)H(z, ρ, y, s) dVρ(z). (72)

By (67), (68) and the positivity of H , we have

Hi (x, t, y, s) =
∫

Ωi

Hi (x, t, z, ρ)Hi (z, ρ, y, s) dVρ(z) ≤
∫

Ωi

H(x, t, z, ρ)H(z, ρ, y, s)dVρ(z)

<

∫
H(x, t, z, ρ)H(z, ρ, y, s)dVρ(z),

whose limit form is

H(x, t, y, s) ≤
∫

H(x, t, z, ρ)H(z, ρ, y, s)dVρ(z). (73)

Therefore, the semigroup property (56) follows from the combination of (72) and (73).
Step 4 The integral relationships (57) and (58) are satisfied.
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On each compact set K ⊂ M , since K ⊂ Ωi for large i and each Hi is positive on Ωi ,
we have∫

K
H(x, t, y, s)dVt (x)= lim

i→∞

∫
K

Hi (x, t, y, s)dVt (x)≤ lim
i→∞

∫
Ωi

Hi (x, t, y, s)dVt (x)≤1,

where (64) is applied in the last step. The arbitrary choice of K then yields that∫
H(x, t, y, s)dVt (x) ≤ 1,

which is nothing but (57). Similar reasoning can pass (66) to obtain∫
K

H(x, t, y, s)dVs(y) ≤ 1, (74)

where the inequality will be improved to equality (58) in the following argument. In fact, let
φr be the cutoff function defined in (36). For any fixed x and t , it follows from the cutoff
function estimate (40) that∣∣∣∣∂s

∫
H(x, t, y, s)φr (y, s) dVs(y)

∣∣∣∣
=
∣∣∣∣
∫

H(x, t, y, s)�y,sφ
r (y, s) dVs(y)

∣∣∣∣ ≤ Cr−1
∫

H(x, t, y, s) dVs(y).

Plugging (74) into the above inequality, we obtain∣∣∣∣∂s

∫
H(x, t, y, s)φr (y, s) dVs(y)

∣∣∣∣ ≤ Cr−1.

When r is large, x is covered by the support of φr at the time t . Using (55), the above
inequality implies that∣∣∣∣

∫
H(x, t, y, s)φr (y, s) dVs(y) − 1

∣∣∣∣ ≤ Cr−1(t − s).

Since r could be arbitrarily large in the above inequality, we obtain (58) by letting r → ∞.
�
Lemma 5 Suppose [a, b] ⊂ (−∞, 1) and ua is a bounded function on the time slice
(M, g(a)). Then

u(x, t):=
∫

H(x, t, y, a)ua(y)dVa(y), ∀ t ∈ [a, b] (75)

is the unique bounded heat solution with initial value ua.

Proof Clearly, u is a well-defined heat solution with the initial value ua . Suppose ũ is another
heat solution with initial value ua . Then u − ũ is a bounded heat solution with initial value
0. Therefore, we can apply maximum principle Theorem 6 on ±(u − ũ) to obtain that

u − ũ ≡ 0 on M × [a, b].
In other words, ũ ≡ u and the uniqueness is proved. �
Corollary 1 Suppose ua is a smooth, bounded, integrable function on (M, g(a)). Let u be the
unique bounded heat solution on M × [a, b] starting from ua. Then we have

sup
M

|∇u(·, b)| ≤ sup
M

|∇u(·, a)|. (76)
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Proof Fix r >> 1 andmultiply both sides of�u = 0 by u(φr )2 and integrating on M×[a, b],
we obtain
(
1

2

∫
u2(φr )2 dVt

)∣∣∣∣
b

a
−
∫ b

a

∫
u2φrφr

t dVt dt =
∫ b

a

∫ {−|∇(uφr )|2 + |∇φr |2u2} dVt dt .

(77)

By Lemma 5 we know

u =
∫

H(x, t, y, a)ua(y)dVa .

Then it follows from (57) that u is bounded and integrable. Consequently, u2 is integrable.
It follows from (37) and (38) that by letting r → ∞, we obtain from (77)

∫ b

a

∫
|∇u|2 dVt dt ≤ −

(
1

2

∫
u2dVt

)∣∣∣∣
b

a
+ C τ̄−1

∫ b

a

∫
u2 dVt dt < ∞.

Therefore, the assumption of Theorem 6 is satisfied. Since �|∇u|2 = −2|Hess u|2 ≤ 0,
following the maximum principle, we arrive at (76). �
Proposition 1 Suppose u is a heat solution and w is a conjugate heat solution on M ×[a, b]
for [a, b] ⊂ (−∞, 1) such that

sup
t∈[a,b]

∫
|w| dVt + sup

M×[a,b]
|u| ≤ C < ∞.

Then we have ∫
uw dVb =

∫
uw dVa . (78)

Proof Fix r >> 1. We calculate

∂t

∫
wuφr dVt =

∫ {
w�(uφr ) − (uφr )�∗w

}
dVt =

∫
w�
(
uφr ) dVt

=
∫

w
{
u�φr + φr�u − 2〈∇u,∇φr 〉} dVt

=
∫

w
{
u�φr − 2〈∇u,∇φr 〉} dVt . (79)

Note that |∇u| ≤ C by Corollary 1. Plugging the cutoff function estimates (37) and (40) into
the above inequality, we obtain

∣∣∣∣∣
(∫

wuφr dVt

)∣∣∣∣
b

a

∣∣∣∣∣ ≤ C(r−1 + r− 1
2 ).

Taking r → ∞, the right hand side of the above inequality tends to zero, the left hand side
converges to

∫
wu dVb −

∫
wu dVa,

since u is bounded and w is integrable. Consequently, we arrive at (78). �
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Lemma 6 Suppose [a, b] ⊂ (−∞, 1) and wb is an integrable function on the time slice
(M, g(b)). Then

w(y, s):=
∫

H(x, b, y, s)wb(x) dVb(x) (80)

is the unique conjugate heat solution with initial value wb such that

sup
t∈[a,b]

∫
|w| dVt < ∞. (81)

Proof Fix a time a0 ∈ [a, b] and let h be an arbitrary smooth function with compact support.
Then we solve the heat equation starting from h to obtain a unique bounded function u as

u(x, t) =
∫

H(x, t, y, a)h(y) dVa(y).

Since w is given by (80), it follows from (58) that w satisfies (81). Suppose w̃ is another
conjugate heat solution starting from wb satisfying (81). Then we can apply Lemma 5 to the
couple of u and w̃ − w to obtain that for any t ∈ [a0, b],∫

(w̃(x, t) − w(x, t)) u(x, t) dVt (x) = 0.

In particular, ∫
(w̃(x, a0) − w(x, a0)) h(x) dVa0(x) = 0.

By the arbitrary choice of h, we obtain w̃(·, a0)−w(·, a0) ≡ 0. Then by the arbitrary choice
of a0, we see that

w̃(·, t) ≡ w(·, t), ∀ t ∈ [a, b].
Therefore, the uniqueness is proved. �
Lemma 7 Suppose w is a bounded function on M × [a, b] satisfying �∗w ≤ 0 and (81).
Then we have

sup
M

w(·, a) ≤ sup
M

w(·, b). (82)

Proof Without loss of generality, by adding a constant, we may assume that sup
M

w(·, b) = 0.

Then it suffices to show that

sup
M

w(·, a) ≤ 0. (83)

At the time slice t = a, we choose an arbitrary nonnegative smooth function h with compact
support. Then we solve the forward heat solution starting from h and denote the function by
u. It is clear that u ≥ 0. Similar to the proof of Proposition 1, we obtain that∫

w(x, a)h(x) dVa(x) ≤
∫

w(x, b)u(x, b) dVb(x) ≤ 0,

since at time t = b we have u ≥ 0 and w ≤ 0. Therefore, the inequality (83) follows from
the arbitrary choice of h. �
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Theorem 8 (Bounded heat solution) Suppose t0 ∈ (−∞, 1) and h is a bounded function on
the time-slice (M, g(t0)). On M × (t0, 1), starting from h, there is a unique heat solution u
which is bounded on each compact time-interval of [t0, 1). The solution is

u(x, t) =
∫

H(x, t, y, t0)h(y) dVt0(y), ∀ x ∈ M, t ∈ (t0, 1). (84)

Similarly, for any bouned integrable function h, starting from h there is a unique conjugate
heat solution w which is bounded and integrable uniformly on each compact time interval
of (−∞, t0]. The solution is

w(x, t) =
∫

H(y, t0, x, t)h(y) dVt0(y), ∀ x ∈ M, t ∈ (−∞, t0). (85)

Theorem 9 (Maximum principle of bounded functions) Suppose u is a bounded super-heat-
solution, i.e., �u ≤ 0 on M × [a, b]. Then

sup
M

u(·, b) ≤ sup
M

u(·, a). (86)

Similarly, if w is a bounded super-conjugate-heat-solution, i.e., �∗w ≤ 0 on M × [a, b]
satisfying (81). Then

sup
M

w(·, b) ≥ sup
M

w(·, a). (87)

From (27) and (28) from previous section, on the space-time M × (−∞, 1), there are
standard heat solution and conjugate heat solutions F + n

2 t and v̄ = (4π(1− t))− n
2 e− f . We

can apply Theorems 6 and 9 to compare other supersolutions or subsolutions with F + n
2 t

and v̄ = (4π(1 − t))− n
2 e− f . In particular, we have the following Lemma.

Lemma 8 Given a smooth function φ with compact support on a Ricci shrinker (Mn, g, f ).
For any b < 1, let w(x, t) = ∫ H(y, b, x, t)φ(y) dVb(y) be the bounded solution of con-
jugate heat equation with w(·, b) = φ. Then there exists a constant C > 0 such that for
t ≤ b

w(x, t) ≤ C v̄(x, t) = C
e− f (x,t)

(4πτ̄ )n/2 . (88)

Lemma 8 tells us that starting from a compact supported function, the solution of the
conjugate heat equation is at least exponentially decaying.

4 Monotonicity of Perelman’s entropy

Recall that on any compact Riemannian manifold (Mn, g), Perelman’s W entropy [46] is
defined as

W(g, φ, τ ) =
∫ (

τ(|∇φ|2 + R) + φ − n
) e−φ

(4πτ)n/2 dV (89)

for φ a smooth function and τ > 0. Let u2 = e−φ

(4πτ)n/2 , we can rewrite above functional as

W(g, u, τ ) =
∫

τ(4|∇u|2 + Ru2) − u2 log u2 dV −
(

n + n

2
log(4πτ)

) ∫
u2 dV . (90)

123



194 Page 22 of 84 Y. Li, B. Wang

For a general Ricci shrinker (Mn, g, f ), we define the μ-functional as

μ(g, τ ) = inf
{W(g, u, τ )

∣∣u ∈ W 1,2∗ (M)
}
, (91)

where

W 1,2∗ (M) =
{

u

∣∣∣∣
∫

|∇u|2 dV < ∞,

∫
u2 dV = 1 and

∫
d2(p, ·)u2 dV < ∞

}
. (92)

The last integral condition
∫

d2(p, ·)u2 dV < ∞ is imposed for two reasons. First, it
follows from Lemma 1 and (20) that∫

Ru2 dV < ∞. (93)

Second, the term
∫

u2 log u2 dV in the definition ofW(g, u, τ ) is well defined. Indeed, if we

consider the rescaled measure dṼ :=e−d2(p,x)V , then it follows from the volume estimate
Lemma2 that Ṽ (M) is finite.Given a u ∈ W 1,2∗ , we set A:={x ∈ M | u(x) < 1} and ũ:=χAu,
whereχA is the characteristic function of the set A. Then it is clear that

∫
d2(p, x)ũ2(x) dV <

∞. By a direct calculation,∫
ũ2 log ũ2 dV =

∫
û2 log û2 dṼ −

∫
d2(p, ·)ũ2 dV , (94)

where û2 = ũ2ed2(p,·). By Jensen’s inequality, we obtain∫
û2 log û2 dṼ ≥

(∫
û2 dṼ

)
log

(
1

Ṽ (M)

∫
û2 dṼ

)
> −∞

since
∫

û2 dṼ = ∫ ũ2 dV ∈ [0, 1]. Therefore it follows from (94) that∫
ũ2 log ũ2 dV > −∞.

In other words, it implies that for any u ∈ W 1,2∗ (M), the negative part of u2 log u2 is
integrable and W(g, u, τ ) ∈ [−∞,+∞). In fact, it will be proved later, see Proposition 15
that W(g, u, τ ) cannot be −∞.

Remark 1 The space W 1,2∗ (M) can be regarded as a collection of probability measure v such
that

(i) v = ρV , that is, v is absolutely continuous with respect to the volume form V .
(ii) v has finite moment of second order (v ∈ P2(M)), that is, for any point q ∈ M ,∫

d2(q, ·) dv < ∞.

(iii) The Fisher information

F(ρ):=4
∫

|∇√
ρ|2 dV < ∞.

Nowwe show that for any Ricci shrinker, we can always restrict the infimum on all smooth
functions with compact support.

Proposition 2 For any Ricci shrinker (Mn, g, f ),

μ(g, τ ) = inf

{
W(g, u, τ )

∣∣∣∣ u ∈ C∞
0 (M) and

∫
u2 dV = 1

}
. (95)
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Proof For any function u ∈ W 1,2∗ (M) such that W(g, u, τ ) is finite, we define a positive
constant

c2r =
∫

u2(φr )2 dV .

It is clear from the definition that cr ≤ 1 and limr→∞ cr = 1. From direct computations,

W(g, c−1
r uφr , τ )

=
∫

c−2
r τ(4|∇(uφr )|2 + R(uφr )2) − (c−1

r uφr )2 log(c−1
r uφr )2 dV − n − n

2
log(4πτ)

=
∫

4τc−2
r

(
(φr )2|∇u|2 + |∇φr |2u2 + 2uφr 〈∇u,∇φr 〉)+ c−2

r τ R(uφr )2 dV

−
∫

(c−1
r φr )2u2 log u2 + (c−1

r φr )2 log (φr )2u2 dV + log c2r − n − n

2
log(4πτ).

Now by the definition of W 1,2∗ and the dominated convergence theorem,

lim
r→∞W(g, c−1

r uφr , τ ) − W(g, u, τ )

= − lim
r→∞

∫ (
1 − (c−1

r φr )2
)

u2 log u2 dV .

Since u2 log u2 is absolutely integrable, by the dominated convergence theorem,

lim
r→∞

∫ (
1 − (c−1

r φr )2
)

u2 log u2 dV = 0

and hence

lim
r→∞W(g, c−1

r uφr , τ ) = W(g, u, τ ).

Similarly, if W(g, u, τ ) = −∞, then

lim
r→∞W(g, c−1

r uφr , τ ) = −∞.

For a fixed r , it is not hard to choose a sequence of smooth functions us with compact
support by the usual smoothing process such that

lim
s→∞W(g, us, τ ) = W(g, c−1

r uφr , τ ).

�
Now we prove the celebrated monotonicity theorem of Perelman on Ricci shrinkers.

Theorem 10 For any Ricci shrinker (Mn, g, f ) and τ > 0,

μ(g(t), τ − t) (96)

is increasing for t < min{1, τ }.
Proof We fix a time t1 < min{1, τ } and an nonnegative smooth function

√
w̄ with compact

support such that
∫

w̄ dVt1 = 1. By defining

w(x, t) =
∫

H(y, t1, x, t)w̄(y) dVt1(y), (97)
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it is straightforward to check that∫
w(x, t) dVt (x) =

∫∫
H(y, t1, x, t)w̄(y) dVt (x) dVt1(y) =

∫
w̄(y)dVt1(y) = 1,

where we have used stochastic completeness (58) for the last equality.

Lemma 9 For any time t0 < t1,

4
∫ t1

t0

∫
|∇√

w|2 dVt dt =
∫ t1

t0

∫ |∇w|2
w

dVt dt < ∞. (98)

Proof of Lemma 9: By direct computations,
∫ t1

t0

∫ |∇w|2
w

φr dVt dt

=
∫ t1

t0

∫
〈∇(logw),∇w〉φr dVt dt

= −
∫ t1

t0

∫
(logw)Δwφr dVt dt −

∫ t1

t0

∫
logw〈∇w,∇φr 〉 dVt dt

= I + I I . (99)

We estimate I first.

I := −
∫ t1

t0

∫
(logw)Δwφr dVt dt

=
∫ t1

t0

∫
(logw)wtφ

r dVt dt −
∫ t1

t0

∫
(logw)Rwφr dVt dt

=
(∫

(logw)wφr dVt

)∣∣∣∣
t1

t0

−
∫ t1

t0

∫
(logw)twφr dVt dt −

∫ t1

t0

∫
(logw)wφr

t dVt dt

+
∫ t1

t0

∫
(logw)Rwφr dVt dt −

∫ t1

t0

∫
(logw)Rwφr dVt dt

=
(∫

(logw)wφr dVt

)∣∣∣∣
t1

t0

−
∫ t1

t0

∫
wtφ

r dVt dt −
∫ t1

t0

∫
(logw)wφr

t dVt dt

=
(∫

(logw)wφr dVt

)∣∣∣∣
t1

t0

−
(∫

wφr dVt

)∣∣∣∣
t1

t0

+
∫ t1

t0

∫
wφr

t dVt dt −
∫ t1

t0

∫
wRφr dVt dt −

∫ t1

t0

∫
(logw)wφr

t dVt dt

Now it is easy to show that all integrals in I are bounded. Indeed, from Lemma 8, there
exists a constant C such that

w(x, t) ≤ Ce− f (x,t)

on M × [t0, t1], where C depends only on t1, t2 and the upper bound of w(·, t1).
Therefore for t ∈ [t0, t1]∫

|w(logw)| dVt ≤ C
∫

w1/2 + w2 dVt ≤ C
∫

e− f /2 + e− f dVt ≤ C .
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Moreover, by using (20),
∫ t1

t0

∫
wR dVt dt ≤ C

∫ t1

t0

∫
f e− f dVt dt ≤ C .

Now we estimate I I in (99).

|I I | ≤
∣∣∣∣
∫ t1

t0

∫
logw〈∇w,∇φr 〉 dVt dt

∣∣∣∣
≤
∫ t1

t0

∫
| logw||∇w||∇φr | dVt dt

=
∫ t1

t0

∫
| logw| |∇w|√

w

|∇φr |√
φr

√
w
√

φr dVt dt

≤ 1

2

∫ t1

t0

∫ |∇w|2
w

φr dVt dt + 1

2

∫ t1

t0

∫
w| logw|2 |∇φr |2

φr
dVt dt . (100)

By our construction of φr , |∇φr |2
φr is uniformly bounded. Reasoning as before,

∫ t1

t0

∫
w| logw|2 |∇φr |2

φr
dVt dt ≤ C

∫∫
w1/2 + w2 dVt dt ≤ C

∫∫
e− f /2 + e− f dVt dt ≤ C .

Now it is easy to see from (99) and (100) that

∫ t1

t0

∫ |∇w|2
w

φr dVt dt ≤ C,

where C depends only on t0, t1 and the upper bound of w(·, t1). By taking r → ∞, we have
proved Lemma 9.

Now we define the function φ as

w(x, t) = e−φ

(4π(τ − t))n/2 .

By direct computations, see Theorem 9.1 of [46], that if we set

v = ((τ − t)(2Δφ − |∇φ|2 + R) + φ − n
)
w,

then for t < τ ,

�∗v = −2(τ − t)

∣∣∣∣Rc + Hessφ − g

2(τ − t)

∣∣∣∣
2

w ≤ 0, (101)

that is, v is a subsolution of the conjugate heat equation.
We set τ1 = τ1(t) = τ − t for simplicity. By the definition,

v = τ1

(
−2Δw + |∇w|2

w
+ Rw

)
− w logw −

(
n + n

2
log(4πτ1)

)
w. (102)

Now we multiply both sides of (101) by φr so that
∫ t1

t0

∫
vtφ

r dVt dt ≥ −
∫ t1

t0

∫
Δvφr dVt dt +

∫ t1

t0

∫
Rvφr dVt dt . (103)
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The left side of (103) is
∫ t1

t0

∫
vtφ

r dVt dt = −
∫ t1

t0

∫
vφr

t dVt dt +
∫ t1

t0

∫
Rvφr dVt dt +

(∫
vφr dVt

)∣∣∣∣
t1

t0

.

(104)

The right side of (103) is

−
∫ t1

t0

∫
Δvφr dVt dt+

∫ t1

t0

∫
Rvφr dVt dt =−

∫ t1

t0

∫
vΔφr dVt dt+

∫ t1

t0

∫
Rφr dVt dt

(105)

Therefore, we have
(∫

vφr dVt

)∣∣∣∣
t1

t0

≥
∫ t1

t0

∫
v�φr dVt dt . (106)

Now it is important to use the exact expression of �φr , that is,

�φr = −nr−1η′/2 − r−2η′′|∇F |2. (107)

We consider the first term of v and prove the following lemma. �
Lemma 10

lim
r→∞

∫ t1

t0

∫
Δw�φr dVt dt = 0. (108)

Proof of Lemma 10: From (107), we have
∫ t1

t0

∫
Δw�φr dVt dt = − n

2r

∫ t1

t0

∫
Δwη′ dVt dt − r−2

∫ t1

t0

∫
Δwη′′|∇F |2 dVt dt

= I + I I .

Now

|I | =
∣∣∣∣− n

2r

∫ t1

t0

∫
Δwη′ dVt dt

∣∣∣∣ =
∣∣∣∣ n

2r

∫ t1

t0

∫
〈∇w,∇η′〉 dVt dt

∣∣∣∣
=
∣∣∣∣ n

2r2

∫ t1

t0

∫
〈∇w,∇F〉η′′ dVt dt

∣∣∣∣ ≤ n

2r2

∫ t1

t0

∫
|∇w||∇F ||η′′| dVt dt

= n

2r2

∫ t1

t0

∫ |∇w|√
w

|∇F ||η′′|√w dVt dt

≤ n

2r2

(∫ t1

t0

∫ |∇w|2
w

dVt dt

)1/2 (∫ t1

t0

∫
|∇F |2|η′′|2w dVt dt

)1/2
. (109)

Now the first integral of (109) is bounded by (98) while the second
∫ t1

t0

∫
|∇F |2|η′′|2w dVt dt ≤ C

∫ t1

t0

∫
Fw dVt dt ≤ C

∫ t1

t0

∫
Fe− f dVt dt ≤ C (110)

where the last constant C depends only on t0, t1 and the upper bound of w(·, t1).
It is immediate that from (109) by taking r → ∞ that limr→∞ I = 0.
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We continue to estimate I I .

|I I | =
∣∣∣∣−r−2

∫ t1

t0

∫
Δwη′′|∇F |2 dVt dt

∣∣∣∣
≤
∣∣∣∣r−2

∫ t1

t0

∫
〈∇w,∇η′′〉|∇F |2 dVt dt

∣∣∣∣+
∣∣∣∣r−2

∫ t1

t0

∫
〈∇w,∇|∇F |2〉η′′ dVt dt

∣∣∣∣
= I I I + I V .

Now we have

I I I =
∣∣∣∣r−2

∫ t1

t0

∫
〈∇w,∇η′′〉|∇F |2 dVt dt

∣∣∣∣ ≤ r−3
∫ t1

t0

∫
|∇w||∇F |3|η′′′| dVt dt

≤ Cr−3
∫ t1

t0

∫ |∇w|√
w

|∇F |3√w dVt dt

≤ Cr−3
(∫ t1

t0

∫ |∇w|2
w

dVt dt

)1/2 (∫ t1

t0

∫
|∇F |6w dVt dt

)1/2
≤ C

since ∫ t1

t0

∫
|∇F |6w dVt dt ≤

∫ t1

t0

∫
F3e− f dVt dt ≤ C .

Therefore limr→∞ I I I = 0.
Similarly,

I V =
∣∣∣∣r−2

∫ t1

t0

∫
〈∇w,∇|∇F |2〉η′′ dVt dt

∣∣∣∣ ≤ Cr−2
∫ t1

t0

∫
|∇w||∇F ||HessF ||η′′| dVt dt

≤ Cr−3/2
∫ t1

t0

∫
|∇w||HessF | dVt dt = Cr−3/2

∫ t1

t0

∫ |∇w|√
w

|HessF |√w dVt dt

≤ Cr−3/2
(∫ t1

t0

∫ |∇w|2
w

dVt dt

)1/2 (∫ t1

t0

∫
|HessF |2w dVt dt

)1/2
.

Now from Lemma 4 the last integral is bounded since w ≤ Ce− f , so limr→∞ I V = 0.
Therefore, Lemma 10 is proved.

We can estimate the integral of v�φr .
From the expression of v in (102), we have

∫ t1

t0

∫
v�φr dVt dt

=
∫ t1

t0

∫ (
τ1(−2Δw + |∇w|2

w
+ Rw) − w logw −

(
n + n

2
log(4πτ1)

)
w

)
�φr dVt dt .

Since we have |�φr | ≤ Cr−1 from (40) and all terms except the first above have bounded
integral on spacetime, it is easy to show, by taking into account of the claim, that

lim
r→∞

∫ t1

t0

∫
v�φr dVt dt = 0. (111)

Now from (106),

lim
r→∞

∫
vφr dVt1 ≥ lim

r→∞

∫
vφr dVt0 . (112)
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Since we choose
√

w(·, t1) to be a smooth function with compact support, it is immediate
that

lim
r→∞

∫
vφr dVt1 = W(g(t1),

√
w(·, t1), τ − t1). (113)

�
Lemma 11

√
w(·, t0) ∈ W 1,2∗

and

lim
r→∞

∫
Δwφr dVt0 = 0. (114)

Proof of Lemma 11: From the definition of v,

lim
r→∞

∫
vφr dVt0

= lim
r→∞

∫ (
(τ1(−2Δw + |∇w|2

w
+ Rw) − w logw − (n + n

2
log(4πτ1))w

)
φr dVt0 .

All terms except for the first two in the above integral are absolutely integrable, due to
w ≤ Ce− f and R ≤ τ−2F .

Combining with (112), we conclude that

lim
r→∞

∫ (
−2Δw + |∇w|2

w

)
φr dVt0

is bounded above.
Then we have

lim
r→∞

∫ (
−2Δw + |∇w|2

w

)
φr dVt0

= lim
r→∞

∫
2〈∇w,∇φr 〉 + |∇w|2

w
φr dVt0

≥ lim
r→∞

∫
−|∇w|2

2w
φr − 2

|∇φr |2
φr

w + |∇w|2
w

φr dVt0

= 1

2
lim

r→∞

∫ |∇w|2
w

φr dVt0 , (115)

where we have used

lim
r→∞

∫ |∇φr |2
φr

w dVt0 = 0.

To prove (114), for any ε > 0,

lim
r→∞

∣∣∣∣
∫

Δwφr dVt0

∣∣∣∣ = lim
r→∞

∣∣∣∣
∫

〈∇w,∇φr 〉 dVt0

∣∣∣∣
≤ lim

r→∞

∫
ε
|∇w|2

w
φr + ε−1 |∇φr |2

4φr
w dVt0
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= ε

∫ |∇w|2
w

dVt0

By taking ε → 0, we conclude that (114) holds. Therefore, the proof of Lemma 11 is
complete.

Therefore,

lim
r→∞

∫
vφr dVt0 = W(g(t0),

√
w(·, t0), τ − t0).

In summary, we have shown from (112) that

W(g(t1),
√

w(·, t1), τ − t1) ≥ W(g(t0),
√

w(·, t0), τ − t0) ≥ μ(g(t0), τ − t0).

Since τ , t0, t1 and
√

w(·, t1) are arbitrary, the proof of Theorem 10 is complete. �
Corollary 2 On a Ricci shrinker (Mn, g, f ), the functional μ(g, τ ) is decreasing for 0 <

τ < 1 and increasing for τ > 1.

Proof The same argument appeared in Step 1, Proposition 9.5 of [34].We repeat the argument
here for the convenience of the readers.

For a fixed constant τ0 > 1, from Theorem 10,

μ(g(t), τ0 − t) = μ((1 − t)(ψ t )∗g, τ0 − t) = μ

(
g,

τ0 − t

1 − t

)

is increasing for t < 1. Now as t goes from 0 to 1, τ0−t
1−t goes from τ0 to ∞. As τ0 > 1 is

arbitrary, we have proved that μ(g, τ ) is increasing for all τ > 1. Similarly, for any τ0 < 1,
as t goes from 0 to τ0,

τ0−t
1−t goes from τ0 to 0. Therefore, μ(g, τ ) is decreasing for all τ < 1.

�

5 Optimal logarithmic Sobolev constant—part I

For any Ricci shrinker (Mn, g, f ) with the normalization (2), we define

μ = μ(g):= log
∫

e− f

(4π)n/2 dV . (116)

It follows from a direct calculation that eμ is comparable to the volume of the unit ball
B(p, 1).

Lemma 12 (cf. Lemma 2.5 of [34])For any Ricci shrinker (Mn, g, f ), there exists a constant
C = C(n) > 1 such that

C−1eμ ≤ |B(p, 1)| ≤ Ceμ.

Next we recall from [1] some standard definitions and properties of the space which
satisfies the curvature-dimension estimate.

Definition 1 A Riemannian manifold (M, g, v), equipped with a reference measure v =
e−W V where W ∈ C2 and V is the standard volume form, satisfies the C D(K ,∞) condition
if the generalized Ricci tensor

RicW :=Ric + Hess W ≥ K g.
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In particular, on a Ricci shrinker (Mn, g, f ), if we define

f0 = f + μ + n

2
log(4π), (117)

v0 = e− f0V (118)

then v0 is a probability measure and (M, g, v0) ∈ C D( 12 ,∞). Then the following celebrated
theorem of Bakry–Émery can be applied on Ricci shrinkers.

Theorem 11 (Bakry–Émery theorem [2]) For any Riemannian manifold (M, g, v) satisfying
the C D(K ,∞) condition for some K > 0, the following logarithmic Sobolev inequality
holds ∫

ρ log ρ dv ≤ 1

2K

∫ |∇ρ|2
ρ

dv, (119)

where v and ρ v are probability measures which have finite moments of second order and ρ

is locally Lipschitz.

The original proof by Bakry and Émery is complete for compact manifolds. A proof
using the optimal transport by Lott and Villani for the general case can be found in [39,
Corollary 6.12], see also [52, Theorem 21.2]. For the self-containedness, we give a proof of
the Bakry–Émery theorem for Ricci shrinkers.

Theorem 12 For any Ricci shrinker (Mn, g, f ) and any nonnegative function ρ such that√
ρ ∈ W 1,2(M, v0) and

∫
d2(p, ·)ρ dv0 < ∞,

∫
ρ log ρ dv0 −

(∫
ρ dv0

)
log

(∫
ρ dv0

)
≤
∫ |∇ρ|2

ρ
dv0.

If the equality holds, then either ρ is a constant or (Mn, g) splits off a R factor.

Before we prove Theorem 12, we prove the following two lemmas.

Lemma 13 For any smooth function u(t, x) on M × [0, T ] such that

� f u:=(∂t − Δ f )u ≤ 0,

and for some constant a > 0,
∫ T

0

∫
u2(t, x)e−ad2(p,x) dv0dt < ∞,

if u(·, 0) ≤ c, then u ≤ c on M × [0, T ].
Proof The proof follows from [35, Theorem 15.2] verbatim by using Δ f and the measure
v0 instead of Δ and the volume form V . �

We define a new familiy of cutoff functions by setting

φ
r :=η

(
f

r

)
,

where η is the same function as in (36) and f is the potential function at time 0. A direct
calculation shows that

Δ f φ
r = r−2η′′|∇ f |2 + r−1η′Δ f f = r−2η′′|∇ f |2 + r−1η′(n

2
− f ).
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Then it is clear that Δ f φ
r
is supported on { f ≥ r} and there exists a constant C = C(n)

such that

|Δ f φ
r | ≤ C . (120)

Lemma 14 For any smooth bounded function u on M,

lim
r→∞

∫
(Δ f u)φ

r
dv0 = 0.

Proof From the integration by parts,

lim
r→∞

∫
(Δ f u)φ

r
dv0 = lim

r→∞

∫
u(Δ f φ

r
) dv0 = 0,

where the last equality holds since u is bounded and v0 is a probability measure. �
Proof of Theorem 12: We only prove the inequality for ρ0 such that

√
ρ0 is a compactly sup-

ported smooth function and the general case follows from approximations as in Proposition
95. In addition, we assume that

∫
ρ0 dv0 = 1.

Given such ρ0, we consider the heat flow with respect to the measure v0, that is,{
∂tρ = Δ f ρ,

ρ(0, ·) = ρ0.

It is clear that there exists a constant C such that ρ ≤ C on M × [0,∞). Now we set

E(t):=
(∫

ρ log ρ dv0

)
(t).

By direct computations

∂t

∫
ρ(log ρ)φ

r
dv0 =

∫
ρt (log ρ + 1)φ

r
dv0

=
∫

Δ f ρ(log ρ + 1)φ
r

dv0

=
∫

−|∇ρ|2
ρ

φ
r + Δ f (ρ log ρ)φ

r
dv0.

Therefore, for any T > 0,
(∫

ρ(log ρ)φ
r

dv0

)
(T ) −

(∫
ρ(log ρ)φ

r
dv0

)
(0)

=
∫ T

0

∫
−|∇ρ|2

ρ
φ

r + Δ f (ρ log ρ)φ
r

dv0dt .

It follows from Lemma 14 that∫ T

0

∫ |∇ρ|2
ρ

dv0dt < ∞ (121)

and

E(T ) − E(0) = −
∫ T

0

∫ |∇ρ|2
ρ

dv0dt . (122)
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We compute

∂t

∫ |∇ρ|2
ρ

φ
r

dv0 =
∫

� f

( |∇ρ|2
ρ

)
φ

r + Δ f

( |∇ρ|2
ρ

)
φ

r
dv0. (123)

From Bochner’s formula,

∂t |∇ρ|2 = 2〈∇Δ f ρ,∇ρ〉
= Δ f |∇ρ|2 − 2|Hess ρ|2 − 2(Rc + Hess f )(∇ρ,∇ρ)

= Δ f |∇ρ|2 − 2|Hess ρ|2 − |∇ρ|2,
where we have used the Ricci shrinker equation for the last equality.

Therefore,

� f |∇ρ|2 = −2|Hess ρ|2 − |∇ρ|2. (124)

A direct calculation shows that

� f
|∇ρ|2

ρ
= − 2

ρ

∣∣∣∣Hess ρ − dρ ⊗ dρ

ρ

∣∣∣∣
2

− |∇ρ|2
ρ

. (125)

It follows from (124) and Lemma 13 that there exists a constant C > 0 such that

|∇ρ|2
ρ

≤ C . (126)

Therefore, by (123) and Lemma 14, for any T > S > 0,
(∫ |∇ρ|2

ρ
dv0

)
(T ) −

(∫ |∇ρ|2
ρ

dv0

)
(S)

=
∫ T

S

∫
− 2

ρ

∣∣∣∣Hess ρ − dρ ⊗ dρ

ρ

∣∣∣∣
2

− |∇ρ|2
ρ

dv0dt . (127)

It follows from (122) that for any t ≥ 0,

E ′(t) = −
(∫ |∇ρ|2

ρ
dv0

)
(t) ≤ 0 (128)

Moreover, for any t > s ≥ 0, it follows from (127) that

−E ′(t) + E ′(s) ≤
∫ t

s
E ′(z) dz ≤ 0. (129)

Then it is easy to see from (129) that

E ′(t) ≥ E ′(0)e−t . (130)

Now we claim that E(t) → 0 if t → ∞. Since E(t) is decreasing by (128), we only need
to prove the claim by considering a sequence ti → ∞. We define ui = √

ρ(ti , ·), then∫
u2

i dv0 = 1 (131)

and by (130), ∫
|∇ui |2 dv0 → 0. (132)
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Then by taking a subsequence, we claim that ui converges to u∞ weakly in W 1,2(M, v0).
It is clear from (131) and (132) that u∞ ≡ 1. Since we can assume that ui converges to 1
almost everywhere,

lim
i→∞

∫
u2

i log u2
i dv0 = 0 (133)

by the dominated convergence theorem. Therefore, E(t) → 0 if t → ∞.
It follows from (122) and (130) that
∫

ρ0 log ρ0 dv0 = E(0) = −
∫ ∞

0
E ′(t) dt ≤ −E ′(0)

∫ ∞

0
e−t dt =

∫ |∇ρ0|2
ρ0

dv0.

If the equality holds and ρ0 is not a constant, it follows from (127) that

Hess(log ρ) = 1

ρ

(
Hess ρ − dρ ⊗ dρ

ρ

)
= 0.

Therefore, (Mn, g) splits off a R factor.
In summary, the proof of Theorem 12 is complete.
Using the Bakry–Émery theorem, Carrillo and Ni have proved in [10] the following result.

�
Proposition 3 (Carrillo–Ni [10]) For any Ricci shrinker (Mn, g, f ), we have

W(g, e− f0
2 , 1) = μ(g, 1) = μ, (134)

where f0 is the normalization of f defined in (117).

Proof We shall follow the argument of Carrillo and Ni. The proof is given for the self-
containedness.

For any Ricci shrinker (Mn, g, f ) and any smooth function u on M with compact support
such that

∫
u2 dV = 1, we define w = u2e f0 . Then it is clear that both v0 and wv0 belong

to P2(M) from the estimates of f and dV .
It follows from Theorem 12 that∫

w logw dv0 ≤
∫ |∇w|2

w
dv0. (135)

By rewriting (135) in terms of u, we have∫
u2 log u2 dV +

∫
f0u2 dV ≤

∫
4|∇u|2 + |∇ f0|2u2 + 4〈∇u,∇ f0〉u dV . (136)

It follows from the integration by parts for the last term that (136) becomes∫
u2 log u2 dV + μ + n

2
log(4π) ≤

∫
4|∇u|2 + u2(|∇ f |2 − 2Δ f − f ) dV . (137)

It follows from the |∇ f |2 + R = f and Δ f + R = n
2 that |∇ f |2 − 2Δ f − f = R − f .

Therefore, by (137) that

W(g, u, 1) =
∫ {

4|∇u|2 + Ru2 − u2 log u2} dV − n − n

2
log(4π) ≥ μ.

By the arbitrary choice of u, the above inequality means that

μ(g, 1) ≥ μ. (138)
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On the other hand, if we set u1 = e− f0
2 , it follows from direct calculation that

W(g, u1, 1) =
∫ (|∇ f |2 + R + f − n

)
e− f0dV + μ.

Recall that R + |∇ f |2 = f and R + Δ f = n
2 on a Ricci shrinker. So the above equation can

be simplified as

W(g, u1, 1) − μ =
∫

(2 f − n) e− f0dV = −2
∫

(Δ f f )e− f0dV = −2
∫

(Δ f0 f )e− f0dV = 0.

Then it follows from definition that

μ(g, 1) ≤ W(g, u1, 1) = μ. (139)

Therefore, (134) follows from the combination of (138) and (139). �
Corollary 3 For any Ricci shrinker (Mn, g, f ), if there exist more than one minimizer u ∈
W 1,2∗ for W(g, u, 1), then (M, g) must split off a R factor.

Proof If u is a minimizer other than e− f0
2 , then the same proof as Proposition 3 shows that

∫
w logw dv0 =

∫ |∇w|2
w

dv0,

where w = u2e f0 . Then the conclusion follows from the equality case of Theorem 12. �
Proposition 3 indicates that μ is the optimal log-Sobolev constant for (Mn, g, f ) on scale

1. We shall improve (134) by showing that μ is in fact the optimal log-Sobolev constant for
all scales. Note that the same result has already been proved for compact Ricci shrinkers in
Proposition 9.5 of [34].

Proposition 4 For any Ricci shrinker (Mn, g, f ), we have

ν(g):= inf
τ>0

μ(g, τ ) = μ. (140)

We first show two important intermediate steps before we prove Proposition 4.

Lemma 15 For each τ ∈ (0, 1), we have

μ(g, τ ) ≥ μ = μ(g, 1). (141)

Proof Fix η0 ∈ (0, 1). Let w be a nonnegative, compactly supported smooth function satis-
fying the normalization condition

∫
w dV = 1.We now regardw as a smooth function on the

time slice t = 0 and solve the conjugate heat equation�∗w = 0. Thenw is a smooth function
on the space-time M × (−∞, 0). It follows from Lemma 8 that there exists a constant C > 0
such that

w(x, t) ≤ C(4π(1 − t))−
n
2 e− f (x,t), ∀ x ∈ M, t ∈ (−∞, 0]. (142)

By the diffeomorphism invariance of the W-functional, it is easy to see that

W
(

g(t),
√

w(·, t), η0 − t
)

= W
(
(1 − t)(ψ t )∗g,

√
w(·, t), η0 − t

)
= W (g, u(·, t), θ(t))

(143)
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where we have used the notation

u(·, t):=(1 − t)
n
4

√
((ψ t )−1)∗w(·, t), (144)

θ(t):=η0 − t

1 − t
. (145)

Notice that
∫

u2 dV ≡ 1 according to our construction. It follows from definition and direct
calculations that

W (g, u(·, t), θ(t))

=
∫ {

θ
(
4|∇u|2 + Ru2)− u2 log u2} dV − n − n

2
log(4πθ)

= θ

{∫ {(
4|∇u|2 + Ru2)− u2 log u2} dV − n − n

2
log(4π)

}

+ (θ − 1)

{∫
u2 log u2dV + n + n

2
log(4π)

}
− n

2
log θ

≥ θμ(g, 1) + (θ − 1)

{∫
u2 log u2dV + n + n

2
log(4π)

}
− n

2
log θ. (146)

By (144), the inequality (142) can be understood as

u2(x, t) ≤ Ce− f (x,0)

for some constant C indepenent of t . Consequently, as f ≥ 0, we obtain∫
u2 log u2dV ≤

∫
{− f + logC} u2dV ≤ logC −

∫
f · u2dV ≤ logC .

Note that θ(t) < 1 when t < 0. Plugging the above inequality into (146), and noting that

W
(

g(0),
√

w(·, 0), η0
)

≥ W
(

g(t),
√

w(·, t), η0 − t
)

, ∀ t ∈ (−∞, 0),

we can use (143) to obtain

W
(

g(0),
√

w(·, 0), η0
)

≥ θμ(g, 1) + (θ − 1)
{
logC + n + n

2
log(4π)

}
− n

2
log θ.

From (145), it is clear that lim
t→−∞ θ(t) = 1. On the right hand side of the above inequlaity,

letting t → −∞, we arrive at

W
(

g(0),
√

w(·, 0), η0
)

≥ μ(g, 1).

Since w(·, 0) could be arbitrary smooth nonnegative function satisfying the normalization
condition, and g = g(0), in light of (95), it is clear that (141) follows from the above
inequality. �
Lemma 16 For each τ ∈ (1,∞), we have

μ(g, τ ) ≥ μ = μ(g, 1). (147)

Proof For any u ∈ W 1,2∗ and τ > 1,

W(g, u, τ ) =
∫ {

τ(4|∇u|2 + Ru2) − u2 log u2} dV − n − n

2
log(4πτ)
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≥
∫ {

(4|∇u|2 + Ru2) − u2 log u2} dV − n − n

2
log(4πτ)

≥ μ(g, 1) − n

2
log τ = μ − n

2
log τ.

By the arbitrary choice of u ∈ W 1,2∗ , it follows that

μ(g, τ ) ≥ μ − n

2
log τ.

Let τ → 1+, we obtain that

lim inf
τ→1+ μ(g, τ ) ≥ μ.

By Corollary 2, we know that μ(g, τ ) is an increasing function of τ for τ ∈ (1,∞). Then it
is clear that (147) follows directly from the above inequality. �
Proof of Proposition 4: It follows from the combination of Lemmas 15 and 16. �
Lemma 17 Suppose (M, g) is a complete Riemannian manifold with Sobolev constant CRS.
Namely, for each smooth function u with compact support, we have

(∫
u

2n
n−2 dV

) n−2
n ≤ CRS

∫ {
4|∇u|2 + Ru2} dV . (148)

Then for each positive τ , the following estimates hold for any u ∈ W 1,2∗ ,

e− 2E
n ≤ τ

∫ {
4|∇u|2 + Ru2} dV ≤ max

{
n2, 2E

}
, (149)

where

E = W(g, u, τ ) + n

2
log(4πe2CRS). (150)

Proof By Jensen’s inequality, we know that∫
u2 log u2 dV = n − 2

2

∫
u2 log u

4
n−2 dV ≤ n − 2

2
log

(∫
u

2n
n−2 dV

)
.

Plugging the Sobolev inequality (148) into the above inequality yields that∫
u2 log u2 dV ≤ n

2
logCRS + n

2
log
∫ {

4|∇u|2 + Ru2} dV . (151)

It follows that

W(g, u, τ ) ≥
∫ {

τ(4|∇u|2 + Ru2) − u2 log u2} dV − n − n

2
log(4πτ)

≥
∫

τ
{
4|∇u|2 + Ru2} dV − n

2
log
∫

τ
{
4|∇u|2 + Ru2} dV − n − n

2
log(4πCRS).

Let x = ∫ (4|∇u|2 + Ru2
)

dV . The above inequality can be rewritten as

τ x − n

2
log(τ x) ≤ W(g, u, τ ) + n + n

2
log(4πCRS) = E . (152)

Since τ x > 0, it follows from (152) that

τ x ≥ e− 2
n E . (153)
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On the other hand, it is clear that

s − n

2
log s ≥ s

2
on [n2,∞). (154)

Suppose τ x ≥ n2, then the combination of (152) and (154) implies that τ x ≤ 2E . Conse-
quently, we always have

τ x ≤ max
{
n2, 2E

}
. (155)

Clearly, (149) follows from the combination of (153) and (155). �

Corollary 4 (Sobolev inequality) Let
{
(Mn, g(t)), t ∈ (−∞, 1)

}
be the Ricci flow solution

of a Ricci shrinker (Mn, p, g, f ), there exists a constant C = C(n) such that at any time
t < 1,

(∫
u

2n
n−2 dVt

) n−2
n ≤ Ce− 2μ

n

∫ {
4|∇u|2 + Ru2} dVt (156)

for any smooth function u with compact support.

Proof We consider the Schrödinger operator H = −2Δ + R
2 and the quadratic forms

Q(u):= ∫ (Hu)u dVt with its corresponding Markov semigroup {e−Hs, s ≥ 0}. Since
μ(g(t), τ ) = μ(g, τ

1−t ) ≥ μ, we have
∫

u2 log u dVt ≤ τ Q(u) + β(τ)

for any
∫

u2 dVt = 1, where β(τ) = − n
2 − n

4 log(4πτ) − μ. Then it follows from [21,
Corollary 2.2.8] that for any s > 0,

‖e−Hs‖∞,2 ≤ eM(s) ≤ Cs− n
4 e− μ

2 , (157)

where M(s):= 1
s

∫ s
0 β(τ) dτ . Now we use the same argument as in [21, Theorem 2.4.2] to

derive the Sobolev inequaltiy. It follows from (157) that for any u ∈ L2,

‖e−Hsu‖∞ ≤ Cs− n
4 e− μ

2 ‖u‖2. (158)

Since e−Hs is self-adjoint, by taking the conjugation of (158) we obtain

‖e−Hsu‖2 ≤ Cs− n
4 e− μ

2 ‖u‖1. (159)

Therefore, for any s > 0,

‖e−Hsu‖∞ ≤ Cs− n
4 e− μ

2 ‖e− Hs
2 u‖2 ≤ Cs− n

2 e−μ‖u‖1. (160)

Combining (160) with the fact that e−Hs is a contraction on L∞, it follows from the
Riesz-Thorin interpolation that for any q ∈ [1,∞].

‖e−Hsu‖∞ ≤ Cs− n
2q e− μ

q ‖u‖q . (161)

We now write

H− 1
2 u = a + b
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where

a = Γ −1(1/2)
∫ T

0
s− 1

2 e−Hsu ds,

b = Γ −1(1/2)
∫ ∞

T
s− 1

2 e−Hsu ds.

It follows from (161) that

‖b‖∞ ≤ CΓ −1(1/2)
∫ ∞

T
s− 1

2− n
2q e− μ

q ‖u‖q ds = ce− μ
q ‖u‖q T

1
2− n

2q

for some constant c = c(n). Given λ > 0, we define T > 0 by λ
2 = ce− μ

q ‖u‖q T
1
2− n

2q . It is
clear that

|{x : |H− 1
2 u(x)| ≥ λ}| ≤ |{x : |a(x)| ≥ λ/2}| ≤ 2qλ−q‖a‖q

q ≤ Cλ−q T
q
2 ‖u‖q

q ,

since e−Hs is a contraction on Lq . For any 1 < q < n, we set 1
r = 1

q − 1
n , then it follows

from our choice of λ that

|{x : |H− 1
2 u(x)| ≥ λ}| ≤ Ce− μq

n−q λ−r‖u‖r
q .

In other words,

‖H− 1
2 u‖r ,w ≤ Ce− μq

r(n−q) ‖u‖q (162)

where ‖ · ‖r ,w denotes the weak Lr space. Therefore, it follows from the Marcinkiewicz
interpolation theorem that

‖H− 1
2 u‖p ≤ Ce− 2μ

p(n−2) ‖u‖2 = Ce− μ
n ‖u‖2, (163)

where 1
p = 1

2 − 1
n . Therefore, (156) is a direct consequence. �

Remark 2 It follows from the above corollary that the Yamabe invariant of (Mn, g, f )

Y ([g]):= inf
u∈C∞

0 (M)

∫ 4(n−1)
n−2 |∇u|2 + Ru2 dV
(∫

u
2n

n−2 dV
) n−2

n

> 0. (164)

Here Y depends only on the conformal class of g. Hence it implies some connections between
a Ricci shrinker and its conformal class. Note that it is shown in [63] that each Ricci shrinker
has a conformal metric such that its Ricci curvature has local bound depending only on the
dimension. This fact plays a key role in [34].

Proposition 5 On a Ricci shrinker (Mn, g, f ), the functional μ(g, τ ) is a continuous function
of τ ∈ (0,∞).

Proof Fix τ0 ∈ (0,∞). We need to show both the upper semi-continuity and the lower
semi-continuity as τ0.

The upper-semicontinuity is more or less standard. Fix u ∈ W 1,2∗ , we have

lim sup
τ→τ0

μ(g, τ ) ≤ lim sup
τ→τ0

W(g, u, τ )

= lim sup
τ→τ0

∫
τ(4|∇u|2 + Ru2) − u2 log u2 dV − n − n

2
log(4πτ)
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=
∫

τ0(4|∇u|2 + Ru2) − u2 log u2 dV − n − n

2
log(4πτ0)

= W(g, u, τ0).

By taking the infimum among all qualified u’s, we have

lim sup
τ→τ0

μ(g, τ ) ≤ μ(g, τ0). (165)

Hence μ(g, τ ) is upper semicontinuous.
The lower semicontinuity relies on the estimate (149) in Lemma 17. Actually, for arbitrary

u ∈ W 1,2∗ satisfying the normalization condition, direct calculation shows that

W(g, u, τ ) = W(g, u, τ0) + (τ − τ0)

∫ {
4|∇u|2 + Ru2} dV − n

2
log

(
τ

τ0

)

≥ μ(g, τ0) − |τ − τ0|
∫ {

4|∇u|2 + Ru2} dV − n

2
log

(
τ

τ0

)
. (166)

For any τi → τ0, we choose ui ∈ W 1,2∗ such that

W(g, ui , τi ) − μ(g, τi ) < i−1. (167)

Together with (165), this implies that

lim sup
i→∞

W(g, ui , τi ) = lim sup
i→∞

μ(g, τi ) ≤ μ(g, τ0). (168)

By Corollary 4, the Sobolev constant on each Ricci shrinker is finite. It follows from (149)
and (150) that

∫
(4|∇ui |2 + Ru2

i ) dV is uniformly bounded. In (166), replacing u by ui and
letting i → ∞, we obtain

lim inf
i→∞ W(g, ui , τi ) ≥ μ(g, τ0).

Combining the above inequality with (167), we obtain that

lim inf
i→∞ μ(g, τi ) ≥ μ(g, τ0),

which is the lower semi-continuity at τ0. The continuity of μ(g, τ ) with respect to τ at τ0
follows from the combination of the above inequality and (165). �

6 Optimal logarithmic Sobolev constant—part II

We first prove the log-Sobolev inequality for the conjugate heat kernel following [28]. The
proof in [28] is for spacetime with bounded geometry. Since we do not impose any curvature
restriction here, more should be done due to the integration by parts.

Theorem 13 For any Ricci shrinker (Mn, g, f ) with its heat kernel H(x, t, y, s),
∫

ρ log ρ dvs −
(∫

ρ dvs

)
log

(∫
ρ dvs

)
≤ (t − s)

∫ |∇ρ|2
ρ

dvs .

Here dvs(y) = H(x, t, y, s)dVs(y) for any x ∈ M and s < t < 1 and ρ is any nonnegative
function such that

√
ρ ∈ W 1,2(M, vs) and

∫
d2(p, ·)ρ dvs < ∞. If the equality holds, then

either ρ is a constant or (Mn, g) splits off a R factor.
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Proof By a similar approximation process as in Sect. 4, we only need to prove the inequality
for any ρ such that

√
ρ is a compactly supported smooth function. Without loss of generality,

we assume s = 0 and fix T > 0 and q ∈ M . Moreover, we set w(x, t) = H(q, T , x, t),
dv = w(y, 0) dV0(y) and ρ(x, t) is the bounded solution of the heat equation starting from
ρ(x). In the proof, we denote ρ(x, t) by ρ with the time t implicitly understood. We also
assume that ρ is uniformly bounded by 1 on M × [0, T ].

It is clear from the definition of w that

lim
t↗T

∫
ρ(log ρ)wφr dVt = ρ(q, T ) log ρ(q, T ) =

(∫
ρ dv

)
log

(∫
ρ dv

)

and ∫
ρ(log ρ)wφr dV0 =

∫
ρ log ρφr dv.

Therefore, we have
∫

ρ log ρφr dv −
(∫

ρ dv

)
log

(∫
ρ dv

)
=
∫ T

0
−∂t

∫
ρ(log ρ)wφr dVt dt .

By direct computations

− ∂t

∫
ρ(log ρ)wφr dVt

= −
∫

ρt (log ρ + 1)wφr + ρ(log ρ)wtφ
r + ρ(log ρ)wφr

t − Rρ(log ρ)wφr dVt

= −
∫

Δρ(log ρ + 1)wφr − ρ(log ρ)Δwφr + ρ(log ρ)wφr
t dVt

=
∫ |∇ρ|2

ρ
wφr + 2w〈∇(ρ log ρ),∇φr 〉 − ρ(log ρ)w�φr dVt . (169)

Similarly,

∂t

∫ |∇ρ|2
ρ

wφr dVt =
∫

�
( |∇ρ|2

ρ

)
wφr − 2w

〈
∇
( |∇ρ|2

ρ

)
,∇φr

〉
+ |∇ρ|2

ρ
w�φr dVt .

Since

� |∇ρ|2
ρ

= − 2

ρ

∣∣∣∣Hess ρ − dρ ⊗ dρ

ρ

∣∣∣∣
2

(170)

we have for any s ∈ [0, T ],
∫ |∇ρ|2

ρ
wφr dVs

=
∫ |∇ρ|2

ρ
φr dv −

∫ s

0

∫
2w〈∇

( |∇ρ|2
ρ

)
,∇φr 〉 dVt dt

+
∫ s

0

∫ |∇ρ|2
ρ

w�φr dVt dt −
∫ s

0

∫
2

ρ

∣∣∣∣Hess ρ − dρ ⊗ dρ

ρ

∣∣∣∣
2

wφr dVt dt . (171)

With (169) and (171), we have proved so far that if r is sufficiently large,
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∫
ρ log ρ dv −

(∫
ρ dv

)
log

(∫
ρ dv

)
− T

∫ |∇ρ|2
ρ

dv

=
∫ T

0

∫
2w〈∇(ρ log ρ),∇φr 〉 dVt dt −

∫ T

0

∫
ρ(log ρ)w�φr dVt dt

+
∫ T

0

∫ s

0

∫ |∇ρ|2
ρ

w�φr dVt dtds −
∫ T

0

∫ s

0

∫
2w〈∇

( |∇ρ|2
ρ

)
,∇φr 〉 dVt dtds

−
∫ T

0

∫ s

0

∫
2

ρ

∣∣∣∣Hess ρ − dρ ⊗ dρ

ρ

∣∣∣∣
2

wφr dVt dt ds

= I + I I + I I I + I V + V ,

where

I =
∫ T

0

∫
2w〈∇(ρ log ρ),∇φr 〉 dVt dt,

I I =
∫ T

0

∫
−ρ(log ρ)w�φr dVt dt,

I I I =
∫ T

0

∫ s

0

∫ |∇ρ|2
ρ

w�φr dVt dtds,

I V =
∫ T

0

∫ s

0

∫
−2w〈∇

( |∇ρ|2
ρ

)
,∇φr 〉 dVt dtds,

V =
∫ T

0

∫ s

0

∫
− 2

ρ

∣∣∣∣Hess ρ − dρ ⊗ dρ

ρ

∣∣∣∣
2

wφr dVt dtds.

It remains to show that when r → ∞ the sum is less or equal to 0.
We first notice that as ρ is smooth with compact support, by using (170) and the maximum

principle,

|∇ρ|2
ρ

≤ C .

Here the assumption in Theorem 6 can be checked as (98).
Now we have for the first term I

lim
r→∞ |I | ≤ lim

r→∞ 2
∫ T

0

∫
w|∇ρ|(1 + | log ρ|)|∇φr | dVt dt ≤ lim

r→∞ Cr−1/2 = 0.

For the second term I I ,

lim
r→∞ |I I | ≤ lim

r→∞

∫ T

0

∫
wρ| log ρ||�φr | dVt dt ≤ lim

r→∞ Cr−1 = 0.

Similarly for the third term I I I ,

lim
r→∞ |I I I | ≤ lim

r→∞

∫ T

0

∫ s

0

∫ |∇ρ|2
ρ

w|�φr | dVt dtds ≤ lim
r→∞ Cr−1 = 0.

The fourth term I V is more involved, by computation we have

∇ |∇ρ|2
ρ

= 2
〈Hess ρ,∇ρ〉

ρ
− |∇ρ|2

ρ2 ∇ρ = 2
〈Hess ρ − ρ−1dρ ⊗ dρ,∇ρ〉

ρ
+ |∇ρ|2

ρ2 ∇ρ.

(172)
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From (172), we have

|I V | ≤
∫ T

0

∫ s

0

∫
2w|∇φr |

(
2
|h||∇ρ|

ρ
+ |∇ρ|3

ρ2

)
dVt dtds

≤
∫ T

0

∫ s

0

∫
2ε

|h|2
ρ

wφr + 2ε−1 |∇ρ|2
ρ

|∇φr |2
φr

w + 2w|∇φr | |∇ρ|3
ρ2 dVt dtds

≤ −εV + Cε−1r−1 + 2r−1/2
∫ T

0

∫ s

0

∫
w

|∇ρ|3
ρ2 dVt dtds

where we denote Hess ρ − ρ−1dρ ⊗ dρ by h and ε ∈ (0, 1).
To deal with the last integral, we notice from Lemma 18 that

|∇ρ|3
ρ2 = |∇ρ|3/2

ρ3/2

|∇ρ|3/2
ρ3/4 ρ1/4 ≤ C

t3/4

(
ρ1/6 log

M

ρ

)3/2
≤ C

t3/4

and hence ∫ s

0

∫
w

|∇ρ|3
ρ2 dVt dt ≤ C

∫ s

0
t−3/4 dt ≤ C .

Therefore, limr→∞ V is finite and limr→∞ |I V | ≤ −ε (limr→∞ V ). By taking ε → 0,
we obtain that limr→∞ |I V | = 0 and hence

∫
ρ log ρ dv −

(∫
ρ dv

)
log

(∫
ρ dv

)
− T

∫ |∇ρ|2
ρ

dv (173)

= −
∫ T

0

∫ s

0

∫
2

ρ

∣∣∣∣Hess ρ − dρ ⊗ dρ

ρ

∣∣∣∣
2

w dVt dt ds ≤ 0. (174)

If the equality holds and ρ is not a constant, it follows from (173) that

Hess(log ρ) = 1

ρ

(
Hess ρ − dρ ⊗ dρ

ρ

)
= 0.

Therefore, (Mn, g) splits off a R factor. �
For fixed x, t and s, Theorem 13 implies that the probability measure dvs(y) =

H(x, t, y, s)dVs(y) satisfies the log-Sobolev inequality with the constant 1
2(t−s) . It is a stan-

dard fact that log-Sobolev condition implies the Talagrand’s inequality and equivalently, the
Gaussian concentration, see [52, Theorems 22.17, 22.10]. In particular we have the following
theorem, see also [28, Theorem 1.13].

Theorem 14 (Gaussian concentration) For any Ricci shrinker (Mn, g, f ) with its heat kernel
H(x, t, y, s) and reference measure dvs(y) = H(x, t, y, s)dVs(y) and any σ > 0

vs(A)v
1
σ
s (B) ≤ exp

(
− r2

4(1 + σ)(t − s)

)

where A and B are two sets on M such that ds(A, B) ≥ r > 0.

Proof From Theorem (13), we have for any probability measure ρdvs ,
∫

ρ log ρ dvs ≤ (t − s)
∫ |∇ρ|2

ρ
dvs . (175)
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By a further approximation, we can assume (175) holds for any locally Lipschitz ρ. Now it
follows from [52, Theorem 22.17] that dvs satisfies the T2 Talagrand inequality, that is,

W2(η, vs) ≤ √4(t − s)

(∫
ρ log ρ dvs

)1/2
(176)

for any measure η ∈ P2(M), where W2 is the Wasserstein distance of second order. For any
two sets A and B on M such that ds(A, B) ≥ r > 0. We set η = 1A

vs (A)
vs and v = 1B

vs (B)
vs .

Then on the one hand,

W2(η, v) ≤ W2(η, vs) + W2(v, vs)

≤ √4(t − s)

((∫
1A

vs(A)
log

1A

vs(A)
dvs

)1/2
+
(∫

1B

vs(B)
log

1B

vs(B)
dvs

)1/2)

= √4(t − s)

((
log

1

vs(A)

)1/2
+
(
log

1

vs(B)

)1/2)

and hence

W 2
2 (η, v) ≤ 4(t − s)

((
log

1

vs(A)

)1/2
+
(
log

1

vs(B)

)1/2)2

≤ 4(t − s)

(
(1 + σ) log

1

vs(A)
+ (1 + σ−1) log

1

vs(B)

)
.

On the other hand, it follows from the definition of W2 that

W 2
2 (η, v) =

∫
d2

s (x, y) dπ(x, y) ≥ r2,

where π is the optimal transport between η and v.
Therefore by computation

vs(A)v
1
σ
s (B) ≤ exp

(
− r2

4(1 + σ)(t − s)

)
.

�
In fact, with theGaussian concentration, we can prove that vs has finite square-exponential

moment.

Corollary 5 For any Ricci shrinker (Mn, g, f ) with its heat kernel H(x, t, y, s) and reference
measure dvs(y) = H(x, t, y, s)dVs(y), if a < 1

4(t−s) , then

∫
ead2

s (p,x) dvs < ∞.

Proof We choose a constant σ > 0 such that a < 1
4(1+σ)(t−s) . It follows from Theorem 14

that for any integer k ≥ 2,

vs(M\Bs(p, k)) ≤ exp

(
− (k − 1)2

4(1 + σ)(t − s)

)
.
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Hence
∫

ead2
s (p,x) dvs ≤ C

(
1 +

∞∑
k=2

∫
Bs (p,k+1)\Bs (p,k)

ead2
s (p,x) dvs

)

≤ C + C
∞∑

k=2

(k + 1)n exp

(
a(k + 1)2 − (k − 1)2

4(1 + σ)(t − s)

)

where we have used Lemma 2. Since a < 1
4(1+σ)(t−s) , it is easy to show that the last sum is

finite. �

7 Heat kernel estimates

We first prove a pointwise upper bound for the heat kernel H . The idea of the proof is from
[21, Chapter 2], see also [61].

Theorem 15 (Ultracontractivity) For any Ricci shrinker (Mn, g, f ),

H(x, t, y, s) ≤ e−μ

(4π(t − s))
n
2
.

Proof We fix x ∈ M and two constants s < T < 1. For notational simplicity, we assume
that τ = T − t and ∂τ = −∂t . We also fix a function p(τ ) = T −s

T −s−τ
for τ ∈ [0, T − s). For

any nonnegative smooth function h with compact support we define

w(y, τ ) =
∫

H(x, T , y, T − τ)h(x) dVT (x), (177)

then �∗w = 0.
Now we compute,

∂τ ||wφr ||p(τ ) = ∂τ

(∫
(wφr )p(τ ) dVT −τ

) 1
p(τ )

= − p′(τ )

p2(τ )
||wφr ||p(τ ) log

(∫
(wφr )p(τ ) dVT −τ

)

+ 1

p(τ )

(∫
(wφr )p(τ )dVT −τ

) 1
p(τ )

−1 (∫
(wφr )p(τ )(logwφr )p′(τ )dVT −τ

)

+ 1

p(τ )

(∫
(wφr )p(τ )dVT −τ

) 1
p(τ )

−1 (∫
p(τ )(wφr )p(τ )−1(wφr )τ + R(wφr )p(τ )dVT −τ

)
.

If we multiply both sides above by p2(τ )||wφr ||p(τ )

p(τ ) and use the fact

(wφr )τ = Δwφr − Rwφr + wφr
τ = Δ(wφr ) − Rwφr − (�τ φ

r )w − 2〈∇w,∇φr 〉,
(178)

then we have

p2(τ )||wφr ||p(τ )

p(τ )∂τ ||wφr ||p(τ )

= −p′(τ )||wφr ||p(τ )+1
p(τ ) log

(∫
(wφr )p(τ ) dVT −τ

)

+ p(τ )p′(τ )||wφr ||p(τ )

∫
(wφr )p(τ ) log(wφr ) dVT −τ
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− p2(τ )(p(τ ) − 1)||wφr ||p(τ )

∫
(wφr )p(τ )−2|∇(wφr )|2 dVT −τ

− (p(τ ) − 1)||wφr ||p(τ )

∫
R(wφr )p(τ ) dVT −τ + X , (179)

where

X = p2(τ )||wφr ||p(τ )

∫
(wφr )p(τ )−1 (−(�τ φ

r )w − 2〈∇w,∇φr 〉) dVT −τ .

Now we divide both sides of (179) by ||wφr ||p(τ ), then

p2(τ )||wφr ||p(τ )

p(τ )∂τ log ||wφr ||p(τ )

= −p′(τ )||wφr ||p(τ )

p(τ ) log

(∫
(wφr )p(τ ) dVT −τ

)

+ p(τ )p′(τ )

∫
(wφr )p(τ ) log(wφr ) dVT −τ

− 4(p(τ ) − 1)
∫

|∇(wφr )
p(τ )
2 |2 dVT −τ

− (p(τ ) − 1)
∫

R(wφr )p(τ ) dVT −τ + Y , (180)

where

Y = p2(τ )

∫
(wφr )p(τ )−1 (−(�τ φ

r )w − 2〈∇w,∇φr 〉) dVT −τ .

We denote v = (wφr )
p(τ )
2 /||(wφr )

p(τ )
2 ||2 so that ||v||2 = 1. Now by direct computations,

v2 log v2 = p(τ )v2 log(wφr ) − 2v2 log ||(wφr )
p(τ )
2 ||2.

So (180) becomes

p2(τ )∂τ log ||wφr ||p(τ )

= p′(τ )

∫
v2 log v2 dVT −τ − 4(p(τ ) − 1)

∫
|∇v|2 dVT −τ − (p(τ ) − 1)

∫
Rv2 dVT −τ + Z

where

Z = p2(τ )

||wφr ||p(τ )

p(τ )

∫
(wφr )p(τ )−1 (−(�τ φ

r )w − 2〈∇w,∇φr 〉) dVT −τ .

Now we obtain

p2(τ )∂τ log ||wφr ||p(τ ) = p′(τ )

(∫
v2 log v2 dVT −τ − p(τ ) − 1

p′(τ )

∫
4|∇v|2 + Rv2 dVT −τ

)
+ Z .

(181)

Since p(τ )−1
p′(τ )

= τ(T −s−τ)
T −s > 0, we have from (181)

p2(τ )∂τ log ||wφr ||p(τ ) ≤ p′(τ )
(
−μ − n − n

2
log(4π(p(τ ) − 1)/p′(τ ))

)
+ Z . (182)
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Now we divide both sides by p2(τ ), we have

∂τ log ||wφr ||p(τ ) ≤ p′(τ )

p2(τ )

(
−μ − n − n

2
log(4π) − n

2
log

(
p(τ ) − 1)

p′(τ )

))
+ U (τ ),

(183)

where

U (τ ) = 1

||wφr ||p(τ )

p(τ )

∫
(wφr )p(τ )−1 (−(�τ φ

r )w − 2〈∇w,∇φr 〉) dVT −τ .

Now we integrate both sides of (183) and estimate the two terms of right side separately.
For a number L < T − s, we integrate (183) from 0 to L so that

log ||wφr ||p(L) − log ||wφr ||1
≤
∫ L

0

p′(τ )

p2(τ )

(
−μ − n − n

2
log(4π) − n

2
log

(
p(τ ) − 1)

p′(τ )

))
dτ +

∫ L

0
U (τ ) dτ

= I (L) + I I (L). (184)

By direct computations,

I (T − s) =
∫ T −s

0

p′(τ )

p2(τ )

(
−μ − n − n

2
log(4π) − n

2
log

(
p(τ ) − 1)

p′(τ )

))
dτ

= −n

2
log(T − s) − μ − n

2
log(4π). (185)

Now we consider the term U (τ ).

|U (τ )| ≤ 1

||wφr ||p(τ )

p(τ )

∫
w p(τ )|�τ φ

r | + 2|∇w||∇φr | dVT −τ . (186)

Since we construct w through a smooth function with compact support,

w ≤ Ce− f

for a constant C uniformly on M × [T − s − L, T − s]. On the other hand, by Lemma 11√
w ∈ W 1,2∗ for any τ > 0, in particular

∫ |∇w|2
w

dVT −τ < ∞.

Now the second term in (186) can be estimated as
∫

|∇w||∇φr | dVT −τ =
∫ |∇w|√

w
|∇φr |√w dVT −τ ≤

(∫ |∇w|2
w

dVT −τ

) 1
2
(∫

|∇φr |2w dVT −τ

) 1
2

.

For any fixed L , it is easy to sayU (τ ) is uniformly bounded for any τ ∈ [T −s − L, T −s]
and r ≥ 1. By taking r → ∞ in (184), from the dominated convergence theorem,

log ||w||p(L) − log ||w||1 ≤ I (L).

Now by taking L → T − s we have

log ||w||∞ − log ||w||1 ≤ −n

2
log(T − s) − μ − n

2
log(4π).
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Therefore,∫
H(x, T , y, s)h(x) dVT (x) ≤ e−μ

(4π(T − s))n/2

∫∫
H(x, T , y, s)h(x) dVT (x) dVs(y)

= e−μ

(4π(T − s))n/2

∫
h(x) dVT (x).

Since h(x) can be any smooth function with compact support, we derive that

H(x, T , y, s) ≤ e−μ

(4π(T − s))n/2 .

�
Now we derive the lower bound of H . Recall that the reduced distance between (x, t) and

(y, s) are defined as

l(x,t)(y, s) = 1

2
√

t − s
inf {L(γ ) : γ : [s, t] → M between (x, t) and (y, s)} , (187)

where

L(γ ) =
∫ t

s

√
t − z

(|γ ′(z)|2z + R(γ (z), z)
)

dz. (188)

Now we have the following important estimate, see Corollary 9.5 of [46]. The proof is
motivated by [16, Proposition 1].

Theorem 16 For any Ricci shrinker (Mn, g, f ),

H(x, t, y, s) ≥ e−l(x,t)(y,s)

(4π(t − s))
n
2
.

Proof We set

L(x, t, y, s) = e−l(x,t)(y,s)

(4π(t − s))
n
2
. (189)

It follows from the definition of l(x,t)(y, s), see [46] and [56], that

−∂s L(x, t, y, s) ≤ Δy,s L(x, t, y, s) − R(y, s)L(x, t, y, s) (190)

and

lim
s↗t

L(x, t, y, s) = δx . (191)

For any x, y ∈ M , s < T and small ε > 0 we have∫
L(x, T , z, T − ε)H(z, T − ε, y, s)φr (z, T − ε) dVT −ε(z)

−
∫

L(x, T , z, s + ε)H(z, s + ε, y, s)φr (z, s + ε) dVs+ε(z)

=
∫ T −ε

s+ε

∂t

(∫
L(x, T , z, t)H(z, t, y, s)φr (z, t) dVt

)
dt

=
∫ T −ε

s+ε

∫
Lt Hφr dVt dt +

∫ T −ε

s+ε

∫
L Htφ

r dVt dt
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+
∫ T −ε

s+ε

∫
L Hφr

t dVt dt −
∫ T −ε

s+ε

∫
L Hφr R dVt dt

≥ −
∫ T −ε

s+ε

∫
ΔL Hφr dVt dt +

∫ T −ε

s+ε

∫
LΔHφr dVt dt +

∫ T −ε

s+ε

∫
L Hφr

t dVt dt .

(192)

Here and after we omit all z, t for notational simplicity.
By the integration by parts, we have

−
∫ T −ε

s+ε

∫
ΔL Hφr dVt dt = −

∫ T −ε

s+ε

∫
L
(
ΔHφr + HΔφr + 2〈∇ H ,∇φr 〉) dVt dt

(193)

Therefore,
∫

L(x, T , z, T − ε)H(z, T − ε, y, s)φr (z, T − ε) dVT −ε(z)

−
∫

L(x, T , z, s + ε)H(z, s + ε, y, s)φr (z, s + ε) dVs+ε(z)

≥
∫ T −ε

s+ε

∫
L H�φr − 2L〈∇ H ,∇φr 〉 dVt dt . (194)

Now we multiply both sides of �H = 0 by (φr )2H and do the integration.

∫ T −ε

s+ε

∫
|∇(φr H)|2 dVt dt ≤

∫ T −ε

s+ε

∫
|∇φr |2H2 dVt dt +

∫ T −ε

s+ε

∫
H2

2
(φr )2t dVt dt

−
(∫

H2

2
(φr )2 dVt

)∣∣∣∣
T −ε

s+ε

.

It is immediate by taking r → ∞ that

∫ T −ε

s+ε

∫
|∇ H |2 dVt dt < ∞. (195)

For fixed ε, we have
∣∣∣∣
∫ T −ε

s+ε

∫
L H�φr − 2L〈∇ H ,∇φr 〉 dVt dt

∣∣∣∣
≤
∫ T −ε

s+ε

∫
L H |�φr | + 2L|∇ H ||∇φr | dVt dt = I + I I . (196)

For the first term,

lim
r→∞ I = lim

r→∞

∫ T −ε

s+ε

∫
L H |�φr | dVt dt = 0

since L is uniformly bounded on M × [s + ε, T − ε] and H is integrable.
For the second term,

I I =
∫ T −ε

s+ε

∫
L|∇ H ||∇φr | dVt dt ≤ 2

(∫ T −ε

s+ε

∫
L2|∇φr |2 dVt dt

) 1
2
(∫ T −ε

s+ε

∫
|∇ H |2 dVt dt

) 1
2

.
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Now we claim ∫ T −ε

s+ε

∫
L2 dVt dt < ∞. (197)

Indeed, it follows from [58, Eq. (3.3)] that for any t ∈ [s + ε, T − ε],

l(x,T )(z, t) ≥
√

1 − t

T − t
f (z, t) −

√
1 − T

T − t
f (x, T )

and hence

L(x, T , z, t) ≤ η1e−η2F(z,t),

where

η1 =
exp

(√
1−T

ε
f (x, T )

)

(4πε)
n
2

and η2 = 1√
(T − s − ε)(1 − s − ε)

.

Therefore, it is clear from Lemmas 1 and 2 that the claim (197) holds.
It is immediate from (195) that

lim
r→∞ I I ≤ lim

r→∞ 2

(∫ T −ε

s+ε

∫
L2|∇φr |2 dVt dt

) 1
2
(∫ T −ε

s+ε

∫
|∇ H |2 dVt dt

) 1
2

= 0.

(198)

Now it follows from (194) that by taking r → ∞,∫
L(x, T , z, T − ε)H(z, T − ε, y, s) dVT −ε(z) ≥

∫
L(x, T , z, s + ε)H(z, s + ε, y, s) dVs+ε(z).

(199)

As ε → 0, both H(z, T − ε, y, s) and L(x, T , z, s + ε) are uniformly bounded (in terms
of z). We conclude from the definition of δ function that by taking ε → 0

H(x, T , y, s) ≥ L(x, T , y, s).

�
We also need the following gradient estimate from [60].

Lemma 18 For any Ricci shrinker (Mn, g, f ), suppose u is a positive bounded solution of
the heat equation �u = 0 on M × [0, T ], then

|∇u|
u

≤
√
1

t

√
log

Λ

u

where Λ = maxM×[0,T ] u.

Proof From a direction computation

�
(

t
|∇u|2

u
− u log

Λ

u

)
= −2

u

∣∣∣∣Hess u − du ⊗ du

u

∣∣∣∣
2

≤ 0.

Now the theorem follows from Theorem 6 if∫ T

0

∫ |∇u|2
u

e−2 f dVt dt < ∞.

Notice that this follows the same proof as Lemma 9. �
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Now we have the following corollary of Lemma 18, see [60, Eq. (3.44)].

Corollary 6 With the same conditions as Lemma 18, for any σ > 0,

u(y, t) ≤ Λ
σ

1+σ u(x, t)
1

1+σ exp

(
d2

t (x, y)

4σ t

)
. (200)

Proof We rewrite Lemma 18 as ∣∣∣∣∣∇
√
log

Λ

u

∣∣∣∣∣ ≤
1

2
√

t
,

and hence √
log

Λ

u(x, t)
≤
√
log

Λ

u(y, t)
+ dt (x, y)

2
√

t
.

By squaring both sides above, we have

log
Λ

u(x, t)
≤
(√

log
Λ

u(y, t)
+ dt (x, y)

2
√

t

)2

≤ (1 + σ) log
Λ

u(y, t)
+ 1 + σ

σ

d2
t (x, y)

4t
.

Then the conclusion follows immediately. �
We now prove the pointwise lower bound of the heat kernel H .

Theorem 17 For any Ricci shrinker (Mn, g, f ), 0 < δ < 1, D > 1 and 0 < ε < 4, there
exists a constant C = C(n, δ, D) > 0 such that

H(x, t, y, s) ≥ C
4
ε eμ( 4

ε
−1)

(4π(t − s))n/2 exp

(
− d2

t (x, y)

(4 − ε)(t − s)

)

for any t ∈ [−δ−1, 1 − δ] and dt (p, y) + √
t − s ≤ D.

Proof From Theorem 16,

H(y, t, y, s) ≥ e−l(y,t)(y,s)

(4π(t − s))
n
2
. (201)

By the definition of l and ∂z f (y, z) = |∇ f |2 ≥ 0,

l(y,t)(y, s) ≤ 1

2
√

t − s

∫ t

s

√
t − z R(y, z) dz

≤ 1

2
√

t − s

∫ t

s

√
t − z

1 − z
f (y, z) dz

≤ f (y, t)

2
√

t − s

∫ t

s

√
t − z

1 − z
dz ≤ (t − s)

3(1 − t)2
F(y, t) (202)

and hence

H(y, t, y, s) ≥ C

(4π(t − s))n/2
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for some constant C = C(n, δ, D) > 0.
By using (200) for the heat kernel on M × [ t+s

2 , t], we obtain

H(y, t, y, s) ≤ e−μ σ
1+σ (4π(t − s))−

n
2

σ
1+σ H

1
1+σ (x, t, y, s) exp

(
d2

t (x, y)

4σ(t − s)

)

where we have used the result in Theorem 15 for the upper bound.
Therefore,

H(x, t, y, s) ≥ C1+σ eμσ

(4π(t − s))n/2 exp

(
−1 + σ

σ

d2
t (x, y)

4(t − s)

)
.

The conclusion follows by choosing σ = 4/ε − 1. �
Remark 3 From the proof a more precise bound is, for any 0 < ε < 4,

H(x, t, y, s) ≥ eμ( 4
ε
−1)

(4π(t − s))n/2 exp

(
− d2

t (x, y)

(4 − ε)(t − s)
− 4(t − s)

3(1 − t)2ε
F(y, t)

)
. (203)

In order to further estimate the upper bound of H , it is crucial to compare distance
functions from different time slices. We first prove the second order estimate of the heat
equation soluton on Ricci shrinkers, see [3, Lemma 3.1].

Lemma 19 Let (Mn, g(t)), t ∈ [0, 1) be the Ricci flow solution of a Ricci shrinker and let
u be a postive solution to the heat equation �u = 0 and u ≤ Λ on M × [0, T ]. Then there
exists a constant C = C(n) such that

|Δu| + |∇u|2
u

− ΛR ≤ CΛ

t
. (204)

Proof By rescaling, we assume that Λ = 1. Let L1 = −Δu + |∇u|2
u − R, then it follows

from [3, Eqs. (3.3), (3.4)] that

�L1 ≤ −1

n
L2
1 + 1

e2t2
. (205)

From (205) we have

�(L1φ
r ) = φr�L1 + L1�φr − 2〈∇φr ,∇L1〉

≤ φr (−1

n
L2
1 + 1

e2t2
) + L1�φr − 2〈∇φr ,∇L1〉

= φr (−1

n
L2
1 + 1

e2t2
) + L1�φr − 2

〈∇(L1φ
r ),∇φr 〉

φr
+ 2

L1|∇φr |2
φr

. (206)

Now at the maximum point of L1φ
r , we have

−1

n
(L1φ

r )2 + (φr e−1t−1)2 + (L1φ
r )

(
�φr + 2

|∇φr |2
φr

)
≥ 0, (207)

so we obtain

L1φ
r ≤ n

(
�φr + 2

|∇φr |2
φr

)
+ √

nφr e−1t−1 ≤ C(n)(r−1 + t−1). (208)
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By taking r → ∞, we have L1 ≤ C(n)t−1. Now if we set L2 = Δu + |∇u|2
u − R, then

similarly

�L2 ≤ − 1

2n
L2
2 + 1 + 4

n

e2t2
. (209)

Therefore by the same method, we prove that L2 ≤ C(n)t−1.
Now the proof is complete. �
By applying the above lemma to the heat kernel, we immediately have from Theorem 15

that

Lemma 20 For any Ricci shrinker (Mn, g, f ), there exists a constant C = C(n) such that

|∂t H(x, t, y, s)| = |Δx H(x, t, y, s)| ≤ C
e−μ

(t − s)
n
2

(
R(x, t) + 1

t − s

)
(210)

for any s < t < 1.

Now we can prove the local distance distorsion on Ricci shrinkers. Notice that a similar
estimate has been obtained on compact manifolds, see [3, Theorem 1.1].

Theorem 18 (Local distance distorsion estimate) For any Ricci shrinker (Mn, p, g, f ) ∈
Mn(A), 0 < δ < 1 and D > 1, there exists a constant Y = Y (n, A, δ, D) > 1 such that for
any two points q and z in M with dt (p, q) ≤ D and dt (q, z) = r ≤ D,

Y −1ds(q, z) ≤ dt (q, z) ≤ Y ds(q, z)

for any t ∈ [−δ−1, 1 − δ − r2] and s ∈ [t − Y −1r2, t + Y −1r2].
Proof In the proof, all constantsCi and ci depend on n, A, δ and D. Fix a time T ∈ [−δ−1, 1−
δ − r2], a point q with dT (p, q) ≤ D and r ≤ D, we set w(x, t) = H(x, t, q, T − r2).
It follows from Theorem 17 that w(y, T ) ≥ C1r−n for any y with dT (q, y) ≤ r . For any
y ∈ BT (q, r), we have from Lemma 20 that

|∂tw(y, t)| ≤ C2r−n(R(y, t) + r−2) (211)

for t ∈ [T − r2/2, T + r2]. Since dT (p, y) ≤ dT (p, q) + dT (q, y) ≤ 2D, it is clear from
Lemma 1 that F(y, T ) ≤ c1. Moreover, it follows from (22) and (24) that

|∂t F(y, t)| = |(1 − t)R(y, t)| ≤ F(y, t)

1 − t
≤ c2F(y, t).

Therefore, it is clear that for any t ∈ [T −r2/2, T +r2], F(y, t) ≤ c3 and hence R(y, t) ≤ c4
from (24). Since r ≤ D, we have from (211)

|∂tw(y, t)| ≤ C3r−n−2. (212)

Now we set c5 = C1(2C3)
−1, it follows from w(q, T ) ≥ C1r−n and (212) that w(y, t) ≥

C1
2 r−n on BT (q, r)×[T −c5r2, T +c5r2]. On the one hand, it follows from Corollary 6 that

w ≥ C4r−n on Bt (y, r) × {t}. On the other hand, by Lemma 1, F and hence R is bounded
on Bt (y, r) × {t}, we conclude from Theorem 23 that

|Bt (y, r)|t ≥ C5rn .
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For any point z with dT (q, z) = r , we consider a geodesic γ connecting q and z. We claim
that for any t ∈ [T − c5r2, T + c5r2], dt (q, z) ≤ C6r , where C6 = 8(C4C5)

−1. Otherwise,
we take a maximal set {yi }N

i=1 ⊂ γ such that Bt (yi , r) are mutually disjoint. In particular,
it implies that {Bt (yi , 2r)} covers γ . Then it is easy to see C6r ≤ 4Nr and hence N ≥ C6

4 .
However, it follows from (57) that

1 ≥
∫

w dVt ≥
N∑

i=1

∫
Bt (yi ,r)

w dVt ≥
N∑

i=1

C4r−n |Bt (yi , r)|t ≥ NC4C5 ≥ 2,

which is a contradiction. Now we set c6 = c5(2C6)
−2 and claim that dt (y, z) ≥ (2C6)

−1r
for any t ∈ [T − c6r2, T + c6r2]. Otherwise, we can find a time t ∈ [T − c6r2, T + c6r2]
such that dt (y, z) = (2C6)

−1r . Since c6r2 = c5(2C6)
−2r2, the argument before shows that

r = dT (q, z) ≤ C6dt (q, z) = r/2 and this is impossible.
Therefore, by choosing Y = max{c−1

6 , 2C6}, the conclusion follows. �
Now we prove that H has the exponential decay in the integral sense.

Theorem 19 For any Ricci shrinker (Mn, p, g, f ) ∈ Mn(A), 0 < δ < 1, D > 1 and ε > 0,
there exists a constant C = C(n, A, δ, D, ε) > 1 such that

∫
M\Bs (x,r

√
t−s)

H(x, t, y, s) dVs(y) ≤ C exp

(
− (r − 1)2

4(1 + ε)

)

for any point x ∈ M, t ∈ [−δ−1, 1 − δ], dt (p, x) + √
t − s ≤ D and r ≥ 1.

Proof It follows from Theorem (14) with σ = ε that
(∫

Bs (x,
√

t−s)
H(x, t, y, s) dVs(y)

) 1
ε
(∫

M\Bs (x,r
√

t−s)
H(x, t, y, s) dVs(y)

)

≤ exp

(
− (r − 1)2

4(1 + ε)

)
(213)

for any r ≥ 1. So we only need to prove the first integral to be bounded below.
Theorem 18 shows that there exists a constant Y = Y (n, A, δ, D) > 1 such that for any y

with ds(x, y) ≤ √
t − s, we have dt (x, y) ≤ Y

√
t − s. Therefore, it follows from Theorem

17 that

H(x, t, y, s) ≥ C(t − s)−n/2

for any y with ds(x, y) ≤ √
t − s.

It implies that∫
Bs (x,

√
t−s)

H(x, t, y, s) dVs(y) ≥ C(t − s)−n/2|Bs(x,
√

t − s)|s ≥ C

where we have used the fact that R is locally bounded. �
As we have proved that all distance functions to the base point p are comparable, we

prove the following weaker upper bound.

Theorem 20 For any Ricci shrinker (Mn, p, g, f ) ∈ Mn(A), x ∈ M and s < t < 1, there
exist constants C = C(n, A, x, t, s) > 1 and c = c(n, A, x, t, s) > 0 such that

H(x, t, y, s) ≤ Ce−cd2
0 (p,y).
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Proof Fix s < t < 1 and x and we require that all constants in the proof depend on n, x, s, t
and A. Notice that since s and t are fixed, f is comparable to d2

0 (p, ·) by Lemma 1.
For an ε > 0 to be chosen later, we have from the semigroup property

H(x, t, y, s) =
∫

H(x, t, z, l)H(z, l, y, s) dVl(z)

=
∫

d0(p,z)≥εd0(p,y)

H(x, t, z, l)H(z, l, y, s) dVl(z)

+
∫

d0(p,z)≤εd0(p,y)

H(x, t, z, l)H(z, l, y, s) dVl(z) = I + I I

where l = s+t
2 .

Now from Theorem 19

I =
∫

d0(p,z)≥εd0(p,y)

H(x, t, z, l)H(z, l, y, s) dVl(z)

≤ C1

∫
d0(p,z)≥εd0(p,y)

H(x, t, z, l) dVl(z) ≤ C2e−c1ε2d2
0 (p,y). (214)

Note that here we can always assume that εd0(p, y) is large.
We choose φ which is identical 1 on Bl(p, c2εd0(p, y)) and supported on

Bl(p, 2c2εd0(p, y)) where we choose c2 that B0(p, εd0(p, y)) ⊂ Bl(p, c2εd0(p, y)).
If we set w = e− f

(4πτ)n/2 , there are c3 and c4 that for any z ∈ M

c3ec4ε2d2
0 (p,y)w(z, l) ≥ φ(z). (215)

Now, we have

I I =
∫

B0(p,εd0(p,y))

H(x, t, z, l)H(z, l, y, s) dVl (z) ≤ c5

∫
Bl (p,c2εd0(p,y))

H(z, l, y, s) dVl (z)

≤ c5

∫
H(z, l, y, s)φ(z) dVl (z) ≤ c6ec4ε2d2

0 (p,y)w(y, s),

where c6 = c5c3 and the last inequality follows from Lemma 8. Indeed, if we consider
m(u, s) := ∫ H(z, l, u, s)φ(z) dVl(z), then it follows from (215) and Lemma 8 that

m(u, s) ≤ c3ec4ε2d2
0 (p,y)w(u, s) (216)

for any u ∈ M and s ≤ l. In particular, (216) holds if u = y.
By the definition of w,

w(y, s) ≤ c7e−c8d2
0 (p,y).

Hence,

I I ≤ c9e−(c8−c4ε2)d2
0 (p,y). (217)

If we choose ε =
√

c8
2c4

, it follows from (214) and (217) that

H(x, t, y, s) ≤ Ce−cd2
0 (p,y).

�
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8 Differential Harnack inequality on Ricci shrinkers

In this subsection, we prove that Perelman’s differential Harnack inequality holds on Ricci
shrinkers.

For any Ricci shrinker (Mn, g, f ), we fix a point q ∈ M and a time T < 1. Moreover,
we set

w(x, t) = H(q, T , x, t) = e−b(x,t)

(4π(T − t))n/2 (218)

and τ = T − t .
We first prove

Lemma 21 For any r such that φr = 1 on an open neighborhood of (q, T ),

lim
t↗T

∫
bwφr dVt = n

2
. (219)

Proof We set Kr = suppφr ⋂M × [T − 1, T ]. Since we only care about the integral on
the compact set Kr when t is sufficiently close to T , we can assume that the distances on
different time slices from t to T are uniformly comparable. Now all constants C’s in the rest
of the proof depend on q, T ,μ and the geometry on Kr . In particular, they are independent
of τ .

Now we have from Theorem 19 that∫
dt (q,x)≥2A

√
τ

w(x, t) dVt ≤ Ce−A2/2. (220)

Moreover, from Theorem 17,

b(x, t) ≤ C

(
1 + d2

t (q, x)

τ

)
(221)

for (x, t) ∈ Kr .
Now we set dt = dt (q, x), then for any A ≥ 1, we have

∫
Kr ∩{dt ≥2A

√
τ }

bw dVt ≤ C
∫

Kr ∩{dt ≥2A
√

τ }
w + τ−1d2

t w dVt ≤ Ce−A2/2

+ Cτ−1
∫

Kr ∩{dt ≥2A
√

τ }
d2

t w dVt .

Now we have
∫

Kr ∩{dt ≥2A
√

τ }
d2

t w dVt =
∞∑

k=1

∫
Kr ∩{2k A

√
τ≤dt ≤2k+1 A

√
τ }

d2
t w dVt

≤
∞∑

k=1

22k+2A2τ

∫
Kr ∩{2k A

√
τ≤dt ≤2k+1 A

√
τ }

w dVt

≤
∞∑

k=1

22k+2A2e−22k−3 A2
τ.
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Therefore, we conclude that∫
Kr ∩{dt ≥2A

√
τ }

bwφr dVt ≤
∫

Kr ∩{dt ≥2A
√

τ }
bw dVt ≤ η(A) (222)

where η(A) → 0 if A → +∞.
In addition, it follows from Theorem 15 that b(x, t) ≥ μ and hence∫

Kr ∩{dt ≥2A
√

τ }
bwφr dVt ≥ μ

∫
Kr ∩{dt ≥2A

√
τ }

w dVt ≥ −Ce−A2/2 (223)

where the last inequality is from (220).
The inequalities (222) and (223) indicates that the integral

∫
bwφr dVt is concentrated

on the scale
√

τ .
We take a sequence τi → 0 and set gi (t) = τ−1

i g(T −τi t) andwi (·, t) = τ
n/2
i w(·, T −τi t).

Then we have

∂twi = Δiwi − Riwi ,

where Δi and Ri are with respect to gi .
Since gi is a blow-up sequence for the metric g and Kr has bounded geometry, it is easy

to show that (M, gi , q) subconverges to (Rn, gE , 0) and wi converges a positive smooth
function w∞ on R

n × (0,∞) such that

∂tw∞ = ΔgE w∞.

Now we can show as (55) that w∞ is in fact a fundamental solution of the heat equation
on the Euclidean space. Moreover it is easy to see by Fatou’s inequality that∫

w∞ dx ≤ 1

for any time t > 1. Now it follows from [22, Corollary 9.6] that w∞ is the heat kernel based
at 0, that is,

w∞(x, t) = e− |x |2
4t

(4π t)n/2 .

From the smooth convergence,

lim
i→∞

∫
Kr ∩{dT −τi ≤2A

√
τi }

bw dVT −τi =
∫

|x |≤2A

|x |2
4

e− |x |2
4

(4π)n/2 dx . (224)

By direct computations,

∫ |x |2
4

e− |x |2
4

(4π)n/2 dx = n

2
.

Therefore, it is straightforward from (222), (223) and the fact that φr is equal to 1 on a
neighborhood of (q, T ) that

lim
t↗T

∫
bwφr dVt = n

2
.

�
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Remark 4 The same proof of Lemma 21 shows that if u is a bounded smooth function on
M × [T − 1, T ], then

lim
t↗T

∫
bwuφr dVt = n

2
u(q, T ). (225)

Now we set d = dT (q, ·), it follows from (203) that

H(q, T , x, t) ≥ C
e−c1

d2
τ

−c2τ F

τ
n
2

. (226)

In terms of b, we have

b(x, t) ≤ c1
d2

τ
+ c2τ F(x, T ) + c3 (227)

We denote K r
t = {r ≤ F(·, t) ≤ 2r}, then we have

Lemma 22 There exist constants C0 and C1 which depend only on μ, q and T such that
∫ T

T −1

∫
K r

t

|b|w dVt dt ≤ C0 (228)

for any r ≥ C1.

Proof From Lemma 1, there exists C1 > 0 such that for any x ∈ K r
t where t ∈ [T − 1, T ],

1

5
d2

t (p, x) ≤ F(x, t) ≤ d2
t (p, x)

if r ≥ C1.
It follows from (227) that |b| ≤ −μ + c1

d2

τ
+ c2. So we only need to estimate

∫ T

T −1

∫
K r

t

d2w dVt dt . (229)

Now it follows from the definition of φr that K r
t ⊂ {c4r ≤ d2 ≤ c5r} if C1 is sufficiently

large, therefore
∫ T

T −1

∫
K r

t

d2w dVt dt ≤ C
∫ T

T −1
r
∫

K r
t

w dVt dt ≤ C
∫ T

T −1
re− c3r

τ dt ≤ C0. (230)

Note that here we have used (220). �
Now we have the following spacetime integral estimate.

Lemma 23 ∫ T −ε

T −1

∫
(|∇b|2 + R)w dVt dt ≤ C log ε−1, (231)

where C depends only on μ, n, q and T .

Proof From the evolution equation

∂tw = −Δw + Rw, (232)
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we immediately have

∂t b = −Δb + |∇b|2 − R + n

2τ
. (233)

From an elementary computation,

∂t

∫
wbφr dVt

=
∫ (

btwφr + bwtφ
r + bwφr

t − bwφr R
)

dVt

=
∫ (

−Δb + |∇b|2 − R + n

2τ

)
wφr − bΔwφr + bwφr

t dVt

=
∫

〈∇b,∇(wφr )〉 + 〈∇w,∇(bφr )〉 + |∇b|2wφr − Rwφr + bwφr
t + n

2τ
wφr dVt

=
∫

〈∇b,∇φr 〉w + 〈∇w,∇φr 〉b − (|∇b|2 + R)wφr + bwφr
t + n

2τ
wφr dVt , (234)

where we have used ∇w = −w∇b.
On the one hand we have,∫

〈∇b,∇φr 〉w dVt ≤
∫

|∇b||∇φr |w dVt

≤ 1

4

∫
|∇b|2wφr dVt +

∫ |∇φr |2
φr

w dVt . (235)

On the other hand∫
〈∇w,∇φr 〉b dVt ≤

∫
|∇w||∇φr |b dVt =

∫
|∇b||∇φr |wb dVt

≤ 1

4

∫
|∇b|2wφr dVt +

∫ |∇φr |2
φr

b2w dVt . (236)

Now (234) becomes

∂t

∫
wbφr dVt ≤ −1

2

∫
(|∇b|2 + R)wφr dVt + X + n

2τ
(237)

where

X =
∫

bwφr
t − |∇φr |2

φr
w − |∇φr |2

φr
b2w dVt .

Integrate (237) from T − 1 to T − ε, we have

1

2

∫ T −ε

T −1

∫
(|∇b|2 + R)wφr dVt dt ≤

(∫
wbφr dVt

)∣∣∣∣
T −1

T −ε

+ n

2
log ε−1 + Y (238)

where

Y =
∫ T −ε

T −1

∫
bwφr

t − |∇φr |2
φr

w − |∇φr |2
φr

b2w dVt dt .

At the time T − 1, since b = − logw − n
2 log 4π , we have∫

wbφr dVT −1 =
∫

w
(
− logw − n

2
log 4π

)
φr dVT −1 ≤ C (239)

123



Heat kernel on Ricci shrinkers Page 59 of 84 194

where the last inequality can be seen from Theorem 20.
Moverover, ∫

wbφr dVT −ε ≥ μ

∫
wφr dVT −1 ≥ μ. (240)

Now it follows from Theorem 20 and Lemma 2 that

lim
r→∞ |Y | = 0. (241)

So if we let r → ∞ in (238), the proof is complete. �
From Lemma 23, we have

Lemma 24 There exist a sequence τi → 0 and a constant C > 0 such that

τi

∫
(|∇b|2 + R)w dVT −τi ≤ C . (242)

Proof If the conclusion does not hold, we can find a function C(τ ) such that limτ→0 C(τ ) =
+∞ and ∫

(|∇b|2 + R)w dVT −τ ≥ C(τ )

τ
. (243)

But it obviously contradicts Lemma 23 if ε is sufficiently small. �
Lemma 25 For any θ > 0,

∫ T

T −1

∫
τ θ (|∇b|2 + R)w dVt dt < ∞. (244)

Proof It follows from Lemma 23 that∫ T

T −1

∫
τ θ (|∇b|2 + R)w dVt dt

=
∞∑

k=0

∫ T −2−k−1

T −2−k

∫
τ θ (|∇b|2 + R)w dVt dt

≤
∞∑

k=0

2−θk
∫ T −2−k−1

T −1

∫
(|∇b|2 + R)w dVt dt

≤
∞∑

k=0

2−θk log 2−k−1 < ∞.

�
Now we fix a nonnegative function u on the time slice T − 1 such that

√
u smooth and

compactly supported. We denote by the same u as its heat equation solution.
Then we have

Lemma 26 There exists a constant C > 0 such that

|∇u|2
u

≤ C

on M × [T − 1, T ].
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Proof The conclusion follows directly from

� |∇u|2
u

= −2

u

∣∣∣∣Hess u − du ⊗ du

u

∣∣∣∣
2

and Theorem 6. Note that the assumption in Theorem 6 can be checked similarly as Lemma
9 �

We also need the following lemma, whose proof is similar to Lemma 4.

Lemma 27 There exists a constant C > 0 such that∫ T

T −1

∫
|Hess F |2w dVt dt ≤ C . (245)

Proof From the evolution equation �|∇F |2 = −2|Hess F |2, we have

∂t

∫
|∇F |2wφr dVt =

∫
(Δ|∇F |2 − 2|Hess F |2)wφr − |∇F |2Δwφr + |∇F |2wφr

t dVt .

Integrate above from T − 1 to T , we get∫ T

T −1

∫
2|Hess F |2wφr dVt dt

≤
∫ T

T −1

∫
−2〈∇|∇F |2,∇φr 〉w + |∇F |2w�φr dVt dt −

(∫
|∇F |2wφr dVt

)∣∣∣∣
T

T −1

≤
∫ T

T −1

∫
|Hess F |2wφr + 4|∇F |2 |∇φr |2

φr
w + |∇F |2w�φr dVt dt −

(∫
|∇F |2wφr dVt

)∣∣∣∣
T

T −1
.

From (37) and (40), there exists a constant C independent of r such that

|∇F |2 |∇φr |2
φr

+ |∇F |2|�φr | ≤ C .

Therefore,
∫ T

T −1

∫
|Hess F |2wφr dVt dt ≤ C .

Now the lemma follows by taking r → ∞. �
With the same proof, we have

Lemma 28 There exists a constant C > 0 such that∫ T

T −1

∫
|Hess u|2w dVt dt ≤ C .

As before, we set

v = (τ(2Δb − |∇b|2 + R) + b − n
)
w,

and therefore

∂tv = −Δv + Rv + 2τ
∣∣∣Rc + Hess b − g

2τ

∣∣∣2 w. (246)

Now we prove
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Lemma 29 There exist a sequence τi → 0 and a constant C > 0 independent of r and i such
that ∫

vuφr dVT −τi ≤ C .

Proof From integration by parts, we have∫
vuφr dVt =

∫ (
τ(2Δb − |∇b|2 + R) + b − n

)
wuφr dVt

=
∫

−2τ 〈∇b,∇w〉uφr − 2τ 〈∇b,∇u〉wφr − 2τ 〈∇b,∇φr 〉wu dVt

+
∫ (

τ(R − |∇b|2) + b − n
)
wuφr dVt

=
∫ (

τ(|∇b|2 + R) + b − n
)
wuφr − 2τ 〈∇b,∇u〉wφr − 2τ 〈∇b,∇φr 〉wu dVt .

In addition, ∫
−2τ 〈∇b,∇u〉wφr − 2τ 〈∇b,∇φr 〉wu dVt

≤
∫

2τ |∇b||∇u|wφr + 2τ |∇b||∇φr |wu dVt

≤ τ

∫
2|∇b|2wuφr + |∇u|2

u
wφr + |∇φr |2

φr
wu dVt .

Now the conclusion follows immediately from Lemmas 21, 24 and 26. �
We are now ready to estimate the squared term in (246).

Lemma 30 ∫ T

T −1

∫
τ

∣∣∣Rc + Hess b − g

2τ

∣∣∣2 wu dVt dt < ∞.

Proof We denote A = 2τ
∣∣Rc + Hess b − g

2τ

∣∣2 w. By computations,

∂t

∫
vuφr dVt =

∫
vt uφr + vutφ

r + uvφr
t − Ruvφr dVt

=
∫

−Δvuφr + Auφr + Δuvφr + uvφr
t dVt

=
∫

uv�φr − 2v〈∇φr ,∇u〉 + Auφr dVt .

Now we have∫
uv�φr dVt

=
∫ (

τ(2Δb − |∇b|2 + R) + b − n
)
wu�φr dVt

=
∫

−2τ 〈∇b,∇w〉u�φr − 2τ 〈∇b,∇u〉w�φr − 2τ 〈∇b,∇�φr 〉uw dVt

+
∫ (

τ(R − |∇b|2) + b − n
)
wu�φr dVt
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=
∫ (

τ(|∇b|2 + R) + b − n
)
wu�φr dVt

− 2τ
∫

〈∇b,∇u〉w�φr + 〈∇b,∇�φr 〉uw dVt . (247)

For the last integral,

2
∫

〈∇b,∇u〉w�φr dVt ≤ 2
∫

|∇b||∇u|w|�φr | dVt ≤
∫

|∇b|2wu|�φr | + |∇u|2
u

w|�φr | dVt

and

2
∫

〈∇b,∇�φr 〉uw dVt ≤ 2
∫

|∇b||∇�φr |uw dVt ≤
∫

K r
t

|∇b|2wu + |∇�φr |2uw dVt .

By the explicit expression �φr = −nr−1η′/2 − r−2η′′|∇F |2, we have
|∇�φr | = ∣∣−nr−2∇Fη′′/2 − r−3η′′′∇F |∇F |2 − 2r−2η′′Hess F(∇F)

∣∣
≤ Cr−2|∇F | (1 + |Hess F | + r−1|∇F |2) .

In addition,∫
v〈∇φr ,∇u〉 dVt

=
∫ (

τ(2Δb − |∇b|2 + R) + b − n
)
w〈∇φr ,∇u〉 dVt

=
∫

−2τ 〈∇b,∇w〉〈∇φr ,∇u〉 − 2τHessφr (∇b,∇u)w − 2τHess u(∇b,∇φr )w dVt

+
∫ (

τ(R − |∇b|2) + b − n
)
w〈∇φr ,∇u〉 dVt

=
∫ (

τ(|∇b|2 + R) + b − n
)
w〈∇φr ,∇u〉 dVt − 2τHessφr (∇b,∇u)w

− 2τHess u(∇b,∇φr )w dVt .

To estimate the last two terms, since |∇u| is uniformly bounded,∫
Hessφr (∇b,∇u)w dVt ≤

∫
|Hessφr ||∇b||∇u|w dVt ≤ C

∫
K r

t

|∇b|2w + |Hessφr |2w dVt .

Note that we have

|Hessφr | = ∣∣r−2η′′Fi Fj + r−1η′Hess F
∣∣ ≤ Cr−1 (|Hess F | + r−1|∇F |2)

and∫
Hess u(∇b,∇φr )w dVt ≤

∫
|Hess u||∇b||∇φr |w dVt ≤ Cr− 1

2

∫
K r

t

|∇b|2w + |Hess u|2w dVt .

Now we integrate (247) from T − 1 to T − τi ,∫ T −τi

T −1

∫
Auφr dVt

≤
(∫

vuφr dVt

)∣∣∣∣
T −τi

T −1
+
∫ T −τi

T −1

∫ (
τ(|∇b|2 + R) + b − n

)
w(2〈∇φr ,∇u〉 − u�φr ) dVt dt

+
∫ T −τi

T −1
τ

∫
K r

t

|∇b|2wu|�φr | + |∇u|2
u

w|�φr | + |∇b|2wu dVt dt
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+ Cr−4
∫ T −τi

T −1
τ

∫
K r

t

|∇F |2 (1 + |Hess F |2 + r−2|∇F |4) uw dVt dt

+ C
∫ T −τi

T −1
τ

∫
K r

t

|∇b|2w + |Hess u|2w dVt dt

+ Cr−2
∫ T −τi

T −1
τ

∫
K r

t

(|Hess F |2 + r−2|∇F |4)w dVt dt .

Therefore,

∫ T −τi

T −1

∫
Auφr dVt

≤
(∫

vuφr dVt

)∣∣∣∣
T −τi

T −1
+ Cr− 1

2

∫ T

T −1

∫
K r

t

(
τ(|∇b|2 + R) + |b| + n

)
w dVt dt

+
∫ T

T −1
τ

∫
K r

t

Cr−1(|∇b|2w + w) + |∇b|2w dVt dt

+ Cr−2
∫ T

T −1
τ

∫
K r

t

(
1 + |Hess F |2) uw dVt dt

+ C
∫ T

T −1
τ

∫
K r

t

|∇b|2w + |Hess u|2w dVt dt (248)

For a fixed i , from Theorem 20, Lemmas 4, 25, 26 and 27, we have by taking r → ∞ that

∫ T −τi

T −1

∫
Au dVt = lim

r→∞

∫ T −τi

T −1

∫
Auφr dVt = lim

r→∞

(∫
vuφr dVt

)∣∣∣∣
T −τi

T −1
≤ C, (249)

where the last inequality follows from Lemma 29.
Now the lemma follows from (249) by taking i → ∞. �

A consequence of Lemma 30 is

Lemma 31 There exists a sequence τ j → 0 such that

lim
j→∞

∫
τ 2j

∣∣∣Rc + Hess b − g

2τ

∣∣∣2 wu + τ
3
2
j |∇b|2w dVt = 0.

Proof It follows from Lemmas 30 and 25 that
∫ T

T −1

∫
τ

∣∣∣Rc + Hess b − g

2τ

∣∣∣2 wu + τ
1
2 |∇b|2w dVt < ∞.

Now the conclusion is obvious. �

Note that the sequence τ j may not be the same sequence τi in Lemma 24.
Finally, we can prove Perelman’s differential Harnack inequality.

Theorem 21

τ(2Δb − |∇b|2 + R) + b − n ≤ 0.
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Proof As T − 1 can be any time S < T , we just need to prove v ≤ 0 on T − 1.
For the chosen τ j obtained in Lemma 31, we have

∫
vuφr dVT −τ j

=
∫ (

τ j (2Δb − |∇b|2 + R) + b − n
)
wuφr dVT −τ j

=
∫

τ j (Δb + R − n

2τ j
)wuφr − τ j 〈∇b,∇u〉wφr dVT −τ j

+
∫

−τ j 〈∇b,∇φr 〉uw + (b − n

2
)wuφr dVT −τ j . (250)

On the one hand,∫
τ j (Δb + R − n

2τ j
)wuφr dVT −τ j

≤ τ j

(∫ ∣∣∣Rc + Hess b − g

2τ

∣∣∣2 wu dVT −τ j

) 1
2
(∫

wu dVT −τ j

) 1
2

≤ C

(∫
τ 2j

∣∣∣Rc + Hess b − g

2τ

∣∣∣2 wu dVT −τ j

) 1
2

. (251)

On the other hand,∫
−τ j 〈∇b,∇u〉wφr − τ j 〈∇b,∇φr 〉uw dVT −τ j

≤ Cτ j

∫
|∇b|w dVT −τ j ≤ C

(∫
τ

3
2
j |∇b|2 dVT −τ j

) 1
2
(∫

τ
1
2
j w dVT −τ j

) 1
2

= Cτ
1
4
j

(∫
τ

3
2
j |∇b|2 dVT −τ j

) 1
2

. (252)

In addition, it follows from Lemma 21 and Remark 4 that∫
(b − n

2
)wuφr dVT −τ j = 0. (253)

Combining (251), (252) and (253), it follows immediately from Lemmas 31 and 21 that

lim
j→∞

∫
vuφr dVT −τ j = 0.

Now we consider (248), with τi replaced by τ j , and let j → ∞.
∫

vuφr dVT −1

≤ Cr− 1
2

∫ T

T −1

∫
K r

t

(
τ(|∇b|2 + R) + |b| + n

)
w dVt dt

+
∫ T

T −1
τ

∫
K r

t

Cr−1(|∇b|2w + w) + |∇b|2w dVt dt

+ Cr−2
∫ T

T −1
τ

∫
K r

t

(
1 + |Hess F |2) uw dVt dt
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+ C
∫ T

T −1
τ

∫
K r

t

|∇b|2w + |Hess u|2w dVt dt .

It is easy to see all integrals above converge to zero if r → ∞, by Lemmas 22, 26, 27 and
28. Therefore, ∫

vu dVT −1 ≤ 0.

By the arbitrary choice of u at T − 1, we have proved that v ≤ 0. �
Remark 5 Note that as in Perelman’s paper [46], Theorem 16 is a corollary of Theorem 21.
Our proof of Theorem 21 is different from most literature, for instance [11,44], in that we do
not need a pointwise gradient estimate of the conjugate heat kernel, see [44, Lemma 2.2].

Remark 6 The proof of Theorem 21 shows the following identity. For any S < T < 1,
∫

vu dVS = −
∫ T

S

∫
2τ
∣∣∣Rc + Hess b − g

2τ

∣∣∣2 wu dVt dt .

9 The no-local-collapsing theorems

We need to use the local entropy in [53]. Let us first recall some notations. LetΩ be a domain
in M . Then we define (cf. (91) and (92) and Sect. 2 of [53]):

μ(Ω, g, τ ):= inf
{W(g, u, τ )

∣∣u ∈ W1,2∗ (M), u is supported on Ω
}
, (254)

ν(Ω, g, τ ):= inf
s∈(0,τ )

μ(Ω, g, s). (255)

When the meaning is clear in the context, the metric g may be dropped. Note that if Ω does
not appear, it means the default set is M . We shall exploit the argument in [53] to obtain
volume ratio estimate.

Theorem 22 Suppose (Mn, g, f ) is a Ricci shrinker and B = B(x, r) ⊂ M is a geodesic
ball with R ≤ Λ, then we have

r−n |B| ≥ c · eμ−Λr2 , (256)

for some c = c(n) > 0. If r ∈ (0, 1), then (256) can be improved to

r−n |B| ≥ c · eμ(g,r2)−Λr2 . (257)

Proof We first show (256). By Theorem 3.3 of [53], we know that

r−n |B| ≥ c(n)eν(B,r2)e−Λr2 , (258)

where ν(B, r2) is the local ν-functional of B on the scale r2. Since (M, g) is a Ricci shrinker,
it follows from (6) in Theorem 1 that

ν(B, r2) ≥ ν(M, r2) = inf
τ∈(0,r2)

μ(M, g, τ ) ≥ μ. (259)

If r ∈ (0, 1), then r2 ∈ (0, 1). By the monotonicity in Theorem 1, the above inequality can
be written as

ν(B, r2) ≥ μ(g, r2). (260)
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Therefore, we obtain (256) and (257), after we plugging (259) and (260) into (258) respec-
tively. �

Theorem 23 Suppose (Mn, g, f ) is a Ricci shrinker and B = B(q, r) ⊂ M is a geodesic
ball with R ≤ Λ, then we have

r−n |B| ≥ c · eμ(1 + Λr2)−
n
2 . (261)

Proof Choose ρ0 ∈ [0, r ] such that inf
s∈[0,r ] s−n |B(q, s)| is achieved at ρ0. There are two cases

ρ0 = 0 and ρ0 > 0, which we shall discuss separately.
Case 1 ρ0 = 0.

In this case, we have

|B(q, r)| ≥ ωnrn, (262)

where ωn is the volume of the unit Euclidean ball. Actually, it is not hard to observe that

μ ≤ 0. (263)

Let τ → 0+, it is clear that (Mn, p, τ−1g) converges to (Rn, 0, gE ) in the Cheeger–Gromov
sense. By Lemma 3.2 of [36], we have

lim sup
τ→0+

μ(g, τ ) = lim sup
τ→0+

μ(τ−1g, 1) ≤ μ(gE , 1) = 0. (264)

Asμ(g, τ ) is decreasing on (0, 1) byLemma15, then (263) follows from the above inequality.
Consequently, (261) follows from the combination of (262) and (263).
Case 2 ρ0 > 0.

We choose a nonincreasing smooth function η on R such that η = 1 on (−∞, 1/2] and 0
on [1,∞). We also define u(x) = η(

d(q,x)
ρ0

). From (156) in Corollary 4, we obtain

|B(q, ρ0/2)| n−2
n ≤ Ce− 2μ

n

∫ {
4|∇u|2 + Ru2} dV

≤ Ce− 2μ
n

(
ρ−2
0 |B(q, r)| +

∫
Ru2 dV

)

≤ Ce− 2μ
n ρ−2

0 (1 + Λr2)|B(q, ρ0)|
where the last inequality follows from R ≤ Λ ≤ Λr2ρ−2

0 . According to the choice of ρ0,
we obtain

|B(q, ρ0/2)| ≥ 2−n |B(q, ρ0)|.
Combining the previous two steps yields that

|B(q, ρ0)| ≥ 2n |B(q, ρ0/2)| ≥ Ceμ(1 + Λr2)−
n
2 ρn

0 .

Recall that r−n |B(q, r)| ≥ ρ−n
0 |B(q, ρ0)| by our choice of ρ0. Therefore, (261) follows

directly from the above inequality. �

Remark 7 Theorem 23 indicates that any Ricci shrinker is κ-noncollapsed for some positive
constant κ which depends only on the dimension n and the lower bound of μ.

123



Heat kernel on Ricci shrinkers Page 67 of 84 194

Note that Theorem 22 is based on the Logarithmic Sobolev inequality, and Theorem 23
relies on the Sobolev inequality. Each of Theorems 22 and 23 has its own advantage and
will be used in the remainder of the section. Bascially, Theorem 22 is sharper when r is very
small and Theorem 23 is more accurate in the situation when Λr2 is large.

Using the Sobolev constant estimate in Corollary 4, we can further improve Theorem 6.1
of [41] stating that for any noncompact Ricci shrinker, the volume increases at least linearly.

Proposition 6 For any noncompact Ricci shrinker (Mn, p, g, f ), there exist big positive
constant r0 = r0(n) and small positive constant ε0 = ε0(n) such that

|B(p, r)| ≥ ε0eμr , ∀ r ≥ r0. (265)

Proof Similar to the proof of Lemma 2, we follow the notation of [41] to denote

ρ:=2
√

f , D(r):={x ∈ M | ρ ≤ r}, A(s, r):=D(r)\D(s);
V (r):=|D(r)|, χ(r):=

∫
D(r)

R dV .

From Lemma 1, V (r) is almost the volume of geodesic ball B(p, r), with the advantage
that the estimate of V (r) is relatively easier than the estimate of |B(p, r)|. Actually, by Eqs.
(6.24) and (6.25) of [41], we know that

V (t + 1) ≤ 2V (t), (266)

V (t + 1) − V (t) ≤ C1
V (t)

t
, (267)

whenever t ≥ C1 for some dimensional constant C1 = C1(n). Now we define

r0:=max{100n, 10C1}. (268)

Therefore, in order to prove (265), it suffices to show that

V (r) ≥ ε0eμr , ∀ r ≥ r0, (269)

where ε0 = ε0(n) will be determined later.
We shall prove (269) by a contradiction argument. If (269) were wrong, then there exists

an r ≥ 2r0 such that V (r) ≤ ε0eμr for ε0 to be determined later, we claim that

V (tm) ≤ 2ε0eμtm, tm = r + m, ∀m ∈ N. (270)

Indeed, by our assumption the case m = 0 is true. We assume that the conclusion is true for
all m = 0, 1, 2, . . . , k and proceed to show it holds for m = k + 1.

For any t ≥ r0, we define

u(x):=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 on A(t, t + 1),

t + 2 − ρ(x) on A(t + 1, t + 2),

ρ(x) − (t − 1) on A(t − 1, t),

0 otherwise.

Let t = tm and plug the above u into the Sobolev inequality (156). We obtain

|A(tm, tm+1)| n−2
n ≤ C3e− 2μ

n (|A(tm−1, tm)| + |A(tm+1, tm+2)| + χ(tm+2) − χ(tm−1))

(271)
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for some C3 = C3(n). For 0 ≤ m ≤ k, it follows from our induction assumption and (267)
that

|A(tm, tm+1)| = V (tm+1) − V (tm) ≤ C1
V (tm)

tm
≤ 2C1ε0eμ. (272)

Summing (271) from m = 0 to m = k, we have

k∑
m=0

|A(tm , tm+1)| n−2
n ≤ C3e− 2μ

n

k∑
m=0

(|A(tm−1, tm)| + |A(tm+1, tm+2)| + χ(tm+2) − χ(tm−1))

≤ 3C3e− 2μ
n (|A(t−1, tk+2)| + χ(tk+2)) .

Recall that χ(t) ≤ n
2 V (t) by (3.4) of [9]. Plugging this fact into the above inequality yields

that
k∑

m=0

|A(tm, tm+1)| n−2
n ≤ 3C3e− 2μ

n

(
V (tk+2) + n

2
V (tk+2)

)
≤ C4e− 2μ

n V (tk+1), (273)

where C4 = (6 + 3n)C3 = C4(n). Now we choose

ε0:=(2C1)
−1(2C4)

− n
2 . (274)

Clearly, ε0 = ε0(n). Then it follows from (272) that

2C4e− 2μ
n |A(tm, tm+1)| ≤ |A(tm, tm+1)| n−2

n , ∀m ∈ {1, 2, . . . , k}.
It is clear from (273) that

2C4e− 2μ
n (V (tk+1) − V (r)) ≤ C4e− 2μ

n V (tk+1)

and hence

V (tk+1) ≤ 2V (r) ≤ 2ε0eμr ≤ 2ε0eμtk+1.

Therefore, the induction is complete and (270) is proved. By the arbitrary choice of m,
the total volume of the Ricci shrinker is finite, which contradicts Lemma 6.2 of [41](See
also Theorem 3.1 of [7] by Cao–Zhu). Therefore, the proof of (269) is established by this
contradiction. Consequently, (265) holds by Lemma 1. Note that r0 and ε0 are defined in
(268) and (274). Both of them can be calculated explicitly. �
Remark 8 In [41, Theorem 6.1], the authors have obtained a weaker lower bound

|B(p, r)| ≥ Cecμr

for two constants C > 0 and c > 1 depending only on n.

We are now ready to prove the improved no-local-collapsing, i.e., Theorem 2.

Proof of Theorem 2 It follows from Lemma 2 and Proposition 6 that

ε0r ≤ |B(p, r)|e−μ ≤ Crn .

By Lemma 12, we know eμ|B(p, 1)|−1 is uniformly bounded from above and from below.
Multiplying each term of the above inequality by eμ|B(p, 1)|−1 and adjustingC if necessary,
we arrive at

1

C
r ≤ |B(p, r)|

|B(p, q)| ≤ Crn,
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which is nothing but (9a). We proceed to prove (9b). Recall that q ∈ ∂ B(p, r) and ρ ∈
(0, r−1) for some r > 1. Triangle inequality implies that

B(q, ρ) ⊂ B(p, 2r).

It follows from Lemma 1 that f ≤ Cr2 for some C = C(n) on B(p, 2r). Since R +|∇ f |2 =
f and R ≥ 0, it follows that R ≤ Cr2 on B(p, 2r). In particular, we have Rρ2 ≤ Rr−2 ≤
C(n) on B(q, ρ). Consequently, we can apply Theorem 23 on the ball B(q, ρ) to obtain (9b).

�

10 The pseudolocality theorems

In this section, we prove the pseudo-locality theorems on Ricci shrinker and discuss their
applications.

Based on the Harnack estimate, following a classical point-picking, or maximum principle
argument, we are able to obtain the following pseudo-locality theorem.

Theorem 24 There exist positive numbers ε0 = ε0(n) and δ0 = δ0(n) with the following
properties.

Let {(Mn, g(t)),−∞ < t < 1} be the Ricci flow induced from a Ricci shrinker (Mn, p, g).
Suppose t0 ∈ (−∞, 1) and Bg(t0)(x, r) ⊂ M is a geodesic ball satisfying

ν(Bg(t0)(x, r), g(t0), r2) > −δ0. (275)

Then for each t ∈ (t0,min{t0 + ε20r2, 1}) and y ∈ Bg(t)(x, 0.5r), we have

The statement in Theorem 24 is a slight improvement of Theorem 10.1 of [46]. The basic
idea of the proof is already contained in Propositions 3.1 and 3.2 of Tian–Wang [51]. Note
that the isoperimetric constant estimate in Peleman’s statement is only used to (cf. Lemma
3.5 of [53]) estimate the local entropy (i.e., (254) and (255)) ν(Bg(t0)(x, r), g(t0), r2). The
statement (275) seems to be more straightforward. The conclusion (276) follows from a
standard point-picking argument, whenever the differential Harnack estimate, i.e., Theorem
21 holds. More details can be found in [32, Sect. 30], [11, Sect. 8], [19, Chapter 21], or [54].

As Ricci shrinker Ricci flows are self-similar, we can improve the estimate (276) by the
following property.

Theorem 25 Suppose (Mn, p, g, f ) is a Ricci shrinker, B = B(q, r) ⊂ M is a geodesic
ball satisfying

ν(B, g, r2) > −δ0. (275)

Then we have

sup
x∈B(q,0.5ε0r)

|Rm|(x) ≤ max{1, ε0Dr} · (ε0r)−2, (276)

where D = d(p, q) + √
2n.
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Proof of Theorem 25 We fix ξ ≤ ε0 a small positive number, whose value will be determined
later (i.e., (281)). We set

t := − (ξr)2, q̃ = (ψ t )−1(q), D:=d(p, q) + √
2n, (277)

where ψ s is the diffeormorphism (i.e., (15)) generated by ∇ f
1−s .

Claim By choosing ξ properly, we have

d(q, q̃) ≤ ε0r

2
. (278)

By (15) and (2), along the flow line ψ s(q̃) where s goes from t to 0, we compute

d(q, q̃) ≤
∫ 0

t

|∇ f |(ψ s(q̃))

1 − s
ds ≤

∫ 0

t

√
f (ψ s(q̃))

1 − s
ds. (279)

From the definition of ψ s , we have

d

ds
f (ψ s(q̃)) = |∇ f |2(ψ s(q̃))

1 − s
≤ f (ψ s(q̃))

1 − s
.

For each s ≥ t = −(ξr)2, the integration of the above inequality yields that

f (ψ s(q̃)) ≤ 1 − t

1 − s
f (ψ t (q̃)) = 1 − t

1 − s
f (q) ≤ 1 − t

1 − s
· D2

4
,

where we applied (30) in the last step. Therefore, it follows from (279) that

d(q, q̃) ≤ D
√
1 − t

∫ 0

t

1

2
(1 − s)−3/2 ds = D

(√
1 − t − 1

)
.

Plugging the fact that t = −(ξr)2 into the above inequality, we arrive at

d(q, q̃) ≤ D
(√

1 + (ξr)2 − 1
)

. (280)

Now we define ξ as follows.

ξ :=
{

ε0, if Dr ≤ ε−1
0 ;√

ε0
Dr if Dr > ε−1

0 .
(281)

Therefore, if Dr ≤ ε−1
0 , it follows from (280) that

d(q, q̃) ≤ D
(√

1 + (ε0r)2 − 1
)

≤ D(ε0r)2

2
≤ ε0r

2
.

If Dr > ε−1
0 , it also follows from (280) that

d(q, q̃) ≤ D
(√

1 + (ξr)2 − 1
)

≤ D

2
· (ξr)2 = ε0r

2
.

Therefore, no matter what the value of r is, we always have (278). The proof of the Claim is
complete.

We proceed to prove (276). Since g(t) = (1 − t)(ψ t )∗g, it is clear that

ψ t
(

Bt

(
q̃,

√
1 − t r

))
= B(q, r).
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It follows from the scaling property of ν that

ν
(

Bg(t)

(
q̃,

√
1 − t r

)
, g(t), (1 − t)r2

)
= ν(B, g, r2) > −δ0.

Therefore, we can apply Theorem 24. For each s ∈ (t,min{t + (ε0r)2, 1}] and x ∈
Bg(s)(q̃, 0.5r), we have

In particular, we can choose s = 0. Since g = g(0), for each x ∈ B(q̃, 0.5r), we obtain

Note that B(q, 0.5ε0r) ∈ B(q̃, ε0r) ⊂ B(q̃, 0.5r) by (278). Plugging (281) into (285a),
we obtain (276). �

Now we apply Theorems 24 and 25 to study the geometric properties of (M, g) in terms
of μ. In particular, we are ready to finish the proof of Theorem 3.

Proof of Theorem 3 We divide the proof into several steps.
Step 1 The gap property (10) holds.

It suffices to show that μ ≥ −δ0 implies that (M, g) is isometric to the Euclidean space.
Following directly from its definition, as B(x, r) ⊂ M , it is clear that

ν(B(x, r), g, r2) ≥ ν(M, g, r2) = ν(g, r2).

Combining the above inequality with the optimal Logarithmic Sobolev inequality, we obtain

ν(B(x, r), g, r2) ≥ μ. (286)

Therefore, if μ ≥ −δ0, then each ball B(x, r) will satisfy the condition (275). By choosing
r >> D, we can apply (276) to obtain that

|Rm|(x) ≤ ε0Dr · (ε0r)−2 = Dε−1
0 r−1.

Let r → ∞, we obtain that |Rm|(x) ≡ 0. By the arbitrary choice of x , we obtain that
|Rm| ≡ 0. In particular, Rc ≡ 0. Then the Ricci shrinker equation implies that fi j = gi j

2 .
Therefore, (M, g) is isometric to a metric cone which is also a smooth manifold. This forces
that (M, g) is isometric to the standard Euclidean space (Rn, gE ). Thus, the proof of (10) is
complete.
Step 2 The inequality (12) and (13) imply the curvature and injectivity radius bound (14).

Recall that (10) means μ(g, 1) < −δ0. If (12) holds, by continuity and monotonicity of
μ(g, τ ), it is clear that there exists some τ ∈ (0, 1) such that

μ(g, τ ) = −δ0.
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Then the τ0 in (14) is well defined. Namely, τ0 is the largest τ ∈ (0, 1) such that the above
equality holds. It follows from the definition of τ0 and ν that

ν(g, τ0) = μ(g, τ0) = −δ0. (287)

For each ball Bg(0)(x, r) ⊂ M , we know ν(Bg(0)(x, r), g, τ0) ≥ −δ0. In particular, we can
choose r = √

τ0. Now we apply Theorem 24 on the time slice t0 = 0, with scale
√

τ0, to
obtain that

|Rm|(x, t) ≤ t−1, ∀ x ∈ M, ∀ t ∈ (0, ε20r2].
In particular, we have

sup
x∈M

|Rm|(x, ε20τ0) ≤ ε−2
0 τ−1

0 .

Up to rescaling, since g(0) = g, we arrive atl

sup
x∈M

|Rm|g(x) ≤ ε−2
0 τ−1

0 (1 − ε20τ0) = ε−2
0 τ−1

0 − 1 < C(n)τ−1
0 ,

which is nothing but (14a). Plugging (287) into (257) of Theorem 22, we obtain that each

geodesic ball B(·,√τ0) has volume bounded below by c(n)τ
n
2
0 . Therefore, the injectivity

radius estimate of Cheeger–Gromov–Taylor [13] applies and we arrive at (14b). The proof
of (14) is complete.
Step 3 The bounded geometry estimate (14) implies the equality (11), i.e., lim

τ→0+ μ(g, τ ) = 0.

We shall argue in the way similar to that in Theorem 1.1 of [62], with more details on the
regularity estimate.

Assume otherwise that there exists a sequence τi → 0+ such that

lim
i→∞ μ(g, τi ) = μ∞ < 0. (288)

If we set gi = τ−1
i g, then all metrics gi have uniformly bounded geometry. More precisely,

there exist positive constants K and v0 such that

Notice that for any i , there exists a large domain

Bi :=
{

x
∣∣∣2√ f ≤ ri

}
(290)

for some large ri >> 1 such that

μ(Bi , gi , 1) − μ(gi , 1) = μ(Bi , gi , 1) − μ(g, τi ) < i−1. (291)

The geometry bound (289) actually implies higher order derivatives of curvatures and
√

f
are also uniformly bounded (cf. Sect. 4 of [34]). Therefore, it is not hard to see that ∂ Bi

is smooth. All the covariant derivatives of second fundamental forms of ∂ Bi are bounded
independent of i .

It follows from [48] that a minimizer ui of μ(Bi , gi , 1) exists. More precisely, ui ∈
W 1,2

0 (Bi ) is a positive smooth function on Bi satisfying the normalization condition∫
Bi

u2
i dVi = 1 (292)
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and solve the Dirichlet problem

Here dVi , Δi and Ri denote the volume form, Laplacian operator and scalar curvature with
respect to gi respectively. The number λi is defined by

λi :=n + n

2
log(4π) + μ(Bi , gi , 1).

Recall that lim
τ→0+ μ(g, τ ) ≤ 0 by (264). Then it follows from (291) that λi is uniformly

bounded. Since curvature is uniformly bounded, the classical L2-Sobolev constant of (Bi , gi )

is uniformly bounded. In light of (293), the Moser iteration then implies ‖ui‖C0 is uniformly
bounded, see [62, Lemma 2.1(a)] or the proof of Proposition 3.1 of [51]. Then it follows from
[23, Corollary 8.36] that ‖ui‖

C1, 12 (B̄i )
are uniformly bounded. Since all ∂ Bi have uniformly

higher regularities, the bootstrapping, see [23, Theorem 6.19], shows that ‖ui‖
Ck, 12 (B̄i )

are

uniformly bounded for any k ≥ 2.
Let qi be a point where ui achieves maximum value in Bi . By (293), at qi we have

Ri ui − 2ui log ui − λi ui ≤ 0,

whence we derive

ui (qi ) ≥ exp

(
Ri − λi

2

)
≥ c0 (294)

for some uniform constant c0.
In light of (289) and the discussion below (291), we know that (Mn, qi , gi ) subconverges

to Euclidean space (Rn, 0, gE ) in C∞-Cheeger–Gromov topology. The set Bi converges to
a limit set B∞. If d(qi , ∂ Bi ) → ∞, then B∞ = R

n . Otherwise, by the estimate of second
fundamental form and its covariant derivatives, ∂ Bi converge to a smooth (n−1)-dimensional
set ∂ B∞. In light of the uniform bound of ‖ui‖

Ck, 12
and the uniform regularity of ∂ Bi , by

taking subsequence if necessary, we can assume that ui converges in smooth topology to a
smooth function u∞ ∈ C∞(B̄∞). Furthermore, u∞ ≡ 0 on ∂ B∞.

In view of (294), the convergence process implies that

0 < c2 =
∫

B∞
u2∞dV∞ ≤ 1. (295)

Furthermore, we have on B∞ that

−4ΔgE u∞ − 2u∞ log u∞ − λ∞u∞ = 0, (296)

where λ∞ = n + n
2 log(4π) + μ∞. Let ũ = c−1u∞. Then

∫
B∞ ũ2dV∞ = 1. The above

equation becomes

−4ΔgE ũ − 2ũ log ũ −
(

n + n

2
log(4π) + μ∞ + 2 log c

)
ũ = 0.

Since c ∈ (0, 1) by (295) and μ∞ < 0 by (288), then an integration by parts shows that

μ(gE , 1) ≤ W(gE , ũ, 1) = μ∞ + 2 log c < 0,

which is a contradiction. So we finish the proof of Step 3.
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Step 4 The three properties are equivalent.
By Step 2, it is clear that (c) ⇒ (a). Then Step 3 means that (a) ⇒ (b). It is obvious that

(b) ⇒ (c). Therefore, we obtained the equivalence of properties (a), (b) and (c) in Theorem 3.
The proof of the Theorem is complete. �
Corollary 7 There exists a small positive number ε = ε(n) > 0 such that for any nonflat
Ricci shrinker (Mn, p, g, f ), we have

dPG H
{
(Mn, p, g), (Rn, 0, gE )

}
> ε. (297)

Proof We argue by contradiction.
If (297) were wrong, then we can have a sequence of nonflat Ricci shrinkers (Mi , pi , gi )

such that

dPG H
(
(Mi , pi , gi ),

(
R

n, 0, gE
))→ 0.

By Proposition 5.8 of [34], it is clear that μi = μ(Mi , pi , gi ) is uniformly bounded from
below. Using Theorem 1.1 of [34], the above convergence can be improved to be in the
C∞-Cheeger–Gromov sense

(Mi , pi , gi ) −→ (
R

n, 0, gE
)
.

It is not hard to see that μ is continuous with respect to the above convergence (cf. Theorem
1.2(c) of [34]). Therefore, we have

μi = μ(Mi , pi , gi ) → μ(Rn, 0, gE ) = 0.

It follows that μi > −δ0 for large i . Therefore, each (Mi , gi ) is isometric to Euclidean space
by Theorem 3. This contradicts our choice of (Mi , gi ). The proof of (297) is established by
this contradiction. �
Corollary 8 Let (Mn, g, f ) be a Ricci shrinker and let q ∈ M be a point such that

ν(B(q, ε−1
0 ), g, ε−2

0 ) > −δ0.

Then there exist a positive constant C = C(n) such that

|Rm|(ψ t (x)) ≤ C D(1 − t) ≤ C D
f (x)

f (ψ t (x))

for any x ∈ B(q, 1
2e−C D D− 1

2 ) and t ∈ [0, 1), where D = d(p, q) + √
2n.

Proof By the assumption, it follows from Theorem 24 by choosing r = ε−1
0 that

|Rm|(x, t) ≤ 1

t
(298)

for any t ∈ (0, 1) and dg(t)(q, x) ≤ 1
2ε

−1
0 . In addition, from Theorem 25 we have

|Rm|(x) ≤ D (299)

for any x ∈ B(q, 1
2 ). From (298), (299) and [15, Theorem 3.1] that there exist a positive

constant C = C(n) such that for any x ∈ Bt (q, 1
2 D− 1

2 ),

|Rm|(x, t) ≤ C D. (300)
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From (300), it is easy to see by comparing the distances that

B

(
q,

1

2
e−C D D− 1

2

)
⊂ Bt

(
q,

1

2
D− 1

2

)
(301)

for any t ∈ [0, 1).
Therefore, for any x ∈ B(q, 1

2e−C D D− 1
2 ),

|Rm|(ψ t (x)) = (1 − t)|Rm|(x, t) ≤ C D(1 − t). (302)

Along the flow line of ψ t (x),

d

dt
f (ψ t (x)) = |∇ f |2(ψ t (x))

1 − t
≤ f (ψ t (x))

1 − t
, (303)

and hence by solving the corresponding ODE,

f (ψ t (x)) ≤ f (x)

1 − t
. (304)

Combining (302) and (304), the conclusion follows. �

Since f is almost d2

4 by Lemma 1, Corollary 8 shows that the curvature is quadratically
decaying along the flow line. Next we prove that if there exists a tubular neighborhoold
of some level set of f whose isoperimetric constant is almost Euclidean, then globally the
curvature is quadratically decaying.

Corollary 9 For any Ricc shrinker (Mn, g, f ), if there exists an a > 0 such that for any
x ∈ f −1(a),

ν(B(x, ε−1
0 ), g, ε−2

0 ) > −δ0,

then the curvature is quadratically decaying and each end has a unique smooth tangent cone
at infinity.

Proof We can assume that (M, f ) is nonflat, otherwise there is nothing to prove. Now we
reparametrize ψ t by defining for any s ∈ (−∞,∞)

ψ̃ s = ψ1−e−s
.

It is clear from the definition of ψ t that

d

ds
ψ̃ s(x) = ∇ f (ψ̃ s(x)).

In other words, ψ̃ s is the one-parameter group of diffeomorphisms generated by ∇ f . Now
we set

ε1 = ε1(a, n) = 1

2
e−C D1 D

− 1
2

1 ,

where D1 = 2
√

a + 5n + √
2n + 4.

We claim that any x ∈ Tε1( f −1(a)):=⋃q∈ f −1(a) B(q, ε1) is not a stationary point of ψ̃ s .
Otherwise, it follows from Corollary 8 that

|Rm|(x) = |Rm|(ψ̃ s(x)) ≤ C D1e−s
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for any s ≥ 0. However, when s → ∞, |Rm|(x) = 0 and this contradicts our nonflatness
assumption.

Now we choose c < a < d such that for any x ∈ ∂T ε1
2
( f −1(a)), either f (x) ≤ c

or f (x) ≥ d . By continuity, there exists a positive constant ε � ε1 such that for any
x ∈ Tε( f −1(a)), f (x) ∈ (c + ε, d − ε). We set U :=Tε( f −1(a)) and claim that for any
y ∈ U , there exists an x ∈ f −1(a) such that ψ̃ s(x) = y for some s. If f (y) = a, then the
claim is obvious. If f (y) < a, we consider the flow line ψ̃ s(y) for s ≥ 0. Notice that by the
definition of ψ̃ s ,

d

ds
f (ψ̃ s(y)) = |∇ f |2(ψ̃ s) ≥ 0.

Therefore, by the local compactness and our previous no stationary argument, the flow will
continue and along the flow f is strictly increasing as long as ψ̃ s(y) stays in Tε1( f −1(a)). We
set s0 to be the first time such that ψ̃ s(y) reaches ∂T ε1

2
( f −1(a)). In particular, f (ψ̃ s(y)) ≤ c

or f (ψ̃ s(y)) ≥ d . Since f (y) ∈ (c + ε, d − ε), it must be f (ψ̃ s(y)) ≥ d . As f (y) < a <

f (ψ̃ s0(y)), there exists an s ∈ (0, s0) such that f (ψ̃ s(y)) = a by continuity. Therefore, if
we set x = ψ̃ s(y) ∈ f −1(a), then ψ̃−s(x) = y and the claim follows. Similarly, for the case
f (y) > a, the claim is also true.
Next we prove that for any y such that f (y) > a, there exists an x ∈ U such that

ψ̃ s(x) = y for some s. Fix such y, we choose any curve {γ (z) : z ∈ [0, 1]} such that
γ (0) = p and γ (1) = y. In particular, since p is the minimum point of f , there exists a
z0 ∈ [0, 1) such that γ (z0) ∈ f −1(a) and for all z ∈ (z0, 1], f (γ (z)) > a. Now we define
I ⊂ [z0, 1] such that z ∈ I if and only if there exists an x ∈ U such that ψ̃ s(x) = γ (z) for
some s. In particular, I is not empty as z0 ∈ I . It is clear that I is open, since U is open.
Now we prove the closedness of I . For a sequence zi ∈ I such that zi → z∞ ∈ [z0, 1],
f (zi ) > a if i is sufficiently large. By our definition of I and the claim with its proof, there
exists xi ∈ f −1(a) and si > 0 such that ψ̃ si (xi ) = γ (zi ). Note that si must be bounded.
Indeed, by Corollary 8,

|Rm|(γ (zi )) = |Rm|(ψ̃ si (xi )) ≤ C D1e−si .

If si → ∞, then it forces |Rm|(γ (z∞)) = 0 and this is a contradiction. By compactness
and taking the subsequence, there exist x∞ ∈ f −1(a) and s∞ ≥ 0 such that xi → x∞ and
si → s∞. By continuity, ψ̃ s∞(xi ) = γ (z∞). To summarize, I = [z0, 1] and in particular,
ψ̃ s(x) = γ (1) = y for some x ∈ U and s ∈ R. By the claim again, we have proved that for
any y with f (y) ≥ a, there exists an x ∈ f −1(a) such that ψ s(x) = y for some s ≥ 0.

Therefore, for any point y outside the compact set { f ≤ a}, it follows from Corollary 8
that

|Rm|(y) ≤ C D1a

f (y)
≤ C

max{1, a
3
2 }

f (y)
. (305)

See Figure 4 for intuition in the case a > 1.
In other words, the curvature is quadratically decaying. Since a Ricci shrinker can be

regarded as an ancient Ricci flow, it follows from Shi’s local estimates [50] that

|∇k Rm|(y) ≤ Ck

dk+2(p, y)

for all k = 1, 2, . . .. It follows immediately that any tangent cone at infinity must be smooth.
Finally, the uniqueness follows from [17, Theorem 2], see also [33, Lemma A.3]. �
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Fig. 4 The quadratic decay of
curvature

Remark 9 The proof of Corollary 9 shows that the manifold {x ∈ M | f (x) ≥ a} is
diffeomorphic to f −1(a) × [0, 1).

11 Strongmaximum principle for curvature operator

The purpose of this section is to prove Theorem 4. We remind the readers that all constants
C’s in this section depend only on the dimension n.

We first show an L2-integral estimate of Riemannian curvature.

Theorem 26 Suppose (Mn, p, g, f ) is a Ricci shrinker satisfying μ ≥ −A, and λ is a positive
number. Then we have ∫

|Rm|2e−λ f dV ≤ I (306)

for some I = I (n, A, λ) < ∞.

Theorem 26 is the consequence of the improved no-local-collapsing theorem (i.e., Theo-
rem 2), the local conformal transformation technique (cf. Sect. 3 of [34]), and the curvature
estimate of Jiang–Naber (i.e., [31]).

Lemma 32 For any Ricci shrinker (Mn, p, g, f ) and any constant D > 100n, we have
∫

A(D,2D)

|Rc|2e− f dV ≤ Ceμ Dn+2e−D2/5 (307)

where A(D, 2D) is the annulus B(p, 2D)\B(p, D).

Proof Fix a cutoff function ψ on R such that ψ = 1 on [1, 2] and ψ = 0 outside [ 12 , 3]. By
defining η(x) = ψ(

d(p,x)
D ), we compute

∫
η2|Rc|2e− f dV =

∫
η2〈 g

2
− Hess f , Rc〉e− f dV

=
∫ (

1

2
η2R + 2ηRc(∇η,∇ f )

)
e− f dV

≤
∫ (

1

2
η2R + 1

2
η2|Rc|2 + 2|∇η|2|∇ f |2

)
e− f dV
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where for the second line we have used div(Rc e− f ) = 0. Consequently, by Lemmas 1 and 2,
we have∫

η2|Rc|2e− f dV ≤
∫ (

η2R + 4|∇η|2|∇ f |2) e− f dV ≤ C
∫

A(D/2,3D)

f e− f dV .

Plugging the estimates in Lemmas 1 and 2 into the above inequality, we arrive at (307). �
In the proof of Lemma 32, if we choose ψ such that ψ = 1 on (−∞, 1] and ψ = 0 on

[2,∞), then a similar argument shows the following Lemma.

Lemma 33 For any Ricci shrinker (Mn, p, g, f ), we have∫
|Rc|2e− f dV ≤ Ceμ. (308)

The details of the proof of Lemma 33 is almost identical to that of Lemma 32. So we
leave it to interested readers. Note that Lemma 33 provides an explicit upper bound of [40,
Theorem 1.1]. Starting from Lemmas 32 and 33, we are ready to prove Theorem 26.

Proof of Theorem 26: We only prove the case when λ = 1. The general case is similar and is
left to interested readers.

For any point q ∈ M such that d(p, q) = D > 100n, we set r = 1
D , f̄ = f − f (q), then

under the conformal transformation ḡ:=e− 2 f̄
n−2 g, we have

Rc = 1

n − 2

{
d f ⊗ d f + (n − 1 − f )e

2 f̄
n−2 ḡ

}
, (309)

Rm = e− 2 f̄
n−2

[
Rm + 1

n − 2

(
d f ⊗ d f

n − 2
+ g

2

(
1 − |∇ f |2

n − 2

)
− Rc

n − 2

)
©∧ g

]
, (310)

where the proof and the definition of the Kulkarni–Nomizu product ©∧ can be found in [4,
Theorem 1.165]. It follows from [34, Lemma 3.5] that

Bḡ

(
q, e− 1

n−2 r
)

⊂ B(q, r) ⊂ Bḡ

(
q, e

1
n−2 r
)

. (311)

Therefore, by the same proof as in [34, Lemma 3.7], we have

| f̄ | ≤ C and
∣∣Rc
∣∣
ḡ ≤ C D2 on Bḡ

(
q, e

1
n−2 r
)

. (312)

Since R ≤ C D2 on B(q, r), it follows from Theorem 23 that |B(q, r)| ≥ Ceμrn and hence∣∣∣Bḡ

(
q, e

1
n−2 r
)∣∣∣

ḡ
≥ Ceμrn . (313)

One can also use Theorem 2 to obtain the above estimate directly.

By defining g̃:=r−2 ḡ, we have |R̃c|g̃ ≤ C on Bg̃(q, e
1

n−2 ) and |Bg̃(q, e
1

n−2 )|g̃ ≥ Ceμ.
By shrinking balls to its half size if necessary, it follows from [31, Theorem 1.6] that

r4−n
∫

Bḡ(q,e
1

n−2 r)

|Rm|2 dVḡ =
∫

Bg̃(q,e
1

n−2 )

|R̃m|2 dVg̃ ≤ I0 (314)

for some constant I0 = I0(n, A).
From (310), we have on B(q, r),

|Rm|2 ≤ C
(|Rm|2 + |∇ f |4 + |Rc|2) ≤ C

(|Rm|2 + f 2 + |Rc|2) .
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Therefore, we have
∫

B(q,r)

|Rm|2e− f dV

≤ C

(∫
Bḡ(q,e

1
n−2 r)

|Rm|2e− f dVḡ +
∫

B(q,r)

f 2e− f dV +
∫

B(q,r)

|Rc|2e− f dV

)

≤ Ce− D2
5
(
D4−n I0 + Dn+2eμ

)

where we have used Lemma 32 and (314). Consequently, there exists I1 = I1(n, A) such
that ∫

B(q,r)

|Rm|2e− f dV ≤ I1Dn+2e− D2
5 . (315)

For any constant D > 100n,we applyVitali’s lemma for the covering {B(q, 1
4D )}q∈A(D,2D).

If we assume that {B(qi ,
1
4D )}1≤i≤k is a maximal collection of mutually disjoint sets, then

{B(qi ,
1
2D )}1≤i≤k cover A(D, 2D). It is clear from definition that

k∑
i=1

∣∣∣∣B
(

qi ,
1

4D

)∣∣∣∣ ≤ |A(D, 2D)| ≤ |B(p, 2D)|.

By Lemma 2 and (313), we obtain k ≤ C D2n . Combining (315) with the above inequality
implies that

∫
A(D,2D)

|Rm|2e− f dV ≤
k∑

i=1

∫
B(qi ,

1
2D )

|Rm|2e− f dV ≤ k I1Dn+2e− D2
5 ≤ C I1D3n+2e− D2

5 .

(316)

Similarly, by exploiting Lemma 33, we have
∫

B(p,D0)

|Rm|2e− f dV ≤ I2 (317)

where D0 = 100n and I2 = I2(n, A).
Now we set Di = 2i D0 and decompose the integral as
∫

|Rm|2e− f dV =
∫

B(p,D0)

|Rm|2e− f dV +
∑
i≥0

∫
A(Di ,2Di )

|Rm|2e− f dV .

Plugging (316) and (317) into the above equation, we arrive at

∫
|Rm|2e− f dV ≤ I2 +

∑
i≥0

C I1D3n+2
i e− D2

i
5 = I2 + C I1

∑
i≥0

2i(3n+2) D3n+2
0 e− 4i D2

0
5 :=I .

Since both I1 and I2 depend only on n and A, it is clear that I relies only on n and A and we
arrive at (306). The proof of Theorem 26 is complete. �

From (306) and [40, Theorem 1.2], a direct corollary of Theorem 26 is the following
estimate.
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Corollary 10 For any Ricci shrinker (Mn, g, f ) ∈ Mn(A), there exists a constant I =
I (n, A) < ∞ such that∫

|∇ Rc|2e− f dV =
∫

|div(Rm)|2e− f dV ≤ I .

Theorem 26 is an important step for verifying maximum principle on curvature operators.
The curvature operator on two-forms are defined as R : Λ2 → Λ2 : R(ei ∧ e j , ek ∧ el) =
Ri jkl . The two-form ei ∧ e j :=ei ⊗ e j − e j ⊗ ei and the inner product on Λ2 is defined as
〈A, B〉:= − 1

2 tr(AB) for A, B ∈ Λ2 = so(n). In other words, for w = 1
2

∑
i, j wi j ei ∧ e j ,

we have

R(w)i j = 1

2
Ri jklwkl .

In the setting of Ricci shrinker (Mn, g, f ), the following equation (see [24]) holds:

Δ f R = R − 2Q(R).

Here Q(R):=R2 + R# and R# is defined as

R#(u, v) = −1

2
tr(adu R adv R)

for any u, v ∈ Λ2. If we choose an orthonormal basis {φi } of Λ2, then

R#(u, v) = −1

2

∑
i, j

〈[R(φi ), φ j ], u〉〈[R(φ j ), φi ], v〉.

If we assume λ1 ≤ λ2 ≤ · · · are all eigenvalues of R on Λ2, then we have the following
rigidity theorem.

Theorem 27 There exists a constant ε = ε(n) > 0 such that for any Ricci shrinkers

(Mn, g, f ), if λ2 ≥ −ε
λ21

|R − 2λ1| , then λ1 ≥ 0. Consequently, (Mn, g) is isometric to

a quotient of N k × R
n−k for some 0 ≤ k ≤ n, where N k is a closed symmetric space.

Proof It suffices to prove λ1 ≥ 0. Namely, (Mn, g) has nonnegative curvature operator. The
further conclusion follows from [42, Corollary 4].

We fix a point q and assume that φ1 is an eigenvector of λ1. Extending φ1 by parallel
transport on a small neighborhood of q , we have

Δ f R(φ1, φ1) = R(φ1, φ1) − 2Q(R)(φ1, φ1).

Therefore if we assume that φi are eigenvectors of λi , then in the barrier sense,

Δ f λ1 ≤ λ1 −
⎛
⎝2λ21 −

∑
i, j

〈[R(φi ), φ j ], φ1〉〈[R(φ j ), φi ], φ1〉
⎞
⎠

= λ1 −
⎛
⎝2λ21 +

∑
i, j

C2
i jλiλ j

⎞
⎠ (318)

where Ci, j = 〈[φi , φ j ], φ1〉. Notice that Ci, j = 0 if i = 1 or j = 1.
We claim that |Ci, j | ≤ 2. Indeed, if we assume that φi , φ j and φ1 are represented by

the antisymmetric matrices A, B and C respectively, then Ci, j = − 1
2 tr((AB − B A)C) =
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−tr(ABC). By choosing a basis such that A2k−1,2k = ak = −A2k,2k−1 for k ≤ [n/2] and 0
otherwise, we have

|tr(ABC)| ≤
∑
k,l

|ak ||B2k,lCl,2k−1 − B2k−1,lCl,2k |

≤ 1

2

∑
k,l

(B2
2k,l + C2

l,2k−1 + B2
2k−1,l + C2

l,2k)

≤ 1

2
(|B|2 + |C |2) = 2.

Here we have used the fact that |A|2 = |B|2 = |C |2 = 2.
Next we prove that if ε is properly chosen, then we have

P:=2λ21 +
∑
i, j

C2
i jλiλ j ≥ 0.

From the definition of λi , we notice that
∑

λi = R/2. Therefore, we fix λ1 and λ2 and
minimize P under the restriction

∑
λi = R/2.We can assume that λ2 < 0, otherwise P ≥ 0

from its definition. We also set cn = n(n − 1)/2 and assume that λ1 ≤ λ2 ≤ · · · ≤ λs+1 are
all eigenvalues smaller than 0. Therefore,

P ≥ P1:=2λ21 + 2
∑

2≤i≤s+1
s+2≤ j≤cn

C2
i jλiλ j .

It is easy to show that P1 is minimized when λ2 = λ3 = · · · = λs+1 and λs+2 = · · · = λcn .
It follows that

P1

2
≥λ21 +

∑
2≤i≤s+1

s+2≤ j≤cn

1

cn − s − 1
C2

i, jλ2(R/2 − λ1 − sλ2)

≥λ21 + 4sλ2(R/2 − λ1 − sλ2).

By solving the above quadratic inequality, we obtain that P1 and hence P are nonnegative if

λ2 ≥
R
2 − λ1 −

√
( R
2 − λ1)2 + λ21

2s
.

If we choose ε = 1
(1+√

2)(cn−2)
, then it is clear that for any 1 ≤ s ≤ cn − 2,

λ2 ≥ −ε
λ21

R − 2λ1
≥

R
2 − λ1 −

√
( R
2 − λ1)2 + λ21

2(cn − 2)
≥

R
2 − λ1 −

√
( R
2 − λ1)2 + λ21

2s
.

Therefore, from (318) we obtain Δ f λ1 ≤ λ1. Since λ1 ∈ L2(e− f dV ) by (306), then it
follows from [47, Theorem 4.4] that λ1 ≥ 0. �

We conclude this section by the proof of Theorem 4.

Proof of Theorem 4: Since λ2 ≥ 0, we can apply Theorem 27 to obtain λ1 ≥ 0. Therefore,
Mn is a finite quotient of N k ×R

n−k . Note that only the case k = n is possible. For otherwise
the second smallest eigenvalue must be 0. Since N n is a compact Einstein manifold such that
the curvature operator is 2-positive, it follows from [5] that its universal covering must be
Sn . �
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