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Abstract
We study the normalized solutions of the fractional nonlinear Schrödinger equations with
combined nonlinearities

(−�)su = λu + μ|u|q−2u + |u|p−2u in R
N ,

and we look for solutions which satisfy prescribed mass∫
RN

|u|2 = a2,

where N ≥ 2, s ∈ (0, 1), μ ∈ R and 2 < q < p < 2∗
s = 2N/(N − 2s). Under different

assumptions on q < p, a > 0 and μ ∈ R, we prove some existence and nonexistence
results about the normalized solutions. More specifically, in the purely L2-subcritical case,
we overcome the lack of compactness by virtue of the monotonicity of the least energy value
and obtain the existence of ground state solution forμ > 0.While for the defocusing situation
μ < 0, we prove the nonexistence result by constructing an auxiliary function. We emphasis
that the nonexistence result is new even for Laplacian operator. In the purely L2-supercritical
case, we introduce a fiber energy functional to obtain the boundedness of the Palais–Smale
sequence and get a mountain-pass type solution. In the combined-type cases, we construct
different linking structures to obtain the saddle type solutions. Finally, we remark that we
prove a uniqueness result for the homogeneous nonlinearity (μ = 0), which is based on the
Morse index of ground state solutions.
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1 Introduction

In this paper, we focus on the fractional Schrödinger equation

i
∂ψ

∂t
= (−�)s ψ − f (|ψ |)ψ, (1.1)

where 0 < s < 1, i denotes the imaginary unit, ψ = ψ(x, t) : RN × (0,+∞) → C, N ≥ 2
and f (t) = t p−2 + μtq−2, 2 < p < q < 2∗

s := 2N/(N − 2s), μ ∈ R.
The operator (−�)s can be seen as the infinitesimal generators of Lévy stable diffusion

processes, see [2] for example. This operator arises in several areas such as physics, biology,
chemistry and finance(see [2,3]). In recent years, the study of nonlinear equations involving
a fractional Laplacian has attracted much attention from many mathematicians, we refer the
reader to [14–21,36,41,44–46,49–52] and the references therein.

When we are looking for standing waves solutions of (1.1), that is solutions of the form
ψ(t, x) = e−iλt u(x), λ ∈ R. The function u then satisfies the elliptic equation

(−�)s u − λu = μ|u|q−2u + |u|p−2u in R
N , (1.2)

where (−�)s is the fractional Laplacian operator defined as

(−�)su(x) = −1

2

∫
RN

u(x + y) + u(x − y) − 2u(x)

|y|N+2s
dy

for all x ∈ R
N .

A possible choice is to consider that λ ∈ R is given and to look for solutions u ∈ Hs(RN )

corresponding to critical points [42,54] of the functional

J (u) =
∫
RN

(
1

2
| (−�)

s
2 u|2 − λ

2
|u|2 − 1

p
|u|p − μ

q
|u|q

)
dx,

and of particular interest are the so-called least energy solutions. Namely solutions which
minimize J on the set

N :=
{

u ∈ Hs(RN )\{0} : J ′(u) = 0
}

.

This point of view is adopted in the paper [22], see also [43]. Here and hereafter, for 1 ≤
q < ∞, we denote by Lq(RN ) the usual Lebesgue space with norm |u|qq := ∫

RN |u|qdx .
Alternatively one can consider the existence of solutions to (1.2) which have a prescribed

L2-norm. Since solutions ψ ∈ C
([0, T ); Hs(RN )

)
to (1.1) conserved their mass along

time, i.e. |ψ(t)|2 = |ψ(0)|2 for t ∈ [0, T )(In fact, multiplying (1.1) by the conjugate ψ̄ of
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ψ , integrating over RN , and taking the imaginary part, we get d
dt |ψ(t)|22 = 0.), it is natural,

from a physical point view, to search for such solutions.
When s = 1, i.e. for the Laplacian operator, Jeanjean’s [32] was the first paper to deal

with existence of normalized solutions in purely L2-supercritical case. In recent years, many
mathematicians have interest in this type of problems, please see [1,5,11–13,29,30,33,34,47,
48,53,55] for normalized solutions to scalar equations in thewhole spaceRN , [6–10,26,27,31]
for normalized solutions to systems in R

N , and [23,28,37–40] for normalized solutions to
equations or systems in bounded domains. However, there is few literature concerned about
the normalized solutions for the fractional Laplacian operator. With regard to the point, we
attempt to study this kind of problem in this paper.

In what follows, we study the fractional nonlinear Schrödinger (NLS) equations with
combined nonlinearities

(−�)s u = λu + μ|u|q−2u + |u|p−2u in R
N , (1.3)

and we look for solutions which satisfy prescribed mass∫
RN

|u|2 = a2, (1.4)

where N ≥ 2, s ∈ (0, 1), μ ∈ R, 2 < q < p < 2∗
s = 2N

N−2s and a > 0.
We define the energy functional

Eμ : Hs(RN ) → R, Eμ(u) :=
∫
RN

(
1

2
| (−�)

s
2 u|2 − 1

p
|u|p − μ

q
|u|q

)
(1.5)

with ∫
RN

| (−�)
s
2 u|2 =

∫∫
R2N

(u(x) − u(y))2

|x − y|N+2s
dxdy,

where

Hs(RN ) :=
{

u ∈ L2(RN ),

∫
RN

| (−�)
s
2 u|2 < +∞

}

is a Hilbert space with the inner product and the norm

(u, v) =
∫
RN

[(−�)
s
2 u · (−�)

s
2 v + uv],

‖u‖2 =
∫
RN

[| (−�)
s
2 u|2 + u2].

And we denote Hs
r (RN ) by

Hs
r (RN ) :=

{
u ∈ Hs(RN ) : u(x) = u(|x |), x ∈ R

N
}

.

Then we know the weak solutions of (1.3) are corresponding to critical points of the energy
functional Eμ under the constraint

Sa :=
{

u ∈ Hs(RN ) :
∫
RN

|u|2 = a2
}

.

Let
ma,μ := inf

Sa
Eμ,

then we call u a ground state solution if u achieves ma,μ.
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First, we consider the homogeneous nonlinearity, i.e. μ = 0, then problem (1.3)–(1.4)
becomes the equation

(−�)s u = λu + |u|p−2u in R
N (1.6)

under the constraint Sa .
We set

ma := inf
Sa

E0,

and denote the L2-critical exponent for fractional NLS equations by

p̄ := 2 + 4s

N
.

In fact, for u ∈ Sa and τ ∈ R, we define

(τ�u)(x) := e
N
2 τ u(eτ x), for a.e. x ∈ R

N ,

then τ�u ∈ Sa . By a simple observation(see the following Theorem 1.2, Lemma 3.1 and their
proofs for more details ), we know E0(τ�u) is coercive on Sa for p < p̄, while E0(τ�u)

is not bounded from below on Sa for p > p̄. Based on this fact, we call p̄ the L2-critical
exponent.

To deal with problem (1.6), we introduce the standard model

(−�)s u + u − |u|α−2u = 0 in R
N , (1.7)

where 2 < α < 2∗
s . By Theorem 3.4 of [24], Eq. (1.7) has a unique positive radial ground

state solution, denoted by QN ,α . In addition, when α = p̄, we define

ā2 :=
∫
RN

|QN , p̄|2.

In what follows, we introduce the fractional Gagliardo–Nirenberg–Sobolev (GNS)
inequality.

Lemma 1.1 [24] Let u ∈ Hs(RN ) and 2 < α < 2∗
s , then the inequality

∫
RN

|u|α ≤ C(s, N , α)

(∫
RN

| (−�)
s
2 u|2

) N (α−2)
4s

(∫
RN

|u|2
) α

2 − N (α−2)
4s

holds. Moreover, the best constant C(s, N , α) can be achieved by QN ,α .

Now, with regard to the existence of ground state solutions to (1.6), we have

Theorem 1.2 Let μ = 0, 2 < p < 2∗
s , we have the following results (i)–(iii).

(i) If 0 < p < p̄, then for any a > 0, we obtain that

ma = inf
Sa

E0 < 0,

and ma has a unique(up to a translation) positive radial minimizer k QN ,p(mx) with

k = am N/2

|QN ,p|2 , m2s− (p−2)N
2

(
a

|QN ,p|2
)2−p

= 1. (1.8)

In particular, k QN ,p(mx) is the only ground state solution of (1.6) with some λ̃ < 0.
(ii) If p = p̄, then
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(a) for any 0 < a < ā, we have
ma = inf

Sa
E0 = 0,

and problem (1.6) has no solution at all. In particular, the infimum ma can’t be
achieved by any u ∈ Sa, namely, (1.6) has no ground state solution.

(b) for a = ā, we have
ma = inf

Sa
E0 = 0,

and ma has a unique(up to a translation) positive radial minimizer QN , p̄ . In partic-
ular, QN , p̄ is the only ground state solution of (1.6) with some λ̃ < 0.

(c) for any a > ā, we get
inf
Sa

E0 = −∞.

Thus, (1.6) has no ground state solution.

(iii) If p̄ < p < 2∗
s , then for any a > 0, we get

inf
Sa

E0 = −∞.

Thus, problem (1.6) has no ground state solution. However, (1.6) still admits a positive
radial solution k QN ,p(mx), where k, m satisfy (1.8).

At the moment, we briefly outline the proof of Theorem 1.2: to obtain the value of inf
Sa

E0,

we resort to a fiber map E0(τ�u) and the fractional Gagliardo–Nirenberg–Sobolev (GNS)
inequality(see Lemma 1.1). When dealing with the existence and uniqueness of ground state
solution, thanks to the homogeneity of the nonlinear term, we can transform (1.6) with L2-
mass constraint into (1.7) by a suitable scaling and then make use of the properties of the
ground state solution to (1.7).

Next, we consider the purely L2-subcritical case, i.e., 2 < q < p < p̄, μ ∈ R.

Theorem 1.3 Let 2 < q < p < p̄, then we get the following results.

(i) If μ > 0, then for any a > 0

ma,μ := inf
Sa

Eμ < 0,

and the infimum is achieved by û ∈ Sa with the following properties: û is a positive
radial function in R

N and solves (1.3) for some λ̂ < 0. In particular, û is a ground state
solution of (1.3)–(1.4).

(ii) If μ < 0, let a > 0 and suppose that

|μ|aδ(p,q) ≥ q

C(s, N , q)

(
C(s, N , p)

p

) p̄−q
p̄−p

2
p−q
p̄−p

⎛
⎝

(
p − q

p̄ − q

) p̄−q
p̄−p −

(
p − q

p̄ − q

) p−q
p̄−p

⎞
⎠

(1.9)
with

δ(p, q) := 4s(q − p)

N ( p̄ − p)
< 0.

Then
ma,μ = inf

Sa
Eμ = 0,

and the infimum ma,μ can’t be achieved by any u ∈ Sa. Therefore, problem (1.3)–(1.4)
has no ground state solution.
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Remark 1.4 The nonexistence result in (i i) of Theorem 1.3 is even new for the Laplacian
case, we point out that our method can also apply to the Laplacian operator.

In the proof of existence of a minimizer for ma,μ in Theorem 1.3, the difficulty lies in the
fact that the embedding Hs

r (RN ) ↪→ L2(RN ) is not compact. We will overcome the obstacle
by virtue of the monotonicity of ma,μ. To prove the nonexistence result, we smartly construct
an auxiliary function and analyse its properties.

In what follows, for the purely L2-supercritical case, namely, p̄ < q < p < 2∗
s , we obtain

Theorem 1.5 Let p̄ < q < p < 2∗
s and μ ∈ R. Then it holds that

inf
Sa

Eμ = −∞.

Moreover, if μ > 0, then for any a > 0 Eq. (1.3) has a radial solution ua for some λa < 0.

In the L2-supercritical case, Eμ is not bounded from below on Sa , i.e., inf Sa Eμ = −∞.
Thus, it is notmore possible to search for aminimumof Eμ on Sa .Wehave to look for a critical
pointwith aminimax characterization. Although Eμ has amountain-pass geometry on Sa , but
unfortunately the boundedness of the obtained Palais–Smale sequence is not yet clear. In this
paper we adopt a similar idea in [32] and construct an auxiliary map Iμ(u, τ ) := Eμ(τ�u),
which on Sa ×R has the same type of geometric structure as Eμ on Sa . Besides, the Palais–
Smale sequence of Iμ satisfies the additional condition(see Proposition 5.4), which is the
key ingredient to obtain the boundedness of the Palais–Smale sequence. We point out that
although we take a similar idea in [32], the extra difficulty still occurs due to the nonlocal
term.

In the following we give a bifurcation result.

Corollary 1.6 Let p̄ < q < p < 2∗
s and μ > 0. Let (ua, λa) be a solution of (1.3) obtained

in Theorem 1.5. Then, as a → 0, we have∫
RN

| (−�)
s
2 ua |2 → +∞ and λa → −∞.

Finally, we deal with the combined-type cases 2 < q ≤ p̄ = 2 + 4s
N ≤ p < 2∗

s , p 
= q .
Case (I): 2 < q < p = p̄.

Theorem 1.7 Let 2 < q < p = p̄,we have

(i) if 0 < a < ā, then:

(a) for every μ > 0,
ma,μ := inf

Sa
Eμ < 0,

and the infimum admits a positive radial minimizer ũ ∈ Sa, and ũ solves (1.3) for
some λ̃ < 0.

(b) for every μ < 0,
inf
Sa

Eμ = 0,

and problem (1.3)–(1.4) has no solution at all.

(ii) if a = ā, then:

(a) for every μ > 0,
inf
Sa

Eμ = −∞.
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(b) for every μ < 0,
inf
Sa

Eμ = 0,

and problem (1.3)–(1.4) has no solution at all.

(iii) if a > ā, then for every μ ∈ R

inf
Sa

Eμ = −∞.

We remark that the proof of Theorem 1.7 is based on Theorem 1.2 and the Pohozaev
identity.
Case (II): 2 < q < p̄ < p < 2∗

s .
First, for the focusing subcritical perturbation case, i.e. μ > 0, we have:

Theorem 1.8 Let 2 < q < p̄ < p < 2∗
s , a, μ > 0. We also suppose that

μaγ (p,q) <

(
p( p̄ − q)

2C(s, N , p)(p − q)

) p̄−q
p− p̄

(
q(p − p̄)

2C(s, N , q)(p − q)

)
(1.10)

with

γ (p, q) =
(

p − N (p − 2)

2s

)
p̄ − q

p − q
+

(
q − N (q − 2)

2s

)
> 0.

Then problem (1.3)–(1.4) has two radial solutions, denoted by ũ and û. Moreover, Eμ(ũ) < 0,
Eμ(û) > 0 and ũ, û solve (1.3) for suitable λ̃, λ̂ < 0.

In the proof of Theorem 1.8, we follow the idea of [48] to restricted the functional Eμ on
the Pohozaev set Pa,μ(see Sect. 6)and know that Eμ|Pa,μ is bounded from below. Then we
can get a local minimizer ũ for Eμ|Pa,μ and construct a minimax characterization for Eμ to
get the second critical point û. We emphasis that (1.10) has been used to ensure that Pa,μ is
a smooth manifold.

Next we consider the defocusing subcritical perturbation case, i.e. μ < 0, we have:

Theorem 1.9 Let 2 < q < p̄ < p < 2∗
s , a > 0, μ < 0. We also suppose that

|μ|aβ(p,q) <

(
2ps

NC(s, N , p)(p − 2)

) p̄−q
p− p̄

(
q(2∗

s − p)(N − 2s)

2NC(s, N , q)(p − q)

)
(1.11)

with

β(p, q) =
(

p − N (p − 2)

2s

)
p̄ − q

p − p̄
+

(
q − N (q − 2)

2s

)
> 0.

Then problem (1.3)–(1.4) has a radial solution, denoted by û. Moreover, Eμ(û) > 0 and û
solve (1.3) for some λ̂ < 0.

In the proof of Theorem 1.9, we construct a minimax characterization for Eμ to get a
critical point û. We emphasis that (1.11) has been used to deduce the compactness of the
Palais–Smale sequence obtained by minimax scheme
Case (III): 2 < q = p̄ < p < 2∗

s .
First, for the focusing critical perturbation case, i.e. μ > 0, we have:

Theorem 1.10 Let 2 < q = p̄ < p < 2∗
s , a, μ > 0. We also suppose that

μa
4s
N <

p̄

2C(s, N , p̄)
. (1.12)
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Then problem (1.3)–(1.4) has a radial solution, denoted by û. Moreover, Eμ(û) > 0 and û
solve (1.3) for some λ̂ < 0.

Next we consider the defocusing critical perturbation case, i.e. μ < 0, we have:

Theorem 1.11 Let 2 < q = p̄ < p < 2∗
s , a > 0, μ < 0. We also suppose that

|μ|a 4s
N <

p̄(2∗
s − p)(N − 2s)

2NC(s, N , p̄)(p − p̄)
. (1.13)

Then problem (1.3)–(1.4) has a radial solution, denoted by û. Moreover, Eμ(û) > 0 and û
solve (1.3) for some λ̂ < 0.

We remark that the proofs for Theorems 1.10–1.11 are very similar to that of Theorem
1.9.

This paper is organized as follows. In Sect. 2, we give some lemmas which will be
used later. We discuss the homogeneous nonlinearity and prove Theorem 1.2 in Sect. 3. In
particular, we prove a uniqueness result which is based on the Morse index of ground state
solution. Section 4 is devoted to the purely L2-subcritical case. In this case, we overcome
the lack of compactness (notice that Hs

r (RN ) ↪→ L2(RN ) is not compact) by virtue of
the monotonicity of the least energy value, which can be proved by a similar argument as
Lemma 3.2 and Corollary 3.3. And we obtain the ground state solution for μ > 0. While for
the defocusing situation μ < 0, we prove the nonexistence result by smartly constructing
an auxiliary function, see Lemma 4.1. We emphasis that the nonexistence result is new
even for Laplacian operator. In Sect. 5, we deal with the purely L2-supercritical case and
prove Theorem 1.5 and Corollary 1.6. In this case, although the energy functional Eμ has a
mountain-pass geometry on the mass constraint set Sa , but unfortunately we can not deduce
the boundedness of the Palais–Smale sequence. To overcome the difficulty, we introduce a
fiber energy functional to obtain the boundedness of the Palais–Smale sequence and get a
mountain-pass type solution, see Propositions 5.3, 5.4 and Lemma 5.5. In the final section, we
consider the combined-type cases and prove Theorems 1.7–1.11. In the combined-type cases,
we construct different linking structures to obtain the saddle-type solutions, see Lemmas 6.16
and 6.21.

2 Preliminaries

In this section, we will give some lemmas for convenience. First, we give the Pohozaev
identity for the fractional Laplacian operator.

Lemma 2.1 [15, Appendix] Let u ∈ Hs(RN ), N ≥ 2 satisfy the equation

(−�)s u = g(u),

then it holds that
N − 2s

2

∫
RN

| (−�)
s
2 u|2 = N

∫
RN

G(u),

where G(s) = ∫ s
0 g(t)dt.

Remark 2.2 For α = p̄, we can get

ā2 =
∫
RN

|QN , p̄|2 =
(

p̄

2C(s, N , p̄)

) N
2s

. (2.1)
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In fact, by Lemma 1.1, the best constant C(s, N , p̄) can be achieved by QN , p̄ . In virtue of
the Pohozaev identity(see Lemma 2.1)and the Eq. (1.7) for QN , p̄ , we know∫

RN
|QN , p̄| p̄ =

(
1 + 2N

4s

) ∫
RN

|QN , p̄|2,
∫
RN

| (−�)
s
2 QN , p̄|2 = 2N

4s

∫
RN

|QN , p̄|2.
(2.2)

Substituting these equalities into the fractional GNS inequality, we get (2.1).

Lemma 2.3 [4, Section 9] Let s ∈ (0, 1). For any u ∈ Hs(RN ), the following inequality
holds ∫∫

R2N

(u∗(x) − u∗(y))2

|x − y|N+2s
dxdy ≤

∫∫
R2N

(u(x) − u(y))2

|x − y|N+2s
dxdy,

where u∗ denotes the symmetric radial decreasing rearrangement of u.

Lemma 2.4 [35] Let N ≥ 2, then Hs
r (RN ) is compactly embedding into L p(RN ) for p ∈

(2, 2∗
s ).

Finally, we give a version of linking theorem, see [25, Section 5].

Definition 2.5 Let B be a closed subset of X . We shall say that a class F of compact subsets
of X is homotopy-stable family with extended boundary B if for any set A in F and any
η ∈ C([0, 1] × X; X) satisfying η(t, x) = x for all (t, x) in ({0} × X) ∪ ([0, 1] × B) we
have that η ({1} × A) ∈ F .

Lemma 2.6 Let ϕ be a C1-functional on a complete connected C1-Finsler manifold X and
consider a homotopy-stable family F with extended boundary B. Set

c = c(ϕ,F) = inf
A∈F max

x∈A
ϕ(x)

and let F be a closed subset of X satisfying

A ∩ F\B 
= ∅ for every A ∈ F (2.3)

and
sup
x∈B

ϕ(x) ≤ c ≤ inf
x∈F

ϕ(x). (2.4)

Then, for any sequence of sets (An)n in F such that lim
n

supAn
ϕ = c, there exists a sequence

(xn)n in X\B such that

(i) limn ϕ(xn) = c.
(ii) limn ‖dϕ(xn)‖ = 0.
(iii) limn dist(xn, F) = 0.
(iv) limn dist(xn, An) = 0.

3 Homogeneous nonlinearity (� = 0)

In this section, we deal with the case μ = 0 and prove Theorem 1.2.

Lemma 3.1 For any p ∈ (2, p̄) and a > 0, we have

−∞ < ma = inf
Sa

E0 < 0.
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Proof By the fractional GNS inequality(see Lemma 1.1), we get

E0(u) ≥ 1

2

∫
RN

| (−�)
s
2 u|2 − C(s, N , p)

p
a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p−2)
4s

(3.1)

for every u ∈ Sa . Since 2 < p < p̄, it implies that 0 <
N (p−2)

4s < 1 and hence E0 is coercive
on Sa , which provides that ma > −∞.

On the other hand, for u ∈ Sa ,

E0(τ�u) = 1

2

∫∫
R2N

eNτ (u(eτ x) − u(eτ y))2

|x − y|N+2s
dxdy − 1

p

∫
RN

e
Nτ p
2 |u(eτ x)|pdx

= 1

2
e2sτ

∫∫
R2N

(u(x) − u(y))2

|x − y|N+2s
dxdy − eNτ(

p
2 −1)

p

∫
RN

|u|p

= eNτ(
p
2 −1)

[
1

2
eτ(2s−N (

p
2 −1))

∫∫
R2N

(u(x) − u(y))2

|x − y|N+2s
dxdy − 1

p

∫
RN

|u|p
]

.

Noticing that p < p̄, we have 2s − N (p/2 − 1) > 0 and hence E0(τ�u) < 0 for every
u ∈ Sa with τ � −1. Therefore, we know that ma < 0 for any a > 0. ��

In the L2-subcritical case, sincema < 0 for any a > 0, we can give the strict sub-additivity
for ma .

Lemma 3.2 Let p ∈ (2, p̄), and a1, a2 > 0 be such that a2
1 + a2

2 = a2. Then

ma < ma1 + ma2 .

Proof Let c > 0, θ > 1 and let {un} ⊆ Sc be a minimizing sequence for mc. Then

mθc ≤ E0(θun) = 1

2
θ2

∫
RN

| (−�)
s
2 un |2 − θ p

p

∫
RN

|un |p < θ2E0(un),

since θ > 1 and p > 2. As a consequence mθc ≤ θ2mc, with equality if and only if∫
RN |un |p → 0 as n → ∞. But this is not possible, since otherwise we would find

0 > mc = lim
n→∞ E0(un) ≥ lim inf

n→∞
1

2

∫
RN

| (−�)
s
2 un |2 ≥ 0,

a contradiction, where the first inequality follows from Lemma 3.1. Thus, we have the strict
inequality mθc < θ2mc.

Next, we show that ma < ma1 + ma2 . We may assume that a1 ≥ a2 and divide into two
cases. Case 1: a1 > a2. For this case, we have

ma = m a
a1

a1 <

(
a

a1

)2

ma1 = ma1 + a2 − a2
1

a2
1

ma1 = ma1 + a2
2

a2
1

m a1
a2

a2
< ma1 + ma2 .

Case 2: a1 = a2. For this case, we have

ma = m√
2a1

< 2ma1 = ma1 + ma2 .

��
Noticing again that the fact ma < 0 for any a > 0, we immediately obtain

Corollary 3.3 Let p ∈ (2, p̄), then ma is strictly decreasing in a ∈ (0,∞).
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Now we are in position to proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2 For (i), let {un} ⊂ Sa be a minimizing sequence for ma . By (3.1), we
know that E0 is coercive on Sa and deduce that {un} is bounded in Hs(RN ). Noting that
E0 is even and combining with Lemma 2.3, we can suppose that u′

ns are nonnegative and
radially symmetric, i.e., 0 ≤ un ∈ Hs

r (RN ). Thus, by Lemma 2.4, we have

un → u weakly in Hs(RN ), un → u strongly in L p(RN ), p ∈ (2, 2∗
s ),

providing that
E0(u) ≤ lim inf

n→∞ E0(un) = ma, |u|22 ≤ a2.

Since E0(u) ≤ ma < 0, we know u 
≡ 0. By Corollary 3.3, ma is strictly decreasing in a,
then it must hold that

E0(u) = ma, |u|22 = a2.

Thus, u is a minimizer for ma .
Next we show the uniqueness of the minimizer for ma . Since Sa is a C1 manifold with

codimension 1 and u is a minimizer of E0 constrained on Sa , we know that the Morse index
of u, denoted bym(u), is less than or equal to 1. On the other hand, by the Lagrangemultiplier
rule, there exists λ ∈ R such that u satisfies

(−�)s u = λu + u p−1 in R
N .

Since u ≥ 0, 
≡ 0, by the strong maximum principle, we get u > 0. The linearized operator
at u is

Lλ = (−�)s − λ − (p − 1)u p−2,

together with the equation for u, we easily see that 〈Lλu, u〉 = (2 − p)|u|p
p < 0. Therefore,

m(u) = 1. According to the Pohozaev identity and the equation for u, we obtain
(
1

p
− 1

2∗
s

)
|u|p

p +
(
1

2
− 1

2∗
s

)
λ|u|22 = 0,

which implies λ < 0. Set
uβ,γ = βu(γ x)

with
λγ 2s = −1, β2−pγ 2s = 1, (3.2)

then uβ,γ satisfies (1.7) for α = p. Moreover, since m(u) = 1, it is straightforward to verify
that the Morse index of uβ,γ with respect to the linearized operator

L+ = (−�)s + 1 − (p − 1)
(
uβ,γ

)p−2

is exactly 1. By [24, Theorem 3.4], it must hold that uβ,γ = QN ,p . Let

k = 1

β
, m = 1

γ
,

notice that |uβ,γ |2 = |QN ,p|2 and (3.2), we get u(x) = k QN ,p(mx) and (1.8).
For (a) of (i i), by the fractional GNS inequality, we get

E0(u) ≥ 1

2

∫
RN

| (−�)
s
2 u|2 − C(s, N , p̄)

p̄
a p̄− N ( p̄−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N ( p̄−2)
4s
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= 1

2

(
1 −

(a

ā

) 4s
N

) ∫
RN

| (−�)
s
2 u|2

for every u ∈ Sa , here we use (2.1). Thus, it results that ma ≥ 0 for any 0 < a < ā. In
addition, E0(τ�u) → 0 as τ → −∞ for u ∈ Sa . Notice that τ�u ∈ Sa for any u ∈ Sa , we
get ma = 0.

We assume by contradiction that problem (1.6) has a solution u ∈ Sa , then by the Pohozaev
identity and the equation for u, we get∫

RN
| (−�)

s
2 u|2 = 2

p̄

∫
RN

|u| p̄.

In virtue of the fractional GNS inequality and (2.1), we obtain
∫
RN

| (−�)
s
2 u|2 ≤

(a

ā

) 4s
N

∫
RN

| (−�)
s
2 u|2.

Since being a < ā, it results that u must be a constant, contradicting the fact that u ∈ Sa .
For (b) of (i i), mā = 0 follows from a similar argument as (a) of (i i). By (2.2), we know

E0(QN , p̄) = 0. Taking a similar argument as the proof of uniqueness in (i), we can obtain
the uniqueness of minimizer for mā .

For (c) of (i i), let

ua = a

ā
QN , p̄,

by (2.2), we get |ua |22 = a2 and E0(ua) < 0. Since p = p̄, we have E0(τ�ua) = e2sτ E0(ua),
and hence E0(τ�ua) → −∞ as τ → +∞. Thus, it holds that

inf
Sa

E0 = −∞.

For (i i i), since p > p̄, for any a > 0 and u ∈ Sa , it holds that E0(τ�u) → −∞ as
τ → +∞. Thus, we get

inf
Sa

E0 = −∞.

Thanks to the homogeneity of the nonlinear term, for any a > 0, if we set

ua(x) = k QN ,p(mx)

with k, m satisfying (1.8), then |ua |22 = a2 and ua solves problem (1.6) for some λ < 0. ��

4 Purely L2-subcritical case

In this section, we deal with the case 2 < q < p < p̄ = 2 + 4s
N , μ ∈ R and prove Theorem

1.3.

Lemma 4.1 Let

g(t) = 1

2
tβ − Atγ + B, t ∈ [0,∞)

with 0 < γ < β < 1, A, B > 0, then g(t) ≥ 0 for any t ∈ [0,∞) whenever

B ≥ A
β

β−γ 2
γ

β−γ

((
γ

β

) γ
β−γ −

(
γ

β

) β
β−γ

)
.
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Proof Deviating g(t) with respect to t , we obtain

g′(t) = tγ−1
(

β

2
tβ−γ − Aγ

)
.

Set

t0 =
(
2Aγ

β

) 1
β−γ

,

then g′(t) < 0 in (0, t0) and g′(t) > 0 in (t0,∞). Thus, g(t) has a global minimum at t0. To
guarantee that g(t) ≥ 0 for any t ∈ [0,∞), it suffices to show that g(t0) ≥ 0, which follows
from the fact

B ≥ A
β

β−γ 2
γ

β−γ

((
γ

β

) γ
β−γ −

(
γ

β

) β
β−γ

)
.

��
In what follows, we begin with the proof of Theorem 1.3.

Proof of Theorem 1.3 For (i), we can follows the lines in the proof of (i) of Theorem 1.2.
This means that we can prove the analogous versions of Lemma 3.1–3.2 and Corollary 3.3,
then we can adopt a similar argument as the proof for the existence of a minimizer of (i) of
Theorem 1.2. Here we omit the details.

For (i i), for any u ∈ Sa , by the fractional GNS inequality(see Lemma 1.1), we get

Eμ(u) ≥ 1

2

∫
RN

| (−�)
s
2 u|2 − C(s, N , p)

p
a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p−2)
4s

−μ
C(s, N , q)

q
aq− N (q−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (q−2)
4s

=
(∫

RN
| (−�)

s
2 u|2

) N (q−2)
4s

⎡
⎣1

2

(∫
RN

| (−�)
s
2 u|2

) N ( p̄−q)
4s

−C(s, N , p)

p
a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p−q)
4s − μ

C(s, N , q)

q
aq− N (q−2)

2s

⎤
⎦ .(4.1)

Set

β = N ( p̄ − q)

4s
, γ = N (p − q)

4s
,

A = C(s, N , p)

p
a p− N (p−2)

2s , B = −μ
C(s, N , q)

q
aq− N (q−2)

2s ,

then by Lemma 4.1 we know Eμ(u) ≥ 0 for any u ∈ Sa whenever

B ≥ A
β

β−γ 2
γ

β−γ

((
γ

β

) γ
β−γ −

(
γ

β

) β
β−γ

)
,

that is, a and μ satisfy

(−μ)a
4s(q−p)
N ( p̄−p) ≥ q

C(s, N , q)

(
C(s, N , p)

p

) p̄−q
p̄−p

2
p−q
p̄−p

⎛
⎝

(
p − q

p̄ − q

) p̄−q
p̄−p −

(
p − q

p̄ − q

) p−q
p̄−p

⎞
⎠ .
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Thus, our assumption (1.9) implies thatma,μ ≥ 0.On the other hand, by a direct computation,
we see that Eμ(τ�u) → 0 as τ → −∞ for u ∈ Sa . Notice that τ�u ∈ Sa for any u ∈ Sa , we
get ma,μ = 0.

Next we show thatma,μ = 0 can’t be achieved by any u ∈ Sa .We assume by contradiction
that there exists u0 ∈ Sa such that Eμ(u0) = 0. By (4.1), we can get

0 = Eμ(u0) ≥ 1

2

∫
RN

| (−�)
s
2 u0|2 − C(s, N , p)

p
a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u0|2

) N (p−2)
4s

−μ
C(s, N , q)

q
aq− N (q−2)

2s

(∫
RN

| (−�)
s
2 u0|2

) N (q−2)
4s ≥ 0,

where the last inequality follows from the assumption (1.9) and Lemma 4.1. Since the equal-
ities for the fractional GNS inequalities at α = p and α = q can’t hold at the same time, the
first inequality of the formula above is indeed strict and hence we obtain a contradiction. ��

5 Purely L2-supercritical case

In this section, we deal with the case p̄ < q < p < 2∗
s , μ ∈ R and prove Theorem 1.5.

Setting
Sa,r = Sa ∩ Hs

r (RN ) = {u ∈ Sa : u(x) = u(|x |)} ,

and the product space E = Hs(RN )×R, we introduce the auxiliary functional Iμ : E → R

by

Iμ(u, τ ) := Eμ(τ�u) = e2sτ

2

∫
RN

| (−�)
s
2 u|2−eNτ(

p
2 −1)

p

∫
RN

|u|p−μ
eNτ(

q
2 −1)

q

∫
RN

|u|q ,

then we easily see that Iμ is a C1-functional. In addition, we define the Pohozaev set by

Pμ =
{

u ∈ Hs(RN ) : Pμ(u) = 0
}

with

Pμ(u) =
∫
RN

| (−�)
s
2 u|2 − N (p − 2)

2ps

∫
RN

|u|p − μ
N (q − 2)

2qs

∫
RN

|u|q .

It is well known that any critical points of Eμ|Sa stay inPμ, as a consequence of the Pohozaev
identity(see Lemma 2.1).

Lemma 5.1 Let u ∈ Sa,r be arbitrary but fixed. Then we have

(1)
∫
RN | (−�)

s
2 (τ�u)|2 → 0 and Iμ(u, τ ) → 0 as τ → −∞;

(2)
∫
RN | (−�)

s
2 (τ�u)|2 → +∞ and Iμ(u, τ ) → −∞ as τ → +∞.

Proof A straightforward calculation shows that
∫
RN

| (−�)
s
2 (τ�u)|2 = e2sτ

2

∫
RN

| (−�)
s
2 u|2.

In addition, we have

Iμ(u, τ ) = e2sτ

2

∫
RN

| (−�)
s
2 u|2 − eNτ(

p
2 −1)

p

∫
RN

|u|p − μ
eNτ(

q
2 −1)

q

∫
RN

|u|q .
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Since being p > q > p̄, it holds N (p/2 − 1) > N (q/2 − 1) > 2s. Thus, the conclusions
(1) and (2) easily follows from these facts above. ��
Lemma 5.2 Let p̄ < q < p < 2∗

s and μ > 0. Then there exists Ka > 0 such that

0 < sup
u∈A

Eμ(u) < inf
u∈B Eμ(u)

with

A =
{

u ∈ Sa,r :
∫
RN

| (−�)
s
2 u|2 < Ka

}
, B =

{
u ∈ Sa,r :

∫
RN

| (−�)
s
2 u|2 = 2Ka

}
.

Proof Let K > 0 be arbitrary but fixed and suppose u, v ∈ Sa,r are such that
∫
RN

| (−�)
s
2 u|2 < K and

∫
RN

| (−�)
s
2 v|2 = 2K .

Then for K small enough, by the fractional GNS inequality, we have

Eμ(v) − Eμ(u) =
∫
RN

(
1

2
| (−�)

s
2 v|2 − 1

p
|v|p − μ

q
|v|q

)

−
∫
RN

(
1

2
| (−�)

s
2 u|2 − 1

p
|u|p − μ

q
|u|q

)

≥
∫
RN

(
1

2
| (−�)

s
2 v|2 − 1

p
|v|p − μ

q
|v|q

)
− 1

2

∫
RN

| (−�)
s
2 u|2

≥ K

2
− C1

(∫
RN

| (−�)
s
2 v|2

) N (p−2)
4s − C2

(∫
RN

| (−�)
s
2 v|2

) N (q−2)
4s

= K

2
− C12

N (p−2)
4s K

N (p−2)
4s − C22

N (q−2)
4s K

N (q−2)
4s

≥ K

4
,

here we use the fact that N (p−2)
4s >

N (q−2)
4s > 1. Clearly also, for K > 0 sufficiently small:

for any u ∈ Sa,r satisfying
∫
RN | (−�)

s
2 u|2 < K , we have still by the fractional GNS

inequality

Eμ(u) ≥ 1

2

∫
RN

| (−�)
s
2 u|2 − C(s, N , p)

p
a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p−2)
4s

−μ
C(s, N , q)

q
aq− N (q−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (q−2)
4s

> 0.

In summary, we can choose suitable sufficiently small constant Ka > 0 such that

0 < sup
u∈A

Eμ(u) < inf
u∈B Eμ(u)

with

A =
{

u ∈ Sa,r :
∫
RN

| (−�)
s
2 u|2 < Ka

}
, B =

{
u ∈ Sa,r :

∫
RN

| (−�)
s
2 u|2 = 2Ka

}
.

��
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Having established the mountain pass geometry of Iμ and Eμ, we construct their minimax
characterization. For the Laplacian case, the construction has appeared in [32].

Proposition 5.3 Let p̄ < q < p < 2∗
s and μ > 0. There exist û, ũ ∈ Sa,r such that

(1)
∫
RN | (−�)

s
2 û|2 ≤ Ka,

(2)
∫
RN | (−�)

s
2 ũ|2 > 2Ka,

(3) Eμ(û) > 0 ≥ Eμ(ũ).

Moreover, setting
γ̃a = inf

h̃∈�̃a

max
t∈[0,1] Iμ(̃h(t))

with
�̃a = {

h̃ ∈ C
([0, 1], Sa,r × R

) : h̃(0) = (û, 0), h̃(1) = (ũ, 0)
}
,

and
γa = inf

h∈�a
max

t∈[0,1] Eμ(h(t))

with
�a = {

h ∈ C
([0, 1], Sa,r

) : h(0) = û, h(1) = ũ
}
,

then we have
γ̃a = γa ≥ max{Eμ(û), Eμ(ũ)} := δa > 0.

Proof First note that the existence of û, ũ ∈ Sa,r is insured by Lemma 5.1 and 5.2. Next, for
any h̃ ∈ �̃a , we can write it into

h̃(t) = (̃
h1(t), h̃2(t)

) ∈ Sa,r × R.

Setting h(t) = h̃2(t)�h̃1(t), we have h(t) ∈ �a and

max
t∈[0,1] Iμ(̃h(t)) = max

t∈[0,1] Eμ

(̃
h2(t)�h̃1(t)

) = max
t∈[0,1] Eμ(h(t)),

which implies γ̃a ≥ γa . On the other hand, for any h ∈ �a , if we set h̃(t) = (h(t), 0), then
we get h̃ ∈ �̃a and

max
t∈[0,1] Iμ(̃h(t)) = max

t∈[0,1] Eμ(h(t)).

This provides that γa ≥ γ̃a . Thus, we have γ̃a = γa . Finally, γa ≥ max{Eμ(û), Eμ(ũ)}
follows from the definition of γa . ��

In what follows, we give the relationship between the Palais–Smale sequence for Iμ and
that of Eμ.

Proposition 5.4 Let γ̃a and γa be defined in Proposition 5.3. Then there exists a sequence
{(vn, τn)} ⊂ Sa,r × R such that for n → ∞, we have

(1) Iμ(vn, τn) → γ̃a,
(2) I ′

μ|Sa,r ×R(vn, τn) → 0, i.e., it holds that

∂τ Iμ(vn, τn) → 0,

and 〈
∂u Iμ(vn, τn), ϕ̃

〉 → 0
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with

ϕ̃ ∈ Tvn =
{
ϕ̃ ∈ Hs(RN ) :

∫
RN

vn ϕ̃ = 0

}
.

In addition, setting un(x) = τn�vn(x), then for n → ∞ we get

(i) Eμ(un) → γa,
(ii) Pμ(un) → 0,
(iii) E ′

μ|Sa,r (un) → 0, i.e., it holds that
〈
E ′

μ(un), ϕ
〉 → 0

with

ϕ ∈ Tun =
{
ϕ ∈ Hs(RN ) :

∫
RN

unϕ = 0

}
.

Proof According to the construction of γ̃a , we know that the conclusions (1) and (2) follow
directly from the Ekeland’s Variational Principle. Next we mainly show (i)-(i i i).

For (i), it is obvious if we notice that

Eμ(un) = Eμ(τn�vn) = Iμ(vn, τn)

and γ̃a = γa .
For (i i), we first have

∂τ Iμ(vn, τn) = se2sτn

∫
RN

| (−�)
s
2 vn |2 − N (p − 2)

2p
eNτn(

p
2 −1)

∫
RN

|vn |p

−μ
N (q − 2)

2q
eNτn(

q
2 −1)

∫
RN

|vn |q

= s

[∫
RN

| (−�)
s
2 (τn�vn)|2 − N (p − 2)

2ps

∫
RN

|τn�vn |p

−μ
N (q − 2)

2qs

∫
RN

|τn�vn |q
]

= s

[∫
RN

| (−�)
s
2 un |2 − N (p − 2)

2ps

∫
RN

|un |p − μ
N (q − 2)

2qs

∫
RN

|un |q
]

= s Pμ(un).

Thus, (i i) is a consequence of ∂τ Iμ(vn, τn) → 0 as n → ∞.
For (i i i), by the definition of Iμ, we have

〈
∂u Iμ(vn, τn), ϕ̃

〉 = e2sτn

∫∫
R2N

(vn(x) − vn(y)) (ϕ̃(x) − ϕ̃(y))

|x − y|N+2s
dxdy

−eNτn(
p
2 −1)

∫
RN

|vn |p−2vn ϕ̃ − μeNτn(
q
2 −1)

∫
RN

|vn |q−2vn ϕ̃,

where

ϕ̃ ∈ Tvn =
{
ϕ̃ ∈ Hs(RN ) :

∫
RN

vn ϕ̃ = 0

}
.

On the other hand, for any ϕ with satisfying

ϕ ∈ Tun =
{
ϕ ∈ Hs(RN ) :

∫
RN

unϕ = 0

}
,
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we have
〈
E ′

μ(un), ϕ
〉 =

∫∫
R2N

(un(x) − un(y)) (ϕ(x) − ϕ(y))

|x − y|N+2s
dxdy

−
∫
RN

|un |p−2unϕ − μ

∫
RN

|un |q−2unϕ

=
∫∫

R2N

e
Nτn
2 (vn (eτn x) − vn (eτn y)) (ϕ(x) − ϕ(y))

|x − y|N+2s
dxdy

−
∫
RN

e
Nτn (p−1)

2 |vn
(
eτn x

) |p−2vn
(
eτn x

)
ϕ(x)

−μ

∫
RN

e
Nτn (q−1)

2 |vn
(
eτn x

) |q−2vn
(
eτn x

)
ϕ(x)

= e2sτn

∫∫
R2N

(vn(x) − vn(y))
(

e− Nτn
2 ϕ

(
e−τn x

) − e− Nτn
2 ϕ

(
e−τn y

))

|x − y|N+2s
dxdy

−eNτn(
p
2 −1)

∫
RN

|vn(x)|p−2vn(x)e− Nτn
2 ϕ

(
e−τn x

)

−μeNτn(
q
2 −1)

∫
RN

|vn(x)|q−2vn(x)e− Nτn
2 ϕ

(
e−τn x

)
.

Setting

ϕ̃(x) = e− Nτn
2 ϕ

(
e−τn x

)
,

we get (i i i) if we could show that ϕ̃ ∈ Tvn . In fact, ϕ̃ ∈ Tvn follows from the following
equalities:

0 =
∫
RN

unϕ =
∫
RN

e
Nτn
2 vn

(
eτn x

)
ϕ(x)

=
∫
RN

vn(x)e− Nτn
2 ϕ

(
e−τn x

) =
∫
RN

vn ϕ̃.

��
Lemma 5.5 Let p̄ < q < p < 2∗

s , μ > 0. Let {un} ⊂ Sa,r be a Palais–Smale sequence for
Eμ|Sa,r at level γa 
= 0, and suppose in addition that Pμ(un) → 0 as n → ∞. Then up to
a subsequence un → u strongly in Hs(RN ), and u ∈ Sa,r is a radial solution to (1.3) for
some λ < 0.

Proof We divide the proof into four main steps.
Step 1: Boundedness of {un} in Hs(RN ). As Pμ(un) → 0, we have∫

RN
| (−�)

s
2 un |2 = N (p − 2)

2ps
|un |p

p + μ
N (q − 2)

2qs
|un |qq + o(1) as n → ∞. (5.1)

Thus, by (5.1) we deduce that

1

p

(
N (p − 2)

4s
− 1

)
|un |p

p + μ

q

(
N (q − 2)

4s
− 1

)
|un |qq + o(1) = Eμ(un) ≤ γa + 1

for large n. Since p̄ < q < p < 2∗
s , it implies that N (p−2)

4s − 1 > 0 and N (q−2)
4s − 1 > 0.

Since μ > 0, then we can deduce the boundedness of |un |p and |un |q . Once again by (5.1)
we obtain the boundedness of

∫
RN | (−�)

s
2 un |2.
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Step 2: Since N ≥ 2, the embedding Hs
r (RN ) ↪→ Lt (RN ) is compact for t ∈ (2, 2∗

s ), and
we deduce that there exists u ∈ Hs

r (RN ) such that, up to a subsequence, un⇀u weakly in
Hs(RN ), un → u strongly in Lt (RN ) for t ∈ (2, 2∗

s ), and a.e. inR
N . Now, since {un} ⊂ Sa,r

is a Palais–Smale sequence for Eμ|Sa,r , by the Lagrange multipliers rule there exist {λn} ⊂ R

such that

(−�)s un − |un |p−2un − μ|un |p−2un = λnun + o(1) as n → ∞. (5.2)

Testing the equation above against un , we obtain

λna2 =
∫
RN

| (−�)
s
2 un |2 −

∫
RN

|un |p − μ

∫
RN

|un |q + o(1),

and the boundedness of {un} in Hs ∩ L p ∩ Lq implies that {λn} is bounded as well; up to a
subsequence λn → λ ∈ R.

Step 3: λ < 0. We first claim that u 
≡ 0. We assume by contradiction that u ≡ 0, then
|un |p → 0 and |un |q → 0. Recalling that Pμ(un) → 0, we have

Eμ(un) = 1

p

(
N (p − 2)

4s
− 1

)
|un |p

p + μ

q

(
N (q − 2)

4s
− 1

)
|un |qq + o(1),

and hence Eμ(un) → 0, in contradiction with the assumption that Eμ(un) → γa 
= 0. Now,
since λn → λ and un → u 
= 0 weakly in Hs(RN ), together with (5.2), we know u is a
radial solution to (1.3). By the Pohozaev identity, we obtain

N − 2s

2

∫
RN

| (−�)
s
2 u|2 = N

∫
RN

(
1

p
|u|p + μ

q
|u|q + λ

2
|u|2

)
.

Combining with the Eq. (1.3) for u, we get

λa2 = λ|u|22 = (N − 2s)(p − 2∗
s )

(p − 2)N

∫
RN

| (−�)
s
2 u|2 + μ

2(q − p)

q(p − 2)
|u|qq . (5.3)

Since μ > 0, we know λ < 0 by (5.3).
Step 4: un → u strongly in Hs(RN ). Testing Eq. (5.1) and (1.3) with un − u, and

subtracting, we obtain

〈
E ′

μ(un) − E ′
μ(u), un − u

〉 − λ

∫
RN

|un − u|2 = o(1).

Using the strong L p and Lq convergence of un , we infer that∫
RN

| (−�)
s
2 (un − u)|2 − λ

∫
RN

|un − u|2 = o(1),

which, being λ < 0, establishes the strong convergence in Hs(RN ). ��
Remark 5.6 If we check the proof above carefully, we would find that Lemma 5.5 holds for
the case 2 < q ≤ p̄ < p < 2∗

s and μ > 0. We only need to modify some details of Step 1 as
follows: If 2 < q ≤ p̄ < p < 2∗

s , by the Hölder inequality there exists θ ∈ (0, 1) such that
|un |q ≤ |un |θp|un |1−θ

2 = |un |θpa1−θ . Then we have

1

p

(
N (p − 2)

4s
− 1

)
|un |p

p + μ

q

(
N (q − 2)

4s
− 1

)
|un |qq

≥ 1

p

(
N (p − 2)

4s
− 1

)
|un |p

p + μ

q

(
N (q − 2)

4s
− 1

)
|un |qθ

p aq(1−θ),
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Note that p > q > qθ , we can deduce that |un |p is bounded and hence |un |q is bounded.
By (5.1), we obtain the boundedness of

∫
RN | (−�)

s
2 un |2. The rest of details can be easily

modified and hence is omitted.

With these preparations above at hand, we now prove Theorem 1.5 and Corollary 1.6.

Proof of Theorem 1.5 and Corollary 1.6 First, we see that inf Sa Eμ = −∞ follows from
Lemma 5.1. For μ > 0, we can define γ̃a and γa as Proposition 5.3. By Proposition 5.4,
we obtain a Palais–Smale sequence {un} ⊂ Sa,r for Eμ|Sa,r at level γa > 0, and have
Pμ(un) → 0 as n → ∞. In virtue of Lemma 5.5, we know un → ua strongly in Hs(RN ),
and ua ∈ Sa,r is a radial solution to (1.3) for some λa < 0.

Since (ua, λa) is a solution of (1.3), by the Pohozaev identity and the fractional GNS
inequality, we have

∫
RN

| (−�)
s
2 ua |2 = N (p − 2)

2ps

∫
RN

|ua |p + μ
N (q − 2)

2qs

∫
RN

|ua |q

≤ C1a p− N (p−2)
2s

(∫
RN

| (−�)
s
2 ua |2

) N (p−2)
4s

+μC2aq− N (q−2)
2s

(∫
RN

| (−�)
s
2 ua |2

) N (q−2)
4s

,

where C1, C2 are constants depending only on N , s, p, q . Recall that p̄ < q < p < 2∗
s , we

know N (p−2)
4s >

N (q−2)
4s > 1. Thus, we get

1 ≤ C1a p− N (p−2)
2s

(∫
RN

| (−�)
s
2 ua |2

) N
4s (p− p̄)

+μC2aq− N (q−2)
2s

(∫
RN

| (−�)
s
2 ua |2

) N
4s (q− p̄)

,

which implies ∫
RN

| (−�)
s
2 ua |2 → +∞

as a → 0. On the other hand, by the Pohozaev identity, we also have

λaa2 = λa |ua |22 = (N − 2s)(p − 2∗
s )

(p − 2)N

∫
RN

| (−�)
s
2 ua |2 + μ

2(q − p)

q(p − 2)
|ua |qq

≤ (N − 2s)(p − 2∗
s )

(p − 2)N

∫
RN

| (−�)
s
2 ua |2.

Thus, it results that λa → −∞ as a → 0. ��

6 Combined-type cases

In this section, we consider the case 2 < q ≤ p̄ = 2 + 4s
N ≤ p < 2∗

s , p 
= q and μ ∈ R.

6.1 L2-critical leading term

In this subsection, we deal with the case 2 < q < p = p̄, μ ∈ R and prove Theorem 1.7.
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Lemma 6.1 Let 2 < q < p = p̄. If 0 < a < ā, then for any μ > 0 we have

−∞ < ma,μ = inf
Sa

Eμ < 0;

while for any μ < 0, we obtain
inf
Sa

Eμ = 0.

Proof By the fractional GNS inequality and (2.1), we get

Eμ(u) ≥ 1

2

(
1 −

(a

ā

) 4s
N

) ∫
RN

| (−�)
s
2 u|2

−μ
C(s, N , q)

q
aq− N (q−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (q−2)
4s

for any u ∈ Sa . Since a < ā, N (q − 2)/4s < 1, if μ > 0, we know that Eμ is coercive on
Sa , and ma,μ = inf Sa Eμ > −∞. If μ < 0, then it holds inf Sa Eμ ≥ 0. On the other hand,
it holds for every u ∈ Sa that

Eμ(τ�u) = e2sτ

2

∫
RN

| (−�)
s
2 u|2 − e2sτ

p̄

∫
RN

|u| p̄ − μ
eNτ(

q
2 −1)

q

∫
RN

|u|q ,

since μ > 0 and N (q/2 − 1) < 2s, we have that Eμ(τ�u) < 0 for every (τ, u) ∈ R × Sa

with τ � −1. Thus, it results that ma,μ < 0 for μ > 0. For μ < 0, we easily see that
Eμ(τ�u) → 0 as τ → −∞, which implies inf Sa Eμ = 0. ��
Lemma 6.2 Let 2 < q < p = p̄ and μ > 0. Let a1, a2 > 0 be such that a2

1 + a2
2 = a2 < ā2.

Then
ma,μ < ma1,μ + ma2,μ.

Proof We can proceed exactly as in the proof of Lemma 3.2 and omit the details. ��
Corollary 6.3 Let 2 < q < p = p̄ and μ > 0, then ma is strictly decreasing in a ∈ (0, ā).

Proof of Theorem 1.7 For (i)-(a), since having establishedLemmas6.1, 6.2 andCorollary 6.3,
we can follow a similar argument as the proof for the existence of a minimizer of (i) of
Theorem 1.2. Here we omit the details.

For (i)-(b), inf Sa Eμ = 0 follows from Lemma 6.1. We assume by contradiction that
problem (1.3)–(1.4) has a solution ua ∈ Sa , by the Pohozaev identity we deduce that∫

RN
| (−�)

s
2 ua |2 = 2

p̄

∫
RN

|ua | p̄ + μ
N (q − 2)

2qs

∫
RN

|ua |q .

Recall that the (i i)-(a) of Theorem 1.2, we have inf Sa E0 = 0, and hence we get

0 > μ
N (q − 2)

2qs

∫
RN

|ua |q = 2E0(u) ≥ 2 inf
Sa

E0 = 0,

a contradiction.
For (i i)-(a), if a = ā and p = p̄, according to the (i i)-(b) of Theorem 1.2, there exists a

QN , p̄ ∈ Sā such that E0(QN , p̄) = 0. For τ ∈ R, we have

Eμ(τ�QN , p̄) = e2sτ E0(QN , p̄) − μ
eNτ(

q
2 −1)

q

∫
RN

|QN , p̄|q = −μ
eNτ(

q
2 −1)

q

∫
RN

|QN , p̄|q .
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Since μ > 0 and q < p̄, we know Eμ(τ�QN , p̄) → −∞ as τ → +∞, which provides that

inf
Sa

Eμ = −∞.

For (i i)-(b), the proof follows a similar argument of (i)-(b) in this theorem, we omit the
details.

For (i i i), let ua = a
ā QN , p̄ , by a direct computation, we get

|ua |22 = a2, and E0(ua) < 0.

For τ ∈ R, we have

Eμ(τ�ua) = e2sτ E0(ua) − μ
eNτ(

q
2 −1)

q

∫
RN

|ua |q .

Since q < p̄, we know that N (
q
2 − 1) < 2s and hence Eμ(τ�ua) → −∞ as τ → +∞,

which gives our desired result. ��

6.2 Supercritical leading termwith subcritical perturbation

In this subsection, we deal with the case 2 < q < p̄ < p < 2∗
s , μ ∈ R and prove Theorems

1.8 and 1.9. For convenience, we give some notations.

Sa,r = Sa ∩ Hs
r (RN ) = {u ∈ Sa : u(x) = u(|x |)} ,

Pμ =
{

u ∈ Hs(RN ) : Pμ(u) = 0
}

with

Pμ(u) =
∫
RN

| (−�)
s
2 u|2 − N (p − 2)

2ps

∫
RN

|u|p − μ
N (q − 2)

2qs

∫
RN

|u|q .

Pa,μ = Sa,r ∩ Pμ = {
u ∈ Sa,r : Pμ(u) = 0

}
.

For any u ∈ Sa,r , we introduce the fiber map

�μ
u (τ ) := Eμ(τ�u) = e2sτ

2

∫
RN

| (−�)
s
2 u|2 − eNτ(

p
2 −1)

p

∫
RN

|u|p −μ
eNτ(

q
2 −1)

q

∫
RN

|u|q ,

it is easy to verify that any critical point of �
μ
u belongs to Pa,μ. Conversely, if u ∈ Pa,μ,

we get
(
�

μ
u
)′

(0) = 0. Thus, we consider the decomposition of Pa,μ into the disjoint union
Pa,μ = P+

a,μ ∪ P0
a,μ ∪ P−

a,μ, where

P+
a,μ :=

{
u ∈ Pa,μ : 2s2

∫
RN

| (−�)
s
2 u|2 > μqγ 2

q |u|qq + pγ 2
p |u|p

p

}

=
{

u ∈ Pa,μ : (
�μ

u

)′′
(0) > 0

}

P0
a,μ :=

{
u ∈ Pa,μ : 2s2

∫
RN

| (−�)
s
2 u|2 = μqγ 2

q |u|qq + pγ 2
p |u|p

p

}

=
{

u ∈ Pa,μ : (
�μ

u

)′′
(0) = 0

}

P−
a,μ :=

{
u ∈ Pa,μ : 2s2

∫
RN

| (−�)
s
2 u|2 < μqγ 2

q |u|qq + pγ 2
p |u|p

p

}
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=
{

u ∈ Pa,μ : (
�μ

u

)′′
(0) < 0

}

and

γq := N (q − 2)

2q
, γp := N (p − 2)

2p
.

In what follows, we discuss according to the sign of μ.
(a)μ > 0. We consider the constrained functional Eμ|Sa,r . By the fractional GNS inequality

Eμ(u) ≥ 1

2

∫
RN

| (−�)
s
2 u|2 − C(s, N , p)

p
a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p−2)
4s

−μ
C(s, N , q)

q
aq− N (q−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (q−2)
4s

, (6.1)

for every u ∈ Sa,r . Therefore, to understand the geometry of the functional Eμ|Sa,r it is useful
to consider the function h : R+ → R

h(t) := 1

2
t − C(s, N , p)

p
a p− N (p−2)

2s t
N (p−2)

4s − μ
C(s, N , q)

q
aq− N (q−2)

2s t
N (q−2)

4s .

Since μ > 0 and N (q−2)
4s < 1 <

N (p−2)
4s , we have that h(0+) = 0− and h(+∞) = −∞.

Lemma 6.4 Let a, μ > 0 satisfy (1.10), the function h has a local strict minimum at negative
level and a global strict maximum at positive level. Moreover, there exist 0 < R0 < R1, both
depending on a and μ, such that h(R0) = 0 = h(R1) and h(t) > 0 iff t ∈ (R0, R1).

Proof Since

h(t) = t
N (q−2)

4s

[
1

2
t

N ( p̄−q)
4s − C(s, N , p)

p
a p− N (p−2)

2s t
N (p−q)

4s − μ
C(s, N , q)

q
aq− N (q−2)

2s

]
,

for t > 0, we have h(t) > 0 if and only if

ϕ(t) > μ
C(s, N , q)

q
aq− N (q−2)

2s , with ϕ(t) := 1

2
t

N ( p̄−q)
4s − C(s, N , p)

p
a p− N (p−2)

2s t
N (p−q)

4s .

It is not difficult to check that ϕ has a unique critical point on (0,∞), which is a global
maximum point at positive level, in

t̄ := C1a
4p−p p̄−4

p− p̄ , with C1 :=
(

p( p̄ − q)

2C(s, N , p)(p − q)

) 4s
N (p− p̄) ;

the maximum level is

ϕ(t̄) = C2a
N (4p−p p̄−4)( p̄−q)

4s(p− p̄) , with C2 :=
(

p( p̄ − q)

2C(s, N , p)(p − q)

) p̄−q
p− p̄ p − p̄

2(p − q)
.

Therefore, h is positive on an open interval (R0, R1) iff ϕ(t̄) > μ
C(s,N ,q)

q aq− N (q−2)
2s , which

is ensured by (1.10). It follows immediately that h has a global maximum at positive level in
(R0, R1) (In fact, a continuous functionon abounded closed intervalmust admit themaximum
value.) Moreover, since h(0+) = 0−, there exists a local minimum point at negative level in
(0, R0). The fact that h has no other critical points can be verified observing that h′(t) = 0
if and only if

ψ(t) = μ
C(s, N , q)γq

s
aq− N (q−2)

2s , withψ(t) := t
N ( p̄−q)

4s −C(s, N , p)γp

s
a p− N (p−2)

2s t
N (p−q)

4s .
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Clearlyψ has only one critical point, which is a strictmaximum, and hence the above equation
has at most two solutions, which necessarily are the local minimum and the global maximum
of h previously found. ��

We now study the structure of the Pohozaev manifold Pa,μ. Recalling the decomposition
of Pa,μ = P+

a,μ ∪ P0
a,μ ∪ P−

a,μ.

Lemma 6.5 P0
a,μ = ∅, and Pa,μ is a smooth manifold of codimension 2 in Hs(RN ).

Proof The proof can follow a similar argument as the proof of [48, Lemma 5.2], here we
omit the details. ��

The manifold Pa,μ is then divided into two components P+
a,μ and P−

a,μ, having disjoint
closure.

Lemma 6.6 For every u ∈ Sa,r , the function �
μ
u has exactly two critical points su < tu ∈ R

and two zeros cu < du ∈ R, with su < cu < tu < du. Moreover:

(1) su�u ∈ P+
a,μ, and tu�u ∈ P−

a,μ, and if s�u ∈ Pa,μ, then either s = su or s = tu .

(2)
∫
RN | (−�)

s
2 (τ�u)|2 ≤ R0 for every s ≤ cu, and

Eμ(su�u) = min

{
Eμ(τ�u) : τ ∈ R and

∫
RN

| (−�)
s
2 (τ�u)|2 < R0

}
< 0. (6.2)

(3) We have
Eμ(tu�u) = max

{
Eμ(τ�u) : τ ∈ R

}
> 0, (6.3)

and �
μ
u is strictly decreasing and concave on (tu,+∞).

(4) The maps u ∈ Sa,r �→ su ∈ R and u ∈ Sa,r �→ tu ∈ R are of class C1.

Proof Let u ∈ Sa,r , by a direct computation, we know τ�u ∈ Pa,μ if and only if
(
�

μ
u
)′

(τ ) =
0. Thus, we first show that �μ

u has at least two critical points. To this end, we recall that by
(6.1)

�μ
u (τ ) = Eμ(τ�u) ≥ h(

∫
RN

| (−�)
s
2 (τ�u)|2) = h(e2sτ

∫
RN

| (−�)
s
2 u|2).

Thus, the C2 functional �μ
u is positive on (C(R0), C(R1)) with

(C(R0), C(R1)) :=
(

1

2s
log

(
R0/

∫
RN

| (−�)
s
2 u|2

)
,
1

2s
log

(
R1/

∫
RN

| (−�)
s
2 u|2

))
,

and clearly �
μ
u (−∞) = 0−, �

μ
u (+∞) = −∞. It follows that �

μ
u has at least two critical

points su < tu , with su local minimum point on (0, C(R0)) at negative level, and tu > su

global maximum point at positive level. It is not difficult to check that there are no other
critical points. Indeed

(
�

μ
u
)′

(τ ) = 0 reads

ϕ(τ) = μγq |u|qq , with ϕ(τ) := se
N ( p̄−q)τ

2

∫
RN

| (−�)
s
2 u|2 − γpe

N (p−q)τ
2 |u|p

p. (6.4)

But ϕ has a unique maximum point, and hence Eq. (6.4) has at most two solutions.
Collecting together the above considerations, we conclude that�μ

u has exactly two critical
points: su , local minimum on (−∞, C(R0)) at negative level, and tu , global maximum at
positive level, which gives (6.3). To see (6.2), since being su < C(R0), then it holds that∫

RN
| (−�)

s
2 (su�u)|2 = e2ssu

∫
RN

| (−�)
s
2 u|2 < R0.
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In addition, we have su�u ∈ Pa,μ, tu�u ∈ Pa,μ and τ�u ∈ Pa,μ implies τ ∈ {su, tu}. By
minimality

(
�

μ
u
)′′

(su) ≥ 0, and in fact strict inequalitymust hold, sinceP0
a,μ = ∅ by Lemma

6.5; namely su�u ∈ P+
a,μ. In the same way tu�u ∈ P−

a,μ.
By monotonicity and recalling the behavior at infinity, �

μ
u has moreover exactly two

zeros cu < du , with su < cu < tu < du ; and, being a C2 function, �
μ
u has at least two

inflection points. Arguing as before, we can easily check that actually �
μ
u has exactly two

inflection points. In particular, �μ
u is concave on [tu,+∞). It remains to show that u �→ su

and u �→ tu are of class C1; to this end, we apply the implicit function theorem on the C1

function�(τ, u) := (
�

μ
u
)′

(τ ).We use that�(τ, u) = 0, that ∂s�(su, u) = (
�

μ
u
)′′

(su) > 0,
and the fact that it is not possible to pass with continuity from P+

a,μ to P−
a,μ (since P0

a,μ = ∅
). The same argument proves that u �→ tu is C1. ��

From the proof of Lemma 6.6, we see that su < C(R0) < tu and hence∫
RN

| (−�)
s
2 (su�u)|2 < R0 <

∫
RN

| (−�)
s
2 (tu�u)|2,

which implies

P+
a,μ ⊆

{
u ∈ Sa,r :

∫
RN

| (−�)
s
2 u|2 < R0

}

and

P−
a,μ ⊆

{
u ∈ Sa,r :

∫
RN

| (−�)
s
2 u|2 > R0

}
.

For k > 0, let us set

Ak :=
{

u ∈ Sa,r :
∫
RN

| (−�)
s
2 u|2 < k

}
,

and
Ma,μ := inf

u∈AR0

Eμ(u).

As an immediate corollary, we have:

Corollary 6.7 supP+
a,μ

Eμ ≤ 0 ≤ infP−
a,μ

Eμ.

Furthermore:

Lemma 6.8 It results that Ma,μ ∈ (−∞, 0), that

Ma,μ = inf
Pa,μ

Eμ = inf
P+

a,μ

Eμ, and that Ma,μ < inf
AR0\AR0−ρ

Eμ

for ρ > 0 small enough.

Proof We can adopt a similar argument as the proof in the [48, Lemma 5.5], thus we omit it.
��

Theorem 6.9 Ma,μ can be achieved by some ũ ∈ Sa,r . Moreover, ũ is an interior local
minimizer for Eμ|AR0

, and solves (1.3)–(1.4) for some λ̃ < 0.

Proof Let us consider a minimizing sequence {vn} for Eμ|AR0
. By Lemma 6.6, there exists

a sequence {svn } such that svn �vn ∈ P+
a,μ and

Eμ(svn �vn) = min

{
Eμ(τ�u) : τ ∈ R and

∫
RN

| (−�)
s
2 (τ�u)|2 < R0

}
< Eμ(vn),
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where the last inequality follows from vn ∈ AR0 . Besides, we also see that∫
RN

| (−�)
s
2 (svn �vn)|2 < R0,

furthermore, we by Lemma 6.8 have∫
RN

| (−�)
s
2 (svn �vn)|2 < R0 − ρ.

Once again by Lemma 6.8, it holds that

Ma,μ = inf
Pa,μ

Eμ = inf
P+

a,μ

Eμ.

Setting un = svn �vn and using the Ekeland’s variational principle, we may assume that {un}
is a Palais–Smale sequence for Eμ on Sa,r and Pμ(un) = 0. Since being Ma,μ < 0, then {un}
satisfies all the assumptions of Lemma 5.5 (see Remark 5.6) and hence un → ũ strongly in
Hs(RN ). Thus, we get

∫
RN | (−�)

s
2 ũ|2 < R0 − ρ and ũ is an interior local minimizer for

Ma,μ. By the Lagrange multiplier rule, ũ solves (1.3)–(1.4) for some λ̃ ∈ R. The conclusion
that λ̃ < 0 can be easily obtained by virtue of the following Pohozaev identity:

λ̃|ũ|22 = (N − 2s)(p − 2∗
s )

(p − 2)N

∫
RN

| (−�)
s
2 ũ|2 + μ

2(q − p)

q(p − 2)
|ũ|qq .

��
We focus now on the existence of a second critical point for Eμ|Sa,r . To construct a

minimax structure, we give some lemmas. The following two lemmas can be obtained as the
proof of [48, Lemma 5.6–5.7].

Lemma 6.10 Suppose that Eμ(u) < Ma,μ. Then the value tu defined by Lemma 6.6 is
negative.

Lemma 6.11 It results that
σ̃a,μ = inf

u∈P−
a,μ

Eμ(u) > 0.

We introduce the minimax class

� := {
γ ∈ C([0, 1], Sa,r ) : γ (0) ∈ P+

a,μ, Eμ(γ (1)) ≤ 2Ma,μ

}
,

then � 
= ∅. In fact, for every u ∈ Sa,r , we have su�u ∈ P+
a,μ by Lemma 6.6, Eμ(τ�u) →

−∞ as τ → +∞, and τ �→ τ�u is continuous. Thus, we can define the minimax value

σa,μ := inf
γ∈�

max
t∈[0,1] Eμ(γ (t)).

Theorem 6.12 σa,μ > 0 can be achieved by some û ∈ Sa,r . Moreover, û solves (1.3)–(1.4)
for some λ̂ < 0.

Proof Step 1: Since we want to use Lemma 2.6, next we verify the conditions of Lemma 2.6
one by one. Let us set

F := �, A := γ ([0, 1]), F := P−
a,μ, and B := P+

a,μ ∪ E
2Ma,μ
μ ,

where Ec
μ := {u ∈ Sa,r : Eμ(u) ≤ c}. First, we show that F is homotopy-stable family

with extended boundary B: for any γ ∈ � and any η ∈ C
([0, 1] × Sa,r ; Sa,r

)
satisfying
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η(t, u) = u, (t, u) ∈ (
0 × Sa,r

) ∪ ([0, 1] × B), we want to get η(1, γ (t)) ∈ �. In fact, let
γ̃ (t) = η(1, γ (t)), then γ̃ (0) = η(1, γ (0)) = γ (0) ∈ P+

a,μ. Besides, γ̃ (1) = η(1, γ (1)) =
γ (1) ∈ E

2Ma,μ
μ . Therefore, we have η(1, γ (t)) ∈ �.

Next we verify the condition (2.3): ByCorollary 6.7 and Lemma 6.11, we know F ∩B = ∅
and hence F\B = F . We claim that

A ∩ (F\B) = A ∩ F = γ ([0, 1]) ∩ P−
a,μ 
= ∅, ∀γ ∈ �. (6.5)

Indeed, since γ (0) ∈ P+
a,μ, we know sγ (0) = 0 (see the definition of su in Lemma 6.6) and

hence tγ (0) > sγ (0) = 0. On the other hand, since Eμ(γ (1)) ≤ 2Ma,μ < Ma,μ (see Lemma
6.8), we by Lemma 6.10 have tγ (1) < 0. By Lemma 6.6, we know tγ (τ) is continuous in
τ . It follows that for every γ ∈ � there exists τγ ∈ (0, 1) such that tγ (τγ ) = 0, that is,
γ (τγ ) ∈ P−

a,μ, and hence A ∩ (F\B) 
= ∅.
Finally we verify the condition (2.4), that is, we need to show

inf
P−

a,μ

Eμ ≥ σa,μ ≥ sup
P+

a,μ∪E
2Ma,μ
μ

Eμ.

By (6.5) for every γ ∈ �

max
t∈[0,1] Eμ(γ (t)) ≥ inf

P−
a,μ

Eμ,

so that σa,μ ≥ σ̃a,μ. On the other side, if u ∈ P−
a,μ, then for s1 � 1 large enough

γu : τ ∈ [0, 1] �→ ((1 − τ)su + τ s1) �u ∈ Sa,r

is a path in �. Since u ∈ P−
a,μ, we know tu = 0 is a global maximum point for �

μ
u , and

deduce that
Eμ(u) ≥ max

t∈[0,1] Eμ(γu(t)) ≥ σa,μ,

which implies that σ̃a,μ ≥ σa,μ. Thus, we get σa,μ = σ̃a,μ > 0(see Lemma 6.11). By

Corollary 6.7, we know Eμ(u) ≤ 0 for any u ∈ P+
a,μ ∪ E

2Ma,μ
μ and hence get (2.4).

Step 2: By Step 1, we can use Lemma 2.6 to obtain a Palais–Smale sequence {un} for
Eμ|Sa,r at level σa,μ > 0 and dist(un,P−

a,μ) → 0, i.e., Pμ(un) → 0. By Lemma 5.5 and
Remark 5.6, we deduce that up to a subsequence un → û strongly in Hs(RN ).

Step 3: By the Lagrange multiplier rule, û solves (1.3)–(1.4) for some λ̂ ∈ R. The
conclusion that λ̂ < 0 can be easily obtained by virtue of the following Pohozaev identity:

λ̂|û|22 = (N − 2s)(p − 2∗
s )

(p − 2)N

∫
RN

| (−�)
s
2 û|2 + μ

2(q − p)

q(p − 2)
|û|qq .

��
Proof of Theorem 1.8 Theorem 1.8 follows from Theorems 6.9 and 6.12. ��

(b) μ < 0. For the defocusing case, we consider once again the Pohozaev manifold Pa,μ

and the decomposition Pa,μ = P+
a,μ ∪ P0

a,μ ∪ P−
a,μ.

Lemma 6.13 P0
a,μ = ∅, and Pa,μ is a smooth manifold of codimension 2 in H s(RN ).

Proof If u ∈ P0
a,μ, then∫

RN
| (−�)

s
2 u|2 = γp

s
|u|p

p + μ
γq

s
|u|qq , 2s2

∫
RN

| (−�)
s
2 u|2 = pγ 2

p |u|p
p + μqγ 2

q |u|qq ,
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which gives

μγq(2s − qγq)|u|qq = γp(pγp − 2s)|u|p
p,

which implies u ≡ 0 since μ < 0 and qγq < 2s < pγp . This contradicts the fact that
u ∈ Sa,r . The rest of the proof is very similar to the one of Lemma 6.5, we omit it. ��
Lemma 6.14 For every u ∈ Sa,r , there exists a unique tu ∈ R such that tu�u ∈ Pa,μ. tu is
the unique critical point of the function �

μ
u , and is a strict maximum point at positive level.

Moreover,

(1) Pa,μ = P−
a,μ.

(2) �
μ
u is strictly decreasing and concave on (tu,∞).

(3) The map u ∈ Sa,r �→ tu ∈ R is of class C1.
(4) If Pμ(u) < 0, then tu < 0.

Proof The proof can argue in the same way as that of [48, Lemma 7.2] and hence omit the
details. ��
Lemma 6.15 It results that

Ma,μ := inf
u∈Pa,μ

Eμ(u) > 0.

Proof If u ∈ Pa,μ, we have∫
RN

| (−�)
s
2 u|2 = γp

s
|u|p

p + μ
γq

s
|u|qq , (6.6)

which implies

∫
RN

| (−�)
s
2 u|2 ≤ γp

s
|u|p

p ≤ γp

s
C(s, N , p)a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p−2)
4s

.

Since N (p−2)
4s > 1, we deduce that infPa,μ

∫
RN | (−�)

s
2 u|2 ≥ δa > 0. On the other hand,

we by (6.6) have

Eμ(u) = 1

2

(
1 − 2s

pγp

) ∫
RN

| (−�)
s
2 u|2 + |μ|

q

(
1 − qγq

pγp

)
|u|qq

≥ 1

2

(
1 − 2s

pγp

) ∫
RN

| (−�)
s
2 u|2,

and the desired result follows from the inequality above. ��
Lemma 6.16 There exists ka > 0 sufficiently small such that

0 < sup
Aka

Eμ < Ma,μ

and
Eμ(u) > inf

Aka

Eμ = 0, Pμ(u) > inf
Aka

Pμ = 0, ∀u ∈ Aka ,

where

Aka :=
{

u ∈ Sa,r :
∫
RN

| (−�)
s
2 u|2 < ka

}
.
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Proof By the GNS inequality

Eμ(u) ≥ 1

2

∫
RN

| (−�)
s
2 u|2 − C1a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p−2)
4s

> 0,

Pμ(u) ≥
∫
RN

| (−�)
s
2 u|2 − C2a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p−2)
4s

> 0, (6.7)

if u ∈ Aka with ka small enough. Thus, infAka
Eμ ≥ 0, infAka

Pμ ≥ 0. Next we show that
infAka

Pμ = 0 can’t be achieved by u ∈ Sa,r . In fact, for any u ∈ Sa,r , we know τ�u ∈ Aka

for τ � −1 and Pμ(τ�u) → 0 as τ → −∞. Therefore, infAka
Pμ = 0. If there exists

u ∈ Aka such that Pμ(u) = infAka
Pμ = 0, by (6.7), we know

∫
RN | (−�)

s
2 u|2 = 0 and

hence u must be a constant, contradicting the fact that u ∈ Sa . The similar argument holds
for infAka

Eμ. If necessary replacing k with a smaller quantity, we also have

Eμ(u) ≤ 1

2

∫
RN

| (−�)
s
2 u|2 + C3|μ|aq− N (q−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (q−2)
4s

< Ma,μ.

��
We introduce the minimax class

� := {
γ ∈ C([0, 1], Sa,r ) : γ (0) ∈ Aka , Eμ(γ (1)) ≤ 0

}
,

then� 
= ∅. In fact, for every u ∈ Sa,r , there exist τ0 � −1 and τ1 � 1, such that τ0�u ∈ Aka

and Eμ(τ1�u) < 0, and τ �→ τ�u is continuous. Thus, we can define the minimax value

σa,μ := inf
γ∈�

max
t∈[0,1] Eμ(γ (t)).

Then we can obtain the proof of Theorem 1.9, that is,

Theorem 6.17 σa,μ > 0 can be achieved by some û ∈ Sa,r . Moreover, û solves (1.3)–(1.4)
for some λ̂ < 0.

Proof Step 1: Since we want to use Lemma 2.6, next we verify the conditions of Lemma 2.6
one by one. Let us set

F := �, A := γ ([0, 1]), F := Pa,μ, and B := Aka ∪ E0
μ,

where Ec
μ := {u ∈ Sa,r : Eμ(u) ≤ c}. First, we show that F is homotopy-stable family

with extended boundary B: for any γ ∈ � and any η ∈ C
([0, 1] × Sa,r ; Sa,r

)
satisfying

η(t, u) = u, (t, u) ∈ (
0 × Sa,r

) ∪ ([0, 1] × B), we want to get η(1, γ (t)) ∈ �. In fact, let
γ̃ (t) = η(1, γ (t)), then γ̃ (0) = η(1, γ (0)) = γ (0) ∈ P+

a,μ. Besides, γ̃ (1) = η(1, γ (1)) =
γ (1) ∈ E0

μ. Therefore, we have η(1, γ (t)) ∈ �.
Next we verify the condition (2.3): By Lemma 6.15 and 6.16, we know F ∩ B = ∅ and

hence F\B = F . We claim that

A ∩ (F\B) = A ∩ F = γ ([0, 1]) ∩ Pa,μ 
= ∅, ∀γ ∈ �. (6.8)

Indeed, by Lemma 6.16, we have Pμ(γ (0)) > 0. Since Eμ(γ (1)) ≤ 0, we consider the fiber

map �
μ

γ (1), then we know tγ (1) < 0. By Lemma 6.14, we know Pμ(γ (1)) =
(
�

μ

γ (1)

)′
(0) <

0. Thus, by the continuity of Pμ(γ (t)), it follows that for every γ ∈ � there exists τγ ∈ (0, 1)
such that Pμ

(
γ (τγ )

) = 0, and hence A ∩ (F\B) 
= ∅.
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Finally we verify the condition (2.4), that is, we need to show

inf
Pa,μ

Eμ ≥ σa,μ ≥ sup
Aka ∪E0

μ

Eμ.

By (6.8) for every γ ∈ �

max
t∈[0,1] Eμ(γ (t)) ≥ inf

Pa,μ

Eμ,

so that σa,μ ≥ Ma,μ. On the other side, if u ∈ Pa,μ, then for s0 � −1 and s1 � 1

γu : τ ∈ [0, 1] �→ ((1 − τ)s0 + τ s1) �u ∈ Sa,r

is a path in �. Since u ∈ Pa,μ, we know tu = 0 is a global maximum point for �
μ
u , and

deduce that
Eμ(u) ≥ max

t∈[0,1] Eμ(γu(t)) ≥ σa,μ,

which implies that Ma,μ ≥ σa,μ. Thus, we get σa,μ = Ma,μ > 0(see Lemma 6.15). By
Lemma 6.16, we know Eμ(u) ≤ Ma,μ for any u ∈ Aka ∪ E0

μ and hence get (2.4).
Step 2: By Step 1, we can use Lemma 2.6 to obtain a Palais–Smale sequence {un} for

Eμ|Sa,r at level σa,μ > 0 and dist(un,Pa,μ) → 0, i.e., Pμ(un) → 0.
Step 3: The compactness of {un}. Since {un} ⊂ Sa,r is a Palais–Smale sequence for

Eμ|Sa,r , by the Lagrange multipliers rule there exist {λn} ⊂ R such that

(−�)s un − |un |p−2un − μ|un |q−2un = λnun + o(1) as n → ∞.

We can proceed the proof of the boundedness of {un} and {λn} as Step 1 and 2 in Lemma 5.5
and hence omit the details. Thus, we can assume that un⇀û in Hs(RN ) and λn → λ̂, which
implies that û is a weak solution to

(−�)s û − |û|p−2û − μ|û|q−2û = λ̂û.

By the Pohozaev identity and the equation above for û, we get∫
RN

| (−�)
s
2 û|2 = N (p − 2)

2ps
|û|p

p + μ
N (q − 2)

2qs
|û|qq , (6.9)

and

λ̂|û|22 = (N − 2s)(p − 2∗
s )

(p − 2)N

∫
RN

| (−�)
s
2 û|2 + μ

2(q − p)

q(p − 2)
|û|qq . (6.10)

Since μ < 0, by (6.9) and the fractional GNS inequality, we obtain

∫
RN

| (−�)
s
2 û|2 ≤ N (p − 2)C(s, N , p)

2ps
a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 û|2

) N (p−2)
4s

.

This gives ∫
RN

| (−�)
s
2 û|2 ≥

(
2ps

N (p − 2)C(s, N , p)
a

N (p−2)
2s −p

) 4s
N (p− p̄)

. (6.11)

Since q < p < 2∗
s , by (6.10), (6.11) and the fractional GNS inequality, we get

λ̂|û|22 ≤ (N − 2s)(p − 2∗
s )

(p − 2)N

∫
RN

| (−�)
s
2 û|2

+μ
2(q − p)

q(p − 2)
C(s, N , q)aq− N (q−2)

2s

(∫
RN

| (−�)
s
2 û|2

) N (q−2)
4s
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≤
(∫

RN
| (−�)

s
2 û|2

) N (q−2)
4s

⎡
⎣ (N − 2s)(p − 2∗

s )

(p − 2)N

(∫
RN

| (−�)
s
2 û|2

) N ( p̄−q)
4s

+μ
2(q − p)

q(p − 2)
C(s, N , q)aq− N (q−2)

2s

]

≤
(∫

RN
| (−�)

s
2 û|2

) N (q−2)
4s

[
μ
2(q − p)

q(p − 2)
C(s, N , q)aq− N (q−2)

2s

+ (N − 2s)(p − 2∗
s )

(p − 2)N

(
2ps

N (p − 2)C(s, N , p)
a

N (p−2)
2s −p

) p̄−q
p− p̄

⎤
⎦ .

Recalling that (1.11), we have λ̂ < 0. Then we follow a similar argument as Step 4 in
Lemma 5.5 to deduce that un → û in Hs(RN ). So we know σa,μ = Eμ(û) and û solves
(1.3) for some λ̂ < 0. ��

6.3 Supercritical leading termwith critical perturbation

In this subsection, we deal with the case 2 < q = p̄ < p < 2∗
s , μ ∈ R and prove

Theorems 1.10 and 1.11. For convenience, we still use the notations given in Sect. 6.2.
(a) μ > 0. For the focusing case, we consider once again the Pohozaev manifold Pa,μ

and the decomposition Pa,μ = P+
a,μ ∪ P0

a,μ ∪ P−
a,μ.

Lemma 6.18 P0
a,μ = ∅, and Pa,μ is a smooth manifold of codimension 2 in H s(RN ).

Proof If u ∈ P0
a,μ, then

∫
RN

| (−�)
s
2 u|2 = γp

s
|u|p

p + μ
γ p̄

s
|u| p̄

p̄, 2s2
∫
RN

| (−�)
s
2 u|2 = μ p̄γ 2

p̄ |u| p̄
p̄ + pγ 2

p |u|p
p,

which gives

μγ p̄(2s − p̄γ p̄)|u| p̄
p̄ = γp(pγp − 2s)|u|p

p,

which implies u ≡ 0 since p̄γ p̄ = 2s. This contradicts the fact that u ∈ Sa,r . The rest of the
proof is very similar to the one of Lemma 6.5, we omit it. ��

Lemma 6.19 For every u ∈ Sa,r , there exists a unique tu ∈ R such that tu�u ∈ Pa,μ. tu is
the unique critical point of the function �

μ
u , and is a strict maximum point at positive level.

Moreover,

(1) Pa,μ = P−
a,μ.

(2) �
μ
u is strictly decreasing and concave on (tu,∞).

(3) The map u ∈ Sa,r �→ tu ∈ R is of class C1.
(4) If Pμ(u) < 0, then tu < 0.

Proof Since q = p̄ and p̄γ p̄ = 2s, we have

�μ
u (τ ) =

(
1

2

∫
RN

| (−�)
s
2 u|2 − μ

p̄
|u| p̄

p̄

)
e2sτ − 1

p
|u|p

pepγpτ .
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By the fractional GNS inequality and assumption (1.12), we know

1

2

∫
RN

| (−�)
s
2 u|2 − μ

p̄
|u| p̄

p̄ ≥
(
1

2
− μ

p̄
C(s, N , p̄)a4s/N

) ∫
RN

| (−�)
s
2 u|2 > 0.

Notice that pγp > 2s, then conclusions (1)-(4) easily follow from the properties of the fiber
map �

μ
u . ��

Lemma 6.20 It results that
Ma,μ := inf

u∈Pa,μ

Eμ(u) > 0.

Proof If u ∈ Pa,μ, then Pμ(u) = 0, and by the fractional GNS inequality

∫
RN

| (−�)
s
2 u|2 ≤ γp

s
C(s, N , p)a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p−2)
4s

+2μ

p̄
C(s, N , p̄)a

4s
N

∫
RN

| (−�)
s
2 u|2.

Thus, we get

γp

s
C(s, N , p)a p− N (p−2)

2s

(∫
RN

| (−�)
s
2 u|2

) N (p− p̄)
4s ≥ 2

(
1

2
− μ

p̄
C(s, N , p̄)a

4s
N

)
,

which provides that infPa,μ

∫
RN | (−�)

s
2 u|2 > 0, here we use assumption (1.12). At this

point, using again Pμ(u) = 0, we note that for any u ∈ Pa,μ

Eμ(u) = 1

2

(
1 − 2s

pγp

) ∫
RN

| (−�)
s
2 u|2 − μ

p̄

(
1 − 2

pγp

)
|u| p̄

p̄

≥
(
1 − 2s

pγp

)(
1

2
− μ

p̄
C(s, N , p̄)a

4s
N

) ∫
RN

| (−�)
s
2 u|2,

and the desired result follows by infPa,μ

∫
RN | (−�)

s
2 u|2 > 0. ��

Lemma 6.21 There exists ka > 0 sufficiently small such that

0 < sup
Aka

Eμ < Ma,μ

and
Eμ(u) > inf

Aka

Eμ = 0, Pμ(u) > inf
Aka

Pμ = 0, ∀u ∈ Aka ,

where

Aka :=
{

u ∈ Sa,r :
∫
RN

| (−�)
s
2 u|2 < ka

}
.

Proof The proof is similar to that of Lemma 6.16 and is omitted. ��
Proof of Theorem 1.10 Wecanproceed exactly as in the proof ofTheorem6.12, usingLemmas
6.19,6.20 and 6.21 instead of Lemmas 6.14,6.15 and 6.16, respectively. Thus, we omit the
details. ��

(b): μ < 0. For the defocusing critical perturbation, we prove Theorem 1.11.

Proof of Theorem 1.11 We can proceed exactly as in the proof of Theorem 1.9 with minor
changes, so we omit it. ��
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