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Abstract

We give an existence result for first order evolution equation of the type Ru’ + Au = f
where R may be a function depending also on time assuming positive, null and negative sign,
then the equation may be elliptic—parabolic, both forward and backward. The result is given
in an abstract setting with Banach spaces depending on time (the functions u are defined in
an interval [0, T] and u(z) € X(¢) for a.e. ) and R which is in fact a linear operator. We
also extend a previous existence result for the equation (Ru)’ + Au = f to the setting of
moving Banach spaces. We also give a time regularity result in a particular case and give
many examples of different possible choices of R.

Mathematics Subject Classification 35M10 - 35R20 - 35K90

1 Introduction

In this paper we consider differential equations of mixed type in abstract form whose concrete
model example is

r(x, Oup — div(|DulP?Du)y = f,  p>2, (1

where 7 is a function which may assume positive, null and negative values and consequently
this equation may be of elliptic—parabolic type, parabolic both forward and backward.

Equations of mixed type have been considered since at least one century ago, since, as far
as many authors say, they are mentioned in [7]. Here we recall some simple and more known
examples:
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du  0%u 0 ) du  9%u
x——— =0, sgn(x) — — —

or  ax2 B S T a2
The first was considered in [1] in 1968, the second one in [15] in 1971 and they clearly are
particular cases of equations like

+ku=f.

r(x)u; +Au = f )

where A is an elliptic operator and r a changing sign function. This type of equations seem
to be interesting in many areas and have arisen in connection with many different problems:
in the study of some stochastic differential equation, in the kinetic theory, in some physical
models (like electron scattering, neutron transport). For these applications we confine to
quote the recent paper [10] and for the many others we refer to the references contained in
the already quoted paper [15] and in [2,3]. Just in these papers Beals treated equations like
(2), but always with simple r. For instance, in [2] the equation

ou 0 5. 0U
X——-——|0-x)—) =0
at 0x 0x

is considered, but, as Gevrey seems to suggest and as Beals says, some coefficients like
r(x)=x", modd or r(x)=sgn(x)|x|”

are of interest in some applications. Among papers taking into account equations with some
more general r (and A linear) we recall [9,20]. In particular in [9] a coefficient depending
also on time is considered and a condition of regularity in time is requested, i.e.

r=r(x,t), rorp e L.

A recent paper where the author consider r = r(x, t) (and A linear) is [8]. Another paper we
want to recall is [16] which is more general, even if incomplete.

As regards equations like (2) where » > 0, the known results are more general than those
regarding forward—backward parabolic equations. We recall the paper [21] and the book (see
chapter 3) [22] for some general results. Finally we want to recall [4] for many examples and
applications of equations with non-negative coefficients.

All the results cited above are generalized in the present paper and in [17], where it is
considered the abstract equation

(Ru) + Au = f 3)

with suitable boundary data, where .4 is a monotone operator and R is a linear operator
depending also on time which can be not invertible. When R is a multiplication operator, i.e.
(Ru)(x,t) := r(x, t)u(x, t), also discontinuous and unbounded coefficients, i.e. r € Llloc’
are admitted without assuming the existence of ;. Just to show an example, an equation
included in the result in [17] is

(r(x,t)u), —div(|DulP~*Du) = f,  p=>2.
The aim of this paper is giving existence results for the equation
RI,{/ + Au = f7 (4)

‘R and A operators, with suitable boundary data, in a quite general setting and to extend to
this general setting also the results about Eq. (3). As regards boundary data, roughly speaking
and supposing (Ru)(x, t) :=r(x, t)u(x, t), we give the initial datum about u at time 0 where
r “is positive”, we prescribe a final datum for u at time T where r “is negative”, no datum
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is prescribed where r = 0, both at time ¢+ = 0 and + = T. These boundary conditions are
coherent with the Fichera conditions for the well-posedness of a boundary value problem of
elliptic—parabolic type (see the paper [6], but see also [11] for a more recent paper discussing
these conditions).
In the last section we give some examples which could help to clarify that.

Since we consider abstract equation we consider functions defined in [0, 7] and valued
in a Banach space. But the setting is not standard, we consider a family of triplets

V(@) C H(t) CV'(@), tel0,T], 5)

where V (¢) is a reflexive Banach space which continuously embeds in the Hilbert space
H (t), while V'(¢) denotes the dual space of V (¢). In this way our functions will be defined
in [0, T'] and, for each ¢ € [0, T'], u(¢) will denote an element in V (¢), H(t) or V' (t).

In the last section we show with some examples why this setting can be interesting.

2 Notations, hypotheses and preliminary results

Consider the following family of evolution triplets
V(t) CH(t) CV'(t) te[0,T] (6)

where H (¢) is a separable Hilbert space, V (¢) a reflexive Banach space which continuously
and densely embeds in H () and V'(¢) the dual space of V (r), and we suppose there is a
constant k which satisfies

lwllviey < kllwlae, and  vllae <k lvlive (N

forevery w € H(t), v € V(t) and every ¢t € [0, T].
We will suppose the existence of a Banach space U such that (for simplicity we consider
the constant & as in (7))

UcVv(@e) andllullye <klully forae.te[0,T]
U dense in V (t) forae.r € [0,T]

(®)
and define, for some p > 2, the set

U:=LP0,T;U).
Moreover we will suppose that the functions

t=u®llvey, t= lulung, = lu®llviae, t€I[0,T],

are measurable for every u € U and for the same p € [2, 400) used to define &/ we define
the spaces

v, H, V* )

as the completion of ¢/ with respect to the norms

T 1/p
lolly = ( / ||v(r>||€(,)dr> ,
T 1/2
lvllo = ( /0 ||v(r)||’;‘,(,)dz> ,
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T , 1/p
i1 i= ([ o ar)

Notice that C!([0, T]; U) is dense in V, H, V* and that, for f € V* and v € V, it makes
sense to evaluate

T
/0 (@), v®))viyxvdt.

From now on we will suppose that the following holds true:

[0,T]> ¢+ (ui,u2)u() belongsto coqo, 7)) for every uj, up € U,
[0,T]>t+ |lully¢) belongsto coqo, ) for everyu € U. (10)
[0,T1> ¢+ [ully/q) belongstoCO([0,T]) foreveryu € U.

Lemma 2.1 Denote by V' the dual space of V and assume (10) holds. Then V* = V.

Proof Consider the application

T
TV SV Ty = [ OO @vdr
On one hand we have immediately that

ITFlv < L fllv=

On the other hand, consider f € V*. For every & > 0 one can choose a subdivision of [0, T'],
ie.tp=0<1t; <t <...ty =T and a step function

N
W=y uixi(t), wi€U, xi(t)=1fortelti1,4),xit)=0fort ¢t 1,4),
i=1

and

If —uly <e.

Moreover consider ¢ : [0,T] — R, ¢ >0, ¢ € L?(0, T), such that

T
lellzror) <1 and /0 lu@) v ) dt > |lully+ — &. (11)
Notice that for g € H(t), z € V (¢) the duality between g and z satisfies

(& 2hviyxvey = (& DH@-

In particularif g, z € U we getthatf — (g, z)y )<V ) is continuous, and in fact uniformly
continuous in [0, T']. Now we choose v € V a step function

N
v=Y wip®)x)

i=1

with w; € U satisfying

lwillve) =1,

(i, wviayxvay = uillvie) — ¢,
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t 1
/ (uis wilvyxv e dt = / (i, Widviayxvey — et —ti—1)
ti—1 ti—1

= [(Mi, WiV )=V () — 8](fi —ti—1),

where the last inequality is due to the fact thatf — (u;, w;)v'(;)xv (1) is uniformly continuous.
By the (uniform) continuity of # — [Jw; ||y () for every i we get that, choosing the points
t; suitably near, we can suppose that

lwillvey < 1+e¢ forevery t € [ti_1,t;] and foreveryi € {1,...N}.
By (10) we can also choose {#;} in such a way that
Nuillviy = Nuillvrgy — & forevery ¢ € [ti_1,t;] and forevery i € {1,...N}.
Notice that

N
D wip®)xi ()

i=1

= lwillvey < (A +e)e)
20

1/p
||U||v=</0 O dr) <1+

T

T
(Tf,v)yxy =/0 (u®), vy @yxvndt +/(.) (f (@) —u@), v®))vi@yxvdt

lv@®llv e =

and then, by (11),

Then we have

€
1+¢

Now we focus our attention on the first term in the right hand side:

T
2/0 (u@®), vy @yxvedt —

/OTW(Z) v ndt = / Z i, i)y @@ xi(0dt
/ Z {wis Wiy @y<v @) —E]w(t)Xf(t)dt
/ Z llui ||V/(r,>—2€] (O xi (H)dt
/ Z Ilu v — 3e]¢<r)xl (t)dt

T

> luflye — de — 3¢ /0 o(1)dt

T
> [ fllye — 5 — 38/0 ()t

Summing up we have

(Tf,v)yxy

T ;>
ITflv = T+s

@ Springer



137 Page 6 0f 30 F. Paronetto

> ! 5 3 ! t)dt ¢
_m[nf”v*— & — ‘9/0 @(1) ]—m

By the arbitrariness of ¢ we finally get
ITflv = I1fllv=.
Then we have shown that 7 is a linear isometry between V* and V' and in particular that
T (V*) isaclosed subspace of V'.
Now consider v € V and suppose that
(Tf,v)yxy =0  forevery f € V*.
That is, taking ¢ € CO([0, T1: R), feVfand g = ¢f € V* we have

T
0=(Tg, v)yxy = /0 o) (@), vO))veyxv o) dt

for every continuous function ¢. Then { f (1), v(#)) v xv ) = 0 for almostevery ¢t € [0, T'].
Since V € ‘H C V' and for g € H, u € V one has

(g7 M)V/XV = (g7 U)H

one gets that, taking f = v one gets that

T T
0= fo (0 VO di = [0 W), O iy di = (v, V)

which clearly implies that v = 0. By that we finally derive that T (V*) is dense in V'. Being
also closed we conclude that T (V*) = V. O

By the assumptions above and supposing (10) by the previous lemma one gets that
VcHCV
with continuous and dense embeddings, with

lwiy < kllwly, and vl <k (vlly. 12)

Definition 2.2 Consider a family of linear operators R (¢) such that R depends on a parameter
t € [0,T]and

R(t) € L(H(t)) foreveryt € [0,T] (13)

being L(H (¢)) the set of linear and bounded operators from H (¢) in itself. We say that R
belongs to the class £(C1, Ca), C1, Ca > 0, if it satisfies what follows for every u, v € U:

o R(t) isself-adjoint and ||R(?)|l 2t )y < Ci1 foreveryt € [0, T],

Ot > (R(t)u, U)H(t) is absolutely continuous in [0, T'],

d
o ’E(R(t)u, Vol = Callullvillvlve — forae.te[0,T].

Now, given two non-negative constants C; and C;, consider R € £(Cy, C»). For every
t € [0, T] we consider the spectral decomposition of R(¢) (see, e.g., Section 8.4 in [14]) as
follows: since R(t) is self-adjoint we get that R®)? = R*(t) o R(t) is a positive operator;
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then we can define the square root of R(1)? (see, e.g., Chapter 3 in [14]), which is a positive
operator,

IR = (R(?)'?

and then define the two positive operators

1
Ry (1) == E(IR(I)I +R®),  R-(:=IR®)| — R4(0).

By this decomposition we can also write H (1) = H,(t) & Ho(t) ® H_(t) where H, . (t) =
(Ker R+ (1)* and H_(¢) = (Ker R_(¢))* and Hy(¢) is the kernel of R (¢). Finally we denote
Ho(t) = Ho(t) = Ker R(¢) and

ﬁ(t) I-L_ (1), H_ (t) = the completion respectively of H () H(t), H_(t) (14)
with respect to the norm ||w||1_;(t) = |R(t)|1/2w||H([).

Clearly the operation ~ depends on R. In this way R() = Ry (t) — R_(¢), |[R()| =
Ri(t)+ R_(t) and R4 (t) o R_(¢t) = R_(t) o R4 (t) = O (see, e.g., Theorem 10.37 in [14])
and R4 (t) : Hy(t) > Hy(¢t) and R_(¢) : H_(t) — H_(¢) turn out to be invertible.

Given an operator R € £(Cy, C») it is possible to define two other linear operators. First
we can define the derivative of R which, unlike R, is valued in £(V (¢), V'(t)), i.e. the set
of linear and bounded operators from V (¢) to V'(¢): since R € £(Cy, C2) we can define a
family of equibounded operators

R'(t), tel0,T], R'(t): V(@) — V'(t) by
d
(R'(Ou, v)y(yxv () = E(R(t)u’ U)H(,), u,vel.
By the density of U in V (¢) we can extend R’(¢) to V (¢).

Remark 2.3 Notice that the last request in Definition 2.2 and (8) imply that
Re W' >®0,T; LU, U").
Clearly if V(t) =V and H(t) = H foreveryt € [0,T], R € £(Cy, C3) simply means
ReL®0,T; LIH) NWh®0,T; LV, V).
Via R, R4, R_ and R’ we can also define

R:H—>H (Ru)(t) := R(t)u(t),
Ry tH—H  (Rew)(t) == Ry (Ou0), (15)
R -H—->H, (R_u)t):=R_(t)u(t),

which turn out to be linear and bounded by the constant C; and, by density of ¢/ in V, an
operator

T
R:v—=V by (Rlu, v)v’xv:/o (R'(Ou(t), v(O)) v iyxv )dt (16)

which turns out to be linear, self-adjoint and bounded by C;. As done before we can define,
in a way analogous to that done for the spaces (14),

H,H., H_ = the completion respectively of H H H_ a7

with respect to the norm [|w|l;; = 1RIY2w] 7, where |R| = R4 + R—.
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Analogously, we define H,. and H_ and P and P_ the orthogonal projections from 7{
onto H4 and H_ respectively. Hy is the kernel of R and Py the projection defined in H onto
Ho.

Remark 2.4 Notice that since R is self-adjoint and bounded we can define | R|(¢) 172, Ry (1) 172,
R_(1)'/? (see, e.g., Chapter 3 in [14]).

3 The existence result

In this section we will give one of the main results of the paper. We will consider a function
R such that, given two non-negative constants,

R € £(C1,Cp) (18)

and all the spaces we introduced in (6), (8), (9), (14) and from now on we will assume (10)
in such a way that Lemma 2.1 holds.
Our goal is to give an existence result for an abstract equation like

Ru' + Au = f

for some suitable operator A we will specify below.

We want to stress that, despite of the fact that no derivative of R appears in the equation,
we require R to be differentiable, i.e. R € £(C1, C2). This fact will be needed to get the
existence of a solution to the previous equation and we will also show (see example 6 in the
last section) that without this assumption at least uniqueness of the solution fails. Anyway
to require that R is diffierentiable is not so restrictive (as shown in the examples in the last
section) because if, for instance, R is a multiplication operator, i.e. Ru = r(x, t)u(x, t) for
some function r, R could be differentiable even if r is discontinuous.

We will use this assumption about R to split properly the operator u + Ru’ + Au as
indicated in (33) to give the existence of a solution.

We will use the operator R’ to define Ru’ in an apparently involute way. First for a function
u € YV C ‘H we consider the generalized derivative of Ru and require that it belongs to V',
where the generalized derivative is defined as a function w € V' such that

d
<w(t), v>V’(r)><V(t) = E(Ru(t)’ v)H(t) foreveryv e U .
Notice that by (8) we have
UcV)cH@) V@) cU',

than we can define in a classical way the generalized derivative of Ru in L? ' (0, T; U’y (here
p’ denotes p/(p — 1)), and then to require that (Ru)’ € V'.
For a function u € V for which Ru admits generalized derivative in V' we define

Ru' := (Ru) — Ru. (19)

With this definition in mind we now define the space
Wr={ueV|Ru eV} lullwe = llully + Ru[ly. (20
Remark 3.1 Notice the space {u € V| (Ru)’ € V'} endowed with the norm || [, coincides

with Wg . Indeed, in view of the definition of Ru’ given in (19), R'u belong to V'.
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Moreover one can endow this space both with the norm || - [lyy5; and with the norm
llull = llully + [[(Ru)'|ly since they are equivalent.

Proposition 3.2 Under assumption (18) we have that for every u,v € Wg the function
t = (RM®u(t), v(t)) u() is absolutely continuous and the following hold:

d
— (Ru(t), v(t
dt( @), v H @)
= (R'u(t), vit)) v yxv @) + (Ru' @), v())viiyxv ey + (R (), u(®))viyxv @)
and there exists a constant ¢, which depends only on T, such that
R
R}%l( @Ou@), v() )l
< C[“R“,”V’”U”V + IRV Iy llully + IR I 2w vy lulivllvlly + ||R||[:(H)||MHHHU||H]-

In particular if u = v we have

t
/ <Ru/(r)’M(T)>V/(r)><V(r)dT
S

1 L[
= 5[ @@ @0 ~ RO, w6 = 5 [ Ru@.u@)vwvodr

and

max [(R@u(@), u) | < ¢ llulljy, 2

where ¢ depends (only) on T, IR Nl vy, IR £eH)-

ProofForu, v € Cl([O, T1; U) one has

d
E(Ru(f), v(E))H @)

= (R'u(), v))viyxv ey + (Ru' @), v iy + (Ru), v' () m
= (R'u(), vO))v@yxv ) + (Ru' @), vO)viyxv @y + (R (@), ul®))vriyxv o)-

By the density of C 1[0, T1; U) one gets the first part of the thesis. Now we show the estimate.
First one can extend R, a function w € Wy and f € V' to [T, T] as follows

- [RG) rel0.T]
RO =Rl el-T.0)
- Jw@ tel0,T]
W =N (2t e [-T.0)
. ) f@®) tel0,T]
FO =17 n1el-T.0)

and similarly one extends

(W1 (@), W2(1)) j3 4y = (Wi (=), w2 (=) H(~r)

(F@), DOYWriyxvy = (F (=), W=D/ (—iyxv ()
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fort € [-T,0], w;,wp € H, w € V, f € V. Then consider a differentiable function
¢ :[-T,T] — R such that

o) =1 forr €[0,T], @(-T)=0, 0<¢'(t)<2/T foreverys e [~T,T].
Finally, for ¢ € [0, T]and u, v € CL([0, T1; U), we have
tog .
(RO, v(1)) ) = /_T e (R®ii(s). 5)) )| ds

t

t
= /Tgo/(s)(R(s)ﬂ(s), 0(9)) 5, 9 +/T @) R (9)ii(5), D(9)) 5, ds

t - t -
+fT<p(s)<R(s)zz’(s), ) ) 45 +fTw(s)(R(s)ﬁ/(s),zz(s»,;(s) ds
by which one concludes. O

Remark 3.3 By the previous result we get that [0, T] 5 ¢ + (R(#)u(t), w) g () is continuous
forevery u € Wg and w € U. In particular taking w4 such that P_(1)wy = 0 one gets that

[0, T3t (ROu(t), w)ue = (Ry(u(t), wy)yq)  is continuous.
In an analogous way, taking w_ € U N (H_(t) @ Hy(t)), one gets that (R_(*)u(t), w_) )

is continuous.

Now we prove a compactness result and, following the analogous in [13] (precisely Lemma
5.1 and Theorem 5.1), we divide the proof in a preliminary lemma and the compactness result.
We prove both the results because in our situation things are very different from the standard
case being the spaces defined in (5) depending on a parameter, while in [13] the spaces are
fixed.

The proof of Theorem 3.5 follows the ideas of the analogous one of Lions, but it is not an
immediate adaptation. To prove it we will use the following lemma.

Lemma3.4 Given R € £(Cy, C2), we have that for each n > 0 there is ¢, > 0 such that
IR ull < nllully + ey Rully
for everyu € U.

Proof 1If, by contradiction, we suppose that the thesis is false we have that there exist a value
of n, say 7, such that for each 4 € N there is u;, € U for which

lunlly = 1,
_ 22
RIV2upllzg > 7+ h | Ruplly, (22)
Then, since (k defined in (7))
HNRI"2upllne < V/Cillunlln < /Crk luplly = /Crk
we derive that
lim [|Ruylly = 0. (23)
h—+o0

Moreover, since ||u; |y = 1, we also get (up to select a subsequence still denoted by (u,) )
the existence of # € V such that

up, — u inV - weak.
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By this and (23) we have

lim <Ruh, uh)

LU lim (Ruh, uh)H = hlir_‘r_loo ||R1/2uh ||H =0,

VXV T o

12

where R1/2 = Ry — Rl_/z. Since |RY2up |l = II/RY?|uy || this contradicts (22). ]

Theorem 3.5 Then the space Wx compactly embeds in H.

Proof Consider a sequence (u,), such that ||uy [, < c.In particular, up to a subsequence,
u; — u weakly in V; for simplicity we can suppose that u = 0 and that ||uj |y = 1 otherwise
one can replace uy, by (u, — u)/||\up — u|ly. Then by Lemma 3.4 we have

IR unllze < 0+ eyl Rup .
We conclude if we show that

lim ||Rup|ly = 0. (24)
h—+400

Notice that, by Proposition 3.2, we have that
max |(R(H)up (1), up(t <&
max [(R(ODup(t), upn() @l < ¢
for some positive constant ¢. Now define, for each ¢ € [0, T'],
R'2(ty == RY* (1) — R ).
Then we get

max |(RY2(un (1), RV (Oun )| = &,

that is (we recall that || R(?)|l z(# )) < C1 for each 1)

IR (Oun () vy < kIR o RY2(@)un(®) ey < ky/Cyé. (25)

Being || R(t)u; (t)|lv' () equibounded, to get (24) it will be sufficient to show that the sequence
{IIR(®)up(®)|lv/@)}n converges to 0 pointwise. To show that we will confine to ¢ = 0, being
the choice of ¢ irrelevant. Fix § > 0, then consider ¢ € U such that
” R(O)Mh (O) ” V’(O) < <R(O)Mh (0)7 (P)V/(O)XV(O) + (S = (R (O)Mh (O), ¢)H(0) + 87
léllv < 1.

Notice that the function

(26)

[0,T]15 0+ (R(0)up(o), d) is continuous,

H(o)

in particulatin o = 0. Consider A € (0, 1] which will be fixed later and define the two spaces
H;. and V; as the completion of &/ with respect to the norms, respectively,

T T , 1/p'
lullag, = (/O ||u<r)||%,@,>dt) Dl = (/0 ||u(r>||c,@,)dr> .

Now define vy, () := R(At)uy (At) and notice that

172

—1/2 1-1/p
lonlg, < 2721 Runllze Ioplhy < 2177 1 RupY ly.
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Consider ¢ : [0, T] — [0, 1] such that ¢(0) = —1 and ¢(T') = 0: we have that
TTrd
(ROUA(0). 8) ) = / [— o(0) (R (1), ¢)H(m)} dt
:/ ¢ O (RGDUR(AD), ) 1

T
+ /0 POMRUL ). B30y ey T

Define ay, the first addend, b, the second one. Notice that

, AT 1/p AT 1/p
|bh|sx“‘/f’*”f’||(Ruh>’||w(/O Il () ds ) SC</0 ||¢||‘V’(S)ds) :

Then, after fixing ¢ > 0, we can choose A small enough such that
[bn| < e.

For the term a;, we have

T AT
|ah| =< A (/?%Z‘)(R()\I)Mh()\.f), ¢)H(M)dt = ‘)‘_1/(; (/)/()»_IS)(R(S)Mh(S), ¢)H(s)d5

Now since u; — 0 weakly in V we have that vy, = Ru, — 0 weakly in H and then we
derive that

ap — 0.

Then, since ](vh(O), ¢)H(0)| = ‘(R(O)uh(O), ¢)H(O)’ < |an| + |bx|, we conclude that
,m (R (©0)u (0, 6) ) =0

Then, from (26), we derive that

lim sup || R (0)u, (0) [ly0) < 8.

h—+o00

We can repeat the same argument for every ¢ € [0, T'] and get that for every § > 0

limsup [R(O)up(O)llyrqy <8  foreveryt € [0,T].

h—~400

By the arbitrariness of § we derive that || R(¢)u,(¢)|y' () converges to O for every t € [0, T']
and, since by (25) {||[R(t)u;(t)|lv/(+)}s is bounded, by Lebesgue’s theorem we get that

lim |[Ruply =0.
h—+o0
[m}

Before to state the existence result we recall some definitions and a classical result, for which
we refer to [23] (see Section 32.4).
Definition 3.6 Given a Banach space X, we say that an operator B : X — X' is coercive if

(Bx, x)

m
Ixl—+oo  ||x]|

— +00,
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is bounded if it maps a bounded set in a bounded set, is hemicontinuous if the map

t (B(u + tv), w> is continuous in [0, 1] for every u, v, w € X.

X'xX

A monotone and hemicontinuous operator B is of type M if (see, for instance, Basic Ideas of
the Theory of Monotone Operators in volume B of [23] or Lemma 2.1 in [22]), i.e. it satisfies
what follows: for every sequence (i) jeN C X such that

uj —>u in X-weak

Bl/tj — b in X’'-weak SN Bu = b. (M)
lim sup (Bu , jlyrex < (b, Uy x
Jj—+o0

Theorem 3.7 Let M : X — X' be monotone, bounded, coercive and hemicontinuous. Sup-
pose L : X — 2% to be maximal monotone. Then for every f € X' the following equation
has a solution

Lu+Mu> f

and in particular if L, M are single-valued the equation Lu + Mu = f has a solution.
If, moreover, M is strictly monotone the solution is unique.

Now we move to introduce our assumptions. Consider a family of operators
A : V() — V(@)
such that

t > (A()u, v) measurable on [0, T] for every u, v, € U

V() xV (1)
such that if we define the abstract operator
AV — YV Au(t) = A(t)u(t) 0<t<T. 27
this turns out to be
A monotone, bounded, coercive and hemicontinuous.
We denote
P:Wr — V., (Put) = Ru'(t)+Au(t), 0=<t=<T

where R is defined in (15) and satisfies (18).
Thanks to Remark 3.3 it makes sense to consider the two quantities

(R+(Ou(0), w)mo) and (R_(T)u(T), w_)u)
forevery wy € U N (H4(0) ® Ho(0)) and w— € U N (H_(T) ® Ho(T)) and then to define
W% ={ueWr | P-Ou©) =0P_(T)u(T) = 0}. (28)
Now we consider the three operators
1
Liu=Ru + 57a’u Lou=TRu', Lyu=Ru), D(EL)=W%i=123,

and state the following result.
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Proposition 3.8 The operator L : W% C V — V' is maximal monotone.
The operator L; : W% C V — V' is maximal monotone if

(R'u, u)yryy <0 foreveryu €V, (29)
the operator L3 : W% C V — V' is maximal monotone if
(R'u, u)yryy >0 foreveryu € V. 30)

Proof The proof is the same of the analogous in [17]. The only difference is that one has to
consider first u € C'! (0, T, U)N W% and then use the definition of V, V* and Lemma 22.
O

Definition 3.9 We say u is a solution of the problem

Ru' + Au = f
PL(0u0) =9
P_(THu(T) =,

where f € V', ¢ € H,(0), ¥ € H_(T),if u € Wg and
Ru'(t) + Au(t) = f(t) forae.te[0,T]

and the two conditions P1 (0)u(0) = ¢ and P_(T)u(T) = i are satisfied.
We say u is a solution of the problem

(Ru) + Au=f
PL(0)u(0) =¢ 3D
P_(T)u(T) =,

where f € V', ¢ € H,(0), ¥ € H_(T),if u € Wg and
(Ru) (t) + Au(t) = f(t) forae.te[0,T]
and the two conditions P4 (0)u(0) = ¢ and P_(T)u(T) =  are satisfied.

We start now giving an existence result for the following problem

Ru' + Au = f
PLOu0) =0 (32)
P_(TYu(T)=0

The ideanow is to apply the previous proposition and Theorem 3.7 to the equation Ru’+.Au =
f adding and subtracting a term involving the derivative of R and, in this way, to get the
sum of two operators satisfying assumption of Theorem 3.7. We will see with an example
(see example 6 in the last section) that, even if the derivative of R is not involved in the
equation, the lack of regularity in time for R can cause problems, at least lack of uniqueness
of solutions.

With this is mind we write

1 1
Ru' + Au = (Ru’ + 573’14) + (.Au — E'R/M) ) (33)

Theorem 3.10 Suppose R satisfies assumptions (18). Suppose true one of the following:

i)y M=A— %R’ is monotone, bounded, coercive and hemicontinuous.
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ii) M = A is monotone, bounded, coercive, hemicontinuous and (R'u, u)yrxy < 0 for
everyu € V.

Then problems (32) admits a solution for every f € V'. If moreover M is strictly monotone
the solution is unique.
Suppose true one of the following:

i) M=A+ %R’ is monotone, bounded, coercive and hemicontinuous.
iv) M = A is monotone, bounded, coercive, hemicontinuous and {R'u, u)yrxy > 0 for
everyu € V.

Then problems (31) with ¢ = ¥ = 0 admits a solution for every f € V'. If moreover M is
strictly monotone the solution is unique.

Proof The proof follows from Theorem 3.7 and Proposition 3.8, taking in Theorem 3.7
M = Mand Lu = Ru’ + %R’u inpoints i) and iii ), Lu = Ru’ in point ii ), Lu = (Ru)’
in point iv). O
Remark 3.11 In fact we obtain an existence result also for the Cauchy problem

Ru' + Au > f, ueWy.

Now we want to consider the Cauchy-Dirichlet problem with non-zero “initial” data

Ru' + Au = f
PL(0)u(0) =¢ (34)
P_(T)u(T) = .

To do that we have to add some assumptions, both on .4 and R. Assumptions on A are
explicitly given in the theorem which follows. Assumptions on R are more implicit and are
hidden in (35). Consider the following spaces:

U0) ={w e U |[P+(0)+ Po(O)]w € U} = U N (H1(0) & Hy(0)),
U_(T)={weU |[P_(T)+ Py(T)lw e U} = U N (H_(T) & Hy(T)).
(see (14) for the definition of H_, 1-70, 1:1+). Then we suppose
U, (0) dense in H,(0),  U_(T) dense in H_(T). (35)

This assumptions indirectly involves the operator R, as we show with an example at the end
of the paper (see example 2 in the last section).

Remark 3.12 We want to stress that we remove the assumption H, (0)NH_(T) = {0} which,
on the contrary, was made in [17].

Then the following theorem holds.

Theorem 3.13 Suppose (35) holds. Define the operator P : W — V' by Pu = Ru’ + Au
where R is defined in (15), R € £(Cy, Cp) and A : V — V' is hemicontinuous. Suppose that
there exist two constants «, B > 0 such that

(Au — Av — %(R’u —Rv),u— U>V’><V > oflu — v||%;,

(36)
Il Au — SR ully < Bllully
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or for some p € (2, 400)

P p—1
(Au — Av, u — v)yrxy > aflu — vy, [Aully < Bllull),

37
(Rlu,u)yrxy <0 7)

for everyu,v € V. Then there is a constant ¢ = c(«, B, p) (depending only on a, 8, p and
proportional to of% + ofpf%l) such that for every u € Wg
e = ¢ [IPulv + 1Pul " + IRV @G + IR ©u©) 57 )"
HIRVA DU ) + IR OO ]
Moreover for every f € V', ¢ € I:I+ ),y € H_(T) problem (34) has a unique solution.

Proof First we show the existence result: consider ®, W, ¢, ¥ € U with PL(0)® = ¢,
P_(T)V = ¢ and define

n(t) == 7(p+ Ly=p+o (w ¢), te€l0,T]

Now solve the following problem (one can easily verify that the operator Av := A(v + 1)
is bounded, coercive, strongly monotone and hemicontinuous)

RV + A +n) = f—Ry
P (0)v(0) =0
P_(THv(T)=0

and consider u = v + n; then the function u solves (34) with ¢, ¢ € U. Before concluding
we come to the estimates.
Notice that, since Pu = Ru’ + Au and, for p = 2, Pu = (Ru’ + %R’u) + (.Au — %R’u)
and by Proposition 3.2 we get for p > 2
allull{’} < (Au, u)yryy = (Pu, u)yryy — <Ru/, ”)v'xv

1
= (Pu,u)yryy — 5 [(R(T)u(T), u(T)) p(ry — (RO)u(0), u(0)) o) |
1
+{5Ru, >
<2 . V/><V
= (Pu,ulyxy + 5 [(R (T u(T), u(T) r(ry + (R (0)u(0), u(0)) 10y ]
1 1
—3 [(Ry-(T)u(T), u(T)) 11y + (R—(0)u(0), u(0)) 1y 0y | + <5R’u, u>
V'xV
< (Pu,u)ysy + 5 [(R (T)u(T), u(T)) iy + (R (0)u(0), u(0)) 1 (0) ]
and for p =2

1
oz||u||v <Au - ZR’u, u>
V'xV

1
= <plzl, M)v/xv - <RM/ + *R/M, l/l>
2 V'xV

1
= (Pu,u)yryy — 3 [(R(T)u(T), u(T))u(ry — (RO)u(0), u(0)) )]
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= (Pu,u)yxy + 5 [(R (T)u(T), u(T) u(r) + (R 0)u(0), u(0) 1 o)] -

Now, if we denote by ¢ the quantity p/(p — 1), for every € > 0 we can write
e’ L/lya/p p
IPullvlully = Nl + —(2) 1Puld, (38)
P q \€

by which we get the existence of a constant ¢ = c(«, p) which is proportional to a~!/7 (e.g.
choosing € such that €” /p = «/2) such that

1 1 1 1
el = e, p[IPuly?™" + (R, () 1l + (Re @), )11 |
for every p € [2, +00). Since Ru’ = Pu — Au we immediatly get

-1
|Ru' ||y, < WPullys + 1Aullys < I1Pullys + ¢ llull)

where ¢ depends on B and | R'|| when p = 2 and ¢ depends only on 8 when p > 2, by which
we get the thesis.

Now to conclude the existence result for general ¢ and 1 one can consider ¢ € H+ 0),
{VlS H—(T) two sequences (¢n)y C U+(0), Wn)y CU-_(T), oy — @ in H+(O) Yn — ¢
in H_(T), any f € V' and consider u,, the corresponding solutions. This can be done thanks
to assumption (35).

Similarly as done above one can obtain the estimate for the difference u, — u,

litn = um iy, + IR, — u, )Ilv'

[||R”2<T>(wn wmnH i + IR0 (@ — <pm)||H+(0)

12 222 12 221
HIRZ (T (WY — wm)”[-] (T) + IR (0)(pn — (pm)||H+(())

for every n, m € N, and then there is a function u € VV such that
uy, > u inyV and Ru, > Ru' inV.

Up to select a subsequence we also get that Au, weakly converge to some b € V' and then
(Aup, un)y <y — (b, u)y . Since A is monotone and hemicontinuous A is type M, then
we can conclude that b = Au. O

Similarly one proves the following theorem, which is an extension to the case of Banach
spaces depending on the parameter ¢ of the result stated in [17].

Theorem 3.14 Suppose (35) holds. Define the operator P : Wgr — V' by Pu = (Ru)' + Au
where R is defined in (15), R € E(Cy, Ca) and A : V — V' is hemicontinuous. Suppose that
there exist two constants «, 8 > 0 such that

1 2
<.Au—Jéllv—/l—i(R’u—R’v),u—v>v,XVzoc||u—v||v, (39)
lAu + 3 Rully < Bllully

or for some p € (2, +00)
—1
(Au — Av, u — v)yry = allu —vll}), I Aully < Bllullf, (40)

(Rlu, u)yrxy =0
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for everyu,v € V. Then there is a constant ¢ = c(«, B, p) (depending only on «, 8, p and
_1 _r=t
proportional too 7 +a P ) such that for every u € Wr,

1 —1 1/2 2(p—1 1/2 2(p—1
lullwr < ¢ [IPulv: + 1Pulyh ™ + IRV + IR Ouol5)”

HIRVA DD oy + IR OO )]
Moreover for every f € V', ¢ € I-L. (0), ¥ € H_(T) problem (31) has a unique solution.

Remark 3.15 If Ais linear we also have the corresponding existence results for the problems

Ru' +Au+rRu = f (Ru) + Au+ARu=f
Pr(Ou() =¢ PL(Ou0) =¢
P_(T)u(T) = P_(Tu(T) =

for every A € R. Itis sufficient indeed to consider the change of variable
v(1) = M u(r)

(one could also consider v(¢) = e*~ Dy (1) or v(t) = *T ~Du(t)) to obtain

RV + Av = f = fet (Rv) + Av = f = fe*
PL(0)v(0) = ¢ P (0)v(0) = ¢
P_(TYu(T) = Ty P_(THu(T) =Ty

—At

which has a unique solution v. Then u(t) = v(t)e™"' solves the original problem.

3.1 A time regularity result

Here we give a regularity result for the solution of (34) and (31) only in the following special
case:

p=2 and Alinear

Vity=V, Ht)=H,

A(t) = A, 1i.e. Aindependent of ¢,

R(t) =R, i.e. R independent of ¢.

For a much more detailed study about regularity, not only in ¢, we refer to [19].

Theorem 3.16 Under the assumption of Theorem 3.13 and given f € V', ¢ € 1:1+, Ve H_
denote by u the solution of problem (34). Suppose moreover that R € £(Cy, Cy), that A
satisfies

2
(Au— Av,u —v)yrxy = afu —vly, lAully: < Bllully

foreveryu,v € V.Assumethat f', the generalized derivative of f , belongs to V' and suppose
there exist ug, ur € V such that Pyuo = ¢, P_ur = (P4 and P_ the projections from
H onto Hy and H_, respectively) f(0) — Aug € Im R, f(T) — Aur € Im R. Then

(i) ue H'(0,T; V),
(ii) there is ¢ > 0 depending (only) on a2, B, | All, such that

lullwg + llu'llwg + sup llu@lly
1€[0,T]
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2 2
= eI + 1R Puoli, + IR ur s
—-1/2
Hf v+ IR PO (£ 0) = Auo) ]l
+HIRZ P[P (£T) = Aur)]iln |
Proof Consider u to be the solution of the problem

Ru' 4+ Au=f
Piu(0)=¢
Pu) =y

and v the solution of
Rv + Av=f'

Prv(0) = RT'[P4(f(0) — Aug)] 1)
P_v(T) = RZ'[P_(f(T) — Aur)]

with

upeV,ur eV, Piug=¢, P_ur =1,
PL[f(0) — Aup] € Im R,
P_[f(T)— Aur] e ImR_. 42)

Denote by v the solution of (41) and consider
t
w(uo; t) = w(t) = ug —I—/ v(s)ds.
0

Clearly w € H'(0, T; V). Writing Rv’ as (Rv)’ — R'v and integrating the equation in (41)
in [0, 7] one obtains

t
Ru(t) = Rv(0) —/ Av(s)ds + f(t) — £(0).
0

Since w’ = v by the previous equality we can derive that

t
Rw'(t) = Rv(0) —/ Aw'(s)ds + f (1) — f(0)
0
= Rv(0) — Aw(?) + Aw(0) + f(t) — £(0).
Then we get

R(w —u) (1) + A(w —u)(t) =Rw'(t) + Aw(t) — f(t)
=[Rv(0) — Aw(@) + Aw(0) + f(t) — f(O)] + Aw(t) — f(@)
=Rv(0) — f(0) 4+ Aup.

Notice that by assumption Rv(0) — f(0) + Aug = 0 € H and, by (41),
P+[Rv(0) —F0) + AM()] —0 inH,
but we can choose u¢ in such a way that

Rv(0) — £(0) + Aup =0  inH. 43)
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We can do that, if necessary, modifying uo and taking ug € V to be the solution of the
problem

Az = f(0) — Rv(0), zeV.

Clearly in this way the initial condition in (41) is maintained. Therefore, since u satisfies
(43), we have that the function w — u solves the problem

Ry +Ay=0
Pyy0)=0 , (44)
P_y(T)=P_ [uo +/ v(s)ds — uT]

0

Now consider the function

t T t
wur;t) =w) :=ur —l—/ v(s)ds = [ur —/ v(s)ds] —I—/ v(s)ds,
T 0 0

Similarly as done for w, but now integrating between 7 and ¢ € (0, T), we get that the
function w — u solves the problem

Ry +Ay=0

T
Py (O = Py [ur - /0 (s)ds — o]
P_y(T)=0

where ur is chosen is such a way to solve Aur = f(T) — Rv(T),ur € V.
Now define the function z := w — w and notice that

T
w(ug, t) — wur,t) =ug —ur + / v(s)ds isindependent of ¢
0

and in particular z is the solution of the (e/liptic) problem
R + Az =Az=0. (45)

Thenz =0,ie.w —w =0, i.e.

T
uy — ur —I—/ v(s)ds = 0.
0

By that we derive that the solution of problem (44) is 0O, i.e.
w—u=0.

By that, being w’ the solution of (41), we also get the estimate of point ii ). O

4 Examples

In this section we present some simple examples of possible choices of R and A for the
equation considered in Sect. 3. These examples should help to understand which kind of
operators R are admissible and combining these examples one could imagine some more
general situations which satisfy the conditions assumed in the theorems given in the previous
sections.

1 - The equation Ru' + Au = f
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In the first examples which follow we consider T > 0, 2 C R” open set with Lipschitz
boundary and

U=V(@)=H(RQ) and H() =L*Q) foreverys € [0,T],

A@t) : H)(Q) — H(Q)

(A(u)(x) :== —div,a(x, t, Du(x)) + b(x, t, u)

witha : Q x (0,T) xR" > R", b:Qx(0,T) xR — R,

verifying Ao [6]° <a(x,t,£) & < Ao |E*  and  [b(x.t,w)| < M |u(x)| (46)

for every £ € R” and for some positive A,, A, and some M > 0. Then A will be defined as
in (27). We fix now our attention on the operator R. Consider a function

r:Q2x[0,T] — R, reL®(Qx(0,T))
and
R(0):L*(Q) — L*(Q),  (R(MOu)(x) :=r(x, Hu(x).
Finally for every ¢ € [0, T] we denote
Q1) :={xeQ|r,n >0},
Q_(t):={xeQ|r,n <0},
Qo) :==Q\ (24 NQ-) 47)
and (see also (14))
r4 the positive part of r, r— the negative part of r,
H,(0) = L*(S24(0), 74+ (-, 0)) the completion of C (2 (0))
w.r.t. the norm ||w||2 = / wz(x)r‘+(x, 0)dx,
Q4(0)
H_(T)=L*(Q_(T),r—(-,T)) the completion of C.(24(0))

w.r.t. the norm |w||> = / w2(x)r_(x, T)dx . (48)
T)

Then consider the problem, for some f € L2(0,T; H~'(Q)), ¢ € H.(0), ¥ € H_(T)

rx,Hu; + Au = f(x,t) inQx(0,7T)
ux,1)=0 for (x,t) € Q2 x (0,T)
u(x,0) = p(x) for x € Q4(0)

ux,T) =1v(x) forx € Q_(T).

(49)

1. Clearly Theorem 3.13 includes the “standard” equations. If 7 = 1 we have the forward
parabolic equation

ur+Au=f(x,t) inQx(@O,7T)

ux,t) =0 for (x,t) € 02 x (0, T)
u(x,0) = px) forx € Q,
if = —1 we have the backward parabolic equation
—ur+Au= f(x,t) inQ2x(0,T)
u(x,t)=0 for (x,7) € a2 x (0, T)
ulx, T)=1v(x) for x € Q,
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if » = 0 we have a family of elliptic equations

A(t)u(t) = f(t) inQforae.t €(0,7)
u(-,t)=0 for (x,t) € 92 x (0,T).

2. Suppose r = r(x), r € L>®(R2). As long as r > 0 every function is admitted, even, for
example,

r(x) =1 in Q4, r(x) =0 in Qo,

Q4 and ¢ Cantor-type sets of positive measure.

This because clearly R belongs to the class £ defined in Definition 2.2 and because
assumption (35) is satisfied. This last assumption might not be satisfied if one considers
a generic r € L°°(Q), if for instance

r(x) =1 in Q4, r(x) =0 in Qo, rx)y=—1 inQ_,

Qy, Qp, Q_ Cantor-type sets of positive measure.
The request (35) is surely satisfied if there are two open sets Ay, A with
AlNAy =0, Qy C Ay, Q_CA;.

3. Suppose r = r(t). Assumptions (18) are satisfied if r € W12°(0, T), therefore every
r € W(0, T) is admitted. Two interesting situations are the following: the first when
7(0) > 0 and 7(T) < 0 leads to the problem

rOu; +r'Ou+Au=f inQx (0,T)

ulx,t)=0 for (x,t) € 92 x (0, T)
u(x,0) = p(x) for x €
ulx, T) =v(x) for x €

where a datum is given in the whole €2 both at time O and at time 7'; the second where
r(0) <0 and r(T) > 0, which leads to the problem

r(Ou;+r'Ou+Au = f  inQx (0,T)
ulx,t) =0 for (x,1) € 02 x (0,T)

where no information is given in the whole Q2 both at time 0 and at time T .
4. More interesting is the case when r = r(x, t). As long as

ar
r and o e L®(Q x (0,T))

the situation is very similar to that analyzed in example 3, so every r such that r, 7, €
L®(Q2 x (0, T)) is admitted, provided that assumption (35) is satisfied. Suppose now

r does not admit a partial derivative with respect to time.

Well, assumption (18) could be satisfied anyway. To show it we consider a very simple
example: suppose n = 1, 2 = (a, b), T > 0, consider a function

y 1 00,T1— (a,b), yeW"™0,T)
and define the sets

wp={(x, ) eQx O, T)|x <y®},  wp:=(Rx(0,7))\ wyt (50)
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and the function r

1 in w4

r(x, 1) = Yo, (X, )= {0 in wo. (51)

To verify that R € £ we consider wy, wy € HO1 (a, b) and evaluate

d d (b
2 (ROwLw2) 5, ) = E/a w1 () w2 (X)r (x, 1) dx =

d rro

= wi (w2 (x) dx = wi (y (1) way (1)) ¥ (@),

then foru € V = L%(0, T; H} (»)) we have

T
(R’u,u)v,xv:/o (uy (0), D)y (@) di .

Moreover notice that, as long as y is decreasing so that ¥’ < 0, assumption (39) in
Theorem 3.13 is easily satisfied, since

1 / /
A—-R : V>V
2
turns out to be bounded thanks to the fact that y’ is bounded, and

(Au — Av — %(R’u —Rv),u— U>V,Xv > (Au — Av,u — v) Aol — ]|},

V'xV z

In Figure 1.a below two possible admissible configurations are shown, the first one
referring to a situation when w4 and wq are like those defined in (50), the second one
refers to a possible configuration with

wp={x, ) eQx O, T)|x>y®},  wr=(Rx (0,7))\ ws.
Now suppose that

esssupy’(¢) > 0.
[0,7]

Notice that there is a constant C such that for every w € HO1 (a, b)

(w@)| = Cllwlyqy  foreveryx €la,bl,

then, finally, foru € V = L2(O, T, HO1 (2)) we have

1, 1T ,
_§<R u, u)V/XV = —EA' (M(]/(t), [))2 y ([)dt

T
l/ (u(y @), t))2 essiTrﬁf (—y'®)dt

>
=2 J [0,
1T 2 ,
> —— (u(y(t), t)) esssup y (1) dt
2 Jo [0.T]
2
>

—— esssupy/(1) llull3,
[0,T]
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a b
t t
3 3
2 2
1 1
4 5 4 5
Fig. 1 Two possible examples with R’ < 0
t
3
2 r=1
1 r=90
x
1 2 3 4 5
Fig.2 An example where the sign of R’ changes
and then
(Au — Av — l(72/u —R'v), u —v) > — C—z esssup ¥’ (t) | lu — vl|?
’ / - o .
2 V' xV 2 0.7] \Z
Then the first assumption required in (39) in Theorem 3.13 is satisfied if
c? ,
Ao — —— esssupy () > 0
2 o
and then y can be also increasing, provided that
esssup y’(t) < 2t (52)
[0.7] c?

A possible configuration is shown in Figure 2, where y’ is not necessarily negative, but
it has to satisfy (52).

Analogous considerations can be made if n > 2: taking the simplest example

r('x7 t) = Xw+(x7 t)
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where for each ¢ € [0.T] we have Q = Q4 (t) U Qo(¢) and

o= 0.  we=J20).
t t
In this case we need that that for wy, wy € HO1 (R2) the following hold:

t— wi(x)wy(x)dx  is differentiable,
Q@)

d / wi(xX)wa(x) dx
24.(1)

dt

< C |lwy ||1-101 (Q)||w2||[-[0| Q)
for some positive C , since

(R(Owy, wg)Lz(Q) = /;2 wi (X)w2(X)r(x, t)dx = / wi(xX)wa(x)dx.

Q4(1)

These hold if Q24(#) is open and the interface separating 24 (¢) and Q0(¢) is Lipschitz
continuous (see, e. g., Proposition 3, section 3.4.4, in [5]). Moreover, since u, v € HOl (2), it
makes sense to consider the trace on this interface (see, e. g., Theorem 1, section 4.3, in [5]).

5. We want to show a little example where the regularity result stated in Theorem 3.16

holds. First suppose that (35) and (39) are satisfied, so to have a solution.
About r consider

r=r(), relL®Q).

As regards the operator .A, consider, for instance, it is like (46), but with @ and b inde-

pendent of ¢, i.e.

a=a(x), b = b(x)

To consider a simper example suppose b(x, ) = b(x)u with b € L°°(2). Now consider
f e HY(0, T; H~1()) and the two functions u¢ and u7 solutions respectively of the

two problems

= —diva(x, Du) + b(x)u = f(0) inQ

u=20 in 92
—diva(x, Du) +bx)u=f(T) inQ
u=0 in Q2

and consider ¢ the restriction to 2 (0) (see (47)) of up and i the restriction to Q2_(T')

of ur.
Then the solution u of (49) belongs to HY0,T; HO1 (2)).

6. The equation we considered in Sect. (3) is Ru’ + Au = f. Nevertheless we required
some regularity assumption about R, precisely that R € &, the class defined in Definition

2.2. With this example we want to show that at least uniqueness is lost if R ¢ £.
Consider

— i) = —1 fort<T)2
TETUEY L fore>T)2

and the problem (49) with this r. Clearly
Q)= (T)=9.
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Then we can fix n € H(} (£2) and solve separately the two problems

—ur+Au=f inQx0,T/2) fu+Au=f in Q2 x (T/2,0)
ux,t)=0 indQ2 x (0,7) ux,t) =0 ind2 x (0,T)
u(x,T/2) =n(x) inx € Q u(x,T/2) =nkx) inx € Q

and call « the solution of the first problem, u> the solution of the second problem. Notice
that the function u"(¢t) = uy(¢t) fort € [0, T /2], u"(¢t) = us(¢t) fort € [T /2, T] solves
problem

rug+Au=f inQx(0,T/2)
ulx,t)=0 ind2 x (0,T)

and this is true for every n € HO1 (£2), and so we have infinite different solutions.
Notice that if r depends only on ¢, (0) < 0, 7(T) > 0, r increasing and continuous the
problem above has a unique solution, even if there are no initial and final data.

In the following example we modify (46) and consider for .A a monotone operator whose
growth is more than linear. We consider the simple example where p > 2 (one could also
consider p > 2n/(2 + n) is such a way that W17 C L2, but for simplicity we confined to
p=2)

U=Vt = Wol’p(Q) and H(t) = LZ(Q) forevery t € [0, T'],

Ay WP (@) — Wb (@)

(A(u)(x):=— diva(x,t, Du(x)),

witha : Q x (0,7) x R" — R”",

verifying A, [§|7 < a(x,1,£)-& < A, |E]P (53)

for every & € R” and for some positive A,, A,.

7. With A like in (53) all things we said in examples 1,2,3,4 hold, except one. Since R’ is
linear, R’ is not comparable with .4, then in this case to have assumption (40) in Theorem
3.13 satisfied we have to confine to some R such that

1
_ER/ is a positive operator.
Then we can consider the functions considered in example 4, but we have to confine to
non-increasing y in the first example and to some 24 () such that
d
— wi(x)wa(x)dx <0 (and clearly bounded)
dt Jo, o

in the more general case. So in this case examples like those shown in Figure 1 are
admissible, but that in Figure 2 is not.

8. Now consider the following R : [0, T] — £(L?(S2)). For a fixed function r € LOQ(Q X
Q x [0, T]) we define

(Ru)eri= [ reeyoutndy  we L@,
Q
Clearly r could be a convolution kernel, i.e. 7 (x, y, ) = r(x — y, t) (suitable extended

to zero outside of  x (0, T)). If assumptions (35) and (39) are satisfied if p = 2, e.g.
if the situation is like that in (46), or if (35) and (40) are satisfied if p > 2, e.g. if the
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situation is like that in (53), we have the existence and uniqueness of the solution of the
following problem

/ r(x,y,Hu(y,t)dy + Au=f inQx(0,T),
Q

u=20 indQ2 x (0,7),
u(-.0)=¢ in H,.(0),
uG-,T)y =1 in H_(T).

Notice that Ru’ in (34) belongs, a priori, to V', but this is well defined since we recall
that Ru’ = (Ru)’ — R'u.

In this case we have to give the initial and final data respectively in the space /. (0) and
H_ (T) (defined in (14)) which in the previous cases are those defined in (48).

Now we want to show some examples of varying spaces in which the Banach spaces V (¢)
are varying with time.

9. Unbounded coefficients. Another admissible situation is the following. Consider two
functions

w, A e LY % (0,T)).

Suppose A > 0 a.e. while u can change sign and also be zero. Denote by |fi| a suitable
function (see [18] or [19] for this detail) such that || > 0 a.e. (we choose |i| = A where
n =0)and

_— n injx,t) e RxO0,T)|ux,t) >0
=1 _0 in{(r.0eQxO.T)|pux.0) <0

and the weighted Sobolev spaces for p > 2 (also for these details about this spaces we
refer to [18] or to [19])

H(@) = LA(Q A1), V) = Wy P (2, 11l 0, A, 1)

In this case (see again [18]) one has that there is ¢ > p such that Wol’q (2) is dense in
V (t) for every t € [0, T]. Then we consider

U= W&’q(Q), V() and H(t) asabove,

A@): V()= V()

(A(u)(x):=— diva(x,t, Du(x)),

witha : Q x (0,T) x R" — R”",

verifying  A(x, 1) [§|7 <a(x,1,6) & < LA(x, 1) [E|7 (54)

for every £ € R” and for some L > 1.
Consider the spaces and the operator just introduced and once defined

Q@) :={x eQ|uC,n >0},
Q1) :=={x e Q|uC. 1 <0},

define the operators

R(@): L2 (Q,1ul (D) = L2(Q, [ul ¢ 0),  R@:=P4(@) = P-(0),
Pi(t): LZ(Q, [l (-, z)) — L2(9+(t), [l (-, I)) the orthogonal projection,
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P_(t): LQ(Q, |G, 1) — LZ(Q_(t), lul(-, 1)) the orthogonal projection.

In this way R (¢) turns out to be bounded for every ¢ even if 1 is unbounded and we will
need (see (13)) that the following function is absolutely continuous (and differentiable)

for every u, v € W&’q(Q):

t (RO, v) :/Q mu(x)u(x) |il(x, 1) dx —/

Q_(t

)M(X)v(X) |l (x, 1) dx =

:/ u(x)vx) u(x, t)ydx.
Q

Then for every ¢ € L?(Q24(0), u+(-,0)), ¥ € L*(Q_(T), u—(-,T)) and f € V' the
problem

wx,Hu; +Au= f(x,t) inQx(0,7T)

u(x,t) =0 in 92 x (0, T)
u(x,0) = ¢(x) in ©24.(0)
u(x, T) = ¥ (x) in Q_(T)

has a unique solution.
10. The analogous of example 8 with unbounded coefficient can be considered, then, adapting
examples 8 and 9, one can consider

/ wx, y, Du(y, )dy + Au(x, t) = f(x,t) inQx(0,T),
Q

u=0 in 92 x (0, 7T),
u-,0)=¢ in H,(0),
ut-,Ty=1vy in H_(T).

where
pwel'(Q2xQx0,T))

and A, for instance, as in (54).
11. Another example of varying spaces is the following: consider first a function ¢ : Q2 —
[1, +00)

L1O(Q):= {u € LIIOC(Q)’ / ()99 dx < —|—oo}
Q

endowed with the norm (see, for instance, [12] for definitions and properties of these

spaces)
q(x)
1O ge <1 I .

A

el Lge)(g):=inf [A > 0‘ /
Q

Clearly WOl 4 (Q) is defined as the space
Wy O @i=fu e Wi @ |u e L70(@) and Du e 110 @)

endowed with the norm ||u ||L(,(.>(Q) + | Du ||Lq<,)(9).
If now we have a function

p:Qx[0,T] — [2, pol
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for some p, > 2 we can consider

U=wyP@, vO=w,"""@. Ho=LQ.
A@) V(@) = V()
(A(u)(x):=— diva(x,t, Du(x)),
witha : Q x (0,T) x R" — R",
verifying Ao [§17%0 < a(x,1,8) - § < A, €7
for every & € R” and for some positive A,, A,. If
p:Q2x[0,T] — [2,400)
one can simply consider, if U does not need to be a Banach space,
U=ChR).
Then problem (49) has a unique solution for r like in the examples 1-8.
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