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Abstract
We give an existence result for first order evolution equation of the type Ru′ + Au = f
whereRmay be a function depending also on time assuming positive, null and negative sign,
then the equation may be elliptic–parabolic, both forward and backward. The result is given
in an abstract setting with Banach spaces depending on time (the functions u are defined in
an interval [0, T ] and u(t) ∈ X(t) for a.e. t) and R which is in fact a linear operator. We
also extend a previous existence result for the equation (Ru)′ + Au = f to the setting of
moving Banach spaces. We also give a time regularity result in a particular case and give
many examples of different possible choices of R.

Mathematics Subject Classification 35M10 · 35R20 · 35K90

1 Introduction

In this paper we consider differential equations ofmixed type in abstract formwhose concrete
model example is

r(x, t)ut − div (|Du|p−2Du) = f , p ≥ 2, (1)

where r is a function which may assume positive, null and negative values and consequently
this equation may be of elliptic–parabolic type, parabolic both forward and backward.

Equations of mixed type have been considered since at least one century ago, since, as far
as many authors say, they are mentioned in [7]. Here we recall some simple and more known
examples:
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∂u

∂t
− ∂2u

∂x2
= 0, sgn(x)

∂u

∂t
− ∂2u

∂x2
+ k u = f .

The first was considered in [1] in 1968, the second one in [15] in 1971 and they clearly are
particular cases of equations like

r(x)ut + Au = f (2)

where A is an elliptic operator and r a changing sign function. This type of equations seem
to be interesting in many areas and have arisen in connection with many different problems:
in the study of some stochastic differential equation, in the kinetic theory, in some physical
models (like electron scattering, neutron transport). For these applications we confine to
quote the recent paper [10] and for the many others we refer to the references contained in
the already quoted paper [15] and in [2,3]. Just in these papers Beals treated equations like
(2), but always with simple r . For instance, in [2] the equation

x
∂u

∂t
− ∂

∂x

(
(1 − x2)

∂u

∂x

)
= 0

is considered, but, as Gevrey seems to suggest and as Beals says, some coefficients like

r(x) = xm, m odd or r(x) = sgn(x) |x |p
are of interest in some applications. Among papers taking into account equations with some
more general r (and A linear) we recall [9,20]. In particular in [9] a coefficient depending
also on time is considered and a condition of regularity in time is requested, i.e.

r = r(x, t), r , rt ∈ L∞.

A recent paper where the author consider r = r(x, t) (and A linear) is [8]. Another paper we
want to recall is [16] which is more general, even if incomplete.

As regards equations like (2) where r ≥ 0, the known results are more general than those
regarding forward–backward parabolic equations. We recall the paper [21] and the book (see
chapter 3) [22] for some general results. Finally we want to recall [4] for many examples and
applications of equations with non-negative coefficients.

All the results cited above are generalized in the present paper and in [17], where it is
considered the abstract equation

(Ru)′ + Au = f (3)

with suitable boundary data, where A is a monotone operator and R is a linear operator
depending also on time which can be not invertible. WhenR is a multiplication operator, i.e.
(Ru)(x, t) := r(x, t)u(x, t), also discontinuous and unbounded coefficients, i.e. r ∈ L1

loc,
are admitted without assuming the existence of rt . Just to show an example, an equation
included in the result in [17] is(

r(x, t)u
)
t − div (|Du|p−2Du) = f , p ≥ 2.

The aim of this paper is giving existence results for the equation

Ru′ + Au = f , (4)

R and A operators, with suitable boundary data, in a quite general setting and to extend to
this general setting also the results about Eq. (3). As regards boundary data, roughly speaking
and supposing (Ru)(x, t) := r(x, t)u(x, t), we give the initial datum about u at time 0 where
r “is positive”, we prescribe a final datum for u at time T where r “is negative”, no datum
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is prescribed where r = 0, both at time t = 0 and t = T . These boundary conditions are
coherent with the Fichera conditions for the well-posedness of a boundary value problem of
elliptic–parabolic type (see the paper [6], but see also [11] for a more recent paper discussing
these conditions).
In the last section we give some examples which could help to clarify that.

Since we consider abstract equation we consider functions defined in [0, T ] and valued
in a Banach space. But the setting is not standard, we consider a family of triplets

V (t) ⊂ H(t) ⊂ V ′(t), t ∈ [0, T ], (5)

where V (t) is a reflexive Banach space which continuously embeds in the Hilbert space
H(t), while V ′(t) denotes the dual space of V (t). In this way our functions will be defined
in [0, T ] and, for each t ∈ [0, T ], u(t) will denote an element in V (t), H(t) or V ′(t).

In the last section we show with some examples why this setting can be interesting.

2 Notations, hypotheses and preliminary results

Consider the following family of evolution triplets

V (t) ⊂ H(t) ⊂ V ′(t) t ∈ [0, T ] (6)

where H(t) is a separable Hilbert space, V (t) a reflexive Banach space which continuously
and densely embeds in H(t) and V ′(t) the dual space of V (t), and we suppose there is a
constant k which satisfies

‖w‖V ′(t) ≤ k ‖w‖H(t), and ‖v‖H(t) ≤ k ‖v‖V (t) (7)

for every w ∈ H(t), v ∈ V (t) and every t ∈ [0, T ].
We will suppose the existence of a Banach space U such that (for simplicity we consider

the constant k as in (7))

U ⊂ V (t) and ‖u‖V (t) ≤ k ‖u‖U for a.e. t ∈ [0, T ]
U dense in V (t) for a.e. t ∈ [0, T ] (8)

and define, for some p ≥ 2, the set

U := L p(0, T ;U ).

Moreover we will suppose that the functions

t 	→ ‖u(t)‖V (t), t 	→ ‖u(t)‖H(t), t 	→ ‖u(t)‖V ′(t), t ∈ [0, T ],
are measurable for every u ∈ U and for the same p ∈ [2,+∞) used to define U we define
the spaces

V, H, V∗ (9)

as the completion of U with respect to the norms

‖v‖V :=
(∫ T

0
‖v(t)‖p

V (t)dt

)1/p

,

‖v‖H :=
(∫ T

0
‖v(t)‖2H(t)dt

)1/2

,
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‖ f ‖V∗ :=
(∫ T

0
‖ f (t)‖p′

V ′(t)dt

)1/p′

.

Notice that C1([0, T ];U ) is dense in V,H,V∗ and that, for f ∈ V∗ and v ∈ V , it makes
sense to evaluate ∫ T

0
〈 f (t), v(t)〉V ′(t)×V (t)dt .

From now on we will suppose that the following holds true:

[0, T ] � t 	→ (u1, u2)H(t) belongs to C0([0, T ]) for every u1, u2 ∈ U ,

[0, T ] � t 	→ ‖u‖V (t) belongs to C0([0, T ]) for every u ∈ U .

[0, T ] � t 	→ ‖u‖V ′(t) belongs to C0([0, T ]) for every u ∈ U .

(10)

Lemma 2.1 Denote by V ′ the dual space of V and assume (10) holds. Then V∗ = V ′.

Proof Consider the application

T : V∗ → V ′, 〈T f , v〉V ′×V =
∫ T

0
〈 f (t), v(t)〉V ′(t)×V (t)dt .

On one hand we have immediately that

‖T f ‖V ′ ≤ ‖ f ‖V∗ .

On the other hand, consider f ∈ V∗. For every ε > 0 one can choose a subdivision of [0, T ],
i.e. t0 = 0 < t1 < t2 < . . . tN = T and a step function

u =
N∑
i=1

uiχi (t), ui ∈ U , χi (t) = 1 for t ∈ [ti−1, ti ), χi (t) = 0 for t /∈ [ti−1, ti ),

and

‖ f − u‖V∗ < ε.

Moreover consider ϕ : [0, T ] → R, ϕ ≥ 0, ϕ ∈ L p(0, T ), such that

‖ϕ‖L p(0,T ) ≤ 1 and
∫ T

0
‖u(t)‖V ′(t)ϕ(t) dt ≥ ‖u‖V∗ − ε. (11)

Notice that for g ∈ H(t), z ∈ V (t) the duality between g and z satisfies

〈g, z〉V ′(t)×V (t) = (g, z)H(t).

In particular if g, z ∈ U we get that t 	→ 〈g, z〉V ′(t)×V (t) is continuous, and in fact uniformly
continuous in [0, T ]. Now we choose v ∈ V a step function

v =
N∑
i=1

wiϕ(t)χi (t)

with wi ∈ U satisfying

‖wi‖V (ti ) = 1,

〈ui , wi 〉V ′(ti )×V (ti ) ≥ ‖ui‖V ′(ti ) − ε,
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∫ ti

ti−1

〈ui , wi 〉V ′(t)×V (t) dt ≥
∫ ti

ti−1

〈ui , wi 〉V ′(ti )×V (ti ) − ε(ti − ti−1)

=
[
〈ui , wi 〉V ′(ti )×V (ti ) − ε

]
(ti − ti−1),

where the last inequality is due to the fact that t 	→ 〈ui , wi 〉V ′(t)×V (t) is uniformly continuous.
By the (uniform) continuity of t 	→ ‖wi‖V (t) for every i we get that, choosing the points

ti suitably near, we can suppose that

‖wi‖V (t) ≤ 1 + ε for every t ∈ [ti−1, ti ] and for every i ∈ {1, . . . N }.
By (10) we can also choose {ti } in such a way that

‖ui‖V ′(ti ) ≥ ‖ui‖V ′(t) − ε for every t ∈ [ti−1, ti ] and for every i ∈ {1, . . . N }.
Notice that

‖v(t)‖V (t) =
∥∥∥∥∥

N∑
i=1

wiϕ(t)χi (t)

∥∥∥∥∥
V (t)

= ϕ(t)‖wi‖V (t) < (1 + ε)ϕ(t)

and then, by (11),

‖v‖V =
(∫ T

0
‖v(t)‖p

V (t) dt

)1/p

< 1 + ε.

Then we have

〈T f , v〉V ′×V =
∫ T

0
〈u(t), v(t)〉V ′(t)×V (t)dt +

∫ T

0
〈 f (t) − u(t), v(t)〉V ′(t)×V (t)dt

≥
∫ T

0
〈u(t), v(t)〉V ′(t)×V (t)dt − ε

1 + ε
.

Now we focus our attention on the first term in the right hand side:

∫ T

0
〈u(t), v(t)〉V ′(t)×V (t)dt =

∫ T

0

N∑
i=1

〈ui , wi 〉V ′(t)×V (t)ϕ(t)χi (t)dt

≥
∫ T

0

N∑
i=1

[
〈ui , wi 〉V ′(ti )×V (ti ) − ε

]
ϕ(t)χi (t)dt

≥
∫ T

0

N∑
i=1

[
‖ui‖V ′(ti ) − 2ε

]
ϕ(t)χi (t)dt

≥
∫ T

0

N∑
i=1

[
‖ui‖V ′(t) − 3ε

]
ϕ(t)χi (t)dt

≥ ‖u‖V∗ − 4ε − 3ε
∫ T

0
ϕ(t)dt

≥ ‖ f ‖V∗ − 5ε − 3ε
∫ T

0
ϕ(t)dt .

Summing up we have

‖T f ‖V ′ ≥ 〈T f , v〉V ′×V
1 + ε
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≥ 1

1 + ε

[
‖ f ‖V∗ − 5ε − 3ε

∫ T

0
ϕ(t)dt

]
− ε

(1 + ε)2
.

By the arbitrariness of ε we finally get

‖T f ‖V ′ ≥ ‖ f ‖V∗ .

Then we have shown that T is a linear isometry between V∗ and V ′ and in particular that

T (V∗) is a closed subspace of V ′.

Now consider v ∈ V and suppose that

〈T f , v〉V ′×V = 0 for every f ∈ V∗.

That is, taking ϕ ∈ C0([0, T ];R), f ∈ V∗ and g = ϕ f ∈ V∗ we have

0 = 〈Tg, v〉V ′×V =
∫ T

0
ϕ(t) 〈 f (t), v(t)〉V ′(t)×V (t) dt

for every continuous function ϕ. Then 〈 f (t), v(t)〉V ′(t)×V (t) = 0 for almost every t ∈ [0, T ].
Since V ⊂ H ⊂ V ′ and for g ∈ H, u ∈ V one has

〈g, u〉V ′×V = (g, v)H

one gets that, taking f = v one gets that

0 =
∫ T

0
〈v(t), v(t)〉V ′(t)×V (t) dt =

∫ T

0
(v(t), v(t))H(t) dt = (v, v)H

which clearly implies that v = 0. By that we finally derive that T (V∗) is dense in V ′. Being
also closed we conclude that T (V∗) = V ′. ��
By the assumptions above and supposing (10) by the previous lemma one gets that

V ⊂ H ⊂ V ′

with continuous and dense embeddings, with

‖w‖V ′ ≤ k ‖w‖H, and ‖v‖H ≤ k ‖v‖V . (12)

Definition 2.2 Consider a family of linear operators R(t) such that R depends on a parameter
t ∈ [0, T ] and

R(t) ∈ L(H(t)) for every t ∈ [0, T ] (13)

being L(H(t)) the set of linear and bounded operators from H(t) in itself. We say that R
belongs to the class E(C1,C2), C1,C2 ≥ 0, if it satisfies what follows for every u, v ∈ U :

� R(t) is self-adjoint and ‖R(t)‖L(H(t)) ≤ C1 for every t ∈ [0, T ],
� t 	→ (

R(t)u, v
)
H(t) is absolutely continuous in [0, T ],

�
∣∣∣ d
dt

(
R(t)u, v

)
H(t)

∣∣∣ ≤ C2 ‖u‖V (t)‖v‖V (t) for a.e. t ∈ [0, T ].

Now, given two non-negative constants C1 and C2, consider R ∈ E(C1,C2). For every
t ∈ [0, T ] we consider the spectral decomposition of R(t) (see, e.g., Section 8.4 in [14]) as
follows: since R(t) is self-adjoint we get that R(t)2 = R∗(t) ◦ R(t) is a positive operator;
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then we can define the square root of R(t)2 (see, e.g., Chapter 3 in [14]), which is a positive
operator,

|R(t)| = (
R(t)2

)1/2
and then define the two positive operators

R+(t) := 1

2

(|R(t)| + R(t)
)
, R−(t):=|R(t)| − R+(t).

By this decomposition we can also write H(t) = H+(t) ⊕ H0(t) ⊕ H−(t) where H+(t) =
(Ker R+(t))⊥ and H−(t) = (Ker R−(t))⊥ and H0(t) is the kernel of R(t). Finally we denote
H̃0(t) = H0(t) = Ker R(t) and

H̃(t) H̃+(t), H̃−(t) = the completion respectively of H(t) H+(t), H−(t) (14)

with respect to the norm ‖w‖H̃(t) = ‖|R(t)|1/2w‖H(t).
Clearly the operation ˜ depends on R. In this way R(t) = R+(t) − R−(t), |R(t)| =

R+(t) + R−(t) and R+(t) ◦ R−(t) = R−(t) ◦ R+(t) = 0 (see, e.g., Theorem 10.37 in [14])
and R+(t) : H+(t) → H+(t) and R−(t) : H−(t) → H−(t) turn out to be invertible.

Given an operator R ∈ E(C1,C2) it is possible to define two other linear operators. First
we can define the derivative of R which, unlike R, is valued in L(V (t), V ′(t)), i.e. the set
of linear and bounded operators from V (t) to V ′(t): since R ∈ E(C1,C2) we can define a
family of equibounded operators

R′(t), t ∈ [0, T ], R′(t) : V (t) → V ′(t) by

〈R′(t)u, v〉V ′(t)×V (t) := d

dt

(
R(t)u, v

)
H(t), u, v ∈ U .

By the density of U in V (t) we can extend R′(t) to V (t).

Remark 2.3 Notice that the last request in Definition 2.2 and (8) imply that

R ∈ W 1,∞(0, T ;L(U ,U ′)).

Clearly if V (t) = V and H(t) = H for every t ∈ [0, T ], R ∈ E(C1,C2) simply means

R ∈ L∞(0, T ;L(H)) ∩ W 1,∞(0, T ;L(V , V ′)).

Via R, R+, R− and R′ we can also define

R : H → H (Ru)(t) := R(t)u(t),
R+ : H → H (R+u)(t) := R+(t)u(t),
R− : H → H, (R−u)(t) := R−(t)u(t),

(15)

which turn out to be linear and bounded by the constant C1 and, by density of U in V , an
operator

R′ : V → V ′ by 〈R′u, v〉V ′×V :=
∫ T

0
〈R′(t)u(t), v(t)〉V ′(t)×V (t)dt (16)

which turns out to be linear, self-adjoint and bounded by C2. As done before we can define,
in a way analogous to that done for the spaces (14),

H̃, H̃+, H̃− = the completion respectively of HH+ H− (17)

with respect to the norm ‖w‖H̃ = ‖|R|1/2w‖H, where |R| = R+ + R−.
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Analogously, we define H+ and H− and P+ and P− the orthogonal projections from H̃
ontoH+ andH− respectively.H0 is the kernel ofR and P0 the projection defined inH onto
H0.

Remark 2.4 Notice that since R is self-adjoint and boundedwe can define |R|(t)1/2, R+(t)1/2,
R−(t)1/2 (see, e.g., Chapter 3 in [14]).

3 The existence result

In this section we will give one of the main results of the paper. We will consider a function
R such that, given two non-negative constants,

R ∈ E(C1,C2) (18)

and all the spaces we introduced in (6), (8), (9), (14) and from now on we will assume (10)
in such a way that Lemma 2.1 holds.

Our goal is to give an existence result for an abstract equation like

Ru′ + Au = f

for some suitable operator A we will specify below.
We want to stress that, despite of the fact that no derivative ofR appears in the equation,

we require R to be differentiable, i.e. R ∈ E(C1,C2). This fact will be needed to get the
existence of a solution to the previous equation and we will also show (see example 6 in the
last section) that without this assumption at least uniqueness of the solution fails. Anyway
to require that R is diffierentiable is not so restrictive (as shown in the examples in the last
section) because if, for instance, R is a multiplication operator, i.e. Ru = r(x, t)u(x, t) for
some function r , R could be differentiable even if r is discontinuous.

We will use this assumption about R to split properly the operator u 	→ Ru′ + Au as
indicated in (33) to give the existence of a solution.

Wewill use the operatorR′ to defineRu′ in an apparently involute way. First for a function
u ∈ V ⊂ H we consider the generalized derivative of Ru and require that it belongs to V ′,
where the generalized derivative is defined as a function w ∈ V ′ such that

〈
w(t), v

〉
V ′(t)×V (t) = d

dt

(Ru(t), v
)
H(t) for every v ∈ U .

Notice that by (8) we have

U ⊂ V (t) ⊂ H(t) ⊂ V ′(t) ⊂ U ′,

than we can define in a classical way the generalized derivative ofRu in L p′
(0, T ;U ′) (here

p′ denotes p/(p − 1)), and then to require that (Ru)′ ∈ V ′.
For a function u ∈ V for which Ru admits generalized derivative in V ′ we define

Ru′ := (Ru)′ − R′u. (19)

With this definition in mind we now define the space

WR := {
u ∈ V | Ru′ ∈ V ′} ‖u‖WR = ‖u‖V + ‖Ru′‖V ′ . (20)

Remark 3.1 Notice the space
{
u ∈ V | (Ru)′ ∈ V ′} endowedwith the norm ‖·‖WR coincides

with WR. Indeed, in view of the definition of Ru′ given in (19), R′u belong to V ′.
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Moreover one can endow this space both with the norm ‖ · ‖WR and with the norm
‖u‖ = ‖u‖V + ‖(Ru)′‖V ′ since they are equivalent.

Proposition 3.2 Under assumption (18) we have that for every u, v ∈ WR the function
t 	→ (R(t)u(t), v(t))H(t) is absolutely continuous and the following hold:

d

dt
(Ru(t), v(t))H(t)

= 〈R′u(t), v(t)〉V ′(t)×V (t) + 〈Ru′(t), v(t)〉V ′(t)×V (t) + 〈Rv′(t), u(t)〉V ′(t)×V (t)

and there exists a constant c, which depends only on T , such that

max[0,T ]|(R(t)u(t), v(t))H(t)|

≤ c
[
‖Ru′‖V ′ ‖v‖V + ‖Rv′‖V ′ ‖u‖V + ‖R′‖L(V,V ′)‖u‖V‖v‖V + ‖R‖L(H)‖u‖H‖v‖H

]
.

In particular if u = v we have
∫ t

s

〈Ru′(τ ), u(τ )
〉
V ′(τ )×V (τ )

dτ

= 1

2

[
(R(t)u(t), u(t))H(t) − (R(s)u(s), u(s))H(s)

]
− 1

2

∫ t

s
〈R′u(τ ), u(τ )〉V ′(τ )×V (τ )dτ

and

max[0,T ] |(R(t)u(t), u(t))H(t)| ≤ c ‖u‖2WR (21)

where c depends (only) on T−1, ‖R′‖L(V,V ′), ‖R‖L(H).

Proof For u, v ∈ C1([0, T ];U ) one has

d

dt
(Ru(t), v(t))H(t)

= 〈R′u(t), v(t)〉V ′(t)×V (t) + (Ru′(t), v(t))H(t) + (Ru(t), v′(t))H(t)

= 〈R′u(t), v(t)〉V ′(t)×V (t) + 〈Ru′(t), v(t)〉V ′(t)×V (t) + 〈Rv′(t), u(t)〉V ′(t)×V (t).

By the density ofC1([0, T ];U ) one gets the first part of the thesis. Nowwe show the estimate.
First one can extend R, a function w ∈ WR and f ∈ V ′ to [−T , T ] as follows

R̃(t) :=
{
R(t) t ∈ [0, T ]
R(−t) t ∈ [−T , 0)

w̃(t) :=
{

w(t) t ∈ [0, T ]
w(−t) t ∈ [−T , 0)

f̃ (t) :=
{
f (t) t ∈ [0, T ]
f (−t) t ∈ [−T , 0)

,

and similarly one extends

(w̃1(t), w̃2(t))H̃(t) = (w1(−t), w2(−t))H(−t)

〈 f̃ (t), w̃(t)〉V ′(t)×V (t) = 〈 f (−t), w(−t)〉V ′(−t)×V (−t)
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for t ∈ [−T , 0], w1, w2 ∈ H, w ∈ V , f ∈ V ′. Then consider a differentiable function
ϕ : [−T , T ] → R such that

ϕ(t) = 1 for t ∈ [0, T ], ϕ(−T ) = 0, 0 ≤ ϕ′(t) ≤ 2/T for every t ∈ [−T , T ].
Finally, for t ∈ [0, T ] and u, v ∈ C1([0, T ];U ), we have

(
R(t)u(t), v(t)

)
H(t) =

∫ t

−T

d

ds

[
ϕ(s)

(
R̃(s)ũ(s), ṽ(s)

)
H̃(s)

]
ds

=
∫ t

−T
ϕ′(s)

(
R̃(s)ũ(s), ṽ(s)

)
H̃(s) ds +

∫ t

−T
ϕ(s)

〈
R̃′(s)ũ(s), ṽ(s)

〉
H̃(s) ds

+
∫ t

−T
ϕ(s)

〈
R̃(s)ũ′(s), ṽ(s)

〉
H̃(s) ds +

∫ t

−T
ϕ(s)

〈
R̃(s)ṽ′(s), ũ(s)

〉
H̃(s) ds

by which one concludes. ��
Remark 3.3 By the previous result we get that [0, T ] � t 	→ (R(t)u(t), w)H(t) is continuous
for every u ∈ WR and w ∈ U . In particular taking w+ such that P−(t)w+ ≡ 0 one gets that

[0, T ] � t 	→ (R(t)u(t), w+)H(t) = (R+(t)u(t), w+)H(t) is continuous.

In an analogous way, taking w− ∈ U ∩ (H−(t) ⊕ H0(t)), one gets that (R−(t)u(t), w−)H(t)

is continuous.

Nowweprove a compactness result and, following the analogous in [13] (preciselyLemma
5.1 and Theorem 5.1), we divide the proof in a preliminary lemma and the compactness result.
We prove both the results because in our situation things are very different from the standard
case being the spaces defined in (5) depending on a parameter, while in [13] the spaces are
fixed.

The proof of Theorem 3.5 follows the ideas of the analogous one of Lions, but it is not an
immediate adaptation. To prove it we will use the following lemma.

Lemma 3.4 Given R ∈ E(C1,C2), we have that for each η > 0 there is cη ≥ 0 such that

‖|R|1/2u‖H ≤ η‖u‖V + cη‖Ru‖V ′

for every u ∈ U .

Proof If, by contradiction, we suppose that the thesis is false we have that there exist a value
of η, say η̄, such that for each h ∈ N there is uh ∈ U for which

‖uh‖V = 1,
‖|R|1/2uh‖H > η̄ + h ‖Ruh‖V ′ ,

(22)

Then, since (k defined in (7))

‖|R|1/2uh‖H ≤ √
C1 ‖uh‖H ≤ √

C1 k ‖uh‖V = √
C1 k

we derive that

lim
h→+∞ ‖Ruh‖V ′ = 0. (23)

Moreover, since ‖uh‖V = 1, we also get (up to select a subsequence still denoted by (uh)h)
the existence of ū ∈ V such that

uh → ū in V - weak.
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By this and (23) we have

lim
h→+∞

〈Ruh, uh
〉
V ′×V = lim

h→+∞
(Ruh, uh

)
H = lim

h→+∞
∥∥R1/2uh

∥∥H = 0,

where R1/2 = R1/2
+ − R1/2

− . Since ‖R1/2uh‖H = ‖|R1/2|uh‖H this contradicts (22). ��

Theorem 3.5 Then the space WR compactly embeds in H̃.

Proof Consider a sequence (uh)h such that ‖uh‖WR ≤ c. In particular, up to a subsequence,
uh → u weakly in V; for simplicity we can suppose that u = 0 and that ‖uh‖V = 1 otherwise
one can replace uh by (uh − u)/‖uh − u‖V . Then by Lemma 3.4 we have

‖|R|1/2uh‖H ≤ η + cη‖Ruh‖V ′ .

We conclude if we show that

lim
h→+∞ ‖Ruh‖V ′ = 0. (24)

Notice that, by Proposition 3.2, we have that

max[0,T ] |(R(t)uh(t), uh(t))H(t)| ≤ c̃2

for some positive constant c̃. Now define, for each t ∈ [0, T ],
R1/2(t) := R1/2

+ (t) − R1/2
− (t).

Then we get

max[0,T ] |(R
1/2(t)uh(t), R

1/2(t)uh(t))H(t)| ≤ c̃2,

that is (we recall that ‖R(t)‖L(H(t)) ≤ C1 for each t)

‖R(t)uh(t)‖V ′(t) ≤ k ‖R1/2 ◦ R1/2(t)uh(t)‖H(t) ≤ k
√
C1 c̃. (25)

Being ‖R(t)uh(t)‖V ′(t) equibounded, to get (24) it will be sufficient to show that the sequence
{‖R(t)uh(t)‖V ′(t)}h converges to 0 pointwise. To show that we will confine to t = 0, being
the choice of t irrelevant. Fix δ > 0, then consider φ ∈ U such that

‖R(0)uh(0)‖V ′(0) <
〈
R(0)uh(0), φ

〉
V ′(0)×V (0) + δ = (

R(0)uh(0), φ
)
H(0) + δ,

‖φ‖V (0) ≤ 1.
(26)

Notice that the function

[0, T ] � σ 	→ (
R(σ )uh(σ ), φ

)
H(σ )

is continuous,

in particulat in σ = 0. Consider λ ∈ (0, 1]which will be fixed later and define the two spaces
Hλ and V ′

λ as the completion of U with respect to the norms, respectively,

‖u‖Hλ :=
(∫ T

0
‖u(t)‖2H(λt)dt

)1/2

, ‖u‖V ′
λ

:=
(∫ T

0
‖u(t)‖p′

V ′(λt)dt

)1/p′

.

Now define vh(t) := R(λt)uh(λt) and notice that

‖vh‖Hλ ≤ λ−1/2‖Ruh‖H, ‖v′
h‖V ′

λ
≤ λ1−1/p′ ‖(Ruh)

′‖V ′ .
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Consider ϕ : [0, T ] → [0, 1] such that ϕ(0) = −1 and ϕ(T ) = 0: we have that

(
R(0)uh(0), φ

)
H(0) =

∫ T

0

[
d

dt

(
ϕ(t)

(
R(λt)uh(λt), φ

)
H(λt)

)]
dt

=
∫ T

0
ϕ′(t)

(
R(λt)uh(λt), φ

)
H(λt)dt

+
∫ T

0
ϕ(t)λ

〈
(Ruh)

′(λt), φ
〉
V ′(λt)×V (λt)dt .

Define ah the first addend, bh the second one. Notice that

|bh | ≤ λ1−1/p′−1/p‖(Ruh)
′‖V ′

(∫ λT

0
‖φ‖p

V (s) ds

)1/p

≤ c

(∫ λT

0
‖φ‖p

V (s) ds

)1/p

.

Then, after fixing ε > 0, we can choose λ small enough such that

|bh | ≤ ε.

For the term ah we have

|ah | ≤
∣∣∣∣
∫ T

0
ϕ′(t)

(
R(λt)uh(λt), φ

)
H(λt)dt

∣∣∣∣ =
∣∣∣∣λ−1

∫ λT

0
ϕ′(λ−1s)

(
R(s)uh(s), φ

)
H(s)ds

∣∣∣∣ .
Now since uh → 0 weakly in V we have that vh = Ruh → 0 weakly in H and then we
derive that

ah → 0.

Then, since
∣∣(vh(0), φ)H(0)

∣∣ = ∣∣(R(0)uh(0), φ
)
H(0)

∣∣ ≤ |ah | + |bh |, we conclude that
lim

h→+∞
(
R(0)uh(0), φ

)
H(0) = 0.

Then, from (26), we derive that

lim sup
h→+∞

‖R(0)uh(0)‖V ′(0) ≤ δ.

We can repeat the same argument for every t ∈ [0, T ] and get that for every δ > 0

lim sup
h→+∞

‖R(t)uh(t)‖V ′(t) ≤ δ for every t ∈ [0, T ].

By the arbitrariness of δ we derive that ‖R(t)uh(t)‖V ′(t) converges to 0 for every t ∈ [0, T ]
and, since by (25) {‖R(t)uh(t)‖V ′(t)}h is bounded, by Lebesgue’s theorem we get that

lim
h→+∞ ‖Ruh‖V ′ = 0 .

��
Before to state the existence result we recall some definitions and a classical result, for which
we refer to [23] (see Section 32.4).

Definition 3.6 Given a Banach space X , we say that an operator B : X → X ′ is coercive if

lim‖x‖→+∞
〈Bx, x〉

‖x‖ → +∞,
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is bounded if it maps a bounded set in a bounded set, is hemicontinuous if the map

t 	→ 〈
B(u + tv),w

〉
X ′×X is continuous in [0, 1] for every u, v, w ∈ X .

Amonotone and hemicontinuous operator B is of type M if (see, for instance, Basic Ideas of
the Theory of Monotone Operators in volume B of [23] or Lemma 2.1 in [22]), i.e. it satisfies
what follows: for every sequence (u j ) j∈N ⊂ X such that

u j → u in X -weak
Bu j → b in X ′-weak
lim sup
j→+∞

〈
Bu j , u j

〉
X ′×X ≤ 〈

b, u
〉
X ′×X

∣∣∣∣∣∣∣
�⇒ Bu = b. (M)

Theorem 3.7 Let M : X → X ′ be monotone, bounded, coercive and hemicontinuous. Sup-
pose L : X → 2X

′
to be maximal monotone. Then for every f ∈ X ′ the following equation

has a solution

Lu + Mu � f

and in particular if L, M are single-valued the equation Lu + Mu = f has a solution.
If, moreover, M is strictly monotone the solution is unique.

Now we move to introduce our assumptions. Consider a family of operators

A(t) : V (t) −→ V ′(t)

such that

t 	→ 〈
A(t)u, v

〉
V (t)′×V (t) measurable on [0, T ] for every u, v,∈ U

such that if we define the abstract operator

A : V −→ V ′ Au(t) = A(t)u(t) 0 ≤ t ≤ T . (27)

this turns out to be

Amonotone, bounded, coercive and hemicontinuous.

We denote

P : WR −→ V ′, (Pu)(t) = Ru′(t) + Au(t), 0 ≤ t ≤ T

where R is defined in (15) and satisfies (18).
Thanks to Remark 3.3 it makes sense to consider the two quantities

(R+(0)u(0), w+)H(0) and (R−(T )u(T ), w−)H(T )

for every w+ ∈ U ∩ (H+(0) ⊕ H0(0)) and w− ∈ U ∩ (H−(T ) ⊕ H0(T )) and then to define

W0
R = {u ∈ WR | P+(0)u(0) = 0 P−(T )u(T ) = 0}. (28)

Now we consider the three operators

L1u = Ru′ + 1

2
R′u L2u = Ru′, L3u = (Ru)′, D(Li ) = W0

R, i = 1, 2, 3,

and state the following result.
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Proposition 3.8 The operator L1 : W0
R ⊂ V → V ′ is maximal monotone.

The operator L2 : W0
R ⊂ V → V ′ is maximal monotone if

〈R′u, u〉V ′×V ≤ 0 for every u ∈ V, (29)

the operator L3 : W0
R ⊂ V → V ′ is maximal monotone if

〈R′u, u〉V ′×V ≥ 0 for every u ∈ V. (30)

Proof The proof is the same of the analogous in [17]. The only difference is that one has to
consider first u ∈ C1([0, T ];U ) ∩ W0

R and then use the definition of V,V∗ and Lemma 22.
��
Definition 3.9 We say u is a solution of the problem⎧⎨

⎩
Ru′ + Au = f
P+(0)u(0) = ϕ

P−(T )u(T ) = ψ,

where f ∈ V ′, ϕ ∈ H̃+(0), ψ ∈ H̃−(T ), if u ∈ WR and

Ru′(t) + Au(t) = f (t) for a.e. t ∈ [0, T ]
and the two conditions P+(0)u(0) = ϕ and P−(T )u(T ) = ψ are satisfied.

We say u is a solution of the problem⎧⎨
⎩

(Ru)′ + Au = f
P+(0)u(0) = ϕ

P−(T )u(T ) = ψ,

(31)

where f ∈ V ′, ϕ ∈ H̃+(0), ψ ∈ H̃−(T ), if u ∈ WR and

(Ru)′(t) + Au(t) = f (t) for a.e. t ∈ [0, T ]
and the two conditions P+(0)u(0) = ϕ and P−(T )u(T ) = ψ are satisfied.

We start now giving an existence result for the following problem⎧⎪⎨
⎪⎩

Ru′ + Au = f

P+(0)u(0) = 0

P−(T )u(T ) = 0

(32)

The idea now is to apply the previous proposition andTheorem3.7 to the equationRu′+Au =
f adding and subtracting a term involving the derivative of R and, in this way, to get the
sum of two operators satisfying assumption of Theorem 3.7. We will see with an example
(see example 6 in the last section) that, even if the derivative of R is not involved in the
equation, the lack of regularity in time forR can cause problems, at least lack of uniqueness
of solutions.

With this is mind we write

Ru′ + Au =
(
Ru′ + 1

2
R′u

)
+
(
Au − 1

2
R′u

)
. (33)

Theorem 3.10 Suppose R satisfies assumptions (18). Suppose true one of the following:

i) M = A − 1
2R′ is monotone, bounded, coercive and hemicontinuous.
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ii) M = A is monotone, bounded, coercive, hemicontinuous and 〈R′u, u〉V ′×V ≤ 0 for
every u ∈ V .

Then problems (32) admits a solution for every f ∈ V ′. If moreover M is strictly monotone
the solution is unique.

Suppose true one of the following:

iii ) M = A + 1
2R′ is monotone, bounded, coercive and hemicontinuous.

iv ) M = A is monotone, bounded, coercive, hemicontinuous and 〈R′u, u〉V ′×V ≥ 0 for
every u ∈ V .

Then problems (31) with ϕ = ψ = 0 admits a solution for every f ∈ V ′. If moreover M is
strictly monotone the solution is unique.

Proof The proof follows from Theorem 3.7 and Proposition 3.8, taking in Theorem 3.7
M = M and Lu = Ru′ + 1

2R′u in points i ) and i i i ), Lu = Ru′ in point i i ), Lu = (Ru)′
in point iv ). ��
Remark 3.11 In fact we obtain an existence result also for the Cauchy problem

Ru′ + Au � f , u ∈ W0
R.

Now we want to consider the Cauchy-Dirichlet problem with non-zero “initial” data⎧⎨
⎩

Ru′ + Au = f
P+(0)u(0) = ϕ

P−(T )u(T ) = ψ.

(34)

To do that we have to add some assumptions, both on A and R. Assumptions on A are
explicitly given in the theorem which follows. Assumptions on R are more implicit and are
hidden in (35). Consider the following spaces:

U+(0) = {
w ∈ U

∣∣ [P+(0) + P0(0)]w ∈ U
} = U ∩ (H̃+(0) ⊕ H̃0(0)),

U−(T ) = {
w ∈ U

∣∣ [P−(T ) + P0(T )]w ∈ U
} = U ∩ (H̃−(T ) ⊕ H̃0(T )).

(see (14) for the definition of H̃−, H̃0, H̃+). Then we suppose

U+(0) dense in H̃+(0), U−(T ) dense in H̃−(T ). (35)

This assumptions indirectly involves the operatorR, as we show with an example at the end
of the paper (see example 2 in the last section).

Remark 3.12 Wewant to stress that we remove the assumption H+(0)∩H−(T ) = {0}which,
on the contrary, was made in [17].

Then the following theorem holds.

Theorem 3.13 Suppose (35) holds. Define the operator P : WR → V ′ by Pu = Ru′ + Au
whereR is defined in (15), R ∈ E(C1,C2) andA : V → V ′ is hemicontinuous. Suppose that
there exist two constants α, β > 0 such that

〈Au − Av − 1
2 (R′u − R′v), u − v

〉
V ′×V ≥ α‖u − v‖2V ,

‖Au − 1
2R′u‖V ′ ≤ β‖u‖V (36)
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or for some p ∈ (2,+∞)

〈Au − Av, u − v〉V ′×V ≥ α‖u − v‖p
V , ‖Au‖V ′ ≤ β‖u‖p−1

V〈R′u, u〉V ′×V ≤ 0
(37)

for every u, v ∈ V . Then there is a constant c = c(α, β, p) (depending only on α, β, p and

proportional to α
− 1

p + α
− p−1

p ) such that for every u ∈ WR

‖u‖WR ≤ c
[
‖Pu‖V ′ + ‖Pu‖1/(p−1)

V ′ + ‖R1/2
− (T )u(T )‖2(p−1)/p

H−(T ) + ‖R1/2
+ (0)u(0)‖2(p−1)/p

H+(0)

+‖R1/2
− (T )u(T )‖2/pH−(T ) + ‖R1/2

+ (0)u(0)‖2/pH+(0)

]
.

Moreover for every f ∈ V ′, ϕ ∈ H̃+(0), ψ ∈ H̃−(T ) problem (34) has a unique solution.

Proof First we show the existence result: consider �,�, ϕ,ψ ∈ U with P+(0)� = ϕ,
P−(T )� = ψ and define

η(t) := T − t

T
ϕ + t

T
ψ = ϕ + t

T

(
ψ − ϕ

)
, t ∈ [0, T ].

Now solve the following problem (one can easily verify that the operator Ãv := A(v + η)

is bounded, coercive, strongly monotone and hemicontinuous)⎧⎨
⎩

Rv′ + A(v + η) = f − Rη′
P+(0)v(0) = 0
P−(T )v(T ) = 0

and consider u = v + η; then the function u solves (34) with ϕ,ψ ∈ U . Before concluding
we come to the estimates.

Notice that, since Pu = Ru′ +Au and, for p = 2, Pu = (Ru′ + 1
2R′u

)+ (Au − 1
2R′u

)
and by Proposition 3.2 we get for p > 2

α‖u‖p
V ≤ 〈Au, u〉V ′×V = 〈Pu, u〉V ′×V − 〈Ru′, u

〉
V ′×V

= 〈Pu, u〉V ′×V − 1

2

[
(R(T )u(T ), u(T ))H(T ) − (R(0)u(0), u(0))H(0)

]

+
〈
1

2
R′u, u

〉
V ′×V

= 〈Pu, u〉V ′×V + 1

2

[
(R−(T )u(T ), u(T ))H(T ) + (R+(0)u(0), u(0))H(0)

]

−1

2

[
(R+(T )u(T ), u(T ))H(T ) + (R−(0)u(0), u(0))H(0)

]+
〈
1

2
R′u, u

〉
V ′×V

≤ 〈Pu, u〉V ′×V + 1

2

[
(R−(T )u(T ), u(T ))H(T ) + (R+(0)u(0), u(0))H(0)

]

and for p = 2

α‖u‖2V ≤
〈
Au − 1

2
R′u, u

〉
V ′×V

= 〈Pu, u〉V ′×V −
〈
Ru′ + 1

2
R′u, u

〉
V ′×V

= 〈Pu, u〉V ′×V − 1

2

[
(R(T )u(T ), u(T ))H(T ) − (R(0)u(0), u(0))H(0)

]
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≤ 〈Pu, u〉V ′×V + 1

2

[
(R−(T )u(T ), u(T ))H(T ) + (R+(0)u(0), u(0))H(0)

]
.

Now, if we denote by q the quantity p/(p − 1), for every ε > 0 we can write

‖Pu‖V ′ ‖u‖V ≤ ε p

p
‖u‖p

V + 1

q

(1
ε

)q/p2‖Pu‖qV ′ (38)

by which we get the existence of a constant c = c(α, p) which is proportional to α−1/p (e.g.
choosing ε such that ε p/p = α/2) such that

‖u‖V ≤ c(α, p)
[
‖Pu‖1/(p−1)

V ′ + (
R−(T )u(T ), u(T )

)1/p
H(T )

+ (
R+(0)u(0), u(0)

)1/p
H(0)

]

for every p ∈ [2,+∞). Since Ru′ = Pu − Au we immediatly get
∥∥Ru′∥∥V ′ ≤ ‖Pu‖V ′ + ‖Au‖V ′ ≤ ‖Pu‖V ′ + c ‖u‖p−1

V

where c depends on β and ‖R′‖when p = 2 and c depends only on β when p > 2, by which
we get the thesis.

Now to conclude the existence result for general ϕ and ψ one can consider ϕ ∈ H̃+(0),
ψ ∈ H̃−(T ), two sequences (ϕn)n ⊂ U+(0), (ψn)n ⊂ U−(T ), ϕn → ϕ in H̃+(0), ψn → ψ

in H̃−(T ), any f ∈ V ′ and consider un the corresponding solutions. This can be done thanks
to assumption (35).

Similarly as done above one can obtain the estimate for the difference un − um

‖un − um‖p
V + ‖R(u′

n − u′
m)‖V ′

≤ c

[
‖R1/2

− (T )(ψn − ψm)‖
2
p

H−(T ) + ‖R1/2
+ (0)(ϕn − ϕm)‖

2
p

H+(0)

+‖R1/2
− (T )(ψn − ψm)‖2

p−1
p

H−(T ) + ‖R1/2
+ (0)(ϕn − ϕm)‖2

p−1
p

H+(0)

]

for every n,m ∈ N, and then there is a function u ∈ W such that

un → u in V and Ru′
n → Ru′ in V ′.

Up to select a subsequence we also get that Aun weakly converge to some b ∈ V ′ and then
〈Aun, un〉V ′×V → 〈b, u〉V ′×V . Since A is monotone and hemicontinuous A is type M, then
we can conclude that b = Au. ��
Similarly one proves the following theorem, which is an extension to the case of Banach
spaces depending on the parameter t of the result stated in [17].

Theorem 3.14 Suppose (35) holds. Define the operatorP : WR → V ′ byPu = (Ru)′ +Au
whereR is defined in (15), R ∈ E(C1,C2) andA : V → V ′ is hemicontinuous. Suppose that
there exist two constants α, β > 0 such that

〈Au − Av + 1
2 (R′u − R′v), u − v

〉
V ′×V ≥ α‖u − v‖2V ,

‖Au + 1
2R′u‖V ′ ≤ β‖u‖V (39)

or for some p ∈ (2,+∞)

〈Au − Av, u − v〉V ′×V ≥ α‖u − v‖p
V , ‖Au‖V ′ ≤ β‖u‖p−1

V〈R′u, u〉V ′×V ≥ 0
(40)
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for every u, v ∈ V . Then there is a constant c = c(α, β, p) (depending only on α, β, p and

proportional to α
− 1

p + α
− p−1

p ) such that for every u ∈ WR

‖u‖WR ≤ c
[
‖Pu‖V ′ + ‖Pu‖1/(p−1)

V ′ + ‖R1/2
− (T )u(T )‖2(p−1)/p

H−(T ) + ‖R1/2
+ (0)u(0)‖2(p−1)/p

H+(0)

+‖R1/2
− (T )u(T )‖2/pH−(T ) + ‖R1/2

+ (0)u(0)‖2/pH+(0)

]
.

Moreover for every f ∈ V ′, ϕ ∈ H̃+(0), ψ ∈ H̃−(T ) problem (31) has a unique solution.

Remark 3.15 IfA is linear we also have the corresponding existence results for the problems⎧⎨
⎩

Ru′ + Au + λRu = f
P+(0)u(0) = ϕ

P−(T )u(T ) = ψ

⎧⎨
⎩

(Ru)′ + Au + λRu = f
P+(0)u(0) = ϕ

P−(T )u(T ) = ψ

for every λ ∈ R. It is sufficient indeed to consider the change of variable

v(t) = eλt u(t)

(one could also consider v(t) = eλ(t−T )u(t) or v(t) = eλ(T−t)u(t)) to obtain⎧⎨
⎩

Rv′ + Av = f̃ = f eλt

P+(0)v(0) = ϕ

P−(T )v(T ) = eλTψ

⎧⎨
⎩

(Rv)′ + Av = f̃ = f eλt

P+(0)v(0) = ϕ

P−(T )v(T ) = eλTψ

which has a unique solution v. Then u(t) = v(t)e−λt solves the original problem.

3.1 A time regularity result

Here we give a regularity result for the solution of (34) and (31) only in the following special
case:

p = 2 and A linear

V (t) = V , H(t) ≡ H ,

A(t) ≡ A, i.e. A independent of t,

R(t) ≡ R, i.e. R independent of t .

For a much more detailed study about regularity, not only in t , we refer to [19].

Theorem 3.16 Under the assumption of Theorem 3.13 and given f ∈ V ′, ϕ ∈ H̃+, ψ ∈ H̃−
denote by u the solution of problem (34). Suppose moreover that R ∈ E(C1,C2), that A
satisfies

〈Au − Av, u − v〉V ′×V ≥ α‖u − v‖2V , ‖Au‖V ′ ≤ β‖u‖V
for every u, v ∈ V . Assume that f ′, the generalized derivative of f , belongs toV ′ and suppose
there exist u0, uT ∈ V such that P+u0 = ϕ, P−uT = ψ (P+ and P− the projections from
H onto H̃+ and H̃−, respectively) f (0) − Au0 ∈ Im R, f (T ) − AuT ∈ Im R. Then

(i) u ∈ H1(0, T ; V ),
(ii) there is c > 0 depending (only) on α−1/2, β, ‖A‖, such that

‖u‖WR + ‖u′‖WR + sup
t∈[0,T ]

‖u(t)‖V
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≤ c
[
‖ f ‖V ′ + ‖R1/2

+ u0‖H+ + ‖R1/2
− uT ‖H−

+‖ f ′‖V ′ + ‖R−1/2
+ (0)

[
P+
(
f (0) − Au0

)]‖H+

+‖R−1/2
− (T )

[
P−
(
f (T ) − AuT

)]‖H−
]

Proof Consider u to be the solution of the problem⎧⎨
⎩

Ru′ + Au = f
P+u(0) = ϕ

P−u(T ) = ψ

and v the solution of ⎧⎨
⎩

Rv′ + Av = f ′
P+v(0) = R−1+

[
P+
(
f (0) − Au0

)]
P−v(T ) = R−1−

[
P−
(
f (T ) − AuT

)] (41)

with

u0 ∈ V , uT ∈ V , P+u0 = ϕ, P−uT = ψ,

P+[ f (0) − Au0] ∈ Im R+,

P−[ f (T ) − AuT ] ∈ Im R−. (42)

Denote by v the solution of (41) and consider

w(u0; t) = w(t) = u0 +
∫ t

0
v(s) ds.

Clearly w ∈ H1(0, T ; V ). WritingRv′ as (Rv)′ − R′v and integrating the equation in (41)
in [0, t] one obtains

Rv(t) = Rv(0) −
∫ t

0
Av(s)ds + f (t) − f (0).

Since w′ = v by the previous equality we can derive that

Rw′(t) = Rv(0) −
∫ t

0
Aw′(s)ds + f (t) − f (0)

= Rv(0) − Aw(t) + Aw(0) + f (t) − f (0).

Then we get

R(w − u)′(t) + A(w − u)(t) =Rw′(t) + Aw(t) − f (t)

=[Rv(0) − Aw(t) + Aw(0) + f (t) − f (0)
]+ Aw(t) − f (t)

=Rv(0) − f (0) + Au0.

Notice that by assumption Rv(0) − f (0) + Au0 = 0 ∈ H and, by (41),

P+
[
Rv(0) − f (0) + Au0

]
= 0 in H+

but we can choose u0 in such a way that

Rv(0) − f (0) + Au0 = 0 in H . (43)
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We can do that, if necessary, modifying u0 and taking u0 ∈ V to be the solution of the
problem

Az = f (0) − Rv(0), z ∈ V .

Clearly in this way the initial condition in (41) is maintained. Therefore, since u0 satisfies
(43), we have that the function w − u solves the problem⎧⎪⎪⎨

⎪⎪⎩

Ry′ + Ay = 0
P+y(0) = 0

P−y(T ) = P−
[
u0 +

∫ T

0
v(s)ds − uT

] (44)

Now consider the function

w̃(uT ; t) = w̃(t) := uT +
∫ t

T
v(s) ds =

[
uT −

∫ T

0
v(s)ds

]
+
∫ t

0
v(s)ds,

Similarly as done for w, but now integrating between T and t ∈ (0, T ), we get that the
function w̃ − u solves the problem⎧⎪⎪⎨

⎪⎪⎩

Ry′ + Ay = 0

P+y(0) = P+
[
uT −

∫ T

0
v(s)ds − u0

]
P−y(T ) = 0

where uT is chosen is such a way to solve AuT = f (T ) − Rv(T ), uT ∈ V .
Now define the function z := w − w̃ and notice that

w(u0, t) − w̃(uT , t) = u0 − uT +
∫ T

0
v(s)ds is independent of t

and in particular z is the solution of the (elliptic) problem

Rz′ + Az = Az = 0. (45)

Then z = 0, i.e. w − w̃ = 0, i.e.

u0 − uT +
∫ T

0
v(s)ds = 0.

By that we derive that the solution of problem (44) is 0, i.e.

w − u = 0.

By that, being w′ the solution of (41), we also get the estimate of point i i ). ��

4 Examples

In this section we present some simple examples of possible choices of R and A for the
equation considered in Sect. 3. These examples should help to understand which kind of
operators R are admissible and combining these examples one could imagine some more
general situations which satisfy the conditions assumed in the theorems given in the previous
sections.
I - The equation Ru′ + Au = f
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In the first examples which follow we consider T > 0, � ⊂ Rn open set with Lipschitz
boundary and

U ≡ V (t) = H1
0 (�) and H(t) = L2(�) for every t ∈ [0, T ],

A(t) : H1
0 (�) → H−1(�)(

A(t)u
)
(x) := − div, a

(
x, t, Du(x)

)+ b(x, t, u)

with a : � × (0, T ) × Rn → Rn, b : � × (0, T ) × R → R,

verifying λo |ξ |2 ≤ a(x, t, ξ) · ξ ≤ �o |ξ |2 and |b(x, t, u)| ≤ M |u(x)| (46)

for every ξ ∈ Rn and for some positive λo,�o and some M ≥ 0. Then A will be defined as
in (27). We fix now our attention on the operator R. Consider a function

r : � × [0, T ] → R, r ∈ L∞(� × (0, T ))

and

R(t) : L2(�) → L2(�),
(
R(t)u

)
(x) := r(x, t)u(x).

Finally for every t ∈ [0, T ] we denote
�+(t) := {

x ∈ �
∣∣ r(·, t) > 0

}
,

�−(t) := {
x ∈ �

∣∣ r(·, t) < 0
}
,

�0(t) := � \ (�+ ∩ �−
)

(47)

and (see also (14))

r+ the positive part of r , r− the negative part of r ,

H̃+(0) = L2(�+(0), r+(·, 0)) the completion of Cc(�+(0))

w.r.t. the norm ‖w‖2 =
∫

�+(0)
w2(x) r+(x, 0)dx,

H̃−(T ) = L2(�−(T ), r−(·, T )
)

the completion of Cc(�+(0))

w.r.t. the norm ‖w‖2 =
∫

�−(T )

w2(x) r−(x, T )dx . (48)

Then consider the problem, for some f ∈ L2(0, T ; H−1(�)), ϕ ∈ H̃+(0), ψ ∈ H̃−(T )⎧⎪⎪⎨
⎪⎪⎩

r(x, t) ut + A u = f (x, t) in � × (0, T )

u(x, t) = 0 for (x, t) ∈ ∂� × (0, T )

u(x, 0) = ϕ(x) for x ∈ �+(0)
u(x, T ) = ψ(x) for x ∈ �−(T ) .

(49)

1. Clearly Theorem 3.13 includes the “standard” equations. If r ≡ 1 we have the forward
parabolic equation⎧⎨

⎩
ut + A u = f (x, t) in � × (0, T )

u(x, t) = 0 for (x, t) ∈ ∂� × (0, T )

u(x, 0) = ϕ(x) for x ∈ �,

if r ≡ −1 we have the backward parabolic equation⎧⎨
⎩

−ut + A u = f (x, t) in � × (0, T )

u(x, t) = 0 for (x, t) ∈ ∂� × (0, T )

u(x, T ) = ψ(x) for x ∈ �,
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if r ≡ 0 we have a family of elliptic equations{
A(t) u(t) = f (t) in � for a.e. t ∈ (0, T )

u(·, t) = 0 for (x, t) ∈ ∂� × (0, T ) .

2. Suppose r = r(x), r ∈ L∞(�). As long as r ≥ 0 every function is admitted, even, for
example,

r(x) = 1 in �+, r(x) = 0 in �0,

�+ and �0 Cantor-type sets of positive measure.

This because clearly R belongs to the class E defined in Definition 2.2 and because
assumption (35) is satisfied. This last assumption might not be satisfied if one considers
a generic r ∈ L∞(�), if for instance

r(x) = 1 in �+, r(x) = 0 in �0, r(x) = −1 in �−,

�+, �0, �− Cantor-type sets of positive measure.

The request (35) is surely satisfied if there are two open sets A1, A2 with

A1 ∩ A2 = ∅, �+ ⊂ A1, �− ⊂ A2 .

3. Suppose r = r(t). Assumptions (18) are satisfied if r ∈ W 1,∞(0, T ), therefore every
r ∈ W 1,∞(0, T ) is admitted. Two interesting situations are the following: the first when
r(0) ≥ 0 and r(T ) ≤ 0 leads to the problem⎧⎪⎪⎨

⎪⎪⎩

r(t)ut + r ′(t)u + Au = f in � × (0, T )

u(x, t) = 0 for (x, t) ∈ ∂� × (0, T )

u(x, 0) = ϕ(x) for x ∈ �

u(x, T ) = ψ(x) for x ∈ �

where a datum is given in the whole � both at time 0 and at time T ; the second where
r(0) ≤ 0 and r(T ) ≥ 0, which leads to the problem{

r(t)ut + r ′(t)u + Au = f in � × (0, T )

u(x, t) = 0 for (x, t) ∈ ∂� × (0, T )

where no information is given in the whole � both at time 0 and at time T .
4. More interesting is the case when r = r(x, t). As long as

r and
∂r

∂t
∈ L∞(� × (0, T ))

the situation is very similar to that analyzed in example 3, so every r such that r , rt ∈
L∞(� × (0, T )) is admitted, provided that assumption (35) is satisfied. Suppose now

r does not admit a partial derivative with respect to time.

Well, assumption (18) could be satisfied anyway. To show it we consider a very simple
example: suppose n = 1, � = (a, b), T > 0, consider a function

γ : [0, T ] → (a, b), γ ∈ W 1,∞(0, T )

and define the sets

ω+:={(x, t) ∈ � × (0, T )
∣∣ x < γ (t)

}
, ω0:=

(
� × (0, T )

) \ ω+ (50)
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and the function r

r(x, t) = χω+(x, t):=
{
1 in ω+
0 in ω0 .

(51)

To verify that R ∈ E we consider w1, w2 ∈ H1
0 (a, b) and evaluate

d

dt

(
R(t)w1, w2

)
L2(a,b) = d

dt

∫ b

a
w1(x)w2(x)r(x, t) dx =

= d

dt

∫ γ (t)

a
w1(x)w2(x) dx = w1(γ (t))w2(γ (t)) γ ′(t),

then for u ∈ V = L2(0, T ; H1
0 (ω)) we have

〈R′u, u
〉
V ′×V =

∫ T

0

(
u(γ (t), t)

)2
γ ′(t) dt .

Moreover notice that, as long as γ is decreasing so that γ ′ ≤ 0, assumption (39) in
Theorem 3.13 is easily satisfied, since

A − 1

2
R′ : V → V ′

turns out to be bounded thanks to the fact that γ ′ is bounded, and
〈Au − Av − 1

2
(R′u − R′v), u − v

〉
V ′×V ≥ 〈Au − Av, u − v

〉
V ′×V ≥ λo‖u − v‖2V .

In Figure 1.a below two possible admissible configurations are shown, the first one
referring to a situation when ω+ and ω0 are like those defined in (50), the second one
refers to a possible configuration with

ω+:={(x, t) ∈ � × (0, T )
∣∣ x > γ (t)

}
, ω0:=

(
� × (0, T )

) \ ω+.

Now suppose that

esssup
[0,T ]

γ ′(t) > 0 .

Notice that there is a constant C such that for every w ∈ H1
0 (a, b)

|w(x)| ≤ C ‖w‖H1
0 (a,b) for every x ∈ [a, b],

then, finally, for u ∈ V = L2(0, T ; H1
0 (�)) we have

−1

2

〈R′u, u
〉
V ′×V = −1

2

∫ T

0

(
u(γ (t), t)

)2
γ ′(t) dt

≥ 1

2

∫ T

0

(
u(γ (t), t)

)2 essinf[0,T ]
(− γ ′(t)

)
dt

≥ −1

2

∫ T

0

(
u(γ (t), t)

)2 esssup
[0,T ]

γ ′(t) dt

≥ −C2

2
esssup
[0,T ]

γ ′(t) ‖u‖2V
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Fig. 1 Two possible examples with R′ ≤ 0
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Fig. 2 An example where the sign of R′ changes

and then

〈Au − Av − 1

2
(R′u − R′v), u − v

〉
V ′×V ≥

(
λo − C2

2
esssup
[0,T ]

γ ′(t)
)

‖u − v‖2V .

Then the first assumption required in (39) in Theorem 3.13 is satisfied if

λo − C2

2
esssup
[0,T ]

γ ′(t) > 0

and then γ can be also increasing, provided that

esssup
[0,T ]

γ ′(t) <
2 λo

C2 . (52)

A possible configuration is shown in Figure 2, where γ ′ is not necessarily negative, but
it has to satisfy (52).

Analogous considerations can be made if n ≥ 2: taking the simplest example

r(x, t) = χω+(x, t)
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where for each t ∈ [0.T ] we have � = �+(t) ∪ �0(t) and

ω+:=
⋃
t

�+(t), ω0:=
⋃
t

�0(t) .

In this case we need that that for w1, w2 ∈ H1
0 (�) the following hold:

t 	→
∫

�+(t)
w1(x)w2(x) dx is differentiable,

∣∣∣∣ ddt
∫

�+(t)
w1(x)w2(x) dx

∣∣∣∣ ≤ C̃ ‖w1‖H1
0 (�)‖w2‖H1

0 (�)

for some positive C̃ , since

(
R(t)w1, w2

)
L2(�)

=
∫

�

w1(x)w2(x)r(x, t) dx =
∫

�+(t)
w1(x)w2(x) dx .

These hold if �+(t) is open and the interface separating �+(t) and �0(t) is Lipschitz
continuous (see, e. g., Proposition 3, section 3.4.4, in [5]). Moreover, since u, v ∈ H1

0 (�), it
makes sense to consider the trace on this interface (see, e. g., Theorem 1, section 4.3, in [5]).

5. We want to show a little example where the regularity result stated in Theorem 3.16
holds. First suppose that (35) and (39) are satisfied, so to have a solution.
About r consider

r = r(x), r ∈ L∞(�).

As regards the operator A, consider, for instance, it is like (46), but with a and b inde-
pendent of t , i.e.

a = a(x), b = b(x)

To consider a simper example suppose b(x, u) = b(x)u with b ∈ L∞(�). Now consider
f ∈ H1(0, T ; H−1(�)) and the two functions u0 and uT solutions respectively of the
two problems {− div a

(
x, Du

)+ b(x)u = f (0) in �

u = 0 in ∂�{− div a
(
x, Du

)+ b(x)u = f (T ) in �

u = 0 in ∂�

and consider ϕ the restriction to �+(0) (see (47)) of u0 and ψ the restriction to �−(T )

of uT .
Then the solution u of (49) belongs to H1(0, T ; H1

0 (�)).
6. The equation we considered in Sect. (3) is Ru′ + Au = f . Nevertheless we required

some regularity assumption aboutR, precisely that R ∈ E , the class defined in Definition
2.2. With this example we want to show that at least uniqueness is lost if R /∈ E .
Consider

r = r(t) =
{−1 for t < T /2

1 for t ≥ T /2

and the problem (49) with this r . Clearly

�+(0) = �−(T ) = ∅ .

123



137 Page 26 of 30 F. Paronetto

Then we can fix η ∈ H1
0 (�) and solve separately the two problems⎧⎨

⎩
−ut + Au = f in � × (0, T /2)
u(x, t) = 0 in ∂� × (0, T )

u(x, T /2) = η(x) in x ∈ �

⎧⎨
⎩
ut + Au = f in � × (T /2, 0)
u(x, t) = 0 in ∂� × (0, T )

u(x, T /2) = η(x) in x ∈ �

and call u1 the solution of the first problem, u2 the solution of the second problem. Notice
that the function uη(t) = u1(t) for t ∈ [0, T /2], uη(t) = u2(t) for t ∈ [T /2, T ] solves
problem {

r ut + Au = f in � × (0, T /2)
u(x, t) = 0 in ∂� × (0, T )

and this is true for every η ∈ H1
0 (�), and so we have infinite different solutions.

Notice that if r depends only on t , r(0) < 0, r(T ) > 0, r increasing and continuous the
problem above has a unique solution, even if there are no initial and final data.

In the following example we modify (46) and consider forA a monotone operator whose
growth is more than linear. We consider the simple example where p > 2 (one could also
consider p > 2n/(2 + n) is such a way that W 1,p ⊂ L2, but for simplicity we confined to
p ≥ 2)

U ≡ V (t) = W 1,p
0 (�) and H(t) = L2(�) for every t ∈ [0, T ],

A(t) : W 1,p
0 (�) → W−1,p′

(�)(
A(t)u

)
(x):= − div a

(
x, t, Du(x)

)
,

with a : � × (0, T ) × Rn → Rn,

verifying λo |ξ |p ≤ a(x, t, ξ) · ξ ≤ �o |ξ |p (53)

for every ξ ∈ Rn and for some positive λo,�o.

7. With A like in (53) all things we said in examples 1,2,3,4 hold, except one. Since R′ is
linear,R′ is not comparable withA, then in this case to have assumption (40) in Theorem
3.13 satisfied we have to confine to some R such that

−1

2
R′ is a positive operator.

Then we can consider the functions considered in example 4, but we have to confine to
non-increasing γ in the first example and to some �+(t) such that

d

dt

∫
�+(t)

w1(x)w2(x) dx ≤ 0 (and clearly bounded)

in the more general case. So in this case examples like those shown in Figure 1 are
admissible, but that in Figure 2 is not.

8. Now consider the following R : [0, T ] → L(L2(�)). For a fixed function r ∈ L∞(� ×
� × [0, T ]) we define

(
R(t)u

)
(x):=

∫
�

r(x, y, t)u(y) dy u ∈ L2(�) .

Clearly r could be a convolution kernel, i.e. r(x, y, t) = r(x − y, t) (suitable extended
to zero outside of � × (0, T )). If assumptions (35) and (39) are satisfied if p = 2, e.g.
if the situation is like that in (46), or if (35) and (40) are satisfied if p > 2, e.g. if the
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situation is like that in (53), we have the existence and uniqueness of the solution of the
following problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
�

r(x, y, t)ut (y, t)dy + Au = f in � × (0, T ),

u = 0 in ∂� × (0, T ),

u(·, 0) = ϕ in H̃+(0),
u(·, T ) = ψ in H̃−(T ) .

Notice that Ru′ in (34) belongs, a priori, to V ′, but this is well defined since we recall
that Ru′ = (Ru)′ − R′u.
In this case we have to give the initial and final data respectively in the space H̃+(0) and
H̃−(T ) (defined in (14)) which in the previous cases are those defined in (48).

Now we want to show some examples of varying spaces in which the Banach spaces V (t)
are varying with time.

9. Unbounded coefficients. Another admissible situation is the following. Consider two
functions

μ, λ ∈ L1(� × (0, T )) .

Suppose λ > 0 a.e. while μ can change sign and also be zero. Denote by |μ̃| a suitable
function (see [18] or [19] for this detail) such that |μ̃| > 0 a.e. (we choose |μ̃| = λwhere
μ ≡ 0) and

|μ̃| =
{

μ in
{
(x, t) ∈ � × (0, T )

∣∣μ(x, t) > 0
}

−μ in
{
(x, t) ∈ � × (0, T )

∣∣μ(x, t) < 0
}

and the weighted Sobolev spaces for p ≥ 2 (also for these details about this spaces we
refer to [18] or to [19])

H(t) := L2(�, |μ̃|(·, t)), V (t) := W 1,p
0

(
�, |μ|(·, t), λ(·, t)) .

In this case (see again [18]) one has that there is q > p such that W 1,q
0 (�) is dense in

V (t) for every t ∈ [0, T ]. Then we consider
U = W 1,q

0 (�), V (t) and H(t) as above ,

A(t) : V (t) → V ′(t)(
A(t)u

)
(x):= − div a

(
x, t, Du(x)

)
,

with a : � × (0, T ) × Rn → Rn,

verifying λ(x, t) |ξ |p ≤ a(x, t, ξ) · ξ ≤ L λ(x, t) |ξ |p (54)

for every ξ ∈ Rn and for some L ≥ 1.
Consider the spaces and the operator just introduced and once defined

�+(t) := {
x ∈ �

∣∣μ(·, t) > 0
}
,

�−(t) := {
x ∈ �

∣∣μ(·, t) < 0
}
,

define the operators

R(t) : L2(�, |μ|(·, t)) → L2(�, |μ|(·, t)), R(t):=P+(t) − P−(t),

P+(t) : L2(�, |μ|(·, t)) → L2(�+(t), |μ|(·, t)) the orthogonal projection,
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P−(t) : L2(�, |μ|(·, t)) → L2(�−(t), |μ|(·, t)) the orthogonal projection.

In this way R(t) turns out to be bounded for every t even if μ is unbounded and we will
need (see (13)) that the following function is absolutely continuous (and differentiable)
for every u, v ∈ W 1,q

0 (�):

t 	→ (
R(t)u, v

)
H(t) =

∫
�+(t)

u(x) v(x) |μ̃|(x, t) dx −
∫

�−(t)
u(x) v(x) |μ̃|(x, t) dx =

=
∫

�

u(x) v(x) μ(x, t) dx .

Then for every ϕ ∈ L2
(
�+(0), μ+(·, 0)), ψ ∈ L2

(
�−(T ), μ−(·, T )

)
and f ∈ V ′ the

problem ⎧⎪⎪⎨
⎪⎪⎩

μ(x, t) ut + A u = f (x, t) in � × (0, T )

u(x, t) = 0 in ∂� × (0, T )

u(x, 0) = ϕ(x) in �+(0)
u(x, T ) = ψ(x) in �−(T )

has a unique solution.
10. The analogous of example 8with unbounded coefficient can be considered, then, adapting

examples 8 and 9, one can consider⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
�

μ(x, y, t)ut (y, t)dy + Au(x, t) = f (x, t) in � × (0, T ),

u = 0 in ∂� × (0, T ),

u(·, 0) = ϕ in H̃+(0),
u(·, T ) = ψ in H̃−(T ) .

where

μ ∈ L1(� × � × (0, T ))

and A, for instance, as in (54).
11. Another example of varying spaces is the following: consider first a function q : � →

[1,+∞)

Lq(·)(�):=
{
u ∈ L1

loc(�)

∣∣∣
∫

�

|u(x)|q(x) dx < +∞
}

endowed with the norm (see, for instance, [12] for definitions and properties of these
spaces)

‖u‖Lq(·)(�):= inf

{
λ > 0

∣∣∣
∫

�

∣∣∣∣u(x)

λ

∣∣∣∣
q(x)

dx ≤ 1

}
.

Clearly W 1,q(·)
0 (�) is defined as the space

W 1,q(·)
0 (�):=

{
u ∈ W 1,1

loc (�)

∣∣∣ u ∈ Lq(·)(�) and Du ∈ Lq(·)(�)
}

endowed with the norm ‖u‖Lq(·)(�) + ‖Du‖Lq(·)(�).
If now we have a function

p : � × [0, T ] → [2, po]
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for some po ≥ 2 we can consider

U = W 1,po
0 (�), V (t) = W 1,p(·,t)

0 (�), H(t) = L2(�),

A(t) : V (t) → V ′(t)(
A(t)u

)
(x):= − div a

(
x, t, Du(x)

)
,

with a : � × (0, T ) × Rn → Rn,

verifying λo |ξ |p(x,t) ≤ a(x, t, ξ) · ξ ≤ �o |ξ |p(x,t)

for every ξ ∈ Rn and for some positive λo,�o. If

p : � × [0, T ] → [2,+∞)

one can simply consider, if U does not need to be a Banach space,

U = C1
0 (�) .

Then problem (49) has a unique solution for r like in the examples 1–8.
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