
Calc. Var. (2020) 59:138
https://doi.org/10.1007/s00526-020-01782-w Calculus of Variations

Lower semicontinuity and relaxation of nonlocal
L∞-functionals

Carolin Kreisbeck1 · Elvira Zappale2

Received: 15 September 2019 / Accepted: 30 April 2020 / Published online: 28 July 2020
© The Author(s) 2020

Abstract
We study variational problems involving nonlocal supremal functionals

L∞(�; R
m) � u �→ esssup(x,y)∈�×�W (u(x), u(y)),

where � ⊂ R
n is a bounded, open set and W : R

m × R
m → R is a suitable function.

Motivated by existence theory via the direct method, we identify a necessary and sufficient
condition for L∞-weak∗ lower semicontinuity of these functionals, namely, separate level
convexity of a symmetrized and suitably diagonalized version of the supremands. More
generally, we show that the supremal structure of the functionals is preserved during the
process of relaxation. The analogous statement in the related context of double-integral
functionals was recently shown to be false. Our proof relies substantially on the connection
between supremal and indicator functionals. This allows us to recast the relaxation problem
into characterizing weak∗ closures of a class of nonlocal inclusions, which is of independent
interest. To illustrate the theory, we determine explicit relaxation formulas for examples of
functionals with different multi-well supremands.

Mathematics Subject Classification 49J45 primary; 26B25 · 47J22

1 Introduction

Nonlocal functionals in the form of double integrals appear naturally in different applications;
examples include peridynamics [13,34,47], image processing [16,27] or the theory of phase
transitions [20,22,46]. In the homogeneous case, separate convexity of the integrands has
been identified as a necessary and sufficient condition for the weak lower semicontinuity
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of such functionals [14,37,39]. When it comes to relaxation, meaning the characterization
of weak lower semicontinuous envelopes, though, the problem is still largely open. The
difficulty lies in the fact that, counterintuitively, relaxation formulas in general cannot be
obtained via separate convexification of the integrands, as explicit examples in [12,14,41]
indicate. As first shown in [32], and with different techniques in [35], even a representation
of the relaxation with a double integral of the same type is not always possible.

Inspired by these recent developments, as well as new models arising in the theory of
machine learning (see e.g. [23]), this article addresses a related problem by discussing homo-
geneous supremal (or L∞-)functionals in the nonlocal setting, i.e.,

L∞(�; R
m) � u �→ J (u) := esssup(x,y)∈�×�W (u(x), u(y)), (1.1)

where � ⊂ R
n is a bounded, open set and W : R

m × R
m → R is a given Borel function

satisfying suitable further assumptions regarding continuity and coercivity. We contribute
answers to two key questions, which are motivated by the existence theory for solutions to
variational problems in form of the direct methods in the calculus of variations:

(Q1) What are necessary and sufficient conditions on the supremand W for the (sequential)
lower semicontinuity of J with respect to the natural topology, that is, the L∞-weak∗
topology?

(Q2) If J fails to satisfy the conditions resulting as an answer to (Q1), can we find an
explicit representation of its relaxation, that is, of its L∞-weak∗ (sequential) lower
semicontinuous envelope?

Notice that in the context of this paper, the L∞-weak∗ topology and the sequential one can
always be used interchangeably, as the former admits a metrizable description on bounded
sets; see Remark 1.2(a) for a more detail.

We point out that inhomogeneous versions of (1.1) appeared already in [26], and more
lately in [28,31]. Moreover, it is useful to observe that functionals of the type (1.1) share key
features with two different classes of functionals that have been studied intensively in the
literature, namely double-integral functionals mentioned already at the beginning, i.e.,

L p(�; R
m) � u �→

∫
�

∫
�

W (u(x), u(y)) dx dy

with p ∈ [1,∞), and supremal functionals (or L∞-functionals), i.e.,

L∞(�; R
m) � u �→ ess sup

x∈�

f (u(x))

with a suitable function f : R
m → R; for more details and background on these two

branches of research, including a list of references, we refer to Sects. 2.3 and 2.4. Borrowing
and combining methods and techniques from these two fields, which are largely based on
Young measure theory, equip us with quite a rich tool box for analyzing nonlocal supremal
functionals. However, it will become clear in the following that, in order to settle the questions
(Q1) and (Q2), new ideas are needed in addition.

A crucial realization is that the functional J in (1.1) remains unaffected by certain changes
of W , beyond mere symmetrization. Indeed, replacing W with its diagonalized and sym-
metrized version Ŵ (see (7.1) along with Sect. 4 for the precise definition) still gives the
same functional.
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To understand better the role of diagonalization, it helps to take a different perspective on
our nonlocal supremal functionals and to exploit their connection to the so-called nonlocal
indicator functionals. These are double integrals over the characteristic function χK for a
compact set K ⊂ R

m × R
m , i.e.,

L∞(�; R
m) � u �→

∫
�

∫
�

χK (u(x), u(y)) dx dy. (1.2)

By modification of a result due to Barron et al. [10, Lemma 1.4], we find that (Q1) and
(Q2) for J in (1.1) are equivalent to studying the same questions for all indicator functionals
associated with the sublevel sets of W , cf. Proposition 7.1. Then again, (1.2) is closely tied
to nonlocal inclusions of the form

(u(x), u(y)) ∈ K for a.e. (x, y) ∈ � × �, (1.3)

and (Q2) comes down to identifying the asymptotic behavior of L∞-weakly∗ converging
sequences subject to this type of constraint, which is also of independent interest. If we denote
by AK the set of all functions in L∞(�; R

m) satisfying (1.3), the task is to characterize the
L∞-weak∗ closure of AK . In the classical local setting, that is, when (1.3) is changed into

u(x) ∈ A for a.e. x ∈ � with A ⊂ R
m compact, (1.4)

it is well known that the L∞-weak∗ limits of sequences with this property correspond to
essentially bounded functions with values in the convex hull of A. In the nonlocal case,
where one expects the separate convexification to take over the role of convexification in the
local problem, things turn out to be a bit more subtle.

The reason lies in the special interaction between nonlocality and the pointwise constraint,
whichmakes (1.3) substantially different from the classical case (1.4), as this simple example
illustrates. If m = 1 and K = {(1, 0), (−1, 0), (0, 1), (0,−1)} ⊂ R × R, then AK = ∅,
cf. Example 4.1 and (5.2). For a general compact K ⊂ R

m ×R
m , we show in Proposition 5.1

that the nonlocal inclusion (1.3) is invariant under symmetrization and diagonalization of K ,
i.e.,

AK = AK̂ (1.5)

with

K̂ := {(ξ, ζ ) ∈ K : (ξ, ζ ), (ξ, ξ), (ζ, ζ ) ∈ K }. (1.6)

Based on this observation, we prove the following characterization of L∞-weak∗ limits
of sequences in AK . Particularly, this result is one of the main ingredients for answering
questions (Q1) and (Q2).

Theorem 1.1 Let K ⊂ R
m × R

m be compact, let K̂ be the symmetric and diagonal version
of K in the sense of (1.6), and let K̂ sc be the separately convex hull of K̂ , see Definition 3.1
below. If m > 1, assume in addition that K̂ sc is compact and that the symmetrization and
diagonalization of K̂ sc can be represented as the union of all cubes of the form [α, β]×[α, β]
with (α, β) ∈ K, cf. (5.17).

Then, the (sequential) L∞-weak∗ closure of AK is given by AK̂ sc .

Remark 1.2 (a) In light of the well-known fact that the L∞-weak∗ topology is metrizable
on bounded sets (see e.g. [24, A.1.5]), the compactness hypothesis on K in the above
theorem guarantees the equivalence between the use of the L∞-weak∗ topology and the
corresponding sequential version.
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(b) Theorem 1.1 implies that AK is weakly∗ closed if and only if

̂̂K sc = K̂ , (1.7)

which, in the scalar case m = 1, is equivalent to the separate convexity of K̂ , cf. Corol-
lary 5.10. Notice that this necessary and sufficient condition is strictly weaker than
requiring that K is separately convex.

(c) As an immediate corollary of Theorem 1.1, we obtain that the relaxation of the indicator
functional (1.2) is given by

L∞(�; R
m) � u �→

∫
�

∫
�

χK̂ sc(u(x), u(y)) dx dy;

in particular, (1.2) is L∞-weak∗ lower semicontinuous if and only if (1.7) holds, cf. Corol-
lary 6.1.

The proof of Theorem 1.1 relies on a series of auxiliary results. With (1.5) established
in Proposition 5.1, an argument based on pointwise approximation by piecewise constant
functions allows us to deduce a refined representation of elements AK , saying that for each
u ∈ AK there exists a Cartesian product A× A ⊂ K with A ⊂ R

m such that u ∈ AA×A, see
Proposition 5.6. Another important ingredient in the case m = 1 is a characterization of the
separately convex hull of K̂ , which can be shown to have a particularly simple form. In fact,
K̂ sc is the union of all squares in R × R whose corners are extreme points (in the sense of
separate convexification of) K̂ , for details see Corollary 4.12. In higher dimensions, the anal-
ogous statement, which could be viewed as a Caratheodory type formula, is in general false
(cf. Remark 4.8c); the required extra assumptions on K̂ sc ifm > 1 are introduced to compen-
sate for this. Combining all the previous arguments reduces the proof of Theorem 1.1 to the
case when K takes the form of a Cartesian product in R

m × R
m . Under this assumption, the

desired L∞-weak∗ approximation of u ∈ AK sc follows from an explicit construction of peri-
odically oscillating sequences, see Lemma 5.8. Alternatively, one could use a more abstract
approach via Young measures generated by sequences that satisfy an approximate nonlo-
cal constraint, together with a projection step to enforce the exact nonlocal inclusion (1.3),
cf. Proposition 5.11.

Conceptually, the study of nonlocal inclusions as in (1.3) shows close parallels with the
field of differential inclusions, dealing with problems such as

∇u ∈ M a.e. in � and M ⊂ R
m×n compact

for u ∈ W 1,∞(�; R
m) (see e.g. [21,44] and the references therein), and compensated com-

pactness theory [38,48]; notice that the latter deal with problems that are all local in nature.
The overall challenge is to capture the interplay between pointwise constraints and the struc-
tural properties of the vector fields,whether they are gradients, ormore generally,A-free fields
with some differential operator A, or, like here, nonlocal vector fields of the form (2.6). Yet,
besides these conceptual parallels, nonlocality creates effects that are not typically encoun-
tered in local problems, as for instance (1.5) indicates.

In generalization of Theorem 1.1, we characterize the set of Young measures generated by
nonlocal vector fields associated with uniformly bounded sequences (u j ) j ⊂ L∞(�; R

m),
cf. (2.6); indeed, if (u j ) j generates the Young measure ν = {νx }x∈�, the sought-after set
consists of all the product measures 	 = {	(x,y)}(x,y)∈�×� = {νx ⊗ νy}(x,y)∈�×� with
supp	 contained almost everywhere in a Cartesian subset of K , see Theorem 5.12 for the
precise statement. Interpreted in the context of indicator functionals, the latter yields a Young
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measure relaxation result for a class of unbounded functionals (defined precisely in (6.6)),
extending part of a recent work by Bellido and Mora-Corral [12, Section 6], cf. Sect. 6.2.

The next theorem collects the main results of this paper regarding nonlocal supremal
functionals. In contrast to the theory of double-integral functionals, we show here that relax-
ation of nonlocal supremal functionals is structure preserving, in the sense that it is again of
nonlocal supremal type. For simplicity, we formulate the result here in the scalar case; for
the extension to the vectorial setting (under additional conditions), we refer to Corollary 7.2
and Remark 7.6.

Theorem 1.3 Let J be as in (1.1) andW : R×R → R be lower semicontinuous and coercive,
i.e., W (ξ, ζ ) → ∞ as |(ξ, ζ )| → ∞.

(i) The functional J is L∞-weakly∗ lower semicontinuous if and only if Ŵ is separately
level convex, where Ŵ , defined in (7.1), is the density resulting from diagonalization and
symmetrization of W.

(ii) The relaxation J rlx of J is given by the nonlocal supremal functional of the form (1.1)
with supremand Ŵ slc, which is the separately level convex envelope of Ŵ .

Referring back to the beginning of the introduction, we stress the link between nonlocal
supremal functionals and nonlocal double-integral functionals via L p-approximation; ifW =
Ŵ is separately level convex, this can be made rigorous by imitating the arguments by
Champion, De Pascale & Prinari in [19, Theorem 3.1].

As an outlook on interesting future research beyond the scope of this work, we would like
to mention in particular the proof of a characterization result for the L∞-weak∗ closure of
AK in general dimensions without extra assumptions on K , or the extension to our theory to
inhomogeneous nonlocal functionals.

The paper is organized as follows. First, we collect some preliminaries in Sect. 2; these
include subsections on frequently used notation, auxiliary results for Young measures, as
well as background on the theories of both supremal and nonlocal double-integral function-
als. After introducing and discussing the notion of separate level convexity in Sect. 3, we
investigate the interaction of separate convexification of sets with their diagonalization and
symmetrization in Sect. 4. In Sect. 5, we turn to the analysis of nonlocal inclusions; more
precisely, Sect. 5.1 provides alternative representations of AK , Sect. 5.2 contains the proof
of Theorem 1.1, and Sect. 5.3 is concerned with the characterization of Young measures gen-
erated by sequences of nonlocal vector fields. In Sect. 6, we reformulate the insights about
nonlocal inclusions in terms of nonlocal indicator functionals (see Sects. 6.1 and 6.2), and
discuss the connection between different notions of nonlocal convexity for extended-valued
functionals (see Sect. 6.3). The main theorems on lower semicontinuity and relaxation of
nonlocal supremal functionals, which address the questions (Q1) and (Q2), are established
in Sect. 7. To illustrate the theory, we finally present a few examples of nonlocal supremal
functionals with different multiwell supremands in Sect. 7.2, and determine explicitly the
corresponding relaxation formulas.

2 Preliminaries

In this section, we fix notations and recall some well-known results that will be exploited in
the remainder of the paper.
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2.1 Notation

In the following, m and n are natural numbers. For any vector ξ ∈ R
m , let ξi , i = 1, . . . ,m,

denote its components, and |ξ | = (
∑m

i=1 ξ2i )
1
2 its Euclidean norm. By Br (ξ), we denote the

closed (Euclidean) ball centered in ξ ∈ R
m with radius r > 0. For two vectors α, β ∈ R

m ,
we introduce the generalized closed interval

[α, β] := {tα + (1 − t)β : t ∈ [0, 1]} ⊂ R
m, (2.1)

and analogously, the open and half open segments [α, β[, ]α, β], and ]α, β[; moreover, let us
define

Qα,β := [α, β] × [α, β] ⊂ R
m × R

m . (2.2)

Our notation for the complement of a set A ⊂ R
m is Ac = R

m \ A, whilst Aco stands
for the convex hull of A. Moreover, we denote the characteristic function of A ⊂ R

m in the
sense of convex analysis by χA and the indicator function of A by 1A, i.e.

χA(ξ) :=
{
0 if ξ ∈ A,

∞ otherwise,
and 1A(ξ) :=

{
1 if ξ ∈ A,

0 otherwise.
(2.3)

The distance from a point β ∈ R
m to a set A ⊂ R

m is dist(β, A) := infα∈A |α − β|, and the
Hausdorff distance between two non-empty sets A, B ⊂ R

m is given by

dmH (A, B) := supα∈A dist(α, B) + supβ∈B dist(β, A). (2.4)

Further, we denote byR∞ the setR∪{∞}. For every c ∈ R and every function f : R
m →

R∞,

Lc( f ) := {ξ ∈ R
m : f (ξ) ≤ c} ⊂ R

m

is the sublevel set of f at level c.
Let E ⊂ A × A with A ⊂ R

m ; then π1(E) and π2(E) stand for the the projection of E
onto the first and second component, respectively, that is

π1(E) =
⋃

(α,β)∈E
α and π2(E) =

⋃
(α,β)∈E

β.

To denote the sections of E in the first and second argument at β ∈ A, we use a notation with
letters in Frakture, precisely,

E
β
1 := {α ∈ A : (α, β) ∈ E} and E

β
2 := {α ∈ A : (β, α) ∈ E}.

If E is symmetric, meaning E = ET with ET := {(α, β) ∈ A × A : (β, α) ∈ E}, then
π1(E) = π2(E) and Eβ

1 = E
β
2 for all β ∈ A, and we simply write π(E) and Eβ .

Notice that throughout the manuscript, we use the identificationR
m ×R

m ∼= R
2m without

explicit mention.
Let C0(R

m) be the closure with respect to the maximum norm of the space of smooth,
real-valued functions on R

n with compact support. By the Riesz representation theorem (see
e.g. [2, Theorem 1.54]), the dual space of C0(R

m) can be identified via the duality pairing
〈μ, ϕ〉 = ∫

Rm ϕ(ξ) dμ(ξ) with the space M(Rm) of finite signed Radon measures on R
m .

For the class of probability measures defined on the Borel sets of R
m , we write Pr(Rm).

The barycenter of μ ∈ Pr(Rm) is defined by

[μ] := 〈μ, id〉 =
∫

Rm
ξ dμ(ξ), (2.5)
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and supp ¯ stands for the support of μ.
If f : R

m → R and μ is a probability measure, or more generally, a positive measure, on
the Borel sets of R

m , the μ-essential supremum of f over the set A ⊂ R
m is defined as

μ- ess sup
ξ∈A

f (ξ) := inf
N⊂A,μ(N )=0

sup
ξ∈A\N

f (ξ).

We use the notation ν ⊗ μ to denote the product measure of two measures ν and μ. By U
we denote a generic measurable (Lebesgue or Borel) subset of R

m . The Lebesgue measure
of a Lebesgue measurable set U ⊂ R

n is denoted by Ln(U ). We skip the Lebesgue measure
symbol Ln whenever it is clear from the context, for example, we often write simply ‘a.e. in
U ’ instead of ‘Ln-a.e. in U ’.

Unless mentioned otherwise, � is always a non-empty, open and bounded subset of R
n .

We use standard notation for L p-spaces with p ∈ [1,∞]; in particular, for a sequence
of functions (u j ) j ⊂ L p(�; R

m) and u ∈ L p(�; R
m), we write u j⇀u in L p(�; R

m)

with p ∈ [1,∞) and u j⇀
∗u in L∞(�; R

m) to express weak and weak∗ convergence of
(u j ) j to u, respectively. In the following, we often deal with functions u ∈ L p(�; R

m)

and their composition with Borel measurable functions f : R
m → R. The Ln-essential

supremum of f (u), whenever f is non-negative, corresponds to the L∞-norm of f (u).
Depending on the context, we write either Ln- ess supx∈� f (u(x)), ‖ f (u)‖L∞(�), or simply,
ess supx∈� f (u(x)).

2.2 Youngmeasures

Young measures are an important technical tool in nonlinear analysis, as they encode refined
information on the oscillation behavior of weakly converging sequences. To make this article
self-contained, we briefly recall some basics from this theory, focusing on what will be used
in the sequel. For a more detailed introduction to the topic, we refer to the broad literature,
e.g. [24, Chapter 8], [40], [44, Section 4].

Let U ⊂ R
n be a Lebesgue measurable set with finite measure. By definition, a Young

measure ν = {νx }x∈U is an element of the space L∞
w (U ;M(Rm)) of essentially bounded,

weakly∗ measurable maps U → M(Rm), which is isometrically isomorphic to the dual of
L1(U ;C0(R

m)), such that νx := ν(x) ∈ Pr(Rm) for Ln-a.e. x ∈ U . One calls ν homoge-
neous if there is a measure ν0 ∈ Pr(Rm) such that νx = ν0 for Ln- a.e. x ∈ U .

A sequence (z j ) j of measurable functions z j : U → R
m is said to generate a Young

measure ν ∈ L∞
w (U ;Pr(Rm)) if for every h ∈ L1(U ) and ϕ ∈ C0(R

m),

lim
j→∞

∫
U
h(x)ϕ(z j (x)) dx =

∫
U
h(x)

∫
Rm

ϕ(ξ)dνx (ξ) dx =
∫
U
h(x)〈νx , ϕ〉 dx,

or ϕ(z j )
∗
⇀〈νx , ϕ〉 for all ϕ ∈ C0(R

m); in formulas,

z j
Y M−→ ν as j → ∞.

The following result is often referred to as the fundamental theorem for Young measures,
see e.g. [5], [24, Theorems 8.2 and 8.6], [44, Theorem 4.1, Proposition 4.6].

Theorem 2.1 Let (z j ) j ⊂ L p(U ; R
m) with 1 ≤ p ≤ ∞ be a uniformly bounded

sequence. Then there exists a subsequence of (z j ) j (not relabeled) and a Young measure

ν ∈ L∞
w (U ;M(Rm)) such that z j

Y M−→ ν. Moreover,
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(i) for any continuous integrand f : R
m → R with the property that

(
f (z j )

)
j ⊂ L1(U ) is

equiintegrable, it holds that

f (z j )⇀
∫

Rm
f (ξ) dν(ξ) = 〈ν, f 〉 in L1(U );

(ii) for any lower semicontinuous f : R
m → R∞ bounded from below,

lim inf
j→∞

∫
U

f (z j (x)) dx ≥
∫
U

∫
Rm

f (ξ)dνx (ξ) dx =
∫
U

〈νx , f 〉 dx;

(iii) if K ⊂ R
m is a compact subset, then supp νx ∈ K for Ln-a.e. x ∈ U if and only if

dist(z j , K ) → 0 in measure.

In particular, if (z j ) j ⊂ L p(U ; R
m)generates aYoungmeasure ν and convergesweakly(∗)

in L p(U ; R
m) to a limit function u, then [νx ] = 〈νx , id〉 = u(x) for Ln-a.e. x ∈ U .

With the aim of analyzing nonlocal problems, we associate with any function u ∈
L1(�; R

m) the vector field

vu(x, y) := (u(x), u(y)) for (x, y) ∈ � × �. (2.6)

The following lemma, which was established by Pedregal in [39, Proposition 2.3], gives a
characterization of Young measures generated by sequences of such nonlocal vector fields.

Lemma 2.2 Let (u j ) j ⊂ L p(�; R
m) with 1 ≤ p ≤ ∞ be uniformly bounded and generate

a Young measure ν = {νx }x∈�, and let 	 = {	(x,y)}(x,y)∈�×� be a family of probability
measures on R

m × R
m.

Then 	 is the Young measure generated by the sequence (vu j ) j ⊂ L p(�×�; R
m ×R

m)

defined according to (2.6) if and only if

	(x,y) = νx ⊗ νy for a.e. (x, y) ∈ � × �,

and ⎧⎨
⎩

∫
�

∫
Rm

|ξ |p dνx (ξ) dx < ∞, if p < ∞,

supp νx ⊂ K for Ln-a.e. x ∈ � with a fixed compact set K ⊂ R
m, if p = ∞.

2.3 Supremal functionals and level convexity

Next, we collect some basic properties and useful results from the theory of supremal func-
tionals, i.e., functionals F : L∞(�; R

m) → R∞ given by

F(u) := ess sup
x∈�

f (u(x)), (2.7)

where f : R
m → R∞ is a Borel measurable function bounded from below. For the relevance

of L∞-functionals in optimal control and optimal transport problems, see [6,7] and the
references therein; applications in the context of materials science can be found e.g. in
[15,25,29].

Barron and Jensen in [8] and Barron and Liu in [11] were the first to study necessary
and sufficient conditions of supremal functionals as F in (2.7). Assuming that � ⊂ R is an
interval, they proved that F is sequentially L∞-weakly∗ lower semicontinuous if and only
if the supremand f is level convex and lower semicontinuous. The same statement holds for
general � ⊂ R

n ; see [1, Theorem 4.1], as well as [10,42].
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Definition 2.3 A function f : R
m → R∞ is called level convex if all level sets of f , that

is, Lc( f ) = {ξ ∈ R
m : f (ξ) ≤ c} with c ∈ R, are convex sets.

Note that level convexity is known in the literature on operational research and convex
analysis as quasiconvexity, see e.g. [33]. To avoid ambiguity with the notion introduced by
Morrey [36] in the context of integral functionals, we have chosen here to use the same
terminology as in [1].

The following lemma provides different characterizations of level convexity, in particular,
in terms of a supremal Jensen type inequality. It can be found e.g. in [6, Theorem 30]
(under additional lower semicontinuity hypotheses) and partially in [9, Lemma 2.4] and
[10, Theorem 1.2]; see also [43, Definition 2.1 and Theorem 2.4] for a statement in wider
generality.

Lemma 2.4 Let f : R
m → R∞ be a Borel measurable function. Then the following state-

ments are equivalent:

(i) f is level convex;
(ii) for every ξ, ζ ∈ R

m and t ∈ [0, 1] it holds that
f (tξ + (1 − t)ζ ) ≤ max{ f (ξ), f (ζ )};

(iii) for any open set � ⊂ R
n with Ln(�) < ∞ and every ϕ ∈ L1(�; R

m) one has that

f

(
1

Ln(�)

∫
�

ϕ dx

)
≤ ess sup

x∈�

f (ϕ(x));

(iv) for every μ ∈ Pr(Rm),

f ([μ]) ≤ μ- ess sup
ξ∈Rm

f (ξ).

The following auxiliary result is a slight modification of [6, Theorem 34] and is based
on L p-approximation in combination with the lower semicontinuity type result for Young
measure in Theorem 2.1.

Lemma 2.5 Let f : R
m → R∞ a lower semicontinuous function bounded from below.

Further, let (u j ) j be a uniformly bounded sequence of functions in L∞(�; R
m) generating

a Young measure ν = {νx }x∈�. Then,

lim inf
j→∞ ess sup

x∈�

f (u j ) ≥ ess sup
x∈�

f̄ ,

where f̄ (x) := νx - ess supξ∈Rm f (ξ) for x ∈ �.

Proof We give the details here for the reader’s convenience, referring to [6] for the original
proof. Up to a translation argument, there is no loss of generality in assuming that f is
non-negative.

Let ε > 0 be fixed, and choose a set S ⊂ � with positive Lebesgue measure such that
f̄ (x) ≥ ‖ f̄ ‖L∞(�) − 2ε for all x ∈ S. Next, we show that there exists a measurable subset
S′ ⊂ S with Ln(S′) > 0 such that

(∫
Rm

| f (ξ)|p dνx (ξ)
) 1

p ≥ ‖ f̄ ‖L∞(�) − ε (2.8)

for all x ∈ S′ and p > 1 sufficiently large. Indeed, with

S j :=
{
x ∈ S : (∫

�
f (ξ)pdνx (ξ)

) 1
p ≥ ‖ f̄ ‖L∞(�) − ε for all p ≥ j

}
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for j ∈ N, one has that S = ⋃∞
j=1 S j . Since LN (S) > 0, there must be at least one j ′ for

which LN (S j ′) > 0, and setting S′ := S j ′ shows (2.8).
We take the inequality in (2.8) to the pth power and integrate over S′. Alongwith Theorem

2.1 (ii), it follows that

Ln(S′)(‖ f̄ ‖L∞(�) − ε)p ≤
∫
S′

∫
Rm

| f (ξ)|p dνx (ξ) dx

≤ lim inf
j→∞

∫
�

| f (u j )|p dx ≤ lim inf
j→∞ ‖ f (u j )‖p

L∞(�)Ln(�).

Hence,

lim inf
j→∞ ‖ f (u j )‖L∞(�) ≥

(Ln(S′)
Ln(�)

) 1
p (‖ f̄ ‖L∞(�) − ε

)

for p > 1 sufficiently large. Letting p → ∞ and recalling that ε > 0 is arbitrary concludes
the proof. ��

2.4 Double-integral functionals and separate convexity

This subsection presents some preliminaries on nonlocal integral functionals, see also [41] for
a recent overview article. For p > 1, consider a double-integral functional I : L p(�; R

m) →
R,

I (u) :=
∫

�

∫
�

W (u(x), u(y)) dx dy, (2.9)

where W : R
m × R

m → R is a continuous function that is bounded from below and has
standard p-growth.

In 1997, Pedregal [39] gave the first necessary and sufficient condition for L p-weak lower
semicontinuity of I in the scalar case m = 1. This condition was quite implicit, but could be
shown to be equivalent to the separate convexity of the integrand W a decade later by Bevan
and Pedregal [14]. Also in the vectorial case,W being separately convex is the characterizing
property to ensure weak lower semicontinuity of I , as Muñoz proved in [37]; the latter is
formulated in the gradient setting, usingW 1,p-weak convergence of scalar valued functions,
but the statement and the ideas of the proof carry over to functionals of the form (2.9),
cf. [41]. Results about inhomogeneous double-integral functionals, meaning with integrands
W depending also explicitly on x, y ∈ �, can be found e.g. in [12,37,41].

Definition 2.6 We call a function W : R
m × R

m → R∞ separately convex (with vectorial
components) if for every ξ ∈ R

m , the functions W (·, ξ) and W (ξ, ·) are convex.
Besides our terminology, which is inspired by [21], other names for separate convexity are

common in the literature, such as orthogonal convexity, directional convexity or bi-convexity;
see [4], for the first detailed treatment of the subject.

As discussed recently in [12], there are different ‘nonlocal’ definitions of convexity related
to the weak lower semicontinuity of I , which coincide under suitable assumptions. In Sect. 6,
we extend the discussion of these notions to the context of unbounded functionals.

It was observed in [39, p. 1383] that for W : R × R → R continuous and bounded from
below, separate convexity of W can equivalently be characterized by a separate Jensen’s
inequality. In view of [18, Theorem 4.1.4], this statement can easily be generalized to
extended-valued, lower semicontinuous functions defined on R

m × R
m as follows.
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Lemma 2.7 Let W : R
m × R

m → R∞ be lower semicontinuous and bounded from below,
then W is separately convex if and only if∫

Rm

∫
Rm

W (ξ, ζ ) dν(ξ) dμ(ζ ) ≥ W ([ν], [μ]) (2.10)

for any μ, ν ∈ Pr(Rm).

Proof Assuming first that W is separately convex, to obtain (2.10), it suffices now to apply
Jensen’s inequality in the version of [18, Theorem4.1.4] twice; firstwith the integrandW (·, ξ)

for μ-a.e. ξ ∈ R
m , and then with W ([ν], ·).

The fact that (2.10) yields separate convexity of W follows after choosing μ and ν to be
convex combinations of Dirac measures. ��
The question of relaxation of functionals I as in (2.9) for which the density W fails to be
separately convex is still mostly open. It may seem counter-intuitive, but there are exam-
ples [12,14,41] indicating that separate convexification of W does in general not give rise to
the right candidate for the weakly lower semicontinuous envelope of I . Even more remark-
ably, as recently proven in [32,35], relaxation in the weak L p-topology of double-integrals
functionals cannot always be expected to be structure-preserving. In the context of Young
measures, we refer to [12] for a relaxation result with respect to the narrow convergence.

3 Separate level convexity

In this section, we introduce the notion of separate level convexity, and show that it provides a
sufficient condition for the L∞-weak∗ lower semicontinuity of nonlocal supremal functionals
as in (1.1).

Before doing so, let us specify what we mean by separate convexity with vectorial com-
ponents (in the sequel, just referred to as separate convexity) of subsets of R

m × R
m .

For m = 1, this definition reduces to classical separate convexity in the sense of [21,
Proposition 7.5 and Definition 7.13].

Definition 3.1 (Separate convexity (with vectorial components) of sets)A set E ⊂ R
m ×R

m

is called separately convex, if for every t ∈ (0, 1) and every (ξ1, ζ1), (ξ2, ζ2) ∈ E such that
ξ1 = ξ2 or ζ1 = ζ2 it holds that

t(ξ1, ζ1) + (1 − t)(ξ2, ζ2) ∈ E .

The separately convex hull of E , denoted by E sc, is defined as the smallest separately
convex set in R

m × R
m containing E .

The separately convex hull of E ⊂ R
m × R

m can be characterized by

E sc =
⋃
i∈N

E sc
i (3.1)

with E sc
0 = E and for i ∈ N,

E sc
i = {(ξ, ζ ) ∈ R

m × R
m : (ξ, ζ ) = t(ξ1, ζ1) + (1 − t)(ξ2, ζ2), t ∈ [0, 1],

(ξ1, ζ1), (ξ2, ζ2) ∈ E sc
i−1, ξ1 = ξ2 or ζ1 = ζ2}, (3.2)

cf. [21, Theorem 7.17].
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Remark 3.2 It is clear by the construction in (3.1) and (3.2) that if E is open, then so is E sc.
While compactness of E is preserved under separate convexifications in the two-dimensional
setting (i.e. if m = 1) as stated in [30, Proposition 2.3], this is in general not true for m > 1
[21, Remark 7.18 (ii)]; more details on the latter are given in [4,30].

Definition 3.3 (Separate level convexity (with vectorial components) of functions) We call
a function W : R

m × R
m → R∞ separately level convex if all level sets of W , i.e. the sets

Lc(W ) = {(ξ, η) ∈ R
m × R

m : W (ξ, η) ≤ c} with c ∈ R, are separately convex.
Furthermore,W slc stands for the separately level convex envelope ofW , that is, the largest

separately level convex function below W .

Remark 3.4 (a) An equivalentwayof expressing separate level convexity ofW : R
m×R

m →
R∞ is that for every ξ, ζ ∈ R

m , the functions W (ξ, ·),W (·, ζ ) : R
m → R∞ are level

convex.
(b) In view of the above definitions, we observe that

Lc(W
slc) ⊃ Lc(W )sc for any c ∈ R. (3.3)

In general, equality in (3.3) is not true as the example

R × R � (ξ, ζ ) �→ W (ξ, ζ ) =
{ |(ξ, ζ )| if (ξ, ζ ) �= (0, 0),
1 if (ξ, ζ ) = (0, 0),

shows. Here, L0(W slc) = {0}, whereas L0(W )sc = ∅. Under additional assumptions,
equality in (3.3) is nevertheless true, cf. (7.6).

The following lemma collects a number of different representations of separate level
convexity.

Lemma 3.5 Let W : R
m × R

m → R∞ be Borel measurable. Then the following statements
are equivalent:

(i) W is separately level convex;
(ii) for every ξ1, ξ2, ζ1, ζ2 ∈ R

m and t, s ∈ [0, 1] one has that
W (tξ1 + (1 − t)ξ2, sζ1 + (1 − s)ζ2) ≤ max

i, j∈{1,2} W (ξi , ζ j );

(iii) for any open � ⊂ R
n with Ln(�) < ∞ and all ϕ,ψ ∈ L1(�; R

m),

W
( 1

Ln(�)

∫
�

ϕ dx,
1

Ln(�)

∫
�

ψ dy
)

≤ ess sup
(x,y)∈�×�

W (ϕ(x), ψ(y));

(vi) for every ν, μ ∈ Pr(Rm) it holds that

W ([ν], [μ]) ≤ (ν ⊗ μ)- ess sup
(ξ,ζ )∈Rm×Rm

W (ξ, ζ )

= ν- ess sup
ξ∈Rm

(
μ- ess sup

ζ∈Rm
W (ξ, ζ )

) = μ- ess sup
ζ∈Rm

(
ν- ess sup

ξ∈Rm
W (ξ, ζ )

)
.

Proof These equivalences follow as an immediate corollary of Lemma 2.4. Indeed, we apply
the characterizations therein twice in each of the two variables of W , fixing the other. ��

The sufficiency of separate level convexity of W for ensuring L∞-weak∗ lower semicon-
tinuity of J in (1.1) follows in light of the coercivity assumption of W and Remark 1.2a)
from the next proposition. The proof relies on combining elements from both theories of
supremal and double-integral functionals, cf. Sects. 2.2 and 2.3, respectively.
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Proposition 3.6 Let J be as in (1.1) with W : R
m × R

m → R lower semicontinuous and
coercive, i.e., W (ξ, ζ ) → ∞ as |(ξ, ζ )| → ∞. If W is separately level convex, then J is
L∞-weakly∗ lower semicontinuous, i.e., for all (u j ) j ⊂ L∞(�; R

m) and u ∈ L∞(�; R
m)

such that u j⇀
∗u in L∞(�; R

m) it holds that

lim inf
j→∞ ess sup

(x,y)∈�×�

W (u j (x), u j (y)) ≥ ess sup
(x,y)∈�×�

W (u(x), u(y)).

Proof Let (u j ) j ⊂ L∞(�; R
m) be such that u j⇀

∗u in L∞(�; R
m) and let ν = {νx }x∈�

be the Young measure generated by (u j ) j (possibly after passing to a non-relabeled subse-
quence). In particular,

[νx ] = 〈νx , id〉 = u(x) for a.e. x ∈ �. (3.4)

Let (vu j ) j ⊂ L∞(� × �; R
m × R

m) be the sequence of nonlocal vector fields associated
with (u j ) j , cf. (2.6), and 	 = {	}(x,y)∈�×� = νx ⊗ νy for x, y ∈ � the generated Young
measure according to Lemma 2.2. Then, Lemma 2.5 implies that

lim inf
j→∞ J (u j ) = lim inf

j→∞ ess sup
(x,y)∈�×�

W (u j (x), u j (y)) ≥ ess sup
(x,y)∈�×�

W (x, y), (3.5)

where W (x, y) := 	(x,y)- ess sup(ξ,ζ )∈Rm×Rm W (ξ, ζ ). By Lemma 2.2,

W (x, y) = νx ⊗ νy- ess sup
(ξ,ζ )∈Rm×Rm

W (ξ, ζ ) = νx - ess sup
ξ∈Rm

(
νy- ess sup

ζ∈Rm
W (ξ, ζ )

)

for a.e. (x, y) ∈ � × �, and since W is separately convex, Lemma 3.5 (iv) along with (3.4)
guarantees that

W (x, y) ≥ W ([νx ], [νy]) = W (u(x), u(y)). (3.6)

Joining (3.6) and (3.5) concludes the proof. ��
As we show later in Sect. 7.1, separate level convexity of W is not necessary for J being

sequentially L∞-weakly∗ lower semicontinuous, cf. Corollary 7.2.

4 Diagonalization, symmetrization and separately convex hulls

For E ⊂ R
m × R

m , let

Ediag := {(α, β) ∈ E : (α, α), (β, β) ∈ E}
and

E sym := {(α, β) ∈ E : (β, α) ∈ E} = E ∩ ET

be the diagonalization and symmetrization of E . Accordingly, we call E symmetric, if E =
E sym, and diagonal if E = Ediag. By combining these two operations, we introduce

Ê := E sym ∩ Ediag

= (Ediag)sym = (E sym)diag = {(α, β) ∈ E : (α, α), (β, α), (β, β) ∈ E}. (4.1)

As an immediate consequence of these definitions, one observes that if E is closed (com-
pact), then E sym and Ediag, and consequently, also Ê , are closed (compact).

This section is devoted to the study of characterizing properties of diagonal and symmetric
sets. For illustration, we start with a few simple examples in the scalar case m = 1.
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Example 4.1 Consider the four compact subsets of R × R,

K1 = [−2, 2] × [−1, 1], K2 = {(ξ, ζ ) ∈ R × R : ξ2 + ζ 2 ≤ 2},
K3 = {(ξ, ζ ) ∈ R × R : |ξ | + |ζ | ≤ 2}, and K4 = [−1, 1] × [−1, 1].

Then, K̂1 = K̂2 = K̂3 = K̂4 = K4. For the points sets

K5 = {(1, 0), (0, 1), (−1, 0), (0,−1)} and K6 = {−1, 1} × {−1, 1}, (4.2)

one obtains that K̂5 = ∅ and K̂6 = K6, respectively.

Notice the following equivalent way of expressing Ê in (4.1),

Ê = E sym \ BE with BE :=
⋃

(ξ,ξ)/∈E
(Rm × {ξ}) ∪ ({ξ} × R

m). (4.3)

Based on the concept of maximal Cartesian subsets and motivated by the observation
that Ê = ⋃

(ξ,ζ )∈Ê {ξ, ζ } × {ζ, ξ} ⊂ ⋃
(ξ,ζ )∈E {ξ, ζ } × {ζ, ξ}, we will derive yet another

representation of Ê in Lemma 4.3.

Definition 4.2 Let E ⊂ R
m × R

m . We call a set P ⊂ E a maximal Cartesian subset of E if
P = A × A with A ⊂ R

m and if for any B ⊂ R
m with A ⊂ B and B × B ⊂ E it holds that

B = A. We denote the set of all maximal Cartesian subsets of E by PE .

Lemma 4.3 Let E ⊂ R
m × R

m. Then,

Ê =
⋃

P∈PE

P.

Proof The proof follows simply from exploiting the definitions of PE and Ê . Here are
some more details for the readers’ convenience. If (ξ, ζ ) ∈ P for some P ∈ PE , then
{ξ, ζ } × {ξ, ζ } ⊂ P ⊂ E . Hence, (ξ, ζ ), (ξ, ξ), (ζ, ξ), (ζ, ζ ) ∈ E , which shows that
(ξ, ζ ) ∈ Ê .

On the other hand, we know for (ξ, ζ ) ∈ Ê that {ξ, ζ } × {ξ, ζ } ⊂ Ê ⊂ E , and hence
B × B ⊂ E with B = {ξ, ζ }. Due to the Cartesian structure of B × B, there is a maximal
Cartesian subset of E containing B × B, which proves the statement. ��

Remark 4.4 It is immediate to see that PE = PÊ .

Recalling Definition 3.1, we prove that diagonalization and symmetrization preserves
separate convexity ifm = 1. Form > 1, however, this is in general not true, seeRemark 4.6b).

Lemma 4.5 If E ⊂ R × R is separately convex, then Ê is also separately convex.

Proof Let (ξ1, ζ ), (ξ2, ζ ) ∈ Ê . By Lemma 4.3 we know that there are P1, P2 ∈ PE such
that (ξ1, ζ ) ∈ P1 = A1 × A1 and (ξ2, ζ ) ∈ P2 = A2 × A2 with A1, A2 ⊂ R. Since E is
separately convex, A1, A2 ⊂ R are convex, and hence intervals. Observing that ζ ∈ A1∩ A2,
the intervals overlap, so that (A1∪ A2)

co = A1∪ A2. Consequently, any convex combination
tξ1+(1−t)ξ2 with t ∈ [0, 1] lies in A1∪A2,which implies (tξ1+(1−t)ξ2, ζ ) ∈ P1∪P2 ⊂ Ê ,
cf. Lemma 4.3. By Definition 3.1, Ê is thus separately convex.
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Remark 4.6 (a) Due to Lemma 4.5, it holds that Ê sc ⊂ Ê sc for any E ⊂ R × R. We point
out, however, that the operations of taking the separate convexification and diagonalization
of E ⊂ R × R do in general not commute, that is, Ê sc �= Ê sc. In fact, the set K5 in (4.2)
satisfies K̂5

sc = ∅, while K̂ sc
5 = ([−1, 1] × {0} ∪ {0} × [−1, 1])diag = {0}.

(b) Note that the statement of Lemma 4.5 fails in the vectorial casem > 1, as the following
example illustrates. Let E = (A1 × A1) ∪ (A2 × A2) with A1, A2 ⊂ R

m convex such that
A1 ∩ A2 �= ∅ and (A1 ∪ A2)

co \ (A1 ∪ A2) �= ∅. Then,
E sc = E sc

1 = E ∪ [(A1 ∩ A2) × (A1 ∪ A2)
co] ∪ [(A1 ∪ A2)

co × (A1 ∩ A2)], (4.4)

and hence, in view of E = Ê , we find that Ê sc = E . Since E is strictly contained in E sc,
however, E is not separately convex.

The next lemma gives a characterization of the separate convex hull of symmetric and
diagonal sets in the scalar case m = 1.

Lemma 4.7 Let E ⊂ R × R be symmetric and diagonal. Then

E sc =
⋃

(α,β)∈E
Qα,β, (4.5)

recalling that Qα,β = [α, β] × [α, β] for α, β ∈ R, where [α, β] ⊂ R stands for the
generalized interval in the sense of (2.1).

Proof For any (α, β) ∈ E = Ê , we have that {α, β} × {α, β} ⊂ E , so that

Qα,β = {α, β}co × {α, β}co = ({α, β} × {α, β})sc ⊂ E sc.

Hence,
⋃

(α,β)∈E Qα,β ⊂ E sc.
For the reverse implication in (4.5), it suffices to observe that EQ := ⋃

(α,β)∈E Qα,β ⊃ E
is separately convex. Indeed, if (ξ, ζ1), (ξ, ζ2) ∈ EQ , then (ξ, ζ1) ∈ Qα1,β1 and (ξ, ζ2) ∈
Qα2,β2 with (α1, β1), (α2, β2) ∈ E . The union of these two overlapping squares contains the
line between the points (ξ,min{α1, α2}) and (ξ,max{β1, β2}), and therefore also (ξ, tζ1 +
(1− t)ζ2) for any t ∈ (0, 1). Since EQ is symmetric, this is enough to conclude the separate
convexity of EQ , which finishes the proof.

Remark 4.8 (a) As a consequence of Lemma 4.7, the properties of a symmetric and diagonal
set E ⊂ R × R carry over to its separate convexification E sc.

(b) In view of (4.5), a Caratheodory type formula holds for separate convex hulls of sets as
in Lemma 4.7. In general, this cannot be expected, see e.g. [21, Section 2.2.3]. Recalling (3.1)
and (3.2), we have that

E sc = E sc
2 .

Indeed, if (ξ, ζ ) ∈ E sc, then (4.5) implies that (ξ, ζ ) ∈ Qα,β for some (α, β) ∈ E , and
there are t, s ∈ [0, 1] such that ξ = tα + (1 − t)β and ζ = sα + (1 − s)β. Thus, (ξ, ζ ) =
t(α, ζ ) + (1 − t)(β, ζ ), or equivalently,

(ξ, ζ ) = ts(α, α) + t(1 − s)(α, β) + (1 − t)s(β, α) + (1 − t)(1 − s)(β, β).

(c)We emphasize that the representation formula (4.5) is in general not true in the vectorial
case, that is, for symmetric and diagonal subsets ofRm×R

m withm > 1. To see this, consider
the example of Remark 4.6b, where E is the union of two Cartesian products generated by
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convex sets A1, A2 ⊂ R
m withm > 1 whose union is not convex. Then, due to the convexity

of A1 and A2 and the fact that E is not separately convex, we conclude that

E sc �= E =
⋃

(α,β)∈E
Qα,β .

After diagonalization (and symmetrization), however, we observe that

Ê sc =
⋃

(α,β)∈E
Qα,β = E .

d) It remains an open question at this point to find an explicit representation for E sc, or
Ê sc, with general E ⊂ R

m × R
m symmetric and diagonal.

In the special casewhen atmost twoof the separately convexhulls of themaximalCartesian
subsets of E intersect, we can derive a formula for Ê sc based on (4.4). Precisely, suppose
that E = ⋃

P=A×A∈PE
P and that there are P1 = A1 × A1 ∈ PE and P2 = A2 × A2 ∈ PE

with A1, A2 ⊂ R
m such that Psc ∩ Qsc = ∅ for all P ∈ PE and Q ∈ PE \ {P, P1, P2}.

Along with the observation that (B × B)sc = Bco × Bco for any B ⊂ R
m , it follows that

E sc = [ ⋃
P=A×A∈PE

Aco × Aco] ∪ [(Aco
1 ∩ Aco

2 ) × (A1 ∪ A2)
co] ∪ [(A1 ∪ A2)

co × (Aco
1 ∩ Aco

2 )].

Hence,

Ê sc =
⋃

P∈PE

Psc =
⋃

P=A×A∈PE

Aco × Aco =
⋃

P=A×A∈PE

⋃
(α,β)∈Aco×Aco

Qα,β,

where we have used that the diagonalization and symmetrization of B1 × B2 ∪ B2 × B1 for
any B1, B2 ⊂ R

m is given by (B1 ∩ B2) × (B1 ∩ B2).

We continue with a lemma that will be used later on in Sect. 7.1 to give a characterization
of the sublevel sets of Ŵ slc.

Lemma 4.9 For j ∈ N, let K j ⊂ R × R be compact, symmetric and diagonal. If the sets K j

are nested, i.e. K j ⊃ K j+1 for all j ∈ N, then
⋂
j∈N

K sc
j = ( ⋂

j∈N

K j
)sc

.

Proof One inclusion follows directly from the definition of separately convex hulls. For the
other one, let (ξ, ζ ) ∈ ⋂

j∈N
K sc

j . Then for each j ∈ N, there exists according to (4.5) an
element (α j , β j ) ∈ K j with (ξ, ζ ) ∈ Qα j ,β j , and therefore

(ξ, ζ ) = t j s j (α j , α j ) + t j (1 − s j )(α j , β j ) + s j (1 − t j )(β j , α j ) + (1 − t j )(1 − s j )(β j , β j )

(4.6)

with s j , t j ∈ [0, 1]. By compactness, we know that after passing to subsequences, we can
assume that s j → s ∈ [0, 1], t j → t ∈ [0, 1], and (α j , β j ) → (α, β) ∈ ⋂

j∈N
K j as

j → ∞. Finally, taking j → ∞ in (4.6) shows that (ξ, ζ ) ∈ Qα,β ⊂ (
⋂

j∈N
K j )

sc. ��
Inspired by the definition of extreme points in the separately convex sense, see e.g. [21,

Definition 7.30], we introduce here directional extreme points for subsets ofR
m ×R

m . These
can be used to refine the characterization formula (4.5), see Corollary 4.12 below.
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Definition 4.10 Let E ⊂ R
m × R

m be separately convex. Then (ξ, ζ ) ∈ E is a directional
extreme point if the identity (ξ, ζ ) = t(ξ1, ζ1) + (1 − t)(ξ2, ζ2) for any t ∈ (0, 1) and any
(ξ1, ζ1), (ξ2, ζ2) ∈ E with ξ1 = ξ2 or ζ1 = ζ2 implies that ξ = ξ1 = ξ2 and ζ = ζ1 = ζ2.

For general E ⊂ R
m × R

m , we say that (ξ, ζ ) ∈ R
m × R

m is a directional extreme point
if (ξ, ζ ) is a directional extreme point for E sc in the above mentioned sense.

We denote the set of all directional extreme points of a set E by Edex.

Remark 4.11 If m = 1, [21, Proposition 7.31] shows that Edex ⊂ E . The argument can be
directly extended to the vectorial setting m > 1, exploiting (3.1) and (3.2).

The representation formula (4.5) can be simplified by considering only unions of squares
whose vertices are directional extreme points of E .

Corollary 4.12 Let E ⊂ R × R be symmetric and diagonal. Then

E sc =
⋃

(α,β)∈Edex

Qα,β . (4.7)

Proof It suffices to show that for any (α, β) ∈ E \ Edex, there exists a point (α̃, β̃) ∈ E
different from (α, β) such that Qα,β ⊂ Qα̃,β̃ . The statement follows then in view of (4.5).

Let (α, β) ∈ E \ Edex. Then, in particular, (α, β) ∈ E sc, so that (α, β) ∈ Qα̃,β̃ for some

(α̃, β̃) ∈ E according to (4.5). In other words, there are (α̃, β̃) ∈ E and t, s ∈ [0, 1] such
that

(α, β) = t(α̃, sα̃ + (1 − s)β̃) + (1 − t)(β̃, sα̃ + (1 − s)β̃),

cf. Remark 4.8a. Since (α, β) is not an extreme point for E , we can suppose that (α̃, β̃) �=
(α, β). Finally, the observation that Qα,β ⊂ Qα̃,β̃ concludes the proof. ��

We close this section with a representation of separately convex hulls in terms of mea-
sures. For K ⊂ R

m × R
m non-empty and compact, one obtains the following alternative

characterization of K sc, which is essentially a reformulation of (3.1) and (3.2):

K sc =
∞⋃
i=0

{[	] : 	 ∈ Msc
i (K )}

where Msc
0 (K ) := {δ(ξ,ζ ) : (ξ, ζ ) ∈ K } and for i ∈ N,

Msc
i (K ) := {

λ	1 + (1 − λ)	2 : 	1,	2 ∈ Msc
i−1(K ), λ ∈ [0, 1],

[	1 − 	2] ∈ {(0, ξ), (ξ, 0) : ξ ∈ R
m}},

In general, the measures whose barycenters yield elements in K sc cannot be expected to be
of product form. If m = 1, however, this is the case, as the next lemma shows.

Lemma 4.13 Let K ⊂ R × R be non-empty, symmetric, diagonal, and compact. Then,

K sc = {[	] : 	 = ν ⊗ μ, ν, μ ∈ Pr(R), supp	 ⊂ K }.
Proof One inclusion is a simple consequence of Corollary 4.12. Indeed, if (ξ, ζ ) ∈ K sc, then
by (4.7) there is (α, β) ∈ Kdex ⊂ K such that (ξ, ζ ) ∈ Qα,β . We choose t, s ∈ [0, 1] such
that ξ = tα + (1 − t)β and ζ = sα + (1 − s)β, and set ν = tδα + (1 − t)δβ ∈ Pr(R) and
η = sδα + (1 − s)δβ ∈ Pr(R). Then

	 = ν ⊗ η = stδ(α,α) + t(1 − s)δ(α,β) + s(1 − t)δ(β,α) + (1 − t)(1 − s)δ(β,β)

123



138 Page 18 of 36 C. Kreisbeck, E. Zappale

is a product measure supported in {α, β} × {α, β} ⊂ K such that [	] = ([ν], [η]) = (ξ, ζ ).
For the reverse implication, let 	 = ν ⊗ μ with ν, μ ∈ Pr(R) such that supp	 ⊂ K .

Since the characteristic function χK sc : R × R → [0,∞] is lower semicontinuous due to
the compactness of K , which again implies that K sc is compact according to Remark 3.2, it
follows from Lemma 2.7 that∫

R

∫
R

χK sc(ξ, ζ ) dν(ξ) dμ(η) ≥ χK sc([ν], [μ]).

Recalling that χK ≥ χK sc , the assumption that supp	 ⊂ K yields 0 ≥ χK sc([ν], [μ]), or
equivalently, [	] = ([ν], [μ]) ∈ K sc, as stated. ��
Remark 4.14 If m > 1 and K ⊂ R

m × R
m is non-empty, symmetric, diagonal, and compact

such that K sc is also compact, and the structure condition

K̂ sc =
⋃

(α,β)∈K
Qα,β (4.8)

with cubes Qα,β as defined in (2.2) holds, then analogous arguments to those in the proof
of the previous lemma allow us to derive that

K̂ sc ⊂ {[	] : 	 = ν ⊗ μ, ν, μ ∈ Pr(Rm), supp	 ⊂ K } ⊂ K sc.

5 Nonlocal inclusions

For a set E ⊂ R
m × R

m , we consider

AE := {u ∈ L∞(�; R
m) : vu(x, y) := (u(x), u(y)) ∈ E for a.e. (x, y) ∈ � × �}. (5.1)

The main focus of this section is to prove the characterization result for the limits of
weakly converging sequences in AK with compact K ⊂ R × R stated in Theorem 1.1. In
the first subsection, we lay important groundwork by investigating the role of the set E in
AE . This gives important structural insight into the interplay between nonlocality effects and
pointwise constraints, which are also interesting per se.

5.1 Alternative representations ofAE

The next result shows that the set E \ Ê has no influence on the solutions to the nonlocal
inclusion (u(x), u(y)) ∈ E for a.e. (x, y) ∈ � × �.

Proposition 5.1 Let E, F ⊂ R
m × R

m be closed. Then AE = AF if and only if Ê = F̂ .
In particular,

AE = AÊ . (5.2)

Proof To show that equality of AE and AF implies that Ê = F̂ , it suffices to prove that
Ê ⊂ F̂ . In fact, the reverse inclusion follows then from interchanging the roles of E and F .
The case Ê = ∅ is trivial. Otherwise, let (ξ, ζ ) ∈ Ê , and consider the piecewise constant
function

u(x) =
{

ξ for x ∈ �ξ ,

ζ for x ∈ �ζ := � \ �ξ ,
x ∈ �,
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where �ξ ⊂ � is measurable with Ln(�ξ ) > 0 and Ln(� \ �ξ) > 0. By definition, u ∈
L∞(�; R

m), and since (ξ, ζ ) ∈ Ê ⊂ E , it holds that also (ξ, ξ), (ζ, ζ ), (ζ, ξ) ∈ E . Hence,
u ∈ AE = AF , and therefore (ζ, ξ), (ξ, ζ ), (ξ, ξ), (ζ, ζ ) ∈ F . This shows (ξ, ζ ) ∈ F̂ .

Notice that the converse implication, i.e.AE = AF if Ê = F̂ , follows immediately, if one
knows (5.2). To prove the latter, we start by observing thatAE = AEsym . Indeed, if u ∈ AE ,
then also u ∈ AET , and therefore u ∈ AEsym , because E sym = E ∩ ET . Thus, from now we
assume E to be symmetric.

Next, we will show that a specific class of subsets of E can be removed without affecting
AE . Precisely, if B ⊂ R

m × R
m is such that

[π1(B) × π1(B)] ∩ E = ∅ or [π2(B) × π2(B)] ∩ E = ∅, (5.3)

then

AE = AE\B . (5.4)

To see this, let B ⊂ R
m × R

m satisfy the first condition in (5.3) (the reasoning in case
the second condition holds is analogous), and consider u ∈ AE , assuming to the contrary
that u /∈ AE\B . Then there exists an (Ln ⊗ Ln)-measurable set N ⊂ � × � with positive
measure such that (u(x), u(y)) ∈ B for all (x, y) ∈ N . By Tonelli’s theorem or Cavalieri’s
principle, there exists ȳ ∈ � with Ln(N

ȳ
1) > 0; recall that Nȳ

1 stands for the section in the
first variable of N at ȳ, cf. Sect. 2.1. Hence,

(u(x), u(ȳ)) ∈ B for all x ∈ N
ȳ
1,

or equivalently, using projections, u(x) ∈ π1(B) for x ∈ N
ȳ
1 . This leads to

(u(x), u(y)) ∈ π1(B) × π1(B) for all (x, y) ∈ N
ȳ
1 × N

ȳ
1 .

In view of (5.3), we infer that (u(x), u(y)) /∈ E for (x, y) ∈ N
ȳ
1 × N

ȳ
1 , which contradicts

the assumption that u ∈ AE , and concludes the proof of (5.4).
Next we apply (5.4) to suitable sets whose union amounts to E \ Ê . Owing to the fact

that the complement Ec of E in R
m × R

m is open, one can find for any vector of rational
numbers ξ ∈ Q

m with (ξ, ξ) /∈ E an open neighborhood Uξ ×Uξ ⊂ Ec with ξ ∈ Uξ .
For each such ξ , one can apply (5.4) with the two choices B = R

m×Uξ and B = Uξ ×R
m

to deduce that

AE = AE\B∪ with B∪ :=
⋃

ξ∈Qm ,(ξ,ξ)/∈E
(Rm ×Uξ ) ∪ (Uξ × R

m). (5.5)

To see this, let (ξi )i∈N be an enumeration of {ξ ∈ Q
m : (ξ, ξ) /∈ E} and set

Bk∪ :=
k⋃

i=1

(Rm ×Uξi ∪Uξi × R
m) for k ∈ N.

Then, (5.5) follows from the line of identities

A =
⋂
k∈N

AE\Bk∪ = A∩k∈NE\Bk∪ = AE\∪k∈NBk∪ = AE\B∪ ,

where the first equality results from an iterative application of (5.4) toUξi ×R
m andR

m ×Uξi

for i = 1, . . . , k, leading to A = AE\Bk∪ for any k ∈ N. While the second identity is a
consequence of Lemma 5.2 below, the third identity is due to basic properties of unions
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and intersections of sets, and the last step makes use of the fact that B∪ = ⋃
k∈N

Bk∪ by
construction.

Finally, accounting for (4.3) alongwith the observation that B∪ = BE yields that E\B∪ =
Ê . In view of (5.5), this concludes the proof of (5.2). ��
Lemma 5.2 Let {Ek}k∈N be a family of sets in R

m × R
m. Then,⋂

k∈N

AEk = A∩k∈NEk .

Proof If u ∈ ⋂
k∈N

AEk , one can find for every k ∈ N a set Nk ⊂ �×� of zeroL2n-measure
such that (u(x), u(y)) ∈ Ek for all (x, y) ∈ � × � \ Nk . With N := ⋃∞

k=1 Nk , we have a
set of vanishing measure with the property that every (x, y) ∈ � × � \ N satisfies

(u(x), u(y)) ∈
⋂
k∈N

Ek,

meaning that u ∈ A∩k∈NEk . This proves
⋂

k∈N
AEk ⊂ A∩k∈NEk . The other implication is

trivial.

Remark 5.3 If E ⊂ R
m × R

m is not closed, the identity AE = AÊ is in general not true. To
see this, let n = m and � = (0, 1)m , and consider

E = [0, 1]m × [0, 1]m \ {(ξ, ξ) : ξ ∈ R
m}.

Then, Ê = ∅, and hence, AÊ = ∅. On the other hand, the identity map u(x) = x for x ∈ �

satisfies (u(x), u(y)) = (x, y) ∈ E for all (x, y) ∈ � × � \ {(x, x) : x ∈ �}. Since the
diagonal {(ξ, ξ) : ξ ∈ R

m} has zero Lebesgue-measure in R
m , u ∈ AE .

The next lemma is the basis for a useful approximation result, which is formulated below
in Corollary 5.5. For shorter notation, we write S∞(�; R

m) for the subspace of L∞(�; R
m)

of simple functions, i.e., u ∈ S∞(�; R
m) if

u(x) =
k∑

i=1

1�(i) ξ
(i), x ∈ �, (5.6)

with {�(i)}i=1,...,k a partition of � into Ln-measurable sets and ξ (i) ∈ R
m for i = 1, . . . , k.

By possibly choosing a different representative, one may assume without loss of generality
that Ln(�(i)) > 0 for all i = 1, . . . , k.

Lemma 5.4 Let E ⊂ R
m × R

m be symmetric and diagonal. Then, for every u ∈ AE there
exists a sequence (u j ) j ⊂ AE ∩ S∞(�; R

m) with u j → u in L∞(�; R
m).

Proof The proof follows along the lines of standard arguments for approximating uncon-
strained bounded functions uniformly by simple ones. Yet, particular care is needed here
when choosing the function values to guarantee that the nonlocal inclusion defining AE is
not violated. This last step critically exploits the assumption that E = Ê . For clarification
regarding notations throughout this proof, we refer the reader to Sect. 2.1.

After choosing a suitable representative of u ∈ AE , we may assume that u(x) ∈ [z1, z1]×
. . . × [zm, zm] for all x ∈ � with z, z ∈ R

m . For j ∈ N, we partition the set [z1, z1] × · · · ×
[zm, zm] into k j half-open cuboids Q

(i)
j ⊂ R

m such that

diam Q(i)
j <

1

j
for all i = 1, . . . , k j , (5.7)
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and define the Ln-measurable sets

�
(i)
j = u−1(Q(i)

j )

for i = 1, . . . , k j . Then,
⋃k j

i=1 �
(i)
j = �. Let I j ⊂ {1, . . . , k j } be the index set defined by

Ln(�
(i)
j ) > 0 for i ∈ I j . (5.8)

Possibly after rearranging, one may assume without loss of generality that I j = {1, . . . , l j }
for some l j ∈ N with l j ≤ k j .

Consider the simple function

u j (x) =
l j∑
i=1

1
�

(i)
j

(x)u(x (i)
j ), x ∈ �, (5.9)

where x (i)
j are constructed iteratively as described in the following. Setting

M = {(x, y) ∈ � × � : (u(x), u(y)) ∈ E},
we observe that the symmetry and diagonality of E carry over to M , that is, if (x, y) ∈ M ,
then also (y, x), (x, x), (y, y) ∈ M . With the notations for sections of M , let

N = {x ∈ � : Ln(Mx ) = Ln(�)}.
Since (Ln ⊗ Ln)(� × �) = (Ln ⊗ Ln)(M) = ∫

�
Ln(Mx ) dx and thus, Ln(Mx ) = Ln(�)

for Ln-a.e. x ∈ �, it follows that

Ln(N ) = Ln(�). (5.10)

Now, let x (1)
j ∈ �

(1)
j ∩ N (this set is indeed non-empty by (5.10) and (5.8)) and iteratively

for i = 2, . . . , l j ,

x (i)
j ∈ �

(i)
j ∩ N ∩

( i−1⋂
p=1

M
x (p)
j

)
. (5.11)

Notice that the set on the right-hand side in (5.11) has positive Ln-measure and is therefore
in particular not empty. Indeed, this follows from (5.10) and (5.8) in combination with

Ln
(⋂i−1

p=1M
x (p)
j

) = Ln(�) for all i = 2, . . . , l j . The latter is a consequence of x
(p)
j ∈ N

for p = 1, . . . , i − 1. By construction, u(x (i)
j ) ∈ Q(i)

j for i = 1, . . . , l j , and

(x (i)
j , x (i ′)

j ) ∈ M for i, i ′ = 1, . . . , l j .

In view of (5.9), it holds therefore that

(u j (x), u j (y)) ∈
⋃

i,i ′∈{1,...,l j }
{(u(x (i)

j ), u(x (i ′)
j ))} ⊂ E for (Ln ⊗ Ln)-a.e. (x, y) ∈ � × �,

which implies that u j ∈ AE for any j ∈ N. Moreover, together with (5.7),

|u(x) − u j (x)| <
1

j
for Ln-a.e. x ∈ �,

so that u j → u in L∞(�; R
m) as j → ∞. This shows that (u j ) j is an approximating

sequence for u with the stated properties. ��
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The following density statement forAE with a closed set E is an immediate consequence
of Lemma 5.4 and Proposition 5.1.

Corollary 5.5 Let E ⊂ R
m × R

m be closed. Then AE coincides with the closure of AE ∩
S∞(�; R

m) in L∞(�; R
m).

Based on this approximation result and the special properties of simple functions in AE ,
there is another way to represent AE , namely in terms of Cartesian products (cf. Defini-
tion 4.2).

Proposition 5.6 If E ⊂ R
m × R

m is closed, then

AE =
⋃

P∈PE

AP . (5.12)

Proof For the proof of the nontrivial inclusion, consider any u ∈ AE . We will show that
there exists A ⊂ R

m with A × A ⊂ E such that u ∈ AA×A. Then, A × A ⊂ P for some
P ∈ PE , and therefore u ∈ AP .

First, we observe that (5.12) holds for simple functions. In fact, if u ∈ S∞(�; R
m)∩AE ,

then it is of the form (5.6) with (ξ (i), ξ (i ′)) ∈ E for all i, i ′ = 1, . . . , k. Here we use in
particular that the sets �(i) can be chosen to have positive Ln-measure. Consequently,

vu(� × �) = u(�) × u(�) =
k⋃

i,i ′=1

u(�(i)) × u(�(i ′)) =
k⋃

i,i ′=1

{(ξ (i), ξ (i ′))} ⊂ E,

which yields the statement in the case when u is simple.
To prove (5.12) in the general case, let (u j ) j be an approximating sequence resulting from

Lemma 5.4, so that

u j → u in L∞(�; R
m). (5.13)

Due to the uniform boundedness of (u j ) j in L∞(�; R
m), we may assume without loss of

generality that E is bounded, and hence compact. Since each u j is simple, one can thus find
for every j ∈ N a compact set A j ⊂ R

m with Pj := A j × A j ⊂ E such that u j ∈ APj .
Next, we exploit the fact that the metric space of closed subsets of a compact set in R

m

endowedwith the Hausdorff distance dmH in (2.4) is compact, see e.g. [45] or [2, Theorem 6.1]
for Blaschke selection theorem. Hence, there is a subsequence of (A j ) j (not relabelled) and
A ⊂ R

m compact such that dmH (A j , A) → 0 as j → ∞. In light of the relation

d2mH (B × B, D × D) ≤ 2 dmH (B, D)

for non-empty sets B, D ⊂ R
m , this implies that

d2mH (Pj , A × A) = d2mH (A j × A j , A × A) → 0 as j → ∞, (5.14)

and since Pj ⊂ E for all j ∈ N, it follows that A × A ⊂ E .
Moreover, by (5.13) in combination with dominated convergence and (5.14),

∫
�

∫
�

dist(vu , A × A) dx dy = lim
j→∞

∫
�

∫
�

dist(vu j , A × A) dx dy

≤ lim
j→∞

∫
�

∫
�

dist(vu j , Pj ) dx dy + lim
j→∞ d2mH (Pj , A × A)Ln(�)2 = 0.

Hence, vu ∈ A × A a.e. in � × � or u ∈ AA×A, which finishes the proof. ��
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Remark 5.7 Note that Proposition 5.6 fails if E is not closed. For the example in Remark 5.3,
it holds that PE = ∅, whereas AE �= ∅.

5.2 Asymptotic analysis of sequences inAK

For a compact set K ⊂ R
m ×R

m , in view of Remark 1.2a, we denote the L∞-weak∗ closure
of AK by A∞

K , that is,

A∞
K := {u ∈ L∞(�; R

m) : u j⇀
∗u in L∞(�; R

m), (u j ) j ⊂ AK }. (5.15)

This section contains the proof of Theorem 1.1, which can be reformulated in terms of (5.15)
as

A∞
K = AK̂ sc . (5.16)

We start with an auxiliary result showing that the implicationAK̂ sc ⊂ A∞
K is truewhenever

K consists of the vertices of a symmetric cube in R
m × R

m .

Lemma 5.8 Let α, β ∈ R
m and K = {α, β} × {α, β}. Then

AQα,β ⊂ A∞
K ,

recalling that Qα,β = [α, β] × [α, β], cf. (2.2).
Proof Suppose first that u ∈ AQα,β ∩ S∞(�; R

m) and let u as in (5.6) with Ln(�(i)) > 0 for
i = 1, . . . , k. Then, ξ (i) ∈ [α, β] ⊂ R

m for all i = 1, . . . , k, and there are λi ∈ [0, 1] such
that ξ (i) = λiα + (1−λi )β. Moreover, let Yξ (i) ⊂]0, 1[n be measurable with Ln(Yξ (i) ) = λi

and define h(i) as the ]0, 1[n-periodic function given by

h(i)(y) =
{

α for y ∈ Yξ (i) ,

β for ]0, 1[n\Yξ (i) ,
y ∈]0, 1[n .

Setting

u j (x) =
k∑

i=1

h(i)( j x)1�(i) (x)

for x ∈ � and j ∈ N, leads to u j⇀
∗u in L∞(�; R

m) according to the Riemann-
Lebesgue lemmaonweak convergence of periodically oscillating sequences.By construction,
(u j (x), u j (y)) ∈ {α, β} × {α, β} = K for all (x, y) ∈ � × �, so that u j ∈ AK for every
j ∈ N.

For general functions u ∈ AQα,β , we argue via approximation. Let (ũk)k ⊂ AQα,β ∩
S∞(�; R

m) be a sequence of simple functions such that ũk → u in L∞(�; R
m) as k → ∞,

see Lemma 5.4.The previous construction allows us to find for each k ∈ N a sequence
(ũk, j ) j ⊂ AK with ũk, j⇀∗ũk in L∞(�; R

m) as j → ∞. By a version of Attouch’s diago-
nalization lemma [3, Lemma 1.15, Corollary 1.16] (exploiting in particular that L∞(�; R

m)

is the dual of a separable space), we can select k( j) → ∞ as j → ∞ such that for
u j := ũk( j), j ∈ AK ,

u j⇀
∗u in L∞(�; R

m).

This shows that u ∈ A∞
K and completes the proof. ��
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Proof of Theorem 1.1 We prove separately the two inclusions that make up (5.16).
First, let u ∈ A∞

K . Then, in view of Proposition 5.1, there exists a sequence (u j ) j ⊂
L∞(�; R

m) with vu j ∈ K̂ a.e. in � × � such that u j⇀
∗u in L∞(�; R

m). Moreover, let
{νx ⊗νy}(x,y)∈�×� be the Young measure generated by (vu j ) j , cf. Lemma 2.2. Since K , and
hence also K̂ , is compact, so is K̂ sc in the case m = 1 according to Remark 3.2. For m > 1,
the compactness of K̂ sc is guaranteed directly by assumption. As a result, the map

R
m × R

m → [0,∞), (ξ, ζ ) �→ dist2((ξ, ζ ), K̂ )

is lower semicontinuous, and we infer from Theorem 2.1 that

0 = lim
j→∞

∫
�

∫
�

dist2
(
vu j , K̂

)
dx dy

≥ lim
j→∞

∫
�

∫
�

∫
Rm

∫
Rm

dist2((ξ, ζ ), K̂ ) dνx (ξ) ⊗ νy(ζ ) dx dy ≥ 0.

Hence, νx ⊗νy is supported in K̂ ⊂ K̂ sc for a.e. (x, y) ∈ �×�. By Lemma 2.7 applied with
W = χK̂ sc , it follows then that (u(x), u(y)) = ([νx ], [νy]) ∈ K̂ sc for a.e. (x, y) ∈ � × �,
and thus, u ∈ AK̂ sc .

To prove the reverse inclusion, recall that the second assumption on K̂ sc in the casem > 1
says that

̂̂K sc =
⋃

(α,β)∈K̂
Qα,β . (5.17)

Now, we combine Lemma 4.7 if m = 1, or the previous assumption (5.17) if m > 1, with
Proposition 5.6 and Lemma 5.8 to infer that

AK̂ sc = A⋃
(α,β)∈K̂ Qα,β

=
⋃

(α,β)∈K̂
AQα,β ⊂

⋃
(α,β)∈K̂

A∞{α,β}×{α,β} ⊂ A∞
K . (5.18)

This finishes the proof. ��
Remark 5.9 (a) If m = 1, one could replace K̂ in the second, third and fourth term in (5.18)

by K̂dex, simply using Lemma 4.7 instead of Corollary 4.12, and taking into account that
K̂dex ⊂ K̂ by Remark 4.11.

(b) For examples of sets satisfying (5.17) see Remarks 4.6b and 4.8c.

The following result is an immediate consequence of Theorem 1.1 in conjunctionwith Propo-
sition 5.1 and Remark 4.8a, cf. also Remark 1.2a.

Corollary 5.10 Let K as in Theorem 1.1. Then AK is L∞-weakly∗ closed if and only if

̂̂K sc = K̂ . (5.19)

For m = 1, the condition (5.19) is equivalent with the separate level convexity of K̂ .

5.3 Characterization of Youngmeasures generated by sequences inAK

For K ⊂ R
m × R

m compact, let Y∞
K be the set of Young measures generated by a sequence

of nonlocal vector fields associated with (u j ) j ⊂ AK ; more precisely,

Y∞
K := {	 ∈ L∞

w (� × �;Pr(Rm × R
m)) : vu j

Y M−→ 	 with (u j ) j ⊂ AK }. (5.20)
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Regarding barycenters, we observe that

{[	] = 〈	, id〉 : 	 ∈ Y∞
K } = {vu : u ∈ A∞

K } ⊂ L∞(� × �; R
m × R

m). (5.21)

As a consequence of Proposition 5.1, Lemma 2.2 and Theorem 2.1(iii),

Y∞
K = Y∞̂

K
⊂ Ỹ∞̂

K
= YK̂ , (5.22)

where for any compact C ⊂ R
m × R

m ,

YC := {	 ∈ L∞
w (� × �;Pr(Rm × R

m)) : 	(x,y) = νx ⊗ νy with ν ∈ L∞
w (�;Pr(Rm)) and

supp	(x,y) ⊂ C for a.e. (x, y) ∈ � × �},
and Ỹ∞

C is a modification of Y∞
C in the sense that the exact inclusion is weakened to an

approximate version, i.e.,

Ỹ∞
C := {	 ∈ L∞

w (� × �;Pr(Rm × R
m)) : vu j

Y M−→ 	 with (u j ) j ⊂ L∞(�; R
m)

bounded such that dist(vu j ,C) → 0 in measure as j → ∞}.
In the simple special case, when K has the form of a Cartesian product (then clearly,

K = K̂ ), we are able to show that equality holds in (5.22). The proof combines well-known
results from the theory of Young measures with a projection argument. Note that for more
general K the projection result fails due to non-trivial interactions between the different
variables.

Proposition 5.11 Let K ⊂ R
m × R

m such that K = A × A with A ⊂ R
m compact. Then,

Y∞
K = YK .

Proof In view of (5.22), it remains to show that Ỹ∞
K ⊂ Y∞

K . To this end, we project the
sequences generating the Young measures in Ỹ∞

K onto K .
Let 	 ∈ Ỹ∞

K be generated by (vũ j ) j with (ũ j ) j ⊂ L∞(�; R
m) bounded such that

dist(vũ j , K ) = dist(vũ j , A × A) → 0 in measure as j → ∞. By measurable selection [24,
Section 6.1.1, Theorem 6.10], one can find a measurable and essentially bounded function
u j : � → R

m with

u j (x) ∈ argmin ξ∈Adist(ũ j (x), ξ) for a.e. x ∈ �.

Then by construction, vu j ∈ A × A = K a.e. in � × �, and vu j − vũ j → 0 in measure as
j → ∞. The latter implies in particular that (vu j ) j generates the same Young measure as
(vũ j ) j , namely 	. Hence, 	 ∈ Y∞

K . ��
With these prerequisites at hand, we can derive the following characterization of Young

measures generated by sequences with nonlocal constraints.

Theorem 5.12 Let K ⊂ R
m × R

m be compact. Then Y∞
K = ⋃

P∈PK̂
YP .

Proof Owing to the fact that any set inPK is a subset of K with the formof aCartesian product
in R

m × R
m , the inclusion

⋃
P∈PK̂

YP ⊂ Y∞
K follows immediately from Proposition 5.11.

For the proof of reverse inclusion, consider (vu j ) j as in (5.20), generating the Young
measure 	 ∈ Y∞

K . Then, Proposition 5.6 implies for every j ∈ N the existence of A j ⊂ R

compact such that

vu j ∈ Pj := A j × A j ⊂ PK = PK̂ a.e. in � × �.
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Arguing similarly to Proposition 5.6, we conclude (possibly after passing to a non-relabelled
subsequence of (A j ) j ) that dmH (A j , A) → 0 as j → ∞ for some A ⊂ R

m compact with the
property that A × A ⊂ K̂ . It follows then in view of

dist(vu j , A × A) ≤ dist(vu j , Pj ) + d2mH (Pj , A × A) = d2mH (Pj , A × A) ≤ 2 dmH (A j , A)

a.e. in � × �, that ‖dist(vu j , A × A)‖L∞(�×�;Rm×Rm ) → 0 as j → ∞. Then, by the
fundamental theorem of Young measures in Theorem 2.1(iii), supp	 ⊂ A × A ⊂ a.e. in
� × �. If we take P as the maximal Cartesian subset of K̂ containing A × A, this shows
that 	 ∈ YP and finishes the proof. ��
Remark 5.13 Based on Theorem 5.12, we can now give a short alternative proof of (5.16).
Precisely, combining Theorem 5.12 with (5.21) and Lemma 2.2 shows that

A∞
K = {[ν] : ν ∈ L∞

w (�;Pr(Rm)),	(x,y) = νx ⊗ νy,	 ∈ Y∞
K }

= {[ν] : ν ∈ L∞
w (�;Pr(Rm)),	(x,y) = νx ⊗ νy,	 ∈ ⋃

P∈PK̂
YP } =: Ã.

If m = 1, Lemma 4.13 implies that Ã = AK̂ sc , which confirms (5.16) in the scalar case. If
m > 1, we apply Remark 4.14 to find that Â̂K sc ⊂ Ã ⊂ AK̂ sc , which allows us to conclude
in view of Proposition 5.1.

6 Nonlocal indicator functionals

The aim of this section is to relate the previous results with the theory of nonlocal unbounded
functionals, in particular, with indicator functionals.

6.1 Lower semicontinuity and relaxation

For K ⊂ R
m × R

m , we define the indicator functional IK : L∞(�; R
m) → {0,∞} by

IK (u) :=
∫

�

∫
�

χK (u(x), u(y)) dx dy =
{
0 if u ∈ AK ,

∞ otherwise;
(6.1)

recall the notations from (2.3) and (5.1). It is clear from the second equality in (6.1) that
the lower semicontinuity and relaxation of IK regarding the weak∗ topology in L∞(�; R

m)

are closely related to the asymptotic behaviour of sequences in AK with respect to the same
topology, cf. Remark 1.2a. In fact, the L∞-weak∗ lower semicontinuity of IK corresponds
to the weak∗ closedness of AK , while determining its relaxation, i.e.,

I rlxK (u) := inf{lim inf
j→∞ IK (u j ) : u j⇀

∗u in L∞(�; R
m)}

for all u ∈ L∞(�; R
m), is equivalent to characterizing the L∞-weak∗ closure ofAK , denoted

by A∞
K in (5.15).

Formulated here again for the readers’ convenience, the counterparts of Corollary 5.10
and Theorem 1.1 in terms of indicator functionals are the following.

Corollary 6.1 Let K ⊂ R
m × R

m be as in Theorem 1.1.

(i) The functional IK is L∞-weakly∗ lower semicontinuous, if and only if

̂̂K sc = K̂ ;
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for m = 1, this is the same as K̂ (or equivalently, χK̂ ) being separately convex.
(ii) Moreover, I rlxK = IK̂ sc , where the latter is the functional in (6.1) associated with the

separately convex hull K̂ sc.

6.2 Youngmeasure relaxation

As an application of Theorem 5.12, we determine the relaxation in the Young measure
setting of a class of extended-valued double-integral functionals. This result can be viewed
as a generalization of [12, Theorem 6.1].

For K ⊂ R
m × R

m , let the functional IYK : L∞
w (�;Pr(Rm)) → {0,∞} be defined by

IYK (ν) := min
P∈PK̂

∫
�

∫
�

∫
Rm

∫
Rm

χP (ξ, ζ ) dνx (ξ) dνy(ζ ) dx dy

=
{
0 if ν ⊗ ν ∈ ⋃

P∈PK̂
YP ,

∞ otherwise,
(6.2)

for ν ∈ L∞
w (�;Pr(Rm)).

The follwing reformulation of Theorem 5.12 states a Young measure relaxation for non-
local indicator functionals in general dimensions.

Corollary 6.2 Let K ⊂ R
m × R

m be compact.

(i) If the bounded sequence (u j ) j ⊂ L∞(�; R
m) generates the Young measure ν, in formu-

las,

u j
Y M−→ ν, then

lim inf
j→∞ IK (u j ) ≥ IYK (ν). (6.3)

(ii) For every ν ∈ L∞
w (�;Pr(Rm)) there exists a sequence (u j ) j ⊂ L∞(�; R

m) with

u j
Y M−→ ν such that

lim
j→∞ IK (u j ) = IYK (ν).

Remark 6.3 If K ⊂ R
m × R

m is compact as in Theorem 1.1, i.e. K̂ sc is compact and satis-
fies (5.17), we can directly verify the expected relations between the functionals arising from
classical and Young measure relaxation of IK . For any ν ∈ L∞

w (�;Pr(Rm)),

IYK (ν) ≥ IK̂ sc([ν]); (6.4)

moreover, for every u ∈ L∞(�; R
m), there exists a Young measure ν ∈ L∞

w (�;Pr(Rm))

with [ν] = u such that

IYK (ν) ≤ IK̂ sc([ν]) = IK̂ sc(u). (6.5)

To see (6.5), it is enough to invoke Theorem 1.1 and the characterizion in Theorem 5.12.
As regards the justification of (6.4), we may assume without loss of generality that

IYK (ν) = 0; thus, there exists P = A × A ∈ PK̂ with A ⊂ R
m such that νx ⊗ νy ∈ P

for a.e. (x, y) ∈ � × �. By Theorem 5.12, one can find a sequence (u j ) j ⊂ AP generating
ν and converging weakly∗ to u = [ν] in L∞(�; R

m), with u ∈ Aco for a.e. in �. These
observations, together with Lemma 2.7 and Aco × Aco = (A × A)sc ⊂ K̂ sc, imply that

IYK (ν) ≥
∫

�

∫
�

∫
Rm

∫
Rm

χAco×Aco(ξ, ζ ) dνx (ξ) dνy(ζ ) dx dy
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≥
∫

�

∫
�

∫
Rm

∫
Rm

χK̂ sc(ξ, ζ ) dνx (ξ) dνy(ζ ) dx dy

≥
∫

�

∫
�

χK̂ sc([νx ], [νy]) dx dy = IK̂ sc([ν]),

as stated.

As a consequence of Corollary 6.2 and the results in [12, Section 6], one can deduce a
Young measure representation for the relaxation of constrained nonlocal integral functionals
of the type

L∞(�; R
m) � u →

∫
�

∫
�

w((x, y, u(x), u(y)) dx dy + IK (u), (6.6)

where w : � × � × R
m × R

m → R∞ is exactly as in [12, Theorem 6.1]. Indeed, the
superadditivity of lim inf, (6.3), and [12, Theorem 6.1] entail for every bounded sequence

(u j ) j ⊂ L∞(�; R
m) with u j

Y M−→ ν that

lim inf
j→∞

(∫
�

∫
�

w(x, y, u j (x), u j (y)) dx dy + IK (u j )
)

≥
∫

�

∫
�

∫
Rm

∫
Rm

w(x, y, ξ, ζ )dνx (ξ) dνy(ζ ) dx dy + IYK (ν).

On the other hand, if ν ∈ L∞
w (�;Pr(Rm)), we choose (u j ) j to be a sequence as in Corol-

lary 6.2(ii), and apply the version of the fundamental theorem on Young measures in [12,
Proposition 3.6] to conclude that

lim
j→∞

(∫
�

∫
�

w(x, y, u j (x), u j (y)) dx dy + IK (u j )
)

=
∫

�

∫
�

∫
Rm

∫
Rm

w(x, y, ξ, ζ ) dνx (ξ) dνy(ζ ) dx dy + IYK (ν).

6.3 Notions of nonlocal convexity

In [12] and the references therein, the authors introduce and analyze different notions of
nonlocal convexity for inhomogeneous finite-valued double-integral functionals, including
nonlocal convexity, nonlocal convexity forYoungmeasures, and a nonlocal Jensen inequality.
Here, we transfer these notions to our context of homogeneous indicator functionals in the
scalar setting, i.e. functionals IK and IYK as in (6.1) and (6.2) with K as in Theorem 1.1, and
discuss their relation.

Let us first define the condition referred to as nonlocal convexity (NC): For every w ∈
L∞(�; R

m), the function

ιw : R
m → {0,∞}, ιw(ξ) :=

∫
�

χK̂ (ξ, w(x)) dx is convex. (NC)

A generalization of condition (NC) is the following nonlocal convexity for Young measures
(NY), which requires that for every ν ∈ L∞

w (�;Pr(Rm)), the function

�ν : R
m → {0,∞}, �ν(ξ) :=

∫
�

∫
Rm

χK̂ (ξ, ζ ) dνx (ζ ) dx is convex. (NY)
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Inspired by Pedregal [39, Proposition 3.1 and (4.3)], we consider the nonlocal Jensen’s
inequality

IYK (ν) ≥ IK ([ν]) (NJ)

for any ν ∈ L∞
w (�;Pr(Rm)), cf. (6.2) for the definition of IYK . Finally, we denote by (SC)

the separate convexity of χK̂ (or equivalently, of K̂ ).
The next proposition establishes the equivalence of all these notions. In particular, in view

of Corollary 5.10 and Remark 1.2a, they are all necessary and sufficient for L∞-weak∗ lower
semicontinuity of IK .

Proposition 6.4 If K ⊂ R
m × R

m is as in Theorem 1.1, then

⇔ (SC) ⇔ (NC) ⇔ (NY). (NJ)

Proof For the proof of (NJ) ⇔ (SC), we make use of (6.4) and (6.5), together with the fact
that IK = IK sc implies

K̂ sc = ̂̂K sc = K̂

due to Proposition 5.1 and Lemma 4.5.
The arguments behind the other implications are straight-forward. The implication

(SC) ⇒ (NY) follows right from the definition of separate convexity of χK̂ . Via the identifi-
cation of u ∈ L∞(�; R

m) with the family of Dirac measures {δu(x)}x∈�, the condition (NY)
is clearly at least as strong as (NC).

To see (NC) ⇒ (SC), it suffices to restrict (NC) to constant functions and exploit the
symmetry of K̂ . ��

7 Nonlocal supremal functionals

The main focus of this section is the proof of Theorem 1.3, which is based on the results
established previously. In what follows, W : R

m × R
m → R is always assumed to be lower

semicontinuous and coercive. In terms of the level sets of W , this means that Lc(W ) are
compact for any c ∈ R.

We start, in view of Remark 1.2a, with a characterization result for L∞-weak∗ lower
semicontinuity of functionals as in (1.1) that exploits the relations with nonlocal indicator
functionals and nonlocal inclusions. It is a nonlocal version of the analogous statement in the
local setting pointed out first by Acerbi, Buttazzo and Prinari in [1, Remark 4.4] and used
later e.g. by Briani, Garroni and Prinari in [17, Proposition 4.4], see also [10, Lemma 1.4].

Proposition 7.1 Recalling the definitions in (1.1), (5.1) and (6.1), the following three state-
ments are equivalent:

(i) J is L∞-weakly∗ lower semicontinuous;
(ii) ALc(W ) is L∞-weakly∗ closed for all c ∈ R;
(iii) ILc(W ) is L∞-weakly∗ lower semicontinuous for all c ∈ R.

Proof The equivalence of (i i) and (i i i) follows immediately from (6.1). It remains to prove
that (i) and (i i) are equivalent.

Assuming that (i) holds, consider any c ∈ R and any sequence (u j ) j ⊂ ALc(W ) and
u ∈ L∞(�; R

m) such thatu j⇀
∗u in L∞(�; R

m). Since the L∞-weak∗ lower semicontinuity
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of J ensures that

ess sup
(x,y)∈�×�

W (u(x), u(y)) ≤ lim inf
j→∞ ess sup

(x,y)∈�×�

W (u j (x), u j (y)) ≤ c,

we conclude that (u(x), u(y)) ∈ Lc(W ) for a.e. (x, y) ∈ � × �, meaning u ∈ ALc(W ). This
proves (i i).

For the reverse implication, we take u j⇀
∗u in L∞(�; R

m) with

lim
j→∞ J (u j ) = lim inf

j→∞ J (u j ) < ∞.

Let Csup := ess sup(x,y)∈�×� W (u(x), u(y)) and assume by contradiction that

lim
j→∞ J (u j ) = lim

j→∞ ess sup
(x,y)∈�×�

W (u j (x), u j (y)) = c < Csup.

Then, for any ε ∈ (0,Csup − c) there exists an index N = N (ε) ∈ N such that for every
j ≥ N ,

ess sup
(x,y)∈�×�

W (u j (x), u j (y)) ≤ c + ε < Csup,

or equivalently, u j ∈ ALc+ε(W ). Due to (i i), we infer that u ∈ ALc+ε(W ), and hence,
W (u(x), u(y)) ≤ c + ε a.e. in � × �. The desired contradiction follows now from

Csup = ess sup
(x,y)∈�×�

W (u(x), u(y)) ≤ c + ε < Csup,

which concludes the proof.

7.1 Lower semicontinuity and relaxation

The following characterization result, which can be obtained from combining Corollary 5.10
and Proposition 7.1, generalizes Theorem 1.3 (i) to the vectorial setting, cf. Lemma 4.5.

Corollary 7.2 Let J be a nonlocal supremal functional as in (1.1) such that L̂c(W ) is compact
and satisfies (5.17) for every c ∈ R. Then, J is L∞-weakly∗ lower semicontinuous if and
only if for all c ∈ R,

̂
L̂c(W )

sc = L̂c(W ).

Remark 7.3 Notice that the sufficiency of the separate convexity of the symmetrized and
diagonalized sublevel sets of W to ensure L∞-weak∗ lower semicontinuity of J as in (1.1)
holds without any further assumptions also in the vectorial case m > 1. The argument
employs Proposition 3.6 under consideration of (7.3) and (7.2) below.

Our next goal is to establish a representation formula for the relaxation of J . Inspired by
the previous corollary, we define Ŵ : R

m × R
m → R by

Ŵ (ξ, ζ ) := inf{c ∈ R : (ξ, ζ ) ∈ L̂c(W )}, (ξ, ζ ) ∈ R
m × R

m . (7.1)

Then, for any c ∈ R,

Lc(Ŵ ) = L̂c(W ). (7.2)
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Since the sublevel sets of W are compact, this shows in particular that the level sets of Ŵ
are compact as well, and hence, that Ŵ is lower semicontinuous. Moreover, Ŵ is coercive
due to Ŵ ≥ W , and symmetric, i.e., Ŵ (ξ, ζ ) = Ŵ (ζ, ξ) for every (ξ, ζ ) ∈ R

m × R
m , by

definition, cf. (4.1).
It is crucial to realize that a functional J as in (1.1) has a uniquely determined supremand

W only up to symmetrization and diagonalization in the sense of (7.1). To be precise, it holds
that

J (u) = ess sup
(x,y)∈�×�

W (u(x), u(y)) = ess sup
(x,y)∈�×�

Ŵ (u(x), u(y)) =: Ĵ (u) (7.3)

for u ∈ L∞(�; R
m); indeed, along with Proposition 5.1 and (7.2),

ess sup
(x,y)∈�×�

Ŵ (u(x), u(y)) = inf{c ∈ R : u ∈ ALc(Ŵ )} = inf{c ∈ R : u ∈ A
L̂c(W )

}

= inf{c ∈ R : u ∈ ALc(W )} = ess sup
(x,y)∈�×�

W (u(x), u(y)). (7.4)

In light of Definition 3.3 for the separate level convex envelope of a function and Defini-
tion 3.1 for the separately convex hull of a set, it is immediate to see that

Lc(Ŵ
slc) ⊃ Lc(Ŵ )sc for every c ∈ R. (7.5)

If m = 1, one can show that even equality holds in (7.5). In particular, if we recall the
properties of Ŵ and Remark 3.2, this implies that Ŵ slc : R×R → R is lower semicontinuous
and coercive.

Lemma 7.4 Let Ŵ as in (7.1) and m = 1. Then, for every c ∈ R,

Lc(Ŵ
slc) = Lc(Ŵ )sc. (7.6)

Proof Define the auxiliary function

V (ξ, ζ ) := inf{c ∈ R : (ξ, ζ ) ∈ Lc(Ŵ )sc}, (ξ, ζ ) ∈ R × R.

Since all sublevel sets of Ŵ are compact, symmetric and diagonal, Lemma 4.9 entails that
for any c ∈ R,

Lc(V ) =
⋂
j∈N

Lc+ 1
j
(Ŵ )sc =

( ⋂
j∈N

Lc+ 1
j
(Ŵ )

)sc = Lc(Ŵ )sc,

which shows that V is separately level convex. Due to Ŵ ≥ V , we conclude that Ŵ slc ≥ V ,
and consequently Lc(Ŵ slc) ⊂ Lc(V ) = Lc(Ŵ )sc for all c ∈ R. Considering that the other
inclusion is immediate in view of the definition of the separately level convex envelope Ŵ slc

completes the proof.

With these preparations, we can now prove Theorem 1.3 (ii), namely the relaxation result
for supremal nonlocal functionals in the scalar case.

Proposition 7.5 Let J be the functional in (1.1) with m = 1. The relaxation of J given by its
L∞-weak* lower semicontinuous envelope

J rlx(u) = inf{lim inf
j→∞ J (u j ) : u j⇀

∗u in L∞(�)}, u ∈ L∞(�),

admits the supremal representation

J rlx(u) = ess sup
(x,y)∈�×�

Ŵ slc(u(x), u(y)), u ∈ L∞(�).
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Proof The argument for the lower bound on J rlx relies on Corollary 7.2 and (7.3), together
with the simple observation that Ŵ ≥ Ŵ slc.

For the upper bound on J rlx, take any u ∈ L∞(�) such that

c := ess sup
(x,y)∈�×�

Ŵ slc(u(x), u(y)) < ∞.

Then there exists a sequence of real numbers (ck)k with ck ↘ c as k → ∞ such that owing
to (7.4) and (7.2),

u ∈ ALck (Ŵ slc) = ALck (Ŵ )sc = A
L̂ck (W )

sc for all k ∈ N.

Now, Theorem 1.1 applied to A
L̂ck (W )

sc for every k ∈ N guarantees the existence of a

sequences (uk, j ) j ⊂ ALck (W ) with uk, j⇀∗u in L∞(�) as j → ∞. Via diagonalization
(see [3, Lemma 1.15, Corollary 1.16]), one can select a diverging subsequence k( j) → ∞
as j → ∞ such that the sequence (u j ) j with u j := uk( j), j ∈ ALck( j) (W ) for j ∈ N satisfies

u j⇀
∗u in L∞(�).

Then,

J rlx(u) ≤ lim sup
j→∞

J (u j ) ≤ lim sup
j→∞

ck( j) = c = ess sup
(x,y)∈�×�

Ŵ slc(u(x), u(y)).

��
Under additional assumptions, we can generalize Proposition 7.5 to the vectorial case.

Remark 7.6 Let W : R
m × R

m → R with m > 1 such that for any c ∈ R, the sublevel set
L̂c(W ) is compact and satisfies both (5.17) and (7.6). Then, the L∞-weak∗ lower semicon-

tinuous envelope of J is then given by the nonlocal supremal functional with density ̂̂W slc,
which may in general be different from Ŵ slc, as Remark 4.6b indicates.

7.2 Explicit examples of lower semicontinuous functionals and relaxations

To illustrate the general results of Sect. 7.1, we present a few examples of nonlocal L∞-
functionals whose supremands have multiwell structure.

In the scalar setting, we determine explicit relaxation formulas for two nonlocal four-well
supremands. Even though the sets of wells can be transformed into each other via rotation
and scaling, their relaxations feature qualitative differences.

Example 7.7 Throughout this example, | · |� stands for the maximum norm on R × R ∼= R
2,

i.e. |(ξ, ζ )|� = max{|ξ |, |ζ |} for ξ, ζ ∈ R, and we write B�
r (ξ, ζ ) to denote the corre-

sponding closed balls of radius r > 0 with center in (ξ, ζ ) ∈ R × R. Moreover, dist�(·, E)

indicates the maximum distance from a set E ⊂ R × R, cf. Sect. 2.1 for the corresponding
notations with respect to the Euclidean norm.

(a) Let J as in (1.1) with W (ξ, ζ ) = dist((ξ, ζ ), K6) for (ξ, ζ ) ∈ R × R, where K6 =
{−1, 1}×{−1, 1} is the compact, diagonal and symmetric set from (4.2). Then, for c ≥ 0, the
level sets ofW are unions of balls, precisely, Lc(W ) = ⋃

(ξ,ζ )∈K6
Bc(ξ, ζ ), while Lc(W ) = ∅

for c < 0. It follows along with (7.2) that for c ≥ 0,

Lc(Ŵ ) = L̂c(W ) =
⋃

(ξ,ζ )∈K6

B�
c√
2
(ξ, ζ ),
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which is the union of the maximal squares contained in the balls whose union gives Lc(W ),
and hence, Ŵ (ξ, ζ ) = √

2 dist�((ξ, ζ ), K6) for (ξ, ζ ) ∈ R × R.
Due to (7.5), Lc(Ŵ slc) = Lc(Ŵ )sc = B�

1+ c√
2
(0, 0) for c ≥ 0, and we infer that

Ŵ slc(ξ, ζ ) = √
2 max

{|(ξ, ζ )|� − 1, 0
}

for (ξ, ζ ) ∈ R × R. By Proposition 7.5, this gives rise to an explicit expression for J rlx.
A curiosity related to the nonlocal behavior of W and the associated necessary diagonal-

ization is that, unlike for local supremal functionals, Ŵ slc is not everywhere smaller thanW ;
for instance, Ŵ slc(1, 1 + r) = √

2r > r = W (1, 1 + r) for any r > 0.
(b) Consider J from (1.1) with W (ξ, ζ ) = dist((ξ, ζ ), K5) for (ξ, ζ ) ∈ R × R and the

compact set K5 = {(0, 1), (1, 0), (0,−1), (−1, 0)} from (4.2). Similarly to a), the sublevel
sets Lc(W ) are non-empty for c ≥ 0, with Lc(W ) = ⋃

(ξ,ζ )∈K5
Bc(ξ, ζ ). We observe that

Lc(Ŵ ) = L̂c(W ) = ∅ for c < 1√
2
, while for c ≥ 1√

2
, a simple geometric argument shows

that

Lc(Ŵ ) =
⋃

r∈[r−(c),r+(c)]
∂B�

r (0, 0)

with r±(c) = 1
2 max{1 ± √

2c2 − 1, 0}, and consequently, Lc(Ŵ )sc = B�
r+(c)(0, 0). In view

of (7.5), we finally obtain

Ŵ slc(ξ, ζ ) =
⎧⎨
⎩

√
1
2 (2|(ξ, ζ )|� − 1)2 + 1

2 for |(ξ, ζ )|� ≥ 1
2 ,

1√
2

otherwise,

for (ξ, ζ ) ∈ R×R,which yields an explicit formula for the relaxation J rlx, seeProposition 7.5.
We point out that in this example, even the minimum of W is smaller than that of Ŵ slc,

precisely, minW = 0 < 1√
2

= min Ŵ = min Ŵ slc.

The next examples show the L∞-weak∗ lower semicontinuity of two types of supremal
functionals with symmetric two-well supremands in the vectorial setting.

Example 7.8 (a) For K = {(−α,−α), (α, α)} ⊂ R
m ×R

m with α ∈ R
m \ {0}, letW (ξ, ζ ) =

dist�((ξ, ζ ), K ) := minβ∈{−α,α} max{|ξ − β|, |ζ − β|} for (ξ, ζ ) ∈ R
m × R

m . Then the
level sets for any c ∈ R are given by

Lc(W ) = (
Bc(α) × Bc(α)

) ∪ (
Bc(−α) × Bc(−α)

)
,

recalling that Br (ξ) = {ζ ∈ R
m : |ζ − ξ | ≤ r} for r > 0 and ξ ∈ R

m , cf. Sect. 2.1. Note that
W is not separately level convex, since Lc(W ) fails to be separately convex for c ≥ |α|; in
particular, Proposition 3.6 is not applicable here. However, as the union of Cartesian products
of convex sets, all level sets ofW are clearly symmetric and diagonal, meaningW = Ŵ , and
we can infer in light of Remark 4.6b and (7.2) that

̂
L̂c(W )

sc = ̂Lc(W )sc = Lc(W ) = L̂c(W ).

By Remark 7.6, this condition is sufficient for L∞-weakly∗ lower semicontinuity for J as
in (1.1).

(b) The same statement as in (a) holds for J , if we use K = {(α,−α), (−α, α)} with
α ∈ R

m \ {0} and set W (ξ, ζ ) = dist�((ξ, ζ ), K ) := min{max{|ξ − α|, |ζ + α|},max{|ξ +
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α|, |ζ − α|}} for (ξ, ζ ) ∈ R
m × R

m . Then,

Lc(W ) = (
Bc(α) × Bc(−α)

) ∪ (
Bc(−α) × Bc(α)

)

for c ∈ R, and

L̂c(W ) =
{(

Bc(α) ∩ Bc(−α)
) × (

Bc(α) ∩ Bc(−α)
)

for c ≥ |α|,
∅ otherwise.

Considering that these sets are already separately convex,we conclude againwithRemark 7.6.
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