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Abstract
In this paper, we study the following nonlinear magnetic Schrodinger equation

(lf.v - A(x))2u FV@u=fquPu inRY (N > 2),
ueH'RN,C),

where € is a positive parameter, and V : R¥Y — R, A : R¥ — R¥ are continuous potentials.
Under a local assumption on the potential V', by combining variational methods, penalization
techniques, and the Ljusternik—Schnirelmann theory, we prove multiplicity and concentration
properties of solutions for ¢ > 0 small. In our problem, the function f is only continuous,
which allows to consider larger classes of nonlinearities in the reaction.

Mathematics Subject Classification 35J60 (Primary); 35B33 (Secondary)

1 Introduction and main results

The Schrodinger equation is central in quantum mechanics and it plays the role of Newton’s
laws and conservation of energy in classical mechanics, that is, it predicts the future behaviour
of a dynamical system. It is striking to point out that talking about his celebrated equation,
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Erwin Schrodinger said: “T don’t like it, and I’'m sorry I ever had anything to do with it”.
The linear Schrodinger equation is a central tool of quantum mechanics, which provides a
thorough description of a particle in a non-relativistic setting. Schrodinger’s linear equation
is

2

T E V)Y =0,

where ¥ is the Schrodinger wave function, m is the mass of the particle, i denotes Planck’s
renormalized constant, E is the energy, and V stands for the potential energy.

Schrodinger also established the classical derivation of his equation, based upon the
analogy between mechanics and optics, and closer to de Broglie’s ideas. He developed a per-
turbation method, inspired by the work of Lord Rayleigh in acoustics, proved the equivalence
between his wave mechanics and Heisenberg’s matrix, and introduced the time dependent
Schrodinger’s equation

V2 +

2
ihw,=—f—mv2w+wx>w—y|w|l’—‘w x e RV (N > 2), (1.1)

where p < 2N/(N —2)if N >3 and p < o0 if N = 2.

In physical problems, a cubic nonlinearity corresponding to p = 3 in equation (1.1) is
common; in this case, problem (1.1) is called the Gross-Pitaevskii equation. In the study of
equation (1.1), Floer, Weinstein [22] and Oh [30,31] supposed that the potential V' is bounded
and possesses a non-degenerate critical point at x = 0. More precisely, it is assumed that V
belongs to the class (V,) (for some real number ) introduced by Kato [27]. Taking y > 0 and
h > 0 sufficiently small and using a Lyapunov-Schmidt type reduction, Oh [30,31] proved
the existence of bound state solutions of problem (1.1), that is, solutions of the form

Yx, 1) = e E Py (x) . (1.2)

Using the Ansatz (1.2), we reduce the nonlinear Schrédinger equation (1.1) to the semilinear
elliptic equation

h2
—— VU+ V@ —E)u=u""u.
2m

The change of variable y = A~ !x (and replacing y by x) yields
—Vu+2m(Vax)—E)u=ul’"'u xeRV, (1.3)

where Vi (x) = V (hx).

1.1 Related results

In this paper, we are concerned with multiplicity and concentration results for the following
nonlinear magnetic Schrodinger equation

(lf,v - A(x))zu FVu = f(uP)u inRY (N > 2), (1.4)

where u € HI@RV,C), ¢ > Oisa parameter, V : RN — R is a continuous function,
f € C(R, R), and the magnetic potential A : RY — R is Holder continuous with exponent
o € (0,1].
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Problem (1.4) arises when one looks for standing wave solutions ¥ (x, t) := e T E Ty (x)
(with E € R) of the nonlinear evolution system

oy

a
From a physical point of view, the existence of such solutions and the study of their shape
in the semiclassical limit, namely, as i — O (or, equivalently, as ¢ — 0% in (1.4)), is of
the greatest importance, since the transition from quantum mechanics to classical mechanics
can be formally performed by sending to zero the Planck constant /.

For problem (1.4), there is a vast literature concerning the existence and the multiplicity
of bound state solutions for the case without magnetic field, namely if A = 0. The first result
in this direction was given by Floer and Weinstein [22], who considered the case N = 1 and
f = igr. Later on, several authors generalized this result to larger values of N, using different
methods. For instance, del Pino and Felmer [20] studied the existence and concentration of
solutions to the following problem

2
ih (l’?v - A(x)) v4+U@Y — f(v)H)y inRY x R.

—2V2u+V()u = f(u)in Q,
u=0o0nos,

u > 0in Q,

where € is a possibly unbounded domain in RY (N > 3), the potential V is locally Holder
continuous, bounded from below away from zero, there exists a bounded open set A C 2
such that
inf V(x) < min V(x), (1.5)
xeA xXedA
and the nonlinearity f satisfies some subcritical growth conditions. In [1], Alves and
Figueiredo considered the following quasilinear elliptic equation

—ePApu + V() ulP~2u = f(u)in RY,
u>0in RV,

where V is a positive continuous function and satisfies the local assumption (1.5), f € Cis
a function having subcritical and superlinear growth. By using the Nehari manifold method
and the Ljusternik—Schnirelmann category theory, the authors obtained the multiplicity of
positive solutions. In order to apply the Nehari manifold method, the authors assumed that
f e C!, which ensures that the Nehari manifold is a C '-manifold. If f is only continuous,
then the Nehari manifold is only a topological manifold, thus the arguments developed in
[1] collapse. We notice that Szulkin and Weth in [34] considered the multiple solutions for
the nonlinear stationary Schrédinger equation —Au + V (x)u = f(x,u) in RV, here f is
superlinear, subcritical and continuous. In order to use the method of Nehari manifold, they
developed a new approach. For further results about the existence, multiplicity and qualitative
properties of semiclassical states with various types of concentration behaviors, which have
been established under various assumptions on the potential V and on the nonlinearity f,
see [2,4,6-8,12,14,15,19,30,31,36] the references therein (see also [5,23] for the fractional
case).

On the other hand, the magnetic nonlinear Schrédinger equation (1.4) has been extensively
investigated by many authors applying suitable variational and topological methods (see
[3,10,11,16-18,21,25,26,28] and references therein). To the best of our knowledge, the first
result involving the magnetic field was obtained by Esteban and Lions [21]. They used the
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concentration-compactness principle and minimization arguments to obtain solutions for
e > 0 fixed and N = 2, 3. In particular, due to our scope, we want to mention [3] where the
authors used the method of the Nehari manifold, the penalization method, and the Ljusternik—
Schnirelmann category theory for a subcritical nonlinearity f € C''. We point out that if f is
only continuous, then the arguments developed in [3] fail. Moreover, as we will see later, due
to the presence of the magnetic field A(x), problem (1.4) cannot be changed into a pure real-
valued problem, hence we must deal directly with a complex-valued problem, which causes
several new difficulties in employing the methods to deal with our problem. Our problem is
more complicated than the problem without magnetic field and we need additional technical
estimates.

1.2 Main result

In this paper, motivated by [3,24,34], for the case where f is only continuous, we establish
multiplicity and concentration properties of nontrivial solutions to problem (1.4).
Throughout the paper, we make the following assumptions on the potential V.

(V1) There exists Vo > 0 such that V (x) > V; for all x € RV
(V2) There exists a bounded open set A C R¥ such that

Vo = LI]EIZI\I Vx) < vnely/l\ V(x).
Observe that
M:={xeA:V(x)=Vy} #0.
Moreover, let the nonlinearity f € C (R, R) be a function satisfying the following hypotheses.

(f1) f@) =0ift <0;
(f2) There exists ¢ € (2,2%) such that

fadhe

lim =0,

t—>+oo 41
where 2* = 2N /(N —2)if N > 3,and 2* = c0 if N = 2;
(f3) There is a positive constant & > 2 such that

!
0 < %F(I) <tf(t), Vt >0, where F(t) =/ f(s)ds;
0

(f4) f(¢) is strictly increasing in (0, 00).
The main result of this paper is the following.

Theorem 1.1 Assume that V satisfies (V'1), (V2) and f satisfies (f1)—(f4). Then, for any
8 > 0 such that

Ms = {x e RN : dist (x, M) < 8} C A,

there exists es > 0 such that, for any 0 < ¢ < &5, problem (1.4) has at least caty; (M)
nontrivial solutions. Moreover, for every sequence {&,} such that &, — 07 as n — 400,
if we denote by ug, one of these solutions of problem (1.4) for ¢ = ¢, and n,, € RN is the
global maximum point of |u, |, then

limV(ne,) = Vo.
n
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The paper is organized as follows. In Sect. 2, we introduce the functional setting and give
some preliminaries. In Sect. 3, we study the modified problem. We prove the Palais-Smale
condition for the modified energy functional and provide some tools which are useful to
establish a multiplicity result. In Sect. 4, we study the autonomous problem associated. This
allows us to show that the modified problem has multiple solutions. Finally, in Sect. 5, we
complete the paper with the proof of Theorem 1.1. We refer to the recent monograph [32]
for some of the main abstract methods used in this paper.

Notation

e C,Cy,Cy, ... denote positive constants whose exact values are inessential and can
change from line to line;

e Br(y) denotes the open disk centered at y € RY with radius R > 0 and By (y) denotes
the complement of B (y) in RN

o [[-1I, 1l llg, and || - || oo () denote the usual norms of the spaces H'(RY, R), LY(RY | R),
and L*°(£2, R), respectively, where Q2 C RN, (-, -)o denotes the inner product of the
space HY(RN R).

2 Abstract setting and preliminary results

In this section, we present the functional spaces and some useful preliminary remarks which
will be useful for our arguments. We also introduce a classical equivalent version of problem
(1.4).

For u : RN — C, let us denote by

\Y
Vau := <f — A) u,
i

HYRN,C):={u e L> RV, C) : |[Vau| € L*R"Y, R)}.

and

The space Hflx (RN, C) is an Hilbert space endowed with the scalar product
(u, v) := Re/ (VAMVAv + ui)dx, forany u,v € HA(RN, O,
R2
where Re and the bar denote the real part of a complex number and the complex conjugation,
respectively. Moreover we denote by ||u| 4 the norm induced by this inner product.

On H /i (RN, ©) we will frequently use the following diamagnetic inequality (see, e.g.,
Lieb and Loss [29, Theorem 7.21])

IVau(x)| = [V]u(0)]]. 2.1
Moreover, making a simple change of variables, we can see that (1.4) is equivalent to
1 2 2y, o mN
(#V - As(x)> u+Ve(u = f(lulHu inR7, (2.2)
i

where Ay (x) = A(ex) and V(x) = V (ex).
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Let H, be the Hilbert space obtained as the closure of C2°(R", C) with respect to the
scalar product

(u, v)e := Re/ (VASMVASU + Vg(x)ui)dx
RN

and let us denote by || - || the norm induced by this inner product.
The diamagnetic inequality (2.1) implies that if u € H)h (RN, C), then |u| € H'(RV,R)
and ||u|| < C||u||s. Therefore, the embedding H, — L" (RN, C) is continuous for 2 < r <

2* and the embedding H, < L, (RN, ©) is compact for 1 < r < 2*.

3 The modified problem

As in [20], to study system (1.4), or equivalently, problem (2.2) by variational methods, we
modify suitably the nonlinearity f so that, for ¢ > 0 small enough, the solutions of the
modified problem are also solutions of the original one. More precisely, we choose K > 2.
By (f4) there exists a unique number @ > 0 verifying K f (a) = Vy, where Vj is given in
(V' 1). Hence we consider the function

o @, t=Za,
Fo = {VO/K, t>a.

Now we introduce the penalized nonlinearity g : RY x R — R

g, 1) = xa() f() + (1 — xa()) F (1), 3.1
t
where x is the characteristic function on A and G (x, t) := / g(x, s)ds.

0
Inview of (f1)—(f4), we deduce that g is a Carathéodory function satisfying the following
properties:

(g1) g(x,t) =0foreacht < 0;
(g2) lim g(x,t) = 0 uniformly in x € RY;
t—0t

(g3) g(x,t) < f(tr) forall t > 0 and uniformly in x € RV;

(g4) 0<6G(x,t) <2g(x,t)t,foreachx € A, t > O;

(g5 0<G(x,t) <gx,t)t <Vpt/K,foreach x € A“,t > 0;

(g6) foreachx € A, the function ¢t — g(x, t) is strictly increasing in ¢ € (0, +00) and for
each x € A“, the function ¢ — g(x, ) is strictly increasing in (0, a).

Then we consider the modified problem
(%v - Ag(x))zu + Ve = glex, [u)u inRY. (3.2)
Note that if u is a solution of problem (3.2) with
u(x)> <a forallx € AS, A.:={x e RY :ex € A},
then u is a solution of problem (2.2).

The energy functional associated to problem (3.2) is

1 1
Je(u) = f/ (IVa,ul* + Ve () |u|?)dx — ff G(ex, lul*)dx forallu € H,.
2 RN 2 RN
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It is standard to prove that J, € C L(H,, R) and its critical points are the weak solutions of
the modified problem (3.2).
We denote by N, the Nehari manifold of J,, that is,

Ne i= {u € H\{O} : J;(w)[u] = 0},
and define the number ¢, by

Ce = uiet}\f/g Je(u).

Let H;" be the open subset of H, given by
H ={u € H, : |supp(u) N Ag| > 0},

and S} = S, N H}, where S; is the unit sphere of H,. Note that S is a non-complete
C!!_manifold of codimension 1, modeled on H, and contained in Hj . Therefore, H, =
T,S;} @ Ru foreach u € T, S, where T, S} = {v € H, : (u, v)e = 0}.

Now we show that the functional J, satisfies the mountain pass geometry (see [9,33,37]).

Lemma 3.1 For any fixed ¢ > 0, the functional J satisfies the following properties:

(1) there exist B,r > O such that Jo(u) > B if ulle =r;
(ii) there exists e € H, with ||e||s > r such that J;(e) < 0.

Proof (i) By (g3), (f1) and (f2), for any ¢ > 0 small, there exists C; > 0 such that
Gex, [ul?) < ¢lul® + Celul? forall x € RV,

By the Sobolev embedding it follows that

1 C
f/ (|VA,u|2+V6(x)|u|2)dx—£/ lu)?dx — i/ u|?dx
2 RN € 2 RN 2 RN

1
Zuunuz — CC¢llunld.

Je(u)

%

%

Hence we can choose some g, r > 0 such that J;(u) > B if |lu|| = r since g > 2.
(i) Foreachu € H and ¢ > 0, by the definition of g and (f3), one has

ﬁ 2 2 l 21,12
Je(tu) < (IVaul” + Ve () |u|")dx — G(ex, t7u|")dx,
2 RN i 2 Ag

2
t
< Sl = Ct” [ jul'dx -+ Calsuppta) N A

&

Since 6 > 2, we get the conclusion. O

Since f is only continuous, the next results are very important because they allow us to
overcome the non-differentiability of A; and the incompleteness of S;F.

Lemma 3.2 Assume that (V 1)—(V2) and (f1)-(f4) are satisfied, then the following prop-
erties hold.

(Al) Foranyu € Hj, let g, : RT — R be given by g,(t) = Jo(tu). Then there exists a
unique t, > 0 such that g, (t) > 0in (0,t,) and g, (t) < 0 in (t,, 00).
(A2) There exists T > 0 independent on u such that t, > t for all u € S}. Moreover, for

each compact W C Sj there is Cyy such that t;, < Cyy, forallu e W.
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(A3) The map mie : HY — N given by o (u) = tyu is continuous and m, = fﬁg|SE+ isa
homeomorphism between S and N. Moreover, m; ' (u) = ﬁ

(A4) Ifthereis a sequence {u,} C Sj such that dist(uy, BS:) — 0, then |mg(uy)|le — 00
and Jo(mg(u,)) — 00.

Proof (A1) As in the proof of Lemma 3.1, we have g,(0) = 0, g,(t) > 0 for r > 0 small
and g,(t) < O for t > 0 large. Therefore, max;>o g, (f) is achieved at a global maximum
point t = t, verifying g, (t,) = 0 and t,u € N;. From (f4), the definition of g and
[supp(u) N Ag| > 0, we may obtain the uniqueness of #,,. Therefore, max,>o g, (¢) is achieved
at a unique 7 = #, so that g, (r) = 0 and r,u € N,.

(A2) ForVu € S}, we have

t =/ glex, iy uytluldx.
RN
From (g2), (g3), the Sobolev embeddings and ¢ > 2, we get
2 q—1 q q—1
ty < gtu/ [u|“dx + Cty / lulfdx < Ci1¢ty +CoCerty
RN RN

which implies that #, > © for some t > 0. If W C S} is compact, and suppose by
contradiction that there is {u,} C W with ¢, :=t,, — o0. Since W is compact, there exists
u € W such that u, — u in H,. Moreover, using the proof of Lemma 3.1(ii), we have that
Je(tyuy,) — —o0.

On the other hand, let v, := t,u, € Ng, from (g4), (g5) and (g6), it yields that

1
Je(n) = Je(vn) — gjé(vn)[vn]

2 0

= (5= 5) (Il - ¢ /RN V (ex)lv, Pdx)

1 1 1 2
Z(E—a) 1—? lonllg-

Thus, substituting v, := t,u, and ||v,||. = t,, we obtain

0<(l—1) 1—i < I (o) <0
2 0 K 12
as n — oo, which yields a contradiction. This proves (A2).
(A3) First of all, we note that 7., m, and m;l are well defined. Indeed, by (A2), for

each u € HJ, there is a unique 7 (u) € Ng. On the other hand, if u € A, thenu € H}.
Otherwise, we have |supp(z) N Az| = 0 and by (g5) we have

1 1 1 1
= (5= )ll2+ fA (Fetex. aP)lual? = 3G ex. o) )dx

1
||u||§=f g(sx,|u|2)|u|2dx=/ glex, lu)|ul*dx < —f V (ex)|ul*dx
RN Ag K ]RN

1 2
< <l
which is impossible since K > 1and u # 0. Therefore, m_ ! (u) = HMM“s € S is well defined
and continuous. From
tyu
my (mew)) = m;  (tyu) = —— =u, VYueS],
tullulle
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we conclude that m, is a bijection. Now we prove 7, : Hj — N, is continuous, let
{u,} C H£+ and u € Hj such that u, — u in H;. By (A2), there is a fp > 0 such that
Iy :=ty, — to. Using tyu, € Ne,ie.,

2 2 200 12v:21, 12
Blunll = [ stex Dk, vie N,
R
and passing to the limit as n — oo in the last equality, we obtain
201,112 20012y,21,12
fo llulle :/]RN g(ex, 15 |ul")tylul“dx,

which implies that fou € N; and 1, = fo. This proves Mg (u,) — Mg (u) in H. Thus, 7,
and m, are continuous functions and (A3) is proved.
(A4) Let {u,} C SS"' be a subsequence such that dist(u,, BS;") — 0, then for each
v E 8Sj and n € N, we have |u,| = |u, — v| a.e. in A,. Therefore, by (V' 1), (V2) and the
Sobolev embedding, there exists a constant C; > 0 such that
lunllpra,y < inf fluy —vllpea,)
vedS

1

2
<G ( inf | (IVa.un —v* + Ve(@)luy — v|2>dx>
ved ST J A,

< C, dist(uy, 3S)
foralln € N, € [2,2*]. By (g2), (¢3) and (g5), for each r > 0, we have

2

t
/ G(ex,tzlu,,|2)dx§/ F(12|u,,|2)dx+—/ V (ex)|un|>dx
RN As K Jac

2
t
<0 [ uldxr Cat [t +
Ae Ae K
[2
< Car*dist(u,, 3S;)% 4+ Cqr?dist(u,, 9557 + <

Therefore,

2
t

limsup/ G(ex, tHun|?)dx < —, ¥Vt > 0.
RN K

n

On the other hand, from the definition of m, and the last inequality, for all # > 0, one has

lim inf J, (mg (1)) > liminf J,(tu,)
n n

2 5 2

> hmlr’;lelunllg - X
K -2

= t2’

2K
this implies that

1 -2
lim inf 5||m8(un)||§ > liminf J, (mg (1)) > 2, Vit > 0.
n n

From the arbitrariness of ¢t > 0, it is easy to see that ||m.(u,)|| — oo and J(mg(u,)) — 0o
as n — 00. This completes the proof of Lemma 3.2. O
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115 Page 10 of 28 C.Ji, V. D. Radulescu

Now we define the function
@8 : H;' — R,

by U, (u) = J, (i, (1)) and denote by W, := (®£)|SE+.
From Lemma 3.2, arguing as Corollary 10 in [35], we may obtain the following result.

Lemma 3.3 Assume that (V1)—(V2) and (f1)-(f4) are satisfied, then
(B1) W, € C'(H},R) and

\I-’ ( Yo M ]/(rﬁg(u))[v], Yue H;_ and Yv € Hg;

llulle
(B2) W, € C'(SH,R) and
W) = [lme )| J ¢ () [v], Vv € T,S;;

(B3) If{un}isa (PS). sequence of Vg, then {ms(u,)} is a (PS). sequence of J.. If {u,} C
N is a bounded (PS). sequence of Jg, then {m;1 (up)}isa (PS). sequence of Ve,

(B4) u is a critical point of V. if and only if m¢(u) is a critical point of J. Moreover, the
corresponding critical values coincide and

1Srz+f V. = ljvnf Je.
As in [35], we have the following variational characterization of the infimum of J, over
Ne:
Ce = mf Je(u) = inf supJ.(tu) = inf sup J.(tu).

ueH; >0 ueSs >0
Lemma3.4 Letc > 0and {u,} is a (PS). sequence for Jg, then {u,} is bounded in H,.

Proof Assume that {u,} C H,isa (PS). sequence for J,, thatis, J,(u,) — cand J/(u,) —
0. By using (g4) and (g5), we have

1
c+on(1) +on(Dlluplle = Je(un) — *Jé(un)[un]

(3~ ;)nunng + [ (Geex P - 56 lun)x
> (% = é)uunug fA (ég(ax, Jun | un|* = %G(ex, jnl?) ) dx
= (5= 5) (lnl - /Ag@x,|un|2)|un|2dx)
= (5 - é)(uunns < L veeotnPar)

1

= (5= )0 = el

Since K > 2, from the above inequalities we obtain that {u,} is bounded in H,. O
The following result is important to prove the (P S)., condition for the functional J.

Lemma 3.5 The functional J; satisfies the (P S). condition at any level ¢ > 0.
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Multiplicity and concentration of solutions to the nonlinear... Page 110f28 115

Proof Let (u,) C H, be a (PS). sequence for J.. By Lemma 3.4, (u,) is bounded in H,.

Thus, up to a subsequence, u,—u in H; and u, — u in Li’OC(RN, C)foralll <r <2*as

n — —o00. Moreover, the subcritical growth of g imply that J/(x) = 0, and

[ =/ gex, [ul®)|ul*dx.
]RN

Let R > 0 be such that A, C Bg/2(0). We show that for any given ¢ > 0, for R large
enough,

lim sup / (Vi il + Vo) unPlx < ¢. (3.3)
BS(O)

n
Let pr € C®(RY, R) be a cut-off function such that
¢r =0 x € Bgp(0), ¢r=1 xe€Br(0), 0<¢g <1, and |Vog|=<C/R

where C > 0 is a constant independent of R. Since the sequence (¢gu,) is bounded in H,
we have

J;(un)[(bRun] = 0,1(1),

that is
Re / Y p, unVa @Rim)dx + / Ve () un Pprdx = / g(ex. lun| D lundrdx + on(D).
RN RN RN
Since V, (undr) = i, Vop + drVa,uy, using (g5), we have
/RNuvAgunF + Ve () |un ) prdx

:/ g(ex, |un|2)|un|2¢RdX —Re/
RN

N iEVAEunV(deX +on(1)
R

1
< — | Ve)|un|*prdx — Re/

= iWVAgunV(dex + on(1).
K Jgy RN

By the definition of ¢, the Holder inequality and the boundedness of (u,) in H,, we obtain

1 C C
(1= %) [, 0900 4+ Ve P < G lenlalVa,iala + 0,(1) = S+ 0a(1)
RN R R

and so (3.3) holds.
Using u, — uin L7 (RN), forall 1 <r < 2* again, up to a subsequence, we have that

loc
lun| = |ul ae.inRY as n — +oo0,
then

gex, lunH)unl*> — glex, lu)®)|ul* ae. in RN as n — +oo.

Moreover, from the subcritical growth of g and and the Lebesgue Dominated Convergence
Theorem, we can infer

lim ‘g(sx, lun | |un)® — g(ex, lul®)|ul*|dx = 0.
" JBR(0)
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Now, by (g5) and (3.3) we have

2 2¢
f , \g(sx, lun|H)un|* — glex, |u|2>|u|2|dx < —/ (VA unl? + V() unPdx < =
%0 K JB ) K

for every ¢ > 0.
Therefore

f g(ex, [un*)un|*dx — f g(ex, [ul®)|ul*dx as n — +oc.
RN RN
Finally, since J/(u) = 0, we have

— [lull? + 0,(1).

on(1) = I @)lun] = llun 7 = /N glex, lunP)lunPdx = llunll?
R
Thus, the sequence (u,) strong converges to u in H,. O

Since f is only assumed to be continuous, the following result is required for the multi-
plicity result in the next section.

Corollary 3.1 The functional Y, satisfies the (PS). condition on S; at any level ¢ > 0.

Proof Let {u,} C S;r be a (PS). sequence for W,. Then W, (u,) — ¢ and [|¥/ ()]« — O,
where || - ||x is the norm in the dual space (7, S;‘)*. By Lemma 3.3(B3), we know that
{mg(uy,)}is a (PS). sequence for J, in H,. From Lemma 3.5, we know that there exists a
u e Sj such that, up to a subsequence, mg(u,) — m(u) in H.. By Lemma 3.2(A3), we
obtain

U, — u in S;‘ ,
and the proof is complete. O

Proposition 3.1 Assume that (V1)-(V2) and (f1)-(f4) hold, then problem (3.2) has a
ground state solution for any € > 0.

Proof Since

Ce = 1nf Je(u) = inf supJ.(tu) = inf sup J.(tu),

ueHE t>0 ue&g >0

by the Ekeland variational principle [37], we obtain a minimizing (P S), sequence on S;
for the functional .. Moreover, by Corollary 3.1, we deduce the existence of a ground state
u € H, for problem (3.2). ]
4 Multiple solutions for the modified problem

4.1 The autonomous problem

For our scope, we need also to study the following limit problem
—Au+ Vou = f(uz)u, u:RY > R, 4.1

whose associated C!-functional, defined in H'(RV, R), is

1 1
To(u) := f/ (IVul? + Voub)dx — f/ FW?)dx.
2 ]RN 2 RN
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Let
={ue H'RY,R)\ {0} : I;(u)[u] = 0}
and

v = inf [ .
vy uleI}vo o(u)

Let Sp be the unit sphere of Hy := H (RN, R). Note that S is a complete smooth manifold
of codimension 1, therefore, Hy = T,,So € Ru for each u € T, So, where T,,So = {v € Hp :
(u, v)o = 0}. Arguing as in Lemma 3.2, we have the following result.

Lemma4.1 Let Vo be given in (V1) and suppose that (f1)-(f4) are satisfied, then the
following properties hold.

(al) For any u € Ho\{0}, let g, : R™ — R be given by g, (t) = Iy(tu). Then there exists
a unique t, > 0 such that g, (t) > 0in (0, t,) and g, (t) < 0 in (t,, 00);

(a2) There exists T > 0 independent on u such that t, > t for all u € So. Moreover, for
each compact set W C Sg there is Cyy such that t,, < Cyy, for allu € W;

(a3) The map m : Hy\{0} — Ny given by m(u) = tyu is continuouc and mg = nipls, is a
homeomorphism between Sy and Ny. Moreover, m~ L) =

IIM o -
We shall consider the functional defined by
Wo(u) = loGi(u)) and Wy := Yols,.
Arguing as Proposition 9 and Corollary 10 in [35], we have that

Lemma 4.2 Let Vy be given in (V1) and suppose that ( f1)—(f4) are satisfied, then
(b1) Uy € C1(Ho\{0}, R) and

lm@)llo ,,

W (u)v = Tl —— 1)), Yu € Ho\{0) and Yv € Ho;

b2) ¥y e CL(Sy, R) and

Wo@v = lm@)lloly(@m)Ivl, Vv € TySo;

(b3) If{un}isa (PS), sequence of Wy, then {m(u,)}isa (PS). sequence of Iy. If {u,} C Ny
is a bounded (P S). sequence of 1y, then {m_1 (up)}is a (PS). sequence of Vo,
(b4) wu is a critical point of W if and only if m(u) is a critical point of ly. Moreover, the
corresponding critical values coincide and
inf ¥y = 1nf Ip.
So
Similar to the previous argument, we have the following variational characterization of
the infimum of I over Ny:

Cyy = 1nf Iop(u) = inf suplo(tu) = inf sup lp(tu).
ueNo ueHo\{0} ;>0 U€So >0

The next result is useful in later arguments.

Lemma4.3 Let {u,} C Ho be a (PS). sequence for Iy such that u,—0. Then one of the
following alternatives occurs:
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(i) uy, — 0in Hyasn — +00;
(ii) there are a sequence {y,} C RN and constants R, 8 > 0 such that

lim inf/ lun|?dx > B.
Br(yn)

n

Proof Assume that (ii) does not hold. Then, for every R > 0, we have
lim sup / |u,,|2dx =0.
" yeRN JBR(y)
Since {u,} is bounded in Hyp, by Lions’ lemma [37], it follows that
u, — 0in L' (RY), 2 <r < 2%

From the subcritical growth of f, we have
/ FW?)dx = 0,(1) = / f)uldx.
RN RN

Moreover, from I(’) (uy)[u,] — 0, it follows that

/ (IVunl® + Vouy)dx =/ f)undx + 0, (1) = 0,(1).
RN RN
Thus, property (i) holds. O

Remark 4.1 From Lemma 4.3 we see that if u is the weak limit of (P S )CVO sequence {u,} of
the functional Iy, then we have u # 0. Otherwise we have that u,—0 and if u, - 0, from
Lemma 4.3 it follows that there are a sequence {y,} C R" and constants R, > 0 such that

n

liminf/ lun|?dx > B > 0.
Br(yn)

Then set v, (x) = u,(x + z,), it is easy to see that {v,} is also a (PS)CVO sequence for the
functional Iy, it is bounded, and there exists v € Hy such that v,—v in Hy with v # 0.

Lemma 4.4 Assume that V satisfies (V 1), (V2) and f satisfies (f1)-(f4), then problem
(4.1) has a positive ground state solution.

Proof Firstof all, it is easy to show that cy, > 0. Moreover, if ug € N satisfies Io(uo) = cv,,
thenm ! (up) € Spisaminimizer of Wy, so that ug is a critical point of /o by Lemma 4.2. Now,
we show that there exists a minimizer u € Ny of Io|s. Since infg, Wo = infag I = cy,
and Sp is a C' manifold, by Ekeland’s variational principle, there exists a sequence w, C So
with Wo(w,) — cy, and Wy(w,) — 0 asn — oo. Put u, = m(w,) € Ny forn € N.
Then Iy(u,) — cy, and Ié(u,,) — 0 as n — oo by Lemma 4.2(b3). Similar to the proof
of Lemma 3.4, it is easy to know that {u,} is bounded in Hy. Thus, we have u,—u in Ho,
up — win Lj (RV),1 <r < 2*and u, — u ae. in RV, thus //(u) = 0. From Remark
4.1, we know that u # 0. Moreover,

1
cvy = Io(w) = Io(w) = 5 15@)[u]
_ 1 1 2 1 2y, 2 1 2
_ (E _ §>||u||0+/RN (gf(u = SF ))dx
1 ) 1 N
<timinf { (5 = =) lualld + /RN (5@ = SF @) )]
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1

= lim inf {Io(u,,) - 51(3(un)[un]}
n

= CV()7

thus, u is a ground state solution. From the assumption of f, u > 0, moreover, by [13,
Proposition 6 and Proposition 7], we know that u(x) > 0 for x € RV, The proof is complete.
O

Note that, by [13, Proposition 3 and Proposition 4], the ground state solution of problem
(4.1) is radially symmetric, which implies that every ground state solution decays exponen-
tially at infinity with its gradient, and is C>(RY, R) N L® (RN, R).

Lemma4.5 Let (u,) C No be such that Io(u,) — cv,. Then (u,) has a convergent subse-
quence in Hy.

Proof Since (u,) C Ny, from Lemma 4.1(a3), Lemma 4.2(b4) and the definition of cy,, we
have

_ u
v, =m 1(u,,)=7"ESO, Vn e N,
llznllo

and

Wo(vn) = lo(up) — cyy = Mlg Wo(u).
0

Since Sg is a complete C ! manifold, by Ekeland’s variational principle, there exists a sequence
{v,} C So such that {v,,} is a (PS)CV0 sequence for ¥( on Sp and

10, — vallo = 0, (D).

Similar to the proof of Lemma 4.4, we may obtain the conclusion of this lemma. O

4.2 The technical results

In this subsection, we prove a multiplicity result for the modified problem (3.2) using the
Ljusternik—Schnirelmann category theory. In order to get it, we first provide some useful
preliminaries.

Let 8§ > 0 be such that Ms C A, w € H(RY ,R) be a positive ground state solution of
the limit problem (4.1), and n € C*®°(R™, [0, 1]) be a nonincreasing cut-off function defined
in [0, +00) such that n(r) = 1if0 <7 < §/2and n(t) = 0ifr > 6.

For any y € M, let us introduce the function

N s UCIE))

&

where
N
T, (x) == Y Ai(y)xi.
i

Let 7, > 0 be the unique positive number such that

J (1t = J (t: Ve y).
IP;S( e ( s,y) e (te s,y)

Note that 7, W, , € N.
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115 Page 16 of 28 C.Ji, V. D. Radulescu

Let us define ®, : M — N as
D, (y) = te"ys,y-

By construction, ®.(y) has compact support for any y € M. Moreover, the energy of the
above functions has the following behavior as ¢ — 07.

Lemma 4.6 The limit
lim (@ () = ey
holds uniformly iny € M.

Proof Assume by contradiction that the statement is false. Then there exist 8o > 0, (y,) C M
and g, — 07 satisfying

Js,, (Cbsn (Yn)) — vyl = 0.

For simplicity, we write ®,, ¥, and t, for ®,, (y,), Vs, y, and f, , respectively.
We can check that

1w, 1 — / (IVol* + Vow?)dx as n — +00. 4.2)
RN

Indeed, by a change of variable of z = (g,x — y,)/€,, the Lebesgue Dominated Convergence
Theorem, the continuity of V and y, € M C A(which is bounded), we deduce that

f V (e,X)|Wp|?dx :/ V(enz + yp)In(lenz)w(2)|?dx — Vo/ @?dx as n — +00.
RN RN RN

Moreover, by the same change of variable z = (¢,x — y,)/&,, we also have
[ s, wPax =2 [ eo@Pd:+ [ nezhvoePd:
RN RN RN

2
dz

+ [ ez (400 = Az + 3o

Z
12, f 1wz (EnzN 0@ Var(2) - —dz.
RN |Z|
It is clear that
lim/ |n(|,s,,z|)Va)(z)|2a’z:/ Vo (z)|%dz.
n RN RN

Moreover, using the definition of 1, the Holder continuity with exponent @ € (0, 1] of A, the
exponential decay of w, and the Lebesgue Dominated Convergence Theorem, we can infer

[, 1w eszboePdz = o,),

/ [n(lenzDn’ (lenzD@ (2)Vor(2)|dz = 04 (1),
RN

and
2 2a 2 2a
[nGenzD (A = Atenz + ) o) dz < Ce2 WP (@)\zdz = 0, (1),
RN lenz]| <8
obtaining (4.2).
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On the other hand, since ]g/n tn V) (t,V,) = 0, by the change of variables z = (g,x —
Yn)/€n, observe that, if z € Bs/q, (0), then £,z + y, € Bs(y,) C Ms C A, we have

1w, 17, = /R 8z + yu t20* (enzDe? ()0 (lenz e (2)dz
= /R @ (lenzDe® @)n* (enze? (2)dz
> / [ (2)e (2)dz
Bs/(2ep)(0)
> / F @26 @) )z
Bs2(0)

> f(t2y?) ’ (O)wzmdz
5/2

for all n large enough and where y = min{w(2) : |z| < §/2}.

Ift, — 400, by (f4) we deduce that |V, ||§n — 400 which contradicts (4.2). Therefore,
up to a subsequence, we may assume that 7, — 7o > 0.

If t, — 0, using the fact that f is increasing and the Lebesgue Dominated Convergence
Theorem, we obtain that

W12 = / TG (enzDe? @)n* (jenzDew? (2)dz — 0, as n — +oo,
R
which contradicts (4.2). Thus, we have ¢ty > 0 and
/ (|Va)|2 + V()a)z)dx :/ f(towz)a)zdx,
RN RN

so that row € Ny,. Since @ € Ny,, we obtain that 7y = 1 and so, using the Lebesgue
Dominated Convergence Theorem, we get

lim /RN F(|ta W, |))dx = /RN F(w?)dx.
Hence
lim J, (g, (yn)) = Io(@) = cv,
which is a contradiction and the proof is complete. O

Now we define the barycenter map.
Let p > 0 be such that Ms C B, and consider Y : RN — RN defined by setting

X, if |x] < p,

o= {px/m, if x| = p.

The barycenter map S, : Ny — RV is defined by
1
Be(u) == —2/ Y () |u(x)|*dx.
llull; JrY

We have the following lemma.
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Lemma4.7 The limit
lim Be(Pe(y) =y
e—>0*1

holds uniformly iny € M.

Proof Assume by contradiction that there exist x > 0, (y,) C M and ¢, — 0 such that

|,Bs,,(q>s,1 ) — ynl = k. 4.3)

Using the change of variable z = (¢,x — y,)/&,, we can see that

/R (Y (enz + ) — v (enzD(2)dz
,38,, ((Ds” ) =yn +

/ P (enzDe’ ()dz
RN

Taking into account (y,) C M C Ms C B, and the Lebesgue Dominated Convergence
Theorem, we can obtain that

|Be, (Pe, (¥n)) — yn| = 0n(1),
which contradicts (4.3). ]

Now, we prove the following useful compactness result.

Proposition 4.1 Let e, — 0 and (u,) C N, be such that Jg, (uy) — cv,. Then there exists
(n) C RN such that the sequence (|v,|) C H' (RN, R), where v, (x) := u,(x + ), has a
convergent subsequence in H L(RN | R). Moreover, up to a subsequence, y, := €,y, — y €
M asn — +o0.

Proof The proof of this proposition can be found in [3]. However, for the reader’s con-
venience, we give in what follows the details of the proof. Since Ja’n (uy)[u,] = 0 and
Je, (upy) — cy,, arguing as in the proof of Lemma 3.4, we can prove that there exists C > 0
such that ||u, ||, < C foralln € N.

Arguing as in the proof of Lemma 3.2 and recalling that ¢y, > 0, we have that there exist
a sequence {y,} C RY and constants R, B > 0 such that

lim inf / lun|?dx > B. (4.4)
" Br(n)

Now, let us consider the sequence {|v,|} C HY (RN, R), where v, (x) = u,(x + Yn)-
By the diamagnetic inequality (2.1), we get that {|v,|} is bounded in H'(RV, R), and using
(4.4), we may assume that |v,|—v in H'(RVM,R) for some v # 0.

Let #, > 0 be such that v, := 1,|v,| € Ny,, and set y, := &, J,.

By the diamagnetic inequality (2.1), we have

cvo = lo(Un) = max J, (tun) = Je, (un) = cvy + 0n (1),

which yields Io(v,) — cy, as n — +o0.

Since the sequences {|v,|} and {v,} are bounded in H RN, R) and |v,] - O in
HY RN, R), then (z,) is also bounded and so, up to a subsequence, we may assume that
ty — to > 0.

We claim that #y > 0. Indeed, if #y = 0, then, since (|v,|) is bounded, we have v, — 0 in
H'RN, R), that is Io(D,) — 0, which contradicts ¢y, > 0. Thus, up to a subsequence, we
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may assume that v,—v := fov # 0 in HYRY,R), and, by Lemma 4.5, we can deduce that
9, — 0 in H'(RY, R), which gives |v,| — vin H! (RN R).

Now we show the final part, namely that {y,} has a subsequence such that y, — y € M.
Assume by contradiction that {y,} is not bounded and so, up to a subsequence, |y, | — +00
as n — +o00. Choose R > 0 such that A C Bg(0). Then for n large enough, we have
[yn| > 2R, and, for any x € Bg/e, (0),

lenx + ynl = |yn| — &nlx| > R.

Since u, € N, , using (V' 1) and the diamagnetic inequality (2.1), we get that

/ (IVvall* + Vol *)dx 5/ 8(Enx + . |va[*)|val*dx
RN RN
. 4.5)
< / FuallvnPdx + / RIS
BR/e, (0)

BE/S/] 0)

Since |v,| — vin H' (RN, R) and f(r) < Vo/K, we can see that (4.5) yields
min {1, vo(1 = L Vv, ? 2dx =
] (UVIvullI* + [val9)dx = 0, (1),
K RN

that is |v,| — 0in H' (RN, R), which contradicts to v # 0.

Therefore, we may assume that y, — yo € RY. Assume by contradiction that yg ¢ A.
Then there exists r > 0 such that for every n large enough we have that |y, — yo| < r
and By, (yo) C A°. Then, if x € B/, (0), we have that |e,x + y, — yo| < 2r so that
enX +yn € A* and so, arguing as before, we reach a contradiction. Thus, yg € A.

To prove that V (yg) = Vo, we suppose by contradiction that V (yg) > Vj. Using the
Fatou’s lemma, the change of variable z = x + y, and max;>¢ Je, (tu,) = Jg, (u,), we
obtain

5 1 . . 1 -
vy = o) < 5 [ VIR + VOl - 5 [ F e
2 JrN 2 JrN
- ~ 2 ~ 2 1 ~ 2
<timinf(5 [ (Vi +Venr + )5z = 5 [ F(iudx)
n 2 JrN 2 JrN

2
t 1
— 1iminf(i/ (Vunl > + V (en2)|in|*)dz — f/ F(Itnunlz)dz)
n 2 RN 2 RN
<liminfJ,, (t,u,) <liminfJ, (u,) = cy,
n n
which is impossible and the proof is complete. O

Let now
Ne = 1{u € Ny : Je(u) < cyy + h(e)},

where i : Rt — Rt, h(e) > 0ase — 0.

Fixed y € M, since, by Lemma 4.6, |J.(®:(y)) — cy,| — Oase — 0T, we get that
N, # @ for any & > 0 small enough.

We have the following relation between N, and the barycenter map.

Lemma 4.8 We have

lim+ sup dist(B: (1), Ms) = 0.

e—0 ueN,
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Proof Lete, — 0T as n — +o0. For any n € N, there exists u, € /\75,1 such that

sup inf [Be, (u) — y| = inf |, (un) = y[+ oa(1).
uell, yeMs yeMs

Therefore, it is enough to prove that there exists (y,) C Ms such that
h;n |ﬂan (un) — ynl =0.

By the diamagnetic inequality (2;1), we can see that Io(t|u,|) < Jg,(tu,) for any t+ > 0.
Therefore, recalling that {u,} C N, C N,,, we can deduce that

Cy, < max Io(t|uy,|) < max Js,, (tuy) = Js,, (uy) < cy, + h(en) (4.6)
>0 t>0
which implies that J,, («,) — cy, as n — +o00. Then Proposition 4.1 implies that there

exists {§,} € R such that y, = €,%, € Ms for n large enough. Thus, making the change
of variable z = x — y,, we get

Jv (Y (enz + yn) — yu)lun (z + $n)|%dz
f]RN |tn (z + Jn)|?dz .

Since, up to a subsequence, |u,|(- + y,) converges strongly in H LRN R) and &,z + Yn —>
y € M for any z € R, we conclude the proof. O

,88,1 (un) =yn+

4.3 Multiplicity of solutions for problem (3.2)

Finally, we present a relation between the topology of M and the number of solutions of the
modified problem (3.2).

Theorem 4.1 For any § > 0 such that Ms C A, there exists €5 > 0 such that, for any
e € (0, &), problem (3.2) has at least caty; (M) nontrivial solutions.

Proof For any € > 0, we define the function . : M — S by
Te(y) = m;  (Pe(y)), Vy € M.

By Lemma 4.6 and Lemma 3.3(B4), we obtain

lin}) Y (e (y)) = lin}) Je(®e(y)) = cv,, uniformlyin y € M.

€— €—
Hence, there is a number € > 0 such that the set S'g"' ={u eSS We(u) <cy, +hie)}is
nonempty, for all € € (0, €), since wc (M) C S‘;’ . Here £ is given in the definition of No.

Given § > 0, by Lemma 4.6, Lemma 3.2(A3), Lemma 4.7, and Lemma 4.8, we can find
&s > 0 such that for any ¢ € (0, &;), the following diagram
@, mg! me Be
M — o, (M) — (M) — O, (M) — M;s

is well defined and continuous. From Lemma 4.7, we can choose a function ® (e, z) with
[®(, 2)| < % uniformly in z € M, for all € € (0, €) such that B (P.(z)) = z + O(e, z) for
allz € M.Define H(t,z) = z+ (1 —t)®(e, z). Then H : [0, 1] x M — Mj is continuous.
Clearly, H(0,z) = B:(®:(2)), H(1,z) = z for all z € M. That is, H (¢, z) is a homotopy
between B, o ®, = (B; o m;) o . and the embedding ¢ : M — Mj;. Thus, this fact implies
that

caty, (m) (e (M)) > caty;(M). 4.7
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By Corollary 3.1 and the abstract category theorem [35], W, has at least caty,_ ) (e (M))
critical points on Sj . Therefore, from Lemma 3.3(B4) and (4.7), we have that J, has at
least catyy, (M) critical points in N which implies that problem (3.2) has at least caty, (M)
solutions. O

5 Proof of Theorem 1.1

In this section we prove our main result. The idea is to show that the solutions u, obtained
in Theorem 4.1 satisfy

lug(x)|> < aforx e A
for ¢ small. The key ingredient is the following result.

Lemma5.1 Let s, — 07 and u, € '/\78)1 be a solution of problem (3.2) for ¢ = &,. Then
Je, (un) = cv,. Moreover, there exists {y,} C RN such that, if v,(x) := u,(x + 3,), we
have that {|v,|} is bounded in L°(RN , R) and
lim |v,(x)| =0 uniformlyinn € N.
|x]—+4o00

Proof The proof of this lemma can be found in [3], for the convenience of the readers, we
give the proof here. Since Jg, (u,) < cy, + h(e,) with lim, h(e,) = 0, we can argue as in
the proof of Lemma 4.8 (see (4.6)) to conclude that Jg, (u,) — cy,. Thus, by Proposition
4.1, we obtain the existence of a sequence {7,} € RN such that {|v,|} ¢ H'(RN R),
where v, (x) := u, (x + y,), has a convergent subsequence in H (RN R). Moreover, up to
a subsequence, y, 1= &,y, — ¥y € M asn — +00.

Forany R > 0and 0 <r < R/2,letn € C®[RM),0 < n<1lwithnx)=1if|x| >R
and n(x) =0if x| < R —r and |Vn| <2/r.

For each n € N and L > 0, we consider the functions

[vp ()| if Juy (X)] < L, 2 2(8-1)

B—1
v a(x) == . Zpp =NV v and wp , :=nv; , vl
n {L 1f|v,,(x)| > L. n L.n ns n L.n 'Ynls

where 8 > 1 will be determined later.
Since, by the diamagnetic inequality (2.1) we have that

_ 2 — 2 1
Re(Va,, (45,0 Un * Vg s 2L = 10 1Va, (450l + Re(V,5)¥ ('72%('2 ))
2 2 1
= 207 IV vl Ll VvV (7075 )
2 1 2
>nv(’3 191012 + 20V vy ol Vvl

taking z , as a test function, we have

2(B—1 1
/RN IV v 20?0} )dx+2/R Vv |0g |V vgldx
' -
+/ V(enx + end)n’ v lugPdx < Ref (Vag, (450 Vn = Vg, (+5,)7L.0)dx
RN
(5.1
~|—Re/N V(enx + €4 3n)UnZL ndx
R

2(B—1
=/ g(enx + endn. [valn*v; s~V vy d.
RN
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We first deal with the case N > 3. From the definition of g, for any 0 < ¢ < V{ small, there
exists C¢ > 0 such that

g, 2 < ¢t +C|t)* forall x € RV, (5.2)

Using (5.1) and (5.2), we can obtain that

2(B—1 1 2(B—1 *
A;{N Vvl Py, ’deZ/ oy ’|vn||V|vn|||Vn|dx+C/ oy Do, ¥ dx
(5.3)

For each 6 > 0, using Young’s inequality, we have from (5.3) that
/ IV valPn?o; e Ve < 25/ v b P19, ||2dx+2C,s/ v B |, PV Pdx
RN RN RN
+C/ n vz(/3 1)|v| dx.
RN

Choosing § € (0, }), it yields

L9l <c [ o2t P Pioalar e [t
R RN
5.4

On the other hand, by the Sobolev and Holder inequalities, we have
—1
0rae =€ [ VoraPdx=c [ 19 (luof ) Pax
RV RV '
< Cﬂz(/RN vif’i”>|vn|2|v;7|2dx+[R o VI Pdx). (5.5)
Combining (5.4) and (5.5), we have
281 2 -
o3 = Cﬂz(/N o7l 21V +f Pl dx). 5.6
R

Let g = %, by the definition of wy, , and (5.6), we rewrite the last inequality as

. 2/2*
2%-2)/2,2*
/ (rlvalo,7)

20y 2 ok \2/2" «\ (27=2)/2
scav ([ g, )" ( oal?)
[xX|=R—r
+ [ PivaPay)
RN
oy \2/2F .
scav ([ o, P ax)" B
+ [ R PIvaPa).
RV
From Lemma 4.5, |v,| — |v| in H'(RY), for R large enough, we conclude that

* 1
2*-2 . .
[Unl2e x> R/2) = W2 uniformly in n € N.
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Hence we obtain

« o\ 2/2%
(2*=2)/22
(Ialvf, 2%
(/lezR ok

IA

2002 [ o P19
R

C
=5 [
r RN

Using the Fatou’s lemma in the variable L, we have
2*2/2
lvg] € L (Jx] > R) for R large enough. (5.7)

Next, we note thatif 8 = 2*(r—1)/2¢ with7 = 2*2/2(2*—2),then 8 > land2¢/(t—1) < 2*.
Now suppose that |v,| € L>"/¢=D(|x| > R—r) forsome 8 > 1. Using the Holder inequality
with exponent ¢ /(¢ — 1) and ¢, then (5.7) gives that

_ 1—1/t w_ay\ 1/t
oraBe = CA{( [ oPm P Van) ([ )
[x|>=R—r |x|=R—r

RN — (R — r)M)l/t 1-1/1
+( ( ™) (/ |v”|2ﬂt/(t—1)dx) }
[x[=R—r

r2
RN/t 1-1/t
> 261/(1—1)
<CB (1+ > )</|;\2R—1'|vn| dx) . (5.8)

Letting L — 400 in (5.8), we obtain

28 <81 RN/TN - 2p
Onlrpei=ry = €1+ =77 )Ionlaprj—nyxizr-r)-

If we set x :=2*(t — 1)/(2t), s :=2t/(t — 1), then

RNﬂ)U@m
2

[onlgesisizr) = CPBYA (14 [onls1et=R-r)- (5.9)

Let 8 = x"(m =1,2,...), we obtain

S — RN/t 1/2B)
(1)

- m
[onlymtsxi=ry < C* x™* s [V lxms(x|=R—=r)-

It is clear that 2 > N /t. So if we take r,, = 2~ "+tD R then (5.9) implies

|Un |Xm+ls(\x|ZR) =< |Un |X”I+IS(|VY\ZR—l'm+1)

o In(1 + 220+D)

< CZi:IX_'XZi:IjX_I eXp(Z )|Un|xs(|x|zR—r1)

f
i=1 2x
< Clunlo(x12R/2)-
Letting m — oo in the last inequality, we get
[vnlLee(x1=R) < Clunlox(x1=R/2)- (5.10)

Using |v,| — [v] in HYRN) again, for any fixed a > 0, there exists R > 0 such that
[VnlLoe(xj=r) < a forall n € N. Therefore, I llim |vp (x)| = 0 uniformly in 7.
X|—> 00

To show that |v,| Lo®N) < 00, we need only show that for any xo € N, there is a ball
Br(xp) = {x € RY) : |x — xo| < R} such that [Vn|Loe (B (xg)) < +00. We can use the same
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arguments and take n € C®(RN), 0 < 5 < 1 with n(x) = 1 if |x — x| < p’ and n(x) =0
if |[x — xg| > 2p’ and |Vy| < %, to prove that

[VnlLoo (v—xol<p) < Clunlo(x>2p")- (5.11)
From (5.10) and (5.11), using a standard covering argument it follows that
[Unlpe gy = C
for some positive constant C.

For the case N = 2, similar with the proof for the case N > 3, we also let z; , :=

n2v2(ﬂ vpand wy , 1= nvf_nl |v,| with B > 1 to be determined later. Taking z; , as a test

functlon we also have (5.1). Moreover, from the definition of g, for any 0 < ¢ < Vy small,
there exists C; > 0 such that

gx, 11> < ¢r? 4 Ce|r|? forallx e RV, (5.12)

where 2 < ¢ < o0.
By (5.1) and (5.12), we obtain that

2(B—1 2 1 2 1
/ IV [va ]P0 20; >dx52/ oy >|vn||V|vn|||Vn|dx+C/ o8 v, 9dx.
R2 ’ R2 R2
(5.13)

For any 6 > 0, using Young’s inequality, we have from (5.13) that
2(-1 2(8-1 2(-1
/Rz V10l P22V < 26/R Pl >|V|vn||2dx+2caf V28D, 2|V pl2dx
+C/ n vz(ﬁ 1)Iv 9dx.
R2

Choosing 8 € (0, 1), it yields

1 2(8—1 2(8—1
/ MRS ’dx<Cf P >|vn|2|vm2dx+c/ﬂ{{2n2v;’i Jol9dx.
(5.14)

On the other hand, by the Sobolev embedding,
oualy < CF( [ VPl + [ G Pax). 519
Using (5.14) and (5.15), we have

2(B—1 2 1
oy <C( [ S pvnbax+ [ i Virax). 616)
R R2

Let g = %, by the definition of @y, and (5.6), we rewrite the last inequality as

2/q G=2)/q
([ amnun)™ < canf( [ )™ ([ )
[x|=R—r

)
+/Rz of vV nldx)
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_ 2/q _
2)/2 2
<CQ, 2){(/ nlvalvy P’ )qu) ol sk )2
R2 -
-2
+ [ o Pvnpax).
R2 ’

From Lemma 4.5, |v,| — |v| in H'(R?), we have |v,| — |v| in L9(R?). Thus, for R
large enough, we conclude that

) 1 . .
|U”|Z(|X|2R/2) < m umformly inn € N.

Hence we obtain

—2)/2 2/q -2 -2
(/lx‘>R<|vn|v2‘{,, )T @ ( [P ivalay s |t ax)

C
—2/ |v,|9dx.
r RrR2

Using the Fatou’s lemma in the variable L, we have

IA

lv,| € qu/2(|x| > R) for R large enough. (5.17)

Next, we note that if 8 = ¢ (r — 1)/2¢ witht = ¢?/2(q —2),then 8 > land 2t /(t — 1) < q.
Now suppose that |v,| € L2P1/¢=D(|x| > R — r) for some B > 1. Using the Holder
inequality with exponent 7 /(¢ — 1) and ¢, then (5.16) gives that

_ 1=1/t NV
=[Py i) ([t
| [x|>R—r

x|>R—r

2 p 2\t _
LB R0 (/ o PP D)
[x[>R—r

R2/t 1—1/¢
< C,32(1 + = )(/ |un|2ﬂ’/<’—”dx) . (5.18)
r |x|=R—r

Letting L — +00 in (5.18), we obtain

21
28 2(1 . R 28
[vn iy = CB2(14 2 [ ——

Ifweset x :=q(t —1)/(2t),s :=2t/(t — 1), then
RZ/I
72

1/2B)
) [VnlBs(x|=R—r)- (5.19)

[Vnlys(x|=R) < Cl/ﬁﬂl/ﬁ<1 +

LetB = x"(m =1,2,...), we obtain

U lyms(x|=R—-r)-

— R2/'\1/2p)
|U,1|Xm+ls(|X|2R) (1 + )

X mx
=C* x 2
It is clear that 2 > 2/z. So if we take r,, = 2~ *D R, then (5.19) implies

|'Un |X”’+1S(\,‘C|ZR) =< |Un |X”’+1s(|x‘2R—"m+l)

, ; " 23i+1)
mo iy In(1+2
< CZi:l X XZi:llX exp( E %

i=1

) [Vnlys(x|=R=r1)
< Clunlg(xi=r/2)-
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Letting m — oo in the last inequality, we get
[vnlLee(x1=R) < Clvnlg(xi=R/2)- (5.20)

Using |v,| — |v| in H(R?) again, for any fixed a > 0, there exists R > 0 such that
[VnlLoe(xj=r) < a forall n € N. Therefore, | llim |vp (x)| = 0 uniformly in n.
X|—> 00

Similarly, in order to show that |v,|p~R2) < +00, we need only show that for any
xo € R?, there is aball Bg (xg) = {x € R? : [x — xo| < R} such that |y, |Loc(B, (r)) < +00.
We can use the same arguments and take n € C®(R?), 0 < 5 < 1 with n(x) = 1 if

|x —xol < p’and n(x) = 0if |x — x9| > 2p" and |Vy| < %, to prove that

[VnlLoo (I —xol<p) = Clunlo(x>2p7)- (5.2
From (5.20) and (5.21), using a standard covering argument it follows that
[vnlLog2) = €
for some positive constant C and the proof is complete. O

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1 Let § > 0 be such that M C A. We want to show that there exists
£s > 0 such that for any ¢ € (0, &5) and any u, € N, solution of problem (3.2), it holds

”us”iw(Ag) =<a. (5.22)

We argue by contradiction and assume that there is a sequence &, — 0 such that for every n
there exists u, € N, which satisfies J; (u,) = 0 and

lluen ”%00(1\2") > da. (5.23)

Arguing asin Lemma 5.1, we have that J;, (#,) — cv,, and therefore we can use Proposition
4.1 to obtain a sequence (y,) C RY such that Y = &pYn — Yo for some yg € M. Then, we
can find 7 > 0, such that B, (y,) C A, and so B, /., (J») C Ag, for all n large enough.

Using Lemma 5.1, there exists R > 0 such that lva? < ain B (0) and n large enough,
where v, = u, (- + ¥,). Hence |un|2 < a in B%(y,) and n large enough. Moreover, if n is
so large that r /e, > R, then Af C Bf/gn (Jn) C By (¥n), which gives |un|? < a for any
X € A‘S'". This contradicts (5.23) and proves the claim.

Letnow &5 := min{és, &}, where &5 > 0is givenby Theorem4.1. Then we have caty, (M)
nontrivial solutions to problem (3.2). If u, € N, is one of these solutions, then, by (5.22)
and the definition of g, we conclude that u, is also a solution to problem (2.2).

Finally, we study the behavior of the maximum points of it |, where i (x) := ug(x/e)
is a solution to problem (1.4), as & — 0.

Take &, — 0T and the sequence (u,) where each u,, is a solution of (3.2) for ¢ = &,.
From the definition of g, there exists y € (0, a) such that

Vi
g(ex, tz)t2 < ?Otz, forall x e RN, [t <y.

Arguing as above we can take R > 0 such that, for n large enough,

lunllLo (B Gy < V- (5.24)

Up to a subsequence, we may also assume that for n large enough

lunllLoBr G = V- (5.25)
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Indeed, if (5.25) does not hold, up to a subsequence, if necessary, we have ||u,||oo < y. Thus,
since JS’" (ug,) = 0, using (g5) and the diamagnetic inequality (2.1) that

Vo
/ (VI + VolunP)dx 5/ g(enx. lunllun2dx < —/ Pl
RN RN K Jry

and, being K > 2, ||u,|| = 0, which is a contradiction.

Taking into account (5.24) and (5.25), we can infer that the global maximum points p,, of
lug, | belongs to Br (), thatis p, = g, +, for some g, € Bg. Recalling that the associated
solution of problem (1.4) is @i, (x) = u,(x/&,), we can see that a maximum point 7, of |i,|
iS g, = €1Yn + €nqn. Since g, € Bgr, £,Y, — Yo and V (y9) = Vp, the continuity of V
allows to conclude that

limV(ne,) = Vo.
n
The proof is now complete. O
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