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Abstract
In this paper, we study the following nonlinear magnetic Schrödinger equation

⎧
⎨

⎩

(ε

i
∇ − A(x)

)2
u + V (x)u = f (|u|2)u in R

N (N ≥ 2),

u ∈ H1(RN , C),

where ε is a positive parameter, and V : R
N → R, A : R

N → R
N are continuous potentials.

Under a local assumption on the potential V , by combining variational methods, penalization
techniques, and the Ljusternik–Schnirelmann theory, we provemultiplicity and concentration
properties of solutions for ε > 0 small. In our problem, the function f is only continuous,
which allows to consider larger classes of nonlinearities in the reaction.

Mathematics Subject Classification 35J60 (Primary); 35B33 (Secondary)

1 Introduction andmain results

The Schrödinger equation is central in quantum mechanics and it plays the role of Newton’s
laws and conservation of energy in classicalmechanics, that is, it predicts the future behaviour
of a dynamical system. It is striking to point out that talking about his celebrated equation,
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Erwin Schrödinger said: “I don’t like it, and I’m sorry I ever had anything to do with it”.
The linear Schrödinger equation is a central tool of quantum mechanics, which provides a
thorough description of a particle in a non-relativistic setting. Schrödinger’s linear equation
is

∇2ψ + 8π2m

�2
(E − V (x)) ψ = 0 ,

where ψ is the Schrödinger wave function, m is the mass of the particle, � denotes Planck’s
renormalized constant, E is the energy, and V stands for the potential energy.

Schrödinger also established the classical derivation of his equation, based upon the
analogy between mechanics and optics, and closer to de Broglie’s ideas. He developed a per-
turbation method, inspired by the work of Lord Rayleigh in acoustics, proved the equivalence
between his wave mechanics and Heisenberg’s matrix, and introduced the time dependent
Schrödinger’s equation

i�ψt = − �
2

2m
∇2ψ + V (x)ψ − γ |ψ |p−1ψ x ∈ R

N (N ≥ 2), (1.1)

where p < 2N/(N − 2) if N ≥ 3 and p < +∞ if N = 2.
In physical problems, a cubic nonlinearity corresponding to p = 3 in equation (1.1) is

common; in this case, problem (1.1) is called the Gross-Pitaevskii equation. In the study of
equation (1.1), Floer,Weinstein [22] and Oh [30,31] supposed that the potential V is bounded
and possesses a non-degenerate critical point at x = 0. More precisely, it is assumed that V
belongs to the class (Va) (for some real number a) introduced byKato [27]. Taking γ > 0 and
� > 0 sufficiently small and using a Lyapunov-Schmidt type reduction, Oh [30,31] proved
the existence of bound state solutions of problem (1.1), that is, solutions of the form

ψ(x, t) = e−i Et/�u(x) . (1.2)

Using the Ansatz (1.2), we reduce the nonlinear Schrödinger equation (1.1) to the semilinear
elliptic equation

− �
2

2m
∇2u + (V (x) − E) u = |u|p−1u .

The change of variable y = �
−1x (and replacing y by x) yields

− ∇2u + 2m (V�(x) − E) u = |u|p−1u x ∈ R
N , (1.3)

where V�(x) = V (�x).

1.1 Related results

In this paper, we are concerned with multiplicity and concentration results for the following
nonlinear magnetic Schrödinger equation

(ε

i
∇ − A(x)

)2
u + V (x)u = f (|u|2)u in R

N (N ≥ 2), (1.4)

where u ∈ H1(RN , C), ε > 0 is a parameter, V : R
N → R is a continuous function,

f ∈ C(R, R), and themagnetic potential A : R
N → R

N is Hölder continuous with exponent
α ∈ (0, 1].
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Problem (1.4) arises when one looks for standing wave solutions ψ(x, t) := e−i Et/�u(x)
(with E ∈ R) of the nonlinear evolution system

i�
∂ψ

∂t
=

(
�

i
∇ − A(x)

)2

ψ +U (x)ψ − f (|ψ |2)ψ in R
N × R.

From a physical point of view, the existence of such solutions and the study of their shape
in the semiclassical limit, namely, as � → 0+ (or, equivalently, as ε → 0+ in (1.4)), is of
the greatest importance, since the transition from quantum mechanics to classical mechanics
can be formally performed by sending to zero the Planck constant �.

For problem (1.4), there is a vast literature concerning the existence and the multiplicity
of bound state solutions for the case without magnetic field, namely if A ≡ 0. The first result
in this direction was given by Floer and Weinstein [22], who considered the case N = 1 and
f = iR. Later on, several authors generalized this result to larger values of N , using different
methods. For instance, del Pino and Felmer [20] studied the existence and concentration of
solutions to the following problem

⎧
⎪⎨

⎪⎩

−ε2∇2u + V (x)u = f (u) in 	,

u = 0 on ∂	,

u > 0 in 	,

where 	 is a possibly unbounded domain in R
N (N ≥ 3), the potential V is locally Hölder

continuous, bounded from below away from zero, there exists a bounded open set 
 ⊂ 	

such that

inf
x∈


V (x) < min
x∈∂


V (x), (1.5)

and the nonlinearity f satisfies some subcritical growth conditions. In [1], Alves and
Figueiredo considered the following quasilinear elliptic equation

{
−ε p�pu + V (x)|u|p−2u = f (u) in R

N ,

u > 0 in R
N ,

where V is a positive continuous function and satisfies the local assumption (1.5), f ∈ C1 is
a function having subcritical and superlinear growth. By using the Nehari manifold method
and the Ljusternik–Schnirelmann category theory, the authors obtained the multiplicity of
positive solutions. In order to apply the Nehari manifold method, the authors assumed that
f ∈ C1, which ensures that the Nehari manifold is a C1-manifold. If f is only continuous,
then the Nehari manifold is only a topological manifold, thus the arguments developed in
[1] collapse. We notice that Szulkin and Weth in [34] considered the multiple solutions for
the nonlinear stationary Schrödinger equation −�u + V (x)u = f (x, u) in R

N , here f is
superlinear, subcritical and continuous. In order to use the method of Nehari manifold, they
developed a new approach. For further results about the existence, multiplicity and qualitative
properties of semiclassical states with various types of concentration behaviors, which have
been established under various assumptions on the potential V and on the nonlinearity f ,
see [2,4,6–8,12,14,15,19,30,31,36] the references therein (see also [5,23] for the fractional
case).

On the other hand, themagnetic nonlinear Schrödinger equation (1.4) has been extensively
investigated by many authors applying suitable variational and topological methods (see
[3,10,11,16–18,21,25,26,28] and references therein). To the best of our knowledge, the first
result involving the magnetic field was obtained by Esteban and Lions [21]. They used the
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concentration-compactness principle and minimization arguments to obtain solutions for
ε > 0 fixed and N = 2, 3. In particular, due to our scope, we want to mention [3] where the
authors used themethod of the Nehari manifold, the penalizationmethod, and the Ljusternik–
Schnirelmann category theory for a subcritical nonlinearity f ∈ C1. We point out that if f is
only continuous, then the arguments developed in [3] fail. Moreover, as we will see later, due
to the presence of the magnetic field A(x), problem (1.4) cannot be changed into a pure real-
valued problem, hence we must deal directly with a complex-valued problem, which causes
several new difficulties in employing the methods to deal with our problem. Our problem is
more complicated than the problem without magnetic field and we need additional technical
estimates.

1.2 Main result

In this paper, motivated by [3,24,34], for the case where f is only continuous, we establish
multiplicity and concentration properties of nontrivial solutions to problem (1.4).

Throughout the paper, we make the following assumptions on the potential V .

(V 1) There exists V0 > 0 such that V (x) ≥ V0 for all x ∈ R
N ;

(V 2) There exists a bounded open set 
 ⊂ R
N such that

V0 = min
x∈


V (x) < min
x∈∂


V (x).

Observe that

M := {x ∈ 
 : V (x) = V0} 	= ∅.

Moreover, let the nonlinearity f ∈ C(R, R)be a function satisfying the following hypotheses.

( f 1) f (t) = 0 if t ≤ 0;
( f 2) There exists q ∈ (2, 2∗) such that

lim
t→+∞

f (t2)t

tq−1 = 0,

where 2∗ = 2N/(N − 2) if N ≥ 3, and 2∗ = ∞ if N = 2;
( f 3) There is a positive constant θ > 2 such that

0 <
θ

2
F(t) ≤ t f (t), ∀ t > 0, where F(t) =

∫ t

0
f (s)ds;

( f 4) f (t) is strictly increasing in (0,∞).

The main result of this paper is the following.

Theorem 1.1 Assume that V satisfies (V 1), (V 2) and f satisfies ( f 1)–( f 4). Then, for any
δ > 0 such that

Mδ := {x ∈ R
N : dist (x, M) < δ} ⊂ 
,

there exists εδ > 0 such that, for any 0 < ε < εδ , problem (1.4) has at least catMδ (M)

nontrivial solutions. Moreover, for every sequence {εn} such that εn → 0+ as n → +∞,
if we denote by uεn one of these solutions of problem (1.4) for ε = εn and ηεn ∈ R

N is the
global maximum point of |uεn |, then

lim
n

V (ηεn ) = V0.
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The paper is organized as follows. In Sect. 2, we introduce the functional setting and give
some preliminaries. In Sect. 3, we study the modified problem. We prove the Palais-Smale
condition for the modified energy functional and provide some tools which are useful to
establish a multiplicity result. In Sect. 4, we study the autonomous problem associated. This
allows us to show that the modified problem has multiple solutions. Finally, in Sect. 5, we
complete the paper with the proof of Theorem 1.1. We refer to the recent monograph [32]
for some of the main abstract methods used in this paper.

Notation

• C,C1,C2, . . . denote positive constants whose exact values are inessential and can
change from line to line;

• BR(y) denotes the open disk centered at y ∈ R
N with radius R > 0 and Bc

R(y) denotes
the complement of BR(y) in R

N ;
• ‖ · ‖, ‖ · ‖q , and ‖ · ‖L∞(	) denote the usual norms of the spaces H1(RN , R), Lq(RN , R),

and L∞(	, R), respectively, where 	 ⊂ R
N . 〈·, ·〉0 denotes the inner product of the

space H1(RN , R).

2 Abstract setting and preliminary results

In this section, we present the functional spaces and some useful preliminary remarks which
will be useful for our arguments. We also introduce a classical equivalent version of problem
(1.4).

For u : R
N → C, let us denote by

∇Au :=
(∇
i

− A

)

u,

and

H1
A(RN , C) := {u ∈ L2(RN , C) : |∇Au| ∈ L2(RN , R)}.

The space H1
A(RN , C) is an Hilbert space endowed with the scalar product

〈u, v〉 := Re
∫

R2

(
∇Au∇Av + uv

)
dx, for any u, v ∈ H1

A(RN , C),

where Re and the bar denote the real part of a complex number and the complex conjugation,
respectively. Moreover we denote by ‖u‖A the norm induced by this inner product.

On H1
A(RN , C) we will frequently use the following diamagnetic inequality (see, e.g.,

Lieb and Loss [29, Theorem 7.21])

|∇Au(x)| ≥ |∇|u(x)||. (2.1)

Moreover, making a simple change of variables, we can see that (1.4) is equivalent to

(1

i
∇ − Aε(x)

)2
u + Vε(x)u = f (|u|2)u in R

N , (2.2)

where Aε(x) = A(εx) and Vε(x) = V (εx).
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Let Hε be the Hilbert space obtained as the closure of C∞
c (RN , C) with respect to the

scalar product

〈u, v〉ε := Re
∫

RN

(
∇Aεu∇Aε v + Vε(x)uv

)
dx

and let us denote by ‖ · ‖ε the norm induced by this inner product.
The diamagnetic inequality (2.1) implies that if u ∈ H1

Aε
(RN , C), then |u| ∈ H1(RN , R)

and ‖u‖ ≤ C‖u‖ε. Therefore, the embedding Hε ↪→ Lr (RN , C) is continuous for 2 ≤ r ≤
2∗ and the embedding Hε ↪→ Lr

loc(R
N , C) is compact for 1 ≤ r < 2∗.

3 Themodified problem

As in [20], to study system (1.4), or equivalently, problem (2.2) by variational methods, we
modify suitably the nonlinearity f so that, for ε > 0 small enough, the solutions of the
modified problem are also solutions of the original one. More precisely, we choose K > 2.
By ( f 4) there exists a unique number a > 0 verifying K f (a) = V0, where V0 is given in
(V 1). Hence we consider the function

f̃ (t) :=
{
f (t), t ≤ a,

V0/K , t > a.

Now we introduce the penalized nonlinearity g : R
N × R → R

g(x, t) := χ
(x) f (t) + (1 − χ
(x)) f̃ (t), (3.1)

where χ
 is the characteristic function on 
 and G(x, t) :=
∫ t

0
g(x, s)ds.

In viewof ( f 1)–( f 4), we deduce that g is aCarathéodory function satisfying the following
properties:

(g1) g(x, t) = 0 for each t ≤ 0;
(g2) lim

t→0+g(x, t) = 0 uniformly in x ∈ R
N ;

(g3) g(x, t) ≤ f (t) for all t ≥ 0 and uniformly in x ∈ R
N ;

(g4) 0 < θG(x, t) ≤ 2g(x, t)t , for each x ∈ 
, t > 0;
(g5) 0 < G(x, t) ≤ g(x, t)t ≤ V0t/K , for each x ∈ 
c, t > 0;
(g6) for each x ∈ 
, the function t �→ g(x, t) is strictly increasing in t ∈ (0,+∞) and for

each x ∈ 
c, the function t �→ g(x, t) is strictly increasing in (0, a).

Then we consider the modified problem
(1

i
∇ − Aε(x)

)2
u + Vε(x)u = g(εx, |u|2)u in R

N . (3.2)

Note that if u is a solution of problem (3.2) with

|u(x)|2 ≤ a for all x ∈ 
c
ε, 
ε := {x ∈ R

N : εx ∈ 
},
then u is a solution of problem (2.2).

The energy functional associated to problem (3.2) is

Jε(u) := 1

2

∫

RN
(|∇Aεu|2 + Vε(x)|u|2)dx − 1

2

∫

RN
G(εx, |u|2)dx for all u ∈ Hε.
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It is standard to prove that Jε ∈ C1(Hε, R) and its critical points are the weak solutions of
the modified problem (3.2).

We denote by Nε the Nehari manifold of Jε, that is,

Nε := {u ∈ Hε\{0} : J ′
ε(u)[u] = 0},

and define the number cε by

cε = inf
u∈Nε

Jε(u).

Let H+
ε be the open subset of Hε given by

H+
ε = {u ∈ Hε : |supp(u) ∩ 
ε| > 0},

and S+
ε = Sε ∩ H+

ε , where Sε is the unit sphere of Hε . Note that S+
ε is a non-complete

C1,1-manifold of codimension 1, modeled on Hε and contained in H+
ε . Therefore, Hε =

TuS+
ε

⊕
Ru for each u ∈ TuS+

ε , where TuS+
ε = {v ∈ Hε : 〈u, v〉ε = 0}.

Now we show that the functional Jε satisfies the mountain pass geometry (see [9,33,37]).

Lemma 3.1 For any fixed ε > 0, the functional Jε satisfies the following properties:

(i) there exist β, r > 0 such that Jε(u) ≥ β if ‖u‖ε = r;
(ii) there exists e ∈ Hε with ‖e‖ε > r such that Jε(e) < 0.

Proof (i) By (g3), ( f 1) and ( f 2), for any ζ > 0 small, there exists Cζ > 0 such that

G(εx, |u|2) ≤ ζ |u|2 + Cζ |u|q for all x ∈ R
N .

By the Sobolev embedding it follows that

Jε(u) ≥ 1

2

∫

RN
(|∇Aεu|2 + Vε(x)|u|2)dx − ζ

2

∫

RN
|u|2dx − Cζ

2

∫

RN
|u|qdx

≥ 1

4
‖un‖2ε − CCζ ‖un‖qε .

Hence we can choose some β, r > 0 such that Jε(u) ≥ β if ‖u‖ε = r since q > 2.
(ii) For each u ∈ H+

ε and t > 0, by the definition of g and ( f 3), one has

Jε(tu) ≤ t2

2

∫

RN
(|∇Aεu|2 + Vε(x)|u|2)dx − 1

2

∫


ε

G(εx, t2|u|2)dx,

≤ t2

2
‖u‖2ε − C1t

θ

∫


ε

|u|θdx + C2|supp(u) ∩ 
ε|.

Since θ > 2, we get the conclusion. ��
Since f is only continuous, the next results are very important because they allow us to

overcome the non-differentiability of Nε and the incompleteness of S+
ε .

Lemma 3.2 Assume that (V 1)–(V 2) and ( f 1)–( f 4) are satisfied, then the following prop-
erties hold.

(A1) For any u ∈ H+
ε , let gu : R

+ → R be given by gu(t) = Jε(tu). Then there exists a
unique tu > 0 such that g′

u(t) > 0 in (0, tu) and g′
u(t) < 0 in (tu,∞).

(A2) There exists τ > 0 independent on u such that tu ≥ τ for all u ∈ S+
ε . Moreover, for

each compact W ⊂ S+
ε there is CW such that tu ≤ CW , for all u ∈ W .
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(A3) The map m̂ε : H+
ε → Nε given by m̂ε(u) = tuu is continuous and mε = m̂ε|S+

ε
is a

homeomorphism between S+
ε and Nε . Moreover, m−1

ε (u) = u
‖u‖ε

.

(A4) If there is a sequence {un} ⊂ S+
ε such that dist(un, ∂S+

ε ) → 0, then ‖mε(un)‖ε → ∞
and Jε(mε(un)) → ∞.

Proof (A1) As in the proof of Lemma 3.1, we have gu(0) = 0, gu(t) > 0 for t > 0 small
and gu(t) < 0 for t > 0 large. Therefore, maxt≥0 gu(t) is achieved at a global maximum
point t = tu verifying g′

u(tu) = 0 and tuu ∈ Nε. From ( f 4), the definition of g and
|supp(u)∩
ε| > 0, wemay obtain the uniqueness of tu . Therefore, maxt≥0 gu(t) is achieved
at a unique t = tu so that g′

u(t) = 0 and tuu ∈ Nε .
(A2) For ∀ u ∈ S+

ε , we have

tu =
∫

RN
g(εx, t2u |u|2)tu |u|2dx .

From (g2), (g3), the Sobolev embeddings and q > 2, we get

tu ≤ ζ tu

∫

RN
|u|2dx + Cζ t

q−1
u

∫

RN
|u|qdx ≤ C1ζ tu + C2Cζ t

q−1
u ,

which implies that tu ≥ τ for some τ > 0. If W ⊂ S+
ε is compact, and suppose by

contradiction that there is {un} ⊂ W with tn := tun → ∞. Since W is compact, there exists
u ∈ W such that un → u in Hε . Moreover, using the proof of Lemma 3.1(ii), we have that
Jε(tnun) → −∞.

On the other hand, let vn := tnun ∈ Nε, from (g4), (g5) and (g6), it yields that

Jε(vn) = Jε(vn) − 1

θ
J ′
ε(vn)[vn]

≥
(1

2
− 1

θ

)
‖vn‖2ε +

∫


c
ε

(1

θ
g(εx, |vn |2)|vn |2 − 1

2
G(εx, |vn |2)

)
dx

≥
(1

2
− 1

θ

)(
‖vn‖2ε − 1

K

∫

RN
V (εx)|vn |2dx

)

≥
(1

2
− 1

θ

) (

1 − 1

K

)

‖vn‖2ε .

Thus, substituting vn := tnun and ‖vn‖ε = tn , we obtain

0 <
(1

2
− 1

θ

)(

1 − 1

K

)

≤ Jε(vn)

t2n
≤ 0

as n → ∞, which yields a contradiction. This proves (A2).
(A3) First of all, we note that m̂ε , mε and m−1

ε are well defined. Indeed, by (A2), for
each u ∈ H+

ε , there is a unique m̂ε(u) ∈ Nε. On the other hand, if u ∈ Nε, then u ∈ H+
ε .

Otherwise, we have |supp(u) ∩ 
ε| = 0 and by (g5) we have

‖u‖2ε =
∫

RN
g(εx, |u|2)|u|2dx =

∫


c
ε

g(εx, |u|2)|u|2dx ≤ 1

K

∫

RN
V (εx)|u|2dx

≤ 1

K
‖u‖2ε

which is impossible since K > 1 and u 	= 0. Therefore,m−1
ε (u) = u

‖u‖ε
∈ S+

ε is well defined
and continuous. From

m−1
ε

(
mε(u)

) = m−1
ε (tuu) = tuu

tu‖u‖ε

= u, ∀u ∈ S+
ε ,

123
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we conclude that mε is a bijection. Now we prove m̂ε : H+
ε → Nε is continuous, let

{un} ⊂ H+
ε and u ∈ H+

ε such that un → u in Hε . By (A2), there is a t0 > 0 such that
tn := tun → t0. Using tnun ∈ Nε , i.e.,

t2n‖un‖2ε =
∫

RN
g(εx, t2n |un |2)t2n |un |2dx, ∀n ∈ N ,

and passing to the limit as n → ∞ in the last equality, we obtain

t20‖u‖2ε =
∫

RN
g(εx, t20 |u|2)t20 |u|2dx,

which implies that t0u ∈ Nε and tu = t0. This proves m̂ε(un) → m̂ε(u) in H+
ε . Thus, m̂ε

and mε are continuous functions and (A3) is proved.
(A4) Let {un} ⊂ S+

ε be a subsequence such that dist(un, ∂S+
ε ) → 0, then for each

v ∈ ∂S+
ε and n ∈ N , we have |un | = |un − v| a.e. in 
ε. Therefore, by (V 1), (V 2) and the

Sobolev embedding, there exists a constant Ct > 0 such that

‖un‖Lt (
ε) ≤ inf
v∈∂S+

ε

‖un − v‖Lt (
ε)

≤ Ct

(

inf
v∈∂S+

ε

∫


ε

(|∇Aεun − v|2 + Vε(x)|un − v|2)dx
) 1

2

≤ Ct dist(un, ∂S
+
ε )

for all n ∈ N , t ∈ [2, 2∗]. By (g2), (g3) and (g5), for each t > 0, we have
∫

RN
G(εx, t2|un |2)dx ≤

∫


ε

F(t2|un |2)dx + t2

K

∫


c
ε

V (εx)|un |2dx

≤ C1t
2
∫


ε

|un |2dx + C2t
q
∫


ε

|un |qdx + t2

K
‖un‖2ε

≤ C3t
2dist(un, ∂S

+
ε )2 + C4t

qdist(un, ∂S
+
ε )q + t2

K
.

Therefore,

lim sup
n

∫

RN
G(εx, t2|un |2)dx ≤ t2

K
, ∀t > 0.

On the other hand, from the definition of mε and the last inequality, for all t > 0, one has

lim inf
n

Jε(mε(un)) ≥ lim inf
n

Jε(tun)

≥ lim inf
n

t2

2
‖un‖2ε − t2

K

= K − 2

2K
t2,

this implies that

lim inf
n

1

2
‖mε(un)‖2ε ≥ lim inf

n
Jε(mε(un)) ≥ K − 2

2K
t2, ∀ t > 0.

From the arbitrariness of t > 0, it is easy to see that ‖mε(un)‖ε → ∞ and Jε(mε(un)) → ∞
as n → ∞. This completes the proof of Lemma 3.2. ��
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Now we define the function

�̂ε : H+
ε → R,

by �̂ε(u) = Jε(m̂ε(u)) and denote by �ε := (�̂ε)|S+
ε
.

From Lemma 3.2, arguing as Corollary 10 in [35], we may obtain the following result.

Lemma 3.3 Assume that (V 1)–(V 2) and ( f 1)–( f 4) are satisfied, then

(B1) �̂ε ∈ C1(H+
ε , R) and

�̂ ′
ε(u)v = ‖m̂ε(u)‖ε

‖u‖ε

J ′
ε(m̂ε(u))[v], ∀ u ∈ H+

ε and ∀ v ∈ Hε;

(B2) �ε ∈ C1(S+
ε , R) and

� ′
ε(u)v = ‖mε(u)‖ε J

′
ε(m̂ε(u))[v], ∀v ∈ TuS

+
ε ;

(B3) If {un} is a (PS)c sequence of �ε, then {mε(un)} is a (PS)c sequence of Jε. If {un} ⊂
Nε is a bounded (PS)c sequence of Jε , then {m−1

ε (un)} is a (PS)c sequence of �ε;
(B4) u is a critical point of �ε if and only if mε(u) is a critical point of Jε. Moreover, the

corresponding critical values coincide and

inf
S+
ε

�ε. = inf
Nε

Jε.

As in [35], we have the following variational characterization of the infimum of Jε over
Nε:

cε = inf
u∈Nε

Jε(u) = inf
u∈H+

ε

sup
t>0

Jε(tu) = inf
u∈S+

ε

sup
t>0

Jε(tu).

Lemma 3.4 Let c > 0 and {un} is a (PS)c sequence for Jε, then {un} is bounded in Hε .

Proof Assume that {un} ⊂ Hε is a (PS)c sequence for Jε, that is, Jε(un) → c and J ′
ε(un) →

0. By using (g4) and (g5), we have

c + on(1) + on(1)‖un‖ε ≥ Jε(un) − 1

θ
J ′
ε(un)[un]

=
(1

2
− 1

θ

)
‖un‖2ε +

∫

RN

( 1

θ
g(εx, |un |2)|un |2 − 1

2
G(εx, |un |2)

)
dx

≥
(1

2
− 1

θ

)
‖un‖2ε +

∫


c
ε

( 1

θ
g(εx, |un |2)|un |2 − 1

2
G(εx, |un |2)

)
dx

≥
(1

2
− 1

θ

)(
‖un‖2ε −

∫


c
ε

g(εx, |un |2)|un |2dx
)

≥
(1

2
− 1

θ

)(
‖un‖2ε − 1

K

∫

RN
V (εx)|un |2dx

)

≥
(1

2
− 1

θ

)
(1 − 1

K
)‖un‖2ε .

Since K > 2, from the above inequalities we obtain that {un} is bounded in Hε . ��
The following result is important to prove the (PS)cε condition for the functional Jε.

Lemma 3.5 The functional Jε satisfies the (PS)c condition at any level c > 0.
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Proof Let (un) ⊂ Hε be a (PS)c sequence for Jε . By Lemma 3.4, (un) is bounded in Hε.
Thus, up to a subsequence, un⇀u in Hε and un → u in Lr

loc(R
N , C) for all 1 ≤ r < 2∗ as

n → +∞. Moreover, the subcritical growth of g imply that J ′
ε(u) = 0, and

‖u‖2ε =
∫

RN
g(εx, |u|2)|u|2dx .

Let R > 0 be such that 
ε ⊂ BR/2(0). We show that for any given ζ > 0, for R large
enough,

lim sup
n

∫

Bc
R(0)

(|∇Aεun |2 + Vε(x)|un |2)dx ≤ ζ. (3.3)

Let φR ∈ C∞(RN , R) be a cut-off function such that

φR = 0 x ∈ BR/2(0), φR = 1 x ∈ Bc
R(0), 0 ≤ φR ≤ 1, and |∇φR | ≤ C/R

where C > 0 is a constant independent of R. Since the sequence (φRun) is bounded in Hε,
we have

J ′
ε(un)[φRun] = on(1),

that is

Re
∫

RN
∇Aε

un∇Aε
(φRun)dx +

∫

RN
Vε(x)|un |2φRdx =

∫

RN
g(εx, |un |2)|un |2φRdx + on(1).

Since ∇Aε (unφR) = iun∇φR + φR∇Aεun , using (g5), we have
∫

RN
(|∇Aεun |2 + Vε(x)|un |2)φRdx

=
∫

RN
g(εx, |un |2)|un |2φRdx − Re

∫

RN
iun∇Aεun∇φRdx + on(1)

≤ 1

K

∫

RN
Vε(x)|un |2φRdx − Re

∫

RN
iun∇Aεun∇φRdx + on(1).

By the definition of φR , the Hölder inequality and the boundedness of (un) in Hε , we obtain
(
1 − 1

K

) ∫

RN
(|∇Aεun |2 + Vε(x)|un |2)φRdx ≤ C

R
‖un‖2‖∇Aεun‖2 + on(1) ≤ C1

R
+ on(1)

and so (3.3) holds.
Using un → u in Lr

loc(R
N ), for all 1 ≤ r < 2∗ again, up to a subsequence, we have that

|un | → |u| a.e. in R
N as n → +∞,

then

g(εx, |un |2)|un |2 → g(εx, |u|2)|u|2 a.e. in R
N as n → +∞.

Moreover, from the subcritical growth of g and and the Lebesgue Dominated Convergence
Theorem, we can infer

lim
n

∫

BR(0)

∣
∣
∣g(εx, |un |2)|un |2 − g(εx, |u|2)|u|2

∣
∣
∣dx = 0.
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Now, by (g5) and (3.3) we have
∫

Bc
R(0)

∣
∣
∣g(εx, |un |2)|un |2 − g(εx, |u|2)|u|2

∣
∣
∣dx ≤ 2

K

∫

Bc
R(0)

(|∇Aε
un |2 + V (εx)|un |2)dx <

2ζ

K

for every ζ > 0.
Therefore

∫

RN
g(εx, |un |2)|un |2dx →

∫

RN
g(εx, |u|2)|u|2dx as n → +∞.

Finally, since J ′
ε(u) = 0, we have

on(1) = J ′
ε(un)[un] = ‖un‖2ε −

∫

RN
g(εx, |un |2)|un |2dx = ‖un‖2ε − ‖u‖2ε + on(1).

Thus, the sequence (un) strong converges to u in Hε . ��
Since f is only assumed to be continuous, the following result is required for the multi-

plicity result in the next section.

Corollary 3.1 The functional �ε satisfies the (PS)c condition on S+
ε at any level c > 0.

Proof Let {un} ⊂ S+
ε be a (PS)c sequence for �ε. Then �ε(un) → c and ‖� ′

ε(un)‖∗ → 0,
where ‖ · ‖∗ is the norm in the dual space (Tun S

+
ε )∗. By Lemma 3.3(B3), we know that

{mε(un)} is a (PS)c sequence for Jε in Hε. From Lemma 3.5, we know that there exists a
u ∈ S+

ε such that, up to a subsequence, mε(un) → mε(u) in Hε . By Lemma 3.2(A3), we
obtain

un → u in S+
ε ,

and the proof is complete. ��
Proposition 3.1 Assume that (V 1)–(V 2) and ( f 1)–( f 4) hold, then problem (3.2) has a
ground state solution for any ε > 0.

Proof Since

cε = inf
u∈Nε

Jε(u) = inf
u∈H+

ε

sup
t>0

Jε(tu) = inf
u∈S+

ε

sup
t>0

Jε(tu),

by the Ekeland variational principle [37], we obtain a minimizing (PS)cε sequence on S+
ε

for the functional �ε. Moreover, by Corollary 3.1, we deduce the existence of a ground state
u ∈ Hε for problem (3.2). ��

4 Multiple solutions for themodified problem

4.1 The autonomous problem

For our scope, we need also to study the following limit problem

−�u + V0u = f (u2)u, u : R
N → R, (4.1)

whose associated C1-functional, defined in H1(RN , R), is

I0(u) := 1

2

∫

RN
(|∇u|2 + V0u

2)dx − 1

2

∫

RN
F(u2)dx .
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Let

N0 := {u ∈ H1(RN , R) \ {0} : I ′
0(u)[u] = 0}

and

cV0 := inf
u∈N0

I0(u).

Let S0 be the unit sphere of H0 := H1(RN , R). Note that S0 is a complete smoothmanifold
of codimension 1, therefore, H0 = TuS0

⊕
Ru for each u ∈ TuS0, where TuS0 = {v ∈ H0 :

〈u, v〉0 = 0}. Arguing as in Lemma 3.2, we have the following result.

Lemma 4.1 Let V0 be given in (V 1) and suppose that ( f 1)–( f 4) are satisfied, then the
following properties hold.

(a1) For any u ∈ H0\{0}, let gu : R
+ → R be given by gu(t) = I0(tu). Then there exists

a unique tu > 0 such that g′
u(t) > 0 in (0, tu) and g′

u(t) < 0 in (tu,∞);
(a2) There exists τ > 0 independent on u such that tu > τ for all u ∈ S0. Moreover, for

each compact set W ⊂ S0 there is CW such that tu ≤ CW , for all u ∈ W;
(a3) The map m̂ : H0\{0} → N0 given by m̂(u) = tuu is continuous and m0 = m̂0|S0 is a

homeomorphism between S0 and N0. Moreover, m−1(u) = u
‖u‖0 .

We shall consider the functional defined by

�̂0(u) = I0(m̂(u)) and �0 := �̂0|S0 .
Arguing as Proposition 9 and Corollary 10 in [35], we have that

Lemma 4.2 Let V0 be given in (V 1) and suppose that ( f 1)–( f 4) are satisfied, then

(b1) �̂0 ∈ C1(H0\{0}, R) and

�̂ ′
0(u)v = ‖m̂(u)‖0

‖u‖0 I ′
0(m̂(u))[v], ∀ u ∈ H0\{0} and ∀v ∈ H0;

(b2) �0 ∈ C1(S0, R) and

� ′
0(u)v = ‖m(u)‖0 I ′

0(m̂(u))[v], ∀v ∈ TuS0;
(b3) If {un} is a (PS)c sequence of�0, then {m(un)} is a (PS)c sequence of I0. If {un} ⊂ N0

is a bounded (PS)c sequence of I0, then {m−1(un)} is a (PS)c sequence of �0;
(b4) u is a critical point of �0 if and only if m(u) is a critical point of I0. Moreover, the

corresponding critical values coincide and

inf
S0

�0 = inf
N0

I0.

Similar to the previous argument, we have the following variational characterization of
the infimum of I0 over N0:

cV0 = inf
u∈N0

I0(u) = inf
u∈H0\{0}

sup
t>0

I0(tu) = inf
u∈S0

sup
t>0

I0(tu).

The next result is useful in later arguments.

Lemma 4.3 Let {un} ⊂ H0 be a (PS)c sequence for I0 such that un⇀0. Then one of the
following alternatives occurs:
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(i) un → 0 in H0 as n → +∞;
(ii) there are a sequence {yn} ⊂ R

N and constants R, β > 0 such that

lim inf
n

∫

BR(yn)
|un |2dx ≥ β.

Proof Assume that (ii) does not hold. Then, for every R > 0, we have

lim
n

sup
y∈RN

∫

BR(y)
|un |2dx = 0.

Since {un} is bounded in H0, by Lions’ lemma [37], it follows that

un → 0 in Lr (RN ), 2 < r < 2∗.

From the subcritical growth of f , we have
∫

RN
F(u2n)dx = on(1) =

∫

RN
f (u2n)u

2
ndx .

Moreover, from I ′
0(un)[un] → 0, it follows that

∫

RN
(|∇un |2 + V0u

2
n)dx =

∫

RN
f (u2n)u

2
ndx + on(1) = on(1).

Thus, property (i) holds. ��
Remark 4.1 From Lemma 4.3 we see that if u is the weak limit of (PS)cV0

sequence {un} of
the functional I0, then we have u 	= 0. Otherwise we have that un⇀0 and if un � 0, from
Lemma 4.3 it follows that there are a sequence {yn} ⊂ R

N and constants R, β > 0 such that

lim inf
n

∫

BR(yn)
|un |2dx ≥ β > 0.

Then set vn(x) = un(x + zn), it is easy to see that {vn} is also a (PS)cV0
sequence for the

functional I0, it is bounded, and there exists v ∈ H0 such that vn⇀v in H0 with v 	= 0.

Lemma 4.4 Assume that V satisfies (V 1), (V 2) and f satisfies ( f 1)–( f 4), then problem
(4.1) has a positive ground state solution.

Proof First of all, it is easy to show that cV0 > 0.Moreover, if u0 ∈ N0 satisfies I0(u0) = cV0 ,
thenm−1(u0) ∈ S0 is aminimizer of�0, so that u0 is a critical point of I0 byLemma4.2.Now,
we show that there exists a minimizer u ∈ N0 of I0|N0 . Since inf S0 �0 = infN0 I0 = cV0
and S0 is a C1 manifold, by Ekeland’s variational principle, there exists a sequence ωn ⊂ S0
with �0(ωn) → cV0 and � ′

0(ωn) → 0 as n → ∞. Put un = m(ωn) ∈ N0 for n ∈ N .
Then I0(un) → cV0 and I ′

0(un) → 0 as n → ∞ by Lemma 4.2(b3). Similar to the proof
of Lemma 3.4, it is easy to know that {un} is bounded in H0. Thus, we have un⇀u in H0,
un → u in Lr

loc(R
N ), 1 ≤ r < 2∗ and un → u a.e. in R

N , thus I ′
0(u) = 0. From Remark

4.1, we know that u 	= 0. Moreover,

cV0 ≤ I0(u) = I0(u) − 1

θ
I ′
0(u)[u]

=
(1

2
− 1

θ

)
‖u‖20 +

∫

RN

(1

θ
f (u2)u2 − 1

2
F(u2)

)
dx

≤ lim inf
n

{(1

2
− 1

θ

)
‖un‖20 +

∫

RN

(1

θ
f (un)u

2
n − 1

2
F(u2n)

)
dx

}
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= lim inf
n

{
I0(un) − 1

θ
I ′
0(un)[un]

}

= cV0 ,

thus, u is a ground state solution. From the assumption of f , u ≥ 0, moreover, by [13,
Proposition 6 and Proposition 7], we know that u(x) > 0 for x ∈ R

N . The proof is complete.
��

Note that, by [13, Proposition 3 and Proposition 4], the ground state solution of problem
(4.1) is radially symmetric, which implies that every ground state solution decays exponen-
tially at infinity with its gradient, and is C2(RN , R) ∩ L∞(RN , R).

Lemma 4.5 Let (un) ⊂ N0 be such that I0(un) → cV0 . Then (un) has a convergent subse-
quence in H0.

Proof Since (un) ⊂ N0, from Lemma 4.1(a3), Lemma 4.2(b4) and the definition of cV0 , we
have

vn = m−1(un) = un
‖un‖0 ∈ S0, ∀n ∈ N ,

and

�0(vn) = I0(un) → cV0 = inf
u∈S0

�0(u).

Since S0 is a completeC1 manifold, byEkeland’s variational principle, there exists a sequence
{ṽn} ⊂ S0 such that {ṽn} is a (PS)cV0

sequence for �0 on S0 and

‖ṽn − vn‖0 = on(1).

Similar to the proof of Lemma 4.4, we may obtain the conclusion of this lemma. ��

4.2 The technical results

In this subsection, we prove a multiplicity result for the modified problem (3.2) using the
Ljusternik–Schnirelmann category theory. In order to get it, we first provide some useful
preliminaries.

Let δ > 0 be such that Mδ ⊂ 
, ω ∈ H1(RN , R) be a positive ground state solution of
the limit problem (4.1), and η ∈ C∞(R+, [0, 1]) be a nonincreasing cut-off function defined
in [0,+∞) such that η(t) = 1 if 0 ≤ t ≤ δ/2 and η(t) = 0 if t ≥ δ.

For any y ∈ M , let us introduce the function

�ε,y(x) := η(|εx − y|)ω
(εx − y

ε

)
exp

(
iτy

(εx − y

ε

))
,

where

τy(x) :=
N∑

i

Ai (y)xi .

Let tε > 0 be the unique positive number such that

max
t≥0

Jε(t�ε,y) = Jε(tε�ε,y).

Note that tε�ε,y ∈ Nε.
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Let us define �ε : M → Nε as

�ε(y) := tε�ε,y .

By construction, �ε(y) has compact support for any y ∈ M . Moreover, the energy of the
above functions has the following behavior as ε → 0+.

Lemma 4.6 The limit

lim
ε→0+ Jε(�ε(y)) = cV0

holds uniformly in y ∈ M.

Proof Assume by contradiction that the statement is false. Then there exist δ0 > 0, (yn) ⊂ M
and εn → 0+ satisfying

∣
∣
∣Jεn (�εn (yn)) − cV0

∣
∣
∣ ≥ δ0.

For simplicity, we write �n , �n and tn for �εn (yn), �εn ,yn and tεn , respectively.
We can check that

‖�n‖2εn →
∫

RN
(|∇ω|2 + V0ω

2)dx as n → +∞. (4.2)

Indeed, by a change of variable of z = (εnx− yn)/εn , the Lebesgue Dominated Convergence
Theorem, the continuity of V and yn ∈ M ⊂ 
(which is bounded), we deduce that
∫

RN
V (εnx)|�n |2dx =

∫

RN
V (εnz + yn)|η(|εnz|)ω(z)|2dx → V0

∫

RN
ω2dx as n → +∞.

Moreover, by the same change of variable z = (εnx − yn)/εn , we also have
∫

RN
|∇Aεn

�n |2dx = ε2n

∫

RN
|η′(|εnz|)ω(z)|2dz +

∫

RN
|η(|εnz|)∇ω(z)|2dz

+
∫

RN

∣
∣
∣η(|εnz|)

(
A(yn) − A(εnz + yn)

)
ω(z)

∣
∣
∣
2
dz

+ 2εn

∫

RN
η(|εnz|)η′(|εnz|)ω(z)∇ω(z) · z

|z|dz.

It is clear that

lim
n

∫

RN
|η(|εnz|)∇ω(z)|2dz =

∫

RN
|∇ω(z)|2dz.

Moreover, using the definition of η, the Hölder continuity with exponent α ∈ (0, 1] of A, the
exponential decay of ω, and the Lebesgue Dominated Convergence Theorem, we can infer

∫

RN
|η′(|εnz|)ω(z)|2dz = on(1),

∫

RN
|η(|εnz|)η′(|εnz|)ω(z)∇ω(z)|dz = on(1),

and
∫

RN

∣
∣
∣η(|εnz|)

(
A(yn) − A(εnz + yn)

)
ω(z)

∣
∣
∣
2
dz ≤ Cε2αn

∫

|εn z|≤δ

ω2(z)|z|2αdz = on(1),

obtaining (4.2).

123



Multiplicity and concentration of solutions to the nonlinear… Page 17 of 28 115

On the other hand, since J ′
εn

(tn�n)(tn�n) = 0, by the change of variables z = (εnx −
yn)/εn , observe that, if z ∈ Bδ/εn (0), then εnz + yn ∈ Bδ(yn) ⊂ Mδ ⊂ 
, we have

‖�n‖2εn =
∫

RN
g(εnz + yn, t

2
nη2(|εnz|)ω2(z))η2(|εnz|)ω2(z)dz

=
∫

RN
f (t2nη2(|εnz|)ω2(z))η2(|εnz|)ω2(z)dz

≥
∫

Bδ/(2εn )(0)
f (t2nω2(z))ω2(z)dz

≥
∫

Bδ/2(0)
f (t2nω2(z))ω2(z)dz

≥ f (t2nγ 2)

∫

Bδ/2(0)
ω2(z)dz

for all n large enough and where γ = min{ω(z) : |z| ≤ δ/2}.
If tn → +∞, by ( f 4)we deduce that ‖�n‖2εn → +∞which contradicts (4.2). Therefore,

up to a subsequence, we may assume that tn → t0 ≥ 0.
If tn → 0, using the fact that f is increasing and the Lebesgue Dominated Convergence

Theorem, we obtain that

‖�n‖2εn =
∫

RN
f (t2nη2(|εnz|)ω2(z))η2(|εnz|)ω2(z)dz → 0, as n → +∞,

which contradicts (4.2). Thus, we have t0 > 0 and
∫

RN
(|∇ω|2 + V0ω

2)dx =
∫

RN
f (t0ω

2)ω2dx,

so that t0ω ∈ NV0 . Since ω ∈ NV0 , we obtain that t0 = 1 and so, using the Lebesgue
Dominated Convergence Theorem, we get

lim
n

∫

RN
F(|tn�n |2)dx =

∫

RN
F(ω2)dx .

Hence

lim
n

Jεn (�εn (yn)) = I0(ω) = cV0

which is a contradiction and the proof is complete. ��

Now we define the barycenter map.
Let ρ > 0 be such that Mδ ⊂ Bρ and consider ϒ : R

N → R
N defined by setting

ϒ(x) :=
{
x, if |x | < ρ,

ρx/|x |, if |x | ≥ ρ.

The barycenter map βε : Nε → R
N is defined by

βε(u) := 1

‖u‖22

∫

RN
ϒ(εx)|u(x)|2dx .

We have the following lemma.
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Lemma 4.7 The limit

lim
ε→0+ βε(�ε(y)) = y

holds uniformly in y ∈ M.

Proof Assume by contradiction that there exist κ > 0, (yn) ⊂ M and εn → 0 such that

|βεn (�εn (yn)) − yn | ≥ κ. (4.3)

Using the change of variable z = (εnx − yn)/εn , we can see that

βεn (�εn (yn)) = yn +

∫

RN
(ϒ(εnz + yn) − yn)η

2(|εnz|)ω2(z)dz
∫

RN
η2(|εnz|)ω2(z)dz

.

Taking into account (yn) ⊂ M ⊂ Mδ ⊂ Bρ and the Lebesgue Dominated Convergence
Theorem, we can obtain that

|βεn (�εn (yn)) − yn | = on(1),

which contradicts (4.3). ��
Now, we prove the following useful compactness result.

Proposition 4.1 Let εn → 0+ and (un) ⊂ Nεn be such that Jεn (un) → cV0 . Then there exists
(ỹn) ⊂ R

N such that the sequence (|vn |) ⊂ H1(RN , R), where vn(x) := un(x + ỹn), has a
convergent subsequence in H1(RN , R). Moreover, up to a subsequence, yn := εn ỹn → y ∈
M as n → +∞.

Proof The proof of this proposition can be found in [3]. However, for the reader’s con-
venience, we give in what follows the details of the proof. Since J ′

εn
(un)[un] = 0 and

Jεn (un) → cV0 , arguing as in the proof of Lemma 3.4, we can prove that there exists C > 0
such that ‖un‖εn ≤ C for all n ∈ N.

Arguing as in the proof of Lemma 3.2 and recalling that cV0 > 0, we have that there exist
a sequence {ỹn} ⊂ R

N and constants R, β > 0 such that

lim inf
n

∫

BR(ỹn)
|un |2dx ≥ β. (4.4)

Now, let us consider the sequence {|vn |} ⊂ H1(RN , R), where vn(x) := un(x + ỹn).
By the diamagnetic inequality (2.1), we get that {|vn |} is bounded in H1(RN , R), and using
(4.4), we may assume that |vn |⇀v in H1(RN , R) for some v 	= 0.

Let tn > 0 be such that ṽn := tn |vn | ∈ NV0 , and set yn := εn ỹn .
By the diamagnetic inequality (2.1), we have

cV0 ≤ I0(ṽn) ≤ max
t≥0

Jεn (tun) = Jεn (un) = cV0 + on(1),

which yields I0(ṽn) → cV0 as n → +∞.
Since the sequences {|vn |} and {ṽn} are bounded in H1(RN , R) and |vn | � 0 in

H1(RN , R), then (tn) is also bounded and so, up to a subsequence, we may assume that
tn → t0 ≥ 0.

We claim that t0 > 0. Indeed, if t0 = 0, then, since (|vn |) is bounded, we have ṽn → 0 in
H1(RN , R), that is I0(ṽn) → 0, which contradicts cV0 > 0. Thus, up to a subsequence, we
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may assume that ṽn⇀ṽ := t0v 	= 0 in H1(RN , R), and, by Lemma 4.5, we can deduce that
ṽn → ṽ in H1(RN , R), which gives |vn | → v in H1(RN , R).

Now we show the final part, namely that {yn} has a subsequence such that yn → y ∈ M .
Assume by contradiction that {yn} is not bounded and so, up to a subsequence, |yn | → +∞
as n → +∞. Choose R > 0 such that 
 ⊂ BR(0). Then for n large enough, we have
|yn | > 2R, and, for any x ∈ BR/εn (0),

|εnx + yn | ≥ |yn | − εn |x | > R.

Since un ∈ Nεn , using (V 1) and the diamagnetic inequality (2.1), we get that
∫

RN
(|∇|vn ||2 + V0|vn |2)dx ≤

∫

RN
g(εnx + yn, |vn |2)|vn |2dx

≤
∫

BR/εn (0)
f̃ (|vn |2)|vn |2dx +

∫

Bc
R/εn

(0)
f (|vn |2)|vn |2dx .

(4.5)

Since |vn | → v in H1(RN , R) and f̃ (t) ≤ V0/K , we can see that (4.5) yields

min
{
1, V0

(
1 − 1

K

)} ∫

RN
(|∇|vn ||2 + |vn |2)dx = on(1),

that is |vn | → 0 in H1(RN , R), which contradicts to v 	≡ 0.
Therefore, we may assume that yn → y0 ∈ R

N . Assume by contradiction that y0 /∈ 
.
Then there exists r > 0 such that for every n large enough we have that |yn − y0| < r
and B2r (y0) ⊂ 


c
. Then, if x ∈ Br/εn (0), we have that |εnx + yn − y0| < 2r so that

εnx + yn ∈ 

c
and so, arguing as before, we reach a contradiction. Thus, y0 ∈ 
.

To prove that V (y0) = V0, we suppose by contradiction that V (y0) > V0. Using the
Fatou’s lemma, the change of variable z = x + ỹn and maxt≥0 Jεn (tun) = Jεn (un), we
obtain

cV0 = I0(ṽ) <
1

2

∫

RN
(|∇ṽ|2 + V (y0)|ṽ|2)dx − 1

2

∫

RN
F(|ṽ|2)dx

≤ lim inf
n

(1

2

∫

RN
(|∇ṽn |2 + V (εnx + yn)|ṽn |2)dx − 1

2

∫

RN
F(|ṽn |2)dx

)

= lim inf
n

( t2n
2

∫

RN
(|∇|un ||2 + V (εnz)|un |2)dz − 1

2

∫

RN
F(|tnun |2)dz

)

≤ lim inf
n

Jεn (tnun) ≤ lim inf
n

Jεn (un) = cV0

which is impossible and the proof is complete. ��
Let now

Ñε := {u ∈ Nε : Jε(u) ≤ cV0 + h(ε)},
where h : R

+ → R
+, h(ε) → 0 as ε → 0+.

Fixed y ∈ M , since, by Lemma 4.6, |Jε(�ε(y)) − cV0 | → 0 as ε → 0+, we get that
Ñε 	= ∅ for any ε > 0 small enough.

We have the following relation between Ñε and the barycenter map.

Lemma 4.8 We have

lim
ε→0+ sup

u∈Ñε

dist(βε(u), Mδ) = 0.
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Proof Let εn → 0+ as n → +∞. For any n ∈ N, there exists un ∈ Ñεn such that

sup
u∈Ñεn

inf
y∈Mδ

|βεn (u) − y| = inf
y∈Mδ

|βεn (un) − y| + on(1).

Therefore, it is enough to prove that there exists (yn) ⊂ Mδ such that

lim
n

|βεn (un) − yn | = 0.

By the diamagnetic inequality (2.1), we can see that I0(t |un |) ≤ Jεn (tun) for any t ≥ 0.
Therefore, recalling that {un} ⊂ Ñεn ⊂ Nεn , we can deduce that

cV0 ≤ max
t≥0

I0(t |un |) ≤ max
t≥0

Jεn (tun) = Jεn (un) ≤ cV0 + h(εn) (4.6)

which implies that Jεn (un) → cV0 as n → +∞. Then Proposition 4.1 implies that there
exists {ỹn} ⊂ R

N such that yn = εn ỹn ∈ Mδ for n large enough. Thus, making the change
of variable z = x − ỹn , we get

βεn (un) = yn +
∫

RN (ϒ(εnz + yn) − yn)|un(z + ỹn)|2dz
∫

RN |un(z + ỹn)|2dz .

Since, up to a subsequence, |un |(· + ỹn) converges strongly in H1(RN , R) and εnz + yn →
y ∈ M for any z ∈ R

N , we conclude the proof. ��

4.3 Multiplicity of solutions for problem (3.2)

Finally, we present a relation between the topology of M and the number of solutions of the
modified problem (3.2).

Theorem 4.1 For any δ > 0 such that Mδ ⊂ 
, there exists ε̃δ > 0 such that, for any
ε ∈ (0, ε̃δ), problem (3.2) has at least catMδ (M) nontrivial solutions.

Proof For any ε > 0, we define the function πε : M → S+
ε by

πε(y) = m−1
ε (�ε(y)), ∀y ∈ M .

By Lemma 4.6 and Lemma 3.3(B4), we obtain

lim
ε→0

�ε(πε(y)) = lim
ε→0

Jε(�ε(y)) = cV0 , uniformly in y ∈ M .

Hence, there is a number ε̂ > 0 such that the set S̃+
ε := {u ∈ S+

ε : �ε(u) ≤ cV0 + h(ε)} is
nonempty, for all ε ∈ (0, ε̂), since πε(M) ⊂ S̃+

ε . Here h is given in the definition of Ñε.
Given δ > 0, by Lemma 4.6, Lemma 3.2(A3), Lemma 4.7, and Lemma 4.8, we can find

ε̃δ > 0 such that for any ε ∈ (0, ε̃δ), the following diagram

M
�ε−→ �ε(M)

m−1
ε−−→ πε(M)

mε−→ �ε(M)
βε−→ Mδ

is well defined and continuous. From Lemma 4.7, we can choose a function �(ε, z) with
|�(ε, z)| < δ

2 uniformly in z ∈ M , for all ε ∈ (0, ε̂) such that βε(�ε(z)) = z + �(ε, z) for
all z ∈ M . Define H(t, z) = z + (1− t)�(ε, z). Then H : [0, 1] × M → Mδ is continuous.
Clearly, H(0, z) = βε(�ε(z)), H(1, z) = z for all z ∈ M . That is, H(t, z) is a homotopy
between βε ◦ �ε = (βε ◦ mε) ◦ πε and the embedding ι : M → Mδ . Thus, this fact implies
that

catπε(M)(πε(M)) ≥ catMδ (M). (4.7)
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By Corollary 3.1 and the abstract category theorem [35], �ε has at least catπε(M)(πε(M))

critical points on S+
ε . Therefore, from Lemma 3.3(B4) and (4.7), we have that Jε has at

least catMδ (M) critical points in Ñε which implies that problem (3.2) has at least catMδ (M)

solutions. ��

5 Proof of Theorem 1.1

In this section we prove our main result. The idea is to show that the solutions uε obtained
in Theorem 4.1 satisfy

|uε(x)|2 ≤ a for x ∈ 
c
ε

for ε small. The key ingredient is the following result.

Lemma 5.1 Let εn → 0+ and un ∈ Ñεn be a solution of problem (3.2) for ε = εn. Then
Jεn (un) → cV0 . Moreover, there exists {ỹn} ⊂ R

N such that, if vn(x) := un(x + ỹn), we
have that {|vn |} is bounded in L∞(RN , R) and

lim|x |→+∞ |vn(x)| = 0 uniformly in n ∈ N.

Proof The proof of this lemma can be found in [3], for the convenience of the readers, we
give the proof here. Since Jεn (un) ≤ cV0 + h(εn) with limn h(εn) = 0, we can argue as in
the proof of Lemma 4.8 (see (4.6)) to conclude that Jεn (un) → cV0 . Thus, by Proposition
4.1, we obtain the existence of a sequence {ỹn} ⊂ R

N such that {|vn |} ⊂ H1(RN , R),
where vn(x) := un(x + ỹn), has a convergent subsequence in H1(RN , R). Moreover, up to
a subsequence, yn := εn ỹn → y ∈ M as n → +∞.

For any R > 0 and 0 < r ≤ R/2, let η ∈ C∞(RN ), 0 ≤ η ≤ 1 with η(x) = 1 if |x | ≥ R
and η(x) = 0 if |x | ≤ R − r and |∇η| ≤ 2/r .

For each n ∈ N and L > 0, we consider the functions

vL,n(x) :=
{

|vn(x)| if |vn(x)| ≤ L,

L if |vn(x)| > L,
zL,n := η2v

2(β−1)
L,n vn, and wL,n := ηv

β−1
L,n |vn |,

where β > 1 will be determined later.
Since, by the diamagnetic inequality (2.1) we have that

Re(∇Aεn (·+ỹn)vn · ∇Aεn (·+ỹn)zL,n) = η2v
2(β−1)
L,n |∇Aεn (·+ỹn)vn |2 + Re(∇vnvn)∇

(
η2v

2(β−1)
L,n

)

= η2v
2(β−1)
L,n |∇Aεn (·+ỹn)vn |2 + |vn |∇|vn |∇

(
η2v

2(β−1)
L,n

)

≥ η2v
2(β−1)
L,n |∇|vn ||2 + 2η∇ηv

2(β−1)
L,n |vn |∇|vn |,

taking zL,n as a test function, we have
∫

RN
|∇|vn ||2η2v2(β−1)

L,n dx + 2
∫

RN
η∇ηv

2(β−1)
L,n |vn |∇|vn |dx

+
∫

RN
V (εnx + εn ỹn)η

2v
2(β−1)
L,n |vn |2dx ≤ Re

∫

RN
(∇Aεn (·+ỹn)vn · ∇Aεn (·+ỹn)zL,n)dx

+ Re
∫

RN
V (εnx + εn ỹn)vnzL,ndx

=
∫

RN
g(εnx + εn ỹn, |vn |2)η2v2(β−1)

L,n |vn |2dx .

(5.1)
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We first deal with the case N ≥ 3. From the definition of g, for any 0 < ζ < V0 small, there
exists Cζ > 0 such that

g(x, t2)t2 ≤ ζ t2 + Cζ |t |2∗
for all x ∈ R

N . (5.2)

Using (5.1) and (5.2), we can obtain that
∫

RN
|∇|vn ||2η2v2(β−1)

L,n dx ≤ 2
∫

RN
ηv

2(β−1)
L,n |vn ||∇|vn |||∇η|dx + C

∫

RN
η2v

2(β−1)
L,n |vn |2∗

dx .

(5.3)

For each δ > 0, using Young’s inequality, we have from (5.3) that
∫

RN
|∇|vn ||2η2v2(β−1)

L,n dx ≤ 2δ
∫

RN
η2v

2(β−1)
L,n |∇|vn ||2dx + 2Cδ

∫

RN
v
2(β−1)
L,n |vn |2|∇η|2dx

+C
∫

RN
η2v

2(β−1)
L,n |vn |2∗

dx .

Choosing δ ∈ (0, 1
4 ), it yields

∫

RN
|∇|vn ||2η2v2(β−1)

L,n dx ≤ C
∫

RN
v
2(β−1)
L,n |vn |2|∇η|2dx + C

∫

RN
η2v

2(β−1)
L,n |vn |2∗

dx .

(5.4)

On the other hand, by the Sobolev and Hölder inequalities, we have

|ωL,n |22∗ ≤ C
∫

RN
|∇ωL,n |2dx = C

∫

RN
|∇

(
η|vn |vβ−1

L,n

)
|2dx

≤ Cβ2
( ∫

RN
v
2(β−1)
L,n |vn |2|∇η|2dx +

∫

RN
η2v

2(β−1)
L,n |∇|vn ||2dx

)
. (5.5)

Combining (5.4) and (5.5), we have

|ωL,n |22∗ ≤ Cβ2
( ∫

RN
v
2(β−1)
L,n |vn |2|∇η|2dx +

∫

RN
η2v

2(β−1)
L,n |vn |2∗

dx
)
. (5.6)

Let β = 2∗
2 , by the definition of ωL,n and (5.6), we rewrite the last inequality as

( ∫

RN
(η|vn |v(2∗−2)/2

L,n )2
∗)2/2∗

≤ C(N , 2)
{( ∫

RN
(η|vn |v(2∗−2)/2

L,n )2
∗
dx

)2/2∗( ∫

|x |≥R−r
|vn |2∗)(2∗−2)/2

+
∫

RN
v2

∗−2
L,n |vn |2|∇η|2dx

}

≤ C(N , 2)
{( ∫

RN
(η|vn |v(2∗−2)/2

L,n )2
∗
dx

)2/2∗
|vn |2∗−2

2∗(|x |≥R/2)

+
∫

RN
v2

∗−2
L,n |vn |2|∇η|2dx

}
.

From Lemma 4.5, |vn | → |v| in H1(RN ), for R large enough, we conclude that

|vn |2∗−2
2∗(|x |≥R/2) ≤ 1

2C(N , 2)
uniformly in n ∈ N.
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Hence we obtain
( ∫

|x |≥R
(|vn |v(2∗−2)/2

L,n )2
∗)2/2∗

≤ 2C(N , 2)
∫

RN
v2

∗−2
L,n |vn |2|∇η|2dx

≤ C

r2

∫

RN
|vn |2∗

dx .

Using the Fatou’s lemma in the variable L , we have

|vn | ∈ L2∗2/2(|x | ≥ R) for R large enough. (5.7)

Next,we note that ifβ = 2∗(t−1)/2t with t = 2∗2/2(2∗−2), thenβ > 1 and2t/(t−1) < 2∗.
Now suppose that |vn | ∈ L2βt/(t−1)(|x | ≥ R−r) for someβ ≥ 1.Using theHölder inequality
with exponent t/(t − 1) and t , then (5.7) gives that

|ωL,n |22∗ ≤ Cβ2
{( ∫

|x |≥R−r
(η2|vn |2β)t/(t−1)dx

)1−1/t(
∫

|x |≥R−r
|vn |(2∗−2)t

)1/t

+ (RN − (R − r)N )1/t

r2

( ∫

|x |≥R−r
|vn |2βt/(t−1)dx

)1−1/t}

≤ Cβ2
(
1 + RN/t

r2

)( ∫

|x |≥R−r
|vn |2βt/(t−1)dx

)1−1/t
. (5.8)

Letting L → +∞ in (5.8), we obtain

|vn |2β2∗β(|x |≥R) ≤ Cβ2
(
1 + RN/t

r2

)
|vn |2β2βt/(t−1)(|x |≥R−r).

If we set χ := 2∗(t − 1)/(2t), s := 2t/(t − 1), then

|vn |βχs(|x |≥R) ≤ C1/ββ1/β
(
1 + RN/t

r2

)1/(2β)|vn |βs(|x |≥R−r). (5.9)

Let β = χm(m = 1, 2, . . .), we obtain

|vn |χm+1s(|x |≥R) ≤ Cχ−m
χmχ−m

(
1 + RN/t

r2

)1/(2β)|vn |χms(|x |≥R−r).

It is clear that 2 > N/t . So if we take rm = 2−(m+1)R, then (5.9) implies

|vn |χm+1s(|x |≥R) ≤ |vn |χm+1s(|x |≥R−rm+1)

≤ C
∑m

i=1 χ−i
χ

∑m
i=1 iχ

−i
exp

( m∑

i=1

ln(1 + 22(i+1))

2χ i

)
|vn |χs(|x |≥R−r1)

≤ C |vn |2∗(|x |≥R/2).

Letting m → ∞ in the last inequality, we get

|vn |L∞(|x |≥R) ≤ C |vn |2∗(|x |≥R/2). (5.10)

Using |vn | → |v| in H1(RN ) again, for any fixed a > 0, there exists R > 0 such that
|vn |L∞(|x |≥R) ≤ a for all n ∈ N. Therefore, lim|x |→∞|vn(x)| = 0 uniformly in n.

To show that |vn |L∞(RN ) < +∞, we need only show that for any x0 ∈ N, there is a ball
BR(x0) = {x ∈ R

N ) : |x − x0| ≤ R} such that |vn |L∞(BR(x0)) < +∞. We can use the same
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arguments and take η ∈ C∞(RN ), 0 ≤ η ≤ 1 with η(x) = 1 if |x − x0| ≤ ρ′ and η(x) = 0
if |x − x0| > 2ρ′ and |∇η| ≤ 2

ρ′ , to prove that

|vn |L∞(|x−x0|≤ρ′) ≤ C |vn |2(|x |≥2ρ′). (5.11)

From (5.10) and (5.11), using a standard covering argument it follows that

|vn |L∞(RN ) ≤ C

for some positive constant C .
For the case N = 2, similar with the proof for the case N ≥ 3, we also let zL,n :=

η2v
2(β−1)
L,n vn and wL,n := ηv

β−1
L,n |vn | with β > 1 to be determined later. Taking zL,n as a test

function, we also have (5.1). Moreover, from the definition of g, for any 0 < ζ < V0 small,
there exists Cζ > 0 such that

g(x, t2)t2 ≤ ζ t2 + Cζ |t |q for all x ∈ R
N . (5.12)

where 2 < q < ∞.
By (5.1) and (5.12), we obtain that

∫

R2
|∇|vn ||2η2v2(β−1)

L,n dx ≤ 2
∫

R2
ηv

2(β−1)
L,n |vn ||∇|vn |||∇η|dx + C

∫

R2
η2v

2(β−1)
L,n |vn |qdx .

(5.13)

For any δ > 0, using Young’s inequality, we have from (5.13) that
∫

R2
|∇|vn ||2η2v2(β−1)

L,n dx ≤ 2δ
∫

R2
η2v

2(β−1)
L,n |∇|vn ||2dx + 2Cδ

∫

R2
v
2(β−1)
L,n |vn |2|∇η|2dx

+C
∫

R2
η2v

2(β−1)
L,n |vn |qdx .

Choosing δ ∈ (0, 1
4 ), it yields

∫

R2
|∇|vn ||2η2v2(β−1)

L,n dx ≤ C
∫

R2
v
2(β−1)
L,n |vn |2|∇η|2dx + C

∫

R2
η2v

2(β−1)
L,n |vn |qdx .

(5.14)

On the other hand, by the Sobolev embedding,

|ωL,n |2q ≤ Cβ2
( ∫

R2
v
2(β−1)
L,n |vn |2|∇η|2dx +

∫

R2
η2v

2(β−1)
L,n |∇|vn ||2dx

)
. (5.15)

Using (5.14) and (5.15), we have

|ωL,n |2q ≤ Cβ2
( ∫

R2
v
2(β−1)
L,n |vn |2|∇η|2dx +

∫

R2
η2v

2(β−1)
L,n |vn |qdx

)
. (5.16)

Let β = q
2 , by the definition of ωL,n and (5.6), we rewrite the last inequality as

( ∫

R2
(η|vn |v(q−2)/2

L,n )q
)2/q ≤ C(2, 2)

{( ∫

R2
(η|vn |v(q−2)/2

L,n )qdx
)2/q(

∫

|x |≥R−r
|vn |q

)(q−2)/q

+
∫

R2
v
q−2
L,n |vn |2|∇η|2dx

}
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≤ C(2, 2)
{( ∫

R2
(η|vn |v(q−2)/2

L,n )qdx
)2/q |vn |q−2

q(|x |≥R/2)

+
∫

R2
v
q−2
L,n |vn |2|∇η|2dx

}
.

From Lemma 4.5, |vn | → |v| in H1(R2), we have |vn | → |v| in Lq(R2). Thus, for R
large enough, we conclude that

|vn |q−2
q(|x |≥R/2) ≤ 1

2C(2, 2)
uniformly in n ∈ N.

Hence we obtain
( ∫

|x |≥R
(|vn |v(q−2)/2

L,n )q
)2/q ≤ 2C(2, 2)

( ∫

R2
v
q−2
L,n |vn |2|∇η|2dx +

∫

R2
η2v

q−2
L,n |vn |2dx

)

≤ C

r2

∫

R2
|vn |qdx .

Using the Fatou’s lemma in the variable L , we have

|vn | ∈ Lq2/2(|x | ≥ R) for R large enough. (5.17)

Next, we note that if β = q(t −1)/2t with t = q2/2(q −2), then β > 1 and 2t/(t −1) < q .
Now suppose that |vn | ∈ L2βt/(t−1)(|x | ≥ R − r) for some β ≥ 1. Using the Hölder
inequality with exponent t/(t − 1) and t , then (5.16) gives that

|ωL,n |2q ≤ Cβ2
{( ∫

|x |≥R−r
(|vn |2β)t/(t−1)dx

)1−1/t(
∫

|x |≥R−r
|vn |(q−2)t

)1/t

+ (R2 − (R − r)2)1/t

r2

( ∫

|x |≥R−r
|vn |2βt/(t−1)dx

)1−1/t}

≤ Cβ2
(
1 + R2/t

r2

)( ∫

|x |≥R−r
|vn |2βt/(t−1)dx

)1−1/t
. (5.18)

Letting L → +∞ in (5.18), we obtain

|vn |2βqβ(|x |≥R) ≤ Cβ2
(
1 + R2/t

r2

)
|vn |2β2βt/(t−1)(|x |≥R−r).

If we set χ := q(t − 1)/(2t), s := 2t/(t − 1), then

|vn |βχs(|x |≥R) ≤ C1/ββ1/β
(
1 + R2/t

r2

)1/(2β)|vn |βs(|x |≥R−r). (5.19)

Let β = χm(m = 1, 2, . . .), we obtain

|vn |χm+1s(|x |≥R) ≤ Cχ−m
χmχ−m

(
1 + R2/t

r2

)1/(2β)|vn |χms(|x |≥R−r).

It is clear that 2 > 2/t . So if we take rm = 2−(m+1)R, then (5.19) implies

|vn |χm+1s(|x |≥R) ≤ |vn |χm+1s(|x |≥R−rm+1)

≤ C
∑m

i=1 χ−i
χ

∑m
i=1 iχ

−i
exp

( m∑

i=1

ln(1 + 22(i+1))

2χ i

)
|vn |χs(|x |≥R−r1)

≤ C |vn |q(|x |≥R/2).
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Letting m → ∞ in the last inequality, we get

|vn |L∞(|x |≥R) ≤ C |vn |q(|x |≥R/2). (5.20)

Using |vn | → |v| in H1(R2) again, for any fixed a > 0, there exists R > 0 such that
|vn |L∞(|x |≥R) ≤ a for all n ∈ N. Therefore, lim|x |→∞|vn(x)| = 0 uniformly in n.

Similarly, in order to show that |vn |L∞(R2) < +∞, we need only show that for any
x0 ∈ R

2, there is a ball BR(x0) = {x ∈ R
2 : |x − x0| ≤ R} such that |ψn |L∞(BR(x0)) < +∞.

We can use the same arguments and take η ∈ C∞(R2), 0 ≤ η ≤ 1 with η(x) = 1 if
|x − x0| ≤ ρ′ and η(x) = 0 if |x − x0| > 2ρ′ and |∇η| ≤ 2

ρ′ , to prove that

|vn |L∞(|x−x0|≤ρ′) ≤ C |vn |2(|x |≥2ρ′). (5.21)

From (5.20) and (5.21), using a standard covering argument it follows that

|vn |L∞(R2) ≤ C

for some positive constant C and the proof is complete. ��
Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1 Let δ > 0 be such that Mδ ⊂ 
. We want to show that there exists
ε̂δ > 0 such that for any ε ∈ (0, ε̂δ) and any uε ∈ Ñε solution of problem (3.2), it holds

‖uε‖2L∞(
c
ε)

≤ a. (5.22)

We argue by contradiction and assume that there is a sequence εn → 0 such that for every n
there exists un ∈ Ñεn which satisfies J ′

εn
(un) = 0 and

‖un‖2L∞(
c
εn ) > a. (5.23)

Arguing as in Lemma 5.1, we have that Jεn (un) → cV0 , and therefore we can use Proposition
4.1 to obtain a sequence (ỹn) ⊂ R

N such that yn := εn ỹn → y0 for some y0 ∈ M . Then, we
can find r > 0, such that Br (yn) ⊂ 
, and so Br/εn (ỹn) ⊂ 
εn for all n large enough.

Using Lemma 5.1, there exists R > 0 such that |vn |2 ≤ a in Bc
R(0) and n large enough,

where vn = un(· + ỹn). Hence |un |2 ≤ a in Bc
R(ỹn) and n large enough. Moreover, if n is

so large that r/εn > R, then 
c
εn

⊂ Bc
r/εn

(ỹn) ⊂ Bc
R(ỹn), which gives |un |2 ≤ a for any

x ∈ 
c
εn
. This contradicts (5.23) and proves the claim.

Let now εδ := min{ε̂δ, ε̃δ}, where ε̃δ > 0 is given byTheorem4.1. Thenwehave catMδ (M)

nontrivial solutions to problem (3.2). If uε ∈ Ñε is one of these solutions, then, by (5.22)
and the definition of g, we conclude that uε is also a solution to problem (2.2).

Finally, we study the behavior of the maximum points of |ûε|, where ûε(x) := uε(x/ε)
is a solution to problem (1.4), as ε → 0+.

Take εn → 0+ and the sequence (un) where each un is a solution of (3.2) for ε = εn .
From the definition of g, there exists γ ∈ (0, a) such that

g(εx, t2)t2 ≤ V0
K

t2, for all x ∈ R
N , |t | ≤ γ.

Arguing as above we can take R > 0 such that, for n large enough,

‖un‖L∞(Bc
R(ỹn)) < γ. (5.24)

Up to a subsequence, we may also assume that for n large enough

‖un‖L∞(BR(ỹn)) ≥ γ. (5.25)
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Indeed, if (5.25) does not hold, up to a subsequence, if necessary, we have ‖un‖∞ < γ . Thus,
since J ′

εn
(uεn ) = 0, using (g5) and the diamagnetic inequality (2.1) that

∫

RN
(|∇|un ||2 + V0|un |2)dx ≤

∫

RN
g(εnx, |un |2)|un |2dx ≤ V0

K

∫

RN
|un |2dx

and, being K > 2, ‖un‖ = 0, which is a contradiction.
Taking into account (5.24) and (5.25), we can infer that the global maximum points pn of

|uεn | belongs to BR(ỹn), that is pn = qn+ ỹn for some qn ∈ BR . Recalling that the associated
solution of problem (1.4) is ûn(x) = un(x/εn), we can see that a maximum point ηεn of |ûn |
is ηεn = εn ỹn + εnqn . Since qn ∈ BR , εn ỹn → y0 and V (y0) = V0, the continuity of V
allows to conclude that

lim
n

V (ηεn ) = V0.

The proof is now complete. ��
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