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Abstract

In this paper, we show that one-dimension systems of quasilinear wave equations with null
conditions admit global classical solutions for small initial data. This result extends Luli, Yang
and Yu’s seminal work (Luli et al. in Adv Math 329:174-188, 2018) from the semilinear case
to the quasilinear case. Furthermore, we also prove that the global solution is asymptotically
free in the energy sense. In order to achieve these goals, we will employ Luli, Yang and
Yu’s weighted energy estimates with positive weights, introduce some space-time weighted
energy estimates and pay some special attentions to the highest order energies, then use some
suitable bootstrap process to close the argument.

Mathematics Subject Classification 35105 - 35172

1 Introduction and main result

In [18], for Cauchy problems of semilinear wave equations with null conditions in one space
dimension, Luli, Yang and Yu proved the global existence of classical solutions with small
initial data (a former result can be found in [19]). This result can be viewed as a one-dimension
and semilinear analogue of the pioneering works Klainerman [11] and Christodoulou [3] for
the global existence of classical solutions for nonlinear wave equations with null conditions
in three space dimensions, and of Alinhac [2] for the case of two space dimensions.

Global existence of small solutions to nonlinear wave equations with null conditions has
been a subject under active investigation for the past four decades. The approach to understand
the small data problem is based on the decay mechanism of linear waves. It is well-known
that the decay rate is (1 + t)’d%l, for d-dimension linear waves. Thus, when d > 4, small-
data-global-existence type theorems hold for generic quadratic nonlinearities, since the decay
rate is integrable in time. See Klainerman [8,10]. However, in RT3 the slower decay rate
(14 1)~! just barely fails to be integrable in time. Hence, the solution may blowup at finite
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time. See John [6]. In order to avoid the formation of singularities, Klainerman [9] introduced
the celebrated null conditions, then for three dimensional quasilinear wave equations with
quadratic nonlinearities satisfying null conditions, based on the decay rate for linear waves
and some special cancelations provided by such structural conditions, Klainerman [11] and
Christodoulou [3] independently proved the global existence theorems. As for R!*2, linear
waves only admit decay rate (1 4 ¢)~'/2, which is far from integrable in time. Nevertheless,
for a class of two dimensional quasilinear wave equations, based on such decay rate for linear
waves and the null conditions imposed on quadratic and cubic nonlinearities, Alinhac [2]
can show the global existence theorem. For the general class of two dimensional quasilinear
wave equations satisfying null conditions, we refer the reader to Katayama [7] and Zha [21].
For more detailed explanations on the concept of null conditions, we refer the reader to Luli,
Yang and Yu [18].

As mentioned before, the proofs in [2,3,8,10,11] in high space dimension case are all
based on the decay mechanism of linear waves. However, in one space dimension case waves
do not decay, and any nonlinear resonance (even arbitrarily high order) can lead to finite time
blowup. Nevertheless, for one-dimension semilinear wave equations, Luli et al. [ 18] can prove
that small data still lead to global solutions if the null condition is satisfied. Different from the
high space dimension case, the mechanism for the global existence in one-dimension case
is the interaction of waves with different speeds, which will lead to the decay of nonlinear
terms. In order to display this mechanism, Luli, Yang and Yu developed a kind of weighted
energy estimate with positive weights.

In this paper, we will consider the case for quasilinear wave equations, which arise naturally
in many physical fields. For this purpose, instead of the standard Cartesian coordinates (¢, x),
we will mainly use the null coordinates

r+x r—x
= , n= . 1.1
> n 2 (L.1)
‘We have the null vector fields
0g = 0; + 0y, 0y =0y — Oy, (1.2)

and also denote briefly ug = dgu and u, = 9,u.

It is well known that the one-dimension linear wave equation in the null coordinates (&, 1)
can be written as ug, = 0. We will treat some quasilinear perturbation of it. Consider the
following one-dimension system of quasilinear wave equations

Ugn = Ay(u, ug, un)“&'n + Az (u, ug, un)“%‘%‘ + Az(u, ug, un)unn + F(u, ug, un)’ (1.3)

where the unknown function u = u(s, x) : RI*! — R fori = 1,2,3, A; : R* x R" x
R" — R™ " are given smooth and matrix valued functions, and F : R” x R" x R” — R”"
is a given smooth and vector valued function. Moreover, we will always assume that A; (i =
1, 2, 3) are symmetric.

We call that the system (1.3) satisfies the null condition, if near the origin in R” x R"” x R”,
it holds that

Ar(u, ug, uy) = O(|ul + |ug| + [uyl), (L.4)
Ax(u, ug, uy) = O(|uy|), (1.5)
Az(u, ug, uy) = O(Jug)), (1.6)
F(u,ug, uy) = O(lug||uyl). (1.7)
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Inspired by Luli, Yang and Yu’s seminal result [18] in the semilinear case, it is natural to
conjecture that the Cauchy problem of one-dimension system of quasilinear wave equations
(1.3) satistying null conditions (1.4)—(1.7) admits a unique global classical solution for small
initial data. The main aim of this paper is to verify this conjecture. Furthermore, we also want
to clarify the asymptotic behavior of the global solution.

Now we introduce some vector fields and energies used in the following part of this paper.
We will use

Z = (. ) (1.8)
as the commuting vector fields. For a multi-index a = (a1, az), set
7% = 8;”8,?2 (1.9)

and |a| = a; + a.
Following Luli, Yang and Yu [18], we will use the following weighted energy with positive
weights

E1@(®) = 16) P uglfa @y + 100 uyll72 ). (1.10)
where (-) = (1 + | - |*)!/2. Then we use

Exu() = Y Ex(Z°u(t)) (1.11)

lal=1

to denote the second order energies. As for the third order (highest order) energies, we have
to distinguish some *“ mixed derivatives” from others. Specifically speaking, we will employ
the following third order weighted energies

Es@(®) = ) 16) 2%l 2 gy + D 10 2%y 1175 5 (1.12)
la|=2 ‘ la|=2
a;#0 a#0
and
Ex®) = ) &) 2%l o) + D 10 P Z%y1175 g
la]=2 la]=2
a;=0 ar=0
= 146) P unnelI 72 g + 1M ueen 7 ). (1.13)
We also set
E@(®) = E1u(®) + E2u(®) + E3(1)). (1.14)

Inspired by Alinhac [2] and Lindblad and Rodnianski [15], based on (1.10), we further
introduce the following space-time weighted energy

6
E1u(n) = f Hm ™ %6 Fue |72 gy ds + / I <n>1+‘3un||§§(R)ds. (1.15)
Denote the second order space-time weighted energies by

Ew®) =Y E1(Zu®)). (1.16)

lal=1
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Corresponding to (1.12) and (1.13), we will use the following third order space-time weighted
energies

i
E3(u(t)) = / l(n)~ 2 1+Bzau5||i%(R)ds
la|=2 ’
a1 #0
,L
+ Z/ 16) ™2 () P Z%uy 75 5y ds (1.17)
la|=2
a#0
and
_M a a
&) = Z/ o5 60 2 12, g s + Z/ 1) (0 2, 12, g s
a|=2 al=2
‘all—O laz‘—()
t 14 t s
= /0 1m ™2 (&) upe 172 gy ds + fo 6™ () Fugey 72 yds. (1.18)

We also use the notation
Ew@) =& @) + Eu@)) + Eu@)). (L.19)

We point out that for the system (1.3), in the special case of Ay = A3 = 0, it becomes

ugy = A1(u, ug, upugy + Fu, ug, uy), (1.20)
then we can rewrite (1.20) as the following semilinear system
uen = Fu, ug, uy) (1.21)
with F = (I — A;)~'F satisfying
Fu, ug, uy) = O(|luglluyl). (1.22)

Thus, noting the equivalent form (1.21), we can easily get the global existence for the Cauchy
problem of (1.20) by using the result in [18] (or the proof can be carried out in line with
[18] using (1.20) directly). In order to treat the general case of Ay # 0 or Az # 0, we must
introduce some new approaches. This is the reason why we use the space-time weighted
energy (1.15) on the strip [0, ] xR, instead of the weighted energy on the characteristical lines
n [18]. This is the first essential difference between the semilinear case and the quasilinear
case.

The reason why the third order energies l:f; (u(t)) and 5~3 (u(t)) concerning some ““ mixed
derivatives” need to be considered separately is that in our weighted energy estimates, they are
not compatible with the null structure of the quasilinear part. In other words, if we treat them
by weighted energy estimates, after integrating by parts, some terms in the quasilinear part
will be uncontrollable. Thus, they can not be estimated via weighted energy estimates. This
fact is also the second essential difference between the semilinear case and the quasilinear
case. Fortunately, by using the system (1.3) directly, we find that E}(u (1)) and %(u (1)) can
be controlled by E(u(¢)) and £(u(t)), respectively (see Lemma 2.4). This observation is a
key point in our treatment for the quasilinear part of the system.

In order to describe the asymptotic behavior of the global solution, now we introduce
some concepts on it. We say that a function u = u(z, x) € C(Rt; H'(R))NC'(R*; L2(R))
is asymptotically free in the energy sense, if there is (vg, v1) € H! (R) x L2(R) such that

. 2 2 —
t—lgrlloo (”M%‘ - UE ”L%(R) + ”un - v”"L%(R)) - Os (123)
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where v € C(RT; HL(R)) N CL(RT; L2(R)) is the unique global solution to the Cauchy
problem of homogeneous linear wave equations

vep =0 (1.24)
with initial data
t=0:v=uv9, v =vy. (1.25)
Consider the Cauchy problem for the system (1.3) with initial data
t=0: u=ug, u =uj. (1.26)
Our main result is the following

Theorem 1.1 Assume that the system (1.3) satisfies the null condition. Then forall0 < § < 1,
there exists a positive constant gq such that for any 0 < & < g, if

w

2

Do) P auoll 2 + D 1) P oluill 2w < (1.27)
=0 =0

then the Cauchy problem (1.3)—(1.26) admits a unique global classical solution u. Moreover,
the global solution u is asymptotically free in the energy sense.

Remark 1.1 For general one-dimension quasilinear wave equations with quadratic nonlin-
earity

ugy = Qu, ug, Uy, U, Ugy, Uyy), (1.28)

Li et al. [12] showed the classical solution only admits some lifespan of order £ ~'/2. Note
that the null condition can enhance the lifespan from such short time order to infinity.

Remark 1.2 A small-data-global-existence type result for one-dimension quasilinear hyper-
bolic systems of diagonal form using the energy method is established in [22]. Some
small-data-global-existence type results using the characteristic approach can be found in
[4,13,20], and [23], etc. See also [14]. For some large-data-global-existence results, we refer
the reader to [5].

Remark 1.3 We note that for the system (1.3), if the null condition is satisfied, any left
traveling wave f (&) and right traveling wave g(n) are solutions to it. An interesting problem
is the stability of these traveling wave solutions. Some related results can be found in [1],
[16] and [17].

The outline of this paper is as follows. In Sect. 2, some necessary tools used to prove
Theorem 1.1 are introduced. Section 3 is devoted to the proof of Theorem 1.1.

2 Preliminaries

First, by the fundamental theorem of calculus, chain rule and Leibniz’s rule, it is easy to get
the following two lemmas.
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Lemma 2.1 Assume that Ay = Ay (u, ug, uy), Ay = Ax(u, ug, uy), Az = As(u, ug, uy) and
F = F(u, ug, uy) satisfy (1.4), (1.5), (1.6) and (1.7), respectively, and

| + Jug| + luyl < vo. 2.1

Then we have
[0 A1l = Clugl + lugg| + |lugnl, [0y A1l < C(luyl + lugy| + lupy), (2.2)
[0g Az| < Clugyl + Clup|(lug| + lugel), 18;A2] < Cluyl + lugyl + lupyl), (2.3)
[0 A3| < C(lug| + luge| + lugnl), [0yA3] < Clugy| + Clug|(lugl + lugy, (2.4)
10 F| < C(lugllugyl + luylluge| + lugllugl), (2.5)
10y F| < C(lupllugyl + lugluyy| + luglluyl), (2.6)

where C = C(vg) is a constant depending on vy.

Lemma 2.2 Assume that Ay = Ay(u, ug, uy), Ay = Az(u, ug, uy), Az = Az(u, ug, uy) and
F = F(u, ug, uy) satisfy (1.4), (1.5), (1.6) and (1.7), respectively, and

lul + ug| + |ug| +1Zug| + 1 Zuy| < v1. 2.7

Then for any multi-index a, |a| = 1, it holds that

1ZA1] < Cllug| + luy| +1Z%¢| + | Zuy)), (2.8)
1Z9Aa] < Cluy| + 1 Z%y)), (2.9)
|ZAs3] < C(lugl + 1 Z%ug)), (2.10)
|Z9F| < Clugllugl + | Z%ug|lun| + 1 Z%un|lugl). .11

And for any multi-index a, |a| = 2, it holds that

12¢A1l = € Y (120ug] + 120 uy)), (2.12)
|b|<2

1Z942] < C Y | Z0uy| + Cluyl D 12%u. (2.13)
Ibl<2 1b1<2

1Z943] < C Y | ZPug| + Clue| D 125uy, (2.14)
Ibl<2 lbl<2

1ZFI<C > 1Z%uel|Z€uy). (2.15)
[b]+lcl<2

Here C = C(v1) is a constant depending on vy.

The following pointwise estimates will be used frequently in the next section.

Lemma 2.3 Let u be a smooth function with sufficient decay at the spatial infinity. Then it
holds that

lut, Yz < CE* @), (2.16)
16) o ull ooy + 1) Fuylle@ < CE\? @) + CE* (@), 2.17)
IGE) 0 uge + upe) oo @) + 160 0 gy + ugn) Lo @)

< CE2w@) + CE3* @), 2.18)
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and
1) ™2 () Pugll 2 + 16) 5 () FPuyll 2 < CEP @) + CE o),
(2.19)
1) ™5 () P e + g 200 + 106D (1) 2 Cuyy + wen)l 210
< e w®) + &' ). (2.20)

Proof Tt follows from the fundamental theorem of calculus and Holder inequality that
(e, zoe @y < Nt Mzrey < gl + gl
< IE Tl lE) P uell 2y + 100 ™ 2 I Huyll 2@
< C(16) Puell 2@y + 100 Puyll 2 @) < CEu@)). @.21)

While (2.17), (2.18), (2.19) and (2.20) can be proved by Sobolev embedding H'(R) —
L°°(R) and the following fact

148

10, (8) ] < C(&)', 10, ()7 (&) < CippT (), (2.22)
10, () T < )P, 10, () ()] < CiE)E (e (2.23)
O

The following lemma will paly a key role in the proof of global existence part of Theorem
1.1.

Lemma 2.4 Let u be a classical solution to the system(1.3) satisfying null conditions (1.4)—
(1.7). Assume that

e = sup EV%(u(s)) (2.24)

0<s<t

is sufficiently small. Then we have

sup E3(u(s)) < C sup E(u(s)) (2.25)
0<s<t 0<s<t
and
() < CEu®)). (2.26)

Proof From the system (1.3), we have

Uppe = Atugne + Aoltgne + Asuygy + 0y Aty + 0y Asues + 0y Aszuyy + 0y F - (2.27)
and

Ugen = AlUgey + Aoutgee + Asugyy + 0 Ajugy + 0s Aguge + 0 Ay, + g F. (2.28)

We first estimate lf::; (u(t)). It follows from (2.27), (2.16), Lemma 2.1 and Sobolev embed-
ding H'(R) — L*®(R) that

16 +Putpne Nl 12wy
< C”A 1448 A 148
< tzge@® 1) unpe 2wy + CllA2ll Lo @) 1(8) " uene 2 w)
+ CIE) ™ Asll Lot Il 2Ry + CllOg Atll Lo 146 T une Il 12 )
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+ Clloy Azl 1 (€) P ueell 2,
+ CIIEY 20, Asll 2y it Lo @) + 14E) 20, F ll 12 )
< Cllu+ g + |l Lo @ 1E) e 2wy + Cllug | ooy 14€) T utene 12 )
+ CIEY Pugll oo Nl 2 @y + Clluy + gy + gyl L@ 1E) Funell 2wy
+ Clluy + ey + gy ll Lo @ 1€ Puee 2 )
+ CIEY 2 une] + (8) ' ue | (un] + Lty DIl L2 ) ity | oo )
+ Cllug | oo 14E) P une Il 12wy
+ CIIEY Pugll oo lutn 22wy + Cllitg ooy 14E) TP uell 12m
< CEV2 &) ™ upell 2 + C(E@®) + E¥2@())). (2.29)

Similarly, by (2.28), (2.16), Lemma 2.1 and Sobolev embedding H HR) < L*°(R), we can
also obtain

1) *Pugenll 2y < CEV2@@)II) P ugenll 2y + C(E@@) + EY (@)

(2.30)
Thus, thanks to (2.29) and (2.30), we have
E' () < CEV2 @) B3 P () + C(E@@) + E¥ (1))
< Ce1 B3 Pw(®) + Ce1 + D) E2 (). 231)

If £y is sufficiently small, we can get (2.25).
Now we will estimate £3(u(t)). From (2.28), (2.16), Lemma 2.1 and Sobolev embedding
H'(R) < L*®(R), we can see

148

&) () FPugeyll2

_ 146 _ 148
< CllAULz I1E) ™7 (0 Pugeyllzz + CIE T () TP Aall g0 g Nl o2

_ 146 _ 148
+ CllAs L2 14E) T2 () FPugnyllz2, + Clldg Arllzge 146) 77 () FPugyll 2

1+8

_ 145 _ 145
+CIE) ™ ()P0 Aall2 Nugelligs, + Clldg Asllzge 166) 2 (0 Fugyll 2
_ 148
+14E) T ()P0 Fll2
B N — 148
< Cllu+ug +uyllez 1672 () Pugeylizz, + ClIE) ™ () *uyll 2 lugeell o2

— L8148 -
+ Clluglizge 166)™ 2 () Cugnylpz + Cllug + ugs + ugyllLe 16)" 2 ()

EL)

+CIE) ™ )" (ueyl + luyl (e + luge D)l 2 Nuge N,

+8
ugy| L2,

_ 148
+ Cllug + ugs +ugyllgs 16) 77 () Pugyll 2

_ 148 _ 148
+ Clluglleze 146) 7 ) Fugyliz 4+ CIE ™ () Puyll 2 oo lugell oo 2

>_1i

8
+ Cllugllzs, 16) 7 () +°

_ 148
< C sup EVZu)IE) ™ ) Pugeyllp2

0<s<t

U ”L%X

+C( sup E'2(u(s)) + sup E(5)))E*u(r)). (2.32)

0<s<t 0<s<t
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Similarly, by (2.27), (2.16), Lemma 2.1 and Sobolev embedding HY(R) < L*®(R), we can
also get

1+6

)™ 246 a2

_ 18
< C sup E2@)Im ™2 ) P ugel 2,

0<s<t
+C( sup E2u(s) + sup Eu(s))E*u®)). (2.33)
0<s<t O<s<t

By (2.32) and (2.33) we can obtain

&2y
< C sup E2w(s)E @) + C( sup EV2w(s) + sup Ew(s))Y? @)
0<s<t O<s<t O<s<t
< Cer&"P ) + C(er + )&V ). (2.34)
If £ is sufficiently small, we can get (2.26). ]

The following lemma will be used in the proof of asymptotic behavior part of Theorem 1.1.
For the proof of this lemma, we refer the reader to Lemma 6.12 in Katayama [7], where high
space dimension case is also considered.

Lemma2.5 IfG € L'(Rt; L2(R)), i.e.,

+00
f 1G @, ) 2wdt < +o0, (2.35)
0

Then the global solution to
ugy =G (2.36)
is asymptotically free in the energy sense.

Finally, for the convenience, we will introduce some notations concerning the weight
functions used in the weighted energy estimates in the next section. Fix 0 < § < 1. Set

P (x) = (x)*T2, (2.37)
It is easy to verify that
|6/ ()] < 4(x)' 2. (2.38)
Let
X
q(x) = / (p)"*dp (2.39)
—00
and
Y(x) =e 1. (2.40)
We can verify that
V() = = () () I (2.41)
We note that there exists a positive constant ¢ such that
<y <c, (2.42)
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thus it holds that
¢TI <y (x) < e(x) T, (2.43)

3 Proof of Theorem 1.1

Now we will prove Theorem 1.1. We first prove the global existence part of Theorem 1.1
by some bootstrap argument. Assume that u is a classical solution to the Cauchy problem
(1.3)—(1.26). We will show that there exist positive constants &g and A such that

sup E(u(s)) + Eu(t)) < A%e? 3.1
0<s<t
under the assumption
sup E(u(s)) + Eu(r)) < 4A%e?, (3.2)
0<s<t

where 0 < ¢ < gp. Then based on estimate (3.1) and Lemma 2.5, the proof of asymptotic
behavior part of Theorem 1.1 can also be given.

3.1 Low order energy estimates

We first estimate supg,<, E2(u(s)) and & (u(t)). supg<y<, E1(u(s)) and &1 (u(t)) can be
estimated similarly.
For any multi-index a = (a1, a2), |a| = 1, note that Z%u satisfies

Zal/tgn = A Zal/tgn + AQZ”IA;& + A3Z“un,, + ZaAll/tgn + Z”Azugg + Z“Agu,],, + Z°F.
3.3)

Multiply 21//(77)(;5(5)2“14? on both sides of (3.3). Noting the symmetry of A, by Leibniz’s
rule we have

(Y @©)1Zug ), — ¥ ()| Zugl?
= (VP EZul A1Z%ug), — V' (N EZul A1Zug
— Y DG E)Zuf by A Z%ug + 29 (NP () Z°uf G, (3.4)
where
Ga = AoZ%ss + A3Z %y + Z* Atugy + Z% Asugs + Z° Asuyy + Z°F. (3.5)

Similarly, multiply 2v (§)¢ (n)Z“u; onboth sides of (1.3). The symmetry of A; and Leibniz’s
rule also imply

(VESIZuy?), — ¥ € (DIZuy|?
= (VESMZuy A1Z%y), = V' E)P N Z uy Ay Z%uy
—YESMZ Ul 9 Ay ZUy + 2y (E)p () Z°ul G (3.6)

Integrating on [0, ] x R on both sides of (3.4) and (3.6), we conclude from the fundamental
theorem of calculus that

t
/(ez(t,x)+?2(t,x))dx+//pz(s,x)dxds
R 0JR
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t
=/ (e2(0, x)+zz(o,x))dx+/f q2(s, x)dxds
R 0JR

t t
+2// w(n)¢(§)Z“u§Gadxds+2f/ V(&) () Z°u] Gadxds, (3.7
0JR 0JR

where
e2 =Y E)|Zs | + ¥ (E)p ()] Z%uy |, (3.8)
& =~y MPE)Z Ul Ay Zus — y(E)p () Zu) A\ Z%y, (3.9)
p2 ==V MENZUel> — ¥ E)p )| Z%uy? (3.10)
and
ar ==V P E)Zul Ay Zus — Y (NP E)Zuf 9,A1 Z%ug
— Y ESMZUl AL ZUy — Y EP M Z U] 0: A\ 2y (3.11)
In view of (2.37) and (2.42), we can see
clex(t, x) < 1B PP Z%e P + |(n) TP 2%y < et x). (3.12)

It follows from (2.37), (2.42), (1.4), (2.16) and Sobolev embedding HY(R) < L*®(R) that
[@2(t, x)| < CEV2 12Ul Ay Zug| + C)> | 2] A1 Zuy|
< CUE TP Z%¢ P (Jul + lug | + lugl) + CL' 2 Z%0 P (Jul + lug| + luy])
< C(E\?u®) + E,> @) (16) 2 Zue > + () 0 2%, )
< CE2 @) (16)" ™ Z%se > + |(n) 0 2%y ). (3.13)
Thus, for small solutions, we can get

20) Hea(t, x) +@2(t, %)) < HEV' TP Z%e |* + 1) 0 2%, 1> < 2¢(ea(t, x) + (¢, x)).
(3.14)

From (2.37) and (2.43), it follows that
¢ pa(t ) < 1) O P ZU P 1) ) P2, P < epatx). (315)
According to (2.37), (2.42), (2.43), (1.4) and Lemma 2.1, we have
lg2(2, )1 < C)~TFEVF P Z%e 1P (Jul + lug] + lug]) + CET1Z%ug P (luy | + | Zuy )
+ CE) I 2%, P (] + lue ] + g ) + C P21 Z%0 P (ug | + | Zug )
< Clm ™ F () P Z%Us P (ul + lug| + luy])
+Clm ™ € 20U P ) Pyl + 1) Zuy )
+CUE) T 2%y P (lul + lug| + ey )
+CUE T () 20Uy PE) Foug| + (€)' Zug)). (3.16)
By (3.5), (1.5), (1.6) and Lemma 2.2, we can obtain
|Gal < Cl1Z%ee||un| 4+ CI1Z%pyllug] + Cllug) + |uyl + 2%z | 4+ 1Z%uy ) ugy|
+ C(lugl +1Z%uyDlugs | + C(lug | 4 1Z%ug ) uyy|
+ C(lug||luy| + |Z“ug||u,,| + |Z“u,,||ug|). (3.17)
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Thanks to (3.7), (3.14) and (3.15), we see
sup Ea(u(s)) + E2(u(t))

0<s<t

t
< CE,(u(0)) +C Z/o lg2(s, I 1 wyds

lal=1

t t
+C Y /0 162 ZUe Gall 11 ryds +C Y /0 1)+ Zu, Gall 1y ds.

la|=1 la|=1

(3.18)

It follows from (3.16), Holder inequality, Lemma 2.3, Sobolev embedding H I(R) — L®[R)
and Lemma 2.4 that

t
/o llg2(s, 1 (wyds

_ 148
< ClUM ™= ' 2%l T, (lullegs, + luglizgs, + luyllzgs)

5,X

ERES)
+CIM ™ O Z%e T ) uglligs, + 1) Zuy )

+ClE) T () 2%

2
n) nllzz (lullicgs, + lluglliLgs, + llullzgs)

_ 148 a
+CIE) T ' Z%y 172 (146) Tuelizs, + 146) T Zugl L)

< sup EV2(u(s)) + sup E3"*(u(s)&2u(t))

0<s<t 0<s=<t
<C sup E"?u(s)E(u@)). (3.19)
0<s<t

By Holder inequality, it is easy to see that

/ I 2 Gl oy ds
< Clm ™ F P 2% 2 i) T (6) Gl 2
= &2 @I ©™ Gl - (3.20)
By (3.17), Lemma 2.3 and Lemma 2.4, we can get
E'Gallp2,
< Clmy ™ 6 P 2 2 1) Py e
+ M Z%Uy oo 2 1) ™5 48) PPt 120
+ ™ E &) gl +1Z%ue Dl 2 ) Huey s
+ CINY 2 g+ 1Z%, DLz, 1y~ 5 () el 2
+ CIHDY 2y |+ 1 2% Dl 1) ™ () Fougell 2
+Clm) ™ &) g + 12 D2 110 oyl

_ 1468
+ I P Qg+ 1Z%y Dl 2 1) ™77 (8) P ugllrs,

4

ll(n
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)
+ClIm ™7 &) (el +1Z%e D2 1) Py,

< C( sup Euis) + sup E3"(u(s))& ()
0<s<t O<s<t
< C sup E2u(s)EN ). (3.21)
0<s<t :
It follows from (3.20) and (3.21) that
t
/ €)™ ZUs Gall L1 myds < € sup EVZ(u(5))E(u(t)). (3.22)
0 * 0<s<t
Similarly, we can also get
t
/ 1> 2%y Gall L1 myds < € sup EY2(u(5))E(u(t)). (3.23)
0 : 0<s<t

Consequently, the combination of (3.18), (3.19), (3.22) and (3.23) implies

sup Ex(u(s)) + Eu(t)) < CE2(u(0)) + C sup E'?(u(s)Eu(t)). (3.24)

0<s<t O=s=t
By a similar (but simpler) argument, we can also show

sup E1(u(s)) + Eu(r)) < CE1(u(0)) + C sup EY2(u(s)Ew(t)). (3.25)

0<s<t 0<s<t

3.2 High order energy estimates

Now we will estimate supg,, E3(u(s)) and E3(u(1)).
For any multi-index a = (ay, a2), la| = 2, a; # 0, Leibniz’s rule gives

Zal,ta;—,7 = Alz“ug,, + +A22“u§§ + A3Z“u,m + H,, (3.26)
where

Hy= Y heaZ'MZ%y+ Y heaZAyZ%e+ Y MeaZ°A3Z%upy + Z°F.
c+d=a c+d=a c+d=a
c#0 c#0 c#0

3.27)

Acq are some constants. Multiply 2v ()¢ (& )Z“usT on both sides of (3.26). Noting the sym-
metry of Ay, A; and A3, by Leibniz’s rule we can get
(Y ®IZuel?), = ' NP )N Z ue |
= (VP Zul A1 Z%ug), — V' (SEZul A Zug — ¥ ()P (E)Z°uf 8y A1 Z%ug

+ (VPG Z Ui A2 Z%ue), — Y (NP (§)Zuf A2 Zug — Y (P (§) Z°u 0 A2 Zug

+ (UG Zuf AsZ%uy), = 20" (NP E) Zuf AsZuy — 20 ()P (E) Zuf 9y A3 Z%uy

— (VPE Zuy A3Zy) , + Y (D' ) Zuy ASZ Uy + (M (§) Z%uy 0 A3 Zuy

+ 29 ()p(E)Zu H. (3.28)
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Integrating on [0, ] x R on both sides of (3.28), by the fundamental theorem of calculus,

we have
/ ex(t, ¥)dx + / / pa(s, )dxds
R 0JR
= / (e3(0, ) +23(0, x))dx — / (1, x)dx / l f 435 x)doxds
R R 0JRr
+2 /0 t fR ¥ ($ (&) Z°uf Hydxds, (3.29)
where
e3 = U(Me@|Zz >, py = —v' (P& Z%uz |, (3.30)
&= —yME)Z Ul A ZUus — Y (n)p(E)Z°ul Ay Z%;
=20 MG EVZ UL AsZuy + Y (¢ (§) Zu] A3Z%y, (3.31)
and

g3 = =¥ (MPE) Zu Ay Z%s — Yy (0P (€)Zuf 0y A1 Z% ug
— Y E)ZUf Ay Zus — Y (NP (E)Z Ul 0: Ay Z us
=29 (NP EV Zuf AsZ%uy — 24 (P (E) Z°uf 0y A3 Zu,,
+ YN E)ZUf A Z%Uy + Y (N E)Zu] 0z A3 Z uy. (3.32)
In view of (2.37) and (2.42), we have
cles(r, x) < |(E)'T0Z%¢ | < ces(t, x). (3.33)
By (2.37) and (2.43), we can obtain

148

¢ ps(t.x) < |7 T (E)TOZ% P < epat, x). (3.34)
It follows from (2.37), (2.42), (1.4), (1.5) and (1.6) that
[@3(1, x) < C(E) 212Ul Ay Zuge| + CE)* | 2] Ay Zug|
+ CE)P 2] AsZ%uy| + C(E)7 124U A3 Zuy)|
< CUE) PP Z%se P (Jul + ug| + |uy))
+ CUE TP Z%Ue |1(8) TP || 2% | + CLEY' TP 2%y |1(8) TP g || Z2uy|

< CUEV PP Z%Ug P(ul + lug] + luy) + C D 1E) TP ZPug |1(8) Foug || 2%, .
|b|=2
(3.35)

Here we also use the following simple but important fact: for the multi-index a =
(a1, ap), lal =2, a; # 0, it holds that

HEY T2 2%y | = (&) P08 0%2uy | < Y 1(6)' 0 Zue ). (3.36)
|b]=2

According to (1.4), (1.5), (1.6), (2.37), (2.38), (2.42), (2.43), Lemma 2.2 and (3.36), we can
get

lg3(t, )| < C ()~ EVT2 Z%e P (Jul + lug| + luyl) + CEV T2 Z%e > (uy| + 1 Zuy))
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+C<s>2+25| Z%ug|(lug| + 1 Zug D1 Z%y | + CE T2 Z%, > (uel + | Zue))
<Cl(n)~ <s>‘+52“us| (lue] + ug] + Juy))

+Clm ™€) 20U P ) Pug | + 1) Zuy )

+ClUm ™€) 2% 1)~ () (uel + 1 Zug DI )+ 2%, |

+Clm ™€) T2y 1) () (ug| + | Zug DI )+ 2|
< Clm) ™ &) P Z%Ue P(lul + ug] + uy])

+ClHm ™€) 20U P ) Pug | + 1) Zuy )

+C 31T Zougl ™ (€)' (g + 1 Zug DI ) 2,1, (3.37)

|b|=2

Lemma 2.2 implies

|Hal < C Y 1 Z%ug| (juy| + lugy| + lugy| + |y ||z )

Ibl<2
+C Y 1ZPup|(lugl + luge ] + lugy| + | leyy])
Ibl<2
+C D 1Zuel| Z€uy). (3.38)
Ibl+lcl<2
From (3.29), (3.33), (3.34), we obtain
_J
sup D ) P Z%uelTy + D T T ) P 2%l
0=s=t 1= la|=2
a1 #0 a1 #0
< CE3u(0)+C sup > [&(s. 1w +C Z/ lg3(s. ) L1 gyds
0=s=t)41=2 lal=2
a;#0 a1 #0
—i—CZ/ 1(8)F% Zug Hol| 11 yds. (3.39)
la|=2
a1 #0

By (3.35), Holder inequality, (2.16), Sobolev embedding H I(R) — L*®(R) and Lemma
2.4, we have

123, Iy < CIEN T Z%e 17, (lull oo + ug o + llugllze)
®) L2

+C Y IEN T ZPue 2 11(8) FPue | oo 12Uy 2
|b|=2

< C(E3(®) + E3)(E;>w®)) + Ey* (1))
< C(E@®)) + E3(0))EY*u(1)) < CE3?(u(r)). (3.40)
Thanks to (3.37), Holder inequality, Lemma 2.3 and Lemma 2.4, we get

t
/ llg3 (s, ')||L1(]R)d5
0

_ 148
< Clm ™ 7 &P Z% 112, (lullree, + lug e, + lugllzee)
L2, ) ) )
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_ 148
+CIM T O Z%e T A P uglizgs, + 1™ Zuy Nz

O T O Zlugl 2 1) &) | + 1 Zug Dl 200 1) 20y 2
|b|=2
< C(Osup 51/2(u(s))+0sup B3P () (Ew)) + E u)))
<s<t <s<t
< C sup EV2u(s)E (). (3.41)
0<s<t

Holder inequality implies

t
| 1@ 2 Haly ey

ER Ls
< Clm ™= &) Z%ell2 ) = (&) P Hall 2,
148
<&@ > ' Hallz (3.42)
Via (3.38), Lemma 2.3 and Lemma 2.4, we can see
148
1) 2 (&) P Hall 2
_ 143
<C Y MmTT E T Z0ugll , 100" () A+ lugy| + lugy| + luglluge]) s,
Ib|<2
_ 148
+C Y I P ZPuyll o2 10T (€Y (g | + luge] + luey| + lue uggl) | 2200
|b|<2
_ 148 N
+C D T T P ZPug 2o ) O ZCuy o2
|b]+]c|<2
|b|<1

EE)
+C Y T T 2l I Zuy g
Ibl+le|<2
lel<1

<c(sup EV2w(s) + sup B3 w(s)) (2 w®) + &)

0<s<t 0<s<t

< C sup E2us)EY?(u(r)). (3.43)

0<s<t

It follows from (3.42) and (3.43) that

t
/ 1(6)*+% Zug Hy | 1 yds < C sup E'?(u(s))E (). (3.44)
A !

0<s<t

We conclude from (3.39), (3.40), (3.41) and (3.44) that

_ 148
sup D 6 O Z%uel Ty + D0 T T ) 2l

0=s=t 41=2 T la=2
a1 #0 a1 #0
< CE3(u(0)) + C sup E¥*u(s)) +C sup EY2u(s)Ewu@)). (3.45)
0<s<t O=<s=<t

Noting the duality between & and ), by a similar way, we can also get

1 8 146 2
sup D llm)'F Z“unlle + I ) AT
O<s<t o
lal=2 lal=2
ar#0 ax#0
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< CE3(u(0)) + C sup E¥*u(s)) +C sup EY2u(s)Ewu@)). (3.46)

0<s<t 0<s<t

Acordingly, we have obtained

sup E3(u(s)) + E3(u(r))

0<s<t

< CE3u(0)) + C sup E¥*(u(s)) + C sup E?(u(s))Eu(r)). (3.47)

0<s<t 0<s<t

3.3 Global existence

Noting (3.24), (3.25) and (3.47), we have
sup E(u(s)) + Eu(r))

0<s<t

< CE(0)) + C sup E*?(u(s)) + C sup EY?(u(s)Ewu(r)). (3.48)

0<s<t 0<s<t
Under the assumption (3.2), we have

sup E(u(s)) + Eu(t)) < Cre? +8C A%, (3.49)

O<s<t
Assume that
Ew(©0)) < Ci&*. (3.50)
Taking A2 =4 max{Cy, a} and &g so small that
16C1Agp < 1, (3.51)
for any ¢ with 0 < ¢ < gp, we have

sup E(u(s)) + Eu(r)) < A& (3.52)

0<s<t

This completes the proof of global existence part of Theorem 1.1.

3.4 Asymptotic behavior

In view of Lemma 2.5, in order to prove that the global solution u to the system (1.3) is
asymptotically free in the energy sense, we only need to show

+o00
/0 1A gyl 2 + I A2uee |l 2 gy + A3ty ll 2y + | Fll2gydt < 400, (3.53)

First, by (1.4), (1.5), (1.6), Lemma 2.3, Lemma 2.4 and (3.52), we have pointwise estimates
|Atugy| + [Azugz| + |Asuyy| + | F|

< Clullugy| + Clug|(luy| + lugy| + luyyl) + Cluy|(lupe| + |uge )

< CEV2(u@)lugy| + C ()" ()= EV2 () (B2 () + B3> u(e)))

< CE'2u)ugyl + C €)=V E @)

< CAelug,| + CA%e?(g) =119 () =(1+9), (3.54)
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In view of the system (1.3), we also have

lugy| < |Atugy| + |Asuge| + |Astiny| + |F| < CAglugy| + CA%e?(£) =0T () =149,

(3.55)

If ¢ is sufficiently small, it holds that
lugy| < CA%e?(£)~1HD) () =01+, (3.56)

It follows from (3.54) and (3.56) that
|Atugy| + |Agugg | + |Asugy| + |F| < CAZe?(£)~1FD) () =149, (3.57)

Noting that
(&)~ (=148 < O (p 4 )= (p 3y =14

< Cle+ )™ — ey < Cip g — T, (3.58)

we have
1) =T = 2y < CllGe = XD~y (070 < iy (3.59)
The combination of (3.57) and (3.59) gives
A1ugnll 2y + IA2ueell 2y + I Astgyll 2@y + I Fll 2@y < CA%* (1)~ (3.60)

(3.53) is just a consequence of (3.60).
This completes the proof of asymptotic behavior part of Theorem 1.1.
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