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Abstract
In this paper, we show that one-dimension systems of quasilinear wave equations with null
conditions admit global classical solutions for small initial data. This result extendsLuli, Yang
and Yu’s seminal work (Luli et al. in AdvMath 329:174–188, 2018) from the semilinear case
to the quasilinear case. Furthermore, we also prove that the global solution is asymptotically
free in the energy sense. In order to achieve these goals, we will employ Luli, Yang and
Yu’s weighted energy estimates with positive weights, introduce some space-time weighted
energy estimates and pay some special attentions to the highest order energies, then use some
suitable bootstrap process to close the argument.

Mathematics Subject Classification 35L05 · 35L72

1 Introduction andmain result

In [18], for Cauchy problems of semilinear wave equations with null conditions in one space
dimension, Luli, Yang and Yu proved the global existence of classical solutions with small
initial data (a former result can be found in [19]). This result can be viewed as a one-dimension
and semilinear analogue of the pioneering works Klainerman [11] and Christodoulou [3] for
the global existence of classical solutions for nonlinear wave equations with null conditions
in three space dimensions, and of Alinhac [2] for the case of two space dimensions.

Global existence of small solutions to nonlinear wave equations with null conditions has
been a subject under active investigation for the past four decades. The approach to understand
the small data problem is based on the decay mechanism of linear waves. It is well-known

that the decay rate is (1 + t)− d−1
2 , for d-dimension linear waves. Thus, when d ≥ 4, small-

data-global-existence type theorems hold for generic quadratic nonlinearities, since the decay
rate is integrable in time. See Klainerman [8,10]. However, in R

1+3, the slower decay rate
(1 + t)−1 just barely fails to be integrable in time. Hence, the solution may blowup at finite
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time. See John [6]. In order to avoid the formation of singularities, Klainerman [9] introduced
the celebrated null conditions, then for three dimensional quasilinear wave equations with
quadratic nonlinearities satisfying null conditions, based on the decay rate for linear waves
and some special cancelations provided by such structural conditions, Klainerman [11] and
Christodoulou [3] independently proved the global existence theorems. As for R1+2, linear
waves only admit decay rate (1+ t)−1/2, which is far from integrable in time. Nevertheless,
for a class of two dimensional quasilinear wave equations, based on such decay rate for linear
waves and the null conditions imposed on quadratic and cubic nonlinearities, Alinhac [2]
can show the global existence theorem. For the general class of two dimensional quasilinear
wave equations satisfying null conditions, we refer the reader to Katayama [7] and Zha [21].
For more detailed explanations on the concept of null conditions, we refer the reader to Luli,
Yang and Yu [18].

As mentioned before, the proofs in [2,3,8,10,11] in high space dimension case are all
based on the decay mechanism of linear waves. However, in one space dimension case waves
do not decay, and any nonlinear resonance (even arbitrarily high order) can lead to finite time
blowup.Nevertheless, for one-dimension semilinearwave equations, Luli et al. [18] can prove
that small data still lead to global solutions if the null condition is satisfied. Different from the
high space dimension case, the mechanism for the global existence in one-dimension case
is the interaction of waves with different speeds, which will lead to the decay of nonlinear
terms. In order to display this mechanism, Luli, Yang and Yu developed a kind of weighted
energy estimate with positive weights.

In this paper,wewill consider the case for quasilinearwave equations,which arise naturally
in many physical fields. For this purpose, instead of the standard Cartesian coordinates (t, x),
we will mainly use the null coordinates

ξ = t + x

2
, η = t − x

2
. (1.1)

We have the null vector fields

∂ξ = ∂t + ∂x , ∂η = ∂t − ∂x , (1.2)

and also denote briefly uξ = ∂ξu and uη = ∂ηu.
It is well known that the one-dimension linear wave equation in the null coordinates (ξ, η)

can be written as uξη = 0. We will treat some quasilinear perturbation of it. Consider the
following one-dimension system of quasilinear wave equations

uξη = A1(u, uξ , uη)uξη + A2(u, uξ , uη)uξξ + A3(u, uξ , uη)uηη + F(u, uξ , uη), (1.3)

where the unknown function u = u(t, x) : R1+1 −→ R
n , for i = 1, 2, 3, Ai : Rn × R

n ×
R
n −→ R

n×n are given smooth and matrix valued functions, and F : Rn ×R
n ×R

n −→ R
n

is a given smooth and vector valued function. Moreover, we will always assume that Ai (i =
1, 2, 3) are symmetric.

We call that the system (1.3) satisfies the null condition, if near the origin inRn×R
n×R

n ,
it holds that

A1(u, uξ , uη) = O(|u| + |uξ | + |uη|), (1.4)

A2(u, uξ , uη) = O(|uη|), (1.5)

A3(u, uξ , uη) = O(|uξ |), (1.6)

F(u, uξ , uη) = O(|uξ ||uη|). (1.7)
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Inspired by Luli, Yang and Yu’s seminal result [18] in the semilinear case, it is natural to
conjecture that the Cauchy problem of one-dimension system of quasilinear wave equations
(1.3) satisfying null conditions (1.4)–(1.7) admits a unique global classical solution for small
initial data. The main aim of this paper is to verify this conjecture. Furthermore, we also want
to clarify the asymptotic behavior of the global solution.

Nowwe introduce some vector fields and energies used in the following part of this paper.
We will use

Z = (∂ξ , ∂η) (1.8)

as the commuting vector fields. For a multi-index a = (a1, a2), set

Za = ∂
a1
ξ ∂a2η (1.9)

and |a| = a1 + a2.
Following Luli, Yang andYu [18], wewill use the followingweighted energywith positive

weights

E1(u(t)) = ‖〈ξ 〉1+δuξ‖2L2
x (R)

+ ‖〈η〉1+δuη‖2L2
x (R)

, (1.10)

where 〈·〉 = (1 + | · |2)1/2. Then we use
E2(u(t)) =

∑

|a|=1

E1(Z
au(t)) (1.11)

to denote the second order energies. As for the third order (highest order) energies, we have
to distinguish some “ mixed derivatives” from others. Specifically speaking, we will employ
the following third order weighted energies

E3(u(t)) =
∑

|a|=2
a1 �=0

‖〈ξ 〉1+δZauξ‖2L2
x (R)

+
∑

|a|=2
a2 �=0

‖〈η〉1+δZauη‖2L2
x (R)

(1.12)

and

Ẽ3(u(t)) =
∑

|a|=2
a1=0

‖〈ξ 〉1+δZauξ‖2L2
x (R)

+
∑

|a|=2
a2=0

‖〈η〉1+δZauη‖2L2
x (R)

= ‖〈ξ 〉1+δuηηξ‖2L2
x (R)

+ ‖〈η〉1+δuξξη‖2L2
x (R)

. (1.13)

We also set

E(u(t)) = E1(u(t)) + E2(u(t)) + E3(u(t)). (1.14)

Inspired by Alinhac [2] and Lindblad and Rodnianski [15], based on (1.10), we further
introduce the following space-time weighted energy

E1(u(t)) =
∫ t

0
‖〈η〉− 1+δ

2 〈ξ 〉1+δuξ‖2L2
x (R)

ds +
∫ t

0
‖〈ξ 〉− 1+δ

2 〈η〉1+δuη‖2L2
x (R)

ds. (1.15)

Denote the second order space-time weighted energies by

E2(u(t)) =
∑

|a|=1

E1(Zau(t)). (1.16)
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Corresponding to (1.12) and (1.13), wewill use the following third order space-timeweighted
energies

E3(u(t)) =
∑

|a|=2
a1 �=0

∫ t

0
‖〈η〉− 1+δ

2 〈ξ 〉1+δZauξ‖2L2
x (R)

ds

+
∑

|a|=2
a2 �=0

∫ t

0
‖〈ξ 〉− 1+δ

2 〈η〉1+δZauη‖2L2
x (R)

ds (1.17)

and

Ẽ3(u(t)) =
∑

|a|=2
a1=0

∫ t

0
‖〈η〉− 1+δ

2 〈ξ〉1+δZauξ‖2L2
x (R)

ds +
∑

|a|=2
a2=0

∫ t

0
‖〈ξ〉− 1+δ

2 〈η〉1+δZauη‖2L2
x (R)

ds

=
∫ t

0
‖〈η〉− 1+δ

2 〈ξ〉1+δuηηξ‖2L2
x (R)

ds +
∫ t

0
‖〈ξ〉− 1+δ

2 〈η〉1+δuξξη‖2L2
x (R)

ds. (1.18)

We also use the notation

E(u(t)) = E1(u(t)) + E2(u(t)) + E3(u(t)). (1.19)

We point out that for the system (1.3), in the special case of A2 = A3 = 0, it becomes

uξη = A1(u, uξ , uη)uξη + F(u, uξ , uη), (1.20)

then we can rewrite (1.20) as the following semilinear system

uξη = F̃(u, uξ , uη) (1.21)

with F̃ = (I − A1)
−1F satisfying

F̃(u, uξ , uη) = O(|uξ ||uη|). (1.22)

Thus, noting the equivalent form (1.21), we can easily get the global existence for the Cauchy
problem of (1.20) by using the result in [18] (or the proof can be carried out in line with
[18] using (1.20) directly). In order to treat the general case of A2 �= 0 or A3 �= 0, we must
introduce some new approaches. This is the reason why we use the space-time weighted
energy (1.15) on the strip [0, t]×R, instead of theweighted energy on the characteristical lines
in [18]. This is the first essential difference between the semilinear case and the quasilinear
case.

The reason why the third order energies Ẽ3(u(t)) and Ẽ3(u(t)) concerning some “ mixed
derivatives” need to be considered separately is that in ourweighted energy estimates, they are
not compatible with the null structure of the quasilinear part. In other words, if we treat them
by weighted energy estimates, after integrating by parts, some terms in the quasilinear part
will be uncontrollable. Thus, they can not be estimated via weighted energy estimates. This
fact is also the second essential difference between the semilinear case and the quasilinear
case. Fortunately, by using the system (1.3) directly, we find that Ẽ3(u(t)) and Ẽ3(u(t)) can
be controlled by E(u(t)) and E(u(t)), respectively (see Lemma 2.4). This observation is a
key point in our treatment for the quasilinear part of the system.

In order to describe the asymptotic behavior of the global solution, now we introduce
some concepts on it. We say that a function u = u(t, x) ∈ C(R+; Ḣ1(R))∩C1(R+; L2(R))

is asymptotically free in the energy sense, if there is (v0, v1) ∈ Ḣ1(R) × L2(R) such that

lim
t→+∞

(‖uξ − vξ‖2L2
x (R)

+ ‖uη − vη‖2L2
x (R)

) = 0, (1.23)
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where v ∈ C(R+; Ḣ1(R)) ∩ C1(R+; L2(R)) is the unique global solution to the Cauchy
problem of homogeneous linear wave equations

vξη = 0 (1.24)

with initial data

t = 0 : v = v0, vt = v1. (1.25)

Consider the Cauchy problem for the system (1.3) with initial data

t = 0 : u = u0, ut = u1. (1.26)

Our main result is the following

Theorem 1.1 Assume that the system (1.3) satisfies the null condition. Then for all 0 < δ < 1,
there exists a positive constant ε0 such that for any 0 < ε ≤ ε0, if

3∑

l=0

‖〈x〉1+δ∂ lx u0‖L2
x (R) +

2∑

l=0

‖〈x〉1+δ∂ lx u1‖L2
x (R) ≤ ε, (1.27)

then the Cauchy problem (1.3)–(1.26) admits a unique global classical solution u. Moreover,
the global solution u is asymptotically free in the energy sense.

Remark 1.1 For general one-dimension quasilinear wave equations with quadratic nonlin-
earity

uξη = Q(u, uξ , uη, uξξ , uξη, uηη), (1.28)

Li et al. [12] showed the classical solution only admits some lifespan of order ε−1/2. Note
that the null condition can enhance the lifespan from such short time order to infinity.

Remark 1.2 A small-data-global-existence type result for one-dimension quasilinear hyper-
bolic systems of diagonal form using the energy method is established in [22]. Some
small-data-global-existence type results using the characteristic approach can be found in
[4,13,20], and [23], etc. See also [14]. For some large-data-global-existence results, we refer
the reader to [5].

Remark 1.3 We note that for the system (1.3), if the null condition is satisfied, any left
traveling wave f (ξ) and right traveling wave g(η) are solutions to it. An interesting problem
is the stability of these traveling wave solutions. Some related results can be found in [1],
[16] and [17].

The outline of this paper is as follows. In Sect. 2, some necessary tools used to prove
Theorem 1.1 are introduced. Section 3 is devoted to the proof of Theorem 1.1.

2 Preliminaries

First, by the fundamental theorem of calculus, chain rule and Leibniz’s rule, it is easy to get
the following two lemmas.
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Lemma 2.1 Assume that A1 = A1(u, uξ , uη), A2 = A2(u, uξ , uη), A3 = A3(u, uξ , uη) and
F = F(u, uξ , uη) satisfy (1.4), (1.5), (1.6) and (1.7), respectively, and

|u| + |uξ | + |uη| ≤ ν0. (2.1)

Then we have

|∂ξ A1| ≤ C(|uξ | + |uξξ | + |uξη|), |∂ηA1| ≤ C(|uη| + |uξη| + |uηη|), (2.2)

|∂ξ A2| ≤ C |uξη| + C |uη|(|uξ | + |uξξ |), |∂ηA2| ≤ C(|uη| + |uξη| + |uηη|), (2.3)

|∂ξ A3| ≤ C(|uξ | + |uξξ | + |uξη|), |∂ηA3| ≤ C |uξη| + C |uξ |(|uη| + |uηη|), (2.4)

|∂ξ F | ≤ C(|uξ ||uξη| + |uη||uξξ | + |uξ ||uη|), (2.5)

|∂ηF | ≤ C(|uη||uξη| + |uξ ||uηη| + |uξ ||uη|), (2.6)

where C = C(ν0) is a constant depending on ν0.

Lemma 2.2 Assume that A1 = A1(u, uξ , uη), A2 = A2(u, uξ , uη), A3 = A3(u, uξ , uη) and
F = F(u, uξ , uη) satisfy (1.4), (1.5), (1.6) and (1.7), respectively, and

|u| + |uξ | + |uη| + |Zuξ | + |Zuη| ≤ ν1. (2.7)

Then for any multi-index a, |a| = 1, it holds that

|Za A1| ≤ C(|uξ | + |uη| + |Zauξ | + |Zauη|), (2.8)

|Za A2| ≤ C(|uη| + |Zauη|), (2.9)

|Za A3| ≤ C(|uξ | + |Zauξ |), (2.10)

|ZaF | ≤ C(|uξ ||uη| + |Zauξ ||uη| + |Zauη||uξ |). (2.11)

And for any multi-index a, |a| = 2, it holds that

|Za A1| ≤ C
∑

|b|≤2

(|Zbuξ | + |Zbuη|
)
, (2.12)

|Za A2| ≤ C
∑

|b|≤2

|Zbuη| + C |uη|
∑

|b|≤2

|Zbuξ |, (2.13)

|Za A3| ≤ C
∑

|b|≤2

|Zbuξ | + C |uξ |
∑

|b|≤2

|Zbuη|, (2.14)

|ZaF | ≤ C
∑

|b|+|c|≤2

|Zbuξ ||Zcuη|. (2.15)

Here C = C(ν1) is a constant depending on ν1.

The following pointwise estimates will be used frequently in the next section.

Lemma 2.3 Let u be a smooth function with sufficient decay at the spatial infinity. Then it
holds that

‖u(t, ·)‖L∞(R) ≤ CE1/2
1 (u(t)), (2.16)

‖〈ξ 〉1+δuξ‖L∞
x (R) + ‖〈η〉1+δuη‖L∞

x (R) ≤ CE1/2
1 (u(t)) + CE1/2

2 (u(t)), (2.17)

‖〈ξ 〉1+δ(uξξ + uηξ )‖L∞
x (R) + ‖〈η〉1+δ(uηη + uξη)‖L∞

x (R)

≤ CE1/2(u(t)) + C Ẽ3
1/2

(u(t)), (2.18)
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and

‖〈η〉− 1+δ
2 〈ξ 〉1+δuξ‖L2

s L
∞
x

+ ‖〈ξ 〉− 1+δ
2 〈η〉1+δuη‖L2

s L
∞
x

≤ CE1/2
1 (u(t)) + CE1/2

2 (u(t)),

(2.19)

‖〈η〉− 1+δ
2 〈ξ 〉1+δ(uξξ + uηξ )‖L2

s L
∞
x

+ ‖〈ξ 〉− 1+δ
2 〈η〉1+δ(uηη + uξη)‖L2

s L
∞
x

≤ CE1/2(u(t)) + C Ẽ31/2(u(t)). (2.20)

Proof It follows from the fundamental theorem of calculus and Hölder inequality that

‖u(t, ·)‖L∞(R) ≤ ‖ux (t, ·)‖L1
x (R) ≤ ‖uξ‖L1

x (R) + ‖uη‖L1
x (R)

≤ ‖〈ξ 〉−1−δ‖L2
x (R)‖〈ξ 〉1+δuξ‖L2

x (R) + ‖〈η〉−1−δ‖L2
x (R)‖〈η〉1+δuη‖L2

x (R)

≤ C
(‖〈ξ 〉1+δuξ‖L2

x (R) + ‖〈η〉1+δuη‖L2
x (R)

) ≤ CE1/2
1 (u(t)). (2.21)

While (2.17), (2.18), (2.19) and (2.20) can be proved by Sobolev embedding H1(R) ↪→
L∞(R) and the following fact

|∂x 〈ξ 〉1+δ| ≤ C〈ξ 〉1+δ, |∂x (〈η〉− 1+δ
2 〈ξ 〉1+δ)| ≤ C〈η〉− 1+δ

2 〈ξ 〉1+δ, (2.22)

|∂x 〈η〉1+δ| ≤ C〈η〉1+δ, |∂x (〈ξ 〉− 1+δ
2 〈η〉1+δ)| ≤ C〈ξ 〉− 1+δ

2 〈η〉1+δ. (2.23)

�
The following lemma will paly a key role in the proof of global existence part of Theorem
1.1.

Lemma 2.4 Let u be a classical solution to the system(1.3) satisfying null conditions (1.4)–
(1.7). Assume that

ε1 = sup
0≤s≤t

E1/2(u(s)) (2.24)

is sufficiently small. Then we have

sup
0≤s≤t

Ẽ3(u(s)) ≤ C sup
0≤s≤t

E(u(s)) (2.25)

and

Ẽ3(u(t)) ≤ CE(u(t)). (2.26)

Proof From the system (1.3), we have

uηηξ = A1uηηξ + A2uξηξ + A3uηηη + ∂ηA1uηξ + ∂ηA2uξξ + ∂ηA3uηη + ∂ηF (2.27)

and

uξξη = A1uξξη + A2uξξξ + A3uξηη + ∂ξ A1uξη + ∂ξ A2uξξ + ∂ξ A3uηη + ∂ξ F . (2.28)

We first estimate Ẽ3(u(t)). It follows from (2.27), (2.16), Lemma 2.1 and Sobolev embed-
ding H1(R) ↪→ L∞(R) that

‖〈ξ 〉1+δuηηξ‖L2
x (R)

≤ C‖A1‖L∞
x (R)‖〈ξ 〉1+δuηηξ‖L2

x (R) + C‖A2‖L∞
x (R)‖〈ξ 〉1+δuξηξ‖L2

x (R)

+ C‖〈ξ 〉1+δA3‖L∞
x (R)‖uηηη‖L2

x (R) + C‖∂ηA1‖L∞
x (R)‖〈ξ 〉1+δuηξ‖L2

x (R)
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+ C‖∂ηA2‖L∞
x (R)‖〈ξ 〉1+δuξξ‖L2

x (R)

+ C‖〈ξ 〉1+δ∂ηA3‖L2
x (R)‖uηη‖L∞

x (R) + ‖〈ξ 〉1+δ∂ηF‖L2
x (R)

≤ C‖u + uξ + uη‖L∞
x (R)‖〈ξ 〉1+δuηηξ‖L2

x (R) + C‖uη‖L∞
x (R)‖〈ξ 〉1+δuξηξ‖L2

x (R)

+ C‖〈ξ 〉1+δuξ‖L∞
x (R)‖uηηη‖L2

x (R) + C‖uη + uξη + uηη‖L∞
x (R)‖〈ξ 〉1+δuηξ‖L2

x (R)

+ C‖uη + uξη + uηη‖L∞
x (R)‖〈ξ 〉1+δuξξ‖L2

x (R)

+ C‖〈ξ 〉1+δ|uηξ | + 〈ξ 〉1+δ|uξ |(|uη| + |uηη|)‖L2
x (R)‖uηη‖L∞

x (R)

+ C‖uη‖L∞
x (R)‖〈ξ 〉1+δuηξ‖L2

x (R)

+ C‖〈ξ 〉1+δuξ‖L∞
x (R)‖uηη‖L2

x (R) + C‖uη‖L∞
x (R)‖〈ξ 〉1+δuξ‖L2

x (R)

≤ CE1/2(u(t))‖〈ξ 〉1+δuηηξ‖L2
x (R) + C

(
E(u(t)) + E3/2(u(t))

)
. (2.29)

Similarly, by (2.28), (2.16), Lemma 2.1 and Sobolev embedding H1(R) ↪→ L∞(R), we can
also obtain

‖〈η〉1+δuξξη‖L2
x (R) ≤ CE1/2(u(t))‖〈η〉1+δuξξη‖L2

x (R) + C
(
E(u(t)) + E3/2(u(t))

)
.

(2.30)

Thus, thanks to (2.29) and (2.30), we have

Ẽ3
1/2

(u(t)) ≤ CE1/2(u(t))Ẽ3
1/2

(u(t)) + C
(
E(u(t)) + E3/2(u(t))

)

≤ Cε1 Ẽ3
1/2

(u(t)) + C
(
ε1 + ε21)

)
E1/2(u(t)). (2.31)

If ε1 is sufficiently small, we can get (2.25).
Now we will estimate Ẽ3(u(t)). From (2.28), (2.16), Lemma 2.1 and Sobolev embedding

H1(R) ↪→ L∞(R), we can see

‖〈ξ〉− 1+δ
2 〈η〉1+δuξξη‖L2

s,x

≤ C‖A1‖L∞
s,x

‖〈ξ〉− 1+δ
2 〈η〉1+δuξξη‖L2

s,x
+ C‖〈ξ〉− 1+δ

2 〈η〉1+δ A2‖L2
s L

∞
x

‖uξξξ‖L∞
s L2

x

+ C‖A3‖L∞
s,x

‖〈ξ〉− 1+δ
2 〈η〉1+δuξηη‖L2

s,x
+ C‖∂ξ A1‖L∞

s,x
‖〈ξ〉− 1+δ

2 〈η〉1+δuξη‖L2
s,x

+ C‖〈ξ〉− 1+δ
2 〈η〉1+δ∂ξ A2‖L2

s,x
‖uξξ‖L∞

s,x
+ C‖∂ξ A3‖L∞

s,x
‖〈ξ〉− 1+δ

2 〈η〉1+δuηη‖L2
s,x

+ ‖〈ξ〉− 1+δ
2 〈η〉1+δ∂ξ F‖L2

s,x

≤ C‖u + uξ + uη‖L∞
s,x

‖〈ξ〉− 1+δ
2 〈η〉1+δuξξη‖L2

s,x
+ C‖〈ξ〉− 1+δ

2 〈η〉1+δuη‖L2
s L

∞
x

‖uξξξ‖L∞
s L2

x

+ C‖uξ‖L∞
s,x

‖〈ξ〉− 1+δ
2 〈η〉1+δuξηη‖L2

s,x
+ C‖uξ + uξξ + uξη‖L∞

s,x
‖〈ξ〉− 1+δ

2 〈η〉1+δuξη‖L2
s,x

+ C‖〈ξ〉− 1+δ
2 〈η〉1+δ(|uξη| + |uη|(|uξ | + |uξξ |))‖L2

s,x
‖uξξ‖L∞

s,x

+ C‖uξ + uξξ + uξη‖L∞
s,x

‖〈ξ〉− 1+δ
2 〈η〉1+δuηη‖L2

s,x

+ C‖uξ‖L∞
s,x

‖〈ξ〉− 1+δ
2 〈η〉1+δuξη‖L2

s,x
+ C‖〈ξ〉− 1+δ

2 〈η〉1+δuη‖L2
s L

∞
x

‖uξξ‖L∞
s L2

x

+ C‖uξ‖L∞
s,x

‖〈ξ〉− 1+δ
2 〈η〉1+δuη‖L2

s,x

≤ C sup
0≤s≤t

E1/2(u(s))‖〈ξ〉− 1+δ
2 〈η〉1+δuξξη‖L2

s,x

+ C
(
sup

0≤s≤t
E1/2(u(s)) + sup

0≤s≤t
E(u(s))

)E1/2(u(t)). (2.32)
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Similarly, by (2.27), (2.16), Lemma 2.1 and Sobolev embedding H1(R) ↪→ L∞(R), we can
also get

‖〈η〉− 1+δ
2 〈ξ 〉1+δuηηξ‖L2

s,x

≤ C sup
0≤s≤t

E1/2(u(s))‖〈η〉− 1+δ
2 〈ξ 〉1+δuηηξ‖L2

s,x

+ C
(
sup

0≤s≤t
E1/2(u(s)) + sup

0≤s≤t
E(u(s))

)E1/2(u(t)). (2.33)

By (2.32) and (2.33) we can obtain

Ẽ31/2(u(t))

≤ C sup
0≤s≤t

E1/2(u(s))Ẽ31/2(u(t)) + C
(
sup

0≤s≤t
E1/2(u(s)) + sup

0≤s≤t
E(u(s))

)E1/2(u(t))

≤ Cε1Ẽ31/2(u(t)) + C
(
ε1 + ε21

)E1/2(u(t)). (2.34)

If ε1 is sufficiently small, we can get (2.26). �
The following lemma will be used in the proof of asymptotic behavior part of Theorem 1.1.
For the proof of this lemma, we refer the reader to Lemma 6.12 in Katayama [7], where high
space dimension case is also considered.

Lemma 2.5 If G ∈ L1(R+; L2(R)), i.e.,
∫ +∞

0
‖G(t, ·)‖L2(R)dt < +∞, (2.35)

Then the global solution to

uξη = G (2.36)

is asymptotically free in the energy sense.

Finally, for the convenience, we will introduce some notations concerning the weight
functions used in the weighted energy estimates in the next section. Fix 0 < δ < 1. Set

φ(x) = 〈x〉2+2δ. (2.37)

It is easy to verify that

|φ′(x)| ≤ 4〈x〉1+2δ. (2.38)

Let

q(x) =
∫ x

−∞
〈ρ〉−(1+δ)dρ (2.39)

and

ψ(x) = e−q(x). (2.40)

We can verify that

ψ ′(x) = −ψ(x)〈x〉−(1+δ). (2.41)

We note that there exists a positive constant c such that

c−1 ≤ ψ(x) ≤ c, (2.42)

123



94 Page 10 of 19 D. Zha

thus it holds that

c−1〈x〉−(1+δ) ≤ −ψ ′(x) ≤ c〈x〉−(1+δ). (2.43)

3 Proof of Theorem 1.1

Now we will prove Theorem 1.1. We first prove the global existence part of Theorem 1.1
by some bootstrap argument. Assume that u is a classical solution to the Cauchy problem
(1.3)–(1.26). We will show that there exist positive constants ε0 and A such that

sup
0≤s≤t

E(u(s)) + E(u(t)) ≤ A2ε2 (3.1)

under the assumption

sup
0≤s≤t

E(u(s)) + E(u(t)) ≤ 4A2ε2, (3.2)

where 0 < ε ≤ ε0. Then based on estimate (3.1) and Lemma 2.5, the proof of asymptotic
behavior part of Theorem 1.1 can also be given.

3.1 Low order energy estimates

We first estimate sup0≤s≤t E2(u(s)) and E2(u(t)). sup0≤s≤t E1(u(s)) and E1(u(t)) can be
estimated similarly.

For any multi-index a = (a1, a2), |a| = 1, note that Zau satisfies

Zauξη = A1Z
auξη + A2Z

auξξ + A3Z
auηη + Za A1uξη + Za A2uξξ + Za A3uηη + ZaF .

(3.3)

Multiply 2ψ(η)φ(ξ)ZauTξ on both sides of (3.3). Noting the symmetry of A1, by Leibniz’s
rule we have

(
ψ(η)φ(ξ)|Zauξ |2

)
η

− ψ ′(η)φ(ξ)|Zauξ |2
= (

ψ(η)φ(ξ)ZauTξ A1Z
auξ

)
η

− ψ ′(η)φ(ξ)ZauTξ A1Z
auξ

− ψ(η)φ(ξ)ZauTξ ∂ηA1Z
auξ + 2ψ(η)φ(ξ)ZauTξ Ga, (3.4)

where

Ga = A2Z
auξξ + A3Z

auηη + Za A1uξη + Za A2uξξ + Za A3uηη + ZaF . (3.5)

Similarly,multiply 2ψ(ξ)φ(η)ZauTη onboth sides of (1.3). The symmetry of A1 andLeibniz’s
rule also imply

(
ψ(ξ)φ(η)|Zauη|2

)
ξ

− ψ ′(ξ)φ(η)|Zauη|2
= (

ψ(ξ)φ(η)ZauTη A1Z
auη

)
ξ

− ψ ′(ξ)φ(η)ZauTη A1Z
auη

− ψ(ξ)φ(η)ZauTη ∂ξ A1Z
auη + 2ψ(ξ)φ(η)ZauTη Ga . (3.6)

Integrating on [0, t]×R on both sides of (3.4) and (3.6), we conclude from the fundamental
theorem of calculus that

∫

R

(
e2(t, x) + ẽ2(t, x)

)
dx +

∫ t

0

∫

R

p2(s, x)dxds
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=
∫

R

(
e2(0, x) + ẽ2(0, x)

)
dx +

∫ t

0

∫

R

q2(s, x)dxds

+ 2
∫ t

0

∫

R

ψ(η)φ(ξ)ZauTξ Gadxds + 2
∫ t

0

∫

R

ψ(ξ)φ(η)ZauTη Gadxds, (3.7)

where

e2 = ψ(η)φ(ξ)|Zauξ |2 + ψ(ξ)φ(η)|Zauη|2, (3.8)

ẽ2 = −ψ(η)φ(ξ)ZauTξ A1Z
auξ − ψ(ξ)φ(η)ZauTη A1Z

auη, (3.9)

p2 = −ψ ′(η)φ(ξ)|Zauξ |2 − ψ ′(ξ)φ(η)|Zauη|2 (3.10)

and

q2 = −ψ ′(η)φ(ξ)ZauTξ A1Z
auξ − ψ(η)φ(ξ)ZauTξ ∂ηA1Z

auξ

− ψ ′(ξ)φ(η)ZauTη A1Z
auη − ψ(ξ)φ(η)ZauTη ∂ξ A1Z

auη. (3.11)

In view of (2.37) and (2.42), we can see

c−1e2(t, x) ≤ |〈ξ 〉1+δZauξ |2 + |〈η〉1+δZauη|2 ≤ ce2(t, x). (3.12)

It follows from (2.37), (2.42), (1.4), (2.16) and Sobolev embedding H1(R) ↪→ L∞(R) that

|̃e2(t, x)| ≤ C〈ξ 〉2+2δ|ZauTξ A1Z
auξ | + C〈η〉2+2δ|ZauTη A1Z

auη|
≤ C |〈ξ 〉1+δZauξ |2(|u| + |uξ | + |uη|) + C |〈η〉1+δZauη|2(|u| + |uξ | + |uη|)
≤ C

(
E1/2
1 (u(t)) + E1/2

2 (u(t))
)(|〈ξ 〉1+δZauξ |2 + |〈η〉1+δZauη|2

)

≤ CE1/2(u(t))
(|〈ξ 〉1+δZauξ |2 + |〈η〉1+δZauη|2

)
. (3.13)

Thus, for small solutions, we can get

(2c)−1(e2(t, x) + ẽ2(t, x)
) ≤ |〈ξ 〉1+δZauξ |2 + |〈η〉1+δZauη|2 ≤ 2c

(
e2(t, x) + ẽ2(t, x)

)
.

(3.14)

From (2.37) and (2.43), it follows that

c−1 p2(t, x) ≤ |〈η〉− 1+δ
2 〈ξ 〉1+δZauξ |2 + |〈ξ 〉− 1+δ

2 〈η〉1+δZauη|2 ≤ cp2(t, x). (3.15)

According to (2.37), (2.42), (2.43), (1.4) and Lemma 2.1, we have

|q2(t, x)| ≤ C〈η〉−(1+δ)〈ξ〉2+2δ |Zauξ |2(|u| + |uξ | + |uη|) + C〈ξ〉2+2δ|Zauξ |2(|uη| + |Zuη|)
+ C〈ξ〉−(1+δ)〈η〉2+2δ |Zauη|2(|u| + |uξ | + |uη|) + C〈η〉2+2δ |Zauη|2(|uξ | + |Zuξ |)

≤ C |〈η〉− 1+δ
2 〈ξ〉1+δZauξ |2(|u| + |uξ | + |uη|)

+ C |〈η〉− 1+δ
2 〈ξ〉1+δZauξ |2(|〈η〉1+δuη| + |〈η〉1+δZuη|)

+ C |〈ξ〉− 1+δ
2 〈η〉1+δZauη|2(|u| + |uξ | + |uη|)

+ C |〈ξ〉− 1+δ
2 〈η〉1+δZauη|2(|〈ξ〉1+δuξ | + |〈ξ〉1+δZuξ |). (3.16)

By (3.5), (1.5), (1.6) and Lemma 2.2, we can obtain

|Ga | ≤ C |Zauξξ ||uη| + C |Zauηη||uξ | + C(|uξ | + |uη| + |Zauξ | + |Zauη|)|uξη|
+ C(|uη| + |Zauη|)|uξξ | + C(|uξ | + |Zauξ |)|uηη|
+ C(|uξ ||uη| + |Zauξ ||uη| + |Zauη||uξ |). (3.17)
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Thanks to (3.7), (3.14) and (3.15), we see

sup
0≤s≤t

E2(u(s)) + E2(u(t))

≤ CE2(u(0)) + C
∑

|a|=1

∫ t

0
‖q2(s, ·)‖L1(R)ds

+ C
∑

|a|=1

∫ t

0
‖〈ξ 〉2+2δZauξGa‖L1

x (R)ds + C
∑

|a|=1

∫ t

0
‖〈η〉2+2δZauηGa‖L1

x (R)ds.

(3.18)

It follows from (3.16),Hölder inequality, Lemma2.3, Sobolev embedding H1(R) ↪→ L∞(R)

and Lemma 2.4 that
∫ t

0
‖q2(s, ·)‖L1(R)ds

≤ C‖〈η〉− 1+δ
2 〈ξ 〉1+δZauξ‖2L2

s,x
(‖u‖L∞

s,x
+ ‖uξ‖L∞

s,x
+ ‖uη‖L∞

s,x
)

+ C‖〈η〉− 1+δ
2 〈ξ 〉1+δZauξ‖2L2

s,x
(‖〈η〉1+δuη‖L∞

s,x
+ ‖〈η〉1+δZuη‖L∞

s,x
)

+ C‖〈ξ 〉− 1+δ
2 〈η〉1+δZauη‖2L2

s,x
(‖u‖L∞

s,x
+ ‖uξ‖L∞

s,x
+ ‖uη‖L∞

s,x
)

+ C‖〈ξ 〉− 1+δ
2 〈η〉1+δZauη‖2L2

s,x
(‖〈ξ 〉1+δuξ‖L∞

s,x
+ ‖〈ξ 〉1+δZuξ‖L∞

s,x
)

≤ C
(
sup

0≤s≤t
E1/2(u(s)) + sup

0≤s≤t
Ẽ3

1/2
(u(s))

)E2(u(t))

≤ C sup
0≤s≤t

E1/2(u(s))E2(u(t)). (3.19)

By Hölder inequality, it is easy to see that
∫ t

0
‖〈ξ 〉2+2δZauξGa‖L1

x (R)ds

≤ C‖〈η〉− 1+δ
2 〈ξ 〉1+δZauξ‖L2

s,x
‖〈η〉 1+δ

2 〈ξ 〉1+δGa‖L2
s,x

≤ E1/2
2 (u(t))‖〈η〉 1+δ

2 〈ξ 〉1+δGa‖L2
s,x

. (3.20)

By (3.17), Lemma 2.3 and Lemma 2.4, we can get

‖〈η〉 1+δ
2 〈ξ 〉1+δGa‖L2

s,x

≤ C‖〈η〉− 1+δ
2 〈ξ 〉1+δZauξξ‖L2

s,x
‖〈η〉1+δuη‖L∞

s,x

+ C‖〈η〉1+δZauηη‖L∞
s L2

x
‖〈η〉− 1+δ

2 〈ξ 〉1+δuξ‖L2
s L

∞
x

+ C‖〈η〉− 1+δ
2 〈ξ 〉1+δ(|uξ | + |Zauξ |)‖L2

s,x
‖〈η〉1+δuξη‖L∞

s,x

+ C‖|〈η〉1+δ(|uη| + |Zauη|)|‖L∞
s,x

‖〈η〉− 1+δ
2 〈ξ 〉1+δuηξ‖L2

s,x

+ C‖〈η〉1+δ(|uη| + |Zauη|)‖L∞
s,x

‖〈η〉− 1+δ
2 〈ξ 〉1+δuξξ‖L2

s,x

+ C‖〈η〉− 1+δ
2 〈ξ 〉1+δ(|uξ | + |Zauξ |)‖L2

s,x
‖〈η〉1+δuηη‖L∞

s,x

+ C‖〈η〉1+δ(|uη| + |Zauη|)‖L2
s,x

‖〈η〉− 1+δ
2 〈ξ 〉1+δuξ‖L∞

s,x
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+ C‖〈η〉− 1+δ
2 〈ξ 〉1+δ(|uξ | + |Zauξ |)‖L2

s,x
‖〈η〉1+δuη‖L∞

s,x

≤ C
(
sup

0≤s≤t
E1/2(u(s)) + sup

0≤s≤t
Ẽ3

1/2
(u(s))

)E1/2
3 (u(t))

≤ C sup
0≤s≤t

E1/2(u(s))E1/2
3 (u(t)). (3.21)

It follows from (3.20) and (3.21) that
∫ t

0
‖〈ξ 〉2+2δZauξGa‖L1

x (R)ds ≤ C sup
0≤s≤t

E1/2(u(s))E3(u(t)). (3.22)

Similarly, we can also get

∫ t

0
‖〈η〉2+2δZauηGa‖L1

x (R)ds ≤ C sup
0≤s≤t

E1/2(u(s))E3(u(t)). (3.23)

Consequently, the combination of (3.18), (3.19), (3.22) and (3.23) implies

sup
0≤s≤t

E2(u(s)) + E2(u(t)) ≤ CE2(u(0)) + C sup
0≤s≤t

E1/2(u(s))E(u(t)). (3.24)

By a similar (but simpler) argument, we can also show

sup
0≤s≤t

E1(u(s)) + E1(u(t)) ≤ CE1(u(0)) + C sup
0≤s≤t

E1/2(u(s))E(u(t)). (3.25)

3.2 High order energy estimates

Now we will estimate sup0≤s≤t E3(u(s)) and E3(u(t)).
For any multi-index a = (a1, a2), |a| = 2, a1 �= 0, Leibniz’s rule gives

Zauξη = A1Z
auξη + +A2Z

auξξ + A3Z
auηη + Ha, (3.26)

where

Ha =
∑

c+d=a
c �=0

λcd Z
c A1Z

duξη +
∑

c+d=a
c �=0

λcd Z
c A2Z

duξξ +
∑

c+d=a
c �=0

λcd Z
c A3Z

duηη + ZaF,

(3.27)

λcd are some constants. Multiply 2ψ(η)φ(ξ)ZauTξ on both sides of (3.26). Noting the sym-
metry of A1, A2 and A3, by Leibniz’s rule we can get

(
ψ(η)φ(ξ)|Zauξ |2

)
η

− ψ ′(η)φ(ξ)|Zauξ |2

= (
ψ(η)φ(ξ)ZauTξ A1Z

auξ

)
η

− ψ ′(η)φ(ξ)ZauTξ A1Z
auξ − ψ(η)φ(ξ)ZauTξ ∂ηA1Z

auξ

+ (
ψ(η)φ(ξ)ZauTξ A2Z

auξ

)
ξ

− ψ(η)φ′(ξ)ZauTξ A2Z
auξ − ψ(η)φ(ξ)ZauTξ ∂ξ A2Z

auξ

+ (
2ψ(η)φ(ξ)ZauTξ A3Z

auη

)
η

− 2ψ ′(η)φ(ξ)ZauTξ A3Z
auη − 2ψ(η)φ(ξ)ZauTξ ∂ηA3Z

auη

− (
ψ(η)φ(ξ)ZauTη A3Z

auη

)
ξ

+ ψ(η)φ′(ξ)ZauTη A3Z
auη + ψ(η)φ(ξ)ZauTη ∂ξ A3Z

auη

+ 2ψ(η)φ(ξ)ZauTξ Ha . (3.28)
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Integrating on [0, t] ×R on both sides of (3.28), by the fundamental theorem of calculus,
we have

∫

R

e3(t, x)dx +
∫ t

0

∫

R

p3(s, x)dxds

=
∫

R

(
e3(0, x) + ẽ3(0, x)

)
dx −

∫

R

ẽ3(t, x)dx
∫ t

0

∫

R

q3(s, x)dxds

+ 2
∫ t

0

∫

R

ψ(η)φ(ξ)ZauTξ Hadxds, (3.29)

where

e3 = ψ(η)φ(ξ)|Zauξ |2, p3 = −ψ ′(η)φ(ξ)|Zauξ |2, (3.30)

ẽ3 = −ψ(η)φ(ξ)ZauTξ A1Z
auξ − ψ(η)φ(ξ)ZauTξ A2Z

auξ

− 2ψ(η)φ(ξ)ZauTξ A3Z
auη + ψ(η)φ(ξ)ZauTη A3Z

auη (3.31)

and

q3 = −ψ ′(η)φ(ξ)ZauTξ A1Z
auξ − ψ(η)φ(ξ)ZauTξ ∂ηA1Z

auξ

− ψ(η)φ′(ξ)ZauTξ A2Z
auξ − ψ(η)φ(ξ)ZauTξ ∂ξ A2Z

auξ

− 2ψ ′(η)φ(ξ)ZauTξ A3Z
auη − 2ψ(η)φ(ξ)ZauTξ ∂ηA3Z

auη

+ ψ(η)φ′(ξ)ZauTη A3Z
auη + ψ(η)φ(ξ)ZauTη ∂ξ A3Z

auη. (3.32)

In view of (2.37) and (2.42), we have

c−1e3(t, x) ≤ |〈ξ 〉1+δZauξ |2 ≤ ce3(t, x). (3.33)

By (2.37) and (2.43), we can obtain

c−1 p3(t, x) ≤ |〈η〉− 1+δ
2 〈ξ 〉1+δZauξ |2 ≤ cp3(t, x). (3.34)

It follows from (2.37), (2.42), (1.4), (1.5) and (1.6) that

|̃e3(t, x)| ≤ C〈ξ 〉2+2δ|ZauTξ A1Z
auξ | + C〈ξ 〉2+2δ|ZauTξ A2Z

auξ |
+ C〈ξ 〉2+2δ|ZauTξ A3Z

auη| + C〈ξ 〉2+2δ|ZauTη A3Z
auη|

≤ C |〈ξ 〉1+δZauξ |2(|u| + |uξ | + |uη|)
+ C |〈ξ 〉1+δZauξ ||〈ξ 〉1+δuξ ||Zauη| + C |〈ξ 〉1+δZauη||〈ξ 〉1+δuξ ||Zauη|

≤ C |〈ξ 〉1+δZauξ |2(|u| + |uξ | + |uη|) + C
∑

|b|=2

|〈ξ 〉1+δZbuξ ||〈ξ 〉1+δuξ ||Zauη|.

(3.35)

Here we also use the following simple but important fact: for the multi-index a =
(a1, a2), |a| = 2, a1 �= 0, it holds that

|〈ξ 〉1+δZauη| = |〈ξ 〉1+δ∂
a1
ξ ∂a2η uη| ≤

∑

|b|=2

|〈ξ 〉1+δZbuξ |. (3.36)

According to (1.4), (1.5), (1.6), (2.37), (2.38), (2.42), (2.43), Lemma 2.2 and (3.36), we can
get

|q3(t, x)| ≤ C〈η〉−(1+δ)〈ξ〉2+2δ |Zauξ |2(|u| + |uξ | + |uη|) + C〈ξ〉2+2δ |Zauξ |2(|uη| + |Zuη|)
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+ C〈ξ〉2+2δ |Zauξ |(|uξ | + |Zuξ |)|Zauη| + C〈ξ〉2+2δ|Zauη|2(|uξ | + |Zuξ |)
≤ C |〈η〉− 1+δ

2 〈ξ〉1+δZauξ |2(|u| + |uξ | + |uη|)
+ C |〈η〉− 1+δ

2 〈ξ〉1+δZauξ |2(|〈η〉1+δuη| + |〈η〉1+δZuη|)
+ C |〈η〉− 1+δ

2 〈ξ〉1+δZauξ ||〈η〉− 1+δ
2 〈ξ〉1+δ(|uξ | + |Zuξ |)||〈η〉1+δZauη|

+ C |〈η〉− 1+δ
2 〈ξ〉1+δZauη||〈η〉− 1+δ

2 〈ξ〉1+δ(|uξ | + |Zuξ |)||〈η〉1+δZauη|
≤ C |〈η〉− 1+δ

2 〈ξ〉1+δZauξ |2(|u| + |uξ | + |uη|)
+ C |〈η〉− 1+δ

2 〈ξ〉1+δZauξ |2(|〈η〉1+δuη| + |〈η〉1+δZuη|)
+ C

∑

|b|=2

|〈η〉− 1+δ
2 〈ξ〉1+δZbuξ ||〈η〉− 1+δ

2 〈ξ〉1+δ(|uξ | + |Zuξ |)||〈η〉1+δZauη|. (3.37)

Lemma 2.2 implies

|Ha | ≤ C
∑

|b|≤2

|Zbuξ |
(|uη| + |uηη| + |uξη| + |uη||uξξ |

)

+ C
∑

|b|≤2

|Zbuη|
(|uξ | + |uξξ | + |uξη| + |uξ ||uηη|

)

+ C
∑

|b|+|c|≤2

|Zbuξ ||Zcuη|. (3.38)

From (3.29), (3.33), (3.34), we obtain

sup
0≤s≤t

∑

|a|=2
a1 �=0

‖〈ξ 〉1+δZauξ‖2L2
x
+

∑

|a|=2
a1 �=0

‖〈η〉− 1+δ
2 〈ξ 〉1+δZauξ‖2L2

s,x

≤ CE3(u(0)) + C sup
0≤s≤t

∑

|a|=2
a1 �=0

‖̃e3(s, ·)‖L1(R) + C
∑

|a|=2
a1 �=0

∫ t

0
‖q3(s, ·)‖L1(R)ds

+ C
∑

|a|=2
a1 �=0

∫ t

0
‖〈ξ 〉2+2δZauξ Ha‖L1

x (R)ds. (3.39)

By (3.35), Hölder inequality, (2.16), Sobolev embedding H1(R) ↪→ L∞(R) and Lemma
2.4, we have

‖̃e3(t, ·)‖L1(R) ≤ C‖〈ξ 〉1+δZauξ‖2L2
x
(‖u‖L∞

x
+ ‖uξ‖L∞

x
+ ‖uη‖L∞

x
)

+ C
∑

|b|=2

‖〈ξ 〉1+δZbuξ‖L2
x
‖〈ξ 〉1+δuξ‖L∞

x
‖Zauη‖L2

x

≤ C
(
E3(u(t)) + Ẽ3(u(t))

)(
E1/2
1 (u(t)) + E1/2

2 (u(t))
)

≤ C
(
E(u(t)) + Ẽ3(u(t))

)
E1/2(u(t)) ≤ CE3/2(u(t)). (3.40)

Thanks to (3.37), Hölder inequality, Lemma 2.3 and Lemma 2.4, we get
∫ t

0
‖q3(s, ·)‖L1(R)ds

≤ C‖〈η〉− 1+δ
2 〈ξ〉1+δZauξ‖2L2

s,x
(‖u‖L∞

s,x
+ ‖uξ‖L∞

s,x
+ ‖uη‖L∞

s,x
)
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+ C‖〈η〉− 1+δ
2 〈ξ〉1+δZauξ‖2L2

s,x
(‖〈η〉1+δuη‖L∞

s,x
+ ‖〈η〉1+δZuη‖L∞

s,x
)

+ C
∑

|b|=2

‖〈η〉− 1+δ
2 〈ξ〉1+δZbuξ‖L2

s,x
‖〈η〉− 1+δ

2 〈ξ〉1+δ(|uξ | + |Zuξ |)‖L2
s L

∞
x

‖〈η〉1+δZauη‖L∞
s L2

x

≤ C
(
sup

0≤s≤t
E1/2(u(s)) + sup

0≤s≤t
Ẽ3

1/2
(u(s))

)(E(u(t)) + Ẽ3(u(t))
)

≤ C sup
0≤s≤t

E1/2(u(s))E(u(t)). (3.41)

Hölder inequality implies
∫ t

0
‖〈ξ 〉2+2δZauξ Ha‖L1

x (R)ds

≤ C‖〈η〉− 1+δ
2 〈ξ 〉1+δZauξ‖L2

s,x
‖〈η〉 1+δ

2 〈ξ 〉1+δHa‖L2
s,x

≤ E1/2
3 (u(t))‖〈η〉 1+δ

2 〈ξ 〉1+δHa‖L2
s,x

. (3.42)

Via (3.38), Lemma 2.3 and Lemma 2.4, we can see

‖〈η〉 1+δ
2 〈ξ 〉1+δHa‖L2

s,x

≤ C
∑

|b|≤2

‖〈η〉− 1+δ
2 〈ξ 〉1+δZbuξ‖

L2s,x
‖〈η〉1+δ

(|uη| + |uηη| + |uξη| + |uη||uξξ |
)‖L∞

s,x

+ C
∑

|b|≤2

‖〈η〉1+δZbuη‖L∞
s L2

x
‖〈η〉− 1+δ

2 〈ξ 〉1+δ
(|uξ | + |uξξ | + |uξη| + |uξ ||uηη|

)‖L2
s L

∞
x

+ C
∑

|b|+|c|≤2
|b|≤1

‖〈η〉− 1+δ
2 〈ξ 〉1+δZbuξ‖L2

s L
∞
x

‖〈η〉1+δZcuη‖L∞
s L2

x

+ C
∑

|b|+|c|≤2
|c|≤1

‖〈η〉− 1+δ
2 〈ξ 〉1+δZbuξ‖

L2s,x
‖〈η〉1+δZcuη‖L∞

s,x

≤ C
(
sup

0≤s≤t
E1/2(u(s)) + sup

0≤s≤t
Ẽ3

1/2
(u(s))

)(E1/2(u(t)) + Ẽ31/2(u(t))
)

≤ C sup
0≤s≤t

E1/2(u(s))E1/2(u(t)). (3.43)

It follows from (3.42) and (3.43) that
∫ t

0
‖〈ξ 〉2+2δZauξ Ha‖L1

x (R)ds ≤ C sup
0≤s≤t

E1/2(u(s))E(u(t)). (3.44)

We conclude from (3.39), (3.40), (3.41) and (3.44) that

sup
0≤s≤t

∑

|a|=2
a1 �=0

‖〈ξ 〉1+δZauξ‖2L2
x
+

∑

|a|=2
a1 �=0

‖〈η〉− 1+δ
2 〈ξ 〉1+δZauξ‖2L2

s,x

≤ CE3(u(0)) + C sup
0≤s≤t

E3/2(u(s)) + C sup
0≤s≤t

E1/2(u(s))E(u(t)). (3.45)

Noting the duality between ξ and η, by a similar way, we can also get

sup
0≤s≤t

∑

|a|=2
a2 �=0

‖〈η〉1+δZauη‖2L2
x
+

∑

|a|=2
a2 �=0

‖〈ξ 〉− 1+δ
2 〈η〉1+δZauη‖2L2

s,x
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≤ CE3(u(0)) + C sup
0≤s≤t

E3/2(u(s)) + C sup
0≤s≤t

E1/2(u(s))E(u(t)). (3.46)

Acordingly, we have obtained

sup
0≤s≤t

E3(u(s)) + E3(u(t))

≤ CE3(u(0)) + C sup
0≤s≤t

E3/2(u(s)) + C sup
0≤s≤t

E1/2(u(s))E(u(t)). (3.47)

3.3 Global existence

Noting (3.24), (3.25) and (3.47), we have

sup
0≤s≤t

E(u(s)) + E(u(t))

≤ CE(u(0)) + C sup
0≤s≤t

E3/2(u(s)) + C sup
0≤s≤t

E1/2(u(s))E(u(t)). (3.48)

Under the assumption (3.2), we have

sup
0≤s≤t

E(u(s)) + E(u(t)) ≤ C1ε
2 + 8C1A

3ε3. (3.49)

Assume that

E(u(0)) ≤ C̃1ε
2. (3.50)

Taking A2 = 4max{C1, C̃1} and ε0 so small that

16C1Aε0 ≤ 1, (3.51)

for any ε with 0 < ε ≤ ε0, we have

sup
0≤s≤t

E(u(s)) + E(u(t)) ≤ A2ε2. (3.52)

This completes the proof of global existence part of Theorem 1.1.

3.4 Asymptotic behavior

In view of Lemma 2.5, in order to prove that the global solution u to the system (1.3) is
asymptotically free in the energy sense, we only need to show

∫ +∞

0
‖A1uξη‖L2

x (R) + ‖A2uξξ‖L2
x (R) + ‖A3uηη‖L2

x (R) + ‖F‖L2
x (R)dt < +∞. (3.53)

First, by (1.4), (1.5), (1.6), Lemma2.3, Lemma2.4 and (3.52),we have pointwise estimates

|A1uξη| + |A2uξξ | + |A3uηη| + |F |
≤ C |u||uξη| + C |uξ |(|uη| + |uξη| + |uηη|) + C |uη|(|uηξ | + |uξξ |)
≤ CE1/2(u(t))|uξη| + C〈ξ 〉−(1+δ)〈η〉−(1+δ)E1/2(u(t))

(
E1/2(u(t)) + Ẽ3

1/2
(u(t))

)

≤ CE1/2(u(t))|uξη| + C〈ξ 〉−(1+δ)〈η〉−(1+δ)E(u(t))

≤ CAε|uξη| + CA2ε2〈ξ 〉−(1+δ)〈η〉−(1+δ). (3.54)

123



94 Page 18 of 19 D. Zha

In view of the system (1.3), we also have

|uξη| ≤ |A1uξη| + |A2uξξ | + |A3uηη| + |F | ≤ CAε|uξη| + CA2ε2〈ξ 〉−(1+δ)〈η〉−(1+δ).

(3.55)

If ε is sufficiently small, it holds that

|uξη| ≤ CA2ε2〈ξ 〉−(1+δ)〈η〉−(1+δ). (3.56)

It follows from (3.54) and (3.56) that

|A1uξη| + |A2uξξ | + |A3uηη| + |F | ≤ CA2ε2〈ξ 〉−(1+δ)〈η〉−(1+δ). (3.57)

Noting that

〈ξ 〉−(1+δ)〈η〉−(1+δ) ≤ C〈t + x〉−(1+δ)〈t − x〉−(1+δ)

≤ C〈t + |x |〉−(1+δ)〈t − |x |〉−(1+δ) ≤ C〈t〉−(1+δ)〈t − |x |〉−(1+δ), (3.58)

we have

‖〈ξ 〉−(1+δ)〈η〉−(1+δ)‖L2
x (R) ≤ C‖〈t − |x |〉−(1+δ)‖L2

x (R)〈t〉−(1+δ) ≤ C〈t〉−(1+δ). (3.59)

The combination of (3.57) and (3.59) gives

‖A1uξη‖L2
x (R) + ‖A2uξξ‖L2

x (R) + ‖A3uηη‖L2
x (R) + ‖F‖L2

x (R) ≤ CA2ε2〈t〉−(1+δ). (3.60)

(3.53) is just a consequence of (3.60).
This completes the proof of asymptotic behavior part of Theorem 1.1.
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