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Abstract
The purpose of this paper is to show that in elastoplastic materials cracks can grow only in
an intermittent way. This result is rigorously proved in the framework of a simplified model.

Mathematics Subject Classification 49K10 - 35J05 - 35J25 - 74A45 - 74C05

1 Introduction

In this paper we give a contribution to the mathematical derivation of the properties of the
quasistatic crack growth in elastoplastic materials. The study of this subject has a long history
(see,e.g.,[11,14,15]). Our aim is to obtain a precise mathematical result in a simplified model
where perfect plasticity interacts with crack growth. In particular, under suitable assumptions
we prove that cracks are piecewise constant in time.

In our simplified model the reference configuration 2 is a bounded connected open subset
of R? with Lipschitz boundary. We consider only the antiplane case, so that the displacement
u is a function from £2 into R. We assume that the cracks and the plastic slips may occur only
on a prescribed segment I, whose interior is contained in §£2 and whose end-points belong
to 052. It is not restrictive to assume that I" := {(x,0) : @ < x < b} for some a < b.

Since there is no plastic part in £2 \ I", the displacement u belongs to H'(§2 \ I') and the
elastic energy is given by

1
f/ |Vu|2dxdy.
2 Jar
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We assume that at each time the crack has the form I} := {(x,0) : @ < x < s} for some
a < s < b and that the energy spent to produce it is equal to s — a. On 1"!’ ={(x,0):s5 <
x < b} the plastic slip is determined by the jump of the displacement:

ul=ut—u",

where u™ and u ™ are the traces of u on I" from above and from below. The plastic dissipation
distance between the current displacement « and a previous displacement u¢ is given by

/ [[u] — [uoll dx.
ry

The evolution is driven by a time-dependent Dirichlet boundary condition u = w(t)
imposed on a prescribed Borel subset dp 2 of d§2. We first consider the incremental for-

mulation. Given a subdivision 0 =) < t] < --- < t,_1 < t, = T of the interval [0, T],
fori =1,...,nlet (u;,s;) be a solution of the incremental minimum problem for the pair
(u, s):

1
min {f/ |Vu|2dxdy+s+/ |[u]—[u,-_]]|dx}.
weH @\ 2 Je\r rb

u=w(t;) on dp 2 ’
Si—1<s<b
As in [6] we can prove (Theorem 2.5) that, passing to a subsequence, the piecewise
constant interpolation of (u;, s;) converges, as the fineness of the subdivision tends to zero,
to a quasistatic evolution, i.e., a pair («, s) which satisfies the following conditions:

(a) (irreversibility) s is nondecreasing on [0, T'];
(b) (equilibrium) forevery ¢t € [0, T]we have u(t) € HY (2 \I),u(t) = w(t)ondps2,and

1 1 . . .
7/ |Vu(r)>dxdy + s(t) < f/ |Vu|2dxdy+s+/ [[4] — [u(t)]|dx,
2 Jo\r 2 Jo\r rb

K

forevery i € H' (22 \ I'), with & = w(¢) on dp£2, and every § € [s(1), b];
(c) (energy-dissipation inequality) for every #1, r» € [0, T], with #; < t, we have

2 b

F,\-(rz)

1
! /9 Ve Pady 5() —sto) + f ()] — [l ]ldx

1 o
< f/ |Vu(tl)|2dxdy+/ (/ Vu(z)vw(t)dxdy)dr,
2Ja\r f \r

where w is the time-derivative of w.

As in [6] we can obtain (Theorem 2.9) an energy-dissipation balance, using a suitable
notion of dissipation (Definition 2.6). Therefore our notion of quasistatic evolution is for-
mulated within the framework of rate-independent processes developed in [12,13]. When no
plastic slip is present, i.e., [u(z)] = 0 on I Yl’([), this evolution agrees, in the antiplane case,
with the variational solution of the crack growth problem introduced in [9] and studied in
[2].

The main result of our paper (Theorem 4.1) is that, if (u, s) satisfies hypotheses (a)-(c),
and w satisfies suitable continuity conditions, then s is piecewise constant. In other words,
the crack growth is jerky. This behaviour is in agreement with the numerical simulations in
[1] and with many experimental results (see, e.g., [7,10]). As a consequence of well-known
results on perfect plasticity (Theorem 4.14), from this property of s we deduce (Theorem 4.15)
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Fig. 1 Examples of sets §2, 0p §2, and I"

that u is piecewice absolutely continuous with values in H1(£2 \ I"). A concluding example
(Theorem 5.1) shows that, in general, s is not constant.
A numerical study of the simplified model of the present paper will appear in [5].

2 Formulation of the problem

The reference configuration is a bounded connected open set 2 C R? with Lipschitz bound-
ary 0§2. On a prescribed Borel subset dp §2 of 952 we shall impose a time-dependent Dirichlet
boundary condition. On its complement 952 \ dp §2 we shall consider the homogeneous Neu-
mann boundary condition.

In our simplified model we assume that the cracks and the plastic slips may occur only on
a prescribed segment I" := {(x,0) : ¢ < x < b} contained in £2, with (a, 0), (b,0) € 382
and (x,0) € 2 foreverya < x < b. Foreverya < s; < s, < b we set I}SIZ = {(x,0) :
51 < x < s}

We assume that there exists an open neighbourhood U of I" in R? such that U N (§2 \ I")
is the union of two disjoint connected open sets U and U~ with Lipschitz boundary. We
also assume that for every @ < x < b we have (x, y) € U* whenever |y| is small and
+y > 0. Let £2% be the connected component of §2 \ I" containing U*. Note that under our
hypotheses we have 2 \ I" = 21 U £~ and that it may happen that 27 = 27, if 2 is
not simply connected (see Fig. 1) We set 312 := 92% \ I" and 8;9 = 0pR2NINT. We
assume that

8;9 and ;£ have positive one-dimensional measure. 2.1)

Since we are dealing with the antiplane case, the displacement u = u(x, y) is a scalar
function belonging to H'(£2 \ I'). An admissible crack will be a segment of the form r; for
some a < s < b. Given a displacement u € H'(£2 \ I'), the jump of u across I is given by

]l =ut —u",

where u™ is the trace on the side of I" corresponding to y > 0, and u~ is the trace on the
opposite side.
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The Dirichlet boundary condition will be prescribed through a function
we AC([0,T]; H' (2 \ ;) (2.2)
for a suitable sg € [a, b).

Definition2.1 Let T > 0, sg € [a, b), and w € AC([0,T]; H (2 \ I;")). A quasistatic
evolution with boundary value w on dp$2 is a pair (i, s), with u: [0,T] — H' (2 \ I
measurable and s: [0, T] — [so, b], that satisfies the following conditions:

(a) (irreversibility) s is nondecreasing;
(b) (equilibrium) for every ¢ € [0, T] we have u(t) = w(¢) on dp$2 and

1 1
! / IVu(e) Pdxdy + (1) < ~ / Valdxdy + 35 + / L] — [u()]ldx,
2 Je\r 2 Ja\r rb

3

forevery i € H' (22 \ I'), with & = w(¢) on dp£2, and every § € [s(r), b];
(c) (energy-dissipation inequality) for every ¢, » € [0, T], with #; < t, we have

1
*/ \Vu(tr)[Pdxdy + s(t2) — s(t1) +/ [[u(r2)] — [u(t)]ldx
o\r b

2
r:v(tz)

1 n
< f/ |Vu(t1)|2dxdy+/ (/ Vu(r)Vu')(r)dxdy)dr.
2 Je\r f \r

Remark 2.2 Taking ii = w(t) and § = b in condition (b) above, by (2.2) we obtain that there
exists a constant M; > 0 such that

/ \Vu(t)|2dxdy < M, foreveryt € [0, T]. 2.3)
o\r

Together with the measurability of # — u(¢) this implies that the last integral in condition (c)
above is well defined. Moreover, since u(t) = w(t) on dp$2, by (2.1)—(2.3) there exists a
constant Mg > 0 such that

/ |u(t)|2dxdy < My foreveryt € [0, T]. 2.4)
o\r

Remark 2.3 Let us now comment on the term

t
/ ’ ( / Vu(t)Vu‘)(t)dxdy)dr 2.5)
" o\r

which appears in the energy-dissipation balance. The Euler equation for the equilibrium
condition gives that u(¢) is harmonic in §2 \ I" for every ¢t € [0, T]. Moreover, if u is

sufficiently regular, the equilibrium condition implies that 8’;5}’ ) =0 on a2\ dps, where v
is the outward unit normal to 82, (%)Jr = (3;847;1))7 =0on I ™ and (%)Jr = (337;,)),
on I"Sb(t) (the last property follows easily from (3.8) and (3.9), proved below in a more general
setting). Therefore, since (1) () = (W)~ (r) on Ffzt) (by our assumption on w and s),
integrating by parts we obtain

/ Vu(t)Vzb(r)dxdyz/ 8”(t)w(r)d&
o\r pe
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where S is the line-measure on dp §2. Thus (2.5) equals

g u(r) .
dS 2.6
/(fu2 () )dz. 2.6)

Since represents the force acting on the boundary, (2.6) represents the work done by
this force in the interval [¢1, 12].

Bu(r)

Remark 2.4 The previous remark suggests that Definition 2.1 does not change if w is replaced
by another function w, € AC([0, T'[; HY (2 \ I}°)) such that

w(t) = w«(t) ondps2.
This is actually true without any additional regularity assumption. Indeed, if (u,s) is a

quasistatic evolution for w, then

f Vu(t)Vw(t)dxdy = / Vu(t)Vuw,(t)dxdy forae.t €[0,T].
o\r o\r

This follows from Lemma 3.1, since u'}(r) —y(t) € HY(R2\ '), w(t) — y(r) = 0 on

dp 82, and [w(t) — wx(t)]=0on I s(r)

The following result shows the existence of a quasistatic evolution with prescribed initial
data.

Theorem 2.5 Let T > 0, 59 € [a,b), ug € H' (2 \ I"), and let w € AC([0, T1; H' (2 \
%)), Assume that ug = w(0) on dp 2 and

1 1 A . .
f/ |Vuo|>dxdy + so < f/ |Vu|2dxdy+s+/ I[i] — [uo]ldx,
2Ja\r 2Ja\r e

forevery i € HY(2\ I'), with it = w(0) on 382, and every so < § < b. Then there exists
a quasistatic evolution with boundary value w on dpS$2, satisfying the initial conditions
u(0) = ug and s(0) = sp.

To prove the theorem it is convenient to introduce the notion of dissipation, which is a
particular case of the one considered in [6, Section 2.3].

Definition 2.6 Letu: [0,T] — H' (2 \IMands: [0, T] — [a, b]. The dissipation of (u, s)
on the interval [z{, to] C [0, T'] is defined as:

k
Diss((-), s 11, 12) = sup; (s = s@m-n) + f @] = [(@m-nlidx)

s(t;)
where the supremum is taken over all finite partitions 1) = 190 < 71 < -+ < 7}t = .

Proof of Theorem 2.5. The proof is a simplified version of the proof of [6, Theorem 2.5]. We
fix a sequence of subdivisions (¢} )o<;<, With
0:t0<t1< <t"1<t,’l':T, 2.7)
lim max (t — z’ hy=o. (2.8)

n—00 1<i<n
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For every n we set ug = ug, s,? = 50, and for every i = 1, ..., n we define inductively
(us,, s5,) as a solution of the incremental minimum problem

) (2.9)

—_——

1 .
min lf/ |Vul>dxdy + s +/ [[u] — [uﬁl_1]|dx
weH' @\ 2 Jo\r rb
u=w! on dp 2

s,’flfsfb

where w! 1= w(z!). '
Note that, by the triangle inequality, from (2.9) we obtain that u, satisfies

1 . | .
— / |Vul |2dxdy + s < = / \Vii|>dxdy + § + / |[4] — [u']|dx, (2.10)
2Jo\r 2 Jar rt
for every 5| < § <bandevery il € Hl(Q \ I") with &t = w', on dp 2.
To estimate u), we compare (u},, s;,) with (w},, s;,) in the minimum problem (2.10) and
we obtain

1 A 1 . A .
f/ IVu, Pdxdy < —/ |Vw;,|2dxdy+/ Il Jldx < Cy +/ I, dx,
2Ja\r 2Ja\r rh rh

Sn S

(2.11)

for a suitable constant C; > 0 independent of i and n . By the Trace Inequality there exists
a constant C, > 0 independent of i and n such that

. , 12 . 12
/ [ Tjdx < Cz(/ |Vuj1|2dxdy) +C2(/ |u’n|2dxdy) .
r o\ o\r

Since u’n = wL on dp$2, by (2.1), (2.2), and the Poincaré Inequality there exists a constant
C3 > 0 independent of i and 7, such that

A A 12
[ wdiar <ca( [ vairaxay) "+ co
r \r

Therefore (2.11) gives

1 . . 1/2
~ f Vil 2dxdy < c3(f |Vu’n|2dxdy) +C3+C
2 Jar \r

which implies that there exists a constant C4 > 0 independent of i and 7 such that

/ \Vu!l |2dxdy < Cy. (2.12)
o\r

We now compare (i), s') with (u/,~! + w!, — w =1, 5i=1) in the minimum problem (2.9)
and we obtain

1 . . . . .
2/9\r|w'n|2dxdy+s,; — it +th [ ] — [u’ " |dx

Sn

1 . i . .
< f/ IVl =1 2dxdy + f (/ Vu’n_lvw(t)dxdy>dt + R,
2 Jar =1\ Jo\r

In

where

. 1 . .
R = f/ IV(w —wi=Ndxdy.
2 Jer
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Iterating this inequality for every 0 < i < j < n we obtain

1 . J
f/ \Vuj Pdxdy + ) (s,’Z—s,’J*%/ |[u’;]—[u2*1]|dx)
2Ja\r h=i+1 F&};’
' (2.13)
1 . J I
< 7/ |Vul |2dxdy + Z f (f w,’;—lvw(z)dxdy)errR,,,
2 Je\r wo ot Naewr

where R, := Z;’zl Rj,. Since w € AC([0, T]; H (2 \ I}°)) we have that R4 - 0. A
Let u, (), s, (t), and w,(t) be the piecewise constant interpolations of u!, s, and w,
defined by

1 —1

u,(t) := ujfl, sp(t) = s,’fl, wy, (1) = wff for t,i <t< t,i. (2.14)
Note that by (2.12) we have
/ |Vun(t)|2dxdy < (C4 foreveryt € [0, T]and every n. (2.15)
o\r

Inequality (2.13) can be rewritten as

1 . o
*/ |V ()12 dxdy + Dissun (), 55 () £, 171
2 Jar

1 X tl{
< - / |V, (¢1)*dxdy + f (/ Vun(r)Vu')(f)dxdy)dr +R,.
2 Ja\r 4 \r

Since the function 7 +—> (f.(z\r |Vu‘1(z‘)|20bwly)1/2 is integrable, using (2.8) and (2.15) we
deduce from the previous inequality that there exists R, — 0 such that for every 0 < 7] <

t» < T we have

1
= / |V (12)|*dxdy + Diss(un (-), 5, (); 11, 12)
2 Jar

(2.16)

1 2 . -
< f/ |Vu,,(t1)|2dxdy +/ (/ Vun(r)Vw(r)dxdy)dr + R,.
2 Jar f \r

In particular, by (2.15) this inequality implies that Diss(u,(-), s,(-); 0, T) is bounded uni-
formly with respect to ¢ and n. To continue the proof we need the following lemmas.

Given a set A, let x4 be its characteristic function, defined by x4(x) := 1 if x € A and
xa(x):=0ifx ¢ A.

Lemma 2.7 Assume that ||u, (1) g (2\I) andDiss(u, (+), sy (+); 0, T) are bounded uniformly
with respect to t and n. Then there exist a subsequence of (uy, sp), not relabelled, a nonde-
creasing function s: [0, T] — [a, b], and a function g: [0, T] — LY(I") such that

sp(t) = s(1), (2.17)
[n O1xpp = §Wxps, - strongly in L', (2.18)

foreveryt € [0,T].

Proof The statement on the convergence of s, is a consequence of Helly’s Theorem. Let D
be a countable dense subset of [0, T]. By a diagonal argument we can find a subsequence
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107 Page 8 of 40 G. Dal Maso, R. Toader

of u,, not relabelled, and a bounded function v: D — H'(£2 \ I') such that u, (t) = v(¢)
weakly in H'(£2 \ I') for every ¢ € D. This implies that

[u,(t)] = [v(¢)] strongly in LZ(F) (2.19)

forevery t € D.

To prove (2.18) for every t+ € [0,7T] we introduce the nondecreasing functions

Vu: [0, T] — R defined by

Vi (t) := Diss(uu(-), 5n(); 0, 7). (2.20)
By Helly’s Theorem there exist a subsequence, not relabelled, and a nondecreasing function V
such that V,(t) — V (¢) forevery ¢t € [0, T].

Let 79 € (0, T') be a continuity point for both V and s. For every ¢ > 0 there exists § > 0
such that |V () — V()| < € and |s(t) — s(t)| < € for every t € [0, T] with |t — tp] < 8.
Lett € D withtg <t < tg+ 8. Then V,,(t) — V(t) < V(t) + € and V,,(t9) — V (t0). By
Definition 2.6 it follows that

L a1 = Tun (to)]ldx = Diss(un (), sp ()i to, 1) = V(1) = Vau(to) < & (2.21)
F}
sn (1)
for n large enough. Moreover, since ||u,(z)|| HI(Q\I) is uniformly bounded, there exists a
constant C > 0 such that ||[u, (t0)]ll 2y < C for every n. This implies that

/ ln GO po = lun0)Ixpo  |d
r sn (1) sn(1g)
(2.22)
< / o )Ny < (o)l 2y (5n(0) = su(10)) /2 < Ce'/2

sn (i)

for sufficiently large n. By the triangle inequality (2.21) and (2.22) give

/ Wt O x s — [ t)]x s |dx <&+ Ce'l?,
r sn (1) sn(1g)

and this inequality, together with (2.19), implies that [u, (fp)]x e is a Cauchy sequence
sn 1y

in L1 (I"), hence it converges to a function g(#p) € LY(I"). Since s,(19) — s(to) we have
g(to) = g(lo)xpsfzzo)~

Therefore (2.18) holds for all continuity points of both V and s. Since the set of all other
points is at most countable, we can apply again the diagonal argument to extract a further
subsequence along which (2.18) holds for all 7. O

Lemma 2.8 For every w € HY (2 \I'),s €la,b],and g € LY(T) let u;‘fg be the unique
solution of the minimum problem

1
min {f/ |Vu|2dxdy+/ |[u]—g|dx}. (2.23)
wed @\ 2 Jo\r rb

u=w on dp 2

Letwy,w € H(2\T), sp, s € [a,bl, and g,, g € L' (I") be such that

wy, — w strongly in HY (2 \1I), (2.24)
Sy — S, (2.25)
gnXry —> 8Xrp strongly in L' (r). (2.26)

Then ug",, — ug o strongly in HY(2\ D).
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Proof Note that the uniqueness of the solution to (2.23) follows easily from the strict convexity
of the functional with respect to Vu, using (2.1).
We set uy, := ufv‘;’: ¢, and u := u;" g From the minimality of u,, we have

3 | uaPardy+ [ =g <5 [ wwaPdxy+ [ - gla,
2Ja\r r 2Ja\r r

which gives the boundedness of u, in H 1(&2 \ I'), thanks to (2.1). Hence there exist a
subsequence, not relabelled, and a function v € H 1 (82 \ I') with v = w on dp £2, such that
u, — v weakly in H'(£2 \ I"). Using lower semicontinuity it is easy to prove that v solves
(2.23), hence v = u. By the arbitrariness of the subsequence we conclude that the whole
sequence u, converges to u weakly in H'(£2 \ I"). To prove the strong convergence we first
observe that [u,,] — [u] strongly in L%(I') and

1
> / (Vg Pdxdy + / ltn] — goldx
o\r ro

sn

b
I

1
<5 [ VG, - wPdrdy+ [k, - wl - g,
2 Jer
by minimality. By (2.24)—(2.26) this implies

lim sup/ IVunlzdxdy f/ IVulzdxdy,
o\r o\r

n

which, together with the weak convergence, gives Vi, — Vu strongly in L2(£2 \ I'; R?).
Taking (2.1) into account, this implies the strong convergence of u,, to u. O

Forevery a, B € Rwe seta Vv  := max{a, B} and o A B := min{w, B}.
Proof of Theorem 2.5 (continuation) Let s and g be the functions given by Lemma 2.7 and
for every t € [0, T] let u(¢) be the solution of the minimum problem

1
min [7/‘ |Vu|2dxdy +/ [[u] — g(t)ldx}.
we'@\r 2 Jo\r rb

u=w(t) on dp 2 s

Let us prove that t +— u(t) from [0, T'] into HY(2 \ I") is measurable. It is enough to
show that r — u(¢) is continuous at every continuity point #yp € (0, T) of both V and s,
where V is defined as in the proof of Lemma 2.7. Let us fix such a point 79 and a sequence

witk) it is sufficient to prove

tr — to. Taking into account Lemma 2.8, since u(#;) = Uiy, e(t)?

that
g(tk)XF’; ) — g(to)xpf; : strongly in Ll(F). (2.27)
s(ty, s(to

By Definition 2.6 and (2.20) we have
f un )Xo — lun o)) o ldx
r sn (tg) sn (10)

< / 1[4 ()] — [t (20)1]dx + / oo (0 A 1)1ldx
Fh Sn o Vg

sn (o Vi) sn (1o Atg)

< Valto V1) — Valto A tr) + 1[un(to At 2y Isn () — s (t0) /2.
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Since [lun ()|l 712\ 1y is bounded uniformly with respect to n and 7, there exists a constant
C > 0 such that

/ w1 Ko = W01 X 1dX<Vilto v 1) = Vilto A 1) + Clsin (1) = su(t0)] /2.
r sn (1 sn g

Passing to the limit as n — oo along a suitable subsequence and using Lemma 2.7, we obtain

/ 80Xy, = [8U)xpy, 1dx =Vt v i) = V(o At) +Cls(ax) = s(t0)| V2.
I—v st s (1

Since V and s are continuous in ¢y, this gives (2.27) and concludes the proof of the measur-
ability of t — u(z).

We now prove the equilibrium condition (b) in Definition 2.1. By (2.10) and (2.14), for
every ¢ and n we have that

1 1
= / |Viun () Pdxdy + 5,(1) < = f \Vii|2dxdy + § + / (] — [n ()]|dx
2 Jar 2 Jar rb

s

(2.28)

for every s,(t) < § < bandevery i € H'(£2 \ I') with &t = w, (¢) on dp £2. In particular,
taking § = s, (¢), we see that u, (¢) satisfies the minimum problem (2.23) with w = w, (¢),
s = s,(t), and g, = [u,(t)]. Since w,(t) — w(t) strongly in HY (2 \ T30, s, (1) — s(1),
and [u,, (t)]XrS’; o — g(t)xps% strongly in LY, by Lemma 2.8 we have

un(t) — u(r) stronglyin H' (2 \ I (2.29)

forevery t € [0, T'].
We now fix t € [0,T],s(t) <§ <b,and i € H'(£2\ I') with i = w(r) on 3£2. We
have to prove that

1 1
- / IVu(r)>dxdy +s(1) < = / \Vii|?dxdy + § + / [id] — [u(@)]ldx. (2.30)
2Ja\r 2Jevr ry
Lets, ;=8 Vs, () and i1, :== 1 +w,(t) — w(t). Since 1, = w,(t) on dp§2 and 5, > s, (1),
by (2.28) we have

1 1 R R R
! / Vit () Pdxdy + 50(1) < ~ / Vg Pdxdy + 8 + / ] — [in ()]1dx.
2Jo\r 2Jo\r r’

(2.31)
Since u, () — u(t) and fi, — f strongly in H'(£2 \ I') by (2.29), while s, (t) — s(¢) and
Sp — §, we can pass to the limit in (2.31) and we obtain (2.30), which gives the equilibrium
condition (b) in Definition 2.1.

We conclude by proving now the energy-dissipation inequality (c) in Definition 2.1.
By (2.16) and by Definition 2.6 we have

1
5/ IVMn(fz)lzdxdy + sp(t2) — s (1) “l‘/ [[un (t2)] — [un(t1)]ldx
o\r b

1—;” (t7)

1 2 .
< f/ |V, (1) >dxdy +/ (/ Vun(t)Vu')(t)dxdy)dT +R,.
2 Jo\r \r

n

forevery 0 <t < 1, < T and for every n. By (2.29) we can pass to the limit and obtain
condition (c). m]
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The following theorem shows that the notion of evolution according to Definition 2.1 can
be expressed equivalently by using the notion of dissipation introduced in Definition 2.6.
This shows the analogy with the definition used in [6].

Theorem 2.9 Let T > 0, 59 € [a, b), and w € AC([0, T1; H' (2 \ I3°)). A pair (u, s) is a
quasistatic evolution with boundary value w on dp §2 if and only if u: [0, T] — H 2\ T")
is measurable, s : [0, T] — [so, b], conditions (a) and (b) of Definition 2.1 are satisfied, and
one of the following two conditions holds:

(¢") (energy-dissipation inequality starting from 0) for every t € [0, T| we have

1 / |Vu(t)|2dxdy + Diss(u(-), s(-); 0, t)
2 Jar

t
< l/ |Vu(0)|2dxdy—|—/ (/ Vu(r)Vu')(t)dxdy)dr.
0o \Javr

“2Jar

(c") (energy-dissipation balance) for every ty, t, € [0, T] with t; < tp, we have

1
! / IVu(ts) Pdxdy + Diss(u(), s(-): 11, 2)
2 Jo\r

1 n
- 7/ |Vu(t1)|2dxdy+/ (/ Vu(t)Vu')(t)dxdy)dt.
2 Jo\r f o\r

Proof Let (u,s) be a quasistatic evolution with boundary value w on dp$2. By (c) and
Definition 2.6 we obtain

1
! / IVu(ta) Pdxdy + Diss(u(). s(): 11, 12)
\r

2
1 ~
< 7/ |Vu(tl)|2dxdy+/ (/ Vu(r)Vu')(T)dxdy)dt,
2Jo\r f \r

which clearly implies (¢’).
To prove that (a)&(b)&(c") = (¢”") we argue as in the proof of the energy balance in [6,
Section 6] and we obtain

1 / |Vu(t)|2dxdy + Diss(u(-), s(-); 0, 1)
2 Jer

1 t
> - / IVu(0)2dxdy + / (/ Vu(r)Vu')(t)dxdy)dt.
2 Jo\r 0o \Javr
This inequality, together with (¢’) gives (c”) for #; = 0. The general case for (¢”’) follows by
additivity.
The implication (¢”) = (c¢) is an immediate consequence of Definition 2.6. ]

3 Some auxiliary results

In this section we prove a characterization of the solutions of the minimum problems con-
sidered in Lemma 2.8, which are connected with the equilibrium condition (b) in Definition
2.1. This is obtained by means of a suitable weak formulation of their boundary conditions
on I". In the last part of the section we present a technical result that will be crucial in the
proof of our main result in Sect. 4.
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It is convenient to introduce the notation
Hy p(2\T):={ueH' (2\T):u=00ndps}. (3.1)
We also set
aTU = dUE\ T, (3.2)
where U and U™ are the open sets introduced at the beginning of Sect. 2.

Lemma3.1 Lerw € H (2 \I'),se€la,blge LY(I"), and let u be the minimiser of

1
min (f/ |Vu|2dxdy+/ |[u]—g|dx). (3.3)
ueH 2\ 2 Jo\r rb

u=w on dp 2

Then there exists € L°°(I"), withy = 0a.e.on I’} and || < 1 a.e. on Fsb, such that

/ VuVedxdy = / Ylpldx forevery ¢ € HOl p(£2\1). 3.4
o\r r '
Proof Let ¢ € Hol,D(.Q \ I"). Since u + e = w on dp §2 for every ¢ € R, by minimality
1
5 [ v epPdxay+ [ g+ elonas
o\r ry

2
1 2
—— |Vu|“dxdy — [[u] — gldx > 0.
2 o\ ['Sb

Developing the square and using the triangle inequality we get

f/ |V<p|2dxdy+/ wwdxdy+/ lelldx = 0
2 Jo\r o\r b

s

for every ¢ > 0. Taking the limit as ¢ — 04 we obtain

/ VuVedxdy > —/ [l¢lldx.
o\r rb

Using the same inequality also for —¢, we deduce that
’ / VuVe dxdy‘ < / ll]ldx 3.5)
\r ry

forevery ¢ € Hy [, (22 \ I"). Given ¢ € H'(U™) with ¢ = 0 on 9*U, we can extend it by 0
and we obtain a function in Hol, p (82 \ I'). Therefore (3.5) gives

’/ Vqu)dxdy’f/ o™ |dx (3.6)
U+ o

for every ¢ € H'(U™) with ¢ = 0 on 37U, where g1 denotes the trace of ¢ on I" from
above. Moreover, (3.5) gives also

/ VuVedxdy +/ VuVedxdy =0 (3.7)
U+ U-

for every ¢ € HO1 U N ).
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Let u be the distribution on U N £2 defined by

(, @) ::/ VuVedxdy = —/ VuVedxdy
U+ -

for every ¢ € C°(U N £2). By (3.6) it is easy to prove that there exist € L°°(I"), with
Y =0ae.on/, and || <1ae.on Fs[’, such that

(,u,go):/ Yedx forevery ¢ € C2°(U N £2).
r

By density

/ Vquadxdy:/ Yedx and f Vquodxdy:—/ Yodx
U+ r - r

for every ¢ € HO1 U nNK).
Given ¢ € H'(U™T) with ¢ = 0 on 37U, we can extend it to a function belonging to
HO1 (U N £2). Therefore

/ VuVedxdy = / Yot dx (3.8)
U+ r
for every ¢ € H'(U™) with ¢ = 0 on 97U Similarly we prove that
/ VuVedxdy = —/ Yo~ dx (3.9)
- r

for every ¢ € H'(U™) with ¢ = 0 on 8~U, where ¢~ denotes the trace of ¢ on I" from
below. By taking the sum we get

/ VuV(pdxdy:/ Ylpldx (3.10)
U+tuu- r

forevery p € H'(UTUU ) withg =0ondTU UJ~U.

Let wy be a sequence in C2°(U N £2), with 0 < wy < 1, such that oy — 1 a.e.on I
Giveng € Hj (2 \I') we set ¢ := wrg and ¢ := (1 —wi)g. Then g € H'(UTUU™),
o =00ndTU UJ U, and @, € HOI,D(.Q \ I'). Moreover [¢r] — [¢] strongly in LY.
Since ¢ = ¢ + @ we have

/ VuVedxdy = / VuVerdxdy + / VuVgrdxdy. (3.11)
o\r U+tuu- o\r
By (3.10) we have
/ VuVerdxdy — / Ylpldx, (3.12)
Utuu- r
while (3.5) gives
‘ / VUV, dxdy’ < / [¢x]l dx — O. (3.13)
\r rp
Equality (3.4) follows from (3.11)—(3.13). m]

Lemma3.2 Letv, w € H (2 \I'), lets € [a, b], let g :== [v], and let u be the minimiser
of (3.3). Then the function \r introduced in Lemma 3.1 satisfies v = —1a.e.on{[u] > g}ﬂFSb
andy =1lae.on{lu] <g}n Fsb‘
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107 Page 14 of 40 G. Dal Maso, R. Toader

Proof Since U~ has Lipschitz boundary, there exist 1, v € H LU N §2) such that ii = u and
D=vinU".Letdi,d € H'(UN (L \ ")) be defined by /i := u —ii and 0 := v — 7, so that
it =[i]=[u]and 9t =[0] =[v]=gon [, whileii =9 =0in U .

Let A := {[u] > W} NTIY = {a* > 9} N I’ To prove that / = —1 a.e. on A it is
enough to show that

/1/f¢+dx+f ¢tdx =0 (3.14)
A A

forevery ¢ € H'(U™) with g = 0on 37U . Let us fix such a ¢ and for every k let ¢ := (¢ A
(kw))V (—kw) € HY(U), where w := (i1 —0) 0. We extend ¢ to £2\ I" by setting ¢ = 0
on 2\ (I"UU™). Since ¢, = 0on 37U, the extended function satisfies ¢ € HOI’D(.Q \ ).
For every & with |e| < % we have [e[@r]] < leg) | < o™ =@ =9 V0= (u]—[v) VO
a.e. on I 1t follows that

/ |[M]_[U]+5[§0k]|dx_/ [[u] — [v]ldx =/ 8[‘/’k]dx:/ g dx.
ry rp b rb

K K

By the minimality of u, repeating the argument at the beginning of the proof of Lemma 3.1
we obtain

2
£ Vo 2dxdy + ¢ / VuVgrdxdy + / egidx >0
2 Jer o\r ry

for every ¢ € (—%, %). Taking the derivative at ¢ = 0 and using (3.4) we obtain

/ Wp,jdx—l—/ w,jdx:O.
rb rb

Since {(pk+ #0}N I"Sb C A, we obtain

/wgozdx—i-/(p,jdxzo.
A A

Passing to the limit as k — oo we obtain (3.14).
The proof on the set {[u] < g} N 1"5}’ is similar. ]

Lemma3.3 Letw € H'(2\I'),s € [a,b],g € L'(I'),and letu € H'(2\ ') withu = w
on dp 2. Suppose that there exists W € L°°(I") satisfying (3.4) such that

Vv =0ae.onTl), (3.15)
Y =—lae onf{lu]l >gynry, (3.16)
Y =lae on{lu] <gyNr?, (3.17)
W] < lae onf{lul=g)NI?’. (3.18)

Then u is the minimiser of (3.3).

Proof Let us fix v € H'(£2 \ I') with v = w on dp$2 and let ¢ := v — u. Then ¢ €
Hol,D(Q \ I"). For every ¢ € [0, 1] we define

1
f(e) = 5/ IV(u+£<p)|2dxdy+/ |[u] — g + elglldx,
o\r rp
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and we set
£ = lim L& =/O
e—>0+ e
By convexity the limit exists and
f() = £(0) = £0). (3.19)

Since

rb

K

1
_7/ |w|2dxdy—/ ] — gldx.
2 Je\r rp

by (3.19) the minimality is proved if we show that

1
f'(l)—f(0)=5/ |Vv|2dxdy+/ o] — gldx
o\r

f1(0) = 0. (3.20)

By taking the derivative with respect to ¢ in the first term of the definition of f we obtain

1
£10) = / VuVedxdy + lim 7/ (|[u] — g+ elell — |[u] — g|)dx. (3.21)
o\r e—0+ & I

b

By (3.16) on {[u] > g} N I'” we have

1
8E)r(1)1+ g(l[u] — g +eloll — |lu] - gl) = [¢] = —¥lgl. (3.22)

By (3.17) on {[u] < g} N I"sb we have

1
lim —(|[u]l — g +elo]l = |lu] — gl) = —[¢] = —¥[]. (3.23)

e—>0+ &

Finally, by (3.18) on {[u] = g} N FSb we have

1
Jim g(l[u] — g +eloll — [ul — gl) = o]l = —¥lel. (3.24)
By the triangle inequality we have

1
E(l[”] —g+eloll — Iul — gl) = —llell

for every ¢ € (0, 1]. We can now apply the Fatou Lemma and from (3.22)—(3.24) we obtain

1
lim f/ (I[u]—g+8[§0]|—|[u]—g|)dxZ—/ Vlpldx.
ry rp

e—>0+ &

Using this inequality, together with (3.4), (3.15), and (3.21), we obtain (3.20). ]

The following technical result will be used in the proof of Lemma 4.5, which is crucial to
obtain our main result on the jerky crack growth. Let us fix a sequence §2; of open subsets
of §£2 with boundary of class C* such that £2; CC £ for every k and 2 \ I' = U £2;.
For every k we set (see Fig. 2)

Spi= 2\ (2,Ul). (3.25)
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Q

Fig.2 The sets £2; and Sy

We now prove the convergence to zero in L of the sequence of harmonic functions z; on
Sk which satisy the homogeneous Dirichlet condition on 92, the homogeneous Neumann
condition on 92, and the nonhomogeneous boundary condition %i‘f = 1 on both sides of I".
Forevery R > Olet Bg = {(x,y) € R? : x24+y? < Rz}andB;F ={(x,y) € Bg : £y > O}

Lemma 3.4 For every k let Sy be as in (3.25) and let zj be the solution of
zk € H'(Sp), zx =0a.e. on 382,
/ VzVedxdy = / (T + ¢ )dx (3.26)
fosrk every ¢ € H'(S) Cvith ¢ =0a.e.ond$2.
We extend zj. by setting zj := 0 in 2. Then zj — 0 strongly in L (2 \ I').
Proof We first prove that
zr — 0 strongly in H'(£2\ I'). (3.27)
By taking ¢ := z; in (3.26) we obtain

/ |Vzi|2dxdy = / |Vzi|2dxdy = / (zf +zp)dx. (3.28)
o\r S r

Since z; = 0 in £2, the Trace Inequality, together with the Poincaré Inequality, gives a
constant ¢ > 0 such that

172
/(z,j +z)dx < c(/ |Vzk|2dxdy)
r \r

for k large enough. Together with (3.28) this implies that Vz; is bounded in L2\ ),
hence z; is bounded in H!(£2 \ I'). Since z; = 0 in £2¢, we deduce that z; —0 weakly in
H'(2\ I'). This implies that z;” + z; — 0 strongly in L>(I"), and (3.28) gives Vz — 0
strongly in L%(82 \ I"). Since zx = 0 in £24, this proves (3.27).
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By the maximum principle we have
zk >0 in Sg. (3.29)

Indeed, if we take ¢ := z; A 0 in (3.26) we obtain

IV (zx A0)|2dxdy = /

Sk

VziVizi A 0)dxdy = / ((zf A0+ (z A0))dx <0.
Sk r
This inequality, together with the boundary condition on 02, implies that zy A0 = 0 in S,
which proves (3.29). Since z; € C°(S; U d$2;) by the regularity theory of elliptic equations,
(3.29) implies that aauk < 0 on 082, where v is the outer unit normal to S;. Hence

9
/ V2V dxdy = / Tk yds <0 (3.30)
Sk 982 ov

for every ¢ € HOI(Q\F)With(p >0in2\T.
Let us prove that

/ Vzi Vo dxdy 5/((p++<,0_)dx (3.31)
Q\r r

for every ¢ € H'(£2 \ I') with ¢ > 0. Let us fix such a ¢ and let w € Ceo (82 \ I') with
w>0in 2\ I and w = 1 in 2. Then we have

/ VziVedxdy = / VziV(wy) dxdy + / VziV((1 — w)p)dxdy (3.32)
o\ o\r o\r
By (3.30) we have
/ Vzi V(wp) dxdy < 0. (3.33)
o\r

Since (1 — w)p = 0 on 982 and (1 — w)e™ = ¢* on I', by (3.26) we have

/ Vi V(1 — w)g) dxdy = / (T + ¢ ) dx. (3.34)

o\r r

Inequality (3.31) follows from (3.32)—(3.34).
By the maximum principle we have

lzillzoonry < 2 + 2 llzeo(ry- (3.35)

Indeed, it M := IIZZr + z Loy and we take ¢ := (zx — M) Vv Oin (3.31) we obtain
/ |V((zk—M)v0)|2dxdy:/ VzrV((zr — M) v 0)dxdy <0,
o\r o\r

which, together with the boundary condition on 92, implies that (zy —M)Vv0 =0in 2\ I".
This proves (3.35).

Therefore, to prove the lemma it is enough to show that Z]:r +z; = 0in L®U"). We
shall prove only that zzr — 0in L°°(I"), since the result for z,” can be proved in the same
way. Let us prove first that z; is uniformly small in the intersection between U™ and a
suitable neighbourhood of (a, 0). Since U™ has Lipschitz boundary, there exist an open
neighbourhood V of (a, 0), a constant R > 0, and a bi-Lipschitz map @ : Bg — V such that
(] (B;) = U™ NV. To simplify the exposition we assume a = 0. Since part of the boundary
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of U™ near (a, 0) = (0, 0) is rectilinear, we may assume that there exists & > 0 such that @
is the identity map in the sector {(x, y) € Bg : 0 < y < ax} and that (b, 0) ¢ Bg.

Letvi(x, y) := zx(@(x, y)). By (3.31) and by well known properties of elliptic equations,
there exists a symmetric 2x2 matrix (g;;) of functions in L°°(B,J{), satisfying the uniform
ellipticity condition, such that

2
> / a;jdjuedip dxdy < / @ dx (3.36)
~ Bt IR
i,j=1 R 0

for every ¢ € H'(B}) with ¢ > 0'in B} and ¢ = 0 on 3" Bg := 9Bg N 3B}, where
J = iandazz ai

ax

Let H : R — R be the Heaviside function defined by H(x) = 1 forx > Oand H(x) =0
for x < 0. Since

Hoypdxdy = —/ @dx

+ R
BR FO

for every ¢ € HI(B;) with ¢ = 0 on 9% Bg, from (3.36) we obtain that

2
Z / a;jjojvpdi@pdxdy < —f Hoypdxdy (3.37)
= B+ B+
i,j=1""R R
for every ¢ € HI(B;{) with ¢ > 0in B;{ and ¢ = 0 on 3" Bp.

For every (x,y) € By, we define vi(x,y) := w(x, —y), a;j(x,y) := a;j(x, —y) for
i =j,aj(x,y) = —a;j(x,—y) fori # j. Note that vy € HY(Bp), a;j € L*(Bg), and
that the matrix (a;;) is uniformly elliptic in Bg. Moreover, we define F € L°°(Bg) as

—H(x) if (x,y) e B},

Flow = {H(x) if (x, y) € Bg.

For every ¢ € H! (Bg),withg > 0in B, and ¢ =0o0n 0~ Bg := dBg N dBy, we have

2 2
Z/ a;ijjvdipdxdy = Z /+aij8jvk8i<,23dxdy
B~ B

i,j=1 i j=I
/ Fdrpdxdy = —/ Hoypdxdy.
By By

where ¢(x, y) := @(x, —y). Therefore (3.37) yields

2
2/ aijajvkaiwdxdyff Fdpdxdy, (3.38)
i,j:l BR BR

for every ¢ € Hj (Bg) with ¢ > 0.
Given 0 < r < R, let v be the solution of the problem
v € HJ(B,),

2 (3.39)
Z / a,-_,-a,u“)aw dxdy = / Fddxdy forevery ¢ € H'(B,). ’

— JB, B,

ij=1°" !
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Then vy = v + v where v ) e H! (B,) and

Z/ aijdjv dpdxdy <0, (3.40)

i,j=1

for every ¢ € HO1 (B;) with ¢ > 0.

By (3.39) and by the global estimates for solutions of Dirichlet problems for elliptic
equations with bounded measurable coefficients (see [16, Théoreme 4.2]) for every p > 2
there exists a constant K, > 0, independent of r, such that

. _2
sup (V)| < Kpl|FllLecs,yr' 7. (3.41)
B,
By (3.40) and by the local estimates for sub-solutions of elliptic equations with bounded
measurable coefficients (see [16, Théoréme 5.1]) there exists a constant K > 0, independent
of k, such that

sup v,ﬁ'i) < K / |v 2dxdy
B2

Since vy = v + v,ﬁ'ﬁ), from these inequalities we get

1 12 _2
sup v < K(—Z/ |vk|2dxdy) +K,(K + DIFlleogyr' 7. (3.42)
BJ'/Z r By

Since v (x, y) := zx(®(x, y)) = 0 on B}, by (3.27) we have that vy — 0 strongly in
L2(BI'§) and by (3.42) we have

_2
lim supsup |zx| < K, (K + DIF Lo, 7.

k—o00 V,- /2
where V,.» := (D(Br /2) Therefore, for every ¢ > 0 there exist ko and a neighbourhood W
of (a, 0) such that
sup |zx| <e (3.43)
wnuU+
for every k > kg. In a similar way we can prove the same result in a neighbourhood of (b, 0).
For every a < x < b the local estimates at the boundary for solutions to Neumann

problems, together with (3.27), imply that there exist kyp and a neighbourhood W of (x, 0)
such that (3.43) holds. By a covering argument we conclude that zz,r — 0in L>®(I). ]

We now use the previous lemma to show that the displacement u corresponding to a
quasistatic evolution is bounded in L provided the same property holds for the boundary
value w.

Corollary3.5 Let T > 0, so € [a,b), w € AC([0,T]; HY(2 \ I;%)), and let (u, s) be a
quasistatic evolution with boundary value w on dp$2 according to Definition 2.1. Assume
that w(t) is bounded in L°°(82) uniformly with respect to t. Then there exists a constant
M > 0 such that

lu@llLe@\r <M (3.44)
foreveryt € [0,T].
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Proof Let us fix k and let £2, Sk, and z; be as in Lemma 3.4. Since u(¢) is harmonic in
§£2\ I', by (2.4) and by the Mean Value Theorem there exists a constant My such that

max [u(f)| < My (3.45)
2

for every ¢ € [0, T]. It is not restrictive to assume that
My = lw(t)|p~(e) foreveryt el[0,T]. (3.46)
Using the standard argument that leads to the maximum principle we now prove that
] = My + zr in Sg. (3.47)

By the equilibrium condition (b) in Definition 2.1 and by Lemma 3.1 for every ¢ € [0, T']
there exists ¥ (t) € L°(I"), with || (#)]lzo(ry < 1, such that

f V() Ve dxdy = / ¥ (0)lgldx
Sk r
for every ¢ € H'(Sp) with ¢ =0on a2 UadpS2. By (3.26) we have
/ V(M + zx)Vedxdy = / (T +¢7)dx
Sk r

forevery ¢ € H'(S)) with ¢ = 0 on 3£2;. Subtracting the first equality from the second one
we get

/S V(M + 21 — u(0) Vo dxdy = /F (1= ¥ O)p* + (1 +vO)p ) dx (348)
k

for every ¢ € H'(Sy) with ¢ =0o0n a2 UadpS2. Letus take ¢ := (My + zx — u(t)) A O.
Since zx = 0 on 082 and My — u(¢t) > 0 on 082 by (3.45), we have that ¢ = 0 on 2.
Since zx > 0 on dp 2 by (3.29) and My — u(t) = My — w(t) > 0 on dpS2 by (3.46), we
have also ¢ = 0 on dp §2. Therefore (3.48) gives

/ V(M + z; — u(t))V((Mk +zr —u()) A 0) dxdy < 0.
Sk

This gives (My 4z —u(t)) A0 = 0in Si, which implies u(¢) < My + z; in Si. In the same
way we prove that —u(t) < My + zj, obtaining (3.47). This inequality together with (3.45)
yields (3.44), since z; € L°°(S;) by Lemma 3.4. m]

4 The jerky growth of the cracks

In this section we prove the main result of the paper: under suitable continuity assumptions
on the boundary datum w, for every quasistatic evolution (u, s) the nondecreasing function
s is piecewise constant. In other words, the crack grows only through sudden jumps. More
precisely, we obtain the following result.

Theorem 4.1 LetT > 0,50 € [a, b),andw € AC ([0, T1; H (2\I;*)NCO([0, T1; L*°(£2)).
Let (u,s) be a quasistatic evolution with boundary value w on dp$2, according to Def-
inition 2.1. Then there exist a finite number of times ty, t1, ..., ty, with 0 = to < t; <

- < ty—1 < tyw = T, and a finite number s, 52, ..., Sy of elements of [so, b], with
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50 <81 <82 < <Sp—1| < Sm < b,suchthat for every j =1,...,m we have s(t) = s;
foreveryt € (l‘jfl, tj).

Remark 4.2 The previous theorem does not exclude that s; #~ 5(0), i.e., the constant value of
s(¢) in the interval [0, #1] might be different from s(0). This means that a jump of the crack
might occur at + = 0. However, if we take u(0) = 0, the energy-dissipation condition (c) in
Definition 2.1 gives

1/ |Vu(t)|2dxdy+s(t)—s(0)+/ [u()]|dx
2Javr i

t
< / (/ Vu(r)Vzb(t)dxdy)dt, 4.1
o \Ja\r
which implies, by (2.3) and Theorem 4.1,

12 ' N 172
51— 5(0) = 5(1) — 5(0) < M| (/ [Vio(r) Pdxdy) .
o NJewr

for every ¢+ € (0, #1). Taking the limit as + — 04 we obtain that s; = s(0). Therefore,
Theorem 4.1 implies that, if #(0) = 0, then s(¢) = s(0) for every ¢ € [0, ).

We now fix the notation we are going to use in the lemmas that will lead to the proof of
Theorem 4.1. Let (u, s) be a quasistatic evolution with boundary value w on dp §2, according
to Definition 2.1. For every 1, t» € [0, T], with #; < t,, we define

15
w12 = (], ©) = / ’ (/ Vu(t)Vu';(t)dxdy)dz
oI 4.2)

1
- 5/ (Vu(tz) + Vu(t1))(Vw(tz) — Vw(ty))dxdy.
o\r

Note that w12 can be interpreted as the difference between the integral on [t1, t2] of the
function 7 +— f:z\r Vu(t)Vw(t)dxdy and its approximation obtained by replacing Vu(z)
with (Vu(t) + Vu(t))/2.

To simplify the notation we set

up =u(t;), wi =w(), si =s). 4.3)

By the equilibrium condition (b) we can apply Lemma 3.1 and we obtain that fori = 1,2
there exists ¥; € L°°(I") such that

Y; =0ae.on T, and | ;| < 1l ae.on Fsl,]7 (4.4)
/ Vu;iVodxdy = / Yilpldx forevery ¢ € HOI’D(.Q \TI). 4.5)
o\r r

The first step in the proof of Theorem 4.1 is given by the following result.

Lemma 4.3 Under the assumptions of Theorem 4.1,let 0 < t; < tp < T, and let u;, w;, s;,
Y, and w1 2 be as in (4.2)—(4.5). Then

1
3 / Yiluz —urldx
Iy}

1
+5/(¢1 +Y)us —uildx +s2 — 51 +/ [[uz —ulldx < wi 2. (4.6)
r Iy,
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Moreover, there exists a constant M, independent of t1, t2, 51, and sy, such that

1
—*/ [[uz —uilldx +s2 —s1 < w12 4.7
2 1-_";‘12

1
5/ (¥ +¢2)[uz—u1]dX+/ [uz —uilldx < M(sy —s1) + w1 2. (4.8)
rh rp

52
Proof By the energy-dissipation inequality (condition (c) in Definition 2.1) we have
1

*/ (Vuz + Vu)(Vuz — Vuy)dxdy + 52 — 51 +/ [[u2] — [u1]ldx
2Jar r

n
< / ( / Vu(t)Vu';(t)dxdy)dt. (4.9)
1 \I

Weseto := (uz2—uy)—(wz—w;) and observe that ¢ € HOI!D(.Q\F) and that [¢] = [up—u]
on 1_}? By (4.4) and (4.5) we obtain

1
f/ Vur(Vuy — Vuy)dxdy
2 Ja\r
1 1
= f/ VuVedxdy + 7/ Vuy(Vwy — Vwi)dxdy (4.10)
2 Ja\r 2 Ja\r

1 1
= f/ 1//2[u2—u1]dx+f/ Vuy(Vwy — Vwy)dxdy.

In the same way we obtain

1

7/ Vui1(Vuy — Vuy)dxdy
2Jo\r

1 1
= — / Yilup —upldx + 7/ Vui(Vwy — Vwy)dxdy.
2Jre 2 Jar

This equality, together with (4.2), (4.9), and (4.10), gives (4.6).

Since || < la.e.on I" fori = 1,2, we have %(WI + Y)ur —ur] + |[ug —ur]l =0
and Y[y — u1] > —|[ua — u1]| a.e. on I". Therefore (4.6) implies (4.7).

By Corollary 3.5 there exists a constant M, independent of 71, 7, s1, and s7, such that

Wz —u1l| <2M onT.

Since || < 1 a.e. on Fff, this implies that
1
3 / , Wil —uildx s =51 2 (=M + D(s2 = s1) =2 =M(s2 = 51).
s

This inequality, together with (4.6), gives (4.8). O

To continue the proof of Theorem 4.1 we want to show that under suitable assumptions
onty, t, 1, s2 we have

[ —ui]l <1 aeonl. 4.11)
This inequality, together with (4.7), gives
52— 81 < 201, 4.12)
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which is an important intermediate result in the proof. The next lemma is the first step in the
proof of (4.11).

Lemma 4.4 Under the assumptions of Theorem 4.1, for every ¢ > 0 there exists § > 0 such
that

lwa — willLe2) < &, (4.13)
||M2_M1||H1(_Q\r) <eg, (4.14)
whenever
0<t1<tp<T and th —t <394, (4.15)
S0<S81<s<b and sy —s1 <39, (4.16)

where u;, wi, and s;, i = 1,2, are defined as in (4.3).

Proof Given a pair of sequences ], ty € [0, T], with 1] < t7, we set u! := u(t"), w} :=
w(t!"), si' == s(t]'), and @] , := w(t], ty), where w is defined in (4.2). To prove the lemma
it is enough to show that

wh —w] — 0 strongly in L*°(£2), 4.17)
uy —u{ — 0 strongly in HY 2\ D), (4.18)

assuming that #j —¢{' — O and s —s{ — 0. The convergence of w5 — w{ follows from the
fact that w € C°([0, T]; L®(£2)). Note that by Remark 2.2, the convergence ty —tf =0
implies that  , — 0, since w € AC([0, T']; HY(£2\ I}")). By compactness we may also
assume that there exists #, € [0, T] and s, € [so, b] such that 1! — #,, 1] —> t, S| —> S,
and 5§ — .

By Remark 2.2 a suitable subsequence satisfies uj' — u} weakly in H 1(§2\ I') for some
ur e H'(2\I),fori = 1, 2. This implies in particular that [u?] — [u}] strongly in L2(I).
Since w! — wy 1= w(ty) strongly in H 1(£2\ I}"), from the minimality of u! and Lemma
2.8 we deduce that u] — u} strongly in H'(£2\ I') and that

l * 2 1 2 _ *
IVui|“dxdy < |Vv|*dxdy + [[v] — [u; ]|dx
2 Jo\r 2 Jo\r r

forevery v € HY (2 \ I') with v = w, on dp £2.

By the Euler condition (see Lemma 3.1) we obtain that there exist /' € L°°(I"), with
[¥/'| < lae. onl and ¥/ € L°°(I"), with [*] < 1 a.e. on I', such that fori = 1,2 we
have

A

/ Vu!Vodxdy = / Vi'lpldx forevery ¢ € HOI,D(.Q \ I') and every n,
o\r r
/ Vu!Vedxdy = / Yilpldx forevery ¢ € Hl (2 \ ). (4.19)
o\r r ’

Therefore the convergence of u? to u} in H'(£2 \ I') implies that " — y* weakly* in
Lee(I).

Since %(1//{7 + i) [uy —u'{ 1+ |[u —u{1] = 0 (which follows from the fact that ['| < 1)
and a){"z — 0, by (4.8) we have

1
5/ W+ ¥)lus —u’f]dx—i—/ [[u — u{lldx — 0.
r r
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This implies that
1
—f WF + Y5 — ulldx +/ I — )l dx = 0.
2Jr r

Since %(Iﬁf + Yl — uil+ w3 — uill > 0, we deduce that %(wl* + YDl —uil+
[[u5 — u7]| = 0 a.e.on I'. Using the inequality |1/*| < 1 a.e. on I", we obtain ¥ = 3 on

{[u3 — uil # 0}.
Asuf =ul =w* ondp$2, we have uj — uj € Hol,D(.Q \ I'). By (4.19) we have

/ V(uy —up)Vedxdy = / (5 — ¥ )lpldx forevery ¢ € H()I,D(Q \TI).
\r r

Taking ¢ = u3—uj wededuce that Vu] = Vuj, whichimplies u} = u},sinceu} = u5 = w*
on dp §2 and (2.1) holds. Therefore the strong convergence of u? to u implies (4.18). Since
the result does not depend on the subsequence, (4.18) holds for the whole sequence. O

We now complete the proof of (4.11).

Lemma 4.5 Under the assumptions of Theorem 4.1, there exists 59 > O such that (4.11)
holds whenever

0<ti <t <T and tp —t; <o, (4.20)
S0 <851 <s$<b and sy —s1 <o, 4.21)
where u; and s;, i = 1, 2, are defined as in (4.3).

Proof Let £2; be a sequence of open subsets of {2 with boundary of class C* such that
Q) CC $2¢41 forevery k and 2\ I' = Uy £2;. For every k let S; and z; be defined by (3.25)
and (3.26). By Lemma 3.4 there exists ko such that

lzko l Lo (s4,) < 1/8. (4.22)

We fix p > 0 such that B, (xo, yo) C 2\ I" for every (xo, yo) € §k0~ By the Mean Value
Theorem we have

1 1
[(u2 —u1)(x0, yo)| < — lug —uyldxdy < ——luz —uillp2\ry (4.23)
7% JB, (030 m!2p '

for every (xo, y0) € $2k,- We now fix 0 < g9 < 1/4 such that e9/(7'/?p) < 1/4. The
constant § given by Lemma 4.4 for ¢ = o will be denoted by &g. If (4.20) and (4.21) hold,
by (4.23) we have

(2 — up)(xo. yo)l < § for every (x0. y0) € 2. (4.24)
Using the standard argument that leads to the maximum principle we now prove that
luz —uy| < % 4224, in S, (4.25)
By (4.5) we have

V(uy —u)Vedxdy = /F(l/fz —Y)leldx

/S’VO

for every ¢ € Hl(SkO) with ¢ = 0 on 982y, U dp£2. By (3.26) we have

J

VG + 25 Vodrdy = [ 2" +97)dx
r

ko
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forevery ¢ € H 1 (Sk,) with ¢ = 0 on 9£2;,. Subtracting the terms of the first equality from
those of the second one we get

fS V<§+2z;q,—uz+u1)wdxdy=/F((2—wz+w1)¢++<2+w2—w1)¢—94m)
ko

forevery ¢ € Hl(SkO) with @ = 0 on 082, Udp§2. Letus take ¢ := (i—i—szO —ur+up)AO.
Since zj, = 0 on 9d£2, and % —up +uy > 0 on 082, by (4.24), we have that ¢ = 0 on
382k, Since z, = 0on dps2 by (3.29)and  —us +uy = § —wy + wy > 0on dp2 by
(4.13), we have also ¢ = 0 on dp £2. Therefore (4.26) gives

/S V(& + 225 —uz + u)V((§ + 224y — uz + u1) A 0) dxdy < 0.
ko
This gives (§ + 22k, — uz + u1) A 0 = 0 in Sk, which implies us — u; < % + 2z, in Sy,.
In the same way we prove that ] — up < % + 2zy,, obtaining (4.25).

By (4.22), (4.24), and (4.25) we obtain |up — u| < % in £2 \ I'. This implies that
|u3‘—uf| < %and luy —uy| < %on I, which give (4.11). m]

Inequality (4.11), together with (4.7), gives the following result.

Corollary 4.6 Under the assumptions of Theorem 4.1, let 8¢y > 0 be the constant introduced
in Lemma 4.5. Let t1, tp € [0, T], with t| < tp, and let sy, 52, and w2 be defined by (4.2)
and (4.3). If (4.20) and (4.21) hold, then (4.12) is satisfied.

We now consider an interval [, 72], with no restriction on its length. Iterating esti-
mate (4.12) on the intervals of a suitable subdivision we obtain an estimate on the difference
s(72) — s(71).

Lemma 4.7 Under the assumptions of Theorem 4.1, let 8o > 0 be the constant introduced in
Lemma 4.5 and let 11, 2] C [0, T]. Suppose that there exists a finite subdivision 11 = ty <
t < -+ <ty = 1) of the interval [t1, T2] such that

tj—tj—1 < o and S(Zj) — S(tj_l) < 8o 4.27)

forevery j =1,...,m.Then

() —s(1) <2 w(tj-1.1)), (4.28)
j=1

where w is defined by (4.2).
Proof It is enough to apply Corollary 4.6 to each interval [¢;_1, ¢;]. O

To conclude the proof of Theorem 4.1 we have to show that, under suitable assumptions,
it is possible to find a subdivision such that (4.27) holds and the right-hand side of (4.28)
is arbitrarily small. We shall see (Corollary 4.11) that the latter property is related to the
approximation of a Lebesgue integral by its Riemann sums.

As for (4.27), it is clear that the second inequality follows from an estimate on ¢; — ;|
when s is continuous. The following lemma shows that this happens even if s is discontin-
uous provided it is nondecreasing and its jumps have an amplitude less than &g. For every
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nondecreasing real-valued function s defined on an interval [ty, 2] and for every ¢ € [11, 172]
we define

[s1(2) == s(t+) —s(t—),
where s(#+) and s(¢r—) are the right and left limits of s at ¢, with the convention s(t;—) =
s(t1) and s(2+) = s(12).
Lemma 4.8 Let 11 < 1 andlet s: [t1, 12] — R be a nondecreasing function. Let 59 > O be
such that [s](t) < &g for every t € [11, 12]. Then there exists no € (0, §o] such that

s(ty) —s(ty) < 8o foreveryty, tr € [11, 2l with0 < to — t; < np.

Proof Let J be the set of jump points of s, which is at most countable. Let us prove that

sup[s](t) < do. (4.29)

tel

This is trivial if the supremum is zero. Otherwise we fix 0 < &1 < sup,c;[s](t) and we
observe that

sup[s](¢) = max[s](r) < do,
red =

where F is the finite set defined by F| := {t € [t1, ©2] : [s](#) > §1}. This concludes the
proof of (4.29).
Let §, be such that

sup[s](t) + 282 < do. (4.30)

teJ

Let us decompose s as s = s; + s¢, where s; is the pure jump component of s defined by

s =s) —se=)+ Y 510, (4.31)

tel, <t

while s is its continuous component.
Let n1 > 0 be such that

se(t2) — sc(t) < 82 (4.32)
whenever 0 < t, — f1 < 11. On the other hand there exists a finite set F» C J such that
> Is10) < 8. (4.33)
teJ\Fy

Since F» is finite, the distance between any two distinct points in F, is larger than some
constant 7o > 0.

Set no :=n1 A2 Adpandlettq, tr € [t1, 2] with 0 < 1, — ] < ng. First of all we note
that [#1, ] contains at most one point T € F5. Then, by (4.31)—(4.33), we have

s(t2) — s(t1) = 5;(t2) — 5;(t1) + sc(t2) — sc(t1) < 82 + [s1(7) + 2.

By (4.30) the conclusion follows. m}

Combining Lemmas 4.7 and 4.8 we obtain the following result.
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Lemma 4.9 Under the assumptions of Theorem 4.1, let 50 > O be the constant given by
Lemma 4.5, and let F be the finite set defined by

F:={te[0,T]:[s](t) > 8o}.
Let Ty, 1 € [0, T], with T < 12, be such that
[t R]INF =9,
andletty =ty < t; < --- < tp, = 13 be a subdivision of the interval [t1, t2] such that
ti—ti_1 <o (4.34)

for every j = 1,...,m, where ng is the constant introduced in Lemma 4.8 corresponding
to 8y. Then (4.28) holds.

Proof By Lemma 4.8 the inequality (4.34) implies the second condition in (4.27), so that the
conclusion follows from Lemma 4.7. O

The following proposition, related to the approximation of a Lebesgue integral by suitable
Riemann sums, will be used to show that the right-hand side of (4.28) can be made arbitrarily
small by a suitable choice of the subdivision.

Proposition 4.10 Let H be a Hilbert space, let 11 < 1, and let f,g: [t1, 2] — H be
Bochner integrable functions. Assume that there exists a constant M > 0 such that || f (¢)|| <

M for every t € [11, 12], where || - || denotes the norm in H. Then for every integer k > 1
. : T __ 4k k k k k 1 -
there exists a subdivision T =15 <1t < -+ < Iy = T2 such that 1=t 1 =1 for every

1 <j <mypand

k%) LS t];
[ s = jim > f, s s
Y (4.35)

mg [;f
J— 1 k
= lim ; /A L s

where (-, -) denotes the scalar product in H .

Proof A direct proof of (4.35) can be obtained by adapting the proof in [8, page 63]. We
provide here a short proof based on [4, Lemma 4.12], which guarantees for every k > 1 the
existence of a subdivision t; = t('j < t{‘ << t,’,‘lk = 13 such that t;‘f - t‘];tl < % for every
1 <j <myand

my ,j{
: k
3 / V0= reiar—o. (436)
Let us define F: [11, 72) — H by
mp mp
() i= £ = D FDx O =D (F O = FE g, ().
j=1 ‘ j=1

By (4.36) we have F; — 0O in LY([t1, ™); H). Since |Fr(®)|| < 2M forevery t € [11, T2)
and g is Bochner integrable, we obtain that

/ Q(Fk(t), gt))dt — 0, 4.37)
71
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which gives the first equality in (4.35). The second one can be proved in the same way. 0O

Corollary 4.11 Under the assumptions of Theorem 4.1, let 1, T2 € [0, T, with 1) < 12, and

let w be defined by (4.2). Then there exists a sequence of subdivisions 1) = t(l]‘ < t{" <<
k

t

_ kL k 1, . i .
my = T2 such that ti—=ti = Efar every 1 < j <my and

mg
lim Y w5 =o0.
k—)oo,X; (171 '])

/:

Proof 1Tt is enough to apply the previous proposition with X := L2(£2 \ I'; R?), f(t) :=
Vu(t), and g(t) := Vw(?). m]

Proof Let §o > 0 be the constant introduced in Lemma 4.5, let ng > 0 be the constant
introduced in Lemma 4.8 related to ¢, and let F be the finite set defined by

F:={tel0,T]:[s](t) =60} U{0, T}

Let 7y, 72 € [0, T'] be such that 7y < 12 and [71, 2] N F = #. By Corollary 4.11, for
every ¢ > 0 we can find a finite subdivision 711 = 1y < t; < --- < t,,, = 1 of the interval
[t1, 2] such that¢; — ;1 < no forevery j =1,...,m and

m
2Za)(tj_1,lj) < é&.

j=1

By Lemma 4.9 we obtain s(12) — s(t1) < ¢&. By the arbitrariness of ¢ we deduce that
s(t2) < s(t1) and by monotonicity we deduce that s is constant on the interval [z, 72]. It
follows that s is constant in each connected component of [0, T] \ F. This concludes the
proof. O

To prove the regularity of u on [0, T] \ {t0, 1, ..., t,}, it is convenient to introduce a
different notion of quasistatic evolution in which the crack does not grow.

Definition4.12 Let T > 0, so € [a,b), and w € AC([0, T]; H' (22 \ I;")). A quasistatic
evolution with fixed crack and boundary value w on dp £2 is a functionu: [0, T] — H L2\
I') such that

(ap) (measurability) u: [0, T] - H 1(§2 \ I') is measurable;
(bo) (equilibrium) for every ¢ € [0, T'] we have u(¢t) = w(¢t) on dp$2 and

1

1
= / |Vu(t)*dxdy < = / |Val*dxdy + / |[2] — [u()]ldx,
2Jar 2Ja\r ry

forevery i € H'($2 \ I') with i = w(r) on dp £2;
(co) (energy-dissipation inequality) for every 1, t» € [0, T], with #; < t, we have

1
3 f |Vu(tr)*dxdy + / [(12)] — [u(t)]ldx
o\ rja

1 o
< f/ |Vu(t1)|2dxdy+/ (/ Vu(r)Vu')(r)dxdy)dr.
2 Ja\r I \r
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Remark 4.13 Taking &t = w(¢) in condition (bg) above we obtain that there exists a constant
M > 0 such that

1
7/ |Vu(t)*dxdy < M +/ [[u(@)]|ldx foreveryt e[0,T]. (4.38)
2 o\ rb

50

By (2.1) and (2.2), the Trace Inequality, combined with the Poincaré Inequality, implies that
there exists a constant ¢ > 0 such that

12
/ u()]ldx < c(/ |Vu(t)|2dxdy) te
s o\r

This inequality and (4.38) imply that Vu(z) is bounded in L2 uniformly with respect to 7.
Together with the measurability of # > u(¢) this ensures that the last integral in condition (cq)
above is well defined.

Theorem4.14 Let T > 0, so € [a,b), and w € AC(0,T]; H' (2 \ I}")), and let
u:[0,T]— H! (82 \ I') be a quasistatic evolution with fixed crack and boundary value w.
Thenu € AC([0, T]; H'(£2\ I,°)) and

12 2} 12
( / \Vu(ty) — Vu(r1)|2dxdy) < / ( / |Vu')(r)|2dxdy> dr (4.39)
o\l 7 o\r

forevery t;, o € [0, Tl with 71 < 13.

Proof The proof is taken from [3, Theorem 5.2], with obvious simplifications. Let us fix
71, 72 € [0, T] with 71 < 12. From the energy-dissipation condition (cp) between t; and 7,
we obtain

1

5/ IVu(rz)Izdxder/ [[u(T2)] — [u(z1)]ldx
o\ r;(’)

) o (4.40)
< f/ \Vu(r)2dxdy +/ (/ Vu(t)Vu'}(t)dxdy)dr.

2 Ja\r T \r

The Euler equation corresponding to the equilibrium condition (bg) of Definition 4.12
(see Lemma 3.1) implies that

—/ Vu(t))Vedxdy < / [lplldx forevery ¢ € HOID(.Q \I).
o\r b ’

I,

Taking ¢ := u(r2) — u(r;) — (w(r2) — w(r1)) we obtain

- / Vu(t))Vu(r) dxdy + / |Vu(ty)|>dxdy
Q\Ir or

(4.41)

< _/Q\r Vu(‘L'l)(Vw(‘L’z)—Vw(‘l.'l))dxdy—i-/ [[u(T2)] — [u(t)]ldx,

5
where we have used the fact that [w(71)] = [w(r2)] = 0 on 1"52 Adding (4.40) and (4.41)

we get

l/ |Vu('[2)—Vu(7:1)|2dxdy§/2(/ (Vu(r)—Vu(rl))Vu')(r)dxdy)dr.
2Ja\r 7 \r

Since this holds for every 7o € (11, T], by the Gronwall Inequality we obtain (4.39)
for every 1o € (t1, T']. This inequality, together with the integrability of the function 7 +—
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(Jorr Vair(r)[2dxdy)'/?, implies that Vi € AC([0, T]; LX(2 \ I'; R2)). Since u(t) =
w(t) on dp£2, by (2.1) and the Poincaré Inequality we conclude thatu € AC ([0, T']; H! (£2\
). o

Theorem 4.15 Under the assumptions of Theorem 4.1, for every j = 1, ..., m there exists
u/ € AC([tj—1,t;]; H'(£2\ IN) such that u(t) = ul (t) for everyt € (tj—1,1)).

Proof Let us fix 1 < j < m. By Theorem 4.1, we have s(t) = s; for every t € (t;_1,t;).
Therefore for every 71, 12 € (tj_1, tj) with 7] < 12, the function u is a quasistatic evolution
with fixed crack in the sense of Definition 4.12 on the interval [7], 12].

By Theorem 4.14 we obtain (4.39) for every [11, T2] C (¢j—1, ;). This shows that the
restriction of u to the open interval (¢;_1, ¢;) can be extended to an absolutely continuous
function u’: [tj_1,t;] > HY(2\ I). o

Remark 4.16 Besides the assumptions of Theorem 4.1, suppose also that w(0) = u(0) =0
and that 5(0) = so. Then there exists u' € AC([0,#1]; H'(2 \ I")) such that u(t) = u'(¢)
forevery ¢t € [0, t1). Indeed, (4.1) implies that u#(¢) — 0 strongly in HY(2 \I")ast — 0+.

Theorem 4.17 LetT > 0,50 € [a, b), and w € AC([0, T1]; H' (£2\ I}°)). Let uy, u» be two
quasistatic evolutions with fixed crack and boundary condition w on dp 2. If u1(0) = u3(0)
then uy(t) = us(t) for everyt € [0, T].

Proof The proof is taken from [3, Theorem 5.9], with obvious simplifications. Since
u, € AC([0,T]; H'($2 \ I')) by Theorem 4.15, from the energy-dissipation condition
(co) (dividing by t, — t1, and passing to the limit as #1, f, — ), we obtain

/ Vuy (1) (Viia (1) — Vib(t))dxdy < —/ [z ()] dx (4.42)
\I" b

I,

forae.r € (0, 7).

On the other hand, for every ¢ € [0, T], the Euler equation (see Lemma 3.1) for the
equilibrium condition (bg) for u; gives that there exists 1 () € LOO(I"S](;) with |y (1)] < 1,
such that

/ Vu1(t)Veodxdy = / Y1(®)[pldx forevery ¢ € H(} p(£2\T). (4.43)
o\r rh '

Since us (1) = w(r) on dp$2 forevery r € [0, T]and us € AC([0, T]; H'(£2\ I')), we have
that 11 () — w(t) € Hol,D('Q \I') fora.e.t € (0, T). Using ¢ = —(1in(¢) — w(z)) in (4.43)
we obtain

— / Vu (1) (Vi (1) — Vi (1))dxdy = — / Y (O (1)]dx (4.44)
\r )
forae.t € (0,T). Since |1 (¢)| < 1, adding (4.42) and (4.44) we get
/ (Vua (1) = Vu (1)) (Vita (1) — Vi ())dxdy <0 (4.45)
o\r

fora.e.t € (0, 7).
In a similar way we obtain

/ (Vur(t) = Vua (1)) (Vier (1) — Vi (1))dxdy < 0 (4.46)
o\
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fora.e.t € (0, T). Adding (4.45) and (4.46) we have
/ (Vua (1) — Vui (1)) (Vita(t) — Vit (1))dxdy < 0 (4.47)
o\

fora.e.t € (0, T). This implies that the absolutely continuous function ¢t f o\r [Vus (1) —

Vui (t)l2 has a nonpositive derivative a.e. in [0, T'], thus it is nonincreasing. Since it is O at
t = 0 we conclude that Vu () = Vua(¢) for every t € [0, T]. Since u1(t) = uz(t) = w(t)
on dp 2 we deduce that u () = ua(¢) forevery ¢t € [0, T] by (2.1). O

The following corollary is an immediate consequence of Remark 4.16 and Theorem 4.17.

Corollary 4.18 Besides the assumptions of Theorem 4.1, suppose also that w(0) = u(0) =0
and that s(0) = so. Then u is uniquely determined in the interval [0, t1).

5 An example
In this section we describe an example of quasistatic evolution (u, s) where s is not constant.
We consider here

2 :=(a,b) x (—=h,h), I :=la,b]x{0}, 0pS2:=la,b] x {—h,h}, (5.1)
for some & > 0. Therefore we have 217 = (a, b) x (0, h) and 8;.{2 = [a, b] x {h}. The

boundary condition at time ¢t € [0, T] will be u(¢) = t on [a, b] x {h} and u(t) = —t on
[a, b] x {—h}. This leads to the following choice for w(t) € H'(£2):
w(t)(x, y) = t%. (5.2)

Let zg € H'(§£21) be the solution of the problem

AZO =0 in .Q+,
20:0 ify:/’l,

%0 =0 ifx=aandx =b, (5.3)
%i;:o ifa <x <spandy =0,
38‘%:1 ifso<x <bandy=0.

We shall prove that zg € C 0(54_) (see Remark 5.6 and Lemma 5.7 below). We define z( in
27 by

zo(x,y) := —zo(x, —y) forevery (x,y) € 2.

Theorem 5.1 Let 2, I", 0p §2, and w be as in (5.1) and (5.2). Let T > 0, sg € (a, b), and let
(u, s) be a quasistatic evolution with boundary condition w on dp §2 and initial conditions
u(0) = 0 and s(0) = so. Assume that
T >T,:=—infzy and / |Vzol2dxdy + so > b, (5.4)
2+ o+

where z is defined by (5.3). Then s(t) takes at least two distinct values in two nondegenerate
intervals.
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Remark 5.2 Since zo(x, y) — y assop — a-, the second inequality in (5.4) is surely satisfied
if h > 1 and s is sufficiently close to a.

To prove Theorem 5.1 we shall construct a quasistatic evolution u, with fixed crack and

boundary condition w such that #,(0) = 0 and
t+ zg in 21
ue(t) = —t+4zp In2°7 >3

for every t > T,. If we had s(t) = so for every ¢ € [0, T], by the uniqueness result proved
in Theorem 4.17 we would have u(t) = u.(¢) for every ¢ € [0, T]. On the other hand, we
shall see that, if f(ﬁ |Vzo|2a’xdy + 5o > b and condition (5.5) holds, then (u.(¢), sg) does
not satisfy the equilibrium condition (b) in Definition 2.1. This contradiction shows that s
cannot be constantly equal to so.

The construction of u, requires a careful analysis of the properties of the solutions of
some auxiliary minimum problems. Due to the symmetry of the data we shall work in 2.
This is justified by the following remark.

Remark 5.3 Since w(t) is odd with respect to y, a function u,: [0, T] — HY (R \INisa
quasistatic evolution with fixed crack and boundary condition w if and only if it is odd with
respect to y and satisfies the following conditions

(ap) (measurability) u,: [0,T] - H L(27) is measurable;
(bo) (equilibrium) for every ¢ € [0, T'] we have u.(t) =t on 82;9, and

1 2 1 ~2 P
- [Vu,(t)|"dxdy < = |Vi|“dxdy + ™ —uy (t)|dx (5.6)
2 o+ 2 N+ rb

50

forevery i € H'(22") with i = ¢ on 9} £2.
(cp) (energy-dissipation inequality) for every t1, t, € [0, T], with #; < f», we have

1
*/ |VM*(I2)|2dXdY+/ luf (12) — uf (r)ldx
2 Jo+ b

S0

1 2 Ot
< f/ |Vu*(t1)|2dxdy+/ (/ ! (T)dxdy)dt.
2 Jo+ f o+ 0y

Indeed, the oddness of u, (¢) with respect to y follows from the uniqueness of the solutions
of problems of the form (3.3) and from the oddness of the data.

To prove (5.5) we need a detailed study of the properties of the solutions of (5.6), which
uses the Euler conditions introduced in Lemmas 3.1-3.3. This analysis requires the results
of the following two lemmas, which give a precise description of the singularities of some
solutions of the Laplace equation with suitable boundary conditions.

Forevery R > 0let I’y = (=R, 0) x {0}, and Iy = (0, R) x {0}. In the next lemmas
we identify the point (x, y) with the complex number z = x +iy.
Lemma5.4 Let R > 0 and let u € H'(B}) be such that Au = 0 in B, 34 = 0 on I'y,

andu = 0on 1"R+. Let Sy be defined by "
So(z) = Tm(y/2),
where for y > 0 we use the determination of \/z such that /=1 = i. Then
u=cSo+ Ueg 5.7
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for some c e Rand uy.q € CY(B}) for every0 <r < R.

Proof Using Schwarz symmetrization principle we may assume that « is harmonic in Bg \f,;
and satisfies the homogeneous Neumann boundary condition on both sides of Iy . By using
the conformal map z — /z we can write

u(z) = v(v/2), (5.8)
where v is harmonic on B\/E N {(x,y) : x > 0}, belongs to HI(B\/RT N{(x,y) :x > 0}),

andsatisﬁes% =0on{(0,y): —VR < y < VRyandv =0o0n{(x,0):0<x < ﬁ}.
We now extend v to the whole ball B VR by reflection and we obtain a function, still denoted

by v, which is harmonic on Bﬁ and satisfies v = 0 on {(x, 0) : —vR <x < \/E}.
Therefore, there exists a holomorphic function f defined on B/ such that

v(z) =Jmf(z) forevery:z e Bﬁ. (5.9)

We may assume f(0) = 0. Since f is real on the real axis we can write
o
f@ =) at,
k=1

where a; € R and the series converges uniformly on compact subsets of B /5. Let g be the
holomorphic function on B/ defined by

oo
gy =Y a,
k=2
Therefore (5.8) and (5.9) imply (5.7) with ¢ = a; and

lreg (2) = Tm(g(V7)). (5.10)

Letus fix 0 < r < R. It remains to prove that u,,, € C 1 (E,Jf). Since

/ /
~ 8 (/2) W2)
Vitreg(x,y) = (Jm(gzé ),%e(gzjg )) (5.11)
it is enough to prove that
/
R AV (5.12)
Jz
is continuous on B,'. Since
o0
g =) kapz, (5.13)
k=2

the function A(z) := g’(z)/z is holomorphic on B % Therefore we have gDz =
h(y/z), which gives the continuity of (5.12) and concludes the proof. ]

Lemmab5.5 Let R > 0 and let u € HI(B;) be such that Au = 0 in Bk", g—'; =0onTy,
and g—; =1on I"I;F.Let S1 be defined by

1
S1(z) := ;%e(z log(—z2)).

Thenu = Sy + Uyeg With uyeq € COO(Ej')for everyr < R.
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h

0 a So o b

Fig.3 The boundary value problem for u/;

Proof By direct computation we see that S; € H ! (BIJ{), it is harmonic on BIJ{ and satisfies
the boundary conditions % =0on I}, and % = 1 on I'y. Therefore uyeq :=u — S; €
H 1(B;{), it is harmonic and satisfies the homogeneous Neumann boundary condition on

Iy u FIE," , and hence on (—R, R) x {0}. The conclusion follows from the regularity theory
for elliptic equations with Neumann boundary condition. O

The quasistatic evolution u, (¢) will be constructed by using the solutions of some auxiliary
boundary value problems depending on a parameter ¢, and then by choosing a particular
value o, of this parameter. For every ¢ > 0 and for every o € [sg, b] we consider the solution
ul € H'(22%) of the problem (see Fig. 3)

Au=0 in 27T,
u=t if y=nh,
du

=0 ifx=aorx =b,

5.14
g—';=0 fora <x <spandy =0, 619
% 1 forsp <x <oandy=0,
u= foro <x <bandy =0.

By the continuous dependence on the data, the function «% is continuous in H L(£2%) with
respect to ¢ and o.

Remark 5.6 In the particular case 0 = b we have ug =t + zo where zg € H'(£21) is the
solution of (5.3).

The following two lemmas give some important properties of u’,, which will be used in our
construction of u4(z).

Lemﬂa 5.7 For everyt > 0 and o € [s, b] we have u!. € C®(R27\ {(50,0), (6,00 N
co2h).

Proof The result follows from the regularity theory for elliptic equations; the regularity
near the vertices of the rectangle can be easily obtained by extending u’, through a suitable
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reflection, while the continuity at the points (sg, 0) and (o, 0) follows from Lemmas 5.4
and 5.5. ]

Lemma 5.8 Lett > 0 and let o € [so, b] be such that u’, > 0 in 2% Then

a t

Mo 0 inQ+. (5.15)
ax

t

d _
Proof Let v := % By Lemma 5.7 we have that v € C®(2271 \ {(s0, 0), (5, 0)}) and
X

satisfies

Av=0 in T,

v=20 if y=nh,

v = ifx =aorx =b,

g—;:O ifa <x <spand y =0, (5.16)
g—;:() ifsp <x <oandy =0,

v = ifo <x <bandy=0.

Case sp = o. Let us consider the behaviour of the function u!. near (sp, 0). By Lemma 5.4
we can write

Ul (X, y) = /B Sin(0/2) + tyeq (x, y) (5.17)

for some constant ¢ and some function u,., € C L(@21), where p, 0 are polar coordinates
around (sg, 0), with 6 € [0, wr]. We observe that 0 = uﬁ, (x,0) = uyeg(x,0) for every
so < x < b. This implies that u, ., (so, 0) = 0 and a';%(so, 0)=0.

By (5.17) we have u/ (x,0) = c\/50 — X + Ureq(x, 0) for every a < x < so, while the
properties of u,.e imply that |u,.g(x, 0)] < M|x — sp| for a suitable constant M. Hence the
inequality ¢ < 0 would lead to u’ (x, 0) < 0 for x < s, x close to s, in contradiction with
the assumption uf,(x, 0) > 0. This shows that ¢ > 0.

Since

“_in(02) + 28 (x y) (5.18)
N ax Y '

du’
v(x,y) = W(x,y) =-

we have

limsup wv(x,y) <O0.
(x,y)—>(s0.0)

Therefore, if v is positive at some point of 27, by the maximum principle v attains its
maximum on £27 at a point of 32 \ {(so, 0)} where v has a positive value. By (5.16) this
point must be of the form (xp, 0) with a < x¢ < so. By the Hopf Maximum Principle we
should have g—;(xo, 0) < 0, which contradicts (5.16). This shows that we must have v < 0
in 2%,

Case s) < o < b. We have to study the behaviour of the function !, near the points (so, 0)
and (o, 0). By Lemma 5.5 and (5.14), near (sp, 0) we have

t _ l _ _ _ reg
Mg(x,y)—n((x s0)log p — y(6 — 7)) + ug® (x, y), (5.19)
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where u'sg‘g is C* in a neighbourhood of (so, 0) in 2% and p, @ are polar coordinates around
(50, 0), with 8 € [0, 7 ]. Hence

1 dulc
v(x,y) = —(logp+ 1) + (), (5.20)
b4 ax
and this implies that
v(x,y) = —o0. (5.21)

lim
(x,y)—>(s0,0)

By Lemma 5.4 and (5.14), using polar coordinates r, ¢ around (o, 0), with ¢ € [0, 7],
we can write

ul (x,y) = c/rsin(¢/2) + uf8(x, y), (5.22)

where ¢ € R and u,’® is C! in a neighbourhood of (a, 0) in 2. This gives

reg
c . Uy
Y = ——— ¢ 2 JY). 5.23
v(x, y) NG sin(¢/2) + i (x,y) (5.23)
Arguing as in the case sp = 0 We can prove that ¢ > 0 and that .8 (x,0) = 0 for every
o < x < b. Since 24 (5, 0) = 0 we have
limsup v(x,y) <0. (5.24)

(x,y)—(0.0)

By (5.21) and (5.24), the subharmonic function v v 0 can be extended to a continuous
function on £27 which satisfies

(v Vv 0)(sp,0) = (vVv0)(o,0) =0. (5.25)

Therefore, if v is positive at some point of £27F, by the maximum principle for subharmonic
functions v Vv 0 attains its maximum on £2 at a point of 2% where v has a positive value.
By (5.16) and (5.25) this point must be of the form (xp, 0) witha < xo < sgporsp < xg < 0.
By the Hopf Maximum Principle we should have g—;(xo, 0) < 0, which contradicts (5.16).
This concludes the proof of (5.15) for s < o < b.

Case o = b. In this case the only singular point of v is (sg, 0) and we can repeat the
argument of the previous case with obvious simplifications. O

For t > 0 we define
o ;== max{o € [so,b] 1 ul, = 0in 27} and wu. (1) := ul, . (5.26)

The existence of the maximum follows easily from the continuous dependence of u’, on o.
It is easy to see that for + = 0 we have og = s0.

The results of following three lemmas will be used to prove Lemma 5.12, which shows
that u, () is a quasistatic evolution.

Lemmab5.9 Lett > 0. Then

< Ouy (1)

0

(x,0) <1 (5.27)

for every oy < x < b.
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Proof Tt is not restrictive to assume o; < b. By (5.26) and Lemma 5.8 forevery y € (0, ) the
function x — u,(t)(x, y) is nonnegative and nonincreasing in (a, b). Since u,(¢)(x, 0) =
0 for x € (o7, b), the function x > (u,(¢)(x,y) — us(t)(x,0))/y is nonnegative and
nonincreasing in (oy, b) for every y € (0, ). Taking the limit as y — 0+ we deduce that
X dua*;r) (x, 0) is nonnegative and nonincreasing in (oy, b).

It remains to prove the second inequality in (5.27). If it is not satisfied, by the monotonicity
of x > 3'1%;’)()(, 0) there exists ¢ € (0, b — o;) such that

Ouy (1)
dy

(x,0) > 1 foreveryx € (o7, 07 + €).

t

Leto € (o7, 0, + €). We want to prove that uﬁ, > ”fn in 2. Setting v := ul, — Uy, WE have

that v € H'(£21) and satisfies

Av=0 inQT,

v=20 lfy:h,

D=0 ifr=aorx=b,
g—;=0 ifa <x <spandy =0,
%;:0 ifso <x <oyandy =0,
v

=<0 ifor<x<oandy=0,

v=0 ifo<x<bandy=0.

Integrating by parts we obtain the weak formulation

d
/ VuVedxdy = —/ —v<p+dx
2+ rg 9y

for every ¢ € H'(22%) with ¢ = 0 on Fé’ ) 8;9. Taking ¢ := v A O we obtain
2 P
Vv A0 = VoV A0)dxdy = — — @ A0)dx <0,
o+ 2+ rg 9y

which gives V(v A 0) = 0. Taking into account the boundary condition v = 0 on 8;9 we
getv AO = 0in £2. This implies v > 0, so that u!, > up, in Q7. Therefore u!, > 0in 27,
which contradicts the maximality of o; (see (5.26)), thus concluding the proof of the second
inequality in (5.27). O

Lemma5.10 For every 0 < t; < tp we have uy(t)) < u4(t2) in 7.
Proof Letus fix 0 < #; < fp. By the maximum principle we have

uy(t)) = u;‘tl < uf}rl in 2%, (5.28)
By (5.26) this implies 0;, < 0y,. Let v 1= uy () — u?,l = u?,z — u?,l e HY(21). By
(5.26) we have uﬁ,ztz (x,0) > O for x € (04, 01), while by the last line in (5.14) we have

uf,ztl (x,0) =0for x € (04, 01,). Hence v(x, 0) > 0 for x € (04, 01,). Thus v satisfies
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Av=0 in2t

v=0 ify=h,

g—z:O ifx =aorx =b,
g—;=0 ifa <x <spand y =0,
%:O ifso <x <oy andy =0,

v>0 ifo; <x<opandy =0,

v=0 ifo, <x<bandy=0.

By using the Maximum Principle (see also the proof of Lemma 5.9) we can prove that v > 0
in 2. Together with (5.28), this concludes the proof. ]

Lemma 5.11 For every 0 < t; < tp the function u.(t2) is the solution of the minimum
problem

1
min (f/ |Vu|2dxdy+/ ut —u*(tl)"'ldx). (5.29)
uet'(2+) \2 Jo+ r

u=tyon BBQ

Proof Letus fix 0 < t; < t;. By (5.14), (5.26), and Lemma 5.9 the function u.(1,) satisfies

Oy (1
u;( 2) (x, O)‘ <1 foreveryx € (so, b) \ {01,}.
y
Moreover, by (5.14) we have
u(12)

3 (x,0) =1 forevery x € (so, b) such that u,(2)(x, 0) > u.(t1)(x, 0),

y

since {x € (s0,b) : ux(2)(x,0) > ux(t1)(x,0)} C {x € (s0,b) : ux(22)(x,0) > 0} C
(S0, 01,). By Lemma 3.3 (applied to the odd extension of u,(2) to £2 \ I") these properties
of w on I', together with the boundary conditions of (5.14), imply that u,(f;) is the
solution of (5.29). O

Lemma 5.12 The odd extension to 2 \ I" of the function u, defined by (5.2@) is a quasistatic
evolution with fixed crack and boundary condition w on each interval [0, T] with T > 0.

Proof Let us fix T > 0. By Lemma 5.11 for every ¢ the odd extension of u,(¢) to 2 \ I”
is the solution of the minimum problem (2.23) with w = w(¢), with w(¢) defined by (5.2),
s = 59, and g = 0. From Lemma 2.8 we deduce that u, : [0, f] — HY(£271) is continuous.

To conclude the proof we have to show that u, () satisfies also conditions (bp) and (cp) in
Remark 5.3. Condition (bg) follows from Lemma 5.11. To prove (cp) we fix 71, 72 € [0, f],
with 71 < 12 and a sequence of subdivisions 71 = t(’)‘ < t{" < < t,’jqk = 1 such that

t;? — tﬁl < % forevery 1 < j < my. By Lemma 5.11 for every j we have

1 v v
— | IVu () Pdxdy + | ()T — (k) F|dx
2 Jor i r j J

1
< f/ |Vﬁ|2dxdy+/ 0t — u(tf_ )T ldx
2 o+ rb J

S0

for every i € H'(2%) with i = t% on 8};$2. Taking ii = u*(tj‘?fl) + w(tj?) - w(tfil),
where w is defined by (5.2), and using Lemma 5.10 we obtain
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1 kv 2 k k
5/;3+ |Vu*(tj)| dxdy—i—/rh (u*(tj)"' _u*(tj71)+)dx
.\'O
duy(th_)) b—
&d xdy + (t —t 1)2

1
<5 | v pPaxay =i [
2 Jo+

Summing for j =1, ..., m; we obtain

3 [ vuPardy + [ et - @ as
2 Jo+ b

S0

1 2 () 1b—a
55/9 Vi (ty)| dxdy—i—Z(t —t/ 1)/ 7a’xdy+§ 0

Since uy: [0, f] — H(271) is continuous, taking the limit as k — oo we obtain (cp). O
The following lemma will be used to prove Lemma 5.14, which shows that (5.5) holds.

Lemma5.13 Let zg € H'(27F) be the solution of problem (5.3). Then for every t > 0 we
have u,(t) >t +zoin 27.

Proof Letus fixs > 0andlet v := u,(t) — (t +z9). Thenv € H'(£27) and, by Lemma 5.9,
it satisfies

Av=0 in 2T,

v=0 ify=h,

W —0 ifx=aorx=>h,

%;:0 ifa <x <spandy =0,

3—”,:0 ifsp <x <oyand y =0,

W < ifo, <x <bandy=0.

Integrating by parts we obtain the weak formulation

d
/ VuVedxdy = —/ —vg0+dx
o+ ry 9y

forevery ¢ € H'(£2") with¢ = 0 on 8} 2. Taking ¢ := v A0 and arguing as in Lemma 5.9

we can prove that v > 0in 27, Hence u,(t) >t +zoin 2. O
Lemma5.14 Let T, := — inf o+ zo, where zg is the solution of (5.3). Ift > T, then u,(t) =
t+zoin 27T,

Proof Letusfixt > T,.ByLemma5.13 there exists n > 0such thatuﬁ,/ =uy(t) >t4+zo > n
in 27, hence uy, (x,0) > nforevery x € (ay, b). Sinceuy, (x,0) = Oforevery x € (o7, b) by
the last condition in (5.14), we deduce that o; = b. The conclusion follows from Remark 5.6.

O

Proof of Theorem 5.1 By Theorem 4.1 and Remark 4.2 we have s(t) = 51 = s for every
t € [0, 7). Moreover, if t; < T we have also s(t) = s, for every ¢ € (#1, t2). To prove the
theorem it is enough to show that t; < T.

Assume, by contradiction, that t; = T'. Since s(¢) = so for every ¢ € [0, T'), the function
u is a quasistatic evolution with fixed crack and boundary condition w on each interval [0, f]
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with0 < T < T. Let u, be the function defined by (5.26). By Lemma 5.12 the odd extension
(with respect to y) of u, is a quasistatic evolution with fixed crack and boundary condition w
on each interval [0, f] with T > 0. Since u(0) = 0 = u,(0), by the uniqueness result
proved in Theorem 4.17 we have u(t) = u,(t) forevery t € [0, T). Letus fixt € (T, T).
By Lemma 5.14 we have u,(t) =t + zo in 2%, which implies (5.5). Taking § = b, i =t
in 27, and i = —¢ in 27 in the equilibrium condition (b) of Definition 2.1, we obtain

1
f/ |Vzo|?dxdy + so < b,
2 Jo\r

which contradicts the second inequality in (5.4). This proves that r; < T and concludes the
proof of the theorem. O
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