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Abstract
In this paper we study the total variation flow (TVF) in metric random walk spaces, which
unifies into a broad framework the TVF on locally finite weighted connected graphs, the
TVF determined by finite Markov chains and some nonlocal evolution problems. Once the
existence and uniqueness of solutions of the TVF has been proved, we study the asymptotic
behaviour of those solutions and, with that aim in view, we establish some inequalities of
Poincaré type. In particular, for finite weighted connected graphs, we show that the solutions
reach the average of the initial data in finite time. Furthermore, we introduce the concepts of
perimeter and mean curvature for subsets of a metric random walk space and we study the
relation between isoperimetric inequalities and Sobolev inequalities. Moreover, we introduce
the concepts of Cheeger and calibrable sets in metric random walk spaces and characterize
calibrability by using the 1-Laplacian operator. Finally, we study the eigenvalue problem
whereby we give a method to solve the optimal Cheeger cut problem.
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1 Introduction and preliminaries

A metric random walk space [X , d,m] is a metric space (X , d) together with a family
m = (mx )x∈X of probability measures that encode the jumps of a Markov chain. Important
examples of metric random walk spaces are: locally finite weighted connected graphs, finite
Markov chains and [RN , d,mJ ] with d the Euclidean distance and

mJ
x (A) :=

∫
A
J (x − y)dLN (y) for every Borel set A ⊂ R

N ,

where J : RN → [0,+∞[ is ameasurable, nonnegative and radially symmetric functionwith∫
J = 1. Furthermore, given a metric measure space (X , d, μ) satisfying certain properties

we can obtain a metric random walk space [X , d,mμ,ε], called the ε-step random walk
associated to μ, where

mμ,ε
x := μ B(x, ε)

μ(B(x, ε))
.

Since its introduction as a means of solving the denoising problem in the seminal work
by Rudin et al. [45], the total variation flow has remained one of the most popular tools in
Image Processing. Recall that, from the mathematical point of view, the study of the total
variation flow in R

N was established in [5]. On the other hand, the use of neighbourhood
filters by Buades et al. [12], that was originally proposed by Yaroslavsky [52], has led to an
extensive literature in nonlocal models in image processing (see for instance [8,28,31,32] and
the references therein). Consequently, there is great interest in studying the total variation
flow in the nonlocal context. As further motivation, note that an image can be considered
as a weighted graph, where the pixels are taken as the vertices and the “similarity” between
pixels as the weights. The way in which these weights are defined depends on the problem
at hand, see for instance [24,32].

The aim of this paper is to study the total variation flow in metric random walk spaces,
obtaining general results that can be applied, for example, to the different points of view in
Image Processing. In this regard, we introduce the 1-Laplacian operator associated with a
metric randomwalk space, as well as the notions of perimeter and mean curvature for subsets
of a metric random walk space. In doing so, we generalize results obtained in [34,35] for the
particular case of [RN , d,mJ ], and, moreover, generalize results in graph theory. We then
proceed to prove existence and uniqueness of solutions of the total variation flow in metric
random walk spaces and to study its asymptotic behaviour with the help of some Poincaré
type inequalities. Furthermore, we introduce the concepts of Cheeger and calibrable sets in
metric random walk spaces and characterize calibrability by using the 1-Laplacian operator.
Let us point out that, to our knowledge, some of these results were not yet known for graphs,
nonetheless, we have specified in the main text which important results were already known
for graphs. Moreover, in the forthcoming paper [37], we apply the theory developed here to
obtain the (BV , L p)-decomposition, p = 1, 2, of functions in metric random walk spaces.

123



Total variation flow in metric random walk spaces Page 3 of 64 29

This decomposition can be applied to Image Processing if, for example, images are regarded
as graphs and, moreover, to other nonlocal models.

Partitioning data into sensible groups is a fundamental problem in machine learning,
computer science, statistics and science in general. In these fields, it is usual to face large
amounts of empirical data, and getting a first impression of the data by identifying groups
with similar properties can prove to be very useful. One of the most popular approaches
to this problem is to find the best balanced cut of a graph representing the data, such as
the Cheeger ratio cut [17]. Consider a finite weighted connected graph G = (V , E), where
V = {x1, . . . , xn} is the set of vertices (or nodes) and E the set of edges, which are weighted
by a function w j i = wi j ≥ 0, (i, j) ∈ E . The degree of the vertex xi is denoted by
di := ∑n

j=1 wi j , i = 1, . . . , n. In this context, the Cheeger cut value of a partition {S, Sc}
(Sc := V \S) of V is defined as

C(S) := Cut(S, Sc)

min{vol(S), vol(Sc)} ,

where

Cut(A, B) =
∑

i∈A, j∈B
wi j ,

and vol(S) is the volume of S, defined as vol(S) :=∑i∈S di . Furthermore,

h(G) = min
S⊂V C(S)

is called the Cheeger constant, and a partition {S, Sc} of V is called a Cheeger cut of G if
h(G) = C(S). Unfortunately, the Cheeger minimization problem of computing h(G) is NP-
hard [29,47]. However, it turns out that h(G) can be approximated by the second eigenvalue
λ2 of the graph Laplacian thanks to the following Cheeger inequality [18]:

λ2

2
≤ h(G) ≤ √2λ2. (1.1)

This motivates the spectral clustering method [51], which, in its simplest form, thresholds the
second eigenvalue of the graph Laplacian to get an approximation to the Cheeger constant
and, moreover, to a Cheeger cut. In order to achieve a better approximation than the one
provided by the classical spectral clustering method, a spectral clustering based on the graph
p-Laplacianwas developed in [13], where it is showed that the second eigenvalue of the graph
p-Laplacian tends to the Cheeger constant h(G) as p → 1+. In [47] the idea was taken up
by directly considering the variational characterization of the Cheeger constant h(G)

h(G) = min
u∈L1

|u|T V
‖u −median(u))‖1 , (1.2)

where

|u|T V := 1

2

n∑
i, j=1

wi j |u(xi )− u(x j )|.

The subdifferential of the energy functional | · |T V is the 1-Laplacian in graphs�1. Using the
nonlinear eigenvalue problem 0 ∈ �1u − λ sign(u), the theory of 1-Spectral Clustering is
developed in [14–16,29], and good results on the Cheeger minimization problem have been
obtained.
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In [36], we obtained a generalization, in the framework of metric random walk spaces, of
the Cheeger inequality (1.1) and of the variational characterization of the Cheeger constant
(1.2). In this paper, in connection with the 1-Spectral Clustering, also in metric random walk
spaces, we study the eigenvalue problem of the 1-Laplacian and then relate it to the optimal
Cheeger cut problem. Then again, these results apply, in particular, to locally finite weighted
connected graphs, complementing the results given in [14–16,29].

Additionally, regarding the notion of a function of bounded variation in a metric measure
space (X , d, μ) introduced by Miranda in [41], we provide, via the ε-step random walk
associated to μ, a characterization of these functions.

1.1 Metric randomwalk spaces

Let (X , d) be a Polish metric space equipped with its Borel σ -algebra. A random walk m
on X is a family of probability measures mx on X , x ∈ X , satisfying the two technical
conditions: (i) the measuresmx depend measurably on the point x ∈ X , i.e., for any Borel set
A of X and any Borel set B of R, the set {x ∈ X : mx (A) ∈ B} is Borel; (ii) each measure
mx has finite first moment, i.e. for some (hence any, by the triangle inequality) z ∈ X , and
for any x ∈ X one has

∫
X d(z, y)dmx (y) < +∞ (see [44]).

A metric random walk space [X , d,m] is a Polish metric space (X , d) together with a
random walk m on X .

Let [X , d,m] be a metric random walk space. A Radon measure ν on X is invariant for
the random walk m = (mx ) if

dν(x) =
∫
y∈X

dν(y)dmy(x),

that is, for any ν-measurable set A, it holds that A is mx -measurable for ν-almost all x ∈ X ,
x 	→ mx (A) is ν-measurable, and

ν(A) =
∫
X
mx (A)dν(x).

Consequently, if ν is an invariant measure with respect to m and f ∈ L1(X , ν), it holds that

f ∈ L1(X ,mx ) for ν-a.e. x ∈ X , x 	→
∫
X
f (y)dmx (y) is ν-measurable, and

∫
X
u(x)dν(x) =

∫
X

(∫
X
u(y)dmx (y)

)
dν(x).

The measure ν is said to be reversible for m if, moreover, the following detailed balance
condition holds:

dmx (y)dν(x) = dmy(x)dν(y), (1.3)

that is, for any Borel set C ⊂ X × X ,
∫
X

(∫
X

χC (x, y)dmx (y)

)
dν(x) =

∫
X

(∫
X

χC (x, y)dmy(x)

)
dν(y),

where χC is the characteristic function of the set C defined as

χC (x) :=
{
1 if x ∈ C,

0 otherwise.
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Note that the reversibility condition implies the invariance condition. However, we will
sometimes write that ν is invariant and reversible so as to emphasize both conditions.

We now give some examples of metric random walk spaces that illustrate the general
abstract setting. In particular, Markov chains serve as paradigmatic examples that capture
many of the properties of this general setting that we will encounter during our study.

Example 1.1 (1) Consider (RN , d,LN ), with d the Euclidean distance and LN the Lebesgue
measure. For simplicity we will write dx instead of dLN (x). Let J : RN → [0,+∞[ be
a measurable, nonnegative and radially symmetric function verifying

∫
RN J (x)dx = 1.

In (RN , d,LN ) we have the following random walk, starting at x ,

mJ
x (A) :=

∫
A
J (x − y)dy for every Borel set A ⊂ R

N .

Applying Fubini’s Theorem it is easy to see that the Lebesgue measureLN is an invariant
and reversible measure for this random walk.
Observe that, if we assume that inRN we have an homogeneous population and J (x− y)
is thought of as the probability distribution of jumping from location x to location y, then,
for a Borel set A in RN , mJ

x (A) is measuring how many individuals are going to A from
x following the law given by J . See also the interpretation of the m-interaction between
sets given in Sect. 2.1. Finally, note that the same ideas are applicable to the countable
spaces given in the following two examples.

(2) Let K : X × X → R be a Markov kernel on a countable space X , i.e.,

K (x, y) ≥ 0 ∀x, y ∈ X ,
∑
y∈X

K (x, y) = 1 ∀x ∈ X .

Then, for

mK
x (A) :=

∑
y∈A

K (x, y),

[X , d,mK ] is a metric random walk space for any metric d on X .
Moreover, in Markov chain theory terminology, a measure π on X satisfying

∑
x∈X

π(x) = 1 and π(y) =
∑
x∈X

π(x)K (x, y) ∀y ∈ X ,

is called a stationary probability measure (or steady state) on X . This is equivalent to the
definition of invariant probability measure for the metric randomwalk space [X , d,mK ].
In general, the existence of such a stationary probability measure on X is not guaranteed.
However, for irreducible and positive recurrent Markov chains (see, for example, [30] or
[43]) there exists a unique stationary probability measure.
Furthermore, a stationary probability measure π is said to be reversible for K if the
following detailed balance equation holds:

K (x, y)π(x) = K (y, x)π(y) for x, y ∈ X .

By Tonelli’s Theorem for series, this balance condition is equivalent to the one given
in (1.3) for ν = π :

dmK
x (y)dπ(x) = dmK

y (x)dπ(y).
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(3) Consider a locally finite weighted discrete graph G = (V (G), E(G)), where each edge
(x, y) ∈ E(G) (we will write x ∼ y if (x, y) ∈ E(G)) has a positive weight wxy = wyx

assigned. Suppose further that wxy = 0 if (x, y) /∈ E(G).
A finite sequence {xk}nk=0 of vertices on the graph is called a path if xk ∼ xk+1 for all
k = 0, 1, . . . , n − 1. The length of a path {xk}nk=0 is defined as the number n of edges
in the path. Then, G = (V (G), E(G)) is said to be connected if, for any two vertices
x, y ∈ V , there is a path connecting x and y, that is, a path {xk}nk=0 such that x0 = x
and xn = y. Finally, if G = (V (G), E(G)) is connected, define the graph distance
dG(x, y) between any two distinct vertices x, y as the minimum of the lengths of the
paths connecting x and y. Note that this metric is independent of the weights. We will
always assume that the graphs we work with are connected.
For x ∈ V (G) we define the weight at the vertex x as

dx :=
∑
y∼x

wxy =
∑

y∈V (G)

wxy,

and the neighbourhood of x as NG(x) := {y ∈ V (G) : x ∼ y}. Note that, by definition
of locally finite graph, the sets NG(x) are finite. When wxy = 1 for every x ∼ y, dx
coincideswith the degree of the vertex x in a graph, that is, the number of edges containing
vertex x .
For each x ∈ V (G) we define the following probability measure

mG
x :=

1

dx

∑
y∼x

wxy δy .

We have that [V (G), dG ,mG ] is a metric random walk space and it is not difficult to see
that the measure νG defined as

νG(A) :=
∑
x∈A

dx , A ⊂ V (G),

is an invariant and reversible measure for this random walk.
Given a locally finite weighted discrete graph G = (V (G), E(G)), there is a natural
definition of a Markov chain on the vertices. We define the Markov kernel KG : V (G)×
V (G) → R as

KG(x, y) := 1

dx
wxy .

We have that mG and mKG define the same random walk. If νG(V (G)) is finite, the
unique stationary and reversible probability measure is given by

πG(x) := 1

νG(V (G))

∑
z∈V (G)

wxz .

(4) From ametric measure space (X , d, μ)we can obtain a metric randomwalk space, the so
called ε-step random walk associated toμ, as follows. Assume that balls in X have finite
measure and that Supp(μ) = X . Given ε > 0, the ε-step random walk on X starting at
x ∈ X , consists in randomly jumping in the ball of radius ε centered at x with probability
proportional to μ; namely

mμ,ε
x := μ B(x, ε)

μ(B(x, ε))
.
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Note that μ is an invariant and reversible measure for the metric random walk space
[X , d,mμ,ε].

(5) Given a metric random walk space [X , d,m] with invariant and reversible measure ν,
and given a ν-measurable set 
 ⊂ X with ν(
) > 0, if we define, for x ∈ 
,

m

x (A) :=

∫
A
dmx (y)+

(∫
X\


dmx (y)

)
δx (A) for every Borel set A ⊂ 
,

we have that [
, d,m
] is a metric random walk space and it easy to see that ν 
 is
reversible for m
.
In particular, if 
 is a closed and bounded subset of RN , we obtain the metric random

walk space [
, d,mJ ,
], where mJ ,
 = (mJ )
, that is

mJ ,

x (A) :=

∫
A
J (x − y)dy +

(∫
Rn\


J (x − z)dz

)
dδx for every Borel set A ⊂ 
.

From this point onwards, when dealing with a metric random walk space, we will assume
that there exists an invariant and reversible measure for the random walk, which we will
always denote by ν. In this regard, when it is clear from the context, a measure denoted
by ν will always be an invariant and reversible measure for the random walk under study.
Furthermore, we assume that the metric measure space (X , d, ν) is σ -finite.

1.2 Completely accretive operators and semigroup theory

Since Semigroup Theory will be used along the paper, we would like to conclude this intro-
duction with some notations and results from this theory along with results from the theory
of completely accretive operators (see [9,10,22], or the Appendix in [6], for more details).
We denote by J0 and P0 the following sets of functions:

J0 := { j : R→ [0,+∞] : j is convex, lower semi-continuous and j(0) = 0},
P0 :=

{
q ∈ C∞(R) : 0 ≤ q ′ ≤ 1, supp(q ′) is compact and 0 /∈ supp(q)

}
.

Let u, v ∈ L1(X , ν). The following relation between u and v is defined in [9]:

u  v if, and only if,
∫
X
j(u) dν ≤

∫
X
j(v) dν for all j ∈ J0.

An operator A ⊂ L1(X , ν)× L1(X , ν) is called completely accretive if∫
X
(v1 − v2)q(u1 − u2)dν ≥ 0 for every q ∈ P0

and every (ui , vi ) ∈ A, i = 1, 2. Moreover, an operator A in L1(X , ν) is m-completely
accretive in L1(X , ν) if A is completely accretive and Range(I + λA) = L1(X , ν) for all
λ > 0 (or, equivalently, for some λ > 0).

Theorem 1.2 [9,10] If A is an m-completely accretive operator in L1(X , ν), then, for every
u0 ∈ D(A) (the closure of the domain ofA), there exists a unique mild solution (see [22]) of
the problem

{ du

dt
+Au � 0,

u(0) = u0.
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Moreover, if A is the subdifferential of a proper convex and lower semicontinuous function
in L2(X , ν) then the mild solution of the above problem is a strong solution.

Furthermore we have the following contraction and maximum principle in any Lq(X , ν)

space, 1 ≤ q ≤ +∞: for u1,0, u2,0 ∈ D(A) and denoting by ui the unique mild solution of
the problem

{ dui
dt
+Aui � 0,

ui (0) = ui,0,

i = 1, 2, we have

‖(u1(t)− u2(t))
+‖Lq (X ,ν) ≤ ‖(u1,0 − u2,0)

+‖Lq (X ,ν) ∀ 0 < t < T ,

where r+ := max{r , 0} for r ∈ R.

2 Perimeter, curvature and total variation inmetric randomwalk
spaces

2.1 m-perimeter

Let [X , d,m] be a metric random walk space with invariant and reversible measure ν. We
define the m-interaction between two ν-measurable subsets A and B of X as

Lm(A, B) :=
∫
A

∫
B
dmx (y)dν(x).

Whenever Lm(A, B) < +∞, by the reversibility assumption on ν with respect to m, we
have

Lm(A, B) = Lm(B, A).

Following the interpretation given after Example 1.1 (1), for a ν-homogeneous population
which moves according to the law provided by the random walkm, Lm(A, B)measures how
many individuals are moving from A to B, and, thanks to the reversibility, this is equal to the
amount of individuals moving from B to A. In this regard, the following concept measures
the total flux of individuals that cross the “boundary” (in a very weak sense) of a set.

We define the concept of m-perimeter of a ν-measurable subset E ⊂ X as

Pm(E) = Lm(E, X\E) =
∫
E

∫
X\E

dmx (y)dν(x).

It is easy to see that

Pm(E) = 1

2

∫
X

∫
X
|χ E (y)− χ E (x)|dmx (y)dν(x).

Moreover, if E is ν-integrable, we have

Pm(E) = ν(E)−
∫
E

∫
E
dmx (y)dν(x). (2.1)

The notion of m-perimeter can be localized to a bounded open set 
 ⊂ X by defining

Pm(E,
) := Lm(E ∩
, X\E)+ Lm(E\
,
\E).
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Observe that

Lm(E, X\E) = Lm(E ∩
, X\E)+ Lm(E\
,
\E)+ Lm(E\
, X\(E ∪
))

and, consequently, we have

Pm(E,
) =
∫
E

∫
X\E

dmx (y)dν(x)−
∫
E\


∫
X\(E∪
)

dmx (y)dν(x),

when both integrals are finite.

Example 2.1 (1) Let [RN , d,mJ ] be the metric random walk space given in Example 1.1 (1)
with invariant measure LN . Then,

PmJ (E) = 1

2

∫
RN

∫
RN
|χ E (y)− χ E (x)|J (x − y)dydx,

which coincides with the concept of J -perimeter introduced in [34]. On the other hand,

PmJ ,
(E) = 1

2

∫



∫



|χ E (y)− χ E (x)|J (x − y)dydx .

Note that, in general, PmJ ,
(E) �= PmJ (E).

Moreover,

PmJ ,
(E) = LN (E)−
∫
E

∫
E
dmJ ,


x (y)dx = LN (E)−
∫
E

∫
E
J (x − y)dydx

−
∫
E

(∫
RN \


J (x − z)dz

)
dx

and, therefore,

PmJ ,
(E) = PmJ (E)−
∫
E

(∫
RN \


J (x − z)dz

)
dx, ∀ E ⊂ 
. (2.2)

(2) In the case of the metric random walk space [V (G), dG ,mG ] associated to a finite
weighted discrete graph G, given A, B ⊂ V (G), Cut(A, B) is defined as

Cut(A, B) :=
∑

x∈A,y∈B
wxy = LmG (A, B),

and the perimeter of a set E ⊂ V (G) is given by

|∂E | := Cut(E, Ec) =
∑

x∈E,y∈V \E
wxy .

Consequently, we have that

|∂E | = PmG (E) for all E ⊂ V (G).

Let us now give some properties of the m-perimeter.

Proposition 2.2 Let A, B ⊂ X be ν-measurable sets with finite m-perimeter such that
ν(A ∩ B) = 0. Then,

Pm(A ∪ B) = Pm(A)+ Pm(B)− 2Lm(A, B).
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Proof We have

Pm(A ∪ B) =
∫
A∪B

(∫
X\(A∪B)

dmx (y)

)
dν(x)

=
∫
A

(∫
X\(A∪B)

dmx (y)

)
dν(x)+

∫
B

(∫
X\(A∪B)

dmx (y)

)
dν(x)

=
∫
A

(∫
X\A

dmx (y)−
∫
B
dmx (y)

)
dν(x)

+
∫
B

(∫
X\B

dmx (y)−
∫
A
dmx (y)

)
dν(x),

and then, by the reversibility assumption on ν with respect to m,

Pm(A ∪ B) = Pm(A)+ Pm(B)− 2
∫
A

(∫
B
dmx (y)

)
dν(x).

��

Corollary 2.3 Let A, B, C be ν-measurable sets in X with pairwise ν-null intersections.
Then

Pm(A ∪ B ∪ C) = Pm(A ∪ B)+ Pm(A ∪ C)+ Pm(B ∪ C)− Pm(A)− Pm(B)− Pm(C).

2.2 m-mean curvature

Let E ⊂ X be ν-measurable. For a point x ∈ X we define the m-mean curvature of ∂E at x
as

Hm
∂E (x) :=

∫
X
(χ X\E (y)− χ E (y))dmx (y).

Observe that

Hm
∂E (x) = 1− 2

∫
E
dmx (y). (2.3)

Note that Hm
∂E (x) can be computed for every x ∈ X , not only for points in ∂E . This fact

will be used later in the paper. Having in mind (2.1), we have that, for a ν–integrable set
E ⊂ X ,

∫
E
Hm

∂E (x)dν(x) =
∫
E

(
1− 2

∫
E
dmx (y)

)
dν(x) = ν(E)− 2

∫
E

∫
E
dmx (y)dν(x)

= Pm(E)−
∫
E

∫
E
dmx (y)dν(x) = 2Pm(E)− ν(E).

Consequently,

∫
E
Hm

∂E (x)dν(x) = 2Pm(E)− ν(E). (2.4)
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2.3 m-total variation

Associated to the random walk m = (mx ) and the invariant measure ν, we define the space

BVm(X , ν) :=
{
u : X → R ν-measurable :

∫
X

∫
X
|u(y)− u(x)|dmx (y)dν(x) < ∞

}
.

We have that L1(X , ν) ⊂ BVm(X , ν). The m-total variation of a function u ∈ BVm(X , ν)

is defined by

T Vm(u) := 1

2

∫
X

∫
X
|u(y)− u(x)|dmx (y)dν(x).

Note that

Pm(E) = T Vm(χ E ). (2.5)

Observe that the space BVm(X , ν) is the nonlocal counterpart of classical local bounded
variation spaces. Note further that, in the local context, given a Lebesgue measurable set
E ⊂ R

n , its perimeter is equal to the total variation of its characteristic function (see (2.19))
and the above Eq. (2.5) provides the nonlocal counterpart. In (2.21) and Theorem 2.22 we
illustrate further relations between these spaces.

However, although they represent analogous concepts in different settings, the classical
local BV-spaces and the nonlocal BV-spaces are of a different nature. For example, in our
nonlocal framework L1(X , ν) ⊂ BVm(X , ν) in contrast with classical local bounded vari-
ation spaces that are, by definition, contained in L1. Indeed, since each mx is a probability
measure, x ∈ X , and ν is invariant with respect to m, we have that

T Vm(u) ≤ 1

2

∫
X

∫
X
|u(y)|dmx (y)dν(x)+ 1

2

∫
X

∫
X
|u(x)|dmx (y)dν(x) = ‖u‖L1(X ,ν).

Recall the definition of the generalized product measure ν ⊗ mx (see, for instance, [3]),
which is defined as the measure on X × X given by

ν ⊗ mx (U ) :=
∫
X

∫
X

χU (x, y)dmx (y)dν(x) for U ∈ B(X × X),

where it is required that the map x 	→ mx (E) is ν-measurable for any Borel set E ∈ B(X).
Moreover, it holds that∫

X×X
gd(ν ⊗ mx ) =

∫
X

∫
X
g(x, y)dmx (y)dν(x)

for every g ∈ L1(X × X , ν ⊗ mx ). Therefore, we can write

T Vm(u) = 1

2

∫
X×X

|u(y)− u(x)|d(ν ⊗ mx )(x, y).

Example 2.4 Let [V (G), dG , (mG
x )]be themetric randomwalk space given inExample 1.1 (3)

with invariant and reversible measure νG . Then,

T VmG (u) = 1

2

∫
V (G)

∫
V (G)

|u(y)− u(x)|dmG
x (y)dνG(x)

= 1

2

∫
V (G)

1

dx

⎛
⎝ ∑

y∈V (G)

|u(y)− u(x)|wxy

⎞
⎠ dνG(x)
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= 1

2

∑
x∈V (G)

dx

⎛
⎝ 1

dx

∑
y∈V (G)

|u(y)− u(x)|wxy

⎞
⎠

= 1

2

∑
x∈V (G)

∑
y∈V (G)

|u(y)− u(x)|wxy,

which coincides with the anisotropic total variation defined in [50].

In the following results we give some properties of the total variation.

Proposition 2.5 If φ : R → R is Lipschitz continuous then, for every u ∈ BVm(X , ν),
φ(u) ∈ BVm(X , ν) and

T Vm(φ(u)) ≤ ‖φ‖LipT Vm(u).

Proof

T Vm(φ(u)) = 1

2

∫
X

∫
X
|φ(u)(y)− φ(u)(x)|dmx (y)dν(x)

≤ ‖φ‖Lip 1
2

∫
X

∫
X
|u(y)− u(x)|dmx (y)dν(x) = ‖φ‖LipT Vm(u).

��

Proposition 2.6 T Vm is convex and continuous in L1(X , ν).

Proof Convexity follows easily. Let us see that it is continuous. Let un → u in L1(X , ν).
Since ν is invariant and reversible with respect to m, we have

|T Vm(un)− T Vm(u)| = 1

2

∣∣∣∣
∫
X

∫
X

(|un(y)− un(x)| − |u(y)− u(x)|) dmx (y)dν(x)

∣∣∣∣
≤ 1

2

(∫
X

∫
X
|un(y)− u(y)|dmx (y)dν(x)

+
∫
X

∫
X
|un(x)− u(x)|dmx (y)dν(x)

)

= 1

2

(∫
X
|un(y)− u(y)|dν(y)

+
∫
X
|un(x)− u(x)|dν(x)

)
= ‖un − u‖L1(X ,ν).

��

As in the local case, we have the following coarea formula relating the total variation of
a function with the perimeter of its superlevel sets.

Theorem 2.7 (Coarea formula) For any u ∈ L1(X , ν), let Et (u) := {x ∈ X : u(x) > t}.
Then,

T Vm(u) =
∫ +∞

−∞
Pm(Et (u)) dt . (2.6)
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Proof Since

u(x) =
∫ +∞

0

χ Et (u)(x) dt −
∫ 0

−∞
(1− χ Et (u)(x)) dt,

we have

u(y)− u(x) =
∫ +∞

−∞
χ Et (u)(y)− χ Et (u)(x) dt .

Moreover, since u(y) ≥ u(x) implies χ Et (u)(y) ≥ χ Et (u)(x), we obtain that

|u(y)− u(x)| =
∫ +∞

−∞
|χ Et (u)(y)− χ Et (u)(x)| dt .

Therefore, we get

T Vm(u) = 1

2

∫
X

∫
X
|u(y)− u(x)|dmx (y)dν(x)

= 1

2

∫
X

∫
X

(∫ +∞

−∞
|χ Et (u)(y)− χ Et (u)(x)|dt

)
dmx (y)dν(x)

=
∫ +∞

−∞

(
1

2

∫
X

∫
X
|χ Et (u)(y)− χ Et (u)(x)|dmx (y)dν(x)

)
dt

=
∫ +∞

−∞
Pm(Et (u))dt,

where Tonelli–Hobson’s Theorem is used in the third equality. ��
Let us recall the following concept of m-connectedness introduced in [34]: A metric

random walk space [X , d,m] with invariant and reversible measure ν is m-connected if,
for any pair of ν-non-null measurable sets A, B ⊂ X such that A ∪ B = X , we have
Lm(A, B) > 0. Moreover, in [36, Theorem 2.19], we see that this concept is equivalent to
the following concept of ergodicity (see [30]) when ν is a probability measure.

Definition 2.8 Let [X , d,m] be a metric random walk space with invariant and reversible
probability measure ν. A Borel set B ⊂ X is said to be invariant with respect to the random
walk m if mx (B) = 1 whenever x is in B. The invariant probability measure ν is said to be
ergodic if ν(B) = 0 or ν(B) = 1 for every invariant set B with respect to the random walk
m.

Furthermore, by [36, Theorem 2.21], we have that ν is ergodic if, and only if, for u ∈
L2(X , ν), �mu = 0 implies that u is ν-a.e. equal to a constant, where

�mu(x) :=
∫
X
(u(y)− u(x))dmx (y).

As an example, note that the metric random walk space associated to an irreducible and
positive recurrent Markov chain on a countable space together with its steady state is m-
connected (see [30]). Moreover, the metric random walk space [V (G), dG ,mG ] associated
to a locally finite weighted connected discrete graph G = (V (G), E(G)) is mG -connected.
In [36] we give further examples involving the metric random walk space given in Exam-
ple 1.1 (1).

Observe that, for a metric random walk space [X , d,m] with invariant and reversible
measure ν, if the space ism-connected, then them-perimeter of any ν-measurable set E with
0 < ν(E) < ν(X) is positive.
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Lemma 2.9 Assume that ν is ergodic and let u ∈ BVm(X , ν). Then,

T Vm(u) = 0 ⇐⇒ u is constant ν − a.e..

Proof (⇐) Suppose that u is ν-a.e. equal to a constant k, then, since ν is invariant with respect
to m, we have

T Vm(u) = 1

2

∫
X

∫
X
|u(y)− u(x)|dmx (y)dν(x)

=
∫
X

∫
X
|u(y)− k|dmx (y)dν(x)

=
∫
X
|u(x)− k|dν(x) = 0.

(⇒) Suppose that

0 = T Vm(u) = 1

2

∫
X

∫
X
|u(y)− u(x)|dmx (y)dν(x).

Then,
∫
X |u(y)− u(x)|dmx (y) = 0 for ν-a.e. x ∈ X , thus

|�mu(x)| =
∣∣∣∣
∫
X

(
u(y)− u(x)

)
dmx (y)

∣∣∣∣ ≤
∫
X
|u(y)− u(x)|dmx (y) = 0 for ν-a.e. x ∈ X ,

and we are done by the comments preceding the lemma. ��
From now on we will assume that the metric random walk spaces that we work with are

m-connected (this assumption is only dropped in Sect. 2.5). However, we would like to point
out that if a metric random walk space [X , d,m] is not m-connected then it may be broken
down as X = A∪ B where A, B ⊂ X have ν-positive measure and Lm(A, B) = 0, allowing
us to work with A and B independently. Then, for example, if E ⊂ X is a ν-measurable set
we get

Pm(E) = Pm(E ∩ A)+ Pm(E ∩ B)

and, if u ∈ BVm(X , ν),

T Vm(u) = 1

2

∫
A

∫
A
|u(y)− u(x)|dmx (y)dν(x)+ 1

2

∫
B

∫
B
|u(y)− u(x)|dmx (y)dν(x).

2.4 Isoperimetric and Sobolev inequalities

The n-dimensional isoperimetric inequality states that

Ln(
)
n−1
n ≤ cnHn−1(∂
) (2.7)

for every domain 
 ⊂ R
n with smooth boundary and compact closure, where cn = 1

nωn
,

and ωn is the volume of the unit ball. It is well known (see for instance [39]) that (2.7) is
equivalent to the Sobolev inequality

‖u‖ n
n−1 ≤ cn

∫
Rn
|∇u|dx ∀u ∈ C∞0 (Rn).

If we replace the Euclidean space R
n by a Riemannian manifold M with measure μn ,

then the isoperimetric inequality takes the following form:

μn(
)
n−1
n ≤ Cnμn−1(∂
) (2.8)
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for all bounded sets 
 ⊂ M with smooth boundary, being μn−1 the surface measure. As in
the Euclidean case (see [38] or [46]), (2.8) is equivalent to the Sobolev inequality

(∫
M
|u| n

n−1 dμn

) n−1
n ≤ Cn

∫
M
|∇u|dμn ∀u ∈ C∞0 (M). (2.9)

Consequently, it is natural to say that a Riemannian manifold M has isoperimetric dimension
n if (2.9) holds (see [21]). The equivalence between isoperimetric inequalities and Sobolev
inequalities in the context of Markov chains was obtained by Varopoulos in [49]. Let us state
these results under the context treated here.

Definition 2.10 Let [X , d,m] be a metric random walk space with invariant and reversible
measure ν. We say that [X , d,m, ν] has isoperimetric dimension n if there exists a constant
In > 0 such that

ν(A)
n−1
n ≤ In Pm(A) for all A ⊂ X with 0 < ν(A) < ν(X). (2.10)

We assume that, for n = 1, n
n−1 = +∞ by convention.

We will denote by BV 0
m(X , ν) the set of functions u ∈ BVm(X , ν) satisfying that there

exists A ⊂ X , with 0 < ν(A) < ν(X), such that u = 0 in X\A.
Theorem 2.11 [X , d,m, ν] has isoperimetric dimension n if, and only if,

‖u‖
L

n
n−1 (X ,ν)

≤ InT Vm(u) for all u ∈ BV 0
m(X , ν). (2.11)

The constant In is the same as in (2.10).

Proof (⇐) Given A ⊂ X with 0 < ν(A) < ν(X), applying (2.11) to χ A, we get

ν(A)
n−1
n = ‖χ A‖

L
n

n−1 (X ,ν)
≤ InT Vm(χ A) = In Pm(A).

(⇒) Let us see that (2.10) implies (2.11). Since T Vm(|u|) ≤ T Vm(u), we may assume that
u ≥ 0 without loss of generality.

Suppose first that n = 1 and let u ∈ BV 0
m(X , ν) such that u ≥ 0 and is not ν-a.e. equal to

0 (otherwise, (2.11) is trivially satisfied). Note that, in this case, since u is null outside of a
ν-measurable set A with ν(A) < ν(X), we have ν(Et (u)) < ν(X) for t > 0 and, moreover,
by the definition of the L∞(X , ν)-norm, 0 < ν(Et (u)) for t < ‖u‖L∞(X ,ν). Then, by the
coarea formula and (2.10), we have

T Vm(u) =
∫ +∞

0
Pm(Et (u)) dt =

∫ ‖u‖L∞(X ,ν)

0
Pm(Et (u)) dt

≥
∫ ‖u‖L∞(X ,ν)

0

1

In
dt = 1

In
‖u‖L∞(X ,ν).

Therefore, we may suppose that n > 1. Let p := n
n−1 . Again, by the coarea formula and

(2.10), if u ∈ BV 0
m(X , ν), u ≥ 0 and not identically ν-null, we get

T Vm(u) =
∫ +∞

0
Pm(Et (u)) dt ≥

∫ ‖u‖L∞(X ,ν)

0

1

In
ν(Et (u))

1
p dt, (2.12)

where ‖u‖L∞(X ,ν) = +∞ if u /∈ L∞(X , ν). On the other hand, since the function ϕ(t) :=
ν(Et (u))

1
p is nonnegative and non-increasing, we have

pt p−1ϕ(t)p ≤ p

(∫ t

0
ϕ(s)ds

)p−1
ϕ(t) = d

dt

[(∫ t

0
ϕ(s)ds

)p]
.
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Integrating over (0, t) and letting t → ‖u‖L∞(X ,ν), we obtain

∫ ‖u‖L∞(X ,ν)

0
pt p−1ϕ(t)p dt ≤

(∫ ‖u‖L∞(X ,ν)

0
ϕ(t)dt

)p

,

that is,
∫ ‖u‖L∞(X ,ν)

0
pt p−1ν(Et (u)) dt ≤

(∫ ‖u‖L∞(X ,ν)

0
ν(Et (u))

1
p dt

)p

. (2.13)

Now,

‖u‖pL p(X ,ν) =
∫
X
u p(x)dν(x) =

∫
X

(∫ u(x)

0

dt p

dt
dt

)
dν(x)

=
∫
X

(∫ ‖u‖L∞(X ,ν)

0
pt p−1χ Et (u)dt

)
dν(x)

=
∫ ‖u‖L∞(X ,ν)

0
pt p−1ν(Et (u))dt .

Thus, by (2.13), we get

‖u‖L p(X ,ν) ≤
∫ ‖u‖L∞(X ,ν)

0
ν(Et (u))

1
p dt . (2.14)

Finally, from (2.12) and (2.14), we obtain (2.11). ��

Note that, if we take �n(r) := 1
In
r− 1

n , we can rewrite (2.10) as

ν(A)�n(ν(A)) ≤ Pm(A) for all A ⊂ X with 0 < ν(A) < ν(X).

The next definition was given in [21] for Riemannian manifolds.

Definition 2.12 Given a non-increasing function � :]0,∞[→ [0,∞[, we say that
[X , d,m, ν] satisfies a �-isoperimetric inequality if

ν(A)�(ν(A)) ≤ Pm(A) for all A ⊂ X with 0 < ν(A) < ν(X).

Example 2.13 (1) In [48] (see also the references therein) it is shown that the lattice Z
n

has isoperimetric dimension n with constant In = 1
2n , and that the complete graph Kn

satisfies a �-isoperimetric inequality with �(r) = n − r . In addition, it is also proved
that the n-cube Qn satisfies a �-isoperimetric inequality with �(r) = log2(

ν(Qn)
r ).

(2) In [35], for [RN , d,mJ ], it is proved that

�J ,N (|A|) ≤ PJ (A) for all A ⊂ X with |A| < +∞,

being

�J ,N (r) =
∫
B
(r/ωN )

1
N

H J
∂B‖x‖(x)dx =

∫ r

0
H J

∂B
(s/ωN )

1
N

((s/ωN )
1
N , 0, . . . , 0)ds,

where Br is the ball of radius r centered at 0 and H J
∂Br

is the mJ -mean curvature of ∂Br
(see Sect. 2.2). Therefore, [RN , d,mJ ,LN ] satisfies a�-isoperimetric inequality, where
�(r) = 1

r �J ,N (r) is a decreasing function.
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The next result was proved in [21] for Riemannian manifolds and in [20] for graphs (see
also [48, Theorem 2]).

Proposition 2.14 Given a non-increasing function � :]0,∞[→ [0,∞[, we have that
[X , d,m, ν] satisfies a �-isoperimetric inequality if, and only if, the following inequality
holds:

�(ν(A))‖u‖L1(X ,ν) ≤ T Vm(u) (2.15)

for all ν-measurable sets A ⊂ X with 0 < ν(A) < ν(X) and all u ∈ L1(X , ν) with
u = 0 in X\A.

Proof Taking u = χ A in (2.15), we obtain that [X , d,m, ν] satisfies a �-isoperimetric
inequality. Conversely, since T Vm(|u|) ≤ T Vm(u), it is enough to prove (2.15) for u ≥ 0. If
u ≡ 0 in X the result is trivial. Therefore, let A be a ν-measurable set with 0 < ν(A) < ν(X)

and 0 ≤ u ∈ L1(X , ν) a non-ν-null function with u ≡ 0 in X\A. For t > 0 we have that
Et (u) ⊂ A and, therefore, ν(Et (u)) ≤ ν(A), thus, since � is non-increasing, we have that
�(ν(Et (u)) ≥ �(A). Therefore, by the coarea formula, we have

T Vm(u) =
∫ +∞

0
Pm(Et (u))dt =

∫ ‖u‖L∞(X ,ν)

0
Pm(Et (u))dt

≥
∫ ‖u‖L∞(X ,ν)

0
ν(Et (u))�(ν(Et (u)))dt

≥ �(ν(A))

∫ +∞

0
ν(Et (u))dt = �(ν(A))‖u‖L1(X ,ν).

��
As a consequence of Theorem 2.11 and Proposition 2.14, we obtain the following result.

Corollary 2.15 The following assertions are equivalent:

(i) ‖u‖
L

n
n−1 (X ,ν)

≤ InT Vm(u) ∀u ∈ BV 0
m(X , ν).

(ii) ‖u‖L1(X ,ν) ≤ Inν(A)
1
n T Vm(u) for all A ⊂ X with 0 < ν(A) < ν(X) and all u ∈

L1(X , ν) with u = 0 in X\A.

Consider the Dirichlet energy functional Hm : L2(X , ν) → [0,+∞] defined as

Hm(u) =

⎧⎪⎪⎨
⎪⎪⎩

1

2

∫
X×X

(u(x)− u(y))2dmx (y)dν(x) if u ∈ L2(X , ν) ∩ L1(X , ν).

+∞, else.

The next result, in the context of Markov chains, was obtained by Varopoulos in [49].

Theorem 2.16 Let n > 2. If the Sobolev inequality

‖u‖
L

n
n−1 (X ,ν)

≤ InT Vm(u) for all u ∈ BV 0
m(X , ν) (2.16)

holds, then there exists Cn > 0 such that

‖u‖2
L

2n
n−2 (X ,ν)

≤ CnHm(u) for all u ∈ BV 0
m(X , ν)

123



29 Page 18 of 64 J. M. Mazón et al.

Proof We can assume that u ≥ 0. Let p := 2(n−1)
n−2 . By (2.16), we have

‖u‖p2n
n−2
= ‖u‖ppn

n−1
= ‖u p‖ n

n−1 ≤ InT Vm(u p). (2.17)

On the other hand, since, for a, b > 0,

|bp − a p| ≤ p(a p−1 + bp−1)|b − a|
by the convexity of |x |p , and having in mind the reversibility of ν, we have

T Vm(u p) ≤ 1

2

∫
X

∫
X
p(u p−1(x)+ u p−1(y))|u(y)− u(x)|dmx (y)dν(x)

= p
∫
X

∫
X
u p−1(x)|u(y)− u(x)|dmx (y)dν(x)

≤ p

(∫
X

∫
X
u2(p−1)(x)dmx (y)dν(x)

) 1
2
(∫

X

∫
X
|u(y)− u(x)|2dmx (y)dν(x)

) 1
2

= p‖u p−1‖L2(X ,ν) (2Hm(u))
1
2 .

Then, by (2.17), we get

‖u‖p2n
n−2
≤ pIn‖u p−1‖L2(X ,ν) (2Hm(u))

1
2 . (2.18)

Now,

‖u p−1‖L2(X ,ν) =
(∫

X
u

2n
n−2 dν

) 1
2 = ‖u‖

n
n−2
2n
n−2

,

thus, from (2.18),

‖u‖
2(n−1)
n−2
2n
n−2

≤ 2(n−1)
n−2 In‖u‖

n
n−2
2n
n−2

(2Hm(u))
1
2 ,

and, therefore,

‖u‖22n
n−2
≤ CnHm(u)

where Cn = 8(n−1)2
(n−2)2 I 2n . ��

Following Theorems 2.11 and 2.16 we can also obtain a Sobolev inequality as a conse-
quence of the isoperimetric dimensional inequality.

Corollary 2.17 Assume that ν(X) < ∞. Let n > 2. If [X , d,m, ν] has isoperimetric dimen-
sion n then there exists Cn > 0 such that

‖u‖2
L

2n
n−2 (X ,ν)

≤ CnHm(u) for all u ∈ BV 0
m(X , ν).

Let us point out that an important consequence of this result is Theorem 5 in [19], which
corresponds to Corollary 2.17 for the particular case of finite weighted graphs.

123



Total variation flow in metric random walk spaces Page 19 of 64 29

2.5 m-TV versus TV in metric measure spaces

Let (X , d, ν) be a metric measure space and recall that, for functions in L1(X , ν), Miranda
introduced a local notion of total variation in [41] (see also [2]). To define this notion, first
note that for a function u : X → R, its slope (or local Lipschitz constant) is defined as

|∇u|(x) := lim sup
y→x

|u(y)− u(x)|
d(x, y)

, x ∈ X ,

with the convention that |∇u|(x) = 0 if x is an isolated point.
A function u ∈ L1(X , ν) is said to be a BV-function if there exists a sequence (un) of

locally Lipschitz functions converging to u in L1(X , ν) and such that

sup
n∈N

∫
X
|∇un |dν(x) < ∞.

We shall denote the space of all BV-functions by BV (X , d, ν). Let u ∈ BV (X , d, ν), the
total variation of u on an open set A ⊂ X is defined as:

|Du|ν(A) := inf

{
lim inf
n→∞

∫
A
|∇un |(x)dν(x) : un ∈ Liploc(X , ν), un → u in L1(A, ν)

}
.

A set E ⊂ X is said to be of finite perimeter if χ E ∈ BV (X , d, ν) and its perimeter is defined
as

Perν(E) := |Dχ E |ν(X). (2.19)

We want to point out that in [2] the BV-functions are characterized using different notions
of total variation.

As aforementioned, the local classical BV-spaces and the nonlocal BV-spaces are of dif-
ferent nature although they represent analogous concepts in different settings. In this section
we compare these spaces, showing that it is possible to relate the nonlocal concept to the
local one after rescaling and taking limits.

Remark 2.18 Obviously,

|Du|ν ≤ |∇u| ν if u is locally Lipschitz.

Furthermore, there exist metric measures spaces in which the equality in this expression does
not hold (see [4, Remark 4.4]).

Proposition 2.19 Let [X , d,m] be a metric random walk space with invariant and reversible
measure ν. Let u ∈ BV (X , d, ν). Then u ∈ BV (X , d,mx ) for ν-a.e. x ∈ X and∫

X
|Du|mx (X)dν(x) ≤ |Du|ν(X).

Proof Since u ∈ BV (X , d, ν), there exists a sequence {un}n∈N ⊂ Liploc(X , ν) such that

lim
n→∞‖un − u‖L1(X ,ν) = 0 and lim

n→∞

∫
X
|∇un |(x)dν(x) = |Du|ν(X).

Now, using the invariance of ν,∫
X
‖un − u‖L1(X ,mx )

dν(x) =
∫
X

(∫
X
|un(y)− u(y)|dmx (y)

)
dν(x)

=
∫
X
|un(y)− u(y)|dν(y) = ‖un − u‖L1(X ,ν)

n→∞−−−→ 0.
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Therefore, we may take a subsequence, which we still denote by un , such that limn→∞ ‖un−
u‖L1(X ,mx )

= 0 for ν-a.e. x ∈ X .
Moreover, by Fatou’s lemma and the invariance of ν,∫
X

(
lim inf
n→∞

∫
X
|∇un |(y)dmx (y)

)
dν(x) ≤ lim inf

n→∞

∫
X

(∫
X
|∇un |(y)dmx (y)

)
dν(x)

= lim inf
n→∞

∫
X
|∇un |(y)dν(x) = |Du|ν(X).

Consequently, lim infn→∞
∫
X |∇un |(y)dmx (y) < ∞ and limn→∞ un = u in L1(X ,mx )

for ν-a.e. x ∈ X , thus u ∈ BV (X , d,mx ) for ν-a.e. x ∈ X , and∫
X
|Du|mx (X)dν(x) ≤ |Du|ν(X) .

��
It is shown in [35] that, in the context of Example 1.1 (1), and assuming that J satisfies

MJ :=
∫
RN

J (z)|z|dz < +∞,

we have that

T VmJ (u) ≤ MJ

2
|Du|LN (2.20)

for every u ∈ BV (RN ).
In the next example we see that there exist metric random walk spaces in which it is not

possible to obtain an inequality like (2.20).

Example 2.20 Let G = (V (G), E(G)) be a locally finite weighted discrete graph with
weights wx,y . For a fixed x0 ∈ V (G) the function u = χ {x0} is a Lipschitz function and,
since every vertex is isolated for the graph distance, |∇u| ≡ 0, thus

|Du|νG (V (G)) ≤
∫
|∇u|dνG(x) = 0.

However, by Example 2.4, we have

T VmG (u) = 1

2

∑
x∈V (G))

∑
y∈V (G)

|u(x)− u(y)|wxy =
∑

x∈V (G)),x �=x0
wx0x > 0.

Let [RN , d,mJ ] be the metric random walk space of Example 1.1 (1). Then, if J is
compactly supported and u ∈ BV (RN ) has compact support we have that (see [23] and
[34])

lim
ε↓0

CJ

ε
T VmJε (u) =

∫
RN
|Du|dLN , (2.21)

where

Jε(x) := 1

εN
J
( x

ε

)
and CJ = 2∫

RN
J (z)|zN |dz

.

In particular, if we take

J (x) := 1

LN (B(0, 1))
χ B(0,1)(x),
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then

Jε(x) = 1

LN (B(0, ε))
χ B(0,ε)(x).

Hence,

mLN ,ε
x = mJε

x ,

and, consequently, by (2.21), we have

lim
ε↓0

CJ

ε
T V

mLN ,ε (u) =
∫
RN
|Du|dLN = |Du|LN (RN ).

Therefore, it is natural to pose the following problem: Let (X , d, μ) be a metric measure
space and let mμ,ε be the ε-step random walk associated to μ, that is,

mμ,ε
x := μ B(x, ε)

μ(B(x, ε))
.

Are there metric measure spaces for which

lim
ε↓0

1

ε
T Vmμ,ε (u) ≈ |Du|μ(X) for all u ∈ BV (X , d, μ)?

To give a positive answer to the previous question we recall the following concepts on a
metric measure space (X , d, ν): Themeasure ν is said to be doubling if there exists a constant
CD ≥ 1 such that

0 < ν(B(x, 2r)) ≤ CDν(B(x, r)) < ∞ ∀ x ∈ X , and all r > 0.

A doubling measure ν has the following property. For every x ∈ X and 0 < r ≤ R < ∞ if
y ∈ B(x, R) then

ν(B(x, R))

ν(B(y, r))
≤ C

(
R

r

)qν

, (2.22)

where C is a positive constant depending only on CD and qν = log2 CD .
On the other hand, the metric measure space (X , d, ν) is said to support a 1-Poincaré

inequality if there exist constants c > 0 and λ ≥ 1 such that, for any u ∈ Lip(X , d), the
inequality ∫

B(x,r)
|u(y)− uB(x,r)|dν(y) ≤ cr

∫
B(x,λr)

|∇u|(y)dν(y)

holds, where

uB(x,r) := 1

ν(B(x, r))

∫
B(x,r)

u(y)dν(y).

The following result is proved in [33, Theorem 3.1].

Theorem 2.21 [33] Let (X , d, ν) be a metric measure space with ν doubling and supporting
a 1-Poincaré inequality. Given u ∈ L1(X , μ), we have that u ∈ BV (X , d, ν) if, and only if,

lim inf
ε→0+

1

ε

∫
�ε

|u(y)− u(x)|√
ν(B(x, ε))

√
ν(B(y, ε))

dν(y)dν(x) <∞,

where �ε := {(x, y) ∈ X × X : d(x, y) < ε}. Moreover, there is a constant C ≥ 1, that
depends only on (X , d, ν), such that
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1

C
|Du|ν(X) ≤ lim inf

ε→0+
1

ε

∫
�ε

|u(y)− u(x)|√
ν(B(x, ε))

√
ν(B(y, ε))

dν(y)dν(x) ≤ C |Du|ν(X).

Now, by Fubini’s Theorem, we have∫
�ε

|u(y)− u(x)|√
ν(B(x, ε))

√
ν(B(y, ε))

dν(y)dν(x)

=
∫
X

∫
B(x,ε)

|u(y)− u(x)|√
ν(B(x, ε))

√
ν(B(y, ε))

dν(y)dν(x). (2.23)

On the other hand, by (2.22), there exists a constant C1 > 0, depending only on CD , such
that

ν(B(x, ε))

ν(B(y, ε))
≤ C1 . (2.24)

By (2.24), we have

1√
C1

1

ν(B(x, ε))
≤ 1√

ν(B(x, ε))
√

ν(B(y, ε))
≤ √C1

1

ν(B(x, ε))
∀ y ∈ B(x, ε).

(2.25)

Hence, from (2.23) and (2.25), we get

1√
C1

1

ε
T Vmν,ε (u) = 1√

C1

1

ε

1

2

∫
X

1

ν(B(x, ε))

∫
B(x,ε)

|u(y)− u(x)|dν(y)dν(x)

≤ 1

ε

1

2

∫
�ε

|u(y)− u(x)|√
ν(B(x, ε))

√
ν(B(y, ε))

dν(y)dν(x)

≤ √C1
1

ε

1

2

∫
X

1

ν(B(x, ε))

∫
B(x,ε)

|u(y)− u(x)|dν(y)dν(x)

= √C1
1

ε
T Vmν,ε (u).

Therefore, we can rewrite Theorem 2.21 as follows.

Theorem 2.22 Let (X , d, ν) be a metric measure space with doubling measure ν and sup-
porting a 1-Poincaré inequality. Given u ∈ L1(X , ν), we have that u ∈ BV (X , d, ν) if, and
only if,

lim inf
ε→0+

1

ε
T Vmν,ε (u) < ∞.

Moreover, there is a constant C ≥ 1, that depends only on (X , d, ν), such that

1

C
|Du|ν(X) ≤ lim inf

ε→0+
1

ε
T Vmν,ε (u) ≤ C |Du|ν(X).

Remark 2.23 Monti, in [42], defines

‖∇u‖−
L1(X ,ν)

:= 2 lim inf
ε→0+

1

ε
T Vmν,ε (u),

and uses this to prove rearrangement theorems in the setting of metric measure spaces.
Moreover, he proposes ‖∇u‖−

L1(X ,μ)
as a possible definition of the L1-length of the gradient

of functions in metric measure spaces.
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3 The 1-Laplacian and the total variation flow inmetric randomwalk
spaces

Let [X , d,m]be ametric randomwalk spacewith invariant and reversiblemeasure ν. Assume,
as aforementioned, that [X , d,m] is m-connected.

Given a function u : X → R we define its nonlocal gradient ∇u : X × X → R as

∇u(x, y) := u(y)− u(x) ∀ x, y ∈ X ,

which should not be confused with the slope |∇u|(x), x ∈ X , introduced in Sect. 2.5.
For a function z : X × X → R, its m-divergence divmz : X → R is defined as

(divmz)(x) := 1

2

∫
X
(z(x, y)− z(y, x))dmx (y),

and, for p ≥ 1, we define the space

X p
m(X) := {z ∈ L∞(X × X , ν ⊗ mx ) : divmz ∈ L p(X , ν)

}
.

Let u ∈ BVm(X , ν) ∩ L p′(X , ν) and z ∈ X p
m(X), 1 ≤ p ≤ ∞, having in mind that ν is

reversible, we have the following Green’s formula:∫
X
u(x)(divmz)(x)dx = −1

2

∫
X×X

∇u(x, y)z(x, y)d(ν ⊗ mx )(x, y). (3.1)

In the next result we characterize T Vm and the m-perimeter using the m-divergence oper-
ator. Let us denote by sign0(r) the usual sign function and by sign(r) the multivalued sign
function:

sign0(r) :=
⎧⎨
⎩
1 if r > 0,
0 if r = 0,
−1 if r < 0;

sign(r) :=
⎧⎨
⎩
1 if r > 0,
[−1, 1] if r = 0,
−1 if r < 0.

Proposition 3.1 Let 1 ≤ p ≤ ∞. For u ∈ BVm(X , ν) ∩ L p′(X , ν), we have

T Vm(u) = sup

{∫
X
u(x)(divmz)(x)dν(x) : z ∈ X p

m(X), ‖z‖L∞(X×X ,ν⊗mx ) ≤ 1

}
.

(3.2)

In particular, for any ν-measurable set E ⊂ X, we have

Pm(E) = sup

{∫
E
(divmz)(x)dν(x) : z ∈ X1

m(X), ‖z‖L∞(X×X ,ν⊗mx ) ≤ 1

}
.

Proof Let u ∈ BVm(X , ν) ∩ L p′(X , ν). Given z ∈ X p
m(X) with ‖z‖L∞(X×X ,ν⊗mx ) ≤ 1,

applying Green’s formula (3.1), we have∫
X
u(x)(divmz)(x)dν(x) = −1

2

∫
X×X

∇u(x, y)z(x, y)d(ν ⊗ mx )(x, y)

≤ 1

2

∫
X×X

|u(y)− u(x)|dmx (y)dν(x) = T Vm(u).

Therefore,

sup

{∫
X
u(x)(divmz)(x)dν(x) : z ∈ X p

m(X), ‖z‖L∞(X×X ,ν⊗mx ) ≤ 1

}
≤ T Vm(u).
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On the other hand, since (X , d) is σ -finite, there exists a sequence of sets K1 ⊂ K2 ⊂
· · · ⊂ Kn ⊂ · · · of ν-finite measure, such that X = ∪∞n=1Kn . Then, if we define zn(x, y) :=
sign0(u(y) − u(x))χKn×Kn (x, y), we have that zn ∈ X p

m(X) with ‖zn‖L∞(X×X ,ν⊗mx ) ≤ 1
and

T Vm(u) = 1

2

∫
X×X

|u(y)− u(x)|d(ν ⊗ mx )(x, y)

= lim
n→∞

1

2

∫
Kn×Kn

|u(y)− u(x)|d(ν ⊗ mx )(x, y)

= lim
n→∞

1

2

∫
X×X

∇u(x, y)zn(x, y)d(ν ⊗ mx )(x, y)

= lim
n→∞

∫
X
u(x)(divm(−zn))(x)dν(x)

≤ sup

{∫
X
u(x)(divm(z))(x)dν(x) : z ∈ X p

m(X), ‖z‖L∞(X×X ,ν⊗mx ) ≤ 1

}
.

��
Corollary 3.2 T Vm is lower semi-continuous with respect to the weak convergence in
L2(X , ν).

Proof If un⇀u weakly in L2(X , ν) then, given z ∈ X2
m(X) with ‖z‖L∞(X×X ,ν⊗mx ) ≤ 1, we

have that∫
X
u(x)(divmz)(x)dν(x) = lim

n→∞

∫
X
un(x)(divmz)(x)dν(x) ≤ lim inf

n→∞ T Vm(un)

by Proposition 3.1. Now, taking the supremum over z in this inequality, we get

T Vm(u) ≤ lim inf
n→∞ T Vm(un).

��
Consider the formal nonlocal evolution equation

ut (x, t) =
∫
X

u(y, t)− u(x, t)

|u(y, t)− u(x, t)|dmx (y), x ∈ X , t ≥ 0. (3.3)

In order to study the Cauchy problem associated to the previous equation, we will see in
Theorem 3.8 that we can rewrite it as the gradient flow in L2(X , ν) of the functional Fm :
L2(X , ν) →]−∞,+∞] defined by

Fm(u) :=
{
T Vm(u) if u ∈ L2(X , ν) ∩ BVm(X , ν),

+∞ if u ∈ L2(X , ν)\BVm(X , ν),

which is convex and lower semi-continuous. Following the method used in [5] we will
characterize the subdifferential of the functional Fm .

Given a functional � : L2(X , ν) → [0,∞], we define �̃ : L2(X , ν) → [0,∞] as

�̃(v) := sup

⎧⎪⎪⎨
⎪⎪⎩

∫
X

v(x)w(x)dν(x)

�(w)
: w ∈ L2(X , ν)

⎫⎪⎪⎬
⎪⎪⎭

with the convention that 0
0 = 0

∞ = 0. Obviously, if �1 ≤ �2, then �̃2 ≤ �̃1.
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Theorem 3.3 Let u ∈ L2(X , ν) and v ∈ L2(X , ν). The following assertions are equivalent:

(i) v ∈ ∂Fm(u);
(ii) there exists z ∈ X2

m(X), ‖z‖L∞(X×X ,ν⊗mx ) ≤ 1 such that

v = −divmz (3.4)

and ∫
X
u(x)v(x)dν(x) = Fm(u);

(iii) there exists z ∈ X2
m(X), ‖z‖L∞(X×X ,ν⊗mx ) ≤ 1 such that (3.4) holds and

Fm(u) = 1

2

∫
X×X

∇u(x, y)z(x, y)d(ν ⊗ mx )(x, y);

(iv) there exists g ∈ L∞(X × X , ν ⊗ mx ) antisymmetric with ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1 such
that

−
∫
X
g(x, y) dmx (y) = v(x) for ν − a.e x ∈ X , (3.5)

and

−
∫
X

∫
X
g(x, y)dmx (y) u(x)dν(x) = Fm(u). (3.6)

(v) there exists g ∈ L∞(X×X , ν⊗mx ) antisymmetric with ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1 verifying
(3.5) and

g(x, y) ∈ sign(u(y)− u(x)) for (ν ⊗ mx )− a.e. (x, y) ∈ X × X . (3.7)

Proof Since Fm is convex, lower semi-continuous and positive homogeneous of degree 1,
by [5, Theorem 1.8], we have

∂Fm(u) =
{
v ∈ L2(X , ν) : F̃m(v) ≤ 1,

∫
X
u(x)v(x)dν(x) = Fm(u)

}
. (3.8)

We define, for v ∈ L2(X , ν),

�(v) := inf
{‖z‖L∞(X×X ,ν⊗mx ) : z ∈ X2

m(X), v = −divmz
}
. (3.9)

Observe that � is convex, lower semi-continuous and positive homogeneous of degree 1.
Moreover, it is easy to see that, if�(v) < ∞, the infimum in (3.9) is attained i.e., there exists
some z ∈ X2

m(X) such that v = −divmz and �(v) = ‖z‖L∞(X×X ,ν⊗mx ).

Let us see that

� = F̃m .

We begin by proving that F̃m(v) ≤ �(v). If �(v) = +∞ then this assertion is trivial.
Therefore, suppose that �(v) < +∞. Let z ∈ L∞(X × X , ν ⊗ mx ) such that v = −divmz.
Then, for w ∈ L2(X , ν), we have∫

X
w(x)v(x)dν(x) = 1

2

∫
X×X

∇w(x, y)z(x, y)d(ν ⊗ mx )(x, y)

≤ ‖z‖L∞(X×X ,ν⊗mx )Fm(w).
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Taking the supremum over w we obtain that F̃m(v) ≤ ‖z‖L∞(X×X ,ν⊗mx ). Now, taking the
infimum over z, we get F̃m(v) ≤ �(v).

To prove the opposite inequality let us denote

D := {divmz : z ∈ X2
m(X)}.

Then, by (3.2), we have that, for v ∈ L2(X , ν),

�̃(v) = sup
w∈L2(X ,ν)

∫
X

w(x)v(x)dν(x)

�(w)
≥ sup

w∈D

∫
X

w(x)v(x)dν(x)

�(w)

= sup
z∈X2

m (X)

∫
X
divmz(x)v(x)dν(x)

‖z‖L∞(X×X ,ν⊗mx )

= Fm(v).

Thus, Fm ≤ �̃, which implies, by [5, Proposition 1.6], that � = ˜̃� ≤ F̃m . Therefore,
� = F̃m , and, consequently, from (3.8), we get

∂Fm(u) =
{
v ∈ L2(X , ν) : �(v) ≤ 1,

∫
X
u(x)v(x)dν(x) = Fm(u)

}

= {v ∈ L2(X , ν) : ∃z ∈ X2
m(X),

v = −divmz, ‖z‖L∞(X×X ,ν⊗mx ) ≤ 1,
∫
X
u(x)v(x)dν(x) = Fm(u)

}
,

from where the equivalence between (i) and (ii) follows .
To prove the equivalence between (ii) and (iii) we only need to apply Green’s formula

(3.1).
On the other hand, to see that (iii) implies (iv), it is enough to take g(x, y) = 1

2 (z(x, y)−
z(y, x)). Moreover, to see that (iv) implies (ii), take z(x, y) = g(x, y) (observe that, from
(3.5), −divm(g) = v, so g ∈ X2

m(X)). Finally, to see that (iv) and (v) are equivalent,
we need to show that (3.6) and (3.7) are equivalent. Now, since g is antisymmetric with
‖g‖L∞(X×X ,ν⊗mx ) ≤ 1 and ν is reversible, we have

−2
∫
X

∫
X
g(x, y)dmx (y) u(x)dν(x) =

∫
X×X

g(x, y)(u(y)− u(x))d(ν ⊗ mx )(x, y),

from where the equivalence between (3.6) and (3.7) follows. ��

By Theorem 3.3 and following [6, Theorem 7.5], the next result is easy to prove.

Proposition 3.4 ∂Fm is an m-completely accretive operator in L2(X , ν).

Definition 3.5 We define in L2(X , ν) the multivalued operator �m
1 by

(u, v) ∈ �m
1 if, and only if, −v ∈ ∂Fm(u).

As usual, we will write v ∈ �m
1 u for (u, v) ∈ �m

1 .

Chang in [14] and Hein and Bühler in [29] define a similar operator in the particular case
of finite graphs:
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Example 3.6 Let [V (G), dG , (mG
x )] be themetric randomwalk given in Example 1.1 (3) with

invariant measure νG . By Theorem 3.3, we have

(u, v) ∈ �mG

1 ⇐⇒ there exists g ∈ L∞(V (G)× V (G), νG ⊗ mG
x ) antisymmetric with

‖g‖L∞(V (G)×V (G),νG⊗mG
x ) ≤ 1 such that

1

dx

∑
y∈V (G)

g(x, y)wxy = v(x) ∀ x ∈ V (G),

and

g(x, y) ∈ sign(u(y)− u(x)) for (νG ⊗ mG
x )− a.e. (x, y) ∈ V (G)× V (G).

The next example shows that the operator �mG

1 is indeed multivalued. Let V (G) = {a, b}
and waa = wbb = p, wab = wba = 1− p, with 0 < p < 1. Then,

(u, v) ∈ �mG

1 ⇐⇒ there exists g ∈ L∞({a, b} × {a, b}, νG ⊗ mG
x ) antisymmetric with

‖g‖L∞({a,b}×{a,b},νG⊗mG
x ) ≤ 1 such that

g(a, a)p + g(a, b)(1− p) = v(a),

g(b, b)p + g(b, a)(1− p) = v(b)

and

g(a, b) ∈ sign(u(b)− u(a)).

Now, since g is antisymmetric, we get

v(a) = g(a, b)(1− p), v(b) = −g(a, b)(1− p) and g(a, b) ∈ sign(u(b)− u(a)).

Proposition 3.7 [Integration by parts] For any (u, v) ∈ �m
1 it holds that

−
∫
X

vwdν ≤ T Vm(w) for all w ∈ BVm(X , ν) ∩ L2(X , ν), (3.10)

and

−
∫
X

vudν = T Vm(u). (3.11)

Proof Since −v ∈ ∂Fm(u), given w ∈ BVm(X , ν), we have that

−
∫
X

vwdν ≤ Fm(u + w)− Fm(u) ≤ Fm(w),

so we get (3.10). On the other hand, (3.11) is given in Theorem 3.3. ��
As a consequence of Theorem 3.3, Proposition 3.4 and on account of Theorem 1.2, we

can give the following existence and uniqueness result for the Cauchy problem{
ut −�m

1 u � 0 in (0, T )× X
u(0, x) = u0(x) for x ∈ X ,

(3.12)

which is a rewrite of the formal expression (3.3).

Theorem 3.8 For every u0 ∈ L2(X , ν) and any T > 0, there exists a unique solution of
the Cauchy problem (3.12) in (0, T ) in the following sense: u ∈ W 1,1(0, T ; L2(X , ν)),
u(0, ·) = u0 in L2(X , ν), and, for almost all t ∈ (0, T ),

ut (t, ·)−�m
1 u(t) � 0.
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Moreover, we have the following contraction andmaximum principle in any Lq(X , ν)–space,
1 ≤ q ≤ ∞:

‖(u(t)− v(t))+‖Lq (X ,ν) ≤ ‖(u0 − v0)
+‖Lq (X ,ν) ∀ 0 < t < T ,

for any pair of solutions, u, v, of problem (3.12) with initial data u0, v0 respectively.

Definition 3.9 Given u0 ∈ L2(X , ν), we denote by et�
m
1 u0 the unique solution of problem

(3.12). We call the semigroup {et�m
1 }t≥0 in L2(X , ν) the Total Variational Flow in the metric

random walk space [X , d,m] with invariant and reversible measure ν.

In the next result we give an important property of the total variational flow in metric
random walk spaces.

Proposition 3.10 The TVF satisfies the mass conservation property: for u0 ∈ L2(X , ν),∫
X
et�

m
1 u0dν =

∫
X
u0dν for any t ≥ 0.

Proof By Proposition 3.7, we have

− d

dt

∫
X
et�

m
1 u0dν ≤ T Vm(1) = 0,

and

d

dt

∫
X
et�

m
1 u0dν ≤ T Vm(−1) = 0.

Hence,

d

dt

∫
X
et�

m
1 u0dν = 0,

and, consequently, ∫
X
et�

m
1 u0dν =

∫
X
u0dν for any t ≥ 0.

��

4 Asymptotic behaviour of the TVF and Poincaré type inequalities

Let [X , d,m] be ametric randomwalk spacewith invariant and reversiblemeasure ν. Assume
as always that [X , d,m] is m-connected.

Proposition 4.1 For every initial data u0 ∈ L2(X , ν),

lim
t→∞ et�

m
1 u0 = u∞ in L2(X , ν),

with

u∞ ∈ {u ∈ L2(X , ν) : 0 ∈ �m
1 (u)}.

Moreover, if ν(X) <∞ then

u∞ = 1

ν(X)

∫
X
u0(x)dν(x).
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Proof Since Fm is a proper and lower semicontinuous function in X attaining a minimum at
the constant zero function and, moreover, Fm is even, by [11, Theorem 5], we have

lim
t→∞ et�

m
1 u0 = u∞ in L2(X , ν),

with

u∞ ∈ {u ∈ L2(X , ν) : 0 ∈ �m
1 (u)}.

Now, since 0 ∈ �m
1 (u∞), we have that T Vm(u∞) = 0 thus, by Lemma 2.9, if ν(X) < ∞

(then 1
ν(X)

ν is ergodic) we get that u∞ is constant. Therefore, by Proposition 3.10,

u∞ = 1

ν(X)

∫
X
u0(x)dν(x).

��
Let us see that we can get a rate of convergence of the total variational flow (et�

m
1 )t≥0

when a Poincaré type inequality holds.
From now on in this section we will assume that

ν(X) < +∞.

Hence, Fm(u) = T Vm(u) for all u ∈ L2(X , ν).

Definition 4.2 We say that [X , d,m, ν] satisfies a (q, p)-Poincaré inequality (p, q ∈
[1,+∞[) if there exists a constant c > 0 such that, for any u ∈ Lq(X , ν),

‖u‖L p(X ,ν) ≤ c

((∫
X

∫
X
|u(y)− u(x)|qdmx (y)dν(x)

) 1
q +

∣∣∣∣
∫
X
u dν

∣∣∣∣
)

,

or, equivalently (by the triangle inequality for one direction and taking ũ = u − ν(u) for the
other), there exists a λ > 0 such that

λ ‖u − ν(u)‖L p(X ,ν) ≤ ‖∇u‖Lq (X×X ,d(ν⊗mx )) for all u ∈ Lq(X , ν),

where ν(u) := 1
ν(X)

∫
X u(x)dν(x).

When [X , d,m, ν] satisfies a (q, p)-Poincaré inequality, we will denote

λ
(q,p)
[X ,d,m,ν] := inf

{‖∇u‖Lq (X×X ,d(ν⊗mx ))

‖u‖L p(X ,ν)

: ‖u‖L p(X ,ν) �= 0,
∫
X
u(x)dν(x) = 0

}
.

When [X , d,m, ν] satisfies a (1, p)-Poincaré inequality, we will say that [X , d,m, ν]
satisfies a p-Poincaré inequality and write

λ
p
[X ,d,m,ν] := λ

(1,p)
[X ,d,m,ν] = inf

{
T Vm(u)

‖u‖L p(X ,ν)

: ‖u‖L p(X ,ν) �= 0,
∫
X
u(x)dν(x) = 0

}
.

(4.1)

The following result was proved in [6, Theorem 7.11] for the particular case of the metric
random walk space [
, d,mJ ,
].
Theorem 4.3 If [X , d,m, ν] satisfies a 1-Poincaré inequality, then, for any u0 ∈ L2(X , ν),

∥∥∥et�m
1 u0 − ν(u0)

∥∥∥
L1(X ,ν)

≤ 1

2λ1[X ,d,m,ν]

‖u0‖2L2(X ,ν)

t
for all t > 0.
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Proof Since the semigroup {et�m
1 : t ≥ 0} preserves the mass (Proposition 3.10), we have

v(t) := et�
m
1 u0 − 1

ν(X)

∫
X
et�

m
1 u0dν = et�

m
1 u0 − 1

ν(X)

∫
X
u0dν.

Furthermore, the complete accretivity of the operator −�m
1 (see Sect. 1.2) implies that

L(v) := ‖v − ν(u0)‖L1(X ,ν)

is a Liapunov functional for the semigroup {et�m
1 : t ≥ 0}, which implies that

‖v(t)‖L1(X ,ν) ≤ ‖v(s)‖L1(X ,ν) if t ≥ s. (4.2)

Now, by the Poincaré inequality we get

λ1[X ,d,m,ν]‖v(s)‖L1(X ,ν) ≤ T Vm(v(s)) (4.3)

and, by (4.2) and (4.3), we obtain that

t‖v(t)‖L1(X ,ν) ≤
∫ t

0
‖v(s)‖L1(X ,ν)ds ≤

1

λ
(1,1)
[X ,d,m,ν]

∫ t

0
T Vm(v(s))ds. (4.4)

On the other hand, by integration by parts (Proposition 3.7),

−1

2

d

dt
‖et�m

1 u0‖2L2(X ,ν)
= −

∫
X
et�

m
1 u0

d

dt
et�

m
1 u0dν = T Vm(et�

m
1 u0),

and then

1

2
‖et�m

1 u0‖2L2(X ,ν)
− 1

2
‖u0‖2L2(X ,ν)

= −
∫ t

0
T Vm(es�

m
1 u0)ds = −

∫ t

0
T Vm(v(s))ds,

which implies ∫ t

0
T Vm(v(s))ds ≤ 1

2
‖u0‖2L2(X ,ν)

.

Hence, by (4.4)

‖v(t)‖L1(X ,ν) ≤
1

2λ1[X ,d,m,ν]

‖u0‖2L2(X ,ν)

t
,

which concludes the proof. ��
To obtain a family of metric random walk spaces for which a 1-Poincaré inequality holds,

we need the following result.

Lemma 4.4 Suppose that ν is a probability measure (thus ergodic) and

mx  ν for all x ∈ X .

Let q ≥ 1. Let {un}n ⊂ Lq(X , ν) be a bounded sequence in L1(X , ν) satisfying

lim
n

∫
X

∫
X
|un(y)− un(x)|qdmx (y)dν(x) = 0. (4.5)

Then, there exists λ ∈ R such that

un → λ for ν − a.e. x ∈ X ,

‖un − λ‖Lq (X ,mx ) → 0 for ν − a.e. x ∈ X .
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Proof Let

Fn(x, y) = |un(y)− un(x)|
and

fn(x) =
∫
X
|un(y)− un(x)|q dmx (y).

From (4.5), it follows that

fn → 0 in L1(X , ν).

Passing to a subsequence if necessary, we can assume that

fn(x)→ 0 ∀x ∈ X\B1, where B1 ⊂ X is ν-null. (4.6)

On the other hand, by (4.5), we also have that

Fn → 0 in Lq(X × X , ν ⊗ mx ).

Therefore, we can suppose that, up to a subsequence,

Fn(x, y) → 0 ∀(x, y) ∈ X2\C, where C ⊂ X × X is ν ⊗ mx -null. (4.7)

Let B2 ⊂ X be a ν-null set satisfying that,

for all x ∈ X\B2, the section Cx := {y ∈ X : (x, y) ∈ C} of C is mx -null.

Finally, set B := B1 ∪ B2.

Fix x0 ∈ X\B. Up to a subsequence we have that un(x0)→ λ for some λ ∈ [−∞,+∞],
but then, by (4.7), for every y ∈ X\Cx0 we also have that un(y) → λ. However, sincemx0 
ν and mx0(X\Cx0) > 0, we have that ν(X\Cx0) > 0; thus, if A = {x ∈ X : un(x) → λ}
then ν(A) > 0.

Let us see that

mx (X\A) = 0 for all x ∈ A\B.

Indeed, let x ∈ A\B. Then, for y ∈ X\Cx , un(y) → λ, thus y ∈ A; that is, X\Cx ⊂ A, and,
consequently, mx (A) = 1. Now, since mx (B) = 0, we have

mx (X\(A\B)) = 0 for all x ∈ A\B. (4.8)

Therefore, since ν is ergodic, (4.8) implies that 1 = ν(A\B) = ν(A).
Consequently, we have obtained that un converges ν-a.e. in X to λ:

un(x)→ λ for x ∈ A, ν(X\A) = 0.

Since ‖un‖L1(X ,ν) is bounded, by Fatou’s Lemma, we must have that λ ∈ R. On the other
hand, by (4.6),

Fn(x, ·) → 0 in Lq(X ,mx ) ,

for every x ∈ X\B1. In other words, ‖un(·)− un(x)‖Lq (X ,mx ) → 0. Thus

‖un − λ‖Lq (X ,mx ) → 0 for ν-a.e. x ∈ X .

��
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Theorem 4.5 Suppose that ν is a probability measure and

mx  ν for all x ∈ X .

Let (H1) and (H2) denote the following hypothesis.

(H1) Given a ν-null set B, there exist x1, x2, . . . , xN ∈ X\B, ν-measurable sets


1,
2, . . . , 
N ⊂ X and α > 0, such that X = ⋃N
i=1 
i and

dmxi

dν
≥ α > 0

on 
i , i = 1, 2, . . . , N.
(H2) Let 1 ≤ p < q. Given a ν-null set B, there exist x1, x2, . . . , xN ∈ X\B and ν-

measurable sets 
1,
2, . . . , 
N ⊂ X, such that X = ⋃N
i=1 
i and, for gi := dmxi

dν

on 
i , g
− p

q−p
i ∈ L1(
i , ν), i = 1, 2, . . . , N.

Then, if (H1) holds, we have that [X , d,m, ν] satisfies a (p, p)-Poincaré inequality for
every p ≥ 1, and, if (H2) holds, then [X , d,m, ν] satisfies a (q, p)-Poincaré inequality.

Proof Let 1 ≤ p ≤ q . We want to prove that there exists a constant c > 0 such that

‖u‖L p(X ,ν) ≤ c

((∫
X

∫
X
|u(y)− u(x)|qdmx (y)dν(x)

) 1
q

+
∣∣∣∣
∫
X
u dν

∣∣∣∣
)

for every u ∈ Lq(X , ν),

for any p = q ≥ 1 when assuming (H1) and for the 1 ≤ p < q appearing in (H2) when
this hypothesis is assumed. Suppose that this inequality is not satisfied. Then, there exists a
sequence (un)n∈N ⊂ Lq(X , ν), with ‖un‖L p(X ,ν) = 1, satisfying

lim
n

∫
X

∫
X
|un(y)− un(x)|qdmx (y)dν(x) = 0

and

lim
n

∫
X
un dν = 0.

Therefore, by Lemma 4.4, there exist λ ∈ R and a ν-null set B ⊂ X such that

un → λ and ‖un − λ‖Lq (X ,mx ) → 0 for x ∈ X\B.

We will now prove, distinguishing the cases in which we assume hypothesis (H1) or
(H2), that

‖un − λ‖L p(X ,ν) → 0. (4.9)

Suppose first that hypothesis (H1) is satisfied. Then, there exist x1, x2, . . . , xN ∈ X\B, ν-
measurable sets 
1,
2, . . . , 
N ⊂ X and α > 0, such that X =

N⋃
i=1


i and gi := dmxi

dν
≥

α > 0 on 
i , i = 1, 2, . . . , N . Note that, in this case, p = q in the previous computations.
Now,
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‖un − λ‖qLq (
i ,ν) =
∫


i

|un(y)− λ|qdν(y)

≤ 1

α

∫

i

|un(y)− λ|qgi (y)dν(y) = 1

α

∫

i

|un(y)− λ|qdmxi (y).

Consequently, since X =⋃N
i=1 
i ,

‖un − λ‖qLq (X ,ν) ≤
1

α

N∑
i=1
‖un − λ‖qLq (
i ,mxi )

.

Therefore,

‖un − λ‖Lq (X ,ν) → 0.

Suppose now that hypothesis (H2) holds. Then, there exist 1 ≤ p < q , such that, given a
ν-null set B, there exist x1, x2, . . . , xN ∈ X\B and ν-measurable sets
1,
2, . . . , 
N ⊂ X ,

such that X =
N⋃
i=1


i and, for gi := dmxi

dν
on
i , g

− p
q−p

i ∈ L1(
i ), i = 1, 2, . . . , N . Hence,

‖un − λ‖pL p(
i ,ν) =
∫


i

|un(y)− λ|pdν(y)

=
∫


i

|un(y)− λ|p gi (y)
p
q

gi (y)
p
q
dν(y)

≤
(∫


i

|un(y)− λ|qgi (y)dν(y)

) p
q
(∫


i

1

gi (y)
p

q−p
dν(y)

) q−p
q

=
(∫


i

|un(y)− λ|qdmxi (y)

) p
q
(∫


i

1

gi (y)
p

q−p
dν(y)

) q−p
q

.

Consequently, since X =⋃N
i=1 
i ,

‖un − λ‖pL p(X ,ν) ≤
N∑
i=1
‖un − λ‖pLq (
i ,mxi )

∥∥∥∥∥∥
1

g
p

q−p
i

∥∥∥∥∥∥

q−p
q

L1(
i ,ν)

.

Therefore,

‖un − λ‖L p(X ,ν) → 0,

which concludes the proof of (4.9) in both cases.

Now, since lim
n

∫
X
un dν = 0, by (4.9) we get that λ = 0, but this implies

‖un‖L p(X ,ν) → 0,

which is a contradiction with ||un ||p = 1, n ∈ N, so we are done. ��

On account of Theorem 4.3, we obtain the following result on the asymptotic behaviour
of the TVF.
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Corollary 4.6 Under the hypothesis of Theorem 4.5, for any u0 ∈ L2(X , ν),
∥∥∥et�m

1 u0 − ν(u0)
∥∥∥
L1(X ,ν)

≤ 1

2λ1[X ,d,m,ν]

‖u0‖2L2(X ,ν)

t
for all t > 0.

Example 4.7 We give two examples of metric random walk spaces in which a 1-Poincaré
inequality does not hold.

(1) A locallyfiniteweighteddiscrete graphwith infinitelymanyvertices:Let [V (G), dG ,mG ]
be the metric random walk space associated to the locally finite weighted discrete graph
with vertex set V (G) := {x3, x4, x5 . . . , xn . . .} and weights:

wx3n ,x3n+1 =
1

n3
, wx3n+1,x3n+2 =

1

n2
, wx3n+2,x3n+3 =

1

n3
,

for n ≥ 1, and wxi ,x j = 0 otherwise (recall Example 1.1 (3)). Moreover, let

fn(x) :=
⎧⎨
⎩
n2 if x = x3n+1, x3n+2

0 else.

Note that νG(V ) < +∞ (we avoid its normalization for simplicity). Now,

2T VmG ( fn) =
∫
V

∫
V
| fn(x)− fn(y)|dmx (y)dνG(x)

= dx3n

∫
V
| fn(x3n)− fn(y)|dmx3n (y)

+ dx3n+1

∫
V
| fn(x3n+1)− fn(y)|dmx3n+1(y)

+ dx3n+2

∫
V
| fn(x3n+2)− fn(y)|dmx3n+2(y)

+ dx3n+3

∫
V
| fn(x3n+3)− fn(y)|dmx3n+3(y)

= n2
1

n3
+ n2

1

n3
+ n2

1

n3
+ n2

1

n3
= 4

n
.

However, we have∫
V

fn(x)dνG(x) = n2(dx3n+1 + dx3n+2) = 2n2
(

1

n2
+ 1

n3

)
= 2

(
1+ 1

n

)
,

thus

νG( fn) =
2
(
1+ 1

n

)
νG(V )

= O (1) ,

where we use the notation

ϕ(n) = O(ψ(n)) ⇐⇒ lim sup
n→∞

∣∣∣∣ ϕ(n)

ψ(n)

∣∣∣∣ = C �= 0.

Therefore,

| fn(x)− νG( fn)| =
⎧⎨
⎩

O(n2) if x = x3n+1, x3n+2,

O (1) otherwise.
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Finally,∫
V
| fn(x)− νG( fn)|dνG(x) = O (1)

∑
x �=x3n+1,x3n+2

dx + O(n2)(dx3n+1 + dx3n+2)

= O (1)+ 2O(n2)

(
1

n2
+ 1

n3

)
= O(1).

Consequently,

inf

{
T VmG (u)

‖u − νG(u)‖L1(V (G),νG )

: u ∈ L1(V , νG), ‖u‖L1(V (G),νG ) �= 0

}
= 0,

and a 1-Poincaré inequality does not hold for this space.
(2) The metric randomwalk space [R, d,mJ ], where d is the Euclidean distance and J (x) =

1
2
χ [−1,1]: Define, for n ∈ N,

un = 1

2n+1
χ [2n ,2n+1] −

1

2n+1
χ [−2n+1,−2n ].

Then ‖un‖1 := 1,
∫
R

un(x)dx = 0 and it is easy to see that, for n large enough,

T VmJ (un) = 1

2n+1
.

Therefore, (mJ ,L1) does not satisfy a 1-Poincaré inequality.

Let us see that, when [X , d,m, ν] satisfies a 2-Poincaré inequality, the solution of the
Total Variational Flow reaches the steady state in finite time.

Theorem 4.8 Let [X , d,m] be a metric random walk space with invariant and reversible
measure ν. If [X , d,m, ν] satisfies a 2-Poincaré inequality then, for any u0 ∈ L2(X , ν),

‖et�m
1 u0 − ν(u0)‖L2(X ,ν) ≤

(‖u0 − ν(u0)‖L2(X ,ν) − λ2[X ,d,m,ν]t
)+

for all t ≥ 0,

where λ2[X ,d,m,ν] is given in (4.1). Consequently,

et�
m
1 u0 = ν(u0) ∀ t ≥ t̂ := ‖u0 − ν(u0)‖L2(X ,ν)

λ2[X ,d,m,ν]
.

Proof Let v(t) := u(t)−ν(u0), where u(t) := et�
m
1 u0. Since�m

1 u(t) = �m
1

(
u(t)−ν(u0)

)
,

we have that

d

dt
v(t) ∈ �m

1 v(t).

Note that v(t) ∈ BVm(X , ν) for every t > 0. Indeed, since −�1
m = ∂Fm is a maximal

monotone operator in L2(X , ν), by [10, Theorem 3.7] in the context of the Hilbert space
L2(X , ν), we have that v(t) ∈ D(�1

m) ⊂ BVm(X , ν) for every t > 0.
Hence, for each t > 0, by Theorem 3.3, there exists gt ∈ L∞(X × X , ν ⊗ mx ) antisym-

metric with ‖gt‖L∞(X×X ,ν⊗mx ) ≤ 1 such that
∫
X
gt (x, y) dmx (y) = d

dt
v(t)(x) for ν − a.e x ∈ X , (4.10)
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and

−
∫
X

∫
X
gt (x, y)dmx (y) v(t)(x)dν(x) = Fm(v(t)) = T Vm(u(t)). (4.11)

Then, multiplying (4.10) by v(t) and integrating over X with respect to ν, having in mind
(4.11), we get

1

2

d

dt

∫
X

v(t)2dν + T Vm(v(t)) = 0, ∀t > 0.

Now, the semigroup {et�m
1 : t ≥ 0} preserves the mass (Proposition 3.10), so we have

that ν(u(t)) = ν(u0) for all t ≥ 0, and, since [X , d,m, ν] satisfies a 2-Poincaré inequality,
we have

λ2[X ,d,m,ν]‖v(t)‖L2(X ,ν) ≤ T Vm(v(t)) for all t ≥ 0.

Therefore,

1

2

d

dt
‖v(t)‖2L2(X ,ν)

+ λ2[X ,d,m,ν]‖v(t)‖L2(X ,ν) ≤ 0 for all t ≥ 0.

Now, integrating this ordinary differential inequation we get

‖v(t)‖L2(X ,ν) ≤
(‖v(0)‖L2(X ,ν) − λ2[X ,d,m,ν]t

)+
for all t ≥ 0,

that is,

‖u(t)− ν(u0)‖L2(X ,ν) ≤
(‖u0 − ν(u0)‖L2(X ,ν) − λ2[X ,d,m,ν]t

)+
for all t ≥ 0.

��
We define the extinction time as

T ∗(u0) := inf{t > 0 : et�m
1 u0 = ν(u0)}, u0 ∈ L2(X , ν).

Under the conditions of Theorem 4.8, we have

T ∗(u0) ≤
‖u0 − ν(u0)‖L2(X ,ν)

λ2[X ,d,m,ν]
, u0 ∈ L2(X , ν).

To obtain a lower bound on the extinction time, we introduce the following norm which,
in the continuous setting, was introduced in [40]. Given a function f ∈ L2(X , ν), we define

‖ f ‖m,∗ := sup

{∫
X
f (x)u(x)dν(x) : u ∈ L2(X , ν) ∩ BVm(X , ν), T Vm(u) ≤ 1

}
.

Theorem 4.9 Let u0 ∈ L2(X , ν). If T ∗(u0) <∞ then

T ∗(u0) ≥ ‖u0 − ν(u0)‖m,∗.

Proof If u(t) := et�
m
1 u0, we have

u0 − ν(u0) = −
∫ T ∗(u0)

0
u′(t)dt .
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Then, by integration by parts (Proposition 3.7), we get

‖u0 − ν(u0)‖m,∗ = sup

{∫
X

w(u0 − ν(u0))dν : T Vm(w) ≤ 1

}

= sup

{∫
X

w

(∫ T ∗(u0)

0
−u′(t)dt

)
dν : T Vm(w) ≤ 1

}

= sup

{∫ T ∗(u0)

0

∫
X
−wu′(t)dtdν : T Vm(w) ≤ 1

}

≤ sup

{∫ T ∗(u0)

0
T Vm(w)dt : T Vm(w) ≤ 1

}
= T ∗(u0).

��

We will now see that we can get a 2-Poincaré inequality for finite graphs.

Theorem 4.10 Let G = (V (G), E(G)) be a finite weighted connected discrete graph. Then,
following the notation ofExample1.1 (3), [V (G), dG ,mG , νG ] satisfies a2-Poincaré inequal-
ity, that is,

λ2[V (G),dG ,mG ,νG ]

= inf

{
T VmG (u)

‖u‖L2(V (G),νG )

: ‖u‖L2(V (G),νG ) �= 0,
∫
V
u(x)dνG(x) = 0

}
> 0.

(4.12)

Proof Let V := V (G) = {x1, . . . , xm} and suppose that (4.12) is false. Then, there exists a
sequence (un)n∈N ⊂ L2(V , νG) with ‖un‖L2(V ,νG ) = 1 and

∫
V un(x)dνG(x) = 0, n ∈ N,

such that

0 = lim
n→∞ T VmG (un) = lim

n→∞

m∑
k=1

∑
y∼xk

wxk y |un(xk)− un(y)|.

Hence,

lim
n→∞ |un(xk)− un(y)| = 0 if y ∼ xk, for any k ∈ {1, . . . ,m}.

Moreover, since ‖un‖L2(V ,νG ) = 1, we have that, up to a subsequence,

lim
n→∞ un(xk) = λk ∈ R for k = 1, . . . ,m.

Now, since the graph is connected, we have that λ = λk for k = 1, . . . ,m, thus

lim
n→∞ un(y) = λ ∈ R for all y ∈ V .

However, by the Dominated Convergence Theorem, we get that un → λ in L2(V , νG)

and, therefore, since
∫
V un(x)dνG(x) = 0, we have λ = 0, which is a contradiction with

‖un‖L2(V ,νG ) = 1. ��

As a consequence of this last result and Theorem 4.8, we get:
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Theorem 4.11 Let G = (V (G), E(G)) be a finite weighted connected discrete graph. Then,

‖et�mG
1 u0 − ν(u0)‖L2(V (G),νG ) ≤ λ2[V (G),dG ,mG ,νG ]

(
t̂ − t

)+
,

where t̂ := ‖u0−ν(u0)‖L2(V (G),νG )

λ2[V (G),dG ,mG ,νG ]
. Consequently,

et�
mG
1 u0 = ν(u0) for all t ≥ t̂ .

5 m-Cheeger andm-calibrable sets

Let [X , d,m]be ametric randomwalk spacewith invariant and reversiblemeasure ν. Assume,
as before, that [X , d,m] is m-connected.

Given a set 
 ⊂ X with 0 < ν(
) < ν(X), we define its m-Cheeger constant by

hm1 (
) := inf

{
Pm(E)

ν(E)
: E ⊂ 
, E ν-measurable with ν(E) > 0

}
, (5.1)

where the notation hm1 (
) is chosen together with the one that we will use for the classical
Cheeger constant (see (5.2)). In both of these, the subscript 1 is there to further distinguish
them from the upcoming notation hm(X) for the m-Cheeger constant of X (see (6.6)). Note
that, by (2.1), we have that hm1 (
) ≤ 1.

A ν-measurable set E ⊂ 
 achieving the infimum in (5.1) is said to be an m-Cheeger set
of 
. Furthermore, we say that 
 is m-calibrable if it is an m-Cheeger set of itself, that is, if

hm1 (
) = Pm(
)

ν(
)
.

For ease of notation, we will denote

λm
 :=
Pm(
)

ν(
)
,

for any ν-measurable set 
 ⊂ X with 0 < ν(
) < ν(X).

Remark 5.1 (1) Let [RN , d,mJ ] be the metric random walk space given in Example 1.1 (1)
with invariant and reversible measure LN . Then, the concepts of m-Cheeger set and m-
calibrable set coincidewith the concepts of J -Cheeger set and J -calibrable set introduced
in [34] (see also [35]).

(2) If G = (V (G), E(G)) is a locally finite weighted discrete graph without loops (i.e.,
wxx = 0 for all x ∈ V ) and more than two vertices, then any subset consisting of two
vertices is mG -calibrable. Indeed, let 
 = {x, y}, then, by (2.1), we have

PmG ({x})
νG({x}) = 1−

∫
{x}

∫
{x}

dmG
x (z)dνG(z) = 1 ≥ PmG (
)

νG(
)
,

and, similarly,

PmG ({y})
νG({y}) = 1 ≥ PmG (
)

νG(
)
.

Therefore, 
 is mG -calibrable.
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In [34] it is proved that, for the metric random walk space [RN , d,mJ ], each ball is a
J -calibrable set. In the next example we will see that this result is not true in general.

Example 5.2 Let V (G) = {x1, x2, . . . , x7} be a finite weighted discrete graph with the fol-
lowing weights: wx1,x2 = 2, wx2,x3 = 1, wx3,x4 = 2, wx4,x5 = 2, wx5,x6 = 1, wx6,x7 = 2
and wxi ,x j = 0 otherwise. Then, if E1 = B(x4,

5
2 ) = {x2, x3, . . . , x6}, by (6.7) we have

PmG (E1)

νG(E1)
= wx1x2 + wx6x7

dx2 + dx3 + dx4 + dx5 + dx6
= 1

4
.

But, taking E2 = B(x4,
3
2 ) = {x3, x4, x5} ⊂ E1, we have

PmG (E2)

νG(E2)
= wx2x3 + wx5x6

dx3 + dx4 + dx5
= 1

5
.

Consequently, the ball B(x4,
5
2 ) is not m-calibrable.

In the next Example we will see that there exist metric random walk spaces with sets that
do not contain m-Cheeger sets.

Example 5.3 Consider the same graph of Example 6.21, that is, V (G) = {x0, x1, . . . , xn . . .}
with the following weights:

wx2n x2n+1 =
1

2n
, wx2n+1x2n+2 =

1

3n
for n = 0, 1, 2, . . . ,

and wxi ,x j = 0 otherwise. If 
 := {x1, x2, x3 . . .}, then PmG (D)

νG (D)
> 0 for every D ⊂ 


with νG(D) > 0 but, working as in Example 6.21, we get hm1 (
) = 0. Therefore, 
 has no
m-cheeger set.

It is well known (see [25]) that the classical Cheeger constant

h1(
) := inf

{
Per(E)

|E | : E ⊂ 
, |E | > 0

}
, (5.2)

for a bounded smooth domain 
, is an optimal Poincaré constant, namely, it coincides with
the first eigenvalue of the 1-Laplacian:

h1(
) = �1(
) := inf

⎧⎪⎪⎨
⎪⎪⎩

∫



|Du| +
∫

∂


|u|dHN−1

‖u‖L1(
)

: u ∈ BV (
), ‖u‖L∞(
) = 1

⎫⎪⎪⎬
⎪⎪⎭

.

In order to get a nonlocal version of this result, we introduce the following constant. For

 ⊂ X with 0 < ν(
) < ν(X), we define

�m
1 (
) = inf

{
T Vm(u) : u ∈ L1(X , ν), u = 0 in X\
, u ≥ 0,

∫
X
u(x)dν(x) = 1

}

= inf

⎧⎪⎪⎨
⎪⎪⎩

T Vm(u)∫
X
u(x)dν(x)

: u ∈ L1(X , ν), u = 0 in X\
, u ≥ 0, u �≡ 0

⎫⎪⎪⎬
⎪⎪⎭

.
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Theorem 5.4 Let 
 ⊂ X with 0 < ν(
) < ν(X). Then,

hm1 (
) = �m
1 (
).

Proof Given a ν-measurable subset E ⊂ 
 with ν(E) > 0, we have

T Vm(χ E )

‖χ E‖L1(X ,ν)

= Pm(E)

ν(E)
.

Therefore,�m
1 (
) ≤ hm1 (
). For the opposite inequality we will follow an idea used in [25].

Given u ∈ L1(X , ν), with u = 0 in X\
, u ≥ 0 and u �≡ 0, we have

T Vm(u) =
∫ +∞

0
Pm(Et (u)) dt =

∫ ‖u‖L∞(X ,ν)

0

Pm(Et (u))

ν(Et (u))
ν(Et (u)) dt

≥ hm1 (
)

∫ +∞

0
ν(Et (u)) dt = hm1 (
)

∫
X
u(x)dν(x)

where the first equality follows by the coarea formula (2.6) and the last one by Cavalieri’s
Principle. Taking the infimum over u in the above expression we get �m

1 (
) ≥ hm1 (
). ��

Let us recall that, in the local case, a set 
 ⊂ R
N is called calibrable if

Per(
)

|
| = inf

{
Per(E)

|E | : E ⊂ 
, E with finite perimeter, |E | > 0

}
.

The following characterization of convex calibrable sets is proved in [1].

Theorem 5.5 [1]Given a bounded convex set
 ⊂ R
N of class C1,1, the following assertions

are equivalent:

(a) 
 is calibrable.

(b) χ

 satisfies −�1χ
 = Per(
)

|
| χ

, where �1u := div

(
Du
|Du|

)
.

(c) (N − 1)ess sup
x∈∂


H∂
(x) ≤ Per(
)

|
| .

Remark 5.6 (1) Let 
 ⊂ X be a ν-measurable set with 0 < ν(
) < ν(X) and assume that
there exists a constant λ > 0 and a measurable function τ such that τ(x) = 1 for x ∈ 


and

−λτ ∈ �m
1
χ


 on X .

Then, by Theorem 3.3, there exists g ∈ L∞(X × X , ν ⊗ mx ) antisymmetric with
‖g‖L∞(X×X ,ν⊗mx ) ≤ 1 satisfying

−
∫
X
g(x, y) dmx (y) = λτ(x) for ν − a.e x ∈ X

and

−
∫
X

∫
X
g(x, y)dmx (y) χ


(x)dν(x) = Fm(χ
) = Pm(
).
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Then,

λν(
) =
∫
X

λτ(x)χ
(x)dν(x)

= −
∫
X

(∫
X
g(x, y) dmx (y)

)
χ


(x)dν(x)

= Pm(
)

and, consequently,

λ = Pm(
)

ν(
)
=: λm
.

(2) Let
 ⊂ X be a ν-measurable set with 0 < ν(
) < ν(X), and τ a ν-measurable function
with τ(x) = 1 for x ∈ 
. Then

− λm
τ ∈ �m
1
χ


 in X ⇐⇒ −λm
τ ∈ �m
1 0 in X . (5.3)

Indeed, the left to right implication follows from the fact that

∂Fm(u) ⊂ ∂Fm(0),

and for the converse implication, we have that there exists g ∈ L∞(X × X , ν ⊗ mx ),
g(x, y) = −g(y, x) for almost all (x, y) ∈ X × X , ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1, satisfying

−λm
τ(x) =
∫
X
g(x, y) dmx (y) for ν − a.e. x ∈ X .

Now, multiplying by χ

, integrating over X and applying integrating by parts we get

λm
ν(
) = λm


∫
X

τ(x)χ
(x)dν(x) = −
∫
X

∫
X
g(x, y)χ
(x)dmx (y)dν(x)

= 1

2

∫
X

∫
X
g(x, y)(χ
(y)− χ


(x))dmx (y)dν(x)

≤ 1

2

∫
X

∫
X
|χ
(y)− χ


(x)| dmx (y)dν(x) = Pm(
).

Then, since Pm(
) = λm
ν(
), the previous inequality is, in fact, an equality and,
therefore, we get

g(x, y) ∈ sign(χ
(y)− χ

(x)) for (ν ⊗ mx )− a.e. (x, y) ∈ X × X ,

and, consequently,

−λm
τ ∈ �m
1
χ


 in X .

The next result is the nonlocal version of the fact that (a) is equivalent to (b) in Theorem5.5.

Theorem 5.7 Let 
 ⊂ X be a ν-measurable set with 0 < ν(
) < ν(X). Then, the following
assertions are equivalent:

(i) 
 is m-calibrable,
(ii) there exists a ν-measurable function τ equal to 1 in 
 such that

− λm
τ ∈ �m
1
χ


 in X , (5.4)
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(iii)

−λm
τ ∗ ∈ �m
1
χ


 in X ,

for

τ ∗(x) =
⎧⎨
⎩
1 if x ∈ 
,

− 1

λm

mx (
) if x ∈ X\
.

Proof Observe that, sincewe are assuming that themetric randomwalk space ism-connected,
we have Pm(
) > 0 and, therefore, λm
 > 0.

(i i i)⇒ (i i) is trivial.
(i i) ⇒ (i): Suppose that there exists a ν-measurable function τ equal to 1 in 


satisfying (5.4). Hence, there exists g ∈ L∞(X × X , ν ⊗ mx ) antisymmetric with
‖g‖L∞(X×X ,ν⊗mx ) ≤ 1 satisfying

−
∫
X
g(x, y) dmx (y) = λm
τ(x) ν − a.e. x ∈ X

and

−
∫
X

∫
X
g(x, y)dmx (y) χ


(x)dν(x) = Pm(
).

Then, for F ⊂ 
 with ν(F) > 0, since g antisymmetric, by using the reversibility of ν with
respect to m, we have

λm
ν(F) = λm


∫
X

τ(x)χ F (x)dν(x) = −
∫
X

∫
X
g(x, y)χ F (x) dmx (y)dν(x)

= 1

2

∫
X

∫
X
g(x, y)(χ F (y)− χ F (x)) dmx (y)dν(x) ≤ Pm(F).

Therefore, hm1 (
) = λm
 and, consequently, 
 is m-calibrable.
(i)⇒ (i i i) Suppose that 
 is m-calibrable. Let

τ ∗(x) =
⎧⎨
⎩
1 if x ∈ 
,

− 1

λm

mx (
) if x ∈ X\
.

We claim that −λm
τ ∗ ∈ �m
1 0, that is,

λm
τ ∗ ∈ ∂Fm(0). (5.5)

Take w ∈ L2(X , ν) with Fm(w) < +∞. Since

w(x) =
∫ +∞

0

χ Et (w)(x)dt −
∫ 0

−∞
(1− χ Et (w))(x)dt,

and∫
X

τ ∗(x)dν(x) =
∫




1dν(x)− 1

λm


∫
X\


mx (
)dν(x) = ν(
)− 1

λm

Pm(
) = 0,

we have ∫
X

λm
τ ∗(x)w(x)dν(x) = λm


∫ +∞

−∞

∫
X

τ ∗(x)χ Et (w)(x)dν(x)dt .
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Now, using that τ ∗ = 1 in 
 and 
 is m-calibrable we have that

λm


∫ +∞

−∞

∫
X

τ ∗(x)χ Et (w)(x)dν(x)dt = λm


∫ +∞

−∞
ν(Et (w) ∩
)dt

+ λm


∫ +∞

−∞

∫
Et (w)\


τ ∗(x)dν(x)dt

≤
∫ +∞

−∞
Pm(Et (w) ∩
)dt + λm


∫ +∞

−∞

∫
Et (w)\


τ ∗(x)dν(x)dt .

By Proposition 2.2 and the coarea formula given in Theorem 2.7 we get
∫ +∞

−∞
Pm(Et (w) ∩
)dt =

∫ +∞

−∞
Pm(Et (w) ∩
)dt +

∫ +∞

−∞
Pm(Et (w)\
)dt

−
∫ +∞

−∞
2Lm(Et (w)\
, Et (w) ∩
)dt

−
∫ +∞

−∞
Pm(Et (w)\
)dt

+
∫ +∞

−∞
2Lm(Et (w)\
, Et (w) ∩
)dt

=
∫ +∞

−∞
Pm(Et (w))dt −

∫ +∞

−∞
Pm(Et (w)\
)dt

+
∫ +∞

−∞
2Lm(Et (w)\
, Et (w) ∩
)dt

= Fm(w)−
∫ +∞

−∞
Pm(Et (w)\
)dt

+
∫ +∞

−∞
2Lm(Et (w)\
, Et (w) ∩
)dt .

Hence, if we prove that

I = −
∫ +∞

−∞
Pm(Et (w)\
)dt +

∫ +∞

−∞
2Lm(Et (w)\
, Et (w) ∩
)dt

+ λm


∫ +∞

−∞

∫
Et (w)\


τ ∗(x)dν(x)dt ≤ 0,

we get ∫
X

λm
τ ∗(x)w(x)dν(x) ≤ Fm(w),

which proves (5.5). Now, since

Pm(Et (w)\
) = Lm(Et (w)\
, X\(Et (w)\
))

= Lm(Et (w)\
, (Et (w) ∩
)
.∪ (X\Et (w))),

and τ ∗(x) = − 1
λm


mx (
) for x ∈ X\
, we have

I = −
∫ +∞

−∞
Lm(Et (w)\
, X\Et (w))dt +

∫ +∞

−∞
Lm(Et (w)\
, Et (w) ∩
)dt
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−
∫ +∞

−∞

∫
Et (w)\


∫



dmx (y)dν(x)dt

≤
∫ +∞

−∞
Lm(Et (w)\
, Et (w) ∩
)dt −

∫ +∞

−∞
Lm(Et (w)\
,
)dt ≤ 0.

Then, by (5.3), we have that

−λm
τ ∗ ∈ �m
1
χ


 in X ,

and this concludes the proof. ��
Even though, in principle, the m-calibrability of a set is a nonlocal concept, in the next

result we will see that the m-calibrability of a set depends only on the set itself.

Theorem 5.8 Let 
 ⊂ X be a ν-measurable set with 0 < ν(
) < ν(X). Then, 
 is m-
calibrable if, and only if, there exists an antisymmetric function g in 
×
 such that

− 1 ≤ g(x, y) ≤ 1 for (ν ⊗ mx )− a.e. (x, y) ∈ 
×
, (5.6)

and

λm
 = −
∫




g(x, y) dmx (y)+ 1− mx (
), x ∈ 
. (5.7)

Observe that, on account of (2.1), (5.7) is equivalent to

mx (
) = 1

ν(
)

∫



mz(
)dν(z)−
∫




g(x, y) dmx (y) for ν-a.e. x ∈ 
. (5.8)

Proof ByTheorem5.7,wehave that
 ism-calibrable if, and only if, there existsg ∈ L∞(X×
X , ν⊗mx ) antisymmetric, ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1 with g(x, y) ∈ sign(χ
(y)−χ


(x)) for
ν ⊗ mx -a.e. (x, y) ∈ X × X , satisfying

λm
 = −
∫
X
g(x, y) dmx (y) for ν − a.e. x ∈ 
 (5.9)

and

mx (
) =
∫
X
g(x, y) dmx (y) for ν − a.e. x ∈ X\
.

Now, having in mind that g(x, y) = −1 if x ∈ 
 and y ∈ X\
, we have that, for x ∈ 
,

λm
 = 1− 1

ν(
)

∫



mx (
)dν(x) = −
∫
X
g(x, y) dmx (y)

= −
∫




g(x, y) dmx (y)−
∫
X\


g(x, y) dmx (y)

= −
∫




g(x, y) dmx (y)+ mx (X\
) = −
∫




g(x, y) dmx (y)+ 1− mx (
).

Bringing together (5.9) and these equalities we get (5.6) and (5.7).
Let us now suppose that we have an antisymmetric function g in 
 × 
 satisfying (5.6)

and (5.7). To check that 
 is m-calibrable we need to find g̃(x, y) ∈ sign (χ
(y)− χ

(x))

antisymmetric such that⎧⎪⎨
⎪⎩
−λm
 =

∫
X
g̃(x, y)dmx (y), x ∈ 
,

mx (
) =
∫
X
g̃(x, y)dmx (y), x ∈ X\
,
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which is equivalent to⎧⎪⎪⎨
⎪⎪⎩
−λm
 =

∫



g̃(x, y)dmx (y)− mx (X\
), x ∈ 
,

mx (
) =
∫
X\


g̃(x, y)dmx (y)+ mx (
), x ∈ X\
,

since, necessarily, g̃(x, y) = −1 for x ∈ 
 and y ∈ X\
, and g̃(x, y) = 1 for x ∈ X\

and y ∈ 
. Now, the second equality in this system is satisfied if we take g̃(x, y) = 0 for
x, y ∈ X\
, and the first one is equivalent to (5.8) if we take g̃(x, y) = g(x, y) for x, y ∈ 
.

��
Set


m := 
 ∪ ∂m
 (5.10)

where

∂m
 = {x ∈ X\
 : mx (
) > 0}.

Corollary 5.9 A ν-measurable set 
 ⊂ X is m-calibrable if, and only if, it is m
m -calibrable
as a subset of [
m, d,m
m ] with reversible measure ν 
m (see Example 1.1 (5)).

Remark 5.10 (1) Let 
 ⊂ X be a ν-measurable set with 0 < ν(
) < ν(X). Observe that,
as we have proved,


 is m-calibrable ⇐⇒ −λm

χ


 + m
(.)

(
) χ X\
 ∈ �m
1
χ


 . (5.11)

(2) Let 
 ⊂ X be a ν-measurable set. If

− λm

χ


 + h χ X\
 ∈ �m
1
χ


 (5.12)

for some ν-measurable function h, then there exists g ∈ L∞(X × X , ν ⊗ mx ) antisym-
metric with ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1 satisfying

g(x, y) ∈ sign(χ
(y)− χ

(x)) (ν ⊗ mx )− a.e. (x, y) ∈ X × X

and

−λm

χ


(x)+ h(x) χ X\
(x) =
∫
X
g(x, y) dmx (y) ν − a.e x ∈ X .

Hence, if

g is ν ⊗ mx -integrable

we have that ∫
X\


h(x)dν(x) = Pm(
).

Indeed, from (5.12), for x ∈ X\
,

h(x) =
∫
X
g(x, y) dmx (y) =

∫



g(x, y) dmx (y)+
∫
X\


g(x, y) dmx (y)

=
∫




dmx (y)+
∫
X\


g(x, y) dmx (y)
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= mx (
)+
∫
X\


g(x, y) dmx (y).

Hence, integrating over X\
 with respect to ν, we get∫
X\


h(x)dν(x) = Pm(
)+
∫
X\


∫
X\


g(x, y) dmx (y)dν(x).

Moreover, since g is antisymmetric and ν ⊗ mx -integrable, we have∫
X\


∫
X\


g(x, y) dmx (y)dν(x) =
∫

(X\
)×(X\
)

g(x, y) d(ν ⊗ mx )(x, y) = 0,

and, consequently, we get ∫
X\


h(x)dν(x) = Pm(
). (5.13)

As a consequence of (5.13), if ν(X) < ∞, since the metric random walk space is m-
connected, the relation

− λm

χ


 ∈ �m
1
χ


 in X (5.14)

does not hold true for any ν-measurable set 
 with 0 < ν(
) < ν(X) (recall that, for
these 
, Pm(
) > 0 by [36, Theorem 2.21 & 2.24] thus h is non–null by (5.13)). Now,
if ν(X) = +∞, then (5.14) may be satisfied, as shown in the next example.

Example 5.11 Consider the metric random walk space [R, d,mJ ] with ν = L1 and J =
1
2
χ [−1,1]. Let us see that

−λm
J

[−1,1]χ [−1,1] ∈ �mJ

1
χ [−1,1],

where λm
J

[−1,1] = 1
4 . Indeed, take g(x, y) to be antisymmetric and defined as follows for

y < x :

g(x, y) = −χ {y<x<y+1<0}(x, y)− 1

2
χ {−1<y<x<0}(x, y)

+ 1

2
χ {0<y<x<1}(x, y)+ χ {0<x−1<y<x}(x, y).

Then, g ∈ L∞(R× R, ν ⊗ mJ
x ), ‖g‖L∞(R×R,ν⊗mJ

x ) ≤ 1,

g(x, y) ∈ sign(χ [−1,1](y)− χ [−1,1](x)) for (ν ⊗ mJ
x )− a.e. (x, y) ∈ R× R,

and

−1

4
χ [−1,1](x) =

∫
R

g(x, y) dmJ
x (y) for ν − a.e x ∈ R.

Note that g is not ν ⊗ mJ
x integrable.

Remark 5.12 As a consequence of Theorem 5.5, it holds that (see [1, Introduction] or [5,
Section 4.4]) a bounded convex set 
 ⊂ R

N is calibrable if, and only if, u(t, x) =(
1− Per(
)

|
| t
)+

χ

(x) is a solution of the Cauchy problem

{
ut −�1u � 0 in (0,∞)× R

N ,

u(0) = χ

.
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That is, a calibrable set 
 is that for which the gradient descent flow associated to the total
variation tends to decrease linearly the height of χ


 without distortion of its boundary.
Now, as a consequence of (5.11), we can obtain a similar result in our context if we

introduce an abortion term in the corresponding Cauchy problem. The appearance of this
term is due to the nonlocality of the diffusion considered. Let 
 ⊂ X be a ν-measurable set
with 0 < ν(
) < ν(X), then 
 is m-calibrable if, and only if, u(t, x) = (1− λm
t

)+ χ

(x)

is a solution of{
ut (t, x)−�m

1 u(t, x) � −mx (
) χ X\
(x)χ [0,1/λm
)(t) in (0,∞)× X ,

u(0, x) = χ

(x), x ∈ X .

Note that the only if direction follows by the uniqueness of the solution.

The following result relates them-calibrability with them-mean curvature, this is the non-
local version of one of the implications in the equivalence between (a) and (c) in Theorem 5.5.

Proposition 5.13 Let 
 ⊂ X be a ν-measurable set with 0 < ν(
) < ν(X). Then,


 m-calibrable ⇒ 1

ν(
)

∫



mx (
)dν(x) ≤ 2 ν-ess inf
x∈


mx (
). (5.15)

Equivalently,


 m-calibrable ⇒ ν-ess sup
x∈


Hm
∂
(x) ≤ λm
. (5.16)

Proof By Theorem 5.8, there exists an antisymmetric function g in 
×
 such that

−1 ≤ g(x, y) ≤ 1 for (ν ⊗ mx )− a.e. (x, y) ∈ 
×
,

and

1

ν(
)

∫



mz(
)dν(z) = mx (
)+
∫




g(x, y) dmx (y) for ν-a.e. x ∈ 
.

Hence,

1

ν(
)

∫



mz(
)dν(z) ≤ 2mx (
) for ν-a.e. x ∈ 
,

from where (5.15) follows.
The equivalent thesis (5.16) follows from (5.15) and the fact that

ν-ess sup
x∈


Hm
∂
(x) ≤ λm
 ⇐⇒ 1

ν(
)

∫



mx (
)dν(x) ≤ 2 ν-ess inf
x∈


mx (
).

For this last equivalence recall from (2.3) that

Hm
∂
(x) = 1− 2mx (
)

and that

λm
 =
Pm(
)

ν(
)
= 1− 1

ν(
)

∫



mx (
)dν(x).

��
The converse of Proposition 5.13 is not true in general, an example is given in [34] (see

also [35]) for [R3, d,mJ ], with d the Euclidean distance and J = 1
|B1(0)|χ B1(0). Let us see

an example, in the case of graphs, where the converse of Proposition 5.13 is not true
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Example 5.14 Let V (G) = {x1, x2, . . . , x8} be a finite weighted discrete graph with the
followingweights:wx1,x2 = wx2,x3 = wx6,x7 = wx7,x8 = 2, wx3,x4 = wx4,x5 = 1, wx4,x5 =
10 and wxi ,x j = 0 otherwise. If 
 := {x2, x3, x4, x5, x6, x7}, we have

λm
G


 = 1

9
and HmG

∂
 (x) ≤ 0 ∀ x ∈ 
.

Therefore, (5.16) holds. However, 
 is not mG -calibrable since, if A := {x4, x5}, we have
PmG (A)

νG(A)
= 1

11
.

Proposition 5.15 Let 
 ⊂ X be a ν-measurable set with 0 < ν(
) < ν(X).

(1) If 
 = 
1 ∪ 
2 with ν(
1 ∩ 
2) = 0, ν(
1) > 0, ν(
2) > 0, and Lm(
1,
2) = 0
(whenever this non-trivial decomposition is satisfied we will write
 = 
1∪m 
2), then

min{λm
1
, λm
2

} ≤ λm
.

(2) If 
 = 
1 ∪m 
2 is m-calibrable, then each 
i is m-calibrable, i = 1, 2, and

λm
 = λm
1
= λm
2

.

Proof (1) is a direct consequence of Proposition 2.2 and the fact that, fora, b, c, d positive real
numbers, min

{ a
b , c

d

} ≤ a+c
b+d . (2) is a direct consequence of (1) together with the definition

of m-calibrability. ��

6 The eigenvalue problem for the 1-Laplacian inmetric randomwalk
spaces

Let [X , d,m] be a metric random walk space with invariant and reversible measure ν and
assume that [X , d,m] is m-connected.

In this section we introduce the eigenvalue problem associated with the 1-Laplacian �m
1

and its relation with the Cheeger minimization problem. For the particular case of finite
weighted discrete graphs where the weights are either 0 or 1, this problem was first studied
by Hein and Bühler [29] and a more complete study was subsequently performed by Chang
in [14].

Definition 6.1 A pair (λ, u) ∈ R × L2(X , ν) is called an m-eigenpair of the 1-Laplacian
�m

1 on X if ‖u‖L1(X ,ν) = 1 and there exists ξ ∈ sign(u) (i.e., ξ(x) ∈ sign(u(x)) for every
x ∈ X ) such that

λ ξ ∈ ∂Fm(u) = −�m
1 u.

The function u is called an m-eigenfunction and λ an m-eigenvalue associated to u.

Observe that, if (λ, u) is an m-eigenpair of �m
1 , then (λ,−u) is also an m-eigenpair of

�m
1 .

Remark 6.2 By Theorem 3.3, the following statements are equivalent:

(1) (λ, u) is an m-eigenpair of the 1-Laplacian �m
1 .
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(2) There exists g ∈ L∞(X × X , ν ⊗mx ) antisymmetric with ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1, such
that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫
X
g(x, y) dmx (y) = λξ(x) for ν − a.e. x ∈ X ,

−
∫
X

∫
X
g(x, y)dmx (y) u(x)dν(x) = T Vm(u).

(6.1)

(3) There exists g ∈ L∞(X × X , ν ⊗mx ) antisymmetric with ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1, such
that⎧⎪⎪⎨
⎪⎪⎩
−
∫
X
g(x, y) dmx (y) = λξ(x) for ν − a.e. x ∈ X ,

g(x, y)(u(y)− u(x)) = |u(y)− u(x)| for ν ⊗ mx − a.e. (x, y) ∈ X × X;
(6.2)

(4) There exists g ∈ L∞(X × X , ν ⊗mx ) antisymmetric with ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1, such
that ⎧⎪⎪⎨

⎪⎪⎩
−
∫
X
g(x, y) dmx (y) = λξ(x) for ν − a.e. x ∈ X ,

λ = T Vm(u);

Remark 6.3 Note that, since T Vm(u) = λ for any m-eigenpair (λ, u) of �m
1 , then

λ = T Vm(u) = 1

2

∫
X

∫
X
|u(y)− u(x)|dmx (y)dν(x)

≤ 1

2

∫
X

∫
X
(|u(y)| + |u(x)|)dmx (y)dν(x) = ‖u‖1 = 1,

thus

0 ≤ λ ≤ 1.

Example 6.4 Let [V (G), dG ,mG ] be the metric random walk space given in Example 1.1 (3)
with invariant and reversible measure νG . Then, a pair (λ, u) ∈ R × L2(V (G), νG) is
an mG -eigenpair of �mG

1 if ‖u‖L1(V (G),νG ) = 1 and there exists ξ ∈ sign(u) and g ∈
L∞(V (G)×V (G), νG ⊗mG

x ) antisymmetric with ‖g‖L∞(V (G)×V (G),νG⊗mG
x ) ≤ 1 such that

⎧⎪⎪⎨
⎪⎪⎩

−
∑

y∈V (G)

g(x, y)
wxy

dx
= λξ(x) for νG − a.e. x ∈ V (G),

g(x, y) ∈ sign(u(y)− u(x)) for νG ⊗ mG
x − a.e. (x, y) ∈ V (G)× V (G).

In [14], Chang gives the 1-Laplacian spectrum for some special graphs like the Petersen
graph, the complete graph Kn , the circle graph with n vertices Cn , etc. We will now provide
an example in which the vertices have loops. Let V = V (G) = {a, b} and waa = wbb = p,
wab = wba = 1 − p, with 0 < p < 1. Then, (λ, u) ∈ R × L2(V , νG) is an mG -eigenpair
of �mG

1 if |u(a)| + |u(b)| = 1 and there exists ξ ∈ sign(u) and g ∈ L∞(V × V , νG ⊗ mG
x )
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antisymmetric with ‖g‖L∞(V×V ,νG⊗mG
x ) ≤ 1 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(a, a) = g(b, b) = 0, g(a, b) = −g(b, a),

−g(a, b)(1− p) = λξ(a),

g(a, b)(1− p) = λξ(b),

g(a, b)(u(b)− u(a)) = |u(b)− u(a)|.

(6.3)

Now, it is easy to see from system (6.3), using a case-by-case argument, that them-eigenvalues
of �mG

1 are

λ = 0 and λ = 1− p,

and the following pairs are m-eigenpairs of �mG

1 (observe that the measure νG is not nor-
malized):

λ = 0, and (u(a), u(b)) = (1/2, 1/2),
λ = 1− p, and (u(a), u(b)) = (0,−1)+ μ(1, 1) ∀0 ≤ μ ≤ 1.

For example, suppose that (λ, u) is an m-eigenpair with u(a) = u(b). Then, u(a) = u(b) =
1
2 (u(a) = u(b) = − 1

2 yields the same eigenvalue) and, therefore, ξ = 1 thus λ = 0.
Alternatively, we could have u(a) > u(b) thus g(a, b) = −1 and we continue by using (6.3).

Observe that, if a locally finite weighted discrete graph contains a vertex x with no loop,

i.e. wx,x = 0, then
(
1, 1

dx
δx

)
is an m-eigenpair of the 1-Laplacian. Conversely, if 1 is an

m-eigenvalue of �mG

1 , then there exists at least one vertex in the graph with no loop (this
follows easily from Proposition 6.12).

We have the following relation between m-calibrable sets and m-eigenpairs of �m
1 .

Theorem 6.5 Let 
 ⊂ X be a ν-measurable set with 0 < ν(
) < ν(X). We have:

(i) If (λm
, 1
ν(
)

χ

) is an m-eigenpair of �m

1 , then 
 is m-calibrable.
(ii) If 
 is m-calibrable and

mx (
) ≤ λm
 for ν-almost every x ∈ X\
, (6.4)

then (λm
, 1
ν(
)

χ

) is an m-eigenpair of �m

1 .

Proof (i): Since (λm
, 1
ν(
)

χ

) is an m-eigenpair of �m

1 , there exists ξ ∈ sign(χ
) such that
−λm
ξ ∈ �m

1 (χ
). Then, by Theorem 5.7, we have that 
 is m-calibrable.
(ii): If 
 is m-calibrable, by Theorem 5.7, we have

−λm
τ ∗ ∈ �m
1
χ


 in X

for

τ ∗(x) =
⎧⎨
⎩
1 if x ∈ 
,

− 1

λm

mx (
) if x ∈ X\
.

Now, by (6.4), we have that τ ∗ ∈ sign(χ
) and, consequently,
(
λm
, 1

ν(
)
χ




)
is an

m-eigenpair of �m
1 . ��
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In the next example we see that, in Theorem 6.5, the reverse implications of (i) and (ii)
are false in general.

Example 6.6 (1) Let G = (V , E) be the weighted discrete graph where V = {a, b, c} is the
vertex set and the weights are given bywab = wac = wbc = 1

2 andwaa = wbb = wcc =
0. Then, ma = 1

2 δb + 1
2 δc, mb = 1

2 δa + 1
2 δc, mc = 1

2 δa + 1
2 δb and νG = δa + δb + δc.

By Remark 5.1(2), we have that 
 := {a, b} is mG -calibrable. However, λm
G


 = 1
2 and

( 12 ,
χ


) is not an m-eigenpair of �m
1 since 0 /∈ medν(χ
) (see Corollary 6.11 and the

definition of medν above that Corollary). Therefore, (6.4) does not hold (it follows by a
simple calculation that mG

c (
) = 1 > 1
2 = λm

G


 ).

(2) Consider the locally finite weighted discrete graph [Z2, dZ2 ,mZ
2 ], where dZ2 is the

Hamming distance and the weights are defined as usual: wxy = 1 if dZ2(x, y) = 1 and

wxy = 0 otherwise (see Example 1.1 (3)). For ease of notation we denote m := mZ
2
.

Let


k := {(i, j) ∈ Z
2 : 0 ≤ i, j ≤ k − 1} for k ≥ 1.

It is easy to see that

λm
k
= 1

k
.

For 1 ≤ k ≤ 4 these sets are m-calibrable and satisfy (6.4). Therefore, for 1 ≤ k ≤ 4,(
1
k ,

1
ν(
k )

χ

k

)
is an m-eigenpair of the 1-Laplacian in Z

2 and with the same reason-

ing they are still m-eigenpairs of the 1-Laplacian in the metric random walk space[
(
k)m, dZ2 ,m(
k )m

]
(recall Corollary 5.9, for ease of notation let mk := m(
k )m ).

For this last space, recall the definition of (
k)m from (5.10) and that of mk = m(
k )m

from Example 1.1 (5). Note further that, in the case of graphs, ∂mG
 is the set of vertices
outside of 
 which are related to vertices in 
, i.e., the vertices outside of 
 which are
at a graph distance of 1 from 
. For example, 
2 = {(0, 0), (1, 0), (1, 1), (0, 1)} and
(
2)m = 
2 ∪ ∂m
2, where

∂m
2 = {(2, 0), (2, 1), (1, 2), (0, 2), (−1, 1), (−1, 0), (0,−1), (1,−1)}.
Moreover, recalling again Example 1.1 (5), we have that (m2)x ({y}) = mx ({y}) for every
x , y ∈ (
2)m , i.e., the probabilities associated to the jumps between different vertices in
(
2)m do not vary. On the other hand,

(m2)x ({x}) = mx (∂m
2) = 1

4
+ 1

4
= 1

2
,

for every x ∈ ∂m
2 (note that, in this case, each vertex in ∂m
2 is related to 2 vertices
outside of (
2)m). Consequently, informally speaking, a loop “appears” at each vertex
of ∂m
2 since there is now the possibility of staying at the same vertex after a jump.
However, this new metric random walk space

[
(
2)m, dZ2 ,m2

]
can be reframed so as

to regard it as associated to a weighted discrete graph, thus making the previous formal
comment rigorous. In other words, we may define a weighted discrete graph which gives
the same associatedmetric randomwalk space. This is easily done by taking the vertex set
V := (
2)m and the following weights: wx,y = 1 for x , y ∈ (
2)m with dZ2(x, y) = 1,
wx,x = 2 for x ∈ ∂m(
2)m and wx,y = 0 otherwise (see Fig. 2).
Let us see what happens for


5 := {(i, j) ∈ Z
2 : 0 ≤ i, j ≤ 4}.
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Fig. 1 The numbers in the graph are the values of a function g(x, y) satisfying (6.2), where x is the vertex to
the left of the number represented in the graph and y the one to the right, or, alternatively, x is the one above
and y the one below. Elsewhere, g(x, y) is taken as 0. The vertex (0, 0) is labelled in the graph. As an example,
g((0, 0), (1, 0)) = 1/5 and g((0, 1), (0, 0)) = −1

In this case,

λm
5
= 1

5
,

and an algebraic calculation gives that
(
1
5 ,

1
ν(
5)

χ

5

)
is an m-eigenpair in Z

2 (see Fig. 1).

Moreover,
(
1
5 ,

1
ν(
5)

χ

5

)
is also an mA-eigenpair of the 1-Laplacian in the metric random

walk space
[
A := {(i, j) ∈ Z

2 : −2 ≤ i, j ≤ 6}, dZ2 ,mA
]

or even in the metric random walk space obtained, in the same way, with the smaller set
shown in Fig. 1.

However,

(m5)(i, j)(
5) = 1

4
∀(i, j) ∈ (
5)m\
5

so (6.4) is not satisfied. Furthermore,
(
1
5 ,

1
ν(
5)

χ

5

)
fails to be an m5-eigenpair of the 1-

Laplacian in the metric random walk space
[
(
5)m, dZ2 ,m5

]
since the condition on the

median given in Corollary 6.11 is not satisfied; nevertheless, 
5 is still m5-calibrable in this
setting.

Remark 6.7 Let us give some characterizations of (6.4).

123



Total variation flow in metric random walk spaces Page 53 of 64 29

(1) In terms of the m-mean curvature we have that,

(6.4)⇐⇒ ν-esssup
x∈
c

Hm
∂
c (x) ≤ 1

ν(
)

∫



Hm
∂
(x)dν(x),

where 
c = X\
. Indeed, (6.4) is equivalent to

1− 2mx (
) ≥ 1− 2
Pm(
)

ν(
)
= ν(
)− 2Pm(
)

ν(
)
for ν-almost every x ∈ 
c,

and this inequality can be rewritten as

−Hm
∂
(x) ≤ 1

ν(
)

∫



Hm
∂
(y)dν(y) for ν-almost every x ∈ 
c

thanks to (2.3) and (2.4). Hence, since Hm
∂
(x) = −Hm

∂
c (x), we are done.
(2) Furthermore, we have that

(6.4)⇐⇒ 1

ν(
)

∫



mx (
)dν(x) ≤ ν-essinf
x∈
c

mx (

c).

Indeed, in this case, on account of (2.1), we rewrite (6.4) as

1− mx (

c) ≤ 1− 1

ν(
)

∫



my(
)dν(y) for ν-almost every x ∈ 
c,

or, equivalently,

1

ν(
)

∫



my(
)dν(y) ≤ mx (

c) for ν-almost every x ∈ 
c,

which gives us the characterization.

In the next example we give m-eigenpairs of the 1-Laplacian for the metric random walk
spaces given in Example 1.1 (1).

Example 6.8 Let 
 ⊂ R
N with LN (
) < ∞ and consider the metric random walk space

[
, d,mJ ,
] given in Example 1.1 (1) with J := 1
LN (Br (0))

χ Br (0). Moreover, assume that

there exists a ball Bρ(x0) ⊂ 
 such that dist(Bρ(x0),RN\
) > r . Then, by (2.2), we have

PmJ ,
(Bρ(x0)) = PmJ (Bρ(x0)),

and, since Bρ(x0) is mJ -calibrable, we have that Bρ(x0) is mJ ,
-calibrable. Assume also
that LN (Bρ(x0)) < 1

2LN (Br (0)). Let us see that

mJ ,

x (Bρ(x0)) ≤ λm

J ,


Bρ(x0)
for LN -almost every x ∈ 
\Bρ(x0). (6.5)

By Remark 6.7, (6.5) is equivalent to

1

LN (Bρ(x0))

∫
Bρ(x0)

mJ ,

x (Bρ(x0))dx ≤ LN - essinf

x∈
\Bρ(x0)
mJ ,


x (
\Bρ(x0))).

Now, for x ∈ 
, we have

mJ ,

x (Bρ(x0)) = mJ

x (Bρ(x0)) = 1

LN (Br (0))

∫
Bρ(x0)

χ Br (0)(x − y)dy ≤ 1

2
.
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Then, for x ∈ 
\Bρ(x0), we have

mJ ,

x (
\Bρ(x0))) = 1− mJ ,


x (Bρ(x0)) ≥ 1

2
≥ 1

LN (Bρ(x0))

∫
Bρ(x0)

mJ ,

x (Bρ(x0))dx .

Hence, (6.5) holds. Therefore, by Theorem 6.5, we have that(
λm

J ,


Bρ(x0)
,

1

LN (Bρ(x0))
χ Bρ(x0)

)

is an mJ ,
-eigenpair of �mJ ,


1 .
Similarly, for the metric random walk space [Rn, d,mJ ] with J = 1

LN (Br (0))
χ Br (0), and

for LN (Bρ(x0)) < 1
2LN (Br (0)), we have that(

λm
J

Bρ(x0)
,

1

LN (Bρ(x0))
χ Bρ(x0)

)

is an mJ -eigenpair of �mJ

1 .

6.1 Them-Cheeger constant of a metric randomwalk space with finite measure

In this subsection we give a relation between the non-null m-eigenvalues of the 1-Laplacian
and the m-Cheeger constant of X when ν(X) < +∞.

From now on in this section we assume that [X , d,m] is a metric random walk space
with invariant and reversible probability measure ν. Assuming that ν(X) = 1 is not a loss
of generality since, for ν(X) < +∞, we may work with 1

ν(X)
ν. Observe that λmD = Pm (D)

ν(D)

remains unchanged if we consider the normalized measure, and the same is true for the
m-eigenvalues of the 1-Laplacian.

In [36] we have defined the m-Cheeger constant of X as

hm(X) := inf

{
Pm(D)

min{ν(D), ν(X\D)} : D ⊂ X , 0 < ν(D) < 1

}

or, equivalently,

hm(X) = inf

{
Pm(D)

ν(D)
: D ⊂ X , 0 < ν(D) ≤ 1

2

}
. (6.6)

Note that, as a consequence of (2.1), we get

hm(X) ≤ 1.

Furthermore, observe that this definition is consistent with the definition on graphs (see [18],
also [7]):

Example 6.9 Let [V (G), dG ,mG ] be the metric random walk space given in Example 1.1 (3)
with invariant and reversible measure νG . Then, for E ⊂ V (G), since

PmG (E) =
∑
x∈E

∑
y /∈E

wx,y and νG(E) :=
∑
x∈E

dx ,

we have

PmG (E)

νG(E)
= 1∑

x∈E dx

∑
x∈E

∑
y /∈E

wx,y . (6.7)
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Therefore,

hmG (V (G)) = inf

⎧⎨
⎩

1∑
x∈E dx

∑
x∈E

∑
y /∈E

wx,y : E ⊂ V (G), 0 < νG(E) ≤ 1

2
νG(V ))

⎫⎬
⎭ .

Thisminimization problem is closely related with the balance graph cut problem that appears
in Machine Learning Theory (see [26,27]).

Recall that in Sect. 5 we defined a different m-Cheeger constant (see (5.1)), however, the
m-Cheeger constant hm(X) is a global constant of the metric random walk space while the
m-Cheeger constant hm1 (
) is defined for non-trivial ν-measurable subsets of the space. Note
that, if ν(X) = 1, then

hm(X) ≤ hm1 (
)

for any ν-measurable set 
 ⊂ X such that 0 < ν(
) ≤ 1/2; and, if hm(X) = Pm (
)
ν(
)

for a
ν-measurable set 
 ⊂ X such that 0 < ν(
) ≤ 1/2, then hm(X) = hm1 (
) and, moreover,

 is m-calibrable.

Proposition 6.10 Assume that ν is a probability measure (and, therefore, ergodic). Let (λ, u)

be an m-eigenpair of �m
1 . Then,

(i) λ = 0 ⇐⇒ u is constant ν-a.e., that is, u = 1, or u = −1.
(ii) λ �= 0 ⇐⇒ there exists ξ ∈ sign(u) such that

∫
X

ξ(x)dν(x) = 0.

Observe that (0, 1) and (0,−1) are m-eigenpairs of the 1-Laplacian in metric random
walk spaces with an invariant and reversible probability measure.

Proof (i) By (6.2), if λ = 0, we have that T Vm(u) = 0 and then, by Lemma 2.9, we get that
u is constant ν-a.e. thus, since ‖u‖L1(X ,ν) = 1 (and we are assuming ν(X) = 1), either
u = 1, or u = −1. Similarly, if u is constant ν-a.e. then T Vm(u) = 0 and, by (6.2),
λ = 0.

(ii) (⇐ ) If λ = 0, by (i), we have that u = 1, or u = −1, and this is a contradiction with the
existence of ξ ∈ sign(u) such that

∫
X ξ(x)dν(x) = 0. ( ⇒) There exists ξ ∈ sign(u)

and g ∈ L∞(X × X , ν ⊗ mx ) antisymmetric with ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1 satisfying
(6.1). Hence, since g is antisymmetric, by the reversibility of ν, we have

λ

∫
X

ξ(x)dν(x) = −
∫
X

∫
X
g(x, y) dmx (y)dν(x) = 0.

Therefore, since λ �= 0, ∫
X

ξ(x)dν(x) = 0.

��
Recall now that, given a function u : X → R, μ ∈ R is a median of u with respect to the

measure ν if

ν({x ∈ X : u(x) < μ}) ≤ 1

2
ν(X) and ν({x ∈ X : u(x) > μ}) ≤ 1

2
ν(X).

We denote by medν(u) the set of all medians of u. It is easy to see that
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μ ∈ medν(u) ⇐⇒
−ν({u = μ}) ≤ ν({x ∈ X : u(x) > μ})− ν({x ∈ X : u(x) < μ}) ≤ ν({u = μ}),

from where it follows that

0 ∈ medν(u) ⇐⇒ ∃ξ ∈ sign(u) such that
∫
X

ξ(x)dν(x) = 0. (6.8)

By Proposition 6.10 and relation (6.8), we have the following result that was obtained for
finite graphs by Hein and Bühler in [29].

Corollary 6.11 If (λ, u) is an m-eigenpair of �m
1 then

λ �= 0 ⇐⇒ 0 ∈ medν(u).

Observe that, by this corollary, if λ �= 0 is an m-eigenvalue of �m
1 , then there exists an

m-eigenvector u associated to λ such that its 0-superlevel set E0(u) has positive ν-measure.
In fact, for any m-eigenvector u, either u or −u will satisfy this condition.

Proposition 6.12 If (λ, u) is an m-eigenpair with λ > 0 and ν(E0(u)) > 0, then(
λ, 1

ν(E0(u))
χ E0(u)

)
is an m-eigenpair, λ = λmE0(u) and E0(u) is m-calibrable. Moreover

ν(E0(u)) ≤ 1
2 .

Proof First observe that, by Corollary 6.11, we have that ν(E0(u)) ≤ 1
2 . Since (λ, u) is an

m-eigenpair, there exists ξ ∈ sign(u) such that

−λξ ∈ �m
1 u;

hence, there exists g(x, y) ∈ sign(u(y)− u(x)) antisymmetric with ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1,
such that

−
∫
X
g(x, y) dmx (y) = λξ(x) for ν − a.e. x ∈ X .

Now,

ξ(x) =
⎧⎨
⎩
1 if x ∈ E0(u) (since u(x) > 0),

∈ [−1, 1] if x ∈ X\E0(u),

and, therefore, ξ ∈ sign(χ E0(u)). On the other hand,

g(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈ [−1, 1] if x, y ∈ E0(u),

−1 if x ∈ E0, y ∈ X\E0(u) (since u(x) > 0, u(y) ≤ 0),

1 if x ∈ X\E0(u), y ∈ E0(u) (since u(x) ≤ 0, u(y) > 0),

∈ [−1, 1] if x, y ∈ X\E0(u),

and, consequently, g(x, y) ∈ sign(χ E0(u)(y) − χ E0(u)(x)). Therefore, we have that(
λ, 1

ν(E0(u))
χ E0(u)

)
is anm-eigenpair of�m

1 . Moreover, by Theorem 6.5, we have that E0(u)

is m-calibrable. ��
Remark 6.13 As a consequence of Proposition 5.15, when we search for m-eigenpairs of the

1-Laplacian we can restrict ourselves to m-eigenpairs of the form
(
λ, 1

ν(E)
χ E

)
where E is
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m-calibrable and not decomposable as E = E1 ∪m E2. Indeed, suppose that
(
λ, 1

ν(E)
χ E

)
is an m-eigenpair and E = E1 ∪m E2 for some E1, E2 ⊂ E . Then, by (6.2), there exist
ξ ∈ sign(χ E ) and g ∈ L∞(X × X , ν ⊗ mx ) antisymmetric with ‖g‖L∞(X×X ,ν⊗mx ) ≤ 1,
such that ⎧⎪⎪⎨

⎪⎪⎩
−
∫
X
g(x, y) dmx (y) = λξ(x) ν − a.e. x ∈ X ,

g(x, y) ∈ sign(χ E (y)− χ E (x)) ν ⊗ mx − a.e. (x, y) ∈ X × X .

Then, we may take the same ξ and g(x, y) to see that
(
λ, 1

ν(E1)
χ E1

)
is also an m-eigenpair.

Indeed, since λmE = λmE1
, we only need to verify that g(x, y) ∈ sign(χ E1(y) − χ E1(x))

ν ⊗ mx -a.e.. For x ∈ E1 we have:

• if y ∈ E1, then χ E (y)− χ E (x) = 0 = χ E1(y)− χ E1(x),
• if y ∈ X\E , then χ E (y)− χ E (x) = −1 = χ E1(y)− χ E1(x),

and, since Lm(E1, E2) = 0, we have that ν⊗mx (E1× E2) = 0 so the condition is satisfied.
Similarly for x ∈ E2 (again ν ⊗ mx (E2 × E1) = 0). If x ∈ X\E then,

• if y ∈ E1, χ E (y)− χ E (x) = 1 = χ E1(y)− χ E1(x),
• if y ∈ E2, χ E (y)− χ E (x) = 1 ∈ sign(0) = sign(χ E1(y)− χ E1(x))
• if y ∈ X\E , χ E (y)− χ E (x) = 0 = χ E1(y)− χ E1(x).

Let

�(X) := {u ∈ L1(X , ν) : ‖u‖L1(X ,ν) = 1 and 0 ∈ medν(u)
}

and

λm1 (X) := inf {T Vm(u) : u ∈ �(X)} . (6.9)

In [36] we proved the following result.

Theorem 6.14 [36]Let [X , d,m]beametric randomwalk spacewith invariant and reversible
probability measure ν. Then,

(i) hm(X) = λm1 (X).

(ii) For 
 ⊂ X ν-measurable with ν(
) = 1
2 , hm(X) = λm
 ⇐⇒ χ


 −
χ X\
 is a minimizer of (6.9).

By Corollary 6.11, if (λ, u) is an m-eigenpair of �m
1 and λ �= 0 then u ∈ �(X). Now,

T Vm(u) = λ, thus, as a corollary of Theorem 6.14 (i), we have the following result. Recall
that, for finite graphs, it is well known that the first non–zero eigenvalue coincides with the
Cheeger constant (see [14]).

Theorem 6.15 If λ �= 0 is an m-eigenvalue of �m
1 then

hm(X) ≤ λ.

This result also follows by Proposition 6.12 since ν(E0(u)) ≤ 1
2 .

In the next result we will see that if the infimum in (6.6) is attained then hm(X) is an
m-eigenvalue of �m

1 .

Theorem 6.16 Let 
 be a ν-measurable subset of X such that 0 < ν(
) ≤ 1
2 .
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(i) If 
 and X\
 are m-calibrable then
(
λm
, 1

ν(
)
χ




)
is an m-eigenpair of �m

1 .

(ii) If hm(X) = λm
 then 
 and X\
 are m-calibrable

(iii) If hm(X) = λm
 then
(
λm
, 1

ν(
)
χ




)
is an m-eigenpair of �m

1 .

Proof First of all, observe that, since ν(
) ≤ 1
2 ,

λmX\
 ≤ λm
.

(i): By Theorem 5.8, since 
 is m-calibrable, there exists an antisymmetric function g1 in

×
 such that

−1 ≤ g1(x, y) ≤ 1 for (ν ⊗ mx )-a.e. (x, y) ∈ 
×
,

and

λm
 = −
∫




g1(x, y) dmx (y)+ 1− mx (
) ν-a.e. x ∈ 
; (6.10)

and, since X\
 ism-calibrable, there exists an antisymmetric function g2 in (X\
)×(X\
)

such that

−1 ≤ g2(x, y) ≤ 1 for (ν ⊗ mx )-a.e. (x, y) ∈ (X\
)× (X\
),

and

λmX\
 = −
∫
X\


g2(x, y) dmx (y)+ 1− mx (X\
) ν-a.e. x ∈ X\
. (6.11)

Consequently, by taking

g(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

g1(x, y) if x, y ∈ 
,

−1 if x ∈ 
, y ∈ X\
,

1 if x ∈ X\
, y ∈ 
,

−g2(x, y) if x, y ∈ X\
,

we have that g(x, y) ∈ sign (χ
(y)− χ

(x)). Moreover, from (6.10),

λm
 = −
∫
X
g(x, y) dmx (y) for ν-a.e. x ∈ 
,

and, since λmX\
 ≤ λm
, from (6.11),

−λm
 ≤ −λmX\
 = −
∫
X
g(x, y) dmx (y) ≤ λm
 for ν-a.e. x ∈ X\
.

Hence, by Remark 6.2 (2), we conclude that
(
λm
, 1

ν(
)
χ




)
is an m-eigenpair of �m

1 .

(ii): Since hm(X) = Pm (
)
ν(
)

and 0 < ν(
) ≤ 1
2 , we have hm(X) = hm1 (
) = Pm (
)

ν(
)
and,

consequently, 
 is m-calibrable. Let us suppose that X\
 is not m-calibrable. Then, there
exists E ⊂ X\
 such that ν(E) < ν(X\
) and

λmE < λmX\
 .

Now, this implies that ν(E) > 1
2 since, otherwise, we get

λmE < λmX\
 ≤ λm
 = hm(X)
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which is a contradiction. Moreover, since ν(E) < ν(X\
), λmE < λmX\
 also implies that

Pm(E) < Pm(X\
) = Pm(
).

However, since ν(E) > 1
2 , we have that ν(X\E) < 1

2 and, consequently, taking into account
that ν(
) ≤ ν(X\E), we get

λmX\E =
Pm(E)

ν(X\E)
<

Pm(
)

ν(
)
= hm(X),

which is also a contradiction.
Finally, (iii) is a direct consequence of (i) and (ii). ��
As a consequence of Proposition 6.12 and Theorem 6.16, we have the following result.

Corollary 6.17 If hm(X) is a positive m-eigenvalue of �m
1 , then, for any eigenvector u asso-

ciated to hm(X) with ν(E0(u)) > 0,(
hm(X),

1

ν(E0(u))
χ E0(u)

)
is an m-eigenpair of �m

1 ,

ν(E0(u)) ≤ 1
2 , and

hm(X) = λmE0(u).

Moreover, both E0(u) and X\E0(u) are m-calibrable.

Remark 6.18 For 
 ⊂ X with ν(
) = 1
2 (thus λm
 = 2Pm(
)) we have that:

(1) 
 and X\
 are m-calibrable if, and only if,
(
2Pm(
), tχ
 − (2− t)χ X\


)
is an m-

eigenpair of �m
1 for any t ∈ [0, 2].

(2) If hm(X) = 2Pm(
) then
(
2Pm(
), tχ
 − (2− t)χ X\


)
is an m-eigenpair of �m

1 for
all t ∈ [0, 2].

Example 6.19 In Fig. 2, following the notation in Example 6.6(2), we consider themetric ran-
domwalk space

[
X := (
2)m, dZ2 ,m2 := m(
2)m

]
. In Fig. 2a,we show this space partitioned

into two m2-calibrable sets, E = {(−1, 0), (0, 0), (1, 0), (−1, 1), (0, 1), (1, 1)} and X\E ,
of equal measure, hence, by the previous remark, both (λ

m2
E , 1

ν(E)
χ E ) and (λ

m2
E , 1

ν(E)
χ X\E )

arem2-eigenpairs. However, the Cheeger constant hm2(X) is smaller than the eigenvalue λ
m2
E

since, for D = {(1,−1), (1, 0), (2, 0), (2, 1), (1, 1), (1, 2)}, we have λ
m2
D = 1

6 (see Fig. 2b).

Remark 6.20 By Theorems 6.15 and 6.16, and Corollary 6.17, for finite weighted connected
discrete graphs, we have that

hm(X) is the first non-zero eigenvalue of �mG

1 (6.12)

(as already proved in [14,15] and [29]) and, to solve the optimal Cheeger cut problem,
it is enough to find an eigenvector associated to hm(X) since then {E0(u), X\E0(u)} or
{E0(−u), X\E0(−u)} is a Cheeger cut.

In the next examples we will see that (6.12) is not true in general. We obtain infinite
weighted connected discrete graphs (with finite invariant and reversible measure) for which
there is no first positive m-eingenvalue.
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Fig. 2 The line segments represented in the figures correspond to the edges between adjacent vertices, with
wxy = 1 for any pair of these neighbouring vertices. The loops that “appear” when considering m2 (see
Example 6.6(2)) are represented by circles

Example 6.21 (1) Let [V (G), dG ,mG ] be the metric random walk space defined in Example
1.1 (3) with vertex set V (G) = {x0, x1, . . . , xn, . . .} and weights defined as follows:

wx2n x2n+1 =
1

2n
, wx2n+1x2n+2 =

1

3n
for n = 0, 1, 2, . . . and wx,y = 0 otherwise.

We have dx0 = 1, dx1 = 2 and, for n ≥ 1,

dx2n = wx2n−1x2n + wx2n x2n+1 =
1

3n−1
+ 1

2n
,

dx2n+1 = wx2n x2n+1 + wx2n+1x2n+2 =
1

2n
+ 1

3n
.

Furthermore,

νG(V ) =
∞∑
i=0

dxi = 3+
∞∑
n=1

1

3n−1
+ 1

2n
+ 1

2n
+ 1

3n
= 7.

Observe that the measure νG is not normalized, but this does not affect the result because
the constants λm
 and the m-eigenvalues of the 1-Laplacian are independent of this nor-
malization.
Consider En := {x2n, x2n+1} for n ≥ 1. By (2) in Remark 5.1, we have that En is
mG -calibrable. On the other hand,

mx2n−1(En) = 1

1+ ( 32 )
n−1 ,

mx2n+2(En) = 1

1+ 3
4 (

3
2 )

n−1 = λm
G

En
, and mx (En) = 0 else in V \En .
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Hence,

mx (En) ≤ λm
G

En
for all x ∈ V \En .

Then, by Theorem 6.5, we have that (λm
G

En
, 1

ν(En)
χ En ) is a m

G -eigenpair of �mG

1 . Now,

lim
n→∞ λm

G

En
= lim

n→∞
2n+1

2n+1 + 3n
= 0.

Consequently, both by Theorem 6.15 and by definition of hmG (V (G)), we get

hmG (V (G)) = 0.

(2) Let 0 < s < r < 1
2 . Let [V (G), dG ,mG ] be the metric random walk space defined in

Example 1.1 (3) with vertex set V (G) = {x0, x1, . . . , xn, . . .} and weights defined as
follows:

wx0,x1 =
r

1− r
+ s

1− s
,

wxn xn+1 = rn + sn for n = 1, 2, 3, . . . and wx,y = 0 otherwise.

Then,

hmG (V (G)) = 1− r

1+ r
is not an mG -eigenvalue of �mG

1 .

Indeed, to start with, observe that νG(V (G)) = 4r
1−r + 4s

1−s ,

νG({x0}) ≤ νG(V (G))

2
, νG({x0, x1}) >

νG(V (G))

2
,

νG({x1}) ≤ νG(V (G))

2
, νG({x1, x2}) >

νG(V (G))

2
,

and, for En := {xn, xn+1, xn+2, . . . }, n ≥ 2,

νG(En) ≤ νG(V (G))

2
.

Now, for n ≥ 2,

λmEn
= rn−1 + sn−1

rn−1 + sn−1 + 2
(

rn
1−r + sn

1−s
) = rn−1 + sn−1

1+r
1−r rn−1 + 1+s

1−s sn−1

decreases as n increases (therefore, the sets En are not m-calibrable), and

lim
n

λmEn
= 1− r

1+ r
.

Let us see that, for any E ⊂ V (G) with 0 < νG(E) ≤ ν(V (G))
2 , we have λmE > 1−r

1+r .
Indeed, to start with, observe that if E = {x0} or E = {x1} then λm{x0} = λm{x1} = 1 > 1−r

1+r .
Moreover, we have that {x0, x1} �⊂ E and {x1, x2} �⊂ E since νG({x0, x1}) �≤ νG (V (G))

2

and νG({x1, x2}) �≤ νG (V (G))
2 . Therefore, it remains to see what happens for sets E

satisfying

(i) x0 ∈ E , x1 /∈ E and xn ∈ E for some n ≥ 2,
(ii) x1 ∈ E , x0 /∈ E and xn ∈ E for some n ≥ 3,
(iii) x0 /∈ E , x1 /∈ E and xn ∈ E for some n ≥ 2.
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For the case (i), let n1 ∈ N be the first index n ≥ 2 such that xn ∈ E ; for the case (ii), let
n2 ∈ N be the first index n ≥ 3 such that xn ∈ E ; and for the case (iii), let n3 ∈ N be the
first index n ≥ 2 such that xn ∈ E . Now, for the case (i) we have that

λmE ≥ λ{x0}∪En1
≥ λEn1

.

Indeed, the first equality follows from the fact that Pm(E) ≥ Pm({x0}∪En1) and ν(E) ≤
ν({x0} ∪ En1) and the second one follows since

λ{x0}∪En1
=

r
1−r + s

1−s + Pm(En1)

r
1−r + s

1−s + ν(En1)
>

Pm(En1)

ν(En1)
= λEn1

.

Hence, λmE > 1−r
1+r . With a similar argument we get, in the case (ii),

λmE ≥ λ{x1}∪En2
≥ λEn2

>
1− r

1+ r
;

and, in the case (iii),

λmE ≥ λEn3
>

1− r

1+ r
.

Consequently, hmG (V (G)) = 1−r
1+r and, by Corollary 6.17, it is not an m-eigenvalue of

�mG

1 .

Acknowledgements The authors wish to thank the anonymous referee whose comments after a detailed
reading of the paper allowed them to improve its presentation. The authors have been partially supported by
the Spanish MICIU and FEDER, Project PGC2018-094775-B-100. The second author was also supported by
the Spanish MICIU under Grant BES-2016-079019, which is also supported by the European FSE.

References

1. Alter, F., Caselles, V., Chambolle, A.: A characterization of convex calibrable sets in R
N . Math. Ann.

332, 329–366 (2005)
2. Ambrosio, L., Di Marino, S.: Equivalent definitions of BV spaces and total variation on metric measures

spaces. J. Funct. Anal. 266, 4150–4188 (2014)
3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems.

Oxford Mathematical Monographs. Clarendon Press, Oxford (2000)
4. Ambrosio, L., Pinamonti, A., Speight, G.: Tensorization of Cheeger energies, the space H1,1 and the area

formula for graphs. Adv. Math. 281, 1145–1177 (2015)
5. Andreu, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Func-

tionals. Progress in Mathematics, vol. 223. Birkhauser, Basel (2004)
6. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo, J.: Nonlocal Diffusion Problems. Mathematical

Surveys and Monographs, vol. 165. AMS, Providence (2010)
7. Banerjee, A., Jost, J.: On the spectrum of the normalized graph Laplacian. Linear Algebra Appl. 428,

3015–3022 (2008)
8. Bougleux, S., Elmoataz, A., Melkemi, M.: Local and nonlocal discrete regularization on weighted graphs

for image and mesh filtering. Int. J. Comput. Vis. 84, 220–236 (2009)
9. Bénilan, P., Crandall, M.G.: Completely accretive operators. In: Clement, P., et al. (eds.) Semigroups

Theory and Evolution Equations (Delft, 1989). Lecture Notes in Pure and Applied Mathematics, vol.
135, pp. 41–75. Marcel Dekker, New York (1991)

10. Brezis, H.: Operateurs Maximaux Monotones. North Holland, Amsterdam (1973)
11. Bruck Jr., R.E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert spaces. J. Funct.

Anal. 18, 15–26 (1975)
12. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale

Model. Simul. 4, 490–530 (2005)

123



Total variation flow in metric random walk spaces Page 63 of 64 29

13. Bühler, T., Hein, M.: Spectral Clustering Based on the Graph p-Laplacian. In: Proceedings of the 26th
International Conference on Machine Learning, pp. 81–88. Omnipress (2009)

14. Chang,K.C.: Spectrumof the 1-Laplacian andCheeger’s constant on graphs. J. GraphTheory 81, 167–207
(2016)

15. Chang, K.C., Shao, S., Zhang, D.: The 1-Laplacian Cheeger cut: theory and algorithms. J. Comput. Math.
33, 443–467 (2015)

16. Chang, K.C., Shao, S., Zhang, D.: Cheeger’s cut, maxcut and the spectral theory of 1-Laplacian on graphs.
Sci. China Math. 60, 1963–1980 (2017)

17. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Gunning, R.C. (ed.) Problems
in Analysis, pp. 195–199. Princeton University Pres, Princeton (1970)

18. Chung, F.: SpectralGraphTheory (CBMSRegionalConference Series inMathematics,No. 92).American
Mathematical Society, Providence (1997)

19. Chung, F., Yau, S.T.: Eigenvalues of graphs and Sobolev inequalities. Comb. Probab. Comput. 4, 11–25
(1995)

20. Coulhon, T.: Espaces de Lipschitz et inégalités de Poincaré. J. Funct. Anal. 136, 81–113 (1996)
21. Coulhon, T., Grigor’yan, A., Levin, D.: On isoperimetric profiles of product spaces. Commun. Anal.

Geom. 11, 85–120 (2003)
22. Crandall, M.G., Liggett, T.M.: Generation of semigroups of nonlinear transformations on general Banach

spaces. Am. J. Math. 93, 265–298 (1971)
23. Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15,

519–527 (2002)
24. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a frame-

work for image and manifold processing. IEEE Trans. Image Process. 17, 1047–1060 (2008)
25. Fridman, V., Kawohl, B.: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and

the Cheeger constant. Comment. Math. Univ. Carol. 44, 659–667 (2003)
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