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Abstract

In this paper we study the total variation flow (TVF) in metric random walk spaces, which
unifies into a broad framework the TVF on locally finite weighted connected graphs, the
TVF determined by finite Markov chains and some nonlocal evolution problems. Once the
existence and uniqueness of solutions of the TVF has been proved, we study the asymptotic
behaviour of those solutions and, with that aim in view, we establish some inequalities of
Poincaré type. In particular, for finite weighted connected graphs, we show that the solutions
reach the average of the initial data in finite time. Furthermore, we introduce the concepts of
perimeter and mean curvature for subsets of a metric random walk space and we study the
relation between isoperimetric inequalities and Sobolev inequalities. Moreover, we introduce
the concepts of Cheeger and calibrable sets in metric random walk spaces and characterize
calibrability by using the 1-Laplacian operator. Finally, we study the eigenvalue problem
whereby we give a method to solve the optimal Cheeger cut problem.
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1 Introduction and preliminaries

A metric random walk space [X, d, m] is a metric space (X, d) together with a family
m = (my) ey of probability measures that encode the jumps of a Markov chain. Important
examples of metric random walk spaces are: locally finite weighted connected graphs, finite
Markov chains and [RY, d, m”] with d the Euclidean distance and

m!(A) = / J(x — y)dLN (y) for every Borel set A ¢ RV |
A

where J : RN — [0, +o0[ is ameasurable, nonnegative and radially symmetric function with
f J = 1. Furthermore, given a metric measure space (X, d, ) satisfying certain properties
we can obtain a metric random walk space [X, d, m"€], called the e-step random walk
associated to |1, where

b ulB(x, €)
T u(Bx,e)’

Since its introduction as a means of solving the denoising problem in the seminal work
by Rudin et al. [45], the total variation flow has remained one of the most popular tools in
Image Processing. Recall that, from the mathematical point of view, the study of the total
variation flow in RY was established in [5]. On the other hand, the use of neighbourhood
filters by Buades et al. [12], that was originally proposed by Yaroslavsky [52], has led to an
extensive literature in nonlocal models in image processing (see for instance [8,28,31,32] and
the references therein). Consequently, there is great interest in studying the total variation
flow in the nonlocal context. As further motivation, note that an image can be considered
as a weighted graph, where the pixels are taken as the vertices and the “similarity” between
pixels as the weights. The way in which these weights are defined depends on the problem
at hand, see for instance [24,32].

The aim of this paper is to study the total variation flow in metric random walk spaces,
obtaining general results that can be applied, for example, to the different points of view in
Image Processing. In this regard, we introduce the 1-Laplacian operator associated with a
metric random walk space, as well as the notions of perimeter and mean curvature for subsets
of a metric random walk space. In doing so, we generalize results obtained in [34,35] for the
particular case of [RN, d, m’], and, moreover, generalize results in graph theory. We then
proceed to prove existence and uniqueness of solutions of the total variation flow in metric
random walk spaces and to study its asymptotic behaviour with the help of some Poincaré
type inequalities. Furthermore, we introduce the concepts of Cheeger and calibrable sets in
metric random walk spaces and characterize calibrability by using the 1-Laplacian operator.
Let us point out that, to our knowledge, some of these results were not yet known for graphs,
nonetheless, we have specified in the main text which important results were already known
for graphs. Moreover, in the forthcoming paper [37], we apply the theory developed here to
obtain the (BV, L?)-decomposition, p = 1, 2, of functions in metric random walk spaces.
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This decomposition can be applied to Image Processing if, for example, images are regarded
as graphs and, moreover, to other nonlocal models.

Partitioning data into sensible groups is a fundamental problem in machine learning,
computer science, statistics and science in general. In these fields, it is usual to face large
amounts of empirical data, and getting a first impression of the data by identifying groups
with similar properties can prove to be very useful. One of the most popular approaches
to this problem is to find the best balanced cut of a graph representing the data, such as
the Cheeger ratio cut [17]. Consider a finite weighted connected graph G = (V, E), where

V = {x1, ..., x,} is the set of vertices (or nodes) and E the set of edges, which are weighted
by a function w;; = w;; > 0, (i, j) € E. The degree of the vertex x; is denoted by
d; = Z?:l w;j, i = 1,..., n. In this context, the Cheeger cut value of a partition {S, S}

(8¢ := V\S) of V is defined as

Cut(S, 5°)
min{vol(S), vol(5¢)}’

C(S) =

where

Cut(A, B)= > wij,

icA,jeB
and vol(S) is the volume of S, defined as vol(S) := ) ;¢ d;. Furthermore,
h(G) = min C(S)
scv

is called the Cheeger constant, and a partition {S, S} of V is called a Cheeger cut of G if
h(G) = C(S). Unfortunately, the Cheeger minimization problem of computing 4 (G) is NP-
hard [29,47]. However, it turns out that #(G) can be approximated by the second eigenvalue
Ao of the graph Laplacian thanks to the following Cheeger inequality [18]:

%2 < h(G) < +/2x;. (1.1)

This motivates the spectral clustering method [51], which, in its simplest form, thresholds the
second eigenvalue of the graph Laplacian to get an approximation to the Cheeger constant
and, moreover, to a Cheeger cut. In order to achieve a better approximation than the one
provided by the classical spectral clustering method, a spectral clustering based on the graph
p-Laplacian was developed in [13], where it is showed that the second eigenvalue of the graph
p-Laplacian tends to the Cheeger constant #(G) as p — 17. In [47] the idea was taken up
by directly considering the variational characterization of the Cheeger constant 4 (G)

. lulry
h(G) = min - ,
©) uel! |lu — median(u))||;

(1.2)

where

n

1

lulry = 3 Z wijlu(x;) —u(x;)l.
i,j=1

The subdifferential of the energy functional | - |7y is the 1-Laplacian in graphs A;. Using the

nonlinear eigenvalue problem 0 € Aju — X sign(u), the theory of 1-Spectral Clustering is

developed in [14-16,29], and good results on the Cheeger minimization problem have been

obtained.
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In [36], we obtained a generalization, in the framework of metric random walk spaces, of
the Cheeger inequality (1.1) and of the variational characterization of the Cheeger constant
(1.2). In this paper, in connection with the 1-Spectral Clustering, also in metric random walk
spaces, we study the eigenvalue problem of the 1-Laplacian and then relate it to the optimal
Cheeger cut problem. Then again, these results apply, in particular, to locally finite weighted
connected graphs, complementing the results given in [14-16,29].

Additionally, regarding the notion of a function of bounded variation in a metric measure
space (X, d, ) introduced by Miranda in [41], we provide, via the e-step random walk
associated to u, a characterization of these functions.

1.1 Metricrandom walk spaces

Let (X, d) be a Polish metric space equipped with its Borel o-algebra. A random walk m
on X is a family of probability measures m, on X, x € X, satisfying the two technical
conditions: (i) the measures m, depend measurably on the point x € X, i.e., for any Borel set
A of X and any Borel set B of R, the set {x € X : m,(A) € B} is Borel; (ii) each measure
my has finite first moment, i.e. for some (hence any, by the triangle inequality) z € X, and
for any x € X one has fX d(z, y)dm,(y) < 400 (see [44]).

A metric random walk space [X, d, m] is a Polish metric space (X, d) together with a
random walk m on X.

Let [X, d, m] be a metric random walk space. A Radon measure v on X is invariant for
the random walk m = (my) if

dv(x) = / dv(y)dmy(x),
veX

that is, for any v-measurable set A, it holds that A is m,-measurable for v-almost all x € X,
x > my(A) is v-measurable, and

v(A):/ my(A)dv(x).
X

Consequently, if v is an invariant measure with respect to m and f € L'(X, v), it holds that

f e L' (X, my)forv-ae x € X, x — / f(y)dmy(y) is v-measurable, and
X

/u(x)dV(x)=/ (/ u(y)dmx(y))dV(X).
X X X

The measure v is said to be reversible for m if, moreover, the following detailed balance
condition holds:

dmy(y)dv(x) = dmy(x)dv(y), (1.3)

that is, for any Borel set C C X x X,

/(/ Xc(x,y)dmx(y)>dv(X)=/ (/ Xc(x,y)dmy(X))dU(y),
x \Ux x \Ux

where X ¢ is the characteristic function of the set C defined as

1 ifxeC,
0 otherwise.

Xcx) = {

@ Springer



Total variation flow in metric random walk spaces Page50f64 29

Note that the reversibility condition implies the invariance condition. However, we will
sometimes write that v is invariant and reversible so as to emphasize both conditions.

We now give some examples of metric random walk spaces that illustrate the general

abstract setting. In particular, Markov chains serve as paradigmatic examples that capture
many of the properties of this general setting that we will encounter during our study.

Example 1.1 (1) Consider (R, d, £V), with d the Euclidean distance and £V the Lebesgue

2

measure. For simplicity we will write dx instead of d£V (x). Let J : RN — [0, 400 be
a measurable, nonnegative and radially symmetric function verifying fRN J(x)dx = 1.
In RV, d, £V we have the following random walk, starting at x,

m){ (A) = / J(x — y)dy forevery Borel set A C RV,
A

Applying Fubini’s Theorem it is easy to see that the Lebesgue measure £V is an invariant
and reversible measure for this random walk.

Observe that, if we assume that in R we have an homogeneous population and J (x — y)
is thought of as the probability distribution of jumping from location x to location y, then,
for a Borel set A in RV, m/ (A) is measuring how many individuals are going to A from
x following the law given by J. See also the interpretation of the m-interaction between
sets given in Sect. 2.1. Finally, note that the same ideas are applicable to the countable
spaces given in the following two examples.

Let K : X x X — R be a Markov kernel on a countable space X, i.e.,

K(x,y)>0 Vx,yeX, ZK(x,y):l Vx € X.
yeX

Then, for

mE(A) =) K(x, ),

yeA

[X, d, mX]is a metric random walk space for any metric d on X.
Moreover, in Markov chain theory terminology, a measure & on X satisfying

doa)=1 and w(y) =) 7(x)K(x,y) VYy€EX,

xeX xeX

is called a stationary probability measure (or steady state) on X. This is equivalent to the
definition of invariant probability measure for the metric random walk space [X, d, mX].
In general, the existence of such a stationary probability measure on X is not guaranteed.
However, for irreducible and positive recurrent Markov chains (see, for example, [30] or
[43]) there exists a unique stationary probability measure.

Furthermore, a stationary probability measure 7 is said to be reversible for K if the
following detailed balance equation holds:

K(x,y)m(x) = K(y,x)m(y) forx,y € X.

By Tonelli’s Theorem for series, this balance condition is equivalent to the one given
in (1.3) forv = m:

dm¥ (y)dm(x) = dm§ (x)dm(y).
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(3) Consider a locally finite weighted discrete graph G = (V(G), E(G)), where each edge
(x,y) € E(G) (we will write x ~ y if (x, y) € E(G)) has a positive weight wyy = wy,
assigned. Suppose further that wy, = 0if (x, y) ¢ E(G).

A finite sequence {x;};_, of vertices on the graph is called a path if x; ~ x;1 for all
k=0,1,...,n — 1. The length of a path {xk}zzo is defined as the number n of edges
in the path. Then, G = (V(G), E(G)) is said to be connected if, for any two vertices
x,y € V, there is a path connecting x and y, that is, a path {x;};_, such that xo = x
and x, = y. Finally, if G = (V(G), E(G)) is connected, define the graph distance
dg(x, y) between any two distinct vertices x, y as the minimum of the lengths of the
paths connecting x and y. Note that this metric is independent of the weights. We will
always assume that the graphs we work with are connected.

For x € V(G) we define the weight at the vertex x as

dy = way = Z Wyy,

y~x yeV(G)

and the neighbourhood of x as Ng(x) := {y € V(G) : x ~ y}. Note that, by definition
of locally finite graph, the sets N (x) are finite. When wyy, = 1 for every x ~ y, d;
coincides with the degree of the vertex x in a graph, that is, the number of edges containing
Vertex x.

For each x € V(G) we define the following probability measure

1
G .
my .=d E Wyy by.
X

y~x

We have that [V (G), dg, m©] is a metric random walk space and it is not difficult to see
that the measure v defined as

vG(A) == de, A CV(G),

xeA

is an invariant and reversible measure for this random walk.

Given a locally finite weighted discrete graph G = (V(G), E(G)), there is a natural
definition of a Markov chain on the vertices. We define the Markov kernel K : V(G) x
V(G) - Ras

1
Kg(x,y) = d—wxy.

X

We have that m© and mX¢ define the same random walk. If vg(V(G)) is finite, the
unique stationary and reversible probability measure is given by

1
760 = VG ZeVZ(G) e
(4) From a metric measure space (X, d, ) we can obtain a metric random walk space, the so
called e-step random walk associated to ., as follows. Assume that balls in X have finite
measure and that Supp(u) = X. Given € > 0, the e-step random walk on X starting at
x € X, consists in randomly jumping in the ball of radius € centered at x with probability
proportional to j; namely

pe ulB(x,¢€)
T u(B(x,e)
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Note that w is an invariant and reversible measure for the metric random walk space
[X,d, m™€].

(5) Given a metric random walk space [X, d, m] with invariant and reversible measure v,
and given a v-measurable set Q2 C X with v(2) > 0, if we define, for x € €,

miz(A) = / dmy(y) + </ dm, (y)) 8x(A) forevery Borel set A C €2,
A X\Q

we have that [$2, d, m®] is a metric random walk space and it easy to see that vL_ € is
reversible for m*.
In particular, if €2 is a closed and bounded subset of RY, we obtain the metric random

walk space [€2, d, m?-$), where m’-% = (m”’)<, that is
m;’Q(A) = / J(x —y)dy + (/ J(x — z)dz) dé, for every Borel set A C Q.
A R™\Q

From this point onwards, when dealing with a metric random walk space, we will assume
that there exists an invariant and reversible measure for the random walk, which we will
always denote by v. In this regard, when it is clear from the context, a measure denoted
by v will always be an invariant and reversible measure for the random walk under study.
Furthermore, we assume that the metric measure space (X, d, v) is o -finite.

1.2 Completely accretive operators and semigroup theory

Since Semigroup Theory will be used along the paper, we would like to conclude this intro-
duction with some notations and results from this theory along with results from the theory
of completely accretive operators (see [9,10,22], or the Appendix in [6], for more details).
We denote by Jp and Py the following sets of functions:

Jo:={j : R — [0, 4o00] : jis convex, lower semi-continuous and j(0) = 0},
Py:={qe€C®®R) : 0<q' <1, supp(q’) is compact and 0 ¢ supp(q)} .

Letu,v € LY(X,v). The following relation between u and v is defined in [9]:
u < v if, and only if, /Xj(u) dv < /Xj(v)dv forall j € Jo.
An operator A C LY(X,v) x LY (X, v) is called completely accretive if
/;{(vl —v)q(u; —uz)dv >0 forevery g € Py

and every (u;,v;) € A, i = 1,2. Moreover, an operator A in L'(X,v) is m-completely
accretive in L'(X, v) if A is completely accretive and Range(I + L.A) = L' (X, v) for all
A > 0 (or, equivalently, for some A > 0).

Theorem 1.2 [9,10] If A is an m-completely accretive operator in L' (X, v), then, for every
ug € D(A) (the closure of the domain of A), there exists a unique mild solution (see [22]) of
the problem

d
de: + Au >0,
u(0) = ugp.
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Moreover; if A is the subdifferential of a proper convex and lower semicontinuous function
in L2(X, v) then the mild solution of the above problem is a strong solution.

Furthermore we have the following contraction and maximum principle in any L1(X, v)
space, 1 < g < 4o00: for uy 9, uz,0 € D(A) and denoting by u; the unique mild solution of
the problem

du;
i 20,
{ ar + Au;
u; (0) = u; 0,

i =1,2, we have
() — ua ) llzacx.vy < Mro —u2,0) llLax,y YO <t <T,

where r™ := max{r, 0} forr € R.

2 Perimeter, curvature and total variation in metric random walk
spaces

2.1 m-perimeter

Let [X, d, m] be a metric random walk space with invariant and reversible measure v. We
define the m-interaction between two v-measurable subsets A and B of X as

L,(A, B) ::/ / dmy (y)dv(x).
AJB

Whenever L,, (A, B) < 400, by the reversibility assumption on v with respect to m, we
have

Ln(A, B) = L, (B, A).

Following the interpretation given after Example 1.1 (1), for a v-homogeneous population
which moves according to the law provided by the random walk m, L,, (A, B) measures how
many individuals are moving from A to B, and, thanks to the reversibility, this is equal to the
amount of individuals moving from B to A. In this regard, the following concept measures
the total flux of individuals that cross the “boundary” (in a very weak sense) of a set.

We define the concept of m-perimeter of a v-measurable subset E C X as

Pu(E) = La(E X\ = [ [ am v,
E JX\E
It is easy to see that

1
P (E) = EA/)(|XE()7)_XE(X)|dmx()’)dV(x)~

Moreover, if E is v-integrable, we have

Pn(E) =v(E) —/ / dmy (y)dv(x). 2.1)
EJE
The notion of m-perimeter can be localized to a bounded open set 2 C X by defining

Po(E, Q) i= Ln(E N2, X\E) + Ln(E\Q, Q\E).
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Observe that
Ln(E, X\E) = L, (E N, X\E) 4+ Lyn(E\Q, Q\E) + L,,(E\Q, X\(E U Q))

and, consequently, we have

P (E, Q) :// dmx(y)dv(x)—/ / dmy (y)dv(x),
EJX\E E\Q JX\(EUQ)

when both integrals are finite.

Example 2.1 (1) Let [RY, d, m”’] be the metric random walk space given in Example 1.1 (1)
with invariant measure £V . Then,

1
P (E) = Ef / 1Xe(y) = Xg()[J(x — y)dydx,
RN JRY
which coincides with the concept of J-perimeter introduced in [34]. On the other hand,
1
Pyie(E) = */ / [XE(y) = Xe)|J(x — y)dydx.
2Jala

Note that, in general, P,,s,2(E) # P, (E).
Moreover,

P,.2(E) :EN(E)—/ / dm){’g(y)dx:[,N(E)—/ / J(x — y)dydx
EJE EJE

—/ </ J(x—z)dz)dx
E \JrRM\Q

P,2(E)=P,;(E) —/ (/ J(x — z)dz) dx, YEC Q. (2.2)
E \JRM\Q

and, therefore,

(2) In the case of the metric random walk space [V (G), dg, mY] associated to a finite
weighted discrete graph G, given A, B C V(G), Cut(A, B) is defined as

Cut(A, B):= Y wyy =L,c(A, B),
xeA,yeB

and the perimeter of a set E C V(G) is given by

0E|:=Cut(E, E) = Y wy.
xeE,yeV\E

Consequently, we have that
[0E| = P,c(E) forall E C V(G).
Let us now give some properties of the m-perimeter.

Proposition 2.2 Let A, B C X be v-measurable sets with finite m-perimeter such that
v(AN B) =0. Then,

Pn(AUB) = P,(A) + P,(B) —2L,,(A, B).
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Proof We have

P,(AUB) = / (f dmx(y)> dv(x)

AUB \JX\(AUB)

=/ (/ dmx(y)) dv(x)+/ (/ dmx(y)> dv(x)
A \JX\(AUB) B \JX\(AUB)

_ / ( / dmy(y) — f dmx(y)> dv(x)
A \Jx\A B
+/ (f dmx(y)—/ dmx(y)> dv(x),

B \JX\B A

and then, by the reversibility assumption on v with respect to m,

P,(AUB) = P,(A) + P,(B) — 2/ (/ dmx(y)> dv(x).
A B
[}

Corollary 2.3 Let A, B, C be v-measurable sets in X with pairwise v-null intersections.
Then

P,(AUBUC)=P,(AUB)+ P,(AUC)+ P,(BUC) — Py,(A) — Py(B) — P, (C).

2.2 m-mean curvature

Let E C X be v-measurable. For a point x € X we define the m-mean curvature of E at x
as

HIL () = /X e () — X E () ().
Observe that
Hyp(x)=1-— Z/Edmx(y). 2.3)

Note that H7;(x) can be computed for every x € X, not only for points in d E. This fact
will be used later in the paper. Having in mind (2.1), we have that, for a v—integrable set
ECX,

/Hg"E(x)dv(x):/ (1—Z/dmx(y))dv(x):v(E)—Z/fdmx(y)dv(x)
E E E EJE

= Pu(E) —/ / dmy (y)dv(x) = 2Py (E) — v(E).
EJE
Consequently,

/ HY' (x)dv(x) = 2P (E) — v(E). (2.4)
E
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2.3 m-total variation

Associated to the random walk m = (m,) and the invariant measure v, we define the space
BV, (X,v) = {u : X — R v-measurable : / / lu(y) — u(x)|dmy(y)dv(x) < oo} .
xJx

We have that L1 (X, v) ¢ BV,,(X, v). The m-total variation of a function u € BV,,(X, v)
is defined by

1
TVtw) = 5 f / (y) — u () ldmy (5)dv ().
XJX
Note that
P,(E)=TV,(XE). 2.5)

Observe that the space BV, (X, v) is the nonlocal counterpart of classical local bounded
variation spaces. Note further that, in the local context, given a Lebesgue measurable set
E C R", its perimeter is equal to the total variation of its characteristic function (see (2.19))
and the above Eq. (2.5) provides the nonlocal counterpart. In (2.21) and Theorem 2.22 we
illustrate further relations between these spaces.

However, although they represent analogous concepts in different settings, the classical
local BV-spaces and the nonlocal BV-spaces are of a different nature. For example, in our
nonlocal framework L' (X, v) c BV,,(X, v) in contrast with classical local bounded vari-
ation spaces that are, by definition, contained in L'. Indeed, since each my, is a probability
measure, x € X, and v is invariant with respect to m, we have that

1 1
V) < = / / () [dmy (v (x) + ~ f / (Ol ()dv(x) = lull 1 xvy.
2 Jx Jx 2 Jx Jx

Recall the definition of the generalized product measure v ® m, (see, for instance, [3]),
which is defined as the measure on X x X given by

v my(U) :=/ / Xu(x, y)dmy(y)dv(x) forU € B(X x X),
xJx

where it is required that the map x — m, (E) is v-measurable for any Borel set E € B(X).
Moreover, it holds that

/ gd(V®mx)=//g(x,y)dmx(y)dV(X)
XxX XJX

for every g € LY(X x X, v ® m,). Therefore, we can write
1
TVu(u) = 5/ [u(y) —ux)|d(V & my)(x, y).
XxX

Example2.4 Let[V (G), dg, (mg)] be the metric random walk space given in Example 1.1 (3)
with invariant and reversible measure vg. Then,

1
3 / / lu(y) — u(x)|dm& (y)dvg (x)
V(G) JV(G)

1 1
=5 X o —uwhe, | aveeo
2 Jv) dx eV (6)

TV,c(u)
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N |

Y | X ) - @l

V(G) Y yev(6)
1

Xe
== D D ) —u@lwy,

V(G) yeV(G)

(S}

which coincides with the anisotropic total variation defined in [50].

In the following results we give some properties of the total variation.

Proposition 2.5 If ¢ : R — R is Lipschitz continuous then, for every u € BV,,(X,v),
¢(u) € BV,,(X,v) and

TV () < PllLipT Vin (u).

Proof

TVin(gp(u))

1
5 f / B0 — ) () dmy (Vv (x)
XJX

1
< 16lLipy /X /X () — uCOldmy (V) = [l 2ip T Vin 0.

Proposition 2.6 T'V,, is convex and continuous in L! (X, v).

Proof Convexity follows easily. Let us see that it is continuous. Let u, — u in L1(X, v).
Since v is invariant and reversible with respect to m, we have

|T Vi (up) — T Vi ()]

1
3 ‘/ / (It (y) = un (O] = |u(y) — u(x)]) dmy(y)dv(x)
x Jx

1
< 5( / f e () — () ldimy () dv (x)
XJX
+/ / Iun(x)—u(x)ldmx(y)dV(X)>
XJX

1
5 ( f () — u(DdV ()
X

+/X lun (x) — M(X)IdV(X)> = llun — ullp1(x v)-

[}

As in the local case, we have the following coarea formula relating the total variation of
a function with the perimeter of its superlevel sets.

Theorem 2.7 (Coarea formula) For any u € LI(X, v), let E;(u) .= {x € X : ulx) > t}.
Then,

+00
TV (u) = f Py (E: (1)) dt. (2.6)

—0o0
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Proof Since

+00 0
u(x) = /0 X g, (x)dt —/ (I = Xg,w(x))dt,

we have

+00
u(y) —u(x) = / XE ) (Y) = Xy (x) dt.

—0o0
Moreover, since u(y) > u(x) implies X g, ) (y) = X g, ) (x), we obtain that

+00

lu(y) —ux)| = f IXE ) (y) — XE,uy(x)| dt.

—00

Therefore, we get

1
TVn(u) = 5 /X/X lu(y) — u(x)|dmy(y)dv(x)

1 +0oo
= f / ( f X B0 () — xE,(u)(xndr) dm(»)dv(x)
XJX —o0

+o00 1
=/ <§/ / |XE,(u)(y)—XE,(u)(X)Idmx(y)dV(x)) dt
—00 XJX

+00
= / P (Ei(u))dr,

—0o0

where Tonelli-Hobson’s Theorem is used in the third equality. O

Let us recall the following concept of m-connectedness introduced in [34]: A metric
random walk space [X, d, m] with invariant and reversible measure v is m-connected if,
for any pair of v-non-null measurable sets A, B C X such that A U B = X, we have
L, (A, B) > 0. Moreover, in [36, Theorem 2.19], we see that this concept is equivalent to
the following concept of ergodicity (see [30]) when v is a probability measure.

Definition 2.8 Let [X, d, m] be a metric random walk space with invariant and reversible
probability measure v. A Borel set B C X is said to be invariant with respect to the random
walk m if m,(B) = 1 whenever x is in B. The invariant probability measure v is said to be
ergodic if v(B) = 0 or v(B) = 1 for every invariant set B with respect to the random walk
m.

Furthermore, by [36, Theorem 2.21], we have that v is ergodic if, and only if, for u €
L2(X, v), A,u = 0 implies that u is v-a.e. equal to a constant, where

Apu(x) = /X(u(y) —u(x))dmy (y).

As an example, note that the metric random walk space associated to an irreducible and
positive recurrent Markov chain on a countable space together with its steady state is m-
connected (see [30]). Moreover, the metric random walk space [V (G), dg, mY] associated
to a locally finite weighted connected discrete graph G = (V(G), E(G)) is mOY-connected.
In [36] we give further examples involving the metric random walk space given in Exam-
ple 1.1 (1).

Observe that, for a metric random walk space [X, d, m] with invariant and reversible
measure v, if the space is m-connected, then the m-perimeter of any v-measurable set E with
0 < v(E) < v(X) is positive.
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Lemma 2.9 Assume that v is ergodic and let u € BV,,(X, v). Then,
TVu(u) =0 < uisconstant v — a.e..

Proof (<) Suppose that « is v-a.e. equal to a constant k, then, since v is invariant with respect
to m, we have

1
TVatw) = 5 fx /X (y) — @) dmy (Pdv(x)

=//|M(y)—k|dmx(y)dV(X)
X Jx
:/ lu(x) — k|dv(x) = 0.

X
(=) Suppose that

1

0=TVpy) = 5/ / lu(y) — u(x)ldmy(y)dv(x).
xJx

Then, fX lu(y) —u(x)|dmy(y) = 0 for v-a.e. x € X, thus

| Amt()] = ‘ /X (u(y) — () dmy ()

< / lu(y) —u(x)|dmy(y) =0 forv-ae.x € X,
X

and we are done by the comments preceding the lemma. O

From now on we will assume that the metric random walk spaces that we work with are
m-connected (this assumption is only dropped in Sect. 2.5). However, we would like to point
out that if a metric random walk space [X, d, m] is not m-connected then it may be broken
down as X = AU B where A, B C X have v-positive measure and L, (A, B) = 0, allowing
us to work with A and B independently. Then, for example, if E C X is a v-measurable set
we get

Py(E) = Pu(ENA)+ Py(ENB)
and, if u € BV,,(X,v),

1 1
TVn(u) = 3 /A/A lu(y) — u(x)ldmy(y)dv(x) + 3 /B /B lu(y) — u(x)ldmy(y)dv(x).

2.4 Isoperimetric and Sobolev inequalities

The n-dimensional isoperimetric inequality states that
n n=1 n—1
L) " <c,H"  (0R) 2.7

for every domain 2 C R” with smooth boundary and compact closure, where ¢, = ﬁ,
and w,, is the volume of the unit ball. It is well known (see for instance [39]) that (2.7) 1s
equivalent to the Sobolev inequality

lull o < c,,/ [Vuldx Yu € Cg°(R").
n— Rn

If we replace the Euclidean space R"” by a Riemannian manifold M with measure pu,,
then the isoperimetric inequality takes the following form:

1 ()T < Cpptn1 (992 (2.8)
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for all bounded sets & C M with smooth boundary, being (£, the surface measure. As in
the Euclidean case (see [38] or [46]), (2.8) is equivalent to the Sobolev inequality

n—1

(/ |u|#dun> ' §C,,/ \Vuldu, Yue CF(M). 2.9)
M M

Consequently, it is natural to say that a Riemannian manifold M has isoperimetric dimension
n if (2.9) holds (see [21]). The equivalence between isoperimetric inequalities and Sobolev
inequalities in the context of Markov chains was obtained by Varopoulos in [49]. Let us state
these results under the context treated here.

Definition 2.10 Let [X, d, m] be a metric random walk space with invariant and reversible
measure v. We say that [X, d, m, v] has isoperimetric dimension n if there exists a constant
I, > 0 such that

v(A)nn;1 <I,P,(A) forall A C X with0 < v(A) < v(X). (2.10)

We assume that, forn = 1, n”j = +00 by convention.

We will denote by BVmO (X, v) the set of functions u € BV,,(X, v) satisfying that there
exists A C X, with 0 < v(A) < v(X), such thatu = 0in X\ A.
Theorem 2.11 [X, d, m, v] has isoperimetric dimension n if, and only if,

lall, o2y oy = BT Vi) forall u € BVY(X,v). (2.11)

The constant 1, is the same as in (2.10).
Proof (<) Given A C X with 0 < v(A) < v(X), applying (2.11) to X 4, we get
n—1
VAT = 1Xall, S T Vi (X) = L Pu(A).

(=) Let us see that (2.10) implies (2.11). Since T V,,(lu|) < TV,, (1), we may assume that
u > 0 without loss of generality.

Suppose first thatn = 1 and letu € BV,S(X, v) such that ¥ > 0 and is not v-a.e. equal to
0 (otherwise, (2.11) is trivially satisfied). Note that, in this case, since u is null outside of a
v-measurable set A with v(A) < v(X), we have v(E,; (1)) < v(X) for t > 0 and, moreover,
by the definition of the L°°(X, v)-norm, 0 < v(E;(u)) for t < |lu|r>x,v). Then, by the
coarea formula and (2.10), we have

lleell oo x )

+00
TV (u) =/ Py (E(w)) dt =f Py (E; (1)) dt
0 0

/MIILOO(X.u) 1 1
> —dt = —|lullLex.v)-
0 I, 1, v

Therefore, we may suppose thatn > 1. Let p := ﬁ Again, by the coarea formula and
(2.10), if u € BV,Q (X, v), u > 0 and not identically v-null, we get
+00 lullLoox,vy 1
TVin(u) = f P (Ei(u)) dt = / TV(Ez(u))" dt, (2.12)
0 0 n
where [ullpo(x,v) = +ooif u ¢ L°°(X, v). On the other hand, since the function ¢(t) :=
1

v(E;(u))? is nonnegative and non-increasing, we have

t p—1 d t P
ptPlo)? < p </ w(S)dS) (1) = o [(/ w(S)dS> ]
0 t 0
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Integrating over (0, #) and letting t — [|u|| o (x,1), We obtain

lluell oo (x v | llull Loo (x vy P
f ptP )P dt < ( / w(t)dt) :
0 0

lull oo x,v) llull Loo (x,v) 1 P
/ pt?PYW(E, () dt < (/ v(E,(u))?dt) . (2.13)
0 0

» » u(x) gsp
||u||L,,(X vy = uf (x)dv(x) = —dt | dv(x)
' X x \Jo dt
leell oo x )
:/ (/ ptp_lXEt(u)dt> dv(x)
x \Jo

leell oo (x )
= / ptP 7 VW(E, (w))dr.
0

that is,

Now,

Thus, by (2.13), we get

lull Loo (x v 1
lullLrx,v) 5/ v(E((u))rdt. (2.14)
0
Finally, from (2.12) and (2.14), we obtain (2.11). O

Note that, if we take ¥, (r) := Iinr_%, we can rewrite (2.10) as
v(A)Y,(v(A)) < P,(A) forall A C X with0 < v(A) < v(X).
The next definition was given in [21] for Riemannian manifolds.

Definition 2.12 Given a non-increasing function ¥ :]0, co[— [0, oo[, we say that
[X, d, m, v] satisfies a W-isoperimetric inequality if

v(A)W(v(A)) < Pu(A) forall A C X with0 < v(A) < v(X).

Example 2.13 (1) In [48] (see also the references therein) it is shown that the lattice Z"
has isoperimetric dimension n with constant /,, = ﬁ, and that the complete graph K,
satisfies a W-isoperimetric inequality with W (r) = n — r. In addition, it is also proved
that the n-cube Q,, satisfies a W-isoperimetric inequality with W (r) = logz(@).

(2) In[35], for [RY,d, m”’], itis proved that

v, v (A]) < Pj(A) forall A C X with |A] < +o00,

being

,
i
v, () :/ Hyp,  ()dx :/ Hip | ((s/on)V .0,....0)ds,
B o1 0 (s/on) N
(r/fon) N
where B, is the ball of radius r centered at 0 and Haj p, 1s the m” -mean curvature of 3 B,

(see Sect. 2.2). Therefore, [RY, d, m”, £V] satisfies a W-isoperimetric inequality, where
U(r) = %\IJJ.N (r) is a decreasing function.
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The next result was proved in [21] for Riemannian manifolds and in [20] for graphs (see
also [48, Theorem 2]).

Proposition 2.14 Given a non-increasing function ¥ :]0, co[— [0, oo, we have that
[X, d, m, v] satisfies a V-isoperimetric inequality if, and only if, the following inequality
holds:

V@) llulliprx,y < T Vin(u) (2.15)

for all v-measurable sets A C X with 0 < v(A) < v(X) and all u € L' (X, v) with
u=0inX\A.

Proof Taking u = X 4 in (2.15), we obtain that [X, d, m, v] satisfies a W-isoperimetric
inequality. Conversely, since TV, (|u|) < T V,,(u), it is enough to prove (2.15) for u > 0. If
u = 0in X the result is trivial. Therefore, let A be a v-measurable set with 0 < v(A) < v(X)
and 0 < u € LI(X, v) a non-v-null function with # = 0 in X\ A. For r > 0 we have that
E;(u) C A and, therefore, v(E;(u)) < v(A), thus, since ¥ is non-increasing, we have that
W(v(E;(u)) > W(A). Therefore, by the coarea formula, we have

llell oo (x v

+00
T Vi () :/ Pm(Ez(u))dlzf P (Er(w)dt
0 0

%

lleell oo (x v
/0 V(E ()Y (v(E (u)))dt

%

+00
wwm»A V(E))dt = WA ull1x.)-
m}

As a consequence of Theorem 2.11 and Proposition 2.14, we obtain the following result.

Corollary 2.15 The following assertions are equivalent:
: 0
(i) Mll, g o ) < BT VW) Ve € BVS(X,v).
1
(i) lullprx.vy < Lav(A)aTViu(u) for all A C X with 0 < v(A) < v(X) and all u €
L'(X,v) withu =0in X\A.

Consider the Dirichlet energy functional H,, : L%(X,v) — [0, +00] defined as

%/ (u(x) —u(y)2dmy(y)dv(x) ifu € L2(X,v) N LY(X, v).
Hm(u) = XX

+00, else.
The next result, in the context of Markov chains, was obtained by Varopoulos in [49].
Theorem 2.16 Let n > 2. If the Sobolev inequality

0
||u||L#(X’V) < I,TVy,u) forallu e BV, (X,v) (2.16)

holds, then there exists C,, > 0 such that
lul? 5 < CoHm(u) forallu € BVO(X,v)
L

n—2 (X,v)
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Proof We can assume that u > 0. Let p := 2(" 1) . By (2.16), we have
el = e, = WPl 2y < DT Vi), @.17)
On the other hand, since, for a, b > 0,
b? —aP| < p(a?~" +bP~H)|b - al

by the convexity of |x|?, and having in mind the reversibility of v, we have

IA

1
Vo) = 3 /x fx PP () + P N u(y) — () ldmy (3)dv(x)

p / / uP = O u(y) — u(x)|dm, (y)dv(x)
XJX

1

2(p—1) : 2 2
<p u (x)dmy (y)dv(x) lu(y) — u(x)|“dmy(y)dv(x)
xJx x Jx

_ 1
= pllu? 2 x.0) @Hm@)? .

Then, by (2.17), we get
lul”y, < pLillu?™ lz2x,0) (271!m(u))2 . (2.18)
n—2

Now,

=
~
=~
(%)
S
=
Il
TN
><\°
=
e
15
Q,
<
N———
D=
|
=
pSE
3%

thus, from (2.18),

2(n 1

hll 2.7 = 20D g 72 (2Hm(u>>z

n— —

and, therefore,

lull% < CpHon ()

n—=2

8(n—1)2 2.

where C,, = 7

m}

Following Theorems 2.11 and 2.16 we can also obtain a Sobolev inequality as a conse-
quence of the isoperimetric dimensional inequality.

Corollary 2.17 Assume that v(X) < oco. Letn > 2. If [X, d, m, v] has isoperimetric dimen-
sion n then there exists C,, > 0 such that

flue]|? < CoHm(u) forallu € BVO(X,v).

"—2 (X,v)

Let us point out that an important consequence of this result is Theorem 5 in [19], which
corresponds to Corollary 2.17 for the particular case of finite weighted graphs.
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2.5 m-TV versus TV in metric measure spaces

Let (X, d, v) be a metric measure space and recall that, for functions in L! (X, v), Miranda
introduced a local notion of total variation in [41] (see also [2]). To define this notion, first
note that for a function u : X — R, its slope (or local Lipschitz constant) is defined as
u(y) —u(x
|Vu|(x) := lim sup M, x€X,
y—>x d(x s y)

with the convention that |Vu|(x) = 0 if x is an isolated point.
A function u € L'(X, v) is said to be a BV-function if there exists a sequence (u,) of
locally Lipschitz functions converging to u in L'(X, v) and such that

sup/ |Vu,|dv(x) < oo.
neNJX

We shall denote the space of all BV-functions by BV (X, d, v). Letu € BV(X,d,v), the
total variation of # on an open set A C X is defined as:

|Dul,(A) := inf {liminf/ |Vuy|(x)dv(x) : uy € Lipjoe(X, V), up, — uin Ll(A, v)}.
n—oo A
Asset E C X is said to be of finite perimeter if X g € BV (X, d, v) and its perimeter is defined
as
Per,(E) := |DXg|,(X). (2.19)

We want to point out that in [2] the BV-functions are characterized using different notions
of total variation.

As aforementioned, the local classical BV-spaces and the nonlocal BV-spaces are of dif-
ferent nature although they represent analogous concepts in different settings. In this section
we compare these spaces, showing that it is possible to relate the nonlocal concept to the
local one after rescaling and taking limits.

Remark 2.18 Obviously,
|Dul, < |Vu|v if u is locally Lipschitz.

Furthermore, there exist metric measures spaces in which the equality in this expression does
not hold (see [4, Remark 4.4]).

Proposition 2.19 Let [X, d, m] be a metric random walk space with invariant and reversible
measure v. Letu € BV(X,d,v). Thenu € BV (X, d, my) for v-a.e. x € X and

/ [Dut|m, (X)dv(x) < |Duly(X).

X

Proof Since u € BV (X, d, v), there exists a sequence {uy},en C Lipioc(X, v) such that
lim |lup —ullpixy =0 and lim / |Vu,|(x)dv(x) = |Dul|,(X).
n—o00 ’ n—>oo [y

Now, using the invariance of v,

/ it = wll 1 (x AV (x) = / ( / |un<y)—u(y)|dmx(y)) dv(x)
X X X

= [ ua(y) = uIdv(y) = llun — ull1¢x.0) —> O.
X
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Therefore, we may take a subsequence, which we still denote by u,,, such that lim,,_, oo || 1, —
ullpr(x.m,y = 0forv-ae. x € X.
Moreover, by Fatou’s lemma and the invariance of v,

/ (hminf/ |Vu,,|(y)dmx(y)> dv(x) fliminf/ (/ |Vu,,|(y)dmx(y)> dv(x)
X n—oo X n—o0 X X
= liminf/ |Vu,|(y)dv(x) = |Dul,(X).
n—oo X

Consequently, liminf,_, o fX [Vu,|(y)dmy(y) < oo and lim,—oo 4, = u in LY(X, my)
for v-a.e. x € X, thusu € BV (X, d, m,) for v-a.e. x € X, and

/ | Dt (X)dv(x) < |Dutlu(X) .
X
O

It is shown in [35] that, in the context of Example 1.1 (1), and assuming that J satisfies
M ::/ J(2)|zldz < +o0,
RN
we have that
M
TV, (u) < 7’|Du| N (2.20)

for every u € BV (RV).
In the next example we see that there exist metric random walk spaces in which it is not
possible to obtain an inequality like (2.20).

Example2.20 Let G = (V(G), E(G)) be a locally finite weighted discrete graph with
weights wy y. For a fixed xo € V(G) the function u = Xy, is a Lipschitz function and,
since every vertex is isolated for the graph distance, |Vu| = 0, thus

|Duly (V(G)) < / [Vuldvg (x) = 0.

However, by Example 2.4, we have

Me@=5 Y X @ —ulvg = Y w0

xeV(G)) yeV(G) xeV(G)),x#xo

Let [RY, d, m’] be the metric random walk space of Example 1.1 (1). Then, if J is
compactly supported and u € BV (RV) has compact support we have that (see [23] and
(34D

C
lim —JTije (n) = / |Du|d[,N, (2.21)
€l0 € RN
where
1 X 2
Je(x) = —NJ <7) and Cj= ————.
€ €
/ J(2)|znldz
RN

In particular, if we take

J(x) = B(0,1)(X),

LN(B(0, 1)) g
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then

Je(x) = X B(0,e)(X).

1
LN(B(0, €))

Hence,

and, consequently, by (2.21), we have
. Cy N N
lim—TV v (u)= |[DuldL”™ = |Du| ~(R™).
el0 € me= RN

Therefore, it is natural to pose the following problem: Let (X, d, ;) be a metric measure
space and let m"-€ be the e-step random walk associated to u, that is,

e ul_B(x,¢€)
T uBx,e)’

Are there metric measure spaces for which
1
hf(} =T Ve (u) ~ |Dul, (X) forallu € BV(X,d, u)?
€ €

To give a positive answer to the previous question we recall the following concepts on a
metric measure space (X, d, v): The measure v is said to be doubling if there exists a constant
Cp > 1 such that

0 < v(B(x,2r)) < Cpv(B(x,r)) <oo Vx € X, andall r > 0.

A doubling measure v has the following property. For every x € X and 0 < r < R < oo if
y € B(x, R) then

V(B R) _ <R>qu
v(B(y,r)) ~ ’

r
where C is a positive constant depending only on Cp and ¢, = log, Cp.

On the other hand, the metric measure space (X, d, v) is said to support a 1-Poincaré
inequality if there exist constants ¢ > 0 and A > 1 such that, for any u € Lip(X, d), the
inequality

(2.22)

/B O ) = / Vil (»)dv(y)

B(x,Ar)

holds, where
1

UB(x,r) = m B u(y)dv(y).

The following result is proved in [33, Theorem 3.1].

Theorem 2.21 [33] Let (X, d, v) be a metric measure space with v doubling and supporting
a 1-Poincaré inequality. Givenu € L' (X, ), we have that u € BV (X, d, v) if, and only if.

nminflf Ju(y) — u)|
A VB, VOB, ©)

e—0t €
where A¢ := {(x,y) € X x X : d(x,y) < €}. Moreover, there is a constant C > 1, that
depends only on (X, d, v), such that

dv(y)dv(x) < oo,
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|u(y) —u(x)]
« VV(B(x, ))Vv(B(y, €)

Now, by Fubini’s Theorem, we have

lu(y) — u(x)]
dv(y)d
‘/Ae \/V(B(x, 6))\/‘)(3()’,6)) v(y)dv(x)

=// uly) =)l dv(y)dv(x). (2.23)
B(x.e) VV(B(x, €))v/v(B(y, €))

On the other hand, by (2.22), there exists a constant C; > 0, depending only on Cp, such
that

dV(y)dv(X) < C|Du|,(X).

1
—lDu| (X) <11m1nf /
A

v(B(x, €)) _

2.24
V(B(y,€) @29

By (2.24), we have

1 1 1
< <,/C Vy € B(x,e€).

JCiv(B(x,€)) = Jv(B(x, ) /v(B(y,€)) — U(B(x €))
(2.25)
Hence, from (2.23) and (2.25), we get
LlTV (u) = Lll/ L lu(y) — u(x)|dv(y)dv(x)
JCie ™ T JCre2 Jx v(B(x,€) Jpir.e Y Y
11 lu(y) — u(x)|
=2 /A B BG.
11 1
=Vai-3 B D) Do u(y) — u(x)|dv(y)dv(x)
= JaéTvae (I,l)

Therefore, we can rewrite Theorem 2.21 as follows.

Theorem 2.22 Let (X, d, v) be a metric measure space with doubling measure v and sup-
porting a 1-Poincaré inequality. Given u € L'(X, v), we have thatu € BV (X, d, v) if, and
only if,

1
liminf =7 Ve (u) < 00.
e—0t €

Moreover, there is a constant C > 1, that depends only on (X, d, v), such that
1 1
—|Dul,(X) < liminf =T V,ve (1) < C|Dul, (X).
C e—0T €

Remark 2.23 Monti, in [42], defines

Vall

o]
LX) = 21162%)rif ETva,e (u),

and uses this to prove rearrangement theorems in the setting of metric measure spaces.
Moreover, he proposes || Vull (X 352 possible definition of the L-length of the gradient
of functions in metric measure spaces.
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3 The 1-Laplacian and the total variation flow in metric random walk
spaces

Let[X, d, m] be ametric random walk space with invariant and reversible measure v. Assume,
as aforementioned, that [ X, d, m] is m-connected.
Given a function u : X — R we define its nonlocal gradient Vi : X x X — R as

Vu(x,y) :=u(y) —ulx) Vx,yelX,

which should not be confused with the slope |Vu|(x), x € X, introduced in Sect. 2.5.
For afunctionz : X x X — R, its m-divergence div,,z : X — R is defined as

) 1
(divp2) () = 5 / (2(x. y) — 2(y. x))dmy (),
X
and, for p > 1, we define the space
Xp(X) :={z € L®(X x X,v®@my) : divyz € LP(X,v)}.

Letu € BV,,(X,v) N L”/(X, vyandz € X5 (X), 1 < p < 00, having in mind that v is
reversible, we have the following Green’s formula:

. 1
[ ww@ivmwdx =3 [ Vuyaepdoemowy. G
X 2 Jxxx
In the next result we characterize T V,, and the m-perimeter using the m-divergence oper-

ator. Let us denote by sign,(r) the usual sign function and by sign(r) the multivalued sign
function:

1 if r>0, 1 if r>0,
signg(r):==4 0 if r =0, sign(r):=4[-1,1] if r=0,
-1 if r <0 —1 if r <O.

Proposition 3.1 Letr 1 < p < oo. Foru € BV,,(X,v) N Lp/(X, V), we have

TV (u) = sup {/ u(x)(divyuz)()dv(x) @z € Xh(X), |zl xxx,vm,) < 1}.
X
3.2)

In particular, for any v-measurable set E C X, we have
Pm(E) = sup {/ (divmz)(x)dv(x) VS X;L(X)’ ||Z||L°°(X><X,v®mx) = 1} .
E

Proof Let u € BV,,(X,v) N Lp/(X, v). Given z € X1 (X) with lZ|| Loo(x x X, vom,) =< 1,
applying Green’s formula (3.1), we have

/ u(x)(divy,z)(x)dv(x) = —%/ Vu(x, y)z(x, y)d(v @ my)(x, y)
X

XxX

1

= / 1Y) — u(@)ldmy (N dv(x) = T Vi ().
XxX

Therefore,

SUP{/ u(x)(divy2) (D)dv(x) : 2 € Xip(X), ||zl Lo (xxx veem,) < 1} < TVin(u).
X
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On the other hand, since (X, d) is o-finite, there exists a sequence of sets K1 C Ky C
--- C K, C --- of v-finite measure, such that X = U;’lolen. Then, if we define z,, (x, y) :=
signg (u(y) — u(x))X g, xk, (x, ¥), we have that z, € Xp,(X) with [z, || .o (xxx,vem,) < 1
and

1
TV () = E/X ) = Hld 0 ® m)(, )
1
= lim 5/ lu(y) —ux)|d(v @ my)(x, y)
n—oo KnXKn
|
— lim 5[ Vi, y)za(x, y)dv @ my)(x. y)
n—oo XXX
= lim u(x)(div,, (—z,)) (x)dv(x)
n—oo X
< sup {/;(M(x)(diVm(Z))(x)dV(x) s z€ Xh(X), zllroxxx.vam) < 1}'

[m}

Corollary 3.2 TV, is lower semi-continuous with respect to the weak convergence in
L*(X,v).

Proof If u,—u weakly in L*(X, v) then, givenz € X,zn (X) with |Z] Lo (x x x,vem,) < 1, we
have that

/u(x)(divmz)(x)dv(x): lim f Uy (x)(divy,z)(x)dv(x) < liminf TV, (u,)
X n—0oo Jx n—o00

by Proposition 3.1. Now, taking the supremum over z in this inequality, we get

TV,(u) < liminf TV, (uy).
n—oo

]
Consider the formal nonlocal evolution equation
S0 —u(x, t
w (x, 1) =/ HO D Z Ul L) x e X1 >0, 3.3)
x lu(y, 1) —ux, 1)l

In order to study the Cauchy problem associated to the previous equation, we will see in
Theorem 3.8 that we can rewrite it as the gradient flow in L2(X, v) of the functional 7, :
L*(X,v) =] — 00, +00] defined by

TVu(u) ifue L*(X,v)N BVy(X,v),

]:m(u) = {+OO ifue LZ(X,V)\BVm(X, V),

which is convex and lower semi-continuous. Following the method used in [5] we will
characterize the subdifferential of the functional F,,,. ~
Given a functional @ : L2(X, v) — [0, oo], we define & : LZ(X, v) — [0, oo] as

/ v(x)wx)dv(x)
5 = X . € L2 X,
(v) := sup o) w (X,v)
with the convention that % = % = 0. Obviously, if ®; < ®,, then &52 < 51.
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Theorem 3.3 Letu € L2(X,v) and v € L*(X, v). The following assertions are equivalent:

(i) v edF,(u);
(ii) there exists Z € X;(X), 1zl Loo(x x X ,veom,) < 1 such that

v = —divyz (3.4)

and
/ u(x)v(x)dv(x) = Fp(u);
X
(iii) there exists Z € X,i (X), 1zl Leo(x x X ,v@m,) < 1 such that (3.4) holds and

1
Fm(u) = E/X B Vu(x, y)z(x, y)d(v @ my)(x, y);

(iv) there exists g € L°(X x X, v @ my) antisymmetric with ||g|l Lo x xx.vem,) < 1 such
that

—/ g(x,y)dmy(y) =v(x) forv—aexeX, 3.5)
X
and

—/X/Xg(x’y)dmx(y)u(X)dv(X) = Fm(u). (3.6)

(v) thereexistsg € L*°(X x X, vQ@m,) antisymmetric with |||l L= (X x X, vem,) < 1 verifying
(3.5) and

g(x,y) esign(u(y) —u(x)) for(v®@my)—a.e. (x,y) e X x X. 3.7

Proof Since F,, is convex, lower semi-continuous and positive homogeneous of degree 1,
by [5, Theorem 1.8], we have

0F () = {v € LZ(X, V) : j-:;,,(v) <1, / u(x)v(x)dv(x) = }'m(u)}. (3.8)
X

We define, for v € L2(X, V),
V() = inf {[12]l L% xxxv@my 2 € X (X), v=—divyz}. (3.9)

Observe that W is convex, lower semi-continuous and positive homogeneous of degree 1.
Moreover, it is easy to see that, if W (v) < oo, the infimum in (3.9) is attained i.e., there exists
some z € X,zn(X) such that v = —div,,z and ¥ (v) = [|Z]| Lo (X x X,v@m,)-

Let us see that

v =F,.

We begin by proving that fn(v) < W(v). If ¥(v) = +o0o then this assertion is trivial.
Therefore, suppose that ¥ (v) < +o00.Letz € L*(X x X, v ® my) such that v = —div,,z.
Then, for w € L2(X, V), we have

1
f/ Vw(x, y)z(x, y)d(v ® my)(x, y)
XxX

2
1zl oo (x x X, v@m) Fm (W).

/ wx)v(x)dv(x)
X

IA
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Taking the supremum over w we obtain that j?,/,,(v) < |1zl Lo (x x X,vem,)- Now, taking the
infimum over z, we get 7, (v) < ¥ (v).
To prove the opposite inequality let us denote

D :={div,z : z € Xﬁl(X)}.
Then, by (3.2), we have that, for v € L*(X,v),
/ wx)v(x)dv(x) / wx)v(x)dv(x)
X X

@(v) = sup > sup
wel2(X,v) W(w) weD W (w)

/ div,,z(x)v(x)dv(x)

= sup = Fn(v).

zeX2 (X) 121l Lo (x x X, v@m,)

Thus,:fm < \'13, which implies, by [5, Proposition 1.6], that ¥ = \Tl < ﬁl Therefore,
U = F,, and, consequently, from (3.8), we get

AFm (u) = {v €L (X,v) : W) <1, / u(x)v(x)dv(x) me(”)}
X
={ve L*(X,v) : Jz e X2(X),

v = —divyuz, [|ZllLoxxx,vem) < 1, / u(x)v(x)dv(x) = Fm(u)},
X

from where the equivalence between (i) and (ii) follows .

To prove the equivalence between (ii) and (iii) we only need to apply Green’s formula
3.1.

On the other hand, to see that (iii) implies (iv), it is enough to take g(x, y) = %(z(x, y) —
z(y, x)). Moreover, to see that (iv) implies (ii), take z(x, y) = g(x, y) (observe that, from
(3.5), —div;,(g) = v,s0 g € X,zn (X)). Finally, to see that (iv) and (v) are equivalent,
we need to show that (3.6) and (3.7) are equivalent. Now, since g is antisymmetric with
llgll Lo (x xx.v@m,) < 1 and v is reversible, we have

—2/ / g(x, y)dmy(y) u(x)dv(x) = f g0, ) ((y) —u(x)d® @ my)(x, y),

x Jx XxX

from where the equivalence between (3.6) and (3.7) follows. O
By Theorem 3.3 and following [6, Theorem 7.5], the next result is easy to prove.

Proposition 3.4 3, is an m-completely accretive operator in L*(X, v).

Definition 3.5 We define in L2(X, v) the multivalued operator A" by
(u,v) € AT if, and only if, —v € 9F;, (u).
As usual, we will write v € A'u for (u, v) € A

Chang in [14] and Hein and Biihler in [29] define a similar operator in the particular case
of finite graphs:
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Example 3.6 Let[V(G), dg, (mf)] be the metric random walk given in Example 1.1 (3) with
invariant measure vg. By Theorem 3.3, we have

(u,v) € A'{'G &= thereexistsg € LC(V(G) x V(G), vg ® mf) antisymmetric with

1
I8llo2(v(G)x v (G).vg@mg) =< 1 such that —- > g Ywy =vx) YxeV(G),
X

yev(G)

and

g(x,y) €sign(u(y) —u(x)) for (vg ® mg) —a.e. (x,y) € V(G) x V(G).

The next example shows that the operator A’I"G is indeed multivalued. Let V(G) = {a, b}
and wyq = wWpp = p, Wep = Wpg = 1 — p, with 0 < p < 1. Then,

(u,v) € ATG &= there exists g € L™({a, b} x {a, b}, vg ® m?) antisymmetric with
&l 2o ({a.b)x {a,b).vg@mT) = 1 such that
g(a,a)p + gla, b)(1 — p) = v(a),
g(b,b)p +gb,a)(l — p) =v(b)

and
g(a, b) € sign(u(b) — u(a)).
Now, since g is antisymmetric, we get
v(a) = g(a, b)(1 = p), v(b) = —gla,b)(1 —p) and g(a,b) € sign(u(b) — u(a)).

Proposition 3.7 [Integration by parts] For any (u, v) € A" it holds that

—/ vwdv < TV, (w)  forall we BV (X,v)NL*(X,v), (3.10)

X
and
—/ vudv = TV, (u). (3.11)
X
Proof Since —v € d.F,,(u), given w € BV,,(X, v), we have that
—/ vwdv < Fp(u +w) — Fp (@) < Fpp(w),
X

so we get (3.10). On the other hand, (3.11) is given in Theorem 3.3. ]

As a consequence of Theorem 3.3, Proposition 3.4 and on account of Theorem 1.2, we
can give the following existence and uniqueness result for the Cauchy problem

ur—ATus0 in(0,7T)xX
{ u(0,x) =up(x) forx e X, (3.12)
which is a rewrite of the formal expression (3.3).

Theorem 3.8 For every ug € L*(X,v) and any T > 0, there exists a unique solution of
the Cauchy problem (3.12) in (0, T) in the following sense: u € wbhlo, T; L3(X, v)),
u(0, ) = ug in L2(X, v), and, for almost all t € (0, T),

u(t, ) — Af'u() 3 0.
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Moreover, we have the following contraction and maximum principle in any L9 (X, v)—space,
l <g <o0:

(@) —v@) lzaxa < o —vo) llax.y VO<t<T,
Sfor any pair of solutions, u, v, of problem (3.12) with initial data uq, vo respectively.

Definition 3.9 Given uo € L%(X, v), we denote by e’ A uo the unique solution of problem
(3.12). We call the semigroup {e’A'lﬂ }i=0 1n L?(X, v) the Total Variational Flow in the metric
random walk space [ X, d, m] with invariant and reversible measure v.

In the next result we give an important property of the total variational flow in metric
random walk spaces.

Proposition 3.10 The TVF satisfies the mass conservation property: for ug € L*(X, v),
/ oA updv = / updv foranyt > 0.
X X

Proof By Proposition 3.7, we have

i A" _
— e “ltugdv <TV,(1) =0,
dt X
and
d m
—/ A ugdv < TV, (—1) = 0.
dt X
Hence,

i/ "M ypdy = 0,
dt X

and, consequently,

/e’ATuodv=/ updv forany t > 0.
X X

4 Asymptotic behaviour of the TVF and Poincaré type inequalities
Let[X, d, m] be ametric random walk space with invariant and reversible measure v. Assume
as always that [ X, d, m] is m-connected.
Proposition 4.1 For every initial data ug € L*(X, v),
tl;rgo etA'lnuo = Uy In LZ(X, V),

with

Uoo € {u € L*(X,v) : 0 € AT (u)).
Moreover, if v(X) < oo then

1
v(X)

Uso =

/ ug(x)dv(x).
X
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Proof Since F,, is a proper and lower semicontinuous function in X attaining a minimum at
the constant zero function and, moreover, F,, is even, by [11, Theorem 5], we have

lim /2" ug = uso in L2(X, v),
—00
with
Uoo € {u € L*(X,v) : 0 € AT (u)}.

Now, since 0 € A (1), we have that TV,, () = 0 thus, by Lemma 2.9, if v(X) < oo
(then ﬁv is ergodic) we get that u« is constant. Therefore, by Proposition 3.10,

1
v(X)

Uso =

/ uo(x)dv(x).
X
O

Let us see that we can get a rate of convergence of the total variational flow (e’ AT >0
when a Poincaré type inequality holds.
From now on in this section we will assume that

v(X) < +o0.
Hence, Fp, (1) = TV, (u) forallu € L?>(X, v).

Definition 4.2 We say that [X,d,m,v] satisfies a (g, p)-Poincaré inequality (p,q €
[1, 4o0[) if there exists a constant ¢ > 0 such that, for any u € LY(X, v),

1
lullpox. < c ((/ / [u(y) —u(x)lqdmx(y)dv(x)>" + ‘/ udv
XJX X

or, equivalently (by the triangle inequality for one direction and taking # = u — v(u) for the
other), there exists a A > 0 such that

Mu—=v@)llprx.) < IVullLaxxx.dwem,) forallu € LY(X, v),

where v(u) := ﬁ [y u(x)dv(x).
When [X, d, m, v] satisfies a (g, p)-Poincaré inequality, we will denote

) . IVullLa(x x x.dwem,
X r=mf{ COXACERD - oy £ 0, | u)dv(x) =0}
@ Nl Lr(x,v) X

When [X, d, m, v] satisfies a (1, p)-Poincaré inequality, we will say that [X, d, m, v]
satisfies a p-Poincaré inequality and write

= 5(Lp) . { T'Vin (1)

AP d =
[X.d,m,v] lullLex.v)

Pt alirn £0. [ u(x)dv(x)=0}.
4.1

The following result was proved in [6, Theorem 7.11] for the particular case of the metric
random walk space [€2, d, mJ’Q].

Theorem 4.3 If[X, d, m, v] satisfies a 1-Poincaré inequality, then, for any ug € L*(X, v),

2
u
etA 1 ” 0||L2(X,U)

Tug — v(u ‘ < orallt > 0.
0 — v(uo) Lot = M[lemv] i

@ Springer



29 Page 30 of 64 J.M. Mazon et al.

Proof Since the semigroup {¢'2T : ¢ > 0} preserves the mass (Proposition 3.10), we have

m 1 m m 1
v(t) == e Pl uy — —/ P updy = " ug — / updv.
v(X) Jx v(X) Jx

Furthermore, the complete accretivity of the operator —AT' (see Sect. 1.2) implies that

L) := lv—v@o)llp1(x,v
is a Liapunov functional for the semigroup {e’2T : ¢ > 0}, which implies that
O Lty < Izt x.y i > s 4.2)
Now, by the Poincaré inequality we get
MxamalVON L1,y = TV () @3)

and, by (4.2) and (4.3), we obtain that

t 1 t
0Ol = [ WOlnds <~ [ TVneends. @b
0 MX.d.m.v]
On the other hand, by integration by parts (Proposition 3.7),
1 d m m d m m
=5 g e w0l ) == fX e M uo e M uodv = T Vy (e u),

and then

l m 1 4 o m 4
S e w0l 1y = 5 0l 0y = /O TV, (™ ug)ds = — /0 TV, (v(s))ds,
which implies
t 1 2
/0 TV (0(s))ds < 310172
Hence, by (4.4)
1 ”uO”iZ(X!v)

1
2)‘[X,d,m,v] t

o lzx,) <

)

which concludes the proof. O

To obtain a family of metric random walk spaces for which a 1-Poincaré inequality holds,
we need the following result.

Lemma 4.4 Suppose that v is a probability measure (thus ergodic) and
my L v forallx € X.
Let g > 1. Let {uy}n C LY(X, v) be a bounded sequence in L' (X, v) satisfying

tim [ [ 1200 = ) (v () = 0. “5)
noJx Jx
Then, there exists ). € R such that

U, — A forv-—ae x X,

lun — Allzax,m,y — 0 forv—ae x € X.
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Proof Let
Fo(x,y) = up(y) — un(x)|

and

fax) = /;( lun (y) — up (1) dmy (y).

From (4.5), it follows that
fo— 0 inL'(X,v).
Passing to a subsequence if necessary, we can assume that
fa(x) > 0 Vx € X\B;, where By C X is v-null. (4.6)
On the other hand, by (4.5), we also have that
F, =0 inL9(X x X,v®my).

Therefore, we can suppose that, up to a subsequence,

Fu(x,y) = 0 V(x,y) € X*\C, where C C X x X is v ® m-null. 4.7)
Let B, C X be a v-null set satisfying that,

for all x € X\ By, the section Cy, :={y € X : (x,y) € C} of C is m,-null.

Finally, set B := B; U Bs.

Fix xo € X\ B. Up to a subsequence we have that u, (xg) — A for some A € [—00, +00],
but then, by (4.7), for every y € X\Cy, we also have that u,,(y) — A. However, since m, <
v and my,(X\Cy,) > 0, we have that v(X\Cy,) > 0; thus,if A = {x € X : u,(x) — A}
then v(A) > 0.

Let us see that

my(X\A) =0 forall x € A\B.

Indeed, let x € A\B. Then, fory € X\Cy, u,(y) — A, thus y € A; thatis, X\C, C A, and,
consequently, m, (A) = 1. Now, since m,(B) = 0, we have

my(X\(A\B)) =0 forall x € A\B. 4.8)

Therefore, since v is ergodic, (4.8) implies that 1 = v(A\B) = v(A).
Consequently, we have obtained that u, converges v-a.e. in X to A:

uy,(x) > A forx € A, v(X\A) =0.

Since [luy |1 (x ) is bounded, by Fatou’s Lemma, we must have that A € R. On the other
hand, by (4.6),

F,(x,)— 0 in LY(X,my) ,
for every x € X\Bj. In other words, ||u,, (:) — t,(x)|[La(x,m,) — 0. Thus
lun — Mlzacx,m,) — 0 forv-ae. x € X.

[}
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Theorem 4.5 Suppose that v is a probability measure and
my K v forallx € X.

Let (H1) and (H2) denote the following hypothesis.

(HI1) Given a v-null set B, there exist x1,x2,...,xy € X\B, v-measurable sets

N dmy
Q1,Q,....9v C X and a > 0, such that X = | J;_, @ and ¥ >a >0
v

onQ,i=1,2,...,N.
(H2) Let 1 < p < q. Given a v-null set B, there exist x1,x2,...,xy € X\B and v-
dmy,

measurable sets 21, 22, ..., 2y C X, such that X = UlN:l Q; and, for g; := T’
v

p

on Qg " e LN, v),i=1,2,...,N.

Then, if (HI) holds, we have that [ X, d, m, v] satisfies a (p, p)-Poincaré inequality for
every p > 1, and, if (H2) holds, then [ X, d, m, v] satisfies a (q, p)-Poincaré inequality.

Proof Let 1 < p < q. We want to prove that there exists a constant ¢ > 0 such that

1
llullrx,v SC((/X/XIu(y)—M(X)lqdmx(y)dv(X)>q
/udv
X

for any p = g > 1 when assuming (H1) and for the 1 < p < ¢ appearing in (H2) when
this hypothesis is assumed. Suppose that this inequality is not satisfied. Then, there exists a
sequence (u,),en C LY(X, v), with |lu,|lzr(x,v) = 1, satisfying

+

) forevery u € LY(X, v),

lim / / s () — 10 (O (1) (x) = O
noJxJx

and

lim/ u,dv =0.
nJx

Therefore, by Lemma 4.4, there exist A € R and a v-null set B C X such that
u, — A and |lu, — Allpax,m,) — 0 forx e X\B.

We will now prove, distinguishing the cases in which we assume hypothesis (H1) or
(H2), that

llp — MlLrx,v) — 0. 4.9)
Suppose first that hypothesis (H 1) is satisfied. Then, there exist x1, x2, ..., xy € X\B, v-
N
measurable sets 21, 27, ..., Qy C X and @ > 0, such that X = U Q; and g; := d;”vx,- >
o >0onQ;,i =1,2,..., N. Note that, in this case, p = ¢g in tl;: i:)revious computations.

Now,
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lin = 274 ;.09 :/Q [ty (v) — A9dv(y)

IA

1 1
*/ lun(y) = A7g: (»)dv(y) = */ lun(y) = AT dmy; (y).
(o4 Qi o Q;

Consequently, since X = va: | 2,

N
1
q q
ln =AM za ) = 5 Z letn = A La (g myy-

Therefore,
lliep — Allacx,vy — O.

Suppose now that hypothesis (H2) holds. Then, there exist | < p < ¢, such that, given a

v-null set B, there exist x1, x3, ..., xy € X\B and v-measurable sets Q1, Q7, ..., Qy C X,
N

such that X = U Q; and, for g; :=
i=1

dmy, -5 1 .
7 on €2, g; e L (R),i=1,2,..., N.Hence,

litn = M7 50 =/Q [y (v) — AP dv(y)

/|un(y> |Pg’(y) dv(y)
gl()’)q

P q—p

g 1 o
5(/ |un(y>—x|qgi(y>dv<y>) (/ pdv<y>>
$ Qi gi(y)ir

¢ 1 E
= </ lun(y) — A|9dmy, (y)) (/ ,,dV(y)> .
S Qi gi(y)ar

Consequently, since X = U,N= 1 S,

q—pr
N 1 q
p p
) B [
i=1

8i LY(Q;,v)
Therefore,
lly — MlLrx,vy — 0,
which concludes the proof of (4.9) in both cases.

Now, since lim / u, dv =0, by (4.9) we get that A = 0, but this implies
o Jx

lunllLrx,v) — O,

which is a contradiction with ||u,||, = 1, n € N, so we are done. ]

On account of Theorem 4.3, we obtain the following result on the asymptotic behaviour
of the TVE.

@ Springer



29 Page34of64 J.M. Mazon et al.

Corollary 4.6 Under the hypothesis of Theorem 4.5, for any ug € L*(X, v),

1 luollzg

H oA uy — v(ug) H <

| < 1 forallt > 0.
LX) T 24y 4

m,v]

Example 4.7 We give two examples of metric random walk spaces in which a 1-Poincaré
inequality does not hold.

(1) Alocally finite weighted discrete graph with infinitely many vertices: Let [V (G), dg, m©]
be the metric random walk space associated to the locally finite weighted discrete graph
with vertex set V(G) := {x3, x4, X5 ..., X, ...} and weights:

1 1 1

Wxzp,x3p41 = 3 Wx3n41,X3n42 — 2’ Wx3y12,X3043 = PER

forn > 1, and Wy x; = 0 otherwise (recall Example 1.1 (3)). Moreover, let

2 .
n” if X = X351, X342

Sa(x) =

0 else.

Note that v (V) < 400 (we avoid its normalization for simplicity). Now,
AT V6 (fy) = /V fv @) = fuldmy (3)dvg (x)
= dy, /V ) — FuO)ldms, (3)
) /V | Canst) = fuldmgg, ) (3)
tdyys /V o GEans) — Fa() s, 2 ()
s / o Gosns) = faOldmss, 3 (3)
, 1 : 1,1 .1 4

=n"—=4+n"—=+n"—=+n—==-.
n3 n3 n3 n® n

However, we have

1 1 1

n n
thus
vG (fn) = M =0 ()
vG (V) '
where we use the notation
o(n) = O(Y(n)) < limsup M‘ =C #0.
n—oo | Y (n)

Therefore,

Om?) if X = X3p11, X3nt2,

[fu(x) — v (f)l =
O (1) otherwise.
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Finally,

fv |fu(®) =v6(f)ldve(x) = 0 (1) D di+ O (dyy,,y +duy,r)

XFX3041,X3n42
a1 1
=0 +200) (5 +— ) = 0.
n n
Consequently,

inf 2 Vo )
lu —valL1v6),ve)

cue L'V, ve), lullzrvG)we) # 0} =0,

and a 1-Poincaré inequality does not hold for this space.
(2) The metric random walk space [R, d, m” ], where d is the Euclidean distance and J (x) =
%X[_l,l]: Define, forn € N,

1
Up = WX[Zn’2n+l] — WX[_an’_zn].

Then |ju,l|; =1, / u,(x)dx = 0 and it is easy to see that, for n large enough,
R

TVmJ(Mn) = W

Therefore, (m’, £') does not satisfy a 1-Poincaré inequality.

Let us see that, when [X, d, m, v] satisfies a 2-Poincaré inequality, the solution of the
Total Variational Flow reaches the steady state in finite time.

Theorem 4.8 Let [X, d, m] be a metric random walk space with invariant and reversible
measure v. If [ X, d, m, v] satisfies a 2-Poincaré inequality then, for any ug € L*>(X, v),

m +
le' T uo — v(wo)l 2(x.) < (o — v(o)llr2x.0) — )‘[ZX,d,m,v]t) Jorallt >0,
where )L%X d.m.v] IS given in (4.1). Consequently,

lo — V(”O)”LZ(X,V)

e’Nlnuo =v(y) Vi>t:= .

2
[X,d,m,v]

Proof Let v(t) := u(r) — v(ug), where u() := "1 u. Since ATu(r) = AT (u(t) — v(uo)),
we have that

d
Ev(t) € ATv(1).

Note that v(r) € BV, (X, v) for every t > 0. Indeed, since —A}n = dF,, is a maximal
monotone operator in L>(X, v), by [10, Theorem 3.7] in the context of the Hilbert space
L*(X, v), we have that v(t) € D(AL) C BV,,(X, v) forevery t > 0.

Hence, for each r > 0, by Theorem 3.3, there exists g, € L (X x X, v ® m,) antisym-
metric with ||g; || Loo(x xx,vem,) < 1 such that

/ g (x, y)dmy(y) = iv(t)(x) forv—aex e X, (4.10)
X dt

@ Springer



29 Page 36 of 64 J.M. Mazon et al.

and
- /X/ng(x,y)dmx(y)v(t)(X)dV(X) = Fm((@®) =T Viu(u(t)). 4.11)

Then, multiplying (4.10) by v(¢) and integrating over X with respect to v, having in mind
(4.11), we get

1d
sar . v()2dv + TV, (v(1)) = 0, ¥t > 0.

Now, the semigroup {¢!21 : ¢ > 0} preserves the mass (Proposition 3.10), so we have

that v(u(t)) = v(up) for all # > 0, and, since [X, d, m, v] satisfies a 2-Poincaré inequality,
we have

Ax dmo VOl 2(x.0) < TV (u(t)) forall ¢ > 0.

Therefore,

d
EE”U(I)”%‘Z(X!V) + )‘%X,d,m,u]”U(t)”LZ(X,U) <0 forall £>0.
Now, integrating this ordinary differential inequation we get

+
IOl 2cx.0) < (VO 20x.0) — Ax.amayt)  forall £>0,

that is,

+
llu(®) = v@o)ll r2cx vy < (o — v@o)llr2cx ) — Afx,d,m,v]r) forall ¢ > 0.

We define the extinction time as
T*(ug) :=inf{r > 0 : ¢"*Tug = v(ug)}, uo € L*(X, v).
Under the conditions of Theorem 4.8, we have
luo — V(MO)||L2(X,V)

2
)“[X,d,m,v]

T*(up) < uo € L*(X, v).

To obtain a lower bound on the extinction time, we introduce the following norm which,
in the continuous setting, was introduced in [40]. Given a function f € L2(X, v), we define

£ llm s = sup {/ FOuE)dv(x) s u € L*(X,v) N BVi(X,v), TV,(u) < 1} -
X

Theorem 4.9 Let ug € L*(X, v). If T*(ug) < oo then
T*(MO) > |luo — v(@o) llm, -

Proof Tf u(t) := ¢'1 up, we have

T (uo)
ug — v(ug) = —/ u'(t)dt.
0
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Then, by integration by parts (Proposition 3.7), we get

lluo — v(uo)llm« = sup /Xw(uo —v(uo)dv @ TVy(w) < 1}

T*(up)
= sup / w (/ —u’(t)dt) dv : TV, (w) < 1}
X 0

T*(uo)
= sup / /—wu/(t)dtdv  TV(w) <1
0 X

T*(uo)
< sup / TV (w)dt : TV, (w) < 1} = T*(ug).
0

We will now see that we can get a 2-Poincaré inequality for finite graphs.

Theorem 4.10 Let G = (V(G), E(G)) be a finite weighted connected discrete graph. Then,
following the notation of Example 1.1(3), [V (G), dg, m© , vg] satisfies a 2-Poincaré inequal-
ity, that is,

2
A[V(G),dc,mc,vo]
—inf { TV,cu)

: ”u”Lz(V(G),UG) # 0, / u(.x)dUG(.x) =0; >0.
”"‘”LZ(V(G),VG) 1%

4.12)

Proof LetV := V(G) = {x1, ..., xn} and suppose that (4.12) is false. Then, there exists a
sequence (U,)peN C L%V, vg) with lunllp2v,vey) = 1 and fV u,(x)dvg(x) =0,n € N,
such that

m
0= lim 7V,0(u) = lim_ kz Y waylun () = un ().
=1 y~xi

Hence,
lim |u,(xx) —u,(y)| =0 ify ~x;, foranyk e{l,...,m}.
n—o0

Moreover, since ||uy, || L2(V,vg) = 1, we have that, up to a subsequence,

Iim u,(xx) =Ar €eR for k=1,...,m.
n—oo
Now, since the graph is connected, we have that A = A fork =1, ..., m, thus

lim u,(y) =1 eR forallyeV.
n—00

However, by the Dominated Convergence Theorem, we get that u, — X in LZ(V, vG)
and, therefore, since f v Un(x)dvg(x) = 0, we have A = 0, which is a contradiction with
lunllz2v vg) = 1- o

As a consequence of this last result and Theorem 4.8, we get:
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Theorem 4.11 Let G = (V(G), E(G)) be a finite weighted connected discrete graph. Then,

G
tAT 2 2 +
€™ w0 = v(Wo)ll2v6)v6) = My (6).dgmG vg1 E = 1)

~ luo—v@oll;2 v
where 1= ———Y9YG) Copsequently,

[V(G).dg.mC vg]

m
1A

G
e ug = v(ug) forall t > 1.

5 m-Cheeger and m-calibrable sets

Let[X, d, m] be ametric random walk space with invariant and reversible measure v. Assume,
as before, that [ X, d, m] is m-connected.
Given a set 2 C X with 0 < v(Q2) < v(X), we define its m-Cheeger constant by

1 =1 \)(E)

. E C Q, E v-measurable with v(E) > 0} , 5.1

where the notation /' (€2) is chosen together with the one that we will use for the classical
Cheeger constant (see (5.2)). In both of these, the subscript 1 is there to further distinguish
them from the upcoming notation 4, (X) for the m-Cheeger constant of X (see (6.6)). Note
that, by (2.1), we have that 2" (Q2) < 1.

A v-measurable set £ C 2 achieving the infimum in (5.1) is said to be an m-Cheeger set
of Q. Furthermore, we say that 2 is m-calibrable if it is an m-Cheeger set of itself, that is, if

P, (2
gy = T,
v(€2)
For ease of notation, we will denote
)
T u(Q)

for any v-measurable set 2 C X with 0 < v(Q2) < v(X).

Remark 5.1 (1) Let [RY, d, m’] be the metric random walk space given in Example 1.1 (1)
with invariant and reversible measure £V . Then, the concepts of m-Cheeger set and m-
calibrable set coincide with the concepts of J-Cheeger set and J -calibrable set introduced
in [34] (see also [35]).

) If G = (V(G), E(G)) is a locally finite weighted discrete graph without loops (i.e.,
wyy = 0 for all x € V) and more than two vertices, then any subset consisting of two
vertices is m©-calibrable. Indeed, let Q = {x, v}, then, by (2.1), we have

Pc({x}) / / G P,:c(Q)
RULAN 3 L d d =1 ,
vg ({x}) ) J ) my (@)dve (@) = v (£2)

and, similarly,

Puc () _ | Puo(®)

ve({y}) T ove(Q)

Therefore,  is m%-calibrable.
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In [34] it is proved that, for the metric random walk space [RY, d, m”], each ball is a
J-calibrable set. In the next example we will see that this result is not true in general.

Example 5.2 Let V(G) = {x1, x2, ..., x7} be a finite weighted discrete graph with the fol-
lowing weights: Wy, v, =2, Wy x5 = 1, Wiy .y =2, Wy x5 =2, Wrs,xg = 1, Wygx; =2
and Wy, x; = 0 otherwise. Then, if E; = B (x4, %) = {x2, x3, ..., Xg}, by (6.7) we have

PmG (E1) _ Wy xy T Wygxs _ l
vG (E1) dxz + d)q + dX4 + de + dx6 4

But, taking E» = B(x4, %) = {x3, x4, x5} C E1, we have

P,c(E?) _ Wyyx3 + Wisxg _ l
VG (EZ) dx3 + dX4 + dxs 5 .

Consequently, the ball B (x4, %) is not m-calibrable.

In the next Example we will see that there exist metric random walk spaces with sets that
do not contain m-Cheeger sets.

Example 5.3 Consider the same graph of Example 6.21, thatis, V(G) = {x¢, X1, ..., Xp ...}
with the following weights:

1
Wiy xzng1 = o Wiy q1 X042 — 3 forn=0,1,2,...,
~ ) P, G (D)
and Wy, x; = 0 otherwise. If Q := {x{, x2, x3...}, then ey > 0 for every D C Q

with vg (D) > 0 but, working as in Example 6.21, we get h7'(Q2) = 0. Therefore,  has no
m-cheeger set.

It is well known (see [25]) that the classical Cheeger constant
Per(E)
E|

for a bounded smooth domain €2, is an optimal Poincaré constant, namely, it coincides with
the first eigenvalue of the 1-Laplacian:

/|Du|+/ luldHN !
Q I

lullzr @)

7 () ::inf{ ECQ, |E|>0}, (5.2)

h1(2) = A1(R) :=inf

tu € BV(Q), llullr=@ =1
In order to get a nonlocal version of this result, we introduce the following constant. For
Q C X with0 < v(2) < v(X), we define

Q) =inf {TV,(u) : ue L'(X,v), u=0in X\Q, u >0, / u(x)dv(x) = 1}
X

TV,
Cinf ] DY@ ue L' (X,v), u=0inX\Q, u>0, u0

/ u(x)dv(x)
X
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Theorem 5.4 Let Q C X with0 < v(2) < v(X). Then,
Q) = AT(Q).

Proof Given a v-measurable subset E C Q with v(E) > 0, we have

TVu(Xg)  Pu(E)
IXENL1x,v) V(E)

Therefore, A;I" (£2) < h''(S2). For the opposite inequality we will follow an idea used in [25].

Givenu € L' (X, v), withu = 0in X\, u > 0 and u # 0, we have
+oo lull Loo x vy P, (E
Vo = [ PutEoyar= [ Il g,y de
0 0 V(E: (u))

+00
> h’f‘(Q)/{; V(E;(u))dt = hT(Q)/Xu(x)dv(x)

where the first equality follows by the coarea formula (2.6) and the last one by Cavalieri’s
Principle. Taking the infimum over u in the above expression we get AT (Q2) > A'(Q2). O

Let us recall that, in the local case, a set @ € RY is called calibrable if

Per(2) . :Per(E)

. E C Q, E with finite perimeter, |E| > 0} .
12| |E|

The following characterization of convex calibrable sets is proved in [1].

Theorem 5.5 [1] Given a bounded convex set @ C RN of class C'1, the following assertions
are equivalent:

(a) 2is calibrable.
(b) Xq satisfies —A Xg = PR X0 where Aju = div (&)

£ [Du|

Per(2)
(c) (N — DesssupHyq(x) < .
x€dQ €2]

Remark 5.6 (1) Let Q C X be a v-measurable set with 0 < v(2) < v(X) and assume that
there exists a constant A > 0 and a measurable function 7 such that 7(x) = 1 for x € Q
and

—AT € Al'Xg on X.

Then, by Theorem 3.3, there exists g € L®°(X x X,v ® m,) antisymmetric with
llgll oo (x x x,vem,) < 1 satisfying

—/ g(x,y)dmy(y) =At(x) forv—aex e X
X
and

- /X A g(x, y)dmy(y) Xo(x)dv(x) = Fn(XQ) = Pn(L2).
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Then,
A (R2) :/)\.T(X)XQ(X)dV(X)
X
:_/ (/ g(x,y)dmx(y))XQ(X)dV(X)
x \Jx
= Pu(2)
and, consequently,
_ Pp()
)

(2) LetQ C X be a v-measurable set with 0 < v(2) < v(X), and T a v-measurable function
with 7(x) = 1 for x € Q. Then

—AGT € ATXg InX < —A{T € A0 inX. (5.3)
Indeed, the left to right implication follows from the fact that
0Fm(u) C 0F;,(0),

and for the converse implication, we have that there exists g € L®(X x X, v ® my),
g(x,y) = —g(y, x) foralmost all (x, y) € X x X, |Igllzooxxx,v@m,) < 1, satisfying

—AgT(X) = / g(x, y)dmy(y) forv—ae.x € X.
X
Now, multiplying by X g, integrating over X and applying integrating by parts we get
o) = A’S/ (X)X q(x)dv(x) = —/ / g(x, y)Xqx)dmy(y)dv(x)
X x Jx

1
- 5/ / g(x, (X a(y) — Xa(x))dm,(y)dv(x)
XJX

IA

1
5/ / Xa(y) — X)) dm(y)dv(x) = Ppu(S2).
xJx

Then, since P, (R2) = AGV(R), the previous inequality is, in fact, an equality and,
therefore, we get

g(x,y) esign(Xq(y) — Xq(x)) for(v®@m,)—ae. (x,y) e X x X,
and, consequently,
—A5T € A'Xq in X.

The nextresult is the nonlocal version of the fact that (a) is equivalent to (b) in Theorem 5.5.

Theorem 5.7 Let 2 C X be a v-measurable set with 0 < v(2) < v(X). Then, the following
assertions are equivalent:

(i) 2 is m-calibrable,
(ii) there exists a v-measurable function t equal to 1 in Q such that

—AGT € A Xq inX, (5.4)
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(iii)
Aot e ATXg in X,
for
1 ifx € Q,
T = —Aigmx(sz) ifx € X\Q.

Proof Observe that, since we are assuming that the metric random walk space is m-connected,
we have P, (2) > 0 and, therefore, A} > 0.

(iii) = (ii) is trivial.

(ii) = (i): Suppose that there exists a v-measurable function 7 equal to 1 in Q
satisfying (5.4). Hence, there exists g € L®°(X x X,v ® m,) antisymmetric with
lgll oo (x x X, veom,) < 1 satisfying

—/ g(x, y)dmy(y) =23t(x) v—ae.xe€X
X
and
—/ / g(x, y)dmy(y) Xo(x)dv(x) = Pp(L2).
xJx

Then, for F C Q with v(F) > 0, since g antisymmetric, by using the reversibility of v with
respect to m, we have

AQu(F) = k’g’%fxf(X)XF(X)dV(X) = —/X/Xg(x,y)XF(X)dmx(y)dV(X)

1
= 5/ / g(xv y)(XF(y)_XF(X))dmx(y)dV(x) < Pm(F)
xJx
Therefore, ' (2) = A, and, consequently, €2 is m-calibrable.
(i) = (iii) Suppose that €2 is m-calibrable. Let
1 if x € Q,

1
—me(@)ifx e X\Q.
Q

h(x) =

We claim that -1 t* € AT0, that is,
rgT* € 0Fn(0). (5.5)
Take w € L*(X, v) with F,,(w) < +00. Since
+00 0
w(x) :/ X E,(w) (X)dt —/ (I = X g, w)) (x)dt,
0 —00
and

f T (x)dv(x) = f 1dv(x) — im/ my (Q)dv(x) = v(Q) — Lum(Q) =0,
X Q rG Ix\e A

Q Q
we have

+00
/Agt*(x)w(x)dv(x) =A§”2/ / T (X)X g, () (X)dv(x)dr.
X —00 X
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Now, using that t* = 1 in Q and 2 is m-calibrable we have that

+o0 +oo
! f_ N /X T X Ey () OV ()d1 = 1 f v(E () N Q)dt

—00
+00
+A’S';/ / *(x)dv(x)dt
—o0 E(w)\Q

+00 +00
< f Py (E (w) N Q)dt + 1§ f / *(x)dv(x)dt.
—00 E;(w)\Q

—0o0

By Proposition 2.2 and the coarea formula given in Theorem 2.7 we get

f P, (E,(w)NQ)dt = / Py (E,(w) N Q)dt +/ P, (E;(w)\2)dt
+00
— / 2L, (E;(w)\2, E;(w) N Q2)dt
e
- / Po(E, (w)\)di

+oo
+ / 2L (B (w)\Q. Ey(w) N Qdt

—0o0

+oo +oo
=/ Pm(Ez(w))dt—/ P (Er(w)\S2)dt

—00 —00

+o00
+ / 2L (Er(w)\2, E(w) N Q)dt

—00

+o00
— Fp(w) — / Po(E, (w)\Qd1

—0o0

+00
+/ 2L (E:(w)\Q, E;(w) N Q)dr.

—00
Hence, if we prove that

+00 +oo
I = —/ Py (E (w)\Q)dt —|—f 2L, (E;(w\L2, E;(w) N Q)dt

—00 —00

+00
+)\'S';f / *(x)dv(x)dt <0,
—00 Er(w)\2
we get
/ ST @ wx)dv(x) < Fp(w),
X

which proves (5.5). Now, since

P (Et(w)\2) = Ly (Er(w)\ 2, X\(E;(w)\£2))
= L (E,w)\Q, (E;(w) N Q) U (X\E;(w))),

and 7% (x) = —%mx(ﬂ) for x € X\, we have
+00 +00
I=- / Lo (E(w)\Q, X\E, (w))dr + f L (E:(w\Q2, E, (1) N Qdr
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+00
- / / / dmy (y)dv(x)dt
—o0 JEw)\QJQ
+o00o +00

< / Ly (E;(w)\2, E;(w) N Q)dt — / Ly (E;(w)\2, Q)dt < 0.

—00

Then, by (5.3), we have that
251" e AT'Xq inX,
and this concludes the proof. O

Even though, in principle, the m-calibrability of a set is a nonlocal concept, in the next
result we will see that the m-calibrability of a set depends only on the set itself.

Theorem 5.8 Let Q@ C X be a v-measurable set with 0 < v() < v(X). Then, Q is m-
calibrable if, and only if, there exists an antisymmetric function g in Q x Q such that

—1<gx,y) <1 for(v®@my)—ae (x,y) € 2xQ, (5.6)
and
kg:—/ glx,y)dmy(y) +1—my(R), xe€Q. 5.7
Q

Observe that, on account of (2.1), (5.7) is equivalent to

my () = L/ mz(Q)dv(z) — / g(x,y)dmy(y) forv-ae.x € Q. (5.8)
v(€2) Ja Q

Proof By Theorem 5.7, we have that 2 is m-calibrable if, and only if, there exists g € L (X x
X, v ®my,) antisymmetric, ||g]lzoxxX,vom,) < 1 with g(x, y) € sign(Xq(y) — Xq(x)) for
v ®@my-a.e. (x,y) € X x X, satisfying

rg =— /x g(x, y)dmy(y) forv—ae.x € Q (5.9)
and
my () = / g(x,y)dmy(y) forv—ae. . x € X\Q.
X

Now, having in mind that g(x, y) = —1 if x € Q and y € X\, we have that, for x € €,

m_q_ L _
Ao =1 ") me(Q)dv(x) = /;(g(x,y)dmx(y)

—/ g(x,y)dmx(y)—/ g(x, y)dmy(y)
Q X\Q

—/Qg(x,y)dmx(y)erx(X\Q) = —/Qg(x,y)dmx(y)Jrl—mx(Q)-

Bringing together (5.9) and these equalities we get (5.6) and (5.7).

Let us now suppose that we have an antisymmetric function g in 2 x 2 satisfying (5.6)
and (5.7). To check that €2 is m-calibrable we need to find g(x, y) € sign (Xq(y) — Xq(x))
antisymmetric such that

-1g :/ g(x, y)ydmy(y), xeQ,
X

my(82) = /Xé(x,y)dmx(y), x € X\,
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which is equivalent to

—Ag Z/Qg(xay)dmx(y)—mx(x\ﬂ), x e,

() = / 8(x, Y)dmy(y) + my(Q). x € X\Q,
x\Q

since, necessarily, g(x,y) = —1 forx € Qand y € X\Q, and g(x,y) = 1 forx € X\Q
and y € Q. Now, the second equality in this system is satisfied if we take g(x, y) = 0 for
x,y € X\, and the first one is equivalent to (5.8) if we take g(x, y) = g(x, y) forx, y € Q.

O

Set
Qn =QU3,Q (5.10)
where

I = {x € X\Q : my(Q) > 0}

Corollary 5.9 A v-measurable set @ C X is m-calibrable if, and only if, it is m*» -calibrable
as a subset of [y, d, mSn | with reversible measure vL_ S, (see Example 1.1 (5)).

Remark 5.10 (1) Let Q@ C X be a v-measurable set with 0 < v(2) < v(X). Observe that,
as we have proved,

Qis m-calibrable <= —15 Xq + m, () Xx\q € Al Xg. (5.11)
(2) Let 2 C X be a v-measurable set. If
—)\.gXQ“I‘hXX\QEA’inXQ (5.12)

for some v-measurable function /4, then there exists g € L (X x X, v ® m,) antisym-
metric with gl oo (x xx,vem,) < 1 satisfying

glx,y) esign(Xq(y) —Xqx)) (v®@my)—ae. (x,y) e X xX

and
-2 Xa(x) +h(x) Xx\ox) = /Xg(x, y)dmy(y) v—aex € X.

Hence, if
g 1S v ® m-integrable

we have that
/ h(x)dv(x) = P,(R2).
X\Q
Indeed, from (5.12), for x € X\,

h(x) Z/g(x,y)dmx(y)zf g(x,y)dmx(y)Jr/ g(x, y)dmy(y)
X Q X\Q

:/ dmx(y)—l—/ g(x, y)dmy(y)
Q X\Q
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=@+ [ gty dn.
X\Q
Hence, integrating over X\ 2 with respect to v, we get

/ h(OdV(x) = Po(Q) + / g(x. y) dmy (y)dv(x).
X\Q X\

X\Q

Moreover, since g is antisymmetric and v &® m-integrable, we have

f f g(x. y) dmy (y)dv(x) = / g(x. ) d(v ® my)(x, y) = O,
xneJx\a (X\Q)x (X\Q)

and, consequently, we get
/ h(x)dv(x) = Py (). (5.13)
X\Q

As a consequence of (5.13), if v(X) < oo, since the metric random walk space is m-
connected, the relation

— B Xqe Al Xq inX (5.14)

does not hold true for any v-measurable set 2 with 0 < v(2) < v(X) (recall that, for
these 2, P, (2) > 0 by [36, Theorem 2.21 & 2.24] thus / is non—null by (5.13)). Now,
if v(X) = 400, then (5.14) may be satisfied, as shown in the next example.

Example 5.11 Consider the metric random walk space [R, d, m’] with v = £l and J =
%X[—I,IJ- Let us see that

_kml

P A™ X
1,041 € Ay A[-1.1],

where )Lf”_ll” = %. Indeed, take g(x, y) to be antisymmetric and defined as follows for
y < x:

1
glx,y) = _X{y<x<y+]<0}(-xv y) — EX{—1<y<x<0}(-xv y)

1
+ EX{O<y<x<1}(x7 y) + X{0<x—1<y<x}(x’ ).
Then, g € L¥(R x R, v ® my), llgll o @xr,voms) < 1s
g(x,y) e sign(X[—1,11(y) — X[=1,11(x)) for (v ®m;) —a.e. (x,y) e RxR,
and

1
—ZX[_lyl](x)=/g(x,y)dm){(y) forv —aex € R.
R

Note that g is not v ® m? integrable.

Remark 5.12 As a consequence of Theorem 5.5, it holds that (see [, Introduction] or [5,
Section 4.4]) a bounded convex set @ C R is calibrable if, and only if, u(t,x) =

+
(l — Pf‘a‘;(lﬂ) t) Xq(x) is a solution of the Cauchy problem

u; — Au >0 in (0, 00) x RN,
u(0) = Xgq.
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That is, a calibrable set 2 is that for which the gradient descent flow associated to the total
variation tends to decrease linearly the height of X o without distortion of its boundary.

Now, as a consequence of (5.11), we can obtain a similar result in our context if we
introduce an abortion term in the corresponding Cauchy problem. The appearance of this
term is due to the nonlocality of the diffusion considered. Let 2 C X be a v-measurable set
with 0 < v(Q) < v(X), then  is m-calibrable if, and only if, u(z, x) = (1 — Agt)+ Xa(x)
is a solution of

{ ur(t,x) — Afu(t, x) > =m () Xx\@()X0,1/2) #)  in (0, 00) x X,
u(0,x) = Xq(x), x e X.

Note that the only if direction follows by the uniqueness of the solution.

The following result relates the m-calibrability with the m-mean curvature, this is the non-
local version of one of the implications in the equivalence between (a) and (c) in Theorem 5.5.

Proposition 5.13 Let Q2 C X be a v-measurable set with 0 < v(2) < v(X). Then,

1
Q m-calibrable = —/ my(2)dv(x) < 2v-ess inf m, (). (5.15)
v(Q) Jo xeQ
Equivalently,
Q m-calibrable = v-esssup Hjg(x) < 1§. (5.16)
xeQ

Proof By Theorem 5.8, there exists an antisymmetric function g in  x € such that

—1<gx,y) <1 for (v @ my) —ae. (x,y) € 2 x Q,

and
L/ m(2)dv(z) = m,(2) +/ g(x,y)dm,(y) forv-ae. x € Q.
v(€2) Jo o
Hence,
u(lgz) /S;mz(Q)dU(Z) <2m,(Q2) forv-ae.x € Q,

from where (5.15) follows.
The equivalent thesis (5.16) follows from (5.15) and the fact that

1
-ess sup HJ¢ L —/ Q)d < 2v-ess inf Q).
v xeslzlp a0 (X) < Ag ") me( )dv(x) <2v Ss ir my (£2)
For this last equivalence recall from (2.3) that

HIS(x) =1 = 2m(Q)

and that

Ap = Pn () _ 1— ! /mx(Q)dv(x).
V() v(Q) Ja

[}

The converse of Proposition 5.13 is not true in general, an example is given in [34] (see
also [35]) for [R3, d, m’], with d the Euclidean distance and J = \BIIWXBI(O)' Let us see
an example, in the case of graphs, where the converse of Proposition 5.13 is not true
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Example 5.14 Let V(G) = {x1,x2,...,xg} be a finite weighted discrete graph with the
following weights: Wy, x, = Wy x3 = Wgxy = Wayoxg = 25 Wigxy = Wryxs = 1, Wiy xs =
10 and Wy, x; = 0 otherwise. If 2 := {x», x3, x4, X5, X6, X7}, We have

1
kgG:§ and HIS (x) <0 VxeQ.

Therefore, (5.16) holds. However, €2 is not mO -calibrable since, if A := {x4, x5}, we have

P,c(A) 1

vg(A) 117

Proposition 5.15 Let 2 C X be a v-measurable set with 0 < v(2) < v(X).
(1) If Q = Q1 U Qo withv(Q; N Q) =0, v(R)) >0, v() >0, and L, (21,2) =0
(whenever this non-trivial decomposition is satisfied we will write Q = Q1 U,, 3), then
min{ ’61, '52} <AG.
(2) If 2 = Q1 Uy, Q9 is m-calibrable, then each 2; is m-calibrable, i = 1,2, and
Q="%q, =g,

Proof (1)isadirectconsequence of Proposition 2.2 and the fact that, fora, b, ¢, d positive real
numbers, min {%, 5} < %. (2) is a direct consequence of (1) together with the definition
of m-calibrability. O

6 The eigenvalue problem for the 1-Laplacian in metric random walk
spaces

Let [X, d, m] be a metric random walk space with invariant and reversible measure v and
assume that [ X, d, m] is m-connected.

In this section we introduce the eigenvalue problem associated with the 1-Laplacian A
and its relation with the Cheeger minimization problem. For the particular case of finite
weighted discrete graphs where the weights are either 0 or 1, this problem was first studied
by Hein and Biihler [29] and a more complete study was subsequently performed by Chang
in [14].

Definition 6.1 A pair (A, u) € R x L%(X, v) is called an m-eigenpair of the 1-Laplacian
A" on X if lullgr(x,) = 1 and there exists & € sign(u) (i.e., §(x) € sign(u(x)) for every
x € X) such that

AE € dF,(u) = —Al'u.
The function u is called an m-eigenfunction and A an m-eigenvalue associated to u.

Observe that, if (A, u) is an m-eigenpair of A", then (A, —u) is also an m-eigenpair of
AT

Remark 6.2 By Theorem 3.3, the following statements are equivalent:

(1) (A, u) is an m-eigenpair of the 1-Laplacian A" .
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(2) There exists g € L (X x X, v ®@ m,) antisymmetric with ||g]| .oo(x x x.vem,) < 1, such
that

—/ g(x,y)dmy(y) = A§(x) forv—ae. x € X,
A (6.1)

—/ / glx, y)dmy (y) u(x)dv(x) = TV, ().
x Jx

(3) There exists g € L (X x X, v ® my) antisymmetric with ||g|| zoc(x xx,ve@m,) < 1, such
that

—/ g(x,y)ydmy(y) = Aé(x) forv—ae.x € X,
X 6.2)

g, Yu(y) —ux)) = |u(y) —u(x)| forv@m, —ae. (x,y) € X x X;

(4) There exists g € L®°(X x X, v ® m,) antisymmetric with [|g|l .oc(x xx,vem,) < 1, such
that

—f glx,y)ydmy(y) = Aé(x) forv—ae.x € X,
X
A =TVyu(u);
Remark 6.3 Note that, since T'V,, (1) = A for any m-eigenpair (A, u) of AT, then

A =TV,

1
5//Iu(y)—u(X)Idmx(y)dV(X)
xJx

IA

1

5/ /(|u<y)| ) dmy (D dv () = Jully = 1,
XJX

thus

0<xr<l1.

Example 6.4 Let [V (G), dg, m“] be the metric random walk space given in Example 1.1 (3)
with invariant and reversible measure vg. Then, a pair (A, u) € R x L2(V(G), vg) is

an mG-eigenpair of Aﬁ”G if llullpiv(g),v;) = 1 and there exists § € sign(u) and g €
L®(V(G) x V(G), vg ®mf) antisymmetric with ||g||LOO(V(G)XV(G),UG®m§) < 1 such that

- Z g(x7 y)

yev(G)

Dry _ AE(x) forvg —ae. x € V(G),
dx

g(x,y) € sign(u(y) —u(x)) forvg ® mXG —ae. (x,y) € V(G) x V(G).

In [14], Chang gives the 1-Laplacian spectrum for some special graphs like the Petersen
graph, the complete graph K,,, the circle graph with n vertices C,, etc. We will now provide
an example in which the vertices have loops. Let V = V(G) = {a, b} and w,, = wpp = p,
Wap = Wpe = 1 — p, with 0 < p < 1. Then, (A, u) € R x L%(V,vg) is an mG-eigenpair
of A’I”G if [u(a)| + |u(b)| = 1 and there exists & € sign(u) and g € L*°(V x V, vg ®mf)
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antisymmetric with [[g]l zoo(v v, vgemg) < 1 such that
g(a,a) =gb.b) =0, gla,b) = —gb,a),

—g(a, b)(1 — p) = 2§(a),
(6.3)
g(a, b)(1 — p) = 2£(b),

g(a, b)(ub) — u(a)) = |u(b) —u(a)|.
Now, itis easy to see from system (6.3), using a case-by-case argument, that the m-eigenvalues
of A'I”O are

A=0and A =1-—p,
and the following pairs are m-eigenpairs of A'I”G (observe that the measure vg is not nor-
malized):

A=0, and (u(a),u(b)) = (1/2,1/2),
A=1—-=p, and (u(a),u®d)) =0, - +npnd,1) YO<pu<=<1.

For example, suppose that (A, u) is an m-eigenpair with u(a) = u(b). Then, u(a) = u(b) =
% (u(a) = u(b) = —% yields the same eigenvalue) and, therefore, & = 1 thus A = 0.
Alternatively, we could have u(a) > u(b) thus g(a, b) = —1 and we continue by using (6.3).

Observe that, if a locally finite weighted discrete graph contains a vertex x with no loop,

ie. wyx = 0, then (1, i(ﬁx) is an m-eigenpair of the 1-Laplacian. Conversely, if 1 is an

m-eigenvalue of A’lnc, then there exists at least one vertex in the graph with no loop (this
follows easily from Proposition 6.12).

We have the following relation between m-calibrable sets and m-eigenpairs of A7
Theorem 6.5 Let Q C X be a v-measurable set with 0 < v(2) < v(X). We have:

(i) If A3, %Q)XQ) is an m-eigenpair of A, then Q is m-calibrable.
(ii) If Q is m-calibrable and

my(R) < 1G for v-almost every x € X\, (6.4)
then (1§, ﬁXQ) is an m-eigenpair of A'l'.
Proof (i): Since (A%, ﬁXQ) is an m-eigenpair of A", there exists & € sign(X q) such that

—AsE € AT'(Xq). Then, by Theorem 5.7, we have that 2 is m-calibrable.
(ii): If Q is m-calibrable, by Theorem 5.7, we have

—A’gt* €eA'Xqg inX
for
1 ifx € Q,

1
—)\—mmx(Q) if x € X\Q.
Q

h(x) =

Now, by (6.4), we have that t* € sign(Xg) and, consequently, (Ag, ﬁXQ) is an
m-eigenpair of A"
O
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In the next example we see that, in Theorem 6.5, the reverse implications of (i) and (ii)

are false in general.

Example 6.6 (1) Let G = (V, E) be the weighted discrete graph where V = {a, b, c} is the

(@)

vertex set and the weights are given by wgp = Wy = Wpe = % and Wy = Wpp = Wee =
0. Then, mq = 38 + 8¢, mp = $84 + 8¢, me = 384 + 38 and vg = 84 + 8 + 8.
By Remark 5.1(2), we have that Q := {a, b} is mO -calibrable. However, )»’g"ZG = % and
(%, Xgq) is not an m-eigenpair of A" since 0 ¢ med, (X ) (see Corollary 6.11 and the
definition of med, above that Corollary). Therefore, (6.4) does not hold (it follows by a
simple calculation that mCG(Q) =1> % = )\'gG).

Consider the locally finite weighted discrete graph [Z2, dyp, mZ2], where dy> is the
Hamming distance and the weights are defined as usual: wyy, = 1if dy2(x, y) = 1 and
wyy = 0 otherwise (see Example 1.1 (3)). For ease of notation we denote m := mZz.
Let

Q={G,j)eZ*:0<i,j<k—1}fork > 1.

It is easy to see that
1

m __ -
Qr — k

For 1 < k < 4 these sets are m-calibrable and satisfy (6.4). Therefore, for 1 < k < 4,
(%, @Xm) is an m-eigenpair of the 1-Laplacian in Z? and with the same reason-
ing they are still m-eigenpairs of the 1-Laplacian in the metric random walk space
[(Qk)m, dp, m(Q")’"] (recall Corollary 5.9, for ease of notation let my := mEmy,
For this last space, recall the definition of (£2;),, from (5.10) and that of m; = m &)
from Example 1.1 (5). Note further that, in the case of graphs, 9,6 €2 is the set of vertices
outside of €2 which are related to vertices in €2, i.e., the vertices outside of 2 which are
at a graph distance of 1 from Q. For example, 2, = {(0, 0), (1, 0), (1, 1), (0, 1)} and
(22)m = Q22 U 9,20, where

amQZ = {(27 O)’ (2» 1)7 (17 2)’ (07 2)’ (_17 1)! (_17 0)! (Oa _1)! (1! _1)}

Moreover, recalling again Example 1.1 (5), we have that (m7), ({y}) = m,({y}) for every
x,y € (22)m, 1.e., the probabilities associated to the jumps between different vertices in
(£22)m do not vary. On the other hand,
0 Q I 1 1

(m2)x({x}) = my (9, 2) = 2 + 2= 7
for every x € 9,,Q2, (note that, in this case, each vertex in d,,€2, is related to 2 vertices
outside of (£22),,). Consequently, informally speaking, a loop “appears” at each vertex
of 9,2, since there is now the possibility of staying at the same vertex after a jump.
However, this new metric random walk space [(Qz) ms dy2, mg] can be reframed so as
to regard it as associated to a weighted discrete graph, thus making the previous formal
comment rigorous. In other words, we may define a weighted discrete graph which gives
the same associated metric random walk space. This is easily done by taking the vertex set
V := (£22)m and the following weights: wy , = 1 for x, y € (22);, withdzy(x,y) =1,
Wy x = 2 forx € 0,,(22), and wy,, = 0 otherwise (see Fig. 2).

Let us see what happens for

Qs:={G,j)eZ*:0<i,j<4).
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112 112 12 112 12

102 1

3/5 -5 115 -3/5 -1
3/5 1 -1/5 1 3/5

1/2 1

=112

112

112 1

=12

112 1 1/5 -3/5 -1/5 A
(0,0) B K17]

112 -1/2 -112 -112 -2

[ ] L (] L

Fig.1 The numbers in the graph are the values of a function g(x, y) satisfying (6.2), where x is the vertex to
the left of the number represented in the graph and y the one to the right, or, alternatively, x is the one above
and y the one below. Elsewhere, g(x, y) is taken as 0. The vertex (0, 0) is labelled in the graph. As an example,
2((0,0), (1,0)) = 1/5 and g((0, 1), (0, 0)) = —1

In this case,

mo_
Qs — 5 ’
and an algebraic calculation gives that (%, ﬁXQS) is an m-eigenpair in Z? (see Fig. 1).

Moreover, (%, U(#QS)X QS> is also an mA-eigenpair of the 1-Laplacian in the metric random
walk space

[A =G, ) eZ¥: —2<i,j <6} dp, mA]
or even in the metric random walk space obtained, in the same way, with the smaller set

shown in Fig. 1.
However,

1
(ms) . j)(S2s5) = 1 Vi, j) € (25)m\S2s

so (6.4) is not satisfied. Furthermore, (%, U(#QS)XQS) fails to be an ms-eigenpair of the 1-

Laplacian in the metric random walk space [(Qs)m, dyp, m5] since the condition on the
median given in Corollary 6.11 is not satisfied; nevertheless, 25 is still ms-calibrable in this
setting.

Remark 6.7 Let us give some characterizations of (6.4).
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(1) Interms of the m-mean curvature we have that,

1
(6.4) <= v-esssup Hjge (x) < o) /Q Hio (x)dv(x),

xeQe
where Q¢ = X\ Q. Indeed, (6.4) is equivalent to

Pn(2) — v(2) — 2P, ()

1—2m,(Q)>1-2
v(£2) v(£2)

for v-almost every x € Q°,

and this inequality can be rewritten as

1 X
—H!(x) < 7/ Hiq(y)dv(y) for v-almost every x € Q°
v(R2) Jo
thanks to (2.3) and (2.4). Hence, since Hjg, (x) = —Hjg. (x), we are done.

(2) Furthermore, we have that

64) = ﬁ me(Q)dv(x) < v-exsesg}fmx(ﬂc).

Indeed, in this case, on account of (2.1), we rewrite (6.4) as

1
1 —me(Q°) <1 ——— | my(Q)dv(y) forv-almostevery x € Q°,
v(R2) Jo

or, equivalently,
1
—/ my(2)dv(y) < m,(Q°) for v-almost every x € Q°,
V() Jo
which gives us the characterization.

In the next example we give m-eigenpairs of the 1-Laplacian for the metric random walk
spaces given in Example 1.1 (1).

Example 6.8 Let @ c RN with £V (Q) < oo and consider the metric random walk space
(L, d, m”’-*] given in Example 1.1 (1) with J := m)( B,(0)- Moreover, assume that

there exists a ball B, (xo) C €2 such that dist(B, (xo), RN\) > r. Then, by (2.2), we have
P1.9(By(x0)) = P, (B,(x0)),

and, since B, (xp) is m” -calibrable, we have that B, (xp) is m”’-$_calibrable. Assume also
that £V (B, (x0)) < £V (B,(0)). Let us see that

ml (B, (x0)) < M) for £V-almost every x € 2\B, (xo). (6.5)

By Remark 6.7, (6.5) is equivalent to

N; m! (B, (x0))dx < LV- essinf  m!(Q\B,(x0))).
LY(B)(x0)) JB,(x0) x€Q\ B, (x0)

Now, for x € 2, we have

1
J.Q T _ _ 2
my *(Bp(x0)) = my (By(x0)) = V(B 0)) 520 XB.)(x —y)dy < 5
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Then, for x € Q\B,(xo), we have

(o) > 5>
X0 = - =2 o
27 LN(By(x0)) JB, (o)

Hence, (6.5) holds. Therefore, by Theorem 6.5, we have that

m! S Q\B,(x0)) = 1 —m! (B, m! (B, (x0))dx.

o) 1
kBp(Xo)’ [,N(B (JCO)) Bp(xg)
J,Q

. . . J,Q
is an m”-**-eigenpair of A’

Similarly, for the metric random walk space [R”, d, m’ ] with J =
for £V (B,(x0)) < 3£V (B,(0)), we have that

1
275, @) " B 0)- a4

N 1 X
B0l LN (B, (x)) ™ 7

. . . J
is an m” -eigenpair of AT

6.1 The m-Cheeger constant of a metric random walk space with finite measure

In this subsection we give a relation between the non-null m-eigenvalues of the 1-Laplacian
and the m-Cheeger constant of X when v(X) < +oo.

From now on in this section we assume that [X, d, m] is a metric random walk space
with invariant and reversible probability measure v. Assuming that v(X) = 1 is not a loss
of generality since, for v(X) < 400, we may work with o) X) v. Observe that A, = 1?;"&)[;)
remains unchanged if we consider the normalized measure, and the same is true for the
m-eigenvalues of the 1-Laplacian.

In [36] we have defined the m-Cheeger constant of X as

Py (D) .
min{v(D), v(X\D)} ~

hp (X) ::inf{ DcCX, O<v(D)<1}

or, equivalently,

hx—'fp’”(D)-D X, 0 D<]} 6.6
m(X) =in v(D)' c X, 0<vy( )_5. (6.6)

Note that, as a consequence of (2.1), we get
hp(X) < 1.

Furthermore, observe that this definition is consistent with the definition on graphs (see [18],
also [7]):

Example 6.9 Let [V (G), dg, mS] be the metric random walk space given in Example 1.1 (3)
with invariant and reversible measure vg. Then, for E C V(G), since

P,c(E) = Z Z wy,y and vG(E) := de,
x€E y¢E xeE
we have

P,c(E)
= X,y 6.7
v (E) erE A ; é w (6.7)
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Therefore,

h,c(V(G)) =inf # Zw , - ECV(G) O<vG(E)<1vG(V))
m X,y - , =5

d
2ver dx x€E y¢E

This minimization problem is closely related with the balance graph cut problem that appears
in Machine Learning Theory (see [26,27]).

Recall that in Sect. 5 we defined a different m-Cheeger constant (see (5.1)), however, the
m-Cheeger constant %, (X) is a global constant of the metric random walk space while the
m-Cheeger constant 4" (€2) is defined for non-trivial v-measurable subsets of the space. Note
that, if v(X) = 1, then

hm(X) < hY'(2)
for any v-measurable set 2 C X such that 0 < v(2) < 1/2; and, if h,,(X) = I;”Eg%) for a

v-measurable set Q C X such that 0 < v(2) < 1/2, then h,,(X) = h''(2) and, moreover,
Q2 is m-calibrable.

Proposition 6.10 Assume that v is a probability measure (and, therefore, ergodic). Let (A, u)
be an m-eigenpair of A'f'. Then,

(i) =0 <= u isconstant v-a.e., thatis, u = 1, oru = —1.

(ii) A #0 <= there exists & € sign(u) such that/ E(x)dv(x) =0.
X

Observe that (0, 1) and (0, —1) are m-eigenpairs of the 1-Laplacian in metric random
walk spaces with an invariant and reversible probability measure.

Proof (i) By (6.2),if A = 0, we have that T'V,, (1) = 0 and then, by Lemma 2.9, we get that
u is constant v-a.e. thus, since [lu|[1(x ) = 1 (and we are assuming v(X) = 1), either
u = 1, or u = —1. Similarly, if u is constant v-a.e. then TV, (u) = 0 and, by (6.2),
A=0.

(i) («<=)If» =0, by (i), we have thatu = 1, oru = —1, and this is a contradiction with the
existence of & € sign(u) such that fx E(x)dv(x) = 0. (=) There exists £ € sign(u)
and g € L®(X x X, v ® m,) antisymmetric with [|gllz(xxx,vem,) < 1 satisfying
(6.1). Hence, since g is antisymmetric, by the reversibility of v, we have

l/ E(x)dv(x) = —/ / g(x, y)dmy(y)dv(x) = 0.
X xJx
Therefore, since X # 0,
/ E(x)dv(x) =0.
X

[m}

Recall now that, given a function u : X — R, u € R is a median of u with respect to the
measure v if

v(fx e X :ulx) < pu}) < %U(X) and v(fx e X @ u(x) > u}) < %U(X).

We denote by med, (1) the set of all medians of u. It is easy to see that
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u € med, (1) <—
—v({u=puph) =v(fx e X :ulx)>puh) —v({x e X : ulx) <pu}) <v(u =u}),

from where it follows that
0 € med, (1) <= 3£ € sign(u) such that / E(x)dv(x) =0. (6.8)
X

By Proposition 6.10 and relation (6.8), we have the following result that was obtained for
finite graphs by Hein and Biihler in [29].

Corollary 6.11 If (A, u) is an m-eigenpair of A" then
A#0 < 0 € med,(u).

Observe that, by this corollary, if A # 0 is an m-eigenvalue of A", then there exists an
m-eigenvector u associated to A such that its O-superlevel set Eg(u) has positive v-measure.
In fact, for any m-eigenvector u, either u or —u will satisfy this condition.

Proposition 6.12 If (A, u) is an m-eigenpair with A > 0 and v(Eo(u)) > 0, then
(A, mXEO(M) is an m-eigenpair, A = A%O(u) and Ey(u) is m-calibrable. Moreover

v(Eo(u)) < 1.

Proof First observe that, by Corollary 6.11, we have that v(Eg(u)) < % Since (A, u) is an
m-eigenpair, there exists & € sign(u) such that

—AE € Alu;
hence, there exists g(x, y) € sign(u(y) — u(x)) antisymmetric with [|g|l zoc(xxx,vem,) < 1,
such that

—/ g(x, y)dmy(y) = A(x) forv—ae. x € X.
X

Now,
1 if x € Eo(u) (since u(x) > 0),
§(x) =
e[—1,11 ifx e X\Ep(u),
and, therefore, & € sign(X g,()). On the other hand,
e[—1,1] ifx,y e Ey(u),

—1 ifx € Eg, y € X\Eo(u) (since u(x) > 0, u(y) <0),

g(-xs )’) =
1 if x € X\Eo(u), y € Eo(u) (since u(x) <0, u(y) > 0),

e[-1,1] ifx,y e X\Ep(u),

and, consequently, g(x,y) € sign(Xg,u)(y) — XEgyw)(x)). Therefore, we have that
(A, m X Eo(u)) is an m-eigenpair of A'. Moreover, by Theorem 6.5, we have that Eq (1)
is m-calibrable. m]

Remark 6.13 As a consequence of Proposition 5.15, when we search for m-eigenpairs of the

1-Laplacian we can restrict ourselves to m-eigenpairs of the form (A, %E)X E) where E is
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m-calibrable and not decomposable as £ = E; U,, E;. Indeed, suppose that (A, ﬁx E)
is an m-eigenpair and £ = E| U,, E; for some E{, E; C E. Then, by (6.2), there exist
& esign(Xg) and g € L*(X x X, v ® my) antisymmetric with [|g[zc(xxx,vem,) < 1.
such that

—/ g(x, y)dm,(y) = AE(x) v —ae.x € X,
X

g(x,y) esign(Xg(y) — Xg(x)) v@my —ae. (x,y) € X x X.

Then, we may take the same £ and g(x, y) to see that (k, ﬁx E1) is also an m-eigenpair.

Indeed, since Ay = )\?1, we only need to verify that g(x, y) € sign(Xg,(y) — Xg, (x))
Vv ® my-a.e.. For x € E| we have:

° lfy € E|, then XE(y) — XE(X) =0= XE|(y) — XE]()C),
o if y e X\E, then Xg(y) —Xp(x) = —1 = Xg,(y) — XE, (%),

and, since L,,(E, E2) = 0, we have that v @ m, (E| x E>) = 0 so the condition is satisfied.
Similarly for x € E» (again v ® my(E> x E1) = 0). If x € X\ E then,

e ifye El, Xp(y) = Xp(x) =1=Xg, (y) — Xg, (%),
o ifye Er, Xp(y) — Xg(x) =1 € sign(0) = sign(X g, (y) — X g, (x))
° ifyGX\E,XE(y)—XE(x)=0=XE](y)—XE|(X).

Let
M(X) :={ueL'(X,v) : lullpix,) =1and0 € med,(u)}
and
MNUX) = inf{TV,,(u) : u € TI(X)}. (6.9)
In [36] we proved the following result.

Theorem 6.14 [36] Let[X, d, m] be a metric random walk space with invariant and reversible

probability measure v. Then,

(i) hm(X) = A (X).

(ii) For Q@ C X v-measurable with v(Q) = 35, hy(X) = A = Xq —
Xx\@ is a minimizer of (6.9).

By Corollary 6.11, if (A, u) is an m-eigenpair of AT" and 1 # 0 then u € IT(X). Now,
TV, (1) = A, thus, as a corollary of Theorem 6.14 (i), we have the following result. Recall
that, for finite graphs, it is well known that the first non—zero eigenvalue coincides with the
Cheeger constant (see [14]).

Theorem 6.15 If A # 0 is an m-eigenvalue of A'' then
hm(X) < A

This result also follows by Proposition 6.12 since v(Ep(u)) < %
In the next result we will see that if the infimum in (6.6) is attained then 4,,(X) is an
m-eigenvalue of A”.

Theorem 6.16 Let 2 be a v-measurable subset of X such that 0 < v(2) < %
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(i) If 2 and X\ 2 are m-calibrable then (kg, ﬁXQ> is an m-eigenpair of A'l'.
(ii) If hy(X) = 1§ then Q and X\ are m-calibrable
(iii) If hy(X) = LG then ()J;‘z, %Q)XQ) is an m-eigenpair of A",
Proof First of all, observe that, since v(2) < %,
A;”(\Q <AG.

(i): By Theorem 5.8, since 2 is m-calibrable, there exists an antisymmetric function g; in
Q2 x € such that

—1<gi(x,y) <1 for(v®my)-ae. (x,y) € QxQ,

and
rg = —/ gi(x,y)dmy(y)+1—my(R) v-ae.x €Q; (6.10)
Q

and, since X\ 2 is m-calibrable, there exists an antisymmetric function g> in (X\2) x (X\2)
such that

-1 <gx,y) <1 for (v @ my)-a.e. (x,y) € (X\Q) x (X\Q),

and
Q\Q:—/ g (x,y)dmy(y) +1 —m(X\Q) v-ae.x € X\Q. (6.11)
x\Q

Consequently, by taking

gi(x,y) ifx,y e,
! ifxeQ,yeX\Q,
B, =1 ifx e X\Q,yeQ,
—g(x,y) ifx,ye X\Q,

we have that g(x, y) € sign (Xq(y) — Xq(x)). Moreover, from (6.10),

o= —/ g(x,y)dmy(y) forv-ae.x € Q,
X

and, since AQ\Q < AG, from (6.11),
—Ag = Mo = —/ g(x, y)dmy(y) < A forv-ae. x € X\Q.
X

Hence, by Remark 6.2 (2), we conclude that ()Lg ﬁx Q) is an m-eigenpair of A7

(ii): Since by (X) = 2282 and 0 < v(Q) < 3, we have h, (X) = A7'(Q) = 28D and,

consequently, €2 is m-calibrable. Let us suppose that X\ €2 is not m-calibrable. Then, there
exists £ C X\ such that v(E) < v(X\2) and

m m
Ap <A X\Q -
Now, this implies that v(E) > % since, otherwise, we get

Mp < Mg < AB = hp(X)
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which is a contradiction. Moreover, since V(E) < v(X\Q), M} < k’”\Q also implies that
Pp(E) < Pp(X\2) = Pp ().

However, since v(E) > %, we have that v(X\E) < % and, consequently, taking into account
that v(2) < V(X\E), we get

m Pu(E)  Pn(S2)

)‘X\E = U(X\E) < v(Q) :hm(X),

which is also a contradiction.
Finally, (iii) is a direct consequence of (i) and (ii). m]

As a consequence of Proposition 6.12 and Theorem 6.16, we have the following result.

Corollary 6.17 If h,,(X) is a positive m-eigenvalue of A", then, for any eigenvector u asso-
ciated to h,, (X) with v(Eg(u)) > 0,

1
hp (X)), ———X j -el i AT
(m( ) o) Eo(u)) is an m-eigenpair of A
V(Eo(u)) < 3, and

hm (X)) = Mgy -

Moreover, both Eo(u) and X\ Eo(u) are m-calibrable.

Remark 6.18 For Q@ C X with v(Q2) = % (thus 1 = 2P, (€2)) we have that:

(1) € and X\ are m-calibrable if, and only if, (2Pm (), Xq—2—-—0nX x\Q) is an m-
eigenpair of A" for any ¢ € [0, 2].

(2) If hy(X) = 2Py (Q) then (2P, (R), 1Xq — (2 — 1) X x\q) is an m-eigenpair of AT’ for
all t € [0, 2].

Example 6.19 InFig. 2, following the notation in Example 6.6(2), we consider the metric ran-
dom walk space [X = (), dgpp, mp 1= m(QZ)m]. InFig.2a, we show this space partitioned
into two mp-calibrable sets, E = {(—1, 0), (0, 0), (1, 0), (-1, 1) 0, 1), (1, 1)} and X\E,
of equal measure, hence, by the previous remark, both (AE , U(E) X g) and (AE , U(E) XX\E)
are mp-eigenpairs. However, the Cheeger constant /,,, (X) is smaller than the elgenvalue A Ez
since, for D = {(1, —1), (1,0), (2,0), (2, 1), (1, 1), (1, 2)}, we have A2 = 6 (see Fig. 2b).

Remark 6.20 By Theorems 6.15 and 6.16, and Corollary 6.17, for finite weighted connected
discrete graphs, we have that

h; (X) is the first non-zero eigenvalue of A’I”G (6.12)

(as already proved in [14,15] and [29]) and, to solve the optimal Cheeger cut problem,
it is enough to find an eigenvector associated to 5, (X) since then {Eg(u), X\ Eo(u)} or
{Eo(—u), X\ Eo(—u)} is a Cheeger cut.

In the next examples we will see that (6.12) is not true in general. We obtain infinite

weighted connected discrete graphs (with finite invariant and reversible measure) for which
there is no first positive m-eingenvalue.
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Q_O QO

O ®

O O

A Let E be the set formed by the vertices B Let D be the set formed by the ver-
in the shaded region. Then A2 = %. tices in the shaded region. Then A% =
1
g .
Fig. 2 The line segments represented in the figures correspond to the edges between adjacent vertices, with
wyy = 1 for any pair of these neighbouring vertices. The loops that *“appear” when considering m) (see

Example 6.6(2)) are represented by circles

Example 6.21 (1) Let[V(G), dg, mY] be the metric random walk space defined in Example

1.1 (3) with vertex set V(G) = {xg, x1, ..., X,, ...} and weights defined as follows:
1 1 .
Wiy xopy) = TR Wag i Xomgn = e forn =0,1,2,... and wy y = 0 otherwise.

We have dy, = 1, dy;, =2and, forn > 1,

(N
T

dXZn = Wiy, _1x2, + Wxopxont1 =

syt = Wagyxzepn T Wegupix20i2 = 5,7, T 55
Furthermore,

> = 1 [ T
VG(V):E dxi:3+g Wj+27+27+37:7'
=0 n=1

Observe that the measure v is not normalized, but this does not affect the result because
the constants A¢; and the m-eigenvalues of the 1-Laplacian are independent of this nor-
malization.

Consider E;, := {x2,, xon41} for n > 1. By (2) in Remark 5.1, we have that E, is
mO -calibrable. On the other hand,

1
1+ @)t
1
I+ 36!

3

My, (Ep) =

Moy, 1y (En) = =27, andm,(E,) = Oelse in V\E,.
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Hence,
m(Ey) <230 forall x € V\E,.

Then, by Theorem 6.5, we have that (AE , V(E )XE,,) is a m©-eigenpair of A’” . Now,
on+l
Jim 7 = lim e =0
Consequently, both by Theorem 6.15 and by definition of £,,¢ (V(G)), we get
h,,c(V(G)) =0.

2) Let0 <s <r < % Let [V(G), dg, m°] be the metric random walk space defined in

Example 1.1 (3) with vertex set V(G) = {xo, X1, ..., Xn, ...} and weights defined as
follows:
r s
W =T T Ty
Wyyx,y = 1" +s" forn=1,2,3,... and wy , = 0 otherwise.
Then,

1—r . G - mG
h,,c(V(G)) = T is not an m~ -eigenvalue of A
r

Indeed, to start with, observe that v (V (G)) = 4—r + 14%5,

V(G V(G

v ({xo}) < L 2()), vg ({x0, x1}) > M’
G vg (V(G

ve({x1}) < M, v ({x1, x2}) > M7

and, for E,, := {x,, Xp+1, Xp42, ...}, B > 2,

v6 (En) < @

Now, forn > 2,

N rn—l +sn—] n—l +sn—]
E rnl+snl+2< sn) 1+rrn1+l+s -1

1—r

decreases as n increases (therefore, the sets E,, are not m-calibrable), and

1—r

lim A} = .

n BT 4
Let us see that, for any E C V(G) with 0 < vg(E) < % we have A > }%
Indeed, to start with, observe thatif E = {xo} or E = {x} then A’{’)’C )= A{XI} 1> i%

Moreover, we have that {xo, x1} ¢ E and {x1, x2} ¢ E since vg({xo, x1}) £ w
and vg({x1, x2}) £ M Therefore, it remains to see what happens for sets E
satisfying

(i) xo € E, x| ¢ E and x,, € E forsomen > 2,
(i) x; € E, xo ¢ E and x,, € E for some n > 3,
(iii) xo ¢ E, x1 ¢ E and x,, € E for some n > 2.
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For the case (i), let n1 € N be the first index n > 2 such that x,, € E; for the case (ii), let
no € N be the first index n > 3 such that x,, € E; and for the case (iii), let n3 € N be the
first index n > 2 such that x,, € E. Now, for the case (i) we have that

k'g z )"[XO}UEnl =z )"Enl .

Indeed, the first equality follows from the fact that P, (E) > P, ({xo}UE,,) and v(E) <
v({xo} U E,,) and the second one follows since

Matog . — lrfr-i-ﬁ-f-Pm(Enl) - Pn(Ey,) i
ol = S () v(Eny) "

Hence, 1Y > }% With a similar argument we get, in the case (ii),

m l—r .
AE Z MaJUE,, = AE,, > =
and, in the case (iii),
l1—r
"> Mg, > )
E = Eh3 1+r
Consequently, £,,6(V(G)) = }% and, by Corollary 6.17, it is not an m-eigenvalue of

G
m
Al
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