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Abstract
We consider Type I Ricci flows and obtain integral estimates for the curvature tensor valid
up to, and including, the singular time. Our estimates partially extend to higher dimensions
a curvature estimate recently shown to hold in dimension three by Kleiner and Lott (Acta
Math 219(1):65–134, 2017). To do this we adapt the technique of quantitative stratification,
introduced by Cheeger–Naber (Invent Math 191(2):321–339, 2013), to this setting.

Mathematics Subject Classification Primary 53C44; Secondary 58J35

1 Introduction

In this paper we study complete Ricci flows (M, g(t))t∈[0,T ) satisfying a curvature bound of
the form

sup
M

|Rm(g(t))|g(t) ≤ B

T − t
, (1.1)

for all t ∈ [0, T ). If (g(t))t∈[0,T ) becomes singular as t → T , namely

lim
t→T

sup
M

|Rm(g(t))|g(t) = +∞. (1.2)

the singularity is classified as Type I, hence we will refer to (1.1) as a Type I curvature bound.
This kind of singular behaviour for the Ricci flow is very common and it is in fact conjectured
that for closed manifolds M such singularities are generic; see for instance [2,17].

Our results provide L p bounds for the curvature along the flow assuming Type I bounds.
For instance, we obtain the following theorem.

Theorem 1.1 Let (Mn, g(t))t∈[0,T ), dim M = n, be a compact Ricci flow satisfying (1.1).
Then, for every non-negative integer j and p ∈ (0, 2) there exist Cp, j (g(0)) < +∞ such
that for every t ∈ [0, T ]
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∫
M

|∇ j Rm(g(t))|
p

j+2
g(t)dμg(t) ≤ Cp, j , (1.3)

and
∫ T

0

∫
M

|∇ j Rm(g(s))|
p+2
j+2
g(s)dμg(s)ds ≤ Cp, j . (1.4)

If (g(t))t∈[0,T ) becomes singular at T , estimate (1.3) is valid at t = T on the set� = {x ∈
M, supt∈[0,T ) |Rm(g)|g(x, t) < +∞}. Moreover, if g(t) has positive isotropic curvature
and n = 4, the estimates above hold for any p ∈ (0, 3).

Notice that estimate (1.3) agrees with the recent curvature estimate obtained by Kleiner–
Lott [18] in dimension three. Moreover, the results [18] hold without the Type I assumption
and even after the first singularity occurs. Our results on the other hand are valid in any
dimension, which may hint to a general fact about weak solutions to Ricci flow. Notions of
weak solutions to Ricci flow have recently been proposed by Haslhofer–Naber [15] as well
as Sturm in [29] and Kopfer–Sturm in [20].

In [18] the curvature estimate is a consequence of the study of a certain class of space-
time manifolds that arise naturally as limits of Perelman’s Ricci flow with surgery, as the
associated fineness parameter goes to zero. In contrast, our approach bypasses Ricci flow
with surgery, and instead uses the tangent flow analysis and monotonicity formula available
for Type I Ricci flows. In particular, we adapt the technique of quantitative stratification,
recently introduced by Cheeger–Naber in [7], to this setting.

The ideas in [7] are very general and have been applied in a wide range of geometric PDE,
leading to improved curvature estimates; see [3,5,6,8]. However, to adapt these ideas to the
Ricci flow we need to overcome a few issues, which we describe below.

Wemay define the singular set� of a Ricci flow as the set of points with no neighbourhood
where the curvature remains bounded as t → T . Under assumption (1.1), Naber shows in
[24] that tangent flows at the singular time, namely limits of appropriate pointed sequences
of rescalings, are gradient shrinking Ricci solitons. Previously Šešum [27] had shown that
this is true in the case of compact tangent flows. Then, Enders–Müller–Topping in [11]
show that tangent flows are non-flat if and only if they are ‘centered’ around singular points.
Mantegazza–Müller [23] also prove these facts using a different approach.

Imitating the classical regularity theory for minimal surfaces or harmonic maps, as devel-
oped for instance in [1,12,26,28,31], it is natural to consider the stratification

�0 ⊂ · · · ⊂ �n−1 = �

of �, where

�k = {x ∈ �, no tangent flow at x splits more than k Euclidean factors}.
In fact � = �n−2, since any shrinking soliton splitting more than n − 2 Euclidean factors
should be the Gaussian soliton in the Euclidean space.

A more detailed study of this stratification is done in [14]. There, a key issue is that the
properties of each �k relevant to singularity formation, as captured by the amount of the
Euclidean factors split by the tangent flows, do not interact with the geometric properties of
each�k as a subset of (M, g(t)): in the shrinking round sphere example,� = �0 = S

n is an
n-dimensional subset, but it converges to a 0-dimensional space towards the singular time.

This is in contrast to other situations, where the interest is in the geometry of the singular
set as a subset of a given ambient space. Similar issues appear when we try to adapt the
philosophy of [7] in this paper.

Below we describe the results of the paper in more detail:
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In Sect. 2 we recall a monotone quantity for possibly singular Type I Ricci flows and
its associated density that was introduced in [14], based on Perelman’s reduced volume,
extending ideas from [4,10,24]. This leads to the notion of the spine of a shrinking Ricci
soliton with bounded curvature: the set where the density function attains its minimum. It
is then shown that the spine satisfies a diameter estimate, modulo the splitting of Euclidean
factors; see Theorem 2.2. In particular this estimate shows that, as the flow induced by the
soliton appraches its singular time, the spine collapses to a Euclidean space. This is a key
fact that allows us to adapt the ideas in [7] to the setting of Type I Ricci flows.

Now, let C(n, B, κ0, κ1) be the class of complete Ricci flows (M, g(t))t∈(−2,0), such that
dim M = n and

(1) |Rm(g(−τ))|g(−τ) ≤ B/τ in M , for every τ ∈ (0, 2).
(2) g(t) is κ0 non-collapsed below scale 1, namely

volg(t)(Bg(t)(x, r)) ≥ κ0r
n,

for every (x, t) ∈ M × (−2, 0) and r ≤ 1 for which R(g(t)) ≤ r−2 in Bg(t)(x, r), R
denoting the scalar curvature.

(3) g(t) is κ1 non-inflated below scale 1, namely

volg(t)(Bg(t)(x, r)) ≤ κ1r
n,

for every (x, t) ∈ M × [−1, 0) and r ≤ 1, t − r2 > −2, for which

R ≤ c(n)B

t − t̄
,

in Bg(t)(x, r) for all t̄ ∈ [t − r2, t], where c(n) < +∞ is a constant such that |R(g)| ≤
c(n)|Rm(g)|g , for any Riemannian metric g.

In Sect. 3, following [7], we define the quantitative stratification Skη,τ , where k ≥ 0 is an
integer, η > 0 and τ ∈ (0, 1], for each (M, g(t))t∈(−2,0) in C(n, B, κ0, κ1). The intuition
behind the sets Skη,τ is that there is no scale τ̄ ∈ [τ, 1] at which the flow around x ∈ Skη,τ is
η-close to a shrinking Ricci soliton that splits more than k Euclidean factors. We refer the
reader to Sect. 3 for the detailed definition.

The relationship of the sets Skη,τ to �k is given by

�k =
⋃
η

⋂
τ

Skη,τ .

We show that the quantitative stratification satisfies the following volume estimate:

Theorem 1.2 Let (M, g(t))t∈(−2,0) ∈ C(n, B, κ0, κ1). Then, there exist α(B), β(B) ∈ (0, 1)
and Cη = C(n, B, κ0, κ1, η) < +∞, such that for every 0 < τ ≤ α

volg(−τ)

(
Skη,τ ∩ Bg(−α)(x, β)

)
≤ Cητ

n−k−η
2 . (1.5)

Then, in Sect. 4, we combine Theorem 1.2 with the ε-regularity Lemmata 4.1 and 4.2, to
prove uniform curvature estimates for any Ricci flow (M, g(t))t∈(−2,0) in C(n, B, κ0, κ1).

Define the curvature radius of (M, g(t))t∈(−2,0) at x ∈ M as

rRm(x) = sup
{
r ≤ 1, |Rm(g)| ≤ r−2 in Bg(−r2)(x, r) × [−r2, 0]}.

Note that if (g(t))t∈(−2,0) is singular at x , we define rRm(x) = 0.
Then, Theorem 1.1 is a consequence of the following result.
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Theorem 1.3 Let (M, g(t))t∈(−2,0) ∈ C(n, B, κ0, κ1). Then there exist α(B), β(B) > 0 such
that for any integer j ≥ 0 and any p ∈ (0, 2) there is Cp, j = Cp, j (n, B, κ0, κ1) < +∞
such that ∫

Bg(−α)(x,β)∩{rRm>0}
|∇ j Rm(g(0))|

p
j+2
g(0)dμg(0) ≤ Cp, j , (1.6)

Moreover, if dim M = 4 and g(t) has positive isotropic curvature, then (1.6) holds for any
p ∈ (0, 3).

Observe that S2 × R
n−2 with the standard soliton structure satisfies the estimate of The-

orem 1.3 for p = 2, so the theorem is not sharp. Similarly for the soliton S3 ×R, for p = 3.
On the other hand, if (1.6) were to hold for p = 2 in dimension three or p = 3 in dimension
four with positive isotropic curvature, this would imply quite strong control in the geometry
of (M, g(t))t∈[0,T ) in Theorem 1.1: by a result of Topping [30] the diameter of (g(t))t∈[0,T )

would be uniformly bounded for all t ; see also Zhang [33].
Finally, we note that Theorem 1.3 is a consequence of stronger estimates on the curvature

radius proven in Theorem 4.1; see also Theorem 4.3. Furthermore, the estimates of Theorems
1.1 and 1.3can be strengthened to p ∈ (0, n − 1) under appropriate bounds on the Weyl
curvature; see Remarks 4.1 and 4.2.

2 Amonotonicity formula for singular Ricci flows

In this section we describe a monotonicity formula, and its associated density, in the setting
of a Ricci flow (M, g(t))t∈(−T ,0), T ∈ (0,+∞] subject to a Type I curvature bound, namely

sup
M

|Rm(g(t)|g(t) ≤ B

|t | , (2.1)

for t ∈ (−T , 0), as introduced in [14]. Note that we allow for the possibility that

lim
t→0

sup
M

|Rm(g(t))|g(t) = +∞.

Let us introduce some notation we will use throughout the paper. Given a Ricci flow
(M, g(t))t∈(−T ,0], T ∈ (0,+∞], and x ∈ M , let g denote the triplet (M, g(t), x)t∈(−T ,0).
When we want to distinguish between different pointed Ricci flows with the same underlying
flow we will also use the notation gx to denote (M, g(t), x)t∈(−T ,0).

Moreover, for every s > 0 we will denote the rescaled flow, pointed at x , by

(gx )s = (M, s−2g(s2t), x)t∈(−T ,0).

2.1 Perelman’s reduced volume

Let (M, g(t))t∈[0,T ] be a complete smoothRicci flowand let l(x,T ) denote the reduceddistance
function based at (x, T ) ∈ M × (0, T ], as introduced by Perelman in [25]:

l(x,T )(y, τ ) = inf

{
1

2
√

τ

∫ τ

0

√
τ̄

(
R(γ (τ̄ ), T − τ̄ ) +

∣∣∣∣ d

d τ̄
γ (τ̄ )

∣∣∣∣
2

g(T−τ̄ )

)
d τ̄

}
,

where the infimum is taken over all curves γ : [0, τ ] → M with γ (0) = x and γ (τ) = y.
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Then, as in [25], we may define the reduced volume at scale τ > 0 based at (x, T ):

V(x,T )(τ ) =
∫
M

e−l(y,τ )

(4πτ)n/2 dμg(τ )(y). (2.2)

Perelman discovered the remarkable fact that V(x,T )(τ ) is monotone decreasing in τ . More-
over, limτ→0 V(x,T )(τ ) = 1 and V(x,T )(τ ) is constant if and only if g(t) is the Euclidean
space for every t .

With the notation introduced above, if g = (M, g(t), x)t∈(−T ,0) we define

lg(y, τ ) = l(x,0)(y, τ ).

2.2 The space of uniformly type I flows

LetRF(n, B) denote the collection of all complete pointed Ricci flows (M, g(t), x)t∈(−T ,0),
where M is n-dimensional, T ∈ (0,+∞], and g(t) satisfies (2.1) for all t ∈ (−T , 0).

Moreover, let RFreg(n, B) be the collection of (M, g(t), x) ∈ RF(n, B) satisfying

sup
M×(−T ,0)

|Rm(g(t))|g(t) < +∞.

Observe that any flow in g = (M, g(t), x)t∈(−T ,0) ∈ RFreg(n, B) can be extended to a Ricci
flow (g(t))t∈(−T ,0] by Shi’s estimates.

We endowRF(n, B)with the topology of smooth Cheeger–Gromov convergence of Ricci
flows, uniform in compact subsets of M × (−∞, 0).

Let Ti ↗ 0. Since any (M, g(t), x)t∈(−T ,0) is the limit of the sequence (M, g(t +
Ti ), x)t∈(−T−Ti ,0], which satisfies (2.1), it follows that RF(n, B) = RFreg(n, B).

It is a consequence of estimates of Naber in [24], as well as the work of Enders [10], that
given a sequence {gi }i and g inRF(n, B) such that gi → g, the corresponding sequence lgi
converges, up to subsequence, to a limit l in C0,α

loc .
Thus we are led to the following definition:

Definition 2.1 (Singular reduced distance) A function l : M × (0, T ) → R is a singular
reduced distance on g = (M, g(t), x)t∈(−T ,0) ∈ RF(n, B) if there is a sequence gi ∈
RFreg(n, B) such that gi → g and lgi → l in C0,α

loc .

Remark 2.1 The estimates in [24] also imply that the collection of the singular reduced
distances of a fixed g ∈ RF(n, B) is compact in the C0,α

loc topology.

2.3 Reduced volume in the singular setting

Following Definition 2.1 and (2.2) we may define

Vg,l(τ ) =
∫
M

e−l(y,τ )

(4πτ)n/2 dμg(−τ)(y), (2.3)

where g = (M, g(t), x)t∈(−T ,0) ∈ RF(n, B) and l is a singular reduced distance on g.
The curvature bound (2.1) and the quadratic growth of a singular reduced distance l, again

due to [24], imply that the map l �→ Vg,l(τ ) is continuous, for every τ . Hence, by Remark
2.1 we may define the singular reduced volume of g ∈ RF(n, B) at scale τ as

Vg(τ ) = min{Vg,l(τ ), lsingular reduced distance on g}. (2.4)
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Remark 2.2 Note thatRF(n, B) ⊂ RF(n, B ′) for every B ′ ≥ B. Thus, the reduced volume
Vg(τ ) may depend on the choice of the constant B < +∞; a larger constant leads to a larger
number of competitors in the minimization procedure used to define Vg(τ ). Nevertheless,
we see below that this definition has all the necessary properties we need in our analysis.

Before we describe some properties of the reduced volume, recall that a gradient shrinking
Ricci soliton is a triplet (N , g, f ) where (N , g) is a complete Riemannian manifold and
f ∈ C∞(N ) satisfies

Ric(g) + Hessg f = g

2
.

It is a standard fact about gradient shrinking Ricci solitons that there is a constant c such that

R + |∇ f |2 − f = c.

We call (N , g, f ) a normalized Ricci soliton and f a normalized soliton function if c = 0.
Moreover, we will say that (N , h(t))t∈(−∞,0) is induced by a gradient shrinking Ricci

soliton if there exists a normalized soliton function f ∈ C∞(N ) such that (N , h(−1), f ) is
a gradient shrinking Ricci soliton, and the vector field ∇ f is complete.

Lemma 2.1 (Proposition 3.1 in [14]) Given any g ∈ RF(n, B) the reduced volume Vg(τ )

has the following properties:

(1) Vg(τ ) is monotonically decreasing in τ .
(2) If Vg(τ1) = Vg(τ2) for some 0 < τ1 < τ2, then for every τ

Vg(τ ) = Vg,l(τ )

for some singular reduced distance l of g. Moreover, g is induced from a shrinking Ricci
soliton and l(·,−1) is a normalized soliton function.

(3) If there is a sequence gi ∈ RF(n, B) such that gi → g then

lim inf
i

Vgi (τ ) ≥ V(τ ),

for every τ .

2.4 The density function

Using themonotonicity assertion fromLemma2.1we can define the density of g ∈ RF(n, B)

as

�g := lim
τ→0

Vg(τ ). (2.5)

Moreover, again from Lemma 2.1, it follows that if gi → g, where gi , g ∈ RF(n, B),
then

lim inf
i

�gi ≥ �g. (2.6)

Given a Ricci flow (M, g(t))t∈(−T ,0) satisfying (2.1), we now define the density of g(t)
at x ∈ M as

�g(x) = �gx .
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2.5 Reduced volume and density of shrinking Ricci solitons

Although the definition of the reduced volume involves minimization over all approximating
Ricci flows, which makes it hard to compute, we see below that we can still say enough in
the case of shrinking Ricci solitons. This is essentially due to the lower semicontinuity and
scaling properties of the reduced volume.

Lemma 2.2 (Lemma 3.1 in [14]) Let g = (M, g(t), x)t∈(−∞,0) ∈ RF(n, B) induced by a
normalized shrinking Ricci soliton (M, g(−1), f ).

(1) limτ→∞ Vg(τ ) = limτ→∞ Vg,l(τ ) = ∫
M (4π)− n

2 e− f dμg(−1), for any singular reduced
distance l of g.

(2) If x is a critical point of f , then

�g(x) =
∫
M

(4π)−
n
2 e− f dμg(−1) ≤ �g(y),

for any y ∈ M.
(3) If a singular reduced distance l of g is a soliton function then

Vg(τ ) = Vg,l(τ ),

for every τ .

2.6 Tangent flows and density

Let h ∈ RF(n, B) be a tangent flow of g ∈ RF(n, B), namely the limit of a sequence
(g)si , for si ↘ 0. By [24], h is induced by a gradient shrinking Ricci soliton. The following
theorem is proven in [14]:

Theorem 2.1 (Theorem 5.1 in [14]) Let (N , h(−1), f ) be the shrinking Ricci soliton asso-
ciated to h, with f being a normalized soliton function. Then

�g = �h =
∫
N
(4π)−

n
2 e− f dμh(−1). (2.7)

It follows that, although not unique, any tangent flow of g has the same asymptotic reduced
volume limτ→+∞ Vh(τ ), by Lemma 2.2.

We describe below another important implication of Theorem 2.1: although the reduced
volume may depend on B, as was discussed in Remark 2.2, the density is independent of
such choice. This follows from the observation that the collection of tangent flows h does
not depend on B. Hence, the corresponding asymptotic reduced volume is independent of
B, thus from Theorem 2.1 the density �g also does not depend on B.

2.7 The spine of a shrinking Ricci soliton

Let (N , h(−1), f ) be a gradient shrinking Ricci soliton with bounded curvature, and asso-
ciated Ricci flow (N , h(t))t∈(−∞,0). It is easy to see that this flow satisfies (2.1), for some
B < +∞.

The discussion above shows that the density function �h : N → (0, 1] is well defined
and independent of the choice of the class RF(n, B).
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We can thus define the spine of (N , h(t))t∈(−∞,0) as

S(N , h) = {x ∈ N ,�h attains its minimum value at x}.
We note that S(N , h) is non-empty, since �h attains a minimum value at any critical point
of f , by Lemma 2.2. Due to the quadratic growth of f , see for instance [16], f always has
a critical point.

Moreover, the lower semicontinuity of the density function (2.6) implies that S(N , h) is
a closed subset of N .

The notion of the spine S(N , h) will be important to us because of the following theorem.

Theorem 2.2 (Theorem 4.1 in [14]) Let (N , h(t))t∈(−∞,0) be the Ricci flow induced by a non-
flat gradient shrinking Ricci soliton satisfying (2.1). Then, there exists an integer 2 ≤ k ≤ n,
a constant D(n, B) < +∞, and a gradient shrinking Ricci soliton (N̄ , h̄(t))t∈(−∞,0) such
that

(1) (N , h(t)) splits isometrically as (N̄ , h̄(t)) × (Rn−k, gEucl).
(2) S(N , h) = K × R

n−k and diamh̄(t)(K ) ≤ D
√−t for every t ∈ (−∞, 0).

Remark 2.3 Observe that if k = 1 above (N , h(t)) is necessarily the Euclidean space.

Remark 2.4 Note that in the regularity theory for harmonic maps/minimal currents, the spine
is defined as the set where the density attains its maximum, in contrast to the definition above
where the spine consists of points with minimal density. This is due to the reversal of the
monotonicity and semicontinuity properties of the reduced volume.

Recall that the spine of a tangent map/cone is also the linear subspace of the available
translation symmetries. Theorem 2.2 can be viewed as the analogue of this fact for shrinking
Ricci solitons with bounded curvature, as it implies that the spine (S(N , h), h(t)) converges
to R

n−k in the pointed Gromov–Hausdorff topology, as t → 0.

Remark 2.5 If (N , h(t))t∈(−∞,0) is the flow induced by a compact shrinking Ricci soliton,
the tangent flow at any x ∈ N is (N , h(t), x)t∈(−∞,0). This implies that the density function
�h is constant, hence S(N , h) = N .

The same holds if N = N̄ × R
k for some compact shrinking Ricci soliton (N̄ , g, f ), as

for example Sn−k × R
k with the standard soliton structure.

For the U (n)-invariant shrinking Kähler Ricci solitons on line bundles over CPn−1 con-
structed in [13], the spine is the zero section Z of the corresponding line bundle. This is
because the flow is non-singular away from Z and U (n) acts isometrically and transitively
on Z.

2.8 Compactness of shrinking solitons

Below we prove a compactness theorem for Ricci solitons, under a uniform curvature bound.
Moreover, Lemma 2.4 asserts that, along a convergent sequence of such solitons, points with
lowest density converge to points in the spine of the limit.

We first need the following auxiliary lemma, which allows to center soliton functions
‘around’ a given point on the spine.

Lemma 2.3 (Aligning a soliton function to a point on the spine) Let (N , g, f ) be a gradient
shrinking Ricci soliton satisfying

sup
N

|Rm(g)|g ≤ B,
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for some B < +∞ and f is a normalized soliton function. Also, let q ∈ S(N , g). Then, there
is a normalized soliton function f ′ with a critical point p ∈ N such that

dg(p, q) ≤ D, (2.8)

where D = D(n, B) < +∞ is the constant given by Theorem 2.2.

Proof By Theorem 2.2, (N , g) splits isometrically as (N̄ k, ḡ) × R
n−k and S(N , g) = K ×

R
n−k , where K is compact and satisfies

diamḡ(K ) ≤ D. (2.9)

We may assume that q = (q̄, 0) for some q̄ ∈ K .
Now, let p0 = ( p̄, v0) ∈ N̄ × R

k be a critical point for f and define f ′ by

f ′(x̄, v) = f (x̄, v + v0).

Note that f ′ is also a normalized soliton function and has a critical point at ( p̄, 0).
Lemma 2.2 implies that critical points of f ′ are in S(N , g), thus p̄ ∈ K . Then, (2.9)

implies that

dg(p, q) = dḡ( p̄, q̄) ≤ D.

��
Lemma 2.4 Let (Ni , hi (t), qi )t∈(−∞,0) be a sequence of pointed completeRicci flows induced
by gradient shrinking Ricci solitons with bounded curvature. Suppose that

sup
Ni

|Rm(hi (t))|hi (t) ≤ B

|t | (2.10)

for t ∈ (−∞, 0) and

in jhi (−1)(qi ) ≥ i0. (2.11)

Then, there exists a subsequence (Nil , hil (t), qil )t∈(−∞,0) converging in the smooth Cheeger–
Gromov topology to (N∞, h∞(t), q∞)t∈(−∞,0), which also satisfies (2.10) and is induced by
a shrinking Ricci soliton with bounded curvature.

Moreover, if qi ∈ S(Ni , hi ), then q∞ ∈ S(N∞, h∞) and

�h∞(q∞) = lim
i

�hi (qi ).

Proof In view of bounds (2.10)–(2.11) andHamilton’s compactness theorem for sequences of
Ricci flows, passing to a subsequence if necessary,wemayassume that (Ni , hi (t), qi )t∈(−∞,0)
converges to a limit flow (N∞, h∞, q∞)t∈(−∞,0) that also satisfies (2.10).

Now, suppose that qi ∈ S(Ni , hi ) and let fi be normalized soliton functions with critical
points pi ∈ Ni , satisfying

dhi (pi , qi ) ≤ D, (2.12)

given by Lemma 2.3.
Since pi is a critical point, (2.10) implies

| fi (pi )| = ∣∣R(hi (−1))(pi ) + |∇ fi (pi )|2
∣∣ ≤ C(n, B). (2.13)

Differentiating the soliton equation and applying Shi’s derivative estimateswe obtain uniform
bounds on fi and its derivatives, within bounded distance from pi . Thus, by Arzela–Ascoli
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and passing to a subsequence if necessary, using (2.12), we may assume that fi converges
smoothly to a function f∞ on N∞, uniformly locally. Moreover, f∞ is a normalized soliton
function, since it is a property that passes to smooth limits.

Since fi grow quadratically in the distance from pi , and the volume of volhi (−1)(Bpi (r))
grows at most exponentially in r , it follows that∫

Ni

e− fi dμhi (−1) →
∫
N∞

e− f∞dμh∞(−1). (2.14)

Since qi ∈ S(Ni , hi ), recall that �hi (qi ) = ∫
Ni

e− fi dμhi (−1), due to Lemma 2.2. The
lower semicontinuity of the density function under the Cheeger–Gromov convergence of
Ricci flows and (2.14) imply that∫

N∞
e− f∞dμh∞(−1) ≥ �h∞(q∞). (2.15)

On the other hand, monotonicity of reduced volume and Lemma 2.2 implies that∫
N∞

e− f∞dμh∞(−1) = lim
τ→+∞Vq∞(τ ) ≤ �h∞(q∞). (2.16)

Thus, �h∞ attains its minimum value
∫
N∞ e− f∞dμh∞(−1) = limi �hi (qi ) at q∞, hence

q∞ ∈ S(N∞, h∞). This suffices to prove the Lemma. ��

3 The quantitative stratification

In this section we adapt the ideas of Cheeger–Naber from [7] to the setting of Ricci flows
subject to a Type I curvature bound. In particular, we define the quantitative stratification and
prove volume estimates similar to those in [7].

The principal use of the Type I hypothesis here is that it provides us with a well-defined
monotone quantity for the Ricci flow up to the singular time exploiting the available bounds
on the reduced distance from [10,24], as in Sect. 2. The existence of such monotone quantity
is crucially exploited in [7], and it remains an important open problem how to obtain such
quantity for the Ricci flow in general since there is no heat kernel coming from an ambient
space.

Before we define the quantitative stratification in detail, a few definitions are in order.
First, we need an appropriate notion of ‘closeness’ of two pointed Ricci flows:

Definition 3.1 Let g1 = (M1, g1(t), p1)t∈(−2,0), g2 = (M2, g2(t), p2)t∈(−2,0) be complete
pointed Ricci flows. We say that g2 is η-close to g1, η > 0, if the following holds:

(1) There exists U ⊂ M1 with Bg1(−1)(p1, η−1) ⊂ U and a smooth map F : U → M2,
diffeomorphism onto its image, satisfying F(p1) = p2.

(2) (1 + η)−2g1(t) ≤ F∗g2(t) ≤ (1 + η)2g1(t) for every t ∈ [−2 + η,−η].
(3) |(∇g1(t))l F∗g2(t)|g1(t) < η for t ∈ [−2 + η,−η] and 1 ≤ l ≤ �1/η�.

Recall that from the work of Naber [24], tangent flows are selfsimilar solutions to the
Ricci flow, induced by shrinking Ricci solitons. In other words, the flow looks selfsimilar
in small scales. The definition below makes this precise, and also quantifies the amount of
translational symmetry of a given Ricci flow, in the sense of isometric splitting of Euclidean
factors.
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Definition 3.2 Given ε > 0, r ∈ (0, 1], B < +∞ and integer k ≥ 0, a Ricci flow gx =
(M, g(t), x)t∈(−2,0) is (ε, r , k, B)-selfsimilar with respect to the k-dimensional subspace
V ⊂ TxM if there exists a pointed shrinking Ricci soliton

h = (N , h(t), q)t∈(−∞,0) = (Ñ , h̃(t), q̃) × (Rk, gEucl , 0)

satisfying supN |Rm(h(−1))|h(−1) ≤ B, such that q ∈ S(N , h), (gx )r is ε-close to h and
V = F∗({0} × R

k), where F∗ : Tq̃ Ñ × R
k → TpM , F as in Definition 3.1.

Including a uniform global curvature bound for the soliton in the definition above is an
unusual feature, compared to other instances of quantitative stratification. Here, it provides
the essential control on the geometry of the spine, by Theorem 2.2.

From now on we fix a B < +∞ and define the quantitative stratification as follows:

Definition 3.3 Let (M, g(t))t∈(−2,0) be a complete Ricci flow, dim M = n. Given an integer
0 ≤ k ≤ n, η > 0 and τ ∈ (0, 1] define Skη,τ ⊂ M as follows:

Skη,τ ={x ∈ M, gx is not (η, s, k + 1, B)-selfsimilar for any s ∈ [τ 1/2, 1]}.
Note that the following inclusions hold when k′ ≥ k, η′ ≤ η and τ ′ ≥ τ :

Skη,τ ⊂ Sk
′

η′,τ ′ .

Moreover, applying Lemma 2.4 we easily see that the quantitative stratification Skη,τ is
related to the stratification �k of the singular set � of (M, g(t))t∈(−2,0) by

�k =
⋃
η

⋂
τ

Skη,τ .

The aim of this section is to prove Theorem 1.2.

3.1 Almost self-similar scales

In this section we see that the scales and points around which a Ricci flow inRF(n, B) looks
selfsimilar are characterized by the associated reduced volume being ‘almost’ constant. We
then show, in Lemma 3.3, that as the flow evolves such points are locally ‘attracted’ towards
a lower dimensional submanifold.

Lemma 3.1 (Quantitative rigidity) For every ε, κ > 0 and B < +∞, there exists 0 <

δ1(ε, κ, B) ≤ ε such that if g = (M, g(t), x)t∈(−2,0) ∈ RF(n, B) satisfies

(1) g(t) is κ non-collapsed below scale 1 for all t ∈ (−2, 0),
(2) Vg(δ1r2) − Vg(r2) < δ1, for some r ∈ (0, 1]
then g is (ε, r , 0, B)-selfsimilar.

Proof Fix ε, κ > 0, γ ∈ (0, 1) and B < +∞. Suppose there is a sequence gi =
(Mi , gi (t), xi )t∈(−2,0) ∈ RF(n, B) that is κ non-collapsed below scale 1, and sequences
δi ↘ 0, δi < 1/2, and ri ∈ (0, 1] such that

Vgi (δi r
2
i ) − Vgi (r

2
i ) < δi , (3.1)

but gi is not (ε, ri , 0, B)-selfsimilar.
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The curvature bound of the class RF(n, B) and the κ non-collapsing
assumption imply that a subsequence of (gi )ri converges to a complete pointed Ricci flow
h = (N , h(t), q)t∈(−2,0) ∈ RF(n, B) in the smooth Cheeger–Gromov topology.

Let li be a singular reduced distance function of (gi )ri that realizes the reduced volume
at scale 1/2, namely

V(gi )ri
(1/2) = V(gi )ri ,li

(1/2).

From the estimates ofNaber [24], a subsequence of li converges to a singular reduced distance
l∞ of h, thus a subsequence of V(gi )ri

(1/2) converges to Vh,l∞(1/2). Moreover, for the same
reason a subsequence of V(gi )ri ,li

(1) converges to Vh,l∞(1).
Hence, from monotonicity and (3.1), it follows that

Vh,l∞(1) ≤ Vh,l∞(1/2) ≤ Vh,l∞(1), (3.2)

since by the definition of the singular reduced volume

V(gi )ri
(1) ≤ V(gi )ri ,li

(1).

Thus, l∞ is a normalized soliton function and h is a shrinking Ricci soliton, by Lemma 2.1.
Moreover, the underlying Ricci flow of h satisfies the Type I bound (2.1). This contradicts
the assumption that gi is not (ε, ri , 0, B)-selfsimilar. ��
Remark 3.1 Note that in the proof of Lemma 3.1 we do not use the full strength of assumption
(2) and in fact the lemma holds under the weaker hypothesis

Vg(γ r
2) − Vg(r

2) < δ1,

for some r ∈ (0, 1] and γ ∈ (0, 1), and small enough δ1, with the same proof. However, the
current proof uses the forward [9] and backward [21] uniqueness property of complete Ricci
flows with bounded curvature in an essential way, namely to assert that in part (2) of Lemma
2.1 the flow g is a shrinking soliton for all time.

The weaker statement of Lemma 3.1 is more likely to hold in the incomplete setting, and
it suffices for the arguments of this section.

Lemma 3.2 (Almost splitting) For every ε, λ, μ, κ > 0, γ ∈ (0, 1] and B < +∞, there
exists 0 < δ2(ε, λ, μ, κ, B, γ ) ≤ ε such that, if (M, g(t), x1)t∈(−2,0) ∈ RF(n, B), g(t) is κ

non-collapsed below scale 1 for every t ∈ (−2, 0) and for some r ∈ (0, 1]
(1) (M, g(t), x1) is (δ2, r , k, B)-selfsimilar at x1 with respect to V ⊂ Tx1M, for some

0 ≤ k ≤ n,
(2) (M, g(t), x2) is (δ2, r , 0, B)-selfsimilar,
(3) dg(−r2)(x1, x2) < λr ,
(4) dg(−τ)(x2, expg(−γ r2),x1(V ∩ B0(2λr)) ≥ (D + μ)

√
τ

for some τ ∈ [r2μ, r2(2−μ)], where D = D(n, B) is the constant given by Theorem2.2,

then (M, g(t), x1)t∈(−2,0) is (ε, r , k + 1, B)-selfsimilar.

Proof Fix ε, λ, μ, κ > 0, γ ∈ (0, 1] and B < +∞, as in the statement of the theo-
rem. Suppose there are sequences δi ↘ 0 and ri ∈ (0, 1], and a sequence of Ricci flows
(Mi , gi (t))t∈(−2,0) ∈ RF(n, B), κ non-collapsed below scale 1, satisfying:

(1) (Mi , gi (t), xi1) is (δi , ri , k, B)-selfsimilar with respect to Vi ⊂ Txi1
Mi ,

(2) (Mi , gi (t), xi2) is (δi , ri , 0, B)-selfsimilar,
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(3) dgi (−r2i )(x
i
1, x

i
2) < λri ,

(4) dgi (−τi )(x
i
2, expgi (−γ r2i ),xi1

(Vi ∩ B0(2λri ))) ≥ (D + μ)
√

τi for some

τi ∈ [r2i μ, r2i (2 − μ)],
but such that (Mi , gi (t), xi1) is not (ε, ri , k + 1, B)-selfsimilar.

Since δi ↘ 0, assumption (1) above and Lemma 2.4 imply that we may assume, by pass-
ing to subsequence if necessary, that (Mi , r

−2
i gi (r2i t), x

i
1) converges in the smooth pointed

Cheeger–Gromov topology to a shrinking Ricci soliton

(N , h(t), q1)t∈(−∞,0) = (Ñ , h̃(t), q̃1) × (Rk, gEucl , 0).

with q1 ∈ S(N , h), which satisfies supN |Rm(h(−1))|h(−1) ≤ B.
Moreover, since (Mi , gi (t), xi1) is not (ε, r1, k+1, B)-selfsimilar, it follows that (Ñ , h̃(t))

does not split anyEuclidean factors. Then, byTheorem2.2, S(N , h) = K×R
k ,where K ⊂ Ñ

is compact and satisfies

diamh̃(−τ)
(K ) ≤ D

√
τ , (3.3)

for every τ ∈ (0,+∞).
Similarly, wemay assume that (Mi , r

−2
i gi (r2i t), x

i
2) converges to a shrinking Ricci soliton

(N̂ , ĥ(t), q̂), with q̂ ∈ S(N̂ , ĥ).
Since dgi (−r2i )(x

i
1, x

i
2) < λri , the flows (N , h(t)) and (N̂ , ĥ(t)) are isometric, by the

uniqueness of smooth limits, so from now on we will identify them. In particular, we identify
q̂ with q2 ∈ N .

Then, since q1, q2 ∈ S(N , h) = K × R
k , let q1 = (q̃1, 0) and q2 = (q̃2, v), v ∈ R

k .
Now, if �i : Bh(−1)(q1, Ri ) → Mi , where Ri → +∞, are diffeomorphisms associated

to the convergence, then

�−1
i (expgi (−γ r2i ),xi1

(Vi )) → {q̃1} × R
k,

smoothly and uniformly on compact sets. Moreover, �−1
i (xi2) → q2 ∈ N and τi → τ̄ , up to

subsequence.
Since q2 = (q̃2, v) ∈ K × R

k , by (3.3) we conclude that

dh(−τ̄ )(q2, {q̃1} × R
k) = dh̃(−τ̄ )

(q̃1, q̃2) ≤ D
√

τ̄ , (3.4)

since the splitting N = Ñ × R
k is isometric.

On the other hand, dgi (−τi )(x
i
2, expgi (−γ r2i ),xi1

(Vi ∩ B0(2λri ))) ≥ (D + μ)
√

τi implies
that

dh(−τ̄ )(q2, {q̃1} × R
k) ≥ (D + μ)

√
τ̄ ,

which contradicts (3.4). ��
Lemma 3.3 (Line-up lemma) Let gx := (M, g(t), x)t∈(−2,0) ∈ RF(n, B) such that g(t)
is κ non-collapsed below scale 1 for every t ∈ (−2, 0). Then, for every λ,μ, ν > 0 and
γ ∈ (0, 1) there exists δ3(B, γ, κ, λ, μ, ν) > 0 such that if

Vgx (δ3τ̄ ) − Vgx (τ̄ ) < δ3, (3.5)

for some τ̄ ∈ (0, 1], then there exists 0 ≤ k ≤ n and a k-dimensional subspace V of TxM
such that

(1) gx is (ν, τ̄ 1/2, k, B)-selfsimilar with respect to V .
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(2) The set

L τ̄ ,δ3 = {y ∈ M, Vgy (δ3τ̄ ) − Vgy (τ̄ ) < δ3}
satisfies

L τ̄ ,δ3 ∩ Bg(−τ̄ )(x, λτ̄ 1/2) ⊂ T g(−τ)

(D+μ)
√

τ

(
expg(−γ τ̄ ),x (V ∩ B0(2λτ̄ 1/2))

)
, (3.6)

for every τ ∈ [μτ̄ , (2 − μ)τ̄ ], where D is the constant given by Theorem 2.2.
Here T g

r (S) denotes the r-tubular neighbourhood of a set S with respect to the Rieman-
nian metric g.

Proof Let δ(ν) = δ2(ν, λ, μ, κ, B, γ ) ≤ ν, where δ2 is given by Lemma 3.2, and set
ai (ν) = δ ◦ . . . ◦ δ(ν) ≤ ν, where the composition is taken i-times. Then, choose
δ3 = δ1(an(ν), κ, B), where δ1 is given by Lemma 3.1. Thus, by (3.5), it follows that gx is
(an, τ̄ 1/2, 0, B)-selfsimilar.

Let k be the maximum integer such that 0 ≤ k ≤ n and gx is (an−k, τ̄
1/2, k, B)-selfsimilar

with respect to some V k ⊂ TxM .
Suppose that (3.6) doesn’t hold for some τ ∈ [μτ̄ , (2 − μ)τ̄ ]. Thus, there is y ∈

Bg(−τ̄ )(x, λτ̄ 1/2) with Vgy (δ3τ̄ ) − Vgy (τ̄ ) < δ3 but

dg(−τ)(y, expg(−γ τ̄ ),x (V ∩ B0(2λτ̄ 1/2))) ≥ (D + μ)
√

τ .

By Lemma 3.1 it is also true that gy is (an, τ̄ 1/2, 0, B)-selfsimilar. It then follows by
Lemma 3.2 that gx is (an−(k+1), τ̄

1/2, k + 1, B)-selfsimilar, which is a contradiction. ��
Remark 3.2 Although the arguments in Lemmata 3.2 and 3.3 are very similar to other
instances of quantitative stratification [3,5–8], it is interesting to point out how Lemma 3.3
differs.

In [3,5–8] the selfsimilar points line up close to a lower dimensional subspace. Taking the
analogy to the Ricci flow naively, one might expect that selfsimilar points will tend to line
up around a lower dimensional submanifold. However, this is certainly not true for the Ricci
flow, as the example of the standard Ricci flow on the cylinder S2 × R, becoming singular
at t = 0, shows: there, every point is selfsimilar, but the diameter of the S2 factor is small
only for times near t = 0. This example illustrates that a statement like that of Lemma 3.3 is
more likely to hold.

3.2 Energy decomposition

Let (M, g(t))t∈(−2,0) be a complete Ricci flow with bounded curvature satisfying:

• |Rm(g(t))|g(t) ≤ B/|t | on M × (−2, 0),
• g(t) is κ non-collapsed below scale 1.

For every x ∈ M and 0 < τ1 < τ2 ≤ 1 define

Wτ1,τ2(x) = Vgx (τ1) − Vgx (τ2) ≥ 0.

Let α, γ ∈ (0, 1) and δ > 0, and set τi = γ iα. Then, for every x ∈ M define the sequence

T (x) := (T1(x), T2(x), . . . ) ∈ {0, 1}N
as

Ti (x) :=
{
1, Wδτi−1,τi−1(x) ≥ δ,

0, Wδτi−1,τi−1(x) < δ.
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Now, given any a = (a1, . . . , a j ) ∈ {0, 1} j , for some integer j ≥ 1, define Ea ⊂ M as
follows:

Ea = {x ∈ M, Ti (x) = ai for every 1 ≤ i ≤ j}.

3.3 Quantitative differentiation

A priori there are 2 j sets of the form Ea, for a ∈ {0, 1} j . We will see below that there is in
fact a much smaller number of such sets, which grows polynomially in j .

Let m ≥ 1 be the minimum integer so that the intervals [γm(i−1)α, δγm(i−1)α), for all
integers i ≥ 1, are disjoint. Namely m = ⌈ log δ

log γ

⌉
. Since

∞∑
i=1

Wδγm(i−1)α,γm(i−1)α(x) ≤ �g(x) − Vgx (α) ≤ 1,

it follows that the number of non-negative integers i for which

Wδγm(i−1)α,γm(i−1)α(x) ≥ δ

is at most �1/δ�, hence the number of integers i for which

Wδγ i−1α,γ i−1α(x) ≥ δ

is at most m�1/δ�.
Thus, for each x ∈ M , Ti (x) = 1 for at most K (δ, γ ) = m�1/δ� values of i . This implies

that for j ≥ K there are only
(

j
K

)
≤ j K (3.7)

disjoint sets Ea for a ∈ {0, 1} j . Thus, for any j ≥ 1 there are at most 2 j K disjoint such
subsets.

3.4 Covering lemma

Let (M, g(t))t∈(−2,0) be a complete Ricci flow belonging to the class C(n, B, κ0, κ1).

Lemma 3.4 Given α ≤ 1, there exists a κ2(α, B, κ0) > 0 such that for every x ∈ M, and
r ≤ γ l/2, τl = γ lα for any l ≥ 0:

κ2r
n ≤ volg(−τl )(Bg(−τl )(x, r)) ≤ κ1r

n . (3.8)

Proof We will first prove the lower bound. The curvature bound of the class C(n, B, κ0, κ1)

implies that for every l ≥ 0

|Rm(g(−τl))|g(−τl ) ≤ B

γ lα
,

hence the κ0 non-collapsing property implies that for every scale r small enough so that
B

γ lα
≤ 1

r2

volg(−τl )(Bg(−τl )(x, r)) ≥ κ0r
n . (3.9)
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Note that for every r ≤ γ l/2

B

γ lα
≤ B

r2α
= 1

(ζr)2
,

where ζ = (
α
B

)1/2 ≤ 1, since we can assume without loss of generality that B > 1.
Thus, we may now use (3.9) to estimate, for every r ≤ γ l/2,

volg(−τl )(Bg(−τl )(x, r)) ≥ volg(−τl )(Bg(−τl )(x, ζr)) ≥ κ0ζ
nrn .

The lower bound of the claim now follows by putting κ2 = ζ nκ0.
The upper bound directly follows from the κ1 non-inflating property (i.e. requirement (3)

in the definition of the class C(n, B, κ0, κ1)) since γ l/2 ≤ 1. ��
Lemma 3.5 (Covering lemma) There are α(B, γ ), δ(B, γ, κ0, η) > 0 so that the con-
struction of Sects. 3.2 and 3.3 satisfies the following: there exist C1,C2 < +∞ and
β(B, γ ) ∈ (0, 1/2) such that, for every x ∈ M, any a ∈ {0, 1} j , j ≥ 1, the set
Sk
η,γ j−1α

∩ Ea ∩ Bg(−α)(x, β) is covered by at most

C1(C2γ
−k) j

g(−τ j−1)metric balls of radius r j−1 centered at Skη,γ j−1α
, where τ j = γ jα and r j = γ j/2β.

In particular, C1 depends only on n, κ0, κ1, B, γ and C2 only on n.

Proof We prove this by induction. For j = 1 we only need to estimate the number P of balls
Bg(−τ0)(yi , r0), i = 1, . . . , P , in a minimal covering of

Skη,α ∩ Bg(−α)(x, β),

where yi ∈ Skη,α ∩ Bg(−α)(x, β). Note that α, β will be chosen later, depending only on B
and γ .

This number is bounded above by the cardinality Q of a maximal β-separated at time
t = −α, subset {y1, . . . , yQ} of Skη,α ∩ Bg(−α)(x, β).

If β ≤ 1
2 we can apply Lemma 3.4 to estimate

Qκ2(β/2)n ≤
Q∑
i=1

volg(−α)(Bg(−α)(yi , β/2))

≤ volg(−α)(Bg(−α)(x, 2r)) ≤ κ1(2β)n,

hence P ≤ Q ≤ c0 := κ14n

κ2
.

We proceed to the induction step. Given any a ∈ {0, 1} j+1 denote by ã ∈ {0, 1} j the
vector with ãl = al for every 1 ≤ l ≤ j .

Now, recall that τ j = γ jα, r j = γ j/2β and suppose that

Skη,τ j−1
∩ Eã ∩ Bg(−α)(x, β) ⊂

N⋃
i=1

Bg(−τ j−1)(zi , r j−1),

where zi ∈ Skη,τ j−1
∩ Eã ∩ Bg(−α)(x, β).

First, observe that the curvature bound of the class C(n, B, κ0, κ1) implies that

|Rm(g(−τ))|g(−τ) ≤ B

γ jα
,
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in M for τ ∈ [τ j , τ j−1]. Then, standard distance distortion estimates imply that for every
y ∈ M and r > 0,

Bg(−τ j )(y, A
−1r) ⊂ Bg(−τ j−1)(y, r) ⊂ Bg(−τ j )(y, Ar),

where A = ec(n)Bγ −1
.

Thus, each ball of the given cover satisfies

Bg(−τ j−1)(zi , r j−1) ⊂ Bg(−τ j )(zi , Ar j−1).

It follows that the cardinality L of a maximal r j -separated at time t = −τ j set {w1, . . . , wL }
in

Skη,τ j
∩ Ea ∩ Bg(−τ j−1)(zi0 , r j−1) ⊂ Skη,τ j

∩ Ea ∩ Bg(−τ j )(zi0 , Ar j−1)

can be estimated by

Lκ2(r j/2)
n ≤

L∑
i=1

volg(−τ j )(Bg(−τ j )(wi , r j/2)),

≤ volg(−τ j )(Bg(−τ j )(zi0 , Ar j−1 + r j−1)),

≤ κ1(A + 1)n(r j−1)
n,

where we used again Lemma 3.4, assuming that β ≤ (1 + A)−1. This provides us with an
estimate L ≤ κ1

κ2
(A + 1)n2nγ −n =: c1, c1 = c1(n, α, B, κ0, κ1, γ ).

Thus the set

Skη,τ j
∩ Ea ∩ Bg(−τ j−1)(zi0 , r j−1)

can be covered by at most c1 balls Bg(−τ j )(wi , r j ), with centers in Skη,τ j
∩ Ea ∩

Bg(−τ j−1)(zi0 , r j−1).
At this point it is clear that for the arguments above to go through we need to choose

β(B, γ ) = min{1/2, (1 + A)−1}.
The rough estimate above is valid on all scales, and relies on the Type I assumption. On

the other hand, if we are on a ‘good’ scale τ j−1, namely a scale on which the flow looks
selfsimilar, we can do much better.

To see this, suppose that a j = 0 and let Bg(−τ j−1)(zi0 , r j−1) be one of the balls in the
cover of Skη,τ j−1

∩ Eã ∩ Bg(−α)(x, β).
We will show that there is a minimal cover of

Skη,τ j
∩ Ea ∩ Bg(−τ j−1)(zi0 , r j−1)

by at most c2(n)γ −k balls Bg(−τ j )(wi , r j ) with centers wi ∈ Skη,τ j
∩ Ea.

First, observe that Ea ⊂ Eã ⊂ Lτ j−1,δ , since a j = 0, and recall that zi0 ∈ Eã.
Chose δ = δ3(B, γ, κ0, β/α,μ,μ) as given by Lemma 3.3, where α,μ will be chosen

later.
Lemma 3.3 then implies that

Ea ∩ Bg(−τ j−1)(zi0 , r j−1) ⊂ Lτ j−1,δ ∩ Bg(−τ j−1)(zi0 , r j−1),

⊂ T g(−τ)

(D+μ)
√

τ
(expg(−τ j ),zi0

(V ∩ B0(2r j−1))) ∩ Bg(−τ j−1)(zi0 , r j−1),
(3.10)

for every τ ∈ [μτ j−1, (2−μ)τ j−1] and some l-dimensional subspace V l of Tzi0 M .Moreover,

gzi0 is (μ, τ
1/2
j−1, l, B)-selfsimilar with respect to V .
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Now, chose μ = min{η, γ, D}. On the one hand, this choice ensures that l ≤ k, since
zi0 ∈ Skη,τ j−1

. It also ensures that τ j ∈ [μτ j−1, (2 − μ)τ j−1], thus estimate (3.10) holds for
τ = τ j .

Finally, chose α small enough so that 2D
√

α < β, so that

(D + μ)
√

τ j < r j/10. (3.11)

This implies that there exists C2(n) and a minimal cover of

Skη,τ j
∩ Ea ∩ Bg(−τ j−1)(zi0 , r j−1)

with at most C2γ
−k balls at time t = −τ j of radius r j centered at Skη,τ j

.
To construct such cover, first consider a maximal r j/4-separated set in expg(−τ j ),zi0

(V ∩
B0(r j−1)). Then, by (3.11), the g(−τ j )-balls of radius r j/2 with centers in that set cover
Skη,τ j

∩Ea∩Bg(−τ j−1)(zi0 , r j−1), forμ small enough (but independent of the other parameters
of the proof). Finally, we can substitute each ball in this cover, with a ball of radius r j centered
at Skη,τ j

∩ Ea ∩ Bg(−τ j−1)(zi0 , r j−1).
Since there are at most K ‘bad’ scales and for the remaining j − K we have the above

more refined covering estimate, we obtain the result setting C1 = c0cK1 C−K
2 γ −K . ��

3.5 Proof of Theorem 1.2

Given B < +∞ and γ which will be appropriately chosen later, let α, β be given by
Lemma 3.5.

It suffices to prove the theorem for τ = τ j−1 for all j ≥ 1, since for any τ j < τ < τ j−1,

volg(−τ)

(
Skη,τ ∩ Bg(−α)(x, β)

)
≤ volg(−τ)

(
Skη,τ j−1

∩ Bg(−α)(x, β)
)

,

≤ Cητ
n−k−η

2
j−1 ,

≤ Cη(γ
−1)

n−k−η
2 τ

n−k−η
2 .

Now, recall that M = ⋃
a∈{0,1} j Ea and that there are at most 2 j K non-empty sets Ea.

Moreover, from Lemma 3.5, Skη,τ j−1
∩ Ea ∩ Bg(−α)(x, β) is covered by at most C1(C2γ

−k) j

balls at time t = −τ j−1 of radius r j−1. Thus, using Lemma 3.4:

volg(−τ j−1)

(
Skη,τ j−1

∩ Bg(−α)(x, β)
)

≤ 2 j KC1(C2γ
−k) jκ1(2r j−1)

n .

Now, we chose γ = γ (n, η) small enough so that C2 ≤ γ −η/2 and we can also bound
j K ≤ C(K , η, γ )(γ j−1)−η/2. The estimate above then becomes

volg(−τ j−1)

(
Skη,τ j−1

∩ Bg(−α)(x, β)
)

≤ Cητ
n−k−η

2
j−1 ,

which is what we want to prove. ��

Remark 3.3 Note that due to the standard lower scalar curvature bound for the Ricci flow
R(g(−τ)) ≥ − n

2(τ+2) and the evolution of the volume under Ricci flow, for every 0 < τ̄ ≤
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τ ≤ α

volg(−τ̄ )

(
Skη,τ ∩ Bg(−α)(x, β)

)
≤ c(n) volg(−τ)

(
Skη,τ ∩ Bg(−α)(x, β)

)

≤ Cητ
n−k−η

2 .

Moreover, if � = {x ∈ M, supt∈[0,T ) |Rm(g)|g(x, t) < +∞}, then

volg(0)(S
k
η,τ ∩ Bg(−α)(x, β) ∩ �) ≤ Cητ

n−k−η
2 . (3.12)

4 Curvature estimates

Let (M, g(t))t∈(−2,0) be a complete Ricci flow satisfying

max
M

|Rm(g(t))|g(t) ≤ B

|t | . (4.1)

for all t ∈ (−2, 0). If (g(t))t∈(−2,0) is not singular at x ∈ M , namely there is a neighbourhood
U of x such that

sup
U×(−2,0)

|Rm(g(t))|g(t) < +∞,

we can define the curvature radius at x as

rRm(x) = sup
{
r ≤ 1, |Rm(g)| ≤ r−2 in Bg(−r2)(x, r) × [−r2, 0]} .

If (g(t))t∈(−2,0) is singular at x , we define rRm(x) = 0.

4.1 "-regularity

Below we prove a few ε-regularity results for Ricci flows satisfying (4.1), which imply that
high curvature regions are inside one of the sets Skε,τ .

Lemma 4.1 (ε-regularity) For every B < +∞ and κ > 0, there exists ε(B, κ) > 0 such that
if a complete Ricci flow (M, g(t))t∈(−2,0) satisfies (4.1) and is κ non-collapsed below scale
1, then for every τ ∈ (0, 1]

{rRm <
√

τ } ⊂ Sn−2
ε,τ .

Moreover, if dim M = 4 and g(t) has positive isotropic curvature, then for every τ ∈ (0, 1]
{rRm <

√
τ } ⊂ S1ε,τ .

Proof To prove the first statement, take a sequence of counterexamples (Mi , gi (t))t∈(−2,0)
satisfying (4.1), and xi ∈ Mi , τi ∈ (0, 1], εi ↘ 0 such that rRm(xi ) <

√
τi and xi /∈ Sn−2

εi ,τi
.

Thus, the pointed flows gi = (Mi , gi (t), xi )t∈(−2,0) are (εi , si , n − 1, B)-selfsimilar, for

some si ∈ [τ 1/2i , 1]. By Lemma 2.4, and the κ non-collapsing assumption, a subsequence of
(gi )si converges to a shrinking Ricci soliton that splits at least n − 1 Euclidean factors. The
only such soliton is the Gaussian shrinking soliton. By Perelman’s pseudolocality theorem
[25] we conclude that rRm(xi ) ≥ si ≥ τ

1/2
i for large i , which is a contradiction.

The proof of the second statement is similar, with the difference that the limiting soliton
now splits at least two Euclidean factors and has positive isotropic curvature. However, four
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dimensional gradient shrinking Ricci solitons with positive isotropic curvature split at most
one Euclidean factor, by [22], which is a contradiction. ��

Under an additional bound on the Weyl curvature W , we can improve Lemma 4.1 as
follows.

Lemma 4.2 (ε-regularity under Weyl curvature bound) Given B < +∞ and κ > 0, there
exists ε(B, κ) > 0 such that if for some x ∈ M and 0 < r ≤ 1 a complete Ricci flow
(M, g(t))t∈(−2,0) satisfies (4.1), it is κ non-collapsed below scale 1, and

(1) (M, g(t), x)t∈(−2,0) is (ε, r , 2, B)-selfsimilar,
(2) r2|W (g(−r2))|g(−r2) < ε in Bg(−r2)(x, ε

−1r),

then rRm(x) ≥ r .

Proof We argue by contradiction. Let (Mi , gi (t))t∈(−2,0) be a sequence satisfying (4.1),
xi ∈ Mi and suppose that there are sequences ri ∈ (0, 1] and εi ↘ 0 such that

r2i |W (gi (−r2i ))|gi (−r2i ) < εi (4.2)

in Bgi (−r2i )(xi , ε
−1
i ri ) and (Mi , gi (t), xi )t∈(−2,0) is (εi , ri , 2, B)-selfsimilar, but rRm(xi ) <

ri .
By Lemma 2.4, and the κ non-collapsing assumption, there is a subsequence of

(Mi , r
−2
i gi (r2i t), xi )t∈(−2,0) converging to a shrinking Ricci soliton (N , h(t), q)t∈(−2,0),

which splits at least 2 Euclidean factors.
Inequality (4.2) implies that (N , h(t)) has vanishing Weyl curvature. Since it splits more

than one Euclidean factor, it has to be the Gaussian shrinking soliton, by [34]. Perelman’s
pseudolocality theorem [25] then gives that rRm(xi ) ≥ ri , which is a contradiction. ��

4.2 Regularity estimates

We now couple the ε-regularity results of Lemmata 4.1 and 4.2with the volume estimate of
Theorem 1.2 to prove the following.

Theorem 4.1 Given (M, g(t))t∈(−2,0) ∈ C(n, B, κ0, κ1) and η ∈ (0, 1) there exist
α(B), β(B) > 0 and Cη = C(n, B, κ0, κ1, η) < +∞ such that for every x ∈ M and
0 < τ ≤ α

volg(0)
({0 < rRm <

√
τ } ∩ Bg(−α)(x, β)}) ≤ Cητ

1−η, (4.3)

and
∫
Bg(−α)(x,β)∩{rRm>0}

r−2(1−η)
Rm dμg(0) ≤ Cη. (4.4)

If in addition dim M = 4 and g(t) has positive isotropic curvature then

volg(0)
({0 < rRm <

√
τ } ∩ Bg(−α)(x, β)

) ≤ Cητ
3
2−η, (4.5)

and
∫
Bg(−α)(x,β)∩{rRm>0}

r−3(1−η)
Rm dμg(0) ≤ Cη. (4.6)

Proof Let α(B) and β(B) be given by Theorem 1.2. Then, estimates (4.3) and (4.5) easily
follow from the volume estimate of Theorem 1.2, Remark 3.3 and Lemma 4.1.
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To prove (4.4) and (4.6) we compute∫
Bg(−α)(x,β)∩{rRm>0}

r−p
Rmdμg(0)

=
∫
Bg(−α)(x,β)∩{rRm>0}

(
1

p

∫ 1

rRm
s−(p+1)ds + 1

)
dμg(0),

≤ 1

p

∫ 1

0

1

s p+1 volg(0)
({0 < rRm ≤ s} ∩ Bg(−α)(x, β)

)
ds + volg(0)(Bg(−α)(x, β)),

≤ C(η, p, n, B, κ0, κ1)

∫ 1

0
s−(p+1)+l−ηds + volg(0)(Bg(−α)(x, β)).

For the last inequality we used either (4.3) or (4.5), substituting l = 2 or l = 3 respectively.
Moreover, volg(0)(Bg(−α)(x, β)) should be interpreted as volg(0)(Bg(−α)(x, β)∩{rRm > 0}).

Thus, for every p = l − 2η we can bound, for some Cp = C(p, n, B, κ0, κ1),∫
Bg(−α)(x,β)∩{rRm>0}

r−p
Rmdμg(0) ≤ Cp + volg(0)(Bg(−α)(x, β)),

≤ Cp + C(n) volg(−α)(Bg(−α)(x, β)),

≤ Cp + C(n, κ1)β
n .

Here, we used the volume control due to the standard scalar curvature bound R ≥ − n
2(τ+2) ,

as in Remark 3.3, and Lemma 3.4. This suffices to prove (4.4) and (4.6). ��
Theorem 4.2 Given (M, g(t))t∈(−2,0) ∈ C(n, B, κ0, κ1) and η ∈ (0, 1) there exist
α(B), β(B) > 0, ε(B) > 0 and Cη = C(n, B, κ0, κ1, η) < +∞ such that if for every
t ∈ (−2, 0)

sup
Bg(−α)(x,2ε−1β)

|W (g(t))|g(t) < ε, (4.7)

then for every 0 < τ ≤ α

volg(0)
({0 < rRm <

√
τ } ∩ Bg(−α)(x, β)

) ≤ Cητ
n−1
2 −η, (4.8)

and
∫
Bg(−α)(x,β)∩{rRm>0}

r−(n−1)(1−η)
Rm dμg(0) ≤ Cη. (4.9)

Proof Letα, β given by Theorem 1.2 and ε by Lemma 4.2. Also, recall the following estimate
from Lemma 2.6 of [24]: along any unit speed minimizing g(t)-geodesic σ(s), s ∈ [0, l],

∫ l

0
Ric(σ̇ (s), σ̇ (s))ds ≤ C1√|t | , (4.10)

for some constant C1 = C1(n, B) < +∞. It follows that

d

dt
dg(t)(y, z) ≥ −C2(n, B)√|t | . (4.11)

Integrating (4.11) gives, for every y ∈ Bg(−α)(x, β) and t ∈ [−α, 0),

Bg(t)(y, ε
−1β) ⊂ Bg(−α)(x, β(1 + ε−1) + C3

√
α), (4.12)

where C3 = C3(n, B) < +∞.
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Choosing ε > 0 small enough so that

Bg(−α)(x, β(1 + ε−1) + C3
√

α) ⊂ Bg(−α)(x, 2ε
−1β),

and using Lemma 4.2, we obtain that for every r ∈ (0, 2β]
{rRm < r} ⊂ S1

ε,r2 . (4.13)

Note that 2β ≤ 1 by the proof of Theorem 1.2. The result then follows by arguing as in
Theorem 4.1. ��
Proof of Theorem 1.3 Estimate (1.6) is an immediate consequence of estimates (4.4) and (4.6),
since Shi’s local derivative estimates (see [19, Theorem D.1]) imply

∫
Bg(−α)(x,β)∩{rRm>0}

|∇ j Rm(g(0))|pg(0)dμg(0)

≤ C(n, p, j)
∫
Bg(−α)(x,β)∩{rRm>0}

r−( j+2)p
Rm dμg(0).

��
Remark 4.1 Under the assumptions of Theorem 1.3, if in addition theWeyl curvature satisfies
assumption (4.7) of Theorem 4.2, then the estimates of Theorem 1.3 hold for any p ∈
(0, n − 1).

4.2.1 General type I Ricci flows

Given any complete Ricci flow (M, g(t))t∈[0,T ), T > 1, we may define the curvature radius
of g(t) at a non-singular point (x, t) ∈ M × [1, T ] as

rRm(x, t) = sup
{
r ≤ 1, |Rm(g)| ≤ r−2 in Bg(t−r2)(x, r) × [t − r2, t]} ,

and rRm(x, T ) = 0, if (x, T ) is singular.
The following theorem holds:

Theorem 4.3 Let (Mn, g(t))t∈[0,T ), dim M = n and T > 1, be a compact Ricci flow satisfy-
ing (4.1) for some constant B < +∞. Then for every
p ∈ (0, 2), there exists Cp = C(g(0), p) < +∞ such that

∫
M∩{rRm(·,t)>0}

r−p
Rm (·, t)dμg(t) ≤ Cp (4.14)

for every t ∈ [1, T ].
Moreover, if dim M = 4 and g(t) has positive isotropic curvature, or if

supM×[0,T ) |W (g(t))|g(t) < +∞, the estimate above holds for p ∈ (0, n − 1).

Proof First, observe that, due to the non-collapsing [25] and non-inflating [32] properties of
the Ricci flow, there exist κ0, κ1 > 0 and ρ > 0, which depend on g(0), T and B, such that
the following holds: for every t̄ ∈ [1, T ] the flow (M, ρ−2g(ρ2t + t̄))t∈(−2,0) is in the class
C(n, B, κ0, κ1).

Now, let α, β be provided by applying Theorem 1.2 to the class C(n, B, κ0, κ1). Moreover,
let N (t) be the minimal number of g(t)-balls of radius ρβ required to cover M .
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For any p ∈ (0, 2), applying Theorem 4.1 to (M, ρ−2g(ρ2t + t̄))t∈(−2,0) gives∫
M∩{rRm(·,t̄)>0}

r−p
Rm (·, t̄)dμg(t̄) ≤

≤
N (t̄−ρ2α)∑

i=1

∫
Bg(t̄−ρ2α)

(xi ,ρβ)∩{rRm(·,t̄)>0}
r−p
Rm (·, t̄)dμg(t̄),

≤ N (t̄ − ρ2α)C(n, p, B, κ0, κ1)ρ
n
2 −p.

To conclude the proof, note that we can estimate N (t̄ − ρ2α) ≤ C(g(0), B), since
|Rm(g(t))|g(t) ≤ B

ρ2α
for t ≤ T − ρ2α.

The remaining assertions of the theorem follow from a similar line of reasoning, applying
Theorems 4.1 and 4.2 respectively. Note that, in order to apply Theorem 4.2 when there
is a uniform bound on the Weyl curvature, we need to chose ρ > 0 small enough so that
ρ2 supM×[0,T ) |W (g(t))|g(t) < ε, ε given by Theorem 4.2. ��
Proof of Theorem 1.1 Estimate (1.3) follows from Theorem 4.3, as in the proof of Theorem

1.3. To obtain estimate (1.4) we first write r−( j+2)p
Rm = r

− l( j+2)p
l+2

Rm r
− 2( j+2)p

l+2
Rm , substituting l = 2

or 3, depending on whether we are in the general case or the case of positive isotropic
curvature respectively.

Then we estimate∫ T

1

∫
M∩{rRm(·,s)>0}

|∇ j Rm(g(s))|pg(t)dμg(s)ds

≤ C(n, p, j)
∫ T

1

∫
M∩{rRm(·,s)>0}

r−( j+2)p
Rm dμg(s)ds,

= C(n, p, j)
∫ T

1

∫
M∩{rRm(·,s)>0}

r
− l( j+2)p

l+2
Rm r

− 2( j+2)p
l+2

Rm dμg(s)ds,

≤ C(n, p, j)
∫ T

1

∫
M∩{rRm(·,s)>0}

r
− l( j+2)p

l+2
Rm (B/|s|) ( j+2)p

l+2 dμg(s)ds,

which implies the required bound, as long as p ∈ (0, l+2
j+2 ), by Theorem 4.3. ��

Remark 4.2 Under the assumptions of Theorem 4.3, if the Weyl curvature is uniformly
bounded for all t ∈ [0, T ), then the estimates of Theorem 1.1 hold for any p ∈ (0, n − 1).
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