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Abstract

We prove existence of instantaneously complete Yamabe flows on hyperbolic space of arbi-
trary dimension m > 3. The initial metric is assumed to be conformally hyperbolic with
conformal factor and scalar curvature bounded from above. We do not require initial com-
pleteness or bounds on the Ricci curvature. If the initial data are rotationally symmetric,
the solution is proven to be unique in the class of instantaneously complete, rotationally
symmetric Yamabe flows.

Mathematics Subject Classification 53C44 - 35K55 - 35A01 - 35A02

The Yamabe flow was introduced by Richard Hamilton [11]. It describes a family of Rie-
mannian metrics g(¢) subject to the equation d;g = —Rg and tends to evolve a given initial
metric towards a metric of vanishing scalar curvature. Hamilton showed that global solu-
tions always exist on compact manifolds without boundary. Their asymptotic behaviour was
subsequently analysed by Chow [5], Ye [19], Schwetlick and Struwe [15] and Brendle [3,4].
Less is known about the Yamabe flow on noncompact manifolds. Daskalopoulos and Sesum
[6] analysed the profiles of self-similar solutions (Yamabe solitons). Ma and An [13] proved
short-time existence of Yamabe flows on noncompact, locally conformally flat manifolds M
under the assumption that the initial manifold (M, g¢) is complete with Ricci tensor bounded
from below. More recently, Bahuaud and Vertman [1,2] constructed Yamabe flows starting
from spaces with incomplete edge singularities such that the singular structure is preserved
along the flow.

In dimension m = 2 the Yamabe flow coincides with the Ricci flow. Peter Topping and
Gregor Giesen [7,16,17] introduced the notion of instantaneous completeness and obtained
existence and uniqueness of instantaneously complete Ricci/Yamabe flows on arbitrary sur-
faces. The analysis of the flow on the hyperbolic disc plays an important role in their work. It
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relies on results which exploit the fact that the Ricci tensor is bounded by the scalar curvature
in dimension 2.

The goal of this paper is to find techniques which allow a generalisation of Giesen and Top-
ping’s results to the Yamabe flow on hyperbolic space (H, grr) of dimension m > 3. (H, gm)
is a complete, noncompact, simply connected manifold of constant sectional curvature —1
and it is conformally equivalent to the Euclidean unit ball (By, gg)-

Definition A family (g());c[o,77 of Riemannian metrics on a manifold M with scalar cur-
vature R = Ry () is called a Yamabe flow, if %g = —R g. The family (g(#)):¢[0,7] is called
instantaneously complete, if the Riemannian manifold (M, g(¢)) is geodesically complete
forevery0 <t <T.

Since the Yamabe flow preserves the conformal class of the metric, any conformally
hyperbolic Yamabe flow (g());c[0,7] onH s given by g(t) = u(-, t) gu, where the conformal
factor u: H x [0, T] — R is a positive function evolving by the equation

1 ou uR Aggu  (m —6) |Vulg,

u _ _ 1
m—1 ot P R 2 M

where m = dim H, where Ag, denotes the Laplace-Beltrami operator with respect to the
hyperbolic background metric gy and where |V“|Z’H = gu(Vu, Vu). Introducing the expo-

nent n := ”’T_z to define U = u, Eq. (1) is equivalent to
1
Un U

O U + AU 2
m—10r YA Bem @

which follows by virtue of (7 —1) = 7% and L A g = (9— D=2 Va2 +u"~ A g u.
While Eq. (2) has a simpler structure, pointwise bounds on u follow easier from Eq. (1). We
prove the following statements.

Theorem 1 (Existence) Let g9 = uogm be any (possibly incomplete) conformal metric on
(H, gm) with bounded conformal factor 0 < ugy € C*Y(H) and scalar curvature Rgy = Ko
bounded from above. Then, for any T > 0 there exists an instantaneously complete family
of metrics (g(t))se(0,7] Satisfying the Yamabe flow equation

gty =—Repgt)  inHx[0,T],
(0) = go on H.

Moreover, g(t) > m(m — 1)t gy for any t € 10, T]. As t \( 0, the metric g(t) converges
locally in class C? to go.

Remark On noncompact, locally conformally flat manifolds M, Ma and An [13] require
bounded scalar curvature, a lower bound on the Ricci tensor and completeness of (M, go)
for short-time existence and additionally non-positive scalar curvature for global existence.

Theorem 2 (Uniqueness) Let (g(t)):e0,1] and (8(t)):e[o, 11 be two conformally hyperbolic
Yamabe flows on (H, gn) satisfying

() FbeR: g0 <bgg
@) Ve e[0,T]: g@)=m@m — 1)t gn.

Then, if g(0) < g(0), we have g(t) < g(t) forallt € [0, T].
In particular, if g(t) and g(t) both satisfy (ii) and if g(0) = g(0) < b gg, then g = g.
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Remark 1n the Poincaré ball model for H, the conformally hyperbolic initial metric g(0) can
be compared to the Euclidean metric, whose pullback we also denote as gg. Assumption (i)
means, that the initial manifold (H, g(0)) is incomplete and has finite diameter.

Assumption (ii) implies instantaneous completeness of g(¢). We conjecture that instanta-
neously complete, conformally hyperbolic Yamabe flows always satisfy (ii). For rotationally
symmetric flows, this is proved in Proposition 2.2.

The instantaneously complete flow Topping [16] constructs on 2-dimensional manifolds
has a certain maximality property which we also observe in higher dimensions: Theorem 2
implies, that if go < b gg, then the Yamabe flow constructed in Theorem 1 is maximally
stretched in the sense that any other Yamabe flow with the same or lower initial data stays
below it.

Moreover, Theorem 2 implies, that if go < b gg, then any two solutions (g(¢));c[0,7] and
(g(z)),do,,ﬁ constructed in Theorem 1 agree on [0, T] N [0, T]. Since T > 0 is arbirtary in
Theorem 1, we then obtain global existence, i.e. an instantaneously complete Yamabe flow
(8(®))1e10,00 on H with g(0) = go.

Theorem 3 Let go = uogrm be a conformally Euclidean metric on (R, grm) withm > 3. If
up(x) <b |x|74f0r some finite constant b and all x € R™, then any Yamabe flow (g(t)):c[0,T]
on R™ with g(0) = go is geodesically incomplete for all t € [0, T].

Remark Theorem 3 shows that the results about instantaneously complete Yamabe flow on
hyperbolic space do not equally hold on arbitrary manifolds of dimension m > 3. It contrasts
with the 2-dimensional case, where instantaneously complete Yamabe flows always exist [7].

For example, there does not exist an instantaneously complete Yamabe flow starting from
the punctured unit sphere (S’", gsm) in dimension m > 3. Indeed, if 7 : S R™ s

stereographic projection, then m,gsm = 4(1 + |x|2)_2g]Rm and Theorem 3 applies.

1 Existence

In this section, we prove Theorem 1. As a first step, short-time existence of a solution u
to Eq. (1) for given u(-,0) = ugp > 0 on convex, bounded domains 2 C H with suitable
boundary data is proven by applying the inverse function theorem on Banach spaces. Richard
Hamilton [9, §IV.11] uses the same technique to prove existence of solutions to the heat
equation for manifolds. Local Holder estimates then lead to a uniform existence time for all
domains.

In a second step we derive uniform gradient estimates, which do not depend on the domain.
By considering an exhaustion of H with convex, bounded domains, we obtain a locally uni-
formly bounded sequence of solutions which allows a subsequence converging to a solution
of (1) on all of H.

1.1 Existence on bounded domains

We denote the non-linear terms in Eq. (1) by

gt | (m—6) IVulﬁH)
; .

4 u?

Qlu]l :=(m —1) (m +
Given a smooth, bounded domain 2 C H and T > 0, we consider the problem
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aai: =0l  inQx[0,T],
u=¢ on dQ x [0, T1, ©)
U =up on Q x {0}

for given 0 < up € C2%(Q) and ¢ € C>4 12 (3Q x [0, T]) satisfying ¢ (-, 1) > m(m — 1)z
and the first order compatibility conditions

¢(-,0) =up on 9%,
A 4)

E(n 0) = Qluol = —uoRy, on Q.

Such boundary data ¢ exist since 1 and R, are bounded on the compact set €2 and ug > 0.
In Sect. 1.2 we choose ¢ explicitly.

For small times ¢ > 0, we expect the solution « to (3) to be close to the solution i of the
linear problem

1 0ii Agyii  (m—6) (Vit, Vug) gy
m—1 0t uo 4 u(z)

=m in Q x [0, T],

on 02 x [0, T], ©)

uo on 2 x {0}.

S =
Il

Since 2 is bounded and since ug > 0 in H, there exists some § > 0 depending on €2 and u
such that up > § in Q. Therefore, Eq. (5) is uniformly parabolic with regular coefficients and
the compatibility conditions given in (4) are satisfied. According to linear parabolic theory
[12, §IV.5, Theorem 5.2], problem (5) has a unique solution & € c2elg (2 x [0, TY). Since
up > 0and ¢(-,t) > m(m — 1)t forall t € [0, T], the parabolic maximum principle (Prop.
A.2) applied to m(m — 1)t — (-, t) implies

u(-,t) > m(@m — 1)t.
In particular, # > & on Q x [0, T'] for some ¢ > 0 depending on €2 and .

Lemma 1.1 (Short-time existence on bounded domains) Let 2 C H be a smooth, convex,
bounded domain. Then, there exists T > O such that problem (3) is solvable.

Proof. A solution u to (3) is of the form u = u + v, where & solves (5) and

8l=Q[ﬁ+U]—% inQ x [0, T],

Jt Jt
v=20 on 02 x [0, T], ©
v=20 on 2 x {0}.

Given the Holder exponent 0 < o < 1, let
X:={eC@h3@x[0,T]) |v=0 on(Q x {0}) U@ x [0, TN},
Y :={feC®"3@x[0,T)| f=0 ond x {0}
The map
S:X—>Y
v i+ v) — Qi + vl.
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then is well-defined because the compatibility conditions (4) imply that at every p € 92 for
every v € X, we have

di 3 3¢
(S)(p. 0) = (5 — QL)) (p.0) = (5. 0) - Q[uo]> () = 0.

The linearisation of Q[i] around i € C>% L3 (2 x [0, T]) defines the linear operator

i —6) Vil -
L) = (m— 1) (_AgHu _ (m—6) [Vilg, N (m — 6) Agw)

Vi, V-
ii2 2 D e VYV mt

The map S is Gateaux differentiable at 0 € X with derivative

DS0): X - Y

w > %w — L(m)w.

The mapping u — L(u) is continuous near i because i is bounded away from zero. Hence,
DS(0) is in fact the Fréchet-derivative of S at0 € X. Moreover, the linear operator % — L)
is uniformly parabolic.

Let f € Y be arbitrary. By definition, 0 = f(-, 0) is satisfied on €2 which is the first
order compatibility condition for the linear parabolic problem

Jw - .
ﬁ—L(u)w:f in 2 x [0, T],
w=0 ond2 x [0, T], )

w=0 on 2 x {0}.

As before, linear parabolic theory states that (7) has a unique solution w € X. Therefore, the
linear map DS(0): X — Y is invertible.

By the Inverse Function Theorem (Proposition A.1), S is invertible in some neighbourhood
V C Y of S(0). We claim that V contains an element e such that e(-,7) = 0for0 <t < e
and sufficiently small ¢ > 0. Let f := S(0) = %ﬁ — Ql[u] be fixed. Let6: [0, T] — [0, 1]
be a smooth cutoff function such that

0, fort<e,
0(r) = ort <eg 0
1, fort > 2,

IA

Sk
IA

™ | W

We claim 6 f € V for sufficiently small ¢ > 0. Since & is smooth in Q x [0, T], we have
f eCl(Q x [0, T)). Since at r = 0, we have

ou _
0= 55,0 = Qlugl =0 on 2 @®)
we can estimate

LfCoDI=1fCs) = fCOI s fllcr@xpo.ry - ©)
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Lett,s € [0, T] such that ¢t > s. If s > 2¢, then (f —0f)(,s) = (f —0f)(,t) = 0.
Therefore, we may assume s < 2¢. In this case we estimate
If=0NC 0D = (f =0 9l

=GO = FEOIHI0fC D =0, 9l

<(T+10ON)fCt) = FEDIHFC100) = 0(s)]

<2 flictlt =sl+slflct |6 colt — sl

<@+ ISl I —s|

<8 fllct It —sl. (10)

Due to (8), the special case s = 0 reduces to

I(f=0)C 0l =8| flicr - an

Since the left-hand side of (11) vanishes for ¢t > 2¢, we have in fact

If =0flico < 16e | flict -

If |t — 5| < ¢, estimate (10) directly implies
I(f =000 —(F =0 <8 T fllcr It —s2 .
If |t — s| > &, we replace the estimate by
[(f =000 = (=00 =201F—=0flco
< 32| fller
<325 || fller It —s1%

Therefore, [ — 6 f1g , < 3265 | Fllca.
For the spatial Holder seminorm, we obtain a similar estimate from (9) and

I(f =000 = (f —0) (.0
< =0OIfE 0= fO.DI" If @ 0= fy.ol'™
< If1I% der, y)* @ell fllc)' ™ = @)= I fller dx, )°,

where d(x, y) denotes the Riemannian distance between x and y in (H, grr) and where
convexity of €2 is used. To conclude, || f — 6 f|ly < Ceb— I fllci. Thus, 0 f belongs to the
neighbourhood V of f if & > 0 is sufficiently small. By construction, S~ (6 f) is a solution
to (6) in  x [0, ¢]. Redefining T = ¢ > 0, we obtain the claim. O

1.2 Local estimates

Let Q C H be a smooth, convex, bounded domain. Let u € Cz’o‘;l’%(ﬁ x [0,T]) be a
solution to the nonlinear problem (3) as determined in Lemma 1.1. Restricting the hyperbolic
background metric gy to €2, we obtain the Yamabe flow g(¢) = u(-, t)gm on 2 with initial
metric go = uogm. In order to estimate the scalar curvature R = Rg(;) of (€2, g(¢)) by means
of the maximum principle, we will assume uy € C**($2) such that Ry, € C2($2) and
specify the parabolic boundary data ¢ explicitly. We define the function v € C>% () by

v(x) := —ug(x) Rgy(x) —m(m — 1),
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Fig. 1 Graph of the function ¥

which is the relative initial velocity of the Yamabe flow in question compared to the “big
bang”-Yamabe flow m (m — 1)tgp. Defining the constant

K= max{|R (x)} w] (12)
e U e I
we have |v| < 2ugk. For s > 0, let
V() =+ 56— D xpon (),
where xo,1] denotes the characteristic function of the interval [0, 1] (Fig. 1).
As parabolic boundary data for problem (3) we choose
_ Y (k1)
d(x, ) =uo(x) +m(m — 1)t + v(x) . (13)
which satisfies the desired inequalities
Juo +m(m — Dt < ¢ (-, 1) < Juo +m(m — Dt (14)

and the first order compatibility conditions (4) by construction, i.e. ¢ (-, 0) = up and

d a
a—f(x, 1) =m(m — 1) + vy (k1), a—f(x, 0) = —ug(x) Rgy (x).

Moreover, we have ¢ € C2%15 (Q x [0, T]) because ug € C**(Q) and Ry, € C2*($2) and
since the derivatives

Y (s) = (s — D> x0.17(5),
Y (s) = 2(s — D xp0.11(5)

are continuous at s = 1 and bounded in [0, co[. We observe that for any s € [0, oco[

() —sv'®] =[5+ (G6 =17 =56 = D?)x0.1()|
1

1
=[5 =36 = D0 +29x0006)] < 3. (15)
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Given ¢ > 0 to be chosen, the estimates (15), 1//’} < land |v| < 2ugx imply

BC.0— (48T
=u0+v%m—sm(m— =@+ vy (k)
— g —em(m — 1) + E(w(m — k1 (k) — e v (k1)
} v
>ug—em(im—1)— — —¢e|v|
3k

> ? — &(m(m — 1)+ 2upk) = 0

if ¢ > 0 is chosen sufficiently small depending only on u(, 2 and m. Hence,

Log _ 1

—_ > — . 16
¢ It — t+e (16)
Let 0 < K¢ < k be a constant such that Rgy < Ko in Q.For0 <t < K% we have
¢
Koo (-, 1) + (1 — Kot)— (-, 1)
ot
Ko ,
= Kouo + o vir(kt) +m@m — 1) + (1 — Kot) v (xt)
Ky ,
= Koug+m(m — 1) + (=29 er) + (1 = Koy (en)) v. (17)

To estimate (17) we set a := % € [0, 1] and s = k¢ and observe that the expression

E=ay(s)+ (1 —as)y'(s)
+ (56 =D+ A =as)s — D) x0.10)
+(3A-9+ 0 -1 =) x0.150)

is decreasing in s € [0, 1] as long as a < 1 and therefore bounded from above by ayr(0) +
¥’(0) = 1 and from below by % > 0. Substituting the term 0 < E < 1 in (17), we conclude

a
3
a
3

0
Koop (-, 1)+ (1 — K()t)af‘f(-, t) = Koug+m(@m —1)+ Ev
= (Ko — ERgug +m(m —1)(1 - 8) > 0.
For every ¢ € [0, %0[ we obtain

1d¢ _ Ko

¢ ot — 1— Kot

(18)

Finally, for all # > % we have ¥'(kt) = 0 and thus 8%(;5(, t) = m(m — 1). Some of the
previous estimates are illustrated in Fig. 2.

Lemma 1.2 (Scalar curvature bound) Let 0 < Ko € R be a constant such that Rg, < Ko
in Q. Let Ty := (max{Ky, %})_1. Then, there exists ¢ > O depending only on ug, 2 and m
such that for all (x,t) € Q x [0, To[

1 Ky
—— <R, ) = ————.
t+¢ 1—Kpt
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¢ ¢

Uo

=1

=)
S

=
)
<

807

LY

LY

Ry

Fig.2 The evolution of ¢ (above) and R (below) on d€2 for different initial values

Proof. In 2 x [0, T'] we can express the scalar curvature in the formR = — % %—’; . In particular,
on 02 x [0, T] we have
1 d¢
R = -,
laex[0,7] 5o

where the right hand side satisfies the lower bound (16) and the upper bound (18). Scalar
curvature evolves by the equation (see [5, Lemma 2.2])

AR =(m—1DA;»R+R* inQx[0,T]. (19)
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Letw(t) = 1 s fort € [0, To[ with dw = w?. ThenR < won (£ x {0) U (3 x [0, Ty
by (18). Moreover we have

%(R —w)—(m—DAgnHy(R—w) —R+w)(R—w) =0 inQ x [0, To[.

Let 77 < Ty < T be fixed. Then, (R 4+ w) is bounded from above in 2 x [0, 7] and the
inequality R < w in  x [0, T}] follows from the parabolic maximum principle (Proposition
A.2). Since Ty < Ty is arbitrary, we have R < w in  x [0, Tp|[.

Let ¢ > 0 be sufficiently small depending only on ug, 2 and m, such that (16) holds and

such that additionally, Rg, > —= 1n Q. In the argument above we replace w(t) by —m and

conclude R > —% analogously. O
Lemma 1.3 (Upper and lower bound) Let 0 < u € C2’°“l’%(§ x [0, T]) be a solution to
problem (3) with boundary data (13) and bounded initial data uy > 0. Then, for every
0<r<T,

m(m — Dt + Y minug < u(-, 1) < m(m — Dt + 3 max uo.
Q TQ

Proof. From the equation for u, we deduce that given any constant ¢ € R the function
w(, 1) =u(-,t) —m(@m — 1)t — c satisfies
1 dw  Aggw (m—6)(Vu, Vu)

T o =0 inQx|[0,T] (20)

Since u > 0, equation (20) is uniformly parabolic. For ¢ = %minﬁ ug (respectively ¢ =
% maxg uo ) we have w > 0 (respectively w < 0) on (3€2 x [0, T']) U (€2 x {0}) by (14) and
the parabolic maximum principle (Proposition A.2) implies w > 0 (respectively w < 0) in

Q x [0, T]. O

Lemma 1.4 (Uniqueness on bounded domains) Let u,v € Cz’“;l’%(ﬁ x [0, T]) be two
positive solutions of problem (3) with equal initial and boundary data. Then u = v.

Proof. With derivatives and inner products taken with respect to g, we have by (1)

1 Au  Av m—6/|Vul®> |Vv|?
a0 =5 (R )
Au—v) m—6

- u 4y?

Av m— 6|V |2
——(u—v)—i
uv 4

(Vu +v), V(u —v))

5+ v)(u —v)

which can be considered as linear parabolic equation for # — v with bounded coefficients
because u, v € C2% 1 3 (€2 x [0, T]) are uniformly bounded away from zero and from above
and |Vu|, |Vv|, Av are bounded functions in Q. Since (u — v) vanishes along (Q x {0}) U
(Q x [0, T]), the parabolic maximum principle (Proposition A.2) implies # — v = 0 in
Q x [0, T] as claimed. O

Lemma 1.5 (Local Holder estimate) Let u e C2el, %(5 x [0, T]) be a solution to problem
(3) with boundary data (13) and T < —0 where Ko > 0 is an upper bound for Rg in Q.
Then, there exists a constant C, depending only on the dimension m, the initial data ug, the
constant Ko and the domain Q2 such that for every t € [0, T]

flu(-, f)||C2,a(§) <C.
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Proof. Let U = ul be the corresponding solution to equation (2), i.e.
5 141
UngU=-—U"1R=(m—1)(mnU + Ag,U). (1)

Lemmata 1.2 and 1.3 yield uniform bounds on the function U and the scalar curvature R in
Q x [0, T]. Therefore, equation (21) implies

H_AgHU(" 1) ||L°°(§) =C, %U(" ) ”Lw(ﬁ) =C

forevery t € [0, T], where C is a finite constant depending only on m, ug, K¢ and €2. Elliptic
LP-Theory [8, §9.5] implies ||U (-, t)||W2_,,(§) < Cforevery 1 < p < oco. With p > m,
Sobolev’s embedding theorem implies || U (-, t)llcl_a@) < C. In particular, since U = u is
bounded away from zero by Lemma 1.3, we have

”U‘% <C

05 (@x[0,T])
Hence, the equation

1 oV _L
mﬁ:(mnVJrAg]HIv)U T inQx [0, 7] (22)
has sufficiently regular coefficients for linear parabolic theory [12, § IV.5, Theorem 5.2] to
apply: It follows that V = U is the unique solution to (22) with the given initial and boundary

data. Moreover, U satisfies

i, C.

2618 (@Gxf0.7]) =

Since U is bounded away from zero in Q x [0, T, the claim follows. O

Corollary 1.6 (Extension in time) If the initial scalar curvature R is bounded from above
by Ko > 0 in H, then problem (3) with boundary data (13) is solvable in 2 x [0, Kio[for
every smooth, bounded domain Q C H.

Proof. According to Lemma 1.1, problem (3) is solvable in © x [0, T'] for some T" > 0. Let
T, > 0 be the maximal existence time, i.e. the supremum over all 7 > 0 such that problem
(3) has a solution defined in 2 x [0, T']. By Lemma 1.4, two such solutions agree on their
common domain, therefore there exists a solution u defined on  x [0, T%][. Suppose, that
for some 2 the maximal existence time is 7, < K% Then, Lemma 1.5 implies that u can be

extended to u € C>* 13 (Q x [0, T;.]) and that u(-, Ty) € C>*() is suitable initial data for
problem (3). The boundary data (13) are defined also for # > T, and they are compatible with
u(-, Ty) at time T,. Therefore, we may apply Lemma 1.1 to extend the solution regularly in
time in contradiction to the maximality of 7. O

1.3 Uniform estimates

We assume that the initial metric go = uogm and its scalar curvature satisfy the upper bounds
uo < Co and Rgy < K in H with some constant Ko > 0. Let 0 < T < K% be fixed. From
the previous section we recall that for any smooth, bounded domain 2 C H, there exists a
uniformly bounded solution u of (3) on 2 x [0, T']. However, the previous Holder estimates on
u may depend on the domain 2. In the following, we derive independent bounds. As before,
spatial derivatives and inner products are taken with respect to the hyperbolic background
metric but in the following we will suppress the index gy to ease notation.
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190 Page 12 of 30 M. B. Schulz

Lemma 1.7 (Uniform gradient estimate) Let By be the metric ball of radius € > 1 around the
originin (H, gm). Letu € C2% L3 (By x [0, T) be a solution to problem (3) with boundary
data (13) as constructed in Corollary rm 1.6. Then, U = u" with n = msz satisfies

IVUI> < C in By x [0, T],

where the constant C depends on the dimension m and the constants Co, Ko, T but not on £.
Similar bounds hold for higher derivatives of U.

Proof. Let p € R be an exponent. As in [13], we consider the function w = U” |[VU|? and
compute

1

1 ow 1 UT 5 ur _au
—— =pU”’ ,77 VU|* +2{VU, ——V—
m—10r F "1 o1 L IVUP+ < 1

1
WerecallR = ——L 3 apnd L_yn U — mnU + AU from equation (2). Since

VU

1
ur_ou 3v< Ui 8U> 1Ur-1au

m—1 0t nm—1 0t

b1 R
=U n(mnVU+VAU)+—1UPVU,
P
we have
1 9
718—’;) pUP™' "5 (myU + AU) VU + 2mpU? ™7 VU2
P

pol R
+20771 (YU, VAU) + ——U" |VU]|

= (p+2mnU"" 7 [VUP + Zle
+ (pUP~'|IVU? AU +2U" (VU, VAU>)U*$. (23)
Bochner’s identity implies
AL IVU)? = [VVU[* + (VU, VAU) +Ric(VU, VU). (24)

Together with Ricg,, = —(m — 1)gy, we apply (24) in the following computation.

Vw = pUP~ ' \VU> VU + UPV |VU|?,
Aw = p(p — DUP2|VU|* +2pUP " (VU, V VU

+ pUP™Y VU > AU + UPA VU

=p(p—DHUP2|VU|* +2pU~" (VU, Vw) —2p*UP~2 |VU|*
+ pUP~ VU2 AU +2UP(IVVU* + (VU, VAU) — (m — 1) [VU?).
Hence,
(pUP™'|VU* AU +2U7 (VU, VAU))
= Aw —2pU~ (VU, Vuw)
+ p(p+ DUP2|VU* +2(m — HUP |VU|)? = 2UP |VVU|?. (25)
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We insert (25) into (23) and resubstitute w = U” |VU|? to obtain

L2 ((p 4 2mn 4 20m = 1)U T+ 2R
- = m m — w

m—10r P 1 m—1
1
+ (Aw —2pU ™ (VU, Vw))U 7
1 1

+p(p+ DU P T aw? — 2071 |VVUE.
Choosing p = —% and deducing %R < Kj from Lemma 1.2 for some constant K1 > 0

depending on K¢ and T, we obtain

I 9 1
ma—j} < (%mn+2m—2)U Tw+ Kjw

1 1
+ (Aw+ U VU, V) U7 = JUT2 7 nw?, (26)
Let ¢: R — [0, 1] be a smooth, non-increasing cutoff function satisfying ¢(x) = 1 for
x <f€—1lande(x) =0forx > ¢.Letr: H — [0, co[ be the Riemannian distance function
from the origin in (H, grr) and let x = ¢ o r. Before we multiply both sides of Eq. (26) by
X, We compute

xXAw = A(xw) —wAx —2(Vw, Vy)

2 2|Vx|?
=A(xw)—;<V(wx),Vx)+ , —Ax | w. 27

Lemma A.3 stating Ar < 2(m — 1) on H \ B; and Lemma A.4 about cutoff functions (both
given in the “Appendix”) provide an estimate of the last term: There exists a constant ¢,
depending only on the dimension m such that

2 ! 2
(mx)(l - AX> = 2|Z((rr))| —¢"() = ' (NAr < cn/x (28)

and such that xy 3 [V x |4 < c,zn which will be used later. (27) and (28) lead to

1 9(xw) -

m—1 0t —

((%mn + 2m)U7% + K1>(Xw)

1 1 3
+U T Aw 4 (VU, xVw) U~ 7 = Ly

==
>~
S

< ((%mn+2m)U’% + K1) (ow)
+ (A(xw) - % (V(wx), Vx))U"lr + Cm/X W U

! w2 (29)

==

1 1 3
VU, V) U™ — (U, wVx) U~ T = lum2”

Young’s inequality fora, b € R, § > 0 and p, g > 1 with % + 5 = 1 states that

labl < 8 lal” + 3(p8)' 7 |l
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We apply it with p = %andq =4 andrecallw = U_% VU ie. |VU| = w2 U7 to obtain

_1-1 —1-1

—(VU,wV)U " =wl|VUIU "7 |Vy|

—(U szwf)(ng 4|VX|)U n
31 3 Vxl* 3.1
<é§U 2 ”Xw2+4—46_3|xx3| U2 n.

Young’s inequality with p = 2 = ¢ also yields
1 _3
Cm/xwlU 1 <8U 2

Let the sum of all terms in (29) containing A(x w) or V() w) be denoted by
2 _1 -1
A= (B0w) =~ (V0. V) U0 + (YU, Vo) U™

and let the largest of the occurring factors which depend only on the dimension m be denoted
by C,,. Then

1 a(xw _1 3_1
U0 (U 4+ K ) Gew) + G (57 + 57U
m—1 ot
1 -3-1 2
— (7 —20)U 2 nxw” + A.
Choosing § = %6, we have —(% —26) = —% < 0. Since —yw? < —(xw)? and since
o2
c1(xw) —ea(xw)’ < -
4cy

for any ¢y, ¢; > 0, we obtain

d(xw)
ot

~ 3_1 3,1
~A<Cu(UT +KIUT) (30)

with a different constant C‘m. By Lemma 1.3, we have
(m@m — )" <U(C,1) < C(m, Co, T)

in By x [0, T]. Since (% — %)n > —1, the right hand side of (30) is bounded from above
by a spatially constant, positive function f € L'([0, T]). Let F'(t) = f(r) with F(0) =
max(x w)(0) define a primitive function F for ¢ — f(¢). Then,

d(xw — F)

VU 2Vy
ot '

1 1
<A=U"A(xw—F)+U " <V(wx ~F).
X

Since yw—F = —F <0ondBy x [0, T]and xyw < F on By x {0}, the parabolic maximum
principle (Proposition A.2) implies xw < F in By x [0, T']. The map ¢ — F () is increasing
and F(T) depends only on m, Co, Ko, T. Therefore, in B;_; x [0, T], we finally have

IVUP = (xw)V'U < C(m, Co, Ko, T).
Since the Yamabe flow equation is only of second order, similar estimates on higher deriva-

tives of U follow analogously. |
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Proof of Theorem 1 Let n = "‘T_Z and let the initial metric go = wupgm be given by 0 <
Uy = ug € CZ2(H). Let B, be the metric ball of radius > 0 around the origin in (H, gp).
Then, By C By C ... C H is an exhaustion of H with smooth, bounded domains. We fix
0<T< %0 and choose ¢ as in (13). By Corollary 1.6, the problem

1oy, -1
7137" = (mnUs + Ay U)U, " in By x [0, T1,
.
Uy =¢" on By x [0, T],
U = Uy on By x {0},

is solvable for every k > 0. According to Lemma 1.7, the sequence {Uk|p, x[0,7]}2<keN 1S
uniformly bounded in crolg (B1 x [0, T]). Since Bj is a bounded domain, the embedding
C2e L3 (B x[0, T]) < CE1(B; %[0, T])is compact and we obtain a subsequence A; C N
such that

{Uk| B, x[0,T1}2<kenA,

converges in C%1(By x [0, T]) to a solution of the Yamabe flow equation (2) on Bj. We
repeat this argument to obtain a subsequence Ay C A such that

{Uk|Byx[0,T1}3<ken,

converges to a solution of (2) on B,. Iterating this procedure leads to a diagonal subsequence
of {Uk}2<x which converges to a limit U e CZIH x [0, T]) satisfying the Yamabe flow
equation (2). Since the bounds from Lemma 1.3 are preserved in the limit, we have m(m —
Dr < U%, ie. (g())iefo,7) given by g(t) = U(:, t)%gH is an instantaneously complete
Yamabe flow.

It remains to show that the Yamabe flow constructed above can be extended in time. Let
T, be the supremum over all 7 > 0 such that there exists a Yamabe flow g(¢) = u(-, t)gn
on H which is defined for ¢ € [0, T'] and satisfies u(-, 0) = ug as well as

Viel0,T]: m@m— 1t <u(-,t) <m@m— 1)t + % sup uop. 31
H

We have already shown T, > %0 Suppose, T, < ocoand let0 < ¢ < %T* be arbitrary. For
T =Ty — ¢, there exists u: H x [0, T] — R satisfying u(-, 0) = ug together with estimate
(31) and Eq. (2) which can be written in divergence form:
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1w p4+1 u ou” n+1
= — = Du” di Vu"
m—1 o n m—1 o - Mot hut Vg (V')
Dut! 1
— M + dngH (*VM'H_]) (32)
u u
where we recall n = "122. Around an arbitrary point p € H, we choose geodesic normal

coordinates x and given 0 < r < %\/7 we consider the parabolic cylinder
O, ={(x,1)] T—rt<t< T, |x|<r}.
According to (31) and the choices of r, € and T', we have
m(m—l)%T*Sufm(m—l)T*—i—%s%puo in@zr
because T — (2r)2 > T — %T = %(T* —£) > %T*. Hence, (32) can be interpreted as a
linear equation with uniformly bounded coefficient % Therefore we may apply parabolic

DeGiorgi—-Nash—Moser Theory [12, Theorem II1.10.1] (see also [18]) to Eq. (32) in order to
obtain

||Mn+l HCU.a:O,%(E) = C(m’ ||u||L°°(Q2,) ) u_l H Loo(er)) =< C/(mv T*s sup uO) (33)

for some 0 < o < 1 and some constants C, C’ depending only on the indicated quantities.
In particular, the Holder estimate (33) holds uniformly in p € H. As in the proof of Lemma
1.5 we obtain

n « "
[4”] 2ing o, = C"m, T supuo).
Consequently, the scalar curvature R = —(m — Du " L Au" + mu) stays uniformly

bounded up to time 7 by some constant K1 (m, Ty, sup up). With the same methods as before,
we can extend the solution, first locally in bounded domains and then via exhaustion in all
of Hl. As initial data, we choose 1] = u(-, T — ¢). This allows us build compatible boundary
data from a suitable extension of u|mx[7—¢ 7). It also ensures the extended solution to be
regular by Lemma 1.4. The extended solution is defined in H x [0, T — ¢ + T7] with any
given 77 < %1 If ¢ > 0 1is chosen small enough such that

T—e+T =Ty —2e+T) > T,

we obtain a contradiction to the maximality of 7. O

2 Uniqueness
This section contains the proofs of Theorems 2 and 3. As before, (H, grr) denotes hyperbolic

space of dimension m > 3 and gg = h’ng the pullback of the Euclidean metric to H,
where & > 0 is a smooth function provided by the Poincaré ball model.

2.1 Upper and lower bounds
The Yamabe flow constructed in the previous section satisfies the upper and lower bounds

given in (31). The aim of this section is to find conditions under which any Yamabe flow
necessarily satisfies such bounds.
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Proposition 2.1 (Upper bound) Let n = mT—z‘ If g(t) = u(-,t)gm fort € [0, T] is any
Yamabe flow on H with initial data g(0) < b gg for some constant b € R, then

(u(,0)" < (m@m —1t)" + (bn™?)"
in H for every t € [0, T].
Proof. Let ¢: R — [0, 1] be a smooth, non-increasing cutoff function satisfying ¢(x) = 1
for x < 1 and ¢(x) = 0 for x > 2. Introducing geodesic normal coordinates (r, ¥}) €
10, oo[ x S"™~! on (H, gr) and a parameter A > 1, we define the rotationally symmetric
function ¢ = ¢ o % on H. As before, spatial derivatives and inner products are taken with

respect to the hyperbolic background metric gi. With any regular function v: H — R, we
have

2 2v 2
PAv = A(pv) — s (Vo, V(gv)) + Py IVol" —vAg.
Setting f := bh 2 and v := (u" — f"), we denote

2
A(pv) — P (Vo, V(gv)) = A.

Since fgm = b gE is a flat metric, it is a static solution to the Yamabe flow equation 9, =
—Rg which by (2) implies —A f7 = mn f". Thus,

;i(uﬂ — Mo = (mm['l + Au")?
u

m— 10t

G L) PO 2N U i)
u u
n_ £ 2 n_ 1

=mnu¢+é+<M_M,)u, (34)
u 1) u

Since V¢ = %(q)’ o %)Vr, we have
2|V¢|2 3 2(,0/2 (p// , W/O%
P _(Azg;_P)o(Z)_ A

As¢' o “ is non-positive in H and identically zero in the unit ball around the origin, we may
apply Lemma A.3 stating Ar < 2(m — 1) and Lemma A .4 about cutoff functions (both given
in the “Appendix”) to estimate

2|Vl 1,207 ¢ , L. C 1
( P _A¢)SX(T(p+T+2(m_1)|(p|)O(K)SX¢ " (35)

at points where ¢ # 0 with a constant C depending only on the dimension and the choice
of ¢. Let time 79 € ]0, T'] be fixed. The function [(u" — f7)¢](-, fp) has a global, non-

negative maximum at some point go € H which depends on ¢y and the parameters A and b.
If [(u" — fM1(qo, to) > 0, we have

n_ £ n_ £n
ot (qo. to) =< uifl(qo, ) = " — 177 (qo. 10)-
(u’] — fﬂ)ﬂ
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Equation (34) and estimate (35) then yield

[ = 6] )

< [mn@r = )

-1

6+ S
<[+ (@ = 19)' 7 |ao. 10

-1

"W = "7 @0, 0)

Denoting v = u7 — f as before, we obtain

Jim sup (max (V) (10) — max (v) (19 — ‘L’))
™o T

= lim sup - L (0) @0 1) — ) a0, 10— D) = &) qo. 10

< (m — 1)(mn + $)(max(v) (t0))' 7.

The assumption g(0) < b gg implies max(u”7 — f7)(0) < 0. Since 7o > 0 is arbitrary, we
may apply Lemma A.6 stated in the “Appendix” to conclude

max (" — fM¢) @) < ((m — Hm + 51)". (36)
Letting A — oo such that ¢ — 1 pointwise on H, we obtain
W' (1) < (mm — )" + f7

in H forallr € [0, T]. O

A similar approach as for Proposition 2.1 leads to a proof of Theorem 3.

Proof of Theorem 3 Suppose, g(t) = u(-, t)grn is a Yamabe flow on R™ for ¢t € [0, T'] with
g(0) = go. Then

et = Au, (37)
where 7 = 2 and A denotes the Euclidean Laplacian. In the proof of Proposition 2.1, we

replace the equatlon for u" by (37) and f by f(x) = b|x|” 4. Then, f(x) =b" |2
harmonic on R \ {0} which implies

1

m—1

—fMy=1A@"— 7 in ®"\{0}) x [0, T].

L
—~

With a cutoff function ¢ as in (35), we gain
[(@" = [Nl 1) < ((m—l) )"

from the assumption u(-, 0) < f asin (36). Letting A — oo, we conclude u(x, 1) < f(x)
for every (x,7) € R™ x [0, T[. In particular, the g(#)-length of radial curves y(r) = ro
emitting from o € §”~! € R is estimated by

/oow/u(ra,t)drSx/l;/oor_zdr=x/l;<oo
1 1

which means that (R™, g(¢)) is geodesically incomplete. O
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Proposition 2.2 (Lower barrier, rotationally symmetric case) Let (g(t)):c[o,7] be a confor-
mally hyperbolic, instantaneously complete Yamabe flow on H. Under the assumption, that
g(t) is rotationally symmetric around some point xo € H, we have

Viel0, T]: m(im—1)tgy < g(t).
The proof of Proposition 2.2 is based on the following Lemma.

Lemma 2.3 Let (g(t))icj0,7] be an instantaneously complete Yamabe flow on H given by
g(t) = u(-, t)gm such that u(-, t) depends only on the hyperbolic distance r from some point
xo € H foreveryt € H. Let o: H x 10, T] — [0, ool be given by

/ Vu(s,t)ds ifr > a := artanh ("= b,

else

o(r,t) =
and let A = max ‘3—14 2(a t)‘ Then, whenever r > a,

1 90 1 du~?
——— —Ago | = —mu 2+(m—2)T—A.

Proof. Given a conformal metric g = ugyp on H and any smooth function f: H — R,

1 : 1 m i
Aof =~ (Videtgl g0 f ) = ————0; (3" /ldet gual 810, 1)
0 ldetgl ‘ u? Idet gul =
1 2
ngHf—i- (Vu, V) (38)
In the case f = o(-, t) and since Ag,r = tdnhr by Lemma A.3, we have

132 m—1) 090 (m—2)dudo
T uor? ' wtanhr ar 2u?  9r or
where we used the assumption of rotational symmetry. If r > a, then

19/u (m-—1) (m —2)du (m-—1) (m—1) du
Ajo= -2 4 + - + =
u or  Jutanhr = 2uu 9r  Jutanhr = 2u/u dr

_1 ou~2
<mu ?2—-—(m-—1)—— 39)
ar

1 -2
Ago = — AgHQ—I— 2 (Vu, Vo) e,

since (tanhr) > mm;l for r > a by definition of a. From Eq. (1) for u, we conclude

LoV _ m o Agu (=) |Vul3,
m—1 0t 2Ju  2uu 8Ju  u?
1

. S | 3 _3 2 .
Since Aguu™2 = —5u” 2 Aggu + 7u 2|Vu|ngl we have in fact

1 8ﬁ= m —(A L) m |VM|§,lHl
m—1 98t  2Ju 88 u) " 8Ju u?

Moreover, with

2

1
2ultz Vu_Z
m |Vul}, ’"’
- = VYu~ 2
8ﬁ I/tz 8u2+% f‘
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we arrive at
1 9Ju m 1 m 12
= (g ) + | Vu
m—1 9t 2/u ( SN +2ﬁ ! gH
2
_om Pumr m—10u"z my/u du~z
C2u o tanhr dr 2 ar
For any b, ¢ > 0 and all X € R the inequality
b2
—bX +cX? > —— (40)
4c

follows by completing the square. We apply (40) with X = %u’% b= tI:anlr andc = %m\/ﬂ
to estimate

Loayu_om 92u—? m-1> 32u~1
m—1 0t ~ 2Ju ar? 2m(tanhr)2/u — ar?
where the last inequality requires (tanhr) > ’”771 which holds by construction whenever

r > a. Hence,

Nl—=

1
1 ado ou~ 2 ou~
——(r,t) > 1) — 1). 41
D = @) = () (41)
The claim follows by subtracting (39) from (41). O

Proof of Proposition 2.2 Let (g(t)):c0,7[ be an instantaneously complete Yamabe flow on
H given by g(t) = u(-,t)gm and let v = % The goal is to prove the uniform estimate

v(-, 1) < m for every t € 0, T[. Equation (1) implies that v satisfies
-2
—v " 0v 3 2 -2 m—06 5 oo 12
T T1ar —m—l—(2v |VU|gH—U AgHv)v+ ) v |v vaH

and hence evolves by the equation

1 ov 2 m+ 2 5
7m—l§:_mv —}—vAgHU—74 |VU|gH~ (42)
Letn = mT—z provided that m > 3. Applying Eq. (38) to gm = vg, we have
m+2 2 m—2 m+2 2
VA = T IV, = A+ (T = T ) IVl
=Agu+(—D1|Vof; = %v“"Agv".
Hence, Eq. (42) implies
I " 1
— —mnu"t + A" (43)

where we stress the fact, that (43) involves the Laplace—Beltrami operator A, with respect
to the time-dependent metric g ().

By assumption, there exists a point xo € H such that u(-, ) and v(-, ¢) depend only
on the hyperbolic distance r from xg for all # € [0, T]. Let ¢: R — [0, 1] be a smooth,
nonincreasing cutoff function as in Lemma A.4 satisfying ¢(s) = 1 if s < 1 and ¢(s) =0
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ifs > 2. Leto: H x ]0, T] — [0, oo[ be defined as in Lemma 2.3. Given 0 < ¢ < %, we
introduce the functions

X =g o(e0), x'=e¢ o (e0). X" =" o (s0) (44)
which are smooth in H x ]0, 7] because ¢ is constant around zero. We remark that while ¢’
denotes the actual first derivative of the function ¢ of one variable, x’ is just a convenient

shorthand notation. In fact, |V)(|§, = ‘X/VQE = ’)(”2 and Agx = x” + x'Ago. Hence,

Loa(xv™y v dx
m—1 3 ~ m—10dt

19
= <7£ - Ag9>x’v” —mx " 4 Ay (xv") — x"v"

—myxv" + Ag(xv") —v"Agx — Z(Vx, VU”)g

m—1 0t
=2(Vx, V"), . (45)

Recall that x” < 0. With the estimate from Lemma 2.3, we have

1

1 9 ov?

e Ago | V" < —mx’v”"'% + (m — 2)X/U”L — Ay, (46)
m—1 0t ar

Surprisingly, since % x = x'+/u, the term

n
vio—=20-"—— =2(Vx, Vo),

cancels the last term in (45). Thus,

1 a(xv") _

m—1 0t

—my v — Ax'v" — myx vt + Ag(xv™) — x"v.  (47)

By Lemma A.4, we may choose ¢ such that there exists a constant C depending only on m
such that
1

Img'| < Cot, o]+ |¢"] < Co7.
With this choice,

13" "y e "
[ = Cex VTR (A4 e)Cox T —mnx o™ 4 Ag (o).
o

By Young’s inequality, ab < % + % forany a,b > 0 and p,q > 1 with % + % =0.We
apply it with p = 2n + 2 to estimate
ag 1
Cey 912 < c¥+2g 4 exv™!

and with p = n + 1 to obtain

(A+e)Cex 0" < (A+1)C)" e+ exvm.

Consequently, introducing the constant C = C>"*2 + ((A + 1)C)"+1,
1 0 K ~
— ();: ) < Ce — (mn —2&) x v + Ag(xv"). (48)
m—
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n+1

Provided that 0 < ¢ < %, the term involving y v in (48) has a negative sign. In this case,

since 0 < x < 1, we may replace (48) by
1 a(xv™

n+l
— e — (mn—2e)(xv") " 4+ Ag(xv"). (49)

(@}

=

The assumption of instantaneous completeness of g(¢) implies that o(r, 1) — co asr — oo
forevery ¢ € ]0, T]. Therefore, x = ¢o(ep) is compactly supported in H forevery ¢ € 10, T']
and w: ]0, T] — ]0, oo given by

w(t) = mﬁx(x v (-, 1)

is well-defined. Let fy € ]0, T'] be arbitrary. Let go € H such that w(zp) = xv"(qo, t0). We
compute

m —

1 I -t =
p imipf ;((w@o)) "= (w(t - ) )

1 n+
L a(xv n (xv™ ™ a(xv")
> —_— , 1) = — , 1
Z 1" % (g0, 10) nm—1) ot (g0, 10)

%

1~ _ntl )
—;Ce(w(to)) o+ (m - 58)

where — A, (xv")(qo, tp) > 0 since g is a maximum. We conclude that either

n+l

Ve —Ce(w(tg))” 7 <0
+1 _
< C./e,or

1 _1 _1
timinf — ((w(0) " (o 1)) 2 n — ) (m — 2)

n
which is equivalent to (w(to)) 1

ntl ~
which shows that w is decreasing as long as w 7 > C./e. Hence,

n+l ~
{rel0. 71| (ww) » > e} =10. 81
for some B € ]0, T[ because the map ¢ — w(¢) is continuous. By Lemma A.5, we have
1
(w®)" " = m—D(m—2/e)
for every ¢ € ]0, B[. For all ¢ € ]0, T[ we may conclude

1 ~ L
s C n+l1 .
(m = 1)(m — 3/o) () }

Letting ¢ N\ O such that x — 1 pointwise in H proves the claim. O

(w(t))% < max {

2.2 Generalisation of Topping’s interior area estimate
Topping [17] proves uniqueness of instantaneously complete Ricci flows on surfaces by

estimating differences of area. In the following, we adapt his method to the Yamabe flow in
dimension m > 3.
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The Poincaré ball model realises hyperbolic space (H, gg) as the unit ball in R” equipped
with polar coordinates P : 10, 1[xS"~! — Hmapping (p, ) — p® and Riemannian metric
4
P*gH = 2 (dp2 + ,02 gSm—l).
(1—p?)
In this section however, logarithmic polar coordinates P: 10, 00[ x "~ — H given by
P(s, %) = P(e™*, ) are more suitable. We record

5 46725
Pigyg=—(ds’> 4+ gen-1) = ———
T e—25)2( 5+ gn) (sinh )2

P*gr = e *(ds* + ggn1) = (¢ " sinhs)? P¥gy (50)

(dS2 "F gSm—l),

and note that the Riemannian manifold (Z, ¢) := (]0, oo x S~ ds?+ 8sm—1 ) has constant
scalar curvature Ry = (m — 1)(m — 2).

Proof of Theorem2 Let g(t) = u(-,t)gm and g(t) = v(-, 1)gn bg two Yamabe flows on
]H~I forr € [0,T]. Let U,V: Z x [0,T] — 10, 00[ such that P*g(t) = U(-,t)¢ and
P*g(t) = V(-,t) ¢. From Eq. (2) follows that U and V both solve

1 a

1
Yyt o L4y 4 AU, 51
1+ Dm —1) ar 7 . D

1
m—1

with respect to the metric ¢ = ds? 4 ggn—1 on Z. Note that U, V and their derivatives with
respect to s have exponential decay for s — oo. In fact,

where 4n = (m — 2) = Ry and Ay = % + Ag,,, is the Laplace-Beltrami operator

UG, )1 = 400 (52)
s, 0),1) = ——5,
(sinh 5)2
d nu"1e%0,1) 9 _ _ cosh s
—U"((s,0),1) = ——— - — 0,0)) —2nu(e 0, t) ——
ds (5.6).1) (sinhs)2"  3s (ue ) — 2’ )(smh 5)2n+1
—ne™* ad 2n U ((s, 0),t
— .nieliuﬂ—ll](e—sg’ 1) — M (53)
(sinh 5)2" p tanh s

Since u is positive and regular at the origin, [z"~! g—g](e—se, t) stays bounded as s — oo.
By assumption (i) and Eq. (50), applying Proposition 2.1 to g(¢), we have

((sinh$)?V)" < (m(m — 1)t)" + (b (e~ sinhs)?)". (54)
Assumption (ii) is equivalent to
(sinh $)2U > m(m — 1)t. (55)
Combining (54) and (55), we obtain
VI —UT < (be )" < b (56)

Let S, 50 € 10,00 be such that 0 < § < %so < 5o < log2. Let ¢: ]0,00[ — [0, 1] be a
cutoff function which is identically equal to 1 in the interval ]sg, oo, vanishes in ]0, S[ and
satisfies ¢”(s) < 0 for s > %so. Let Zs := 1S, oo[ x S$"~!. We analyse the evolution of the
quantity J: [0, T] — R given by

J(t) ::/ (V0 =0T n) e dpg
Zs
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where x4 := max{x, 0}. Abbreviating w := V7! —U"! we have forevery fixed r € 10, T
andevery 0 <7 <t

J(Z)—J(I—T):/

wy (-, 1) pdug —/ wi(,t—1)pdug
Zs Zs

< / (Wi 1) —wi( 1 — 1))@ due
ZsN{w(-1)>0)

</ (1) = w1 = 1) dic.
ZsN{w(-,1)>0}

We obtain
J@)—J( —
W (t) := lim sup M
™0 T
1
< lim sup/ —(wC, ) —w(, 1t —1))pdu;
™0 JZsn{w(,n>0} T

ow
= / 37(', 1 @du;
Zsn{w(-,1>0} 9f

where we may interchange limit and integral because with f := V" — U" and (51) we have

ow

1
B =0 D(~an s+ acy) (57)

which is bounded in Zg x [0, T'] with exponential decay for s — co. We claim that
f @A f — fAcg)due <0. (58)
Zsn{f(,0)>0}
Indeed, let (my)ren be a sequence of regular values for f (-, ¢) such that my N\, 0 as k — oo.
Then, { f(-,t) > my} C Z is a regular, open set with outer unit normal v in the direction of

—V f. Moreover, since f and V f have exponential decay for s — oo according to (52) and
(53), since ¢(S) = 0 and since Vg is supported in [S, so], we have by Green’s formula

(WA f = fArp)due = (@Vf-v—fVg-v)do

/Zsﬁi’{f(-,tbmk}

=< —mk/ Vo -vdo
ZgNo{f (.t)>my}

= —mk/ Arpdug
ZsN{f(.)>my}

< mk/ o] due.
5\,

Passing to the limit k — oo proves (58) since Zg \ Z, is a bounded domain. Hence,

v 1 ow
< —— —pdu
m—1 ZsN{w(-,1)>0y M — 1 ot

= / (—4nt+1f + ”,,i]Agf)wdug
Zsn(f (.)>0}

/;Sm{f(wl)>mk}

< / ”T“wa dpe = % (Vv — U”)+¢>” dpe. (59)
ZsN{f(-.1)>0}

Zs
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Introducing the exponent A € ]0, _%[ we modify estimate (56) as follows.

(VI —U", < b(lfl)ﬂ(vﬂ _ U")i
< b(l—k)r](U—l (V77+1 _ UT]+1)+))‘. (60)

We apply estimate (60) and Holder’s inequality with exponents x and 7= to gain

/;m 1/ V'I+l Ur]+l)+(p (p—AU—)L ‘QD//’ ds dﬂggmfl

A 7L 1" L 1-2
<ClJ = " Adsdugml)
gm—1 §

with constant C; = %b(l_)‘)”. The restriction of the integration domain to [S, %so] is
justified since ¢” < 0 in ]%so, co[. Substituting A = ﬁ we also have 1% = y and

15 = 14y with y €10, 5[, and we obtain

1
] Ty 350 1
<C1JTT (/ / U™ """ o7 ds dug ,,,_1) L (61)
m — 1 gm-1Jg s
Since s > sinh(s) is convex for positive arguments, we have
3
Vs €10, so[ C ]0,log2[: sinh(s) < sinh(log 2)@ 41();2.

The lower barrier (55) then implies

: 2
1 - (sinh s) < Qsz (62)
U™ m@m-— 1)t t

with constant Cy = 2. Substituting (62) into (61), we obtain

= (700e)

W) < c(J(t))ﬁ([

1
250 1 g2\y 1
ity  — 1+y
(F) e as)
S

t

s e
with constant C = (m — 1)C1C21+V ‘S’”_1| 7 ie.

J(@)—J(t — JONTS L 35
lim sup M < C(L) T+y o™, 0 ;=[ 2 ’(p/"l*V o7 ds,
N0 T t N

which resembles Topping’s [17, (3-10)] “main differential inequality”

1 D 2 U

1
%Jler <Ci Q™

in the 2-dimensional case. By Lemma A.7 stated in the “Appendix”, we conclude

1

J1+y([)_J1+y(0)<C[$Q Tty

The assumption g(0) < g(0) implies J(0) = 0. Therefore, we have

o0
/ / (v — U, dsdpg,, , <J@O <C1Q
Sm 1
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for every t € [0, T]. With a clever choice of ¢, Topping [17, Prop. 3.2] proves
c, _
0 < —L(logsy —log ). (63)
50

In the limit S \, 0 we have Q — 0 by (63) which yields V < U in ]sp, oo[ x S”~!. Since
so > 0 is arbitrary, we obtain V < U globally and hence g(¢) < g(t) as claimed.

In the case that g(#) and g(¢) both satisfy (ii) and g(0) = g(0) < b gg, the reverse
inequality g(r) > g(r) follows similarly by switching the roles of U and V. |
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Appendix A: Auxiliary results

The previous sections depend on some standard results and computations which we collect
in this appendix for convenience of the reader.

Propgsition A.1 (Inverse function theorem for Banach spaces) Let X, Y be Banach spaces
and X C X be open. Let S: X — Y be Fréchet differentiable at x vyith S(x0) = 0 and
invertible derivative DS(xo). Then there exists a neighbourhood U C X of xq such that

(i) V = SU is open,
(i) Sly: U — V is a homeomorphism,
(i) (S|y)~" is Fréchet differentiable.

In the following proposition, we denote partial derivatives by subscripts and understand
asum ) ;- whenever an index i appears twice in an expression.

Proposition A.2 (Linear parabolic maximum principle [14, § 3.3]) Let Q@ C R™ be an open,
bounded domain. Suppose, u satisfies

Uy — djjlUxx; — bruy, —cu <0 in 2 x [0, T],
u<o on Q x {0} and on 02 x [0, T,

where the function ¢ < A € R is bounded from above and ellipticity a;; & &; > 0 for all
& € R™ holds uniformly. Then, u < 0in Q x [0, T].

Proof. The function v(x, ) = u(x, t)e™ satisfies the equation
Vr = dijUxx; — brvy, — (c —2)v < 0. (64)

Assume that v(xg, fg) = maxg, o.7] V- If o = O or if xg € 0€2, then v < O follows. If
(x0, t0) € 2 x 10, T'], then v, (xo, to) > 0, vy, (x0, fp) = 0 and —0ijVx;x; (x0, 79) = 0. Thus,
(64) implies —(c — A)v(xg, o) < 0. From (¢ — 1) < 0 follows v(xg, o) < 0. Therefore,
v <0in Q x [0, T]. Since u and v share the same sign, the claim follows. O
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Lemma A.3 (Laplacian of hyperbolic distance) Let r: H — [0, oo[ be the Riemannian dis-
tance function with respect to some origin in hyperbolic space (H, gm) of dimension m > 2.
Then,

m—1

ANt = ———.
8H tanh r

In particular, (Agr)(x) < 2(m — 1) for every x € Hwith r(x) > 1.
Proof. The Poincaré ball model realises hyperbolic space (H, gr) as the unit ball equipped

with polar coordinates P: 10, 1[ x S"~' — H mapping (p,9) — p and conformal
Riemannian metric P* gy = h? gE, Where

2
ho)=1=5  ge= dp® + p* ggn-1. (65)

Here, ggm-1 is the standard metric on the unit sphere S”~! € R” and gg is the Euclidean
metric on the unit ball in R”™. We denote the radial coordinate on the unit ball by p and
reserve r for the hyperbolic distance which is given by

p 1
r(p) = / h(x)dx = 2artanh(p) = 10g<1+7p>. (66)
0 —p
By (66), we have
3 32 h
oy, Y _dh_
ap p2  9p

On the one hand, Eq. (38) implies
Agur = h™*Ager + (m —2)h > (Vh, Vr),,
1 8%  (m—1)ar

d
==—+— +(m—2)£l
h? 9p2 hZp dp h dp

m—1
=p+ ( ) +(m—2)p
hp
1—p? 14 02
—m=D(p+—L")=m - ). 67)
20 2p
On the other hand, Eq. (66) implies
_ 1+ 1—
e —e’ 1,1 (U+pP-0-p% 4
tanh(r) = ranpe T | 1p = A+ o2t (=p) = STy
1—p 1+p
Combined with (67), the claim follows. ]

Lemma A.4 (cutoff function) Let ¢ > 0 and a, b > 0 be real parameters. Then there exists
a non-increasing cutoff function ¢ € C>(R) given by

1, ifx<l,

px) = 0. ifx>2

which satisfies the inequality
(,0/2
|§0//| +a |(/)/| —}—b? < Cg0178
in{x € R | g(x) # 0} with a constant C depending only on a, b and ¢.
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Proof. There exists a non-increasing function ¥ € C2(R) satisfying ¥ (x) = 1 for x < 1
and ¥ (x) = 0 for x > 2 as well as |¢/], 1//” , W”| < Cp.Let p = % and ¢ = Y. We may
assume 0 < § < 2and p > 1. Then,

(/?/2

o =py'yP ¢ =p((p— DY+ Yy )y, o PRyl

which implies
2
0" +al¢| +b% < p((p = DY+ Yy | +a |y y| +bpy?)yr2

p=2 - 42+a+b)C3 |,

<p(l+a+1+b)p)C3p '”*. O

&2
LemmaA.5 Let Q € Randlet f: [0, T] — R be continuous satisfying

L SE - fE—T)
minf ———
™N\0 T

foreveryO <& < T.Then f(t) — f(0) > Qt foreveryt € [0, T].

li >0

Proof. We follow an argument by Richard Hamilton [10, Lemma 3.1]. The function

w(t) = f() — f(0) — Qt
is continuous and satisfies

w@ -—wE -1 . SO fE—T)

T ™N\0 T

lim inf - 0=>0. 68
im i 0= (68)
Let0 <t < T and ¢ > 0 be arbitrary but fixed. Then there exists § > 0 such that

VT el0,6[: w(l)—w(lt—1)>—¢1 (69)

because otherwise, we would obtain a contradiction to (68). We may assume that § € ]0, ]
is the largest value such that (69) holds. By continuity of w, (69) implies

w(t) —w( —38) > —é&sé. (70)

If t — § > 0, we may repeat the argument to find some 8’ > 0 such that

VT el0,8[: w(t—38 —wit—8—1)>—et. (71)
In particular, (70) and (71) can be combined to

w(t) —wt—38—1)>—e(6+71)
for all = € [0, [ in contradiction to the maximality of §. Hence, § = r and we obtain
w(t) — w(0) > —et.

Since ¢ > 0 is arbitrary and w(0) = 0 we have w(#) > 0 which proves the claim. ]

LemmaA.6 Letn > 0and Q > 0. Let v: [0, T] — [0, oo[ be continuous satisfying

lim sup v —vE—-1) < nQv(é)l_%
\0 T

forevery 0 < & < T where v(§) # 0. Then v(t)% - v(O)% < Qt foreveryt € [0, T].
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1
Proof. We consider the function f = v7.Let0 < & < T be arbitrary. If v(§) # 0, then by
assumption

1
nQ > f&'"" nm\s(l)lp (fE"— fE—D")

T

. 1 fET—fE - 1—
=1 il - - n
im sup (f&-rE-0) O RAL
= limsup L (f(&) — f (& —1)). (72)
nNo T
Dividing by n yields
lim sup M < 0. (73)
™0 T

If v(&) = 0 we have
Jim sup fE -fE -1 <0
™N\0 T
since f(§) = v(é)'li = 0and f > 0. We conclude that (73) holds not only where v(n) # 0

butin fact forevery 0 < & < T because Q > 0 is assumed. The claim follows by multiplying
(73) with —1 and applying Lemma A.5. O

LemmaA.7 Leta €0, 1[and C > 0. Let J: [0, T] — [0, oo[ be continuous satisfying

M= 16D (S0

lim sup p

™\0 T
foreveryO <t <T.Then J(@)* — J(0)* < Ct* foreveryt € [0, T].

Proof. As in the proof of Lemma A.6 (with o = %) we obtain

J@) —J@—1)*
lim sup ® €= <
N\0 T
for every fixed ¢ € ]0, T']. In particular, f(§) = J(§)* — C&“ satisfies

aCr®!

_ _ o _ N
limsup L& "SED _epat o G0
N0 T ™N\0 T
and we may conclude as before by multiplying with —1 and applying Lemma A.5. |
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