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Abstract
We prove existence of instantaneously complete Yamabe flows on hyperbolic space of arbi-
trary dimension m ≥ 3. The initial metric is assumed to be conformally hyperbolic with
conformal factor and scalar curvature bounded from above. We do not require initial com-
pleteness or bounds on the Ricci curvature. If the initial data are rotationally symmetric,
the solution is proven to be unique in the class of instantaneously complete, rotationally
symmetric Yamabe flows.

Mathematics Subject Classification 53C44 · 35K55 · 35A01 · 35A02

The Yamabe flow was introduced by Richard Hamilton [11]. It describes a family of Rie-
mannian metrics g(t) subject to the equation ∂t g = −Rg and tends to evolve a given initial
metric towards a metric of vanishing scalar curvature. Hamilton showed that global solu-
tions always exist on compact manifolds without boundary. Their asymptotic behaviour was
subsequently analysed by Chow [5], Ye [19], Schwetlick and Struwe [15] and Brendle [3,4].
Less is known about the Yamabe flow on noncompact manifolds. Daskalopoulos and Sesum
[6] analysed the profiles of self-similar solutions (Yamabe solitons). Ma and An [13] proved
short-time existence of Yamabe flows on noncompact, locally conformally flat manifolds M
under the assumption that the initial manifold (M, g0) is complete with Ricci tensor bounded
from below. More recently, Bahuaud and Vertman [1,2] constructed Yamabe flows starting
from spaces with incomplete edge singularities such that the singular structure is preserved
along the flow.

In dimension m = 2 the Yamabe flow coincides with the Ricci flow. Peter Topping and
Gregor Giesen [7,16,17] introduced the notion of instantaneous completeness and obtained
existence and uniqueness of instantaneously complete Ricci/Yamabe flows on arbitrary sur-
faces. The analysis of the flow on the hyperbolic disc plays an important role in their work. It
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relies on results which exploit the fact that the Ricci tensor is bounded by the scalar curvature
in dimension 2.

The goal of this paper is to find techniqueswhich allow a generalisation ofGiesen and Top-
ping’s results to the Yamabe flow on hyperbolic space (H, gH) of dimensionm ≥ 3. (H, gH)

is a complete, noncompact, simply connected manifold of constant sectional curvature −1
and it is conformally equivalent to the Euclidean unit ball (B1, gE).

Definition A family (g(t))t∈[0,T ] of Riemannian metrics on a manifold M with scalar cur-
vature R = Rg(t) is called a Yamabe flow, if ∂

∂t g = −R g. The family (g(t))t∈[0,T ] is called
instantaneously complete, if the Riemannian manifold (M, g(t)) is geodesically complete
for every 0 < t ≤ T .

Since the Yamabe flow preserves the conformal class of the metric, any conformally
hyperbolicYamabe flow (g(t))t∈[0,T ] onH is given by g(t) = u(·, t) gH, where the conformal
factor u : H × [0, T ] → R is a positive function evolving by the equation

1

m − 1

∂u

∂t
= − u R

m − 1
= m + �gHu

u
+ (m − 6)

4

|∇u|2gH
u2

(1)

where m = dimH, where �gH denotes the Laplace-Beltrami operator with respect to the
hyperbolic background metric gH and where |∇u|2gH = gH(∇u,∇u). Introducing the expo-

nent η := m−2
4 to define U = uη, Eq. (1) is equivalent to

U
1
η

m − 1

∂U

∂t
= mηU + �gHU (2)

which follows by virtue of (η−1) = (m−6)
4 and 1

η
�gHu

η = (η−1)uη−2 |∇u|2gH +uη−1�gHu.
While Eq. (2) has a simpler structure, pointwise bounds on u follow easier from Eq. (1). We
prove the following statements.

Theorem 1 (Existence) Let g0 = u0gH be any (possibly incomplete) conformal metric on
(H, gH) with bounded conformal factor 0 < u0 ∈ C4,α(H) and scalar curvature Rg0 ≤ K0

bounded from above. Then, for any T > 0 there exists an instantaneously complete family
of metrics (g(t))t∈[0,T ] satisfying the Yamabe flow equation{

∂
∂t g(t) = −Rg(t) g(t) in H × [0, T ],
g(0) = g0 on H.

Moreover, g(t) ≥ m(m − 1) t gH for any t ∈ ]0, T ]. As t ↘ 0, the metric g(t) converges
locally in class C2 to g0.

Remark On noncompact, locally conformally flat manifolds M , Ma and An [13] require
bounded scalar curvature, a lower bound on the Ricci tensor and completeness of (M, g0)
for short-time existence and additionally non-positive scalar curvature for global existence.

Theorem 2 (Uniqueness) Let (g(t))t∈[0,T ] and (g̃(t))t∈[0,T ] be two conformally hyperbolic
Yamabe flows on (H, gH) satisfying

(i) ∃b ∈ R : g̃(0) ≤ b gE,
(ii) ∀t ∈ [0, T ] : g(t) ≥ m(m − 1)t gH.

Then, if g̃(0) ≤ g(0), we have g̃(t) ≤ g(t) for all t ∈ [0, T ].
In particular, if g(t) and g̃(t) both satisfy (ii) and if g(0) = g̃(0) ≤ b gE, then g ≡ g̃.
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Remark In the Poincaré ball model forH, the conformally hyperbolic initial metric g̃(0) can
be compared to the Euclidean metric, whose pullback we also denote as gE. Assumption (i)
means, that the initial manifold (H, g̃(0)) is incomplete and has finite diameter.

Assumption (ii) implies instantaneous completeness of g(t). We conjecture that instanta-
neously complete, conformally hyperbolic Yamabe flows always satisfy (ii). For rotationally
symmetric flows, this is proved in Proposition 2.2.

The instantaneously complete flow Topping [16] constructs on 2-dimensional manifolds
has a certain maximality property which we also observe in higher dimensions: Theorem 2
implies, that if g0 ≤ b gE, then the Yamabe flow constructed in Theorem 1 is maximally
stretched in the sense that any other Yamabe flow with the same or lower initial data stays
below it.

Moreover, Theorem 2 implies, that if g0 ≤ b gE, then any two solutions (g(t))t∈[0,T ] and
(g̃(t))t∈[0,T̃ ] constructed in Theorem 1 agree on [0, T ] ∩ [0, T̃ ]. Since T > 0 is arbirtary in
Theorem 1, we then obtain global existence, i. e. an instantaneously complete Yamabe flow
(g(t))t∈[0,∞[ on H with g(0) = g0.

Theorem 3 Let g0 = u0gRm be a conformally Euclidean metric on (Rm, gRm )with m ≥ 3. If
u0(x) ≤ b |x |−4 for some finite constant b and all x ∈ R

m, then any Yamabe flow (g(t))t∈[0,T ]
on R

m with g(0) = g0 is geodesically incomplete for all t ∈ [0, T ].
Remark Theorem 3 shows that the results about instantaneously complete Yamabe flow on
hyperbolic space do not equally hold on arbitrary manifolds of dimensionm ≥ 3. It contrasts
with the 2-dimensional case, where instantaneously complete Yamabe flows always exist [7].

For example, there does not exist an instantaneously complete Yamabe flow starting from
the punctured unit sphere (Ṡm, gSm ) in dimension m ≥ 3. Indeed, if π : Ṡm → R

m is

stereographic projection, then π∗gSm = 4(1 + |x |2)−2
gRm and Theorem 3 applies.

1 Existence

In this section, we prove Theorem 1. As a first step, short-time existence of a solution u
to Eq. (1) for given u(·, 0) = u0 > 0 on convex, bounded domains � ⊂ H with suitable
boundary data is proven by applying the inverse function theorem on Banach spaces. Richard
Hamilton [9, § IV.11] uses the same technique to prove existence of solutions to the heat
equation for manifolds. Local Hölder estimates then lead to a uniform existence time for all
domains.

In a second stepwe derive uniform gradient estimates, which do not depend on the domain.
By considering an exhaustion of H with convex, bounded domains, we obtain a locally uni-
formly bounded sequence of solutions which allows a subsequence converging to a solution
of (1) on all of H.

1.1 Existence on bounded domains

We denote the non-linear terms in Eq. (1) by

Q[u] := (m − 1)

(
m + �gHu

u
+ (m − 6)

4

|∇u|2gH
u2

)
.

Given a smooth, bounded domain � ⊂ H and T > 0, we consider the problem
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⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= Q[u] in � × [0, T ],

u = φ on ∂� × [0, T ],
u = u0 on � × {0}

(3)

for given 0 < u0 ∈ C2,α(�) and φ ∈ C2,α;1, α
2 (∂� × [0, T ]) satisfying φ(·, t) ≥ m(m − 1)t

and the first order compatibility conditions⎧⎨
⎩

φ(·, 0) = u0 on ∂�,

∂φ

∂t
(·, 0) = Q[u0] = −u0Rg0 on ∂�.

(4)

Such boundary data φ exist since u0 and Rg0 are bounded on the compact set ∂� and u0 > 0.
In Sect. 1.2 we choose φ explicitly.

For small times t > 0, we expect the solution u to (3) to be close to the solution ũ of the
linear problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1

m − 1

∂ ũ

∂t
− �gH ũ

u0
− (m − 6)

4

〈∇ũ,∇u0〉gH
u20

= m in � × [0, T ],

ũ = φ on ∂� × [0, T ],
ũ = u0 on � × {0}.

(5)

Since � is bounded and since u0 > 0 in H, there exists some δ > 0 depending on � and u0
such that u0 ≥ δ in�. Therefore, Eq. (5) is uniformly parabolic with regular coefficients and
the compatibility conditions given in (4) are satisfied. According to linear parabolic theory
[12, § IV.5, Theorem 5.2], problem (5) has a unique solution ũ ∈ C2,α;1, α

2 (�×[0, T ]). Since
u0 > 0 and φ(·, t) ≥ m(m − 1)t for all t ∈ [0, T ], the parabolic maximum principle (Prop.
A.2) applied to m(m − 1)t − ũ(·, t) implies

ũ(·, t) ≥ m(m − 1)t .

In particular, ũ ≥ ε on � × [0, T ] for some ε > 0 depending on � and ũ.

Lemma 1.1 (Short-time existence on bounded domains) Let � ⊂ H be a smooth, convex,
bounded domain. Then, there exists T > 0 such that problem (3) is solvable.

Proof. A solution u to (3) is of the form u = ũ + v, where ũ solves (5) and⎧⎪⎪⎨
⎪⎪⎩

∂v

∂t
= Q[ũ + v] − ∂ ũ

∂t
in � × [0, T ],

v = 0 on ∂� × [0, T ],
v = 0 on � × {0}.

(6)

Given the Hölder exponent 0 < α < 1, let

X := {v ∈ C2,α;1, α
2 (� × [0, T ]) | v = 0 on (� × {0}) ∪ (∂� × [0, T ])},

Y := { f ∈ C0,α;0, α
2 (� × [0, T ]) | f = 0 on ∂� × {0}}.

The map

S : X → Y

v �→ ∂
∂t (ũ + v) − Q[ũ + v].
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then is well-defined because the compatibility conditions (4) imply that at every p ∈ ∂� for
every v ∈ X , we have

(Sv)(p, 0) =
(

∂ ũ

∂t
− Q[ũ]

)
(p, 0) =

(∂φ

∂t
(·, 0) − Q[u0]

)
(p) = 0.

The linearisation of Q[ũ] around ũ ∈ C2,α;1, α
2 (� × [0, T ]) defines the linear operator

L(ũ) = (m − 1)

(
−�gH ũ

ũ2
− (m − 6)

2

|∇ũ|2gH
ũ3

+ (m − 6)

2ũ2
〈∇ũ,∇ · 〉gH + �gH

ũ

)

The map S is Gateaux differentiable at 0 ∈ X with derivative

DS(0) : X → Y

w �→ ∂
∂t w − L(ũ)w.

The mapping u �→ L(u) is continuous near ũ because ũ is bounded away from zero. Hence,
DS(0) is in fact the Fréchet-derivative of S at 0 ∈ X . Moreover, the linear operator ∂

∂t −L(ũ)

is uniformly parabolic.
Let f ∈ Y be arbitrary. By definition, 0 = f (·, 0) is satisfied on ∂� which is the first

order compatibility condition for the linear parabolic problem

⎧⎪⎪⎨
⎪⎪⎩

∂w

∂t
− L(ũ)w = f in � × [0, T ],

w = 0 on ∂� × [0, T ],
w = 0 on � × {0}.

(7)

As before, linear parabolic theory states that (7) has a unique solution w ∈ X . Therefore, the
linear map DS(0) : X → Y is invertible.

By the Inverse FunctionTheorem (PropositionA.1), S is invertible in some neighbourhood
V ⊂ Y of S(0). We claim that V contains an element e such that e(·, t) = 0 for 0 ≤ t ≤ ε

and sufficiently small ε > 0. Let f := S(0) = ∂
∂t ũ − Q[ũ] be fixed. Let θ : [0, T ] → [0, 1]

be a smooth cutoff function such that

θ(t) =
{
0, for t ≤ ε,

1, for t > 2ε,
0 ≤ dθ

dt
≤ 3

ε
.

We claim θ f ∈ V for sufficiently small ε > 0. Since ũ is smooth in � × [0, T ], we have
f ∈ C1(� × [0, T ]). Since at t = 0, we have

f (·, 0) = ∂ ũ

∂t
(·, 0) − Q[u0] = 0 on �, (8)

we can estimate

| f (·, s)| = | f (·, s) − f (·, 0)| ≤ s ‖ f ‖C1(�×[0,T ]) . (9)
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Let t, s ∈ [0, T ] such that t > s. If s > 2ε, then ( f − θ f )(·, s) = ( f − θ f )(·, t) = 0.
Therefore, we may assume s ≤ 2ε. In this case we estimate

|( f − θ f )(·, t) − ( f − θ f )(·, s)|
≤ | f (·, t) − f (·, s)| + |θ f (·, t) − θ f (·, s)|
≤ (

1 + |θ(t)|) | f (·, t) − f (·, s)| + | f (·, s)| |θ(t) − θ(s)|
≤ 2 ‖ f ‖C1 |t − s| + s ‖ f ‖C1

∥∥θ ′∥∥
C0 |t − s|

≤ (
2 + s 3

ε

) ‖ f ‖C1 |t − s|
≤ 8 ‖ f ‖C1 |t − s| . (10)

Due to (8), the special case s = 0 reduces to

|( f − θ f )(·, t)| ≤ 8t ‖ f ‖C1 . (11)

Since the left-hand side of (11) vanishes for t > 2ε, we have in fact

‖ f − θ f ‖C0 ≤ 16ε ‖ f ‖C1 .

If |t − s| < ε, estimate (10) directly implies

|( f − θ f )(·, t) − ( f − θ f )(·, s)| ≤ 8ε1−
α
2 ‖ f ‖C1 |t − s| α

2 .

If |t − s| ≥ ε, we replace the estimate by

|( f − θ f )(·, t) − ( f − θ f )(·, s)| ≤ 2 ‖ f − θ f ‖C0

≤ 32ε ‖ f ‖C1

≤ 32ε1−
α
2 ‖ f ‖C1 |t − s| α

2 .

Therefore, [ f − θ f ] α
2 ,t ≤ 32ε1− α

2 ‖ f ‖C1 .
For the spatial Hölder seminorm, we obtain a similar estimate from (9) and

|( f − θ f )(x, t) − ( f − θ f )(y, t)|
≤ |1 − θ(t)| | f (x, t) − f (y, t)|α | f (x, t) − f (y, t)|1−α

≤ ‖ f ‖α
C1 d(x, y)α

(
4ε ‖ f ‖C1

)1−α = (4ε)1−α ‖ f ‖C1 d(x, y)α,

where d(x, y) denotes the Riemannian distance between x and y in (H, gH) and where
convexity of � is used. To conclude, ‖ f − θ f ‖Y ≤ Cεβ−α ‖ f ‖C1 . Thus, θ f belongs to the
neighbourhood V of f if ε > 0 is sufficiently small. By construction, S−1(θ f ) is a solution
to (6) in � × [0, ε]. Redefining T = ε > 0, we obtain the claim.

1.2 Local estimates

Let � ⊂ H be a smooth, convex, bounded domain. Let u ∈ C2,α;1, α
2 (� × [0, T ]) be a

solution to the nonlinear problem (3) as determined in Lemma 1.1. Restricting the hyperbolic
background metric gH to �, we obtain the Yamabe flow g(t) = u(·, t)gH on � with initial
metric g0 = u0gH. In order to estimate the scalar curvature R = Rg(t) of (�, g(t)) by means
of the maximum principle, we will assume u0 ∈ C4,α(�) such that Rg0 ∈ C2,α(�) and
specify the parabolic boundary data φ explicitly. We define the function v ∈ C2,α(�) by

v(x) := −u0(x)Rg0(x) − m(m − 1),
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+
0

+
1

+1
3

s

ψ

Fig. 1 Graph of the function ψ

which is the relative initial velocity of the Yamabe flow in question compared to the “big
bang”-Yamabe flow m(m − 1)tgH. Defining the constant

κ := max
x∈�

{∣∣Rg0(x)
∣∣ , m(m − 1)

u0(x)

}
. (12)

we have |v| ≤ 2u0κ . For s ≥ 0, let

ψ(s) := 1
3 + 1

3 (s − 1)3χ[0,1](s),

where χ[0,1] denotes the characteristic function of the interval [0, 1] (Fig. 1).
As parabolic boundary data for problem (3) we choose

φ(x, t) = u0(x) + m(m − 1)t + v(x)
ψ(κt)

κ
(13)

which satisfies the desired inequalities

1
3u0 + m(m − 1)t ≤ φ(·, t) ≤ 5

3u0 + m(m − 1)t (14)

and the first order compatibility conditions (4) by construction, i.e. φ(·, 0) = u0 and

∂φ

∂t
(x, t) = m(m − 1) + v(x)ψ ′(κt), ∂φ

∂t
(x, 0) = −u0(x)Rg0(x).

Moreover, we have φ ∈ C2,α;1, α
2 (�×[0, T ]) because u0 ∈ C4,α(�) and Rg0 ∈ C2,α(�) and

since the derivatives

ψ ′(s) = (s − 1)2χ[0,1](s),
ψ ′′(s) = 2(s − 1)χ[0,1](s)

are continuous at s = 1 and bounded in [0,∞[. We observe that for any s ∈ [0,∞[
∣∣ψ(s) − s ψ ′(s)

∣∣ = ∣∣ 1
3 + ( 1

3 (s − 1)3 − s(s − 1)2
)
χ[0,1](s)

∣∣
= ∣∣ 1

3 − 1
3 (s − 1)2(1 + 2s)χ[0,1](s)

∣∣ ≤ 1

3
. (15)
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Given ε > 0 to be chosen, the estimates (15),
∣∣ψ ′∣∣ ≤ 1 and |v| ≤ 2u0κ imply

φ(·, t) − (t + ε)
∂φ

∂t
(·, t)

= u0 + v
ψ(κt)

κ
− εm(m − 1) − (t + ε) vψ ′(κt)

= u0 − εm(m − 1) + v

κ

(
ψ(κt) − κt ψ ′(κt)

) − ε vψ ′(κt)

≥ u0 − εm(m − 1) − |v|
3κ

− ε |v|
≥ u0

3
− ε

(
m(m − 1) + 2u0κ

) ≥ 0

if ε > 0 is chosen sufficiently small depending only on u0, � and m. Hence,

− 1

φ

∂φ

∂t
≥ − 1

t + ε
. (16)

Let 0 < K0 ≤ κ be a constant such that Rg0 ≤ K0 in �. For 0 ≤ t < 1
K0

we have

K0φ(·, t) + (1 − K0t)
∂φ

∂t
(·, t)

= K0u0 + K0

κ
vψ(κt) + m(m − 1) + (1 − K0t) vψ ′(κt)

= K0u0 + m(m − 1) +
(K0

κ
ψ(κt) + (1 − K0t)ψ

′(κt)
)
v . (17)

To estimate (17) we set a := K0
κ

∈ [0, 1] and s = κt and observe that the expression

� = aψ(s) + (1 − as)ψ ′(s)
= a

3 + ( a
3 (s − 1)3 + (1 − as)(s − 1)2

)
χ[0,1](s)

= a
3 + ( 2a

3 (1 − s)3 + (1 − a)(1 − s)2
)
χ[0,1](s)

is decreasing in s ∈ [0, 1] as long as a ≤ 1 and therefore bounded from above by aψ(0) +
ψ ′(0) = 1 and from below by a

3 ≥ 0. Substituting the term 0 ≤ � ≤ 1 in (17), we conclude

K0φ(·, t) + (1 − K0t)
∂φ

∂t
(·, t) = K0u0 + m(m − 1) + � v

= (K0 − �Rg0)u0 + m(m − 1)(1 − �) ≥ 0.

For every t ∈ [0, 1
K0

[ we obtain

− 1

φ

∂φ

∂t
≤ K0

1 − K0t
. (18)

Finally, for all t ≥ 1
κ
we have ψ ′(κt) = 0 and thus ∂

∂t φ(·, t) = m(m − 1). Some of the
previous estimates are illustrated in Fig. 2.

Lemma 1.2 (Scalar curvature bound) Let 0 ≤ K0 ∈ R be a constant such that Rg0 ≤ K0

in �. Let T0 := (max{K0,
1
T })−1. Then, there exists ε > 0 depending only on u0, � and m

such that for all (x, t) ∈ � × [0, T0[

− 1

t + ε
≤ R(x, t) ≤ K0

1 − K0 t
.
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m(
m−

1)
t

t

φ

+
0

+
1
κ

+u0

m(
m−

1)
t

t

φ

+
0

+
1
κ

+u0

t

R| = − 1
φ

∂φ
∂t

+ +
1
κ

+Rg0

−1
t

t

R| = − 1
φ

∂φ
∂t

+
1
κ

+

+Rg0

−1
t

Fig. 2 The evolution of φ (above) and R (below) on ∂� for different initial values

Proof. In�×[0, T ]we can express the scalar curvature in the formR = − 1
u

∂u
∂t . In particular,

on ∂� × [0, T ] we have

R|∂�×[0,T ] = − 1

φ

∂φ

∂t
,

where the right hand side satisfies the lower bound (16) and the upper bound (18). Scalar
curvature evolves by the equation (see [5, Lemma 2.2])

∂
∂tR = (m − 1)�g(t)R + R2 in � × [0, T ]. (19)
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Let w(t) = K0
1−K0t

for t ∈ [0, T0[ with dw
dt = w2. Then R ≤ w on (�×{0})∪ (∂�×[0, T0[)

by (18). Moreover, we have

∂
∂t (R − w) − (m − 1)�g(t)(R − w) − (R + w)(R − w) = 0 in � × [0, T0[.

Let T1 < T0 ≤ T be fixed. Then, (R + w) is bounded from above in � × [0, T1] and the
inequality R ≤ w in �×[0, T1] follows from the parabolic maximum principle (Proposition
A.2). Since T1 < T0 is arbitrary, we have R ≤ w in � × [0, T0[.

Let ε > 0 be sufficiently small depending only on u0, � and m, such that (16) holds and
such that additionally, Rg0 ≥ − 1

ε
in �. In the argument above we replace w(t) by − 1

t+ε
and

conclude R ≥ − 1
t+ε

analogously.

Lemma 1.3 (Upper and lower bound) Let 0 < u ∈ C2,α;1, α
2 (� × [0, T ]) be a solution to

problem (3) with boundary data (13) and bounded initial data u0 > 0. Then, for every
0 ≤ t ≤ T ,

m(m − 1)t + 1
3 min

�

u0 ≤ u(·, t) ≤ m(m − 1)t + 5
3 max

�

u0.

Proof. From the equation for u, we deduce that given any constant c ∈ R the function
w(·, t) = u(·, t) − m(m − 1)t − c satisfies

1

m − 1

∂w

∂t
− �gHw

u
− (m − 6) 〈∇u,∇w〉gH

4u2
= 0 in � × [0, T ]. (20)

Since u > 0, equation (20) is uniformly parabolic. For c = 1
3 min� u0 (respectively c =

5
3 max� u0 ) we have w ≥ 0 (respectively w ≤ 0) on (∂� × [0, T ]) ∪ (� × {0}) by (14) and
the parabolic maximum principle (Proposition A.2) implies w ≥ 0 (respectively w ≤ 0) in
� × [0, T ].
Lemma 1.4 (Uniqueness on bounded domains) Let u, v ∈ C2,α;1, α

2 (� × [0, T ]) be two
positive solutions of problem (3) with equal initial and boundary data. Then u = v.

Proof. With derivatives and inner products taken with respect to gH, we have by (1)

1

m − 1

∂

∂t
(u − v) = �u

u
− �v

v
+ m − 6

4

( |∇u|2
u2

− |∇v|2
v2

)
= �(u − v)

u
+ m − 6

4u2
〈∇(u + v),∇(u − v)〉

− �v

uv
(u − v) − m − 6

4

|∇v|2
u2v2

(u + v)(u − v)

which can be considered as linear parabolic equation for u − v with bounded coefficients
because u, v ∈ C2,α;1, α

2 (�×[0, T ]) are uniformly bounded away from zero and from above
and |∇u|, |∇v|, �v are bounded functions in �. Since (u − v) vanishes along (� × {0}) ∪
(� × [0, T ]), the parabolic maximum principle (Proposition A.2) implies u − v = 0 in
� × [0, T ] as claimed.

Lemma 1.5 (Local Hölder estimate) Let u ∈ C2,α;1, α
2 (� × [0, T ]) be a solution to problem

(3) with boundary data (13) and T < 1
K0

, where K0 ≥ 0 is an upper bound for Rg0 in �.
Then, there exists a constant C, depending only on the dimension m, the initial data u0, the
constant K0 and the domain � such that for every t ∈ [0, T ]

‖u(·, t)‖C2,α(�) ≤ C .
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Proof. Let U = uη be the corresponding solution to equation (2), i.e.

U
1
η ∂

∂t U = −ηU 1+ 1
η R = (m − 1)

(
mηU + �gHU

)
. (21)

Lemmata 1.2 and 1.3 yield uniform bounds on the function U and the scalar curvature R in
� × [0, T ]. Therefore, equation (21) implies∥∥−�gHU (·, t)∥∥L∞(�)

≤ C,
∥∥ ∂

∂t U (·, t)∥∥L∞(�)
≤ C

for every t ∈ [0, T ], whereC is a finite constant depending only onm, u0, K0 and�. Elliptic
L p-Theory [8, §9.5] implies ‖U (·, t)‖W 2,p(�) ≤ C for every 1 < p < ∞. With p > m,
Sobolev’s embedding theorem implies ‖U (·, t)‖C1,α(�) ≤ C . In particular, since U = uη is
bounded away from zero by Lemma 1.3, we have∥∥∥U− 1

η

∥∥∥
C0,α;0, α

2 (�×[0,T ]) ≤ C .

Hence, the equation

1

m − 1

∂V

∂t
= (

mηV + �gHV
)
U− 1

η in � × [0, T ] (22)

has sufficiently regular coefficients for linear parabolic theory [12, § IV.5, Theorem 5.2] to
apply: It follows that V = U is the unique solution to (22) with the given initial and boundary
data. Moreover, U satisfies

‖U‖
C2,α;1, α

2 (�×[0,T ]) ≤ C .

Since U is bounded away from zero in � × [0, T ], the claim follows.

Corollary 1.6 (Extension in time) If the initial scalar curvature Rg0 is bounded from above
by K0 ≥ 0 in H, then problem (3) with boundary data (13) is solvable in � × [0, 1

K0
[ for

every smooth, bounded domain � ⊂ H.

Proof. According to Lemma 1.1, problem (3) is solvable in � × [0, T ] for some T > 0. Let
T∗ > 0 be the maximal existence time, i. e. the supremum over all T > 0 such that problem
(3) has a solution defined in � × [0, T ]. By Lemma 1.4, two such solutions agree on their
common domain, therefore there exists a solution u defined on � × [0, T∗[. Suppose, that
for some � the maximal existence time is T∗ < 1

K0
. Then, Lemma 1.5 implies that u can be

extended to u ∈ C2,α;1, α
2 (� × [0, T∗]) and that u(·, T∗) ∈ C2,α(�) is suitable initial data for

problem (3). The boundary data (13) are defined also for t ≥ T∗ and they are compatible with
u(·, T∗) at time T∗. Therefore, we may apply Lemma 1.1 to extend the solution regularly in
time in contradiction to the maximality of T∗.

1.3 Uniform estimates

We assume that the initial metric g0 = u0gH and its scalar curvature satisfy the upper bounds
u0 ≤ C0 and Rg0 ≤ K0 in H with some constant K0 ≥ 0. Let 0 < T < 1

K0
be fixed. From

the previous section we recall that for any smooth, bounded domain � ⊂ H, there exists a
uniformly bounded solution u of (3) on�×[0, T ]. However, the previousHölder estimates on
u may depend on the domain �. In the following, we derive independent bounds. As before,
spatial derivatives and inner products are taken with respect to the hyperbolic background
metric but in the following we will suppress the index gH to ease notation.
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Lemma 1.7 (Uniform gradient estimate) Let B� be the metric ball of radius � > 1 around the
origin in (H, gH). Let u ∈ C2,α;1, α

2 (B� × [0, T ]) be a solution to problem (3) with boundary
data (13) as constructed in Corollary rm 1.6. Then, U = uη with η = m−2

4 satisfies

|∇U |2 ≤ C in B�−1 × [0, T ],
where the constant C depends on the dimension m and the constants C0, K0, T but not on �.
Similar bounds hold for higher derivatives of U.

Proof. Let p ∈ R be an exponent. As in [13], we consider the function w = U p |∇U |2 and
compute

1

m − 1

∂w

∂t
= pU p−1− 1

η
U

1
η

m − 1

∂U

∂t
|∇U |2 + 2

〈
∇U ,

U p

m − 1
∇ ∂U

∂t

〉
.

We recall R = − 1
ηU

∂U
∂t and 1

m−1U
1
η ∂U

∂t = mηU + �U from equation (2). Since

U p

m − 1
∇ ∂U

∂t
= U p− 1

η ∇
(

U
1
η

m − 1

∂U

∂t

)
− 1

η

U p−1

m − 1

∂U

∂t
∇U

= U p− 1
η
(
mη∇U + ∇�U

) + R

m − 1
U p∇U ,

we have

1

m − 1

∂w

∂t
= pU p−1− 1

η
(
mηU + �U

) |∇U |2 + 2mηU p− 1
η |∇U |2

+ 2U p− 1
η 〈∇U ,∇�U 〉 + 2R

m − 1
U p |∇U |2

= (p + 2)mηU p− 1
η |∇U |2 + 2wR

m − 1

+ (
pU p−1 |∇U |2 �U + 2U p 〈∇U ,∇�U 〉)U− 1

η . (23)

Bochner’s identity implies

� 1
2 |∇U |2 = |∇∇U |2 + 〈∇U ,∇�U 〉 + Ric(∇U ,∇U ). (24)

Together with RicgH = −(m − 1)gH, we apply (24) in the following computation.

∇w = pU p−1 |∇U |2 ∇U +U p∇ |∇U |2 ,

�w = p(p − 1)U p−2 |∇U |4 + 2pU p−1 〈∇U ,∇ |∇U |2〉
+ pU p−1 |∇U |2 �U +U p� |∇U |2

= p(p − 1)U p−2 |∇U |4 + 2pU−1 〈∇U ,∇w〉 − 2p2U p−2 |∇U |4
+ pU p−1 |∇U |2 �U + 2U p(|∇∇U |2 + 〈∇U ,∇�U 〉 − (m − 1) |∇U |2).

Hence, (
pU p−1 |∇U |2 �U + 2U p 〈∇U ,∇�U 〉)
= �w − 2pU−1 〈∇U ,∇w〉

+ p(p + 1)U p−2 |∇U |4 + 2(m − 1)U p |∇U |2 − 2U p |∇∇U |2 . (25)
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We insert (25) into (23) and resubstitute w = U p |∇U |2 to obtain

1

m − 1

∂w

∂t
= (

(p + 2)mη + 2(m − 1)
)
U− 1

η w + 2wR

m − 1

+ (
�w − 2pU−1 〈∇U ,∇w〉)U− 1

η

+ p(p + 1)U−p−2− 1
η w2 − 2U p− 1

η |∇∇U |2 .

Choosing p = − 1
2 and deducing 2

m−1R ≤ K1 from Lemma 1.2 for some constant K1 ≥ 0
depending on K0 and T , we obtain

1

m − 1

∂w

∂t
≤ ( 3

2mη + 2m − 2
)
U− 1

η w + K1w

+ (
�w +U−1 〈∇U ,∇w〉)U− 1

η − 1
4U

− 3
2− 1

η w2. (26)

Let ϕ : R → [0, 1] be a smooth, non-increasing cutoff function satisfying ϕ(x) = 1 for
x ≤ �− 1 and ϕ(x) = 0 for x ≥ �. Let r : H → [0,∞[ be the Riemannian distance function
from the origin in (H, gH) and let χ = ϕ ◦ r . Before we multiply both sides of Eq. (26) by
χ , we compute

χ�w = �(χw) − w�χ − 2 〈∇w,∇χ〉

= �(χw) − 2

χ
〈∇(wχ),∇χ〉 +

(
2 |∇χ |2

χ
− �χ

)
w. (27)

Lemma A.3 stating �r ≤ 2(m − 1) on H \ B1 and Lemma A.4 about cutoff functions (both
given in the “Appendix”) provide an estimate of the last term: There exists a constant cm
depending only on the dimension m such that

(
2 |∇χ |2

χ
− �χ

)
= 2

∣∣ϕ′(r)
∣∣2

ϕ(r)
− ϕ′′(r) − ϕ′(r)�r ≤ cm

√
χ (28)

and such that χ−3 |∇χ |4 ≤ c2m which will be used later. (27) and (28) lead to

1

m − 1

∂(χw)

∂t
≤

(( 3
2mη + 2m

)
U− 1

η + K1

)
(χw)

+U− 1
η χ�w + 〈∇U , χ∇w〉U−1− 1

η − 1
4U

− 3
2− 1

η χw2

≤
(( 3

2mη + 2m
)
U− 1

η + K1

)
(χw)

+
(
�(χw) − 2

χ
〈∇(wχ),∇χ〉

)
U− 1

η + cm
√

χ wU− 1
η

+ 〈∇U ,∇(χw)〉U−1− 1
η − 〈∇U , w∇χ〉U−1− 1

η − 1
4U

− 3
2− 1

η χw2. (29)

Young’s inequality for a, b ∈ R, δ > 0 and p, q > 1 with 1
p + 1

q = 1 states that

|ab| ≤ δ |a|p + 1
q (pδ)1−q |b|q .
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We apply it with p = 4
3 and q = 4 and recallw = U− 1

2 |∇U |2, i.e. |∇U | = w
1
2U

1
4 to obtain

−〈∇U , w∇χ〉U−1− 1
η ≤ w |∇U |U−1− 1

η |∇χ |
= (

U− 9
8 χ

3
4 w

3
2
)(
U

3
8 χ− 3

4 |∇χ |)U− 1
η

≤ δU− 3
2− 1

η χw2 + 33

44
δ−3 |∇χ |4

χ3 U
3
2− 1

η .

Young’s inequality with p = 2 = q also yields

cm
√

χ wU− 1
η ≤ δU− 3

2− 1
η χw2 + c2m

4δ
U

3
2− 1

η .

Let the sum of all terms in (29) containing �(χw) or ∇(χw) be denoted by

� :=
(
�(χw) − 2

χ
〈∇(wχ),∇χ〉

)
U− 1

η + 〈∇U ,∇(χw)〉U−1− 1
η

and let the largest of the occurring factors which depend only on the dimensionm be denoted
by Cm . Then

1

m − 1

∂(χw)

∂t
≤ Cm

(
U− 1

η + K1
)
(χw) + Cm

(
δ−1 + δ−3)U 3

2− 1
η

− ( 14 − 2δ)U− 3
2− 1

η χw2 + �.

Choosing δ = 1
16 , we have −( 14 − 2δ) = − 1

8 < 0. Since −χw2 ≤ −(χw)2 and since

c1(χw) − c2(χw)2 ≤ c21
4c2

,

for any c1, c2 > 0, we obtain

∂(χw)

∂t
− � ≤ C̃m

(
U

3
2− 1

η + K 2
1U

3
2+ 1

η
)

(30)

with a different constant C̃m . By Lemma 1.3, we have(
m(m − 1)t

)η ≤ U (·, t) ≤ C(m,C0, T )

in B� × [0, T ]. Since ( 32 − 1
η
)η > −1, the right hand side of (30) is bounded from above

by a spatially constant, positive function f ∈ L1([0, T ]). Let F ′(t) = f (t) with F(0) =
max(χw)(0) define a primitive function F for t �→ f (t). Then,

∂(χw − F)

∂t
≤ � = U− 1

η �(χw − F) +U− 1
η

〈
∇(wχ − F),

∇U

U
− 2∇χ

χ

〉
.

Since χw−F = −F ≤ 0 on ∂B� ×[0, T ] and χw ≤ F on B� ×{0}, the parabolic maximum
principle (Proposition A.2) implies χw ≤ F in B� ×[0, T ]. The map t �→ F(t) is increasing
and F(T ) depends only on m,C0, K0, T . Therefore, in B�−1 × [0, T ], we finally have

|∇U |2 = (χw)
√
U ≤ C(m,C0, K0, T ).

Since the Yamabe flow equation is only of second order, similar estimates on higher deriva-
tives of U follow analogously.
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Proof of Theorem 1 Let η = m−2
4 and let the initial metric g0 = u0gH be given by 0 <

U0 = uη
0 ∈ C2,α(H). Let Br be the metric ball of radius r > 0 around the origin in (H, gH).

Then, B1 ⊂ B2 ⊂ . . . ⊂ H is an exhaustion of H with smooth, bounded domains. We fix
0 < T < 1

K0
and choose φ as in (13). By Corollary 1.6, the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

m − 1

∂Uk

∂t
= (

mηUk + �gHUk
)
U

− 1
η

k in Bk × [0, T ],
Uk = φη on ∂Bk × [0, T ],
Uk = U0 on Bk × {0},

is solvable for every k > 0. According to Lemma 1.7, the sequence {Uk |B1×[0,T ]}2≤k∈N is
uniformly bounded in C2,α;1, α

2 (B1 × [0, T ]). Since B1 is a bounded domain, the embedding
C2,α;1, α

2 (B1×[0, T ]) ↪→ C2;1(B1×[0, T ]) is compact andwe obtain a subsequence�1 ⊂ N

such that

{Uk |B1×[0,T ]}2≤k∈�1

converges in C2;1(B1 × [0, T ]) to a solution of the Yamabe flow equation (2) on B1. We
repeat this argument to obtain a subsequence �2 ⊂ �1 such that

{Uk |B2×[0,T ]}3≤k∈�2

converges to a solution of (2) on B2. Iterating this procedure leads to a diagonal subsequence
of {Uk}2≤k which converges to a limit U ∈ C2;1(H × [0, T ]) satisfying the Yamabe flow
equation (2). Since the bounds from Lemma 1.3 are preserved in the limit, we have m(m −
1)t ≤ U

1
η , i.e. (g(t))t∈[0,T ] given by g(t) = U (·, t) 1

η gH is an instantaneously complete
Yamabe flow.

It remains to show that the Yamabe flow constructed above can be extended in time. Let
T∗ be the supremum over all T > 0 such that there exists a Yamabe flow g(t) = u(·, t)gH
on H which is defined for t ∈ [0, T ] and satisfies u(·, 0) = u0 as well as

∀t ∈ [0, T ] : m(m − 1)t ≤ u(·, t) ≤ m(m − 1)t + 5
3 sup

H

u0. (31)

We have already shown T∗ ≥ 1
K0

. Suppose, T∗ < ∞ and let 0 < ε < 1
5T∗ be arbitrary. For

T = T∗ − ε, there exists u : H × [0, T ] → R satisfying u(·, 0) = u0 together with estimate
(31) and Eq. (2) which can be written in divergence form:
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1

m − 1

∂uη+1

∂t
= η + 1

η

u

m − 1

∂uη

∂t
= m(η + 1)uη + η + 1

η
divgH(∇uη)

= m(η + 1)uη+1

u
+ divgH

( 1
u

∇uη+1
)

(32)

where we recall η = m−2
4 . Around an arbitrary point p ∈ H, we choose geodesic normal

coordinates x and given 0 < r < 1
3

√
T we consider the parabolic cylinder

Qr := {(x, t) | T − r2 < t < T , |x | < r}.
According to (31) and the choices of r , ε and T , we have

m(m − 1) 49T∗ ≤ u ≤ m(m − 1)T∗ + 5
3 sup

H

u0 in Q2r

because T − (2r)2 > T − 4
9T = 5

9 (T∗ − ε) > 4
9T∗. Hence, (32) can be interpreted as a

linear equation with uniformly bounded coefficient 1
u . Therefore we may apply parabolic

DeGiorgi–Nash–Moser Theory [12, Theorem III.10.1] (see also [18]) to Eq. (32) in order to
obtain∥∥uη+1

∥∥
C0,α;0, α

2 (Qr )
≤ C

(
m, ‖u‖L∞(Q2r ) ,

∥∥u−1
∥∥
L∞(Q2r )

) ≤ C ′(m, T∗, sup u0) (33)

for some 0 < α < 1 and some constants C , C ′ depending only on the indicated quantities.
In particular, the Hölder estimate (33) holds uniformly in p ∈ H. As in the proof of Lemma
1.5 we obtain ∥∥uη

∥∥
C2,α;1, α

2 (Qr )
≤ C ′′(m, T∗, sup u0).

Consequently, the scalar curvature R = −(m − 1)u−η−1( 1
η
�uη + muη) stays uniformly

bounded up to time T by some constant K1(m, T∗, sup u0). With the samemethods as before,
we can extend the solution, first locally in bounded domains and then via exhaustion in all
ofH. As initial data, we choose u1 = u(·, T − ε). This allows us build compatible boundary
data from a suitable extension of u|H×[T−ε,T ]. It also ensures the extended solution to be
regular by Lemma 1.4. The extended solution is defined in H × [0, T − ε + T1] with any
given T1 < 1

K1
. If ε > 0 is chosen small enough such that

T − ε + T1 = T∗ − 2ε + T1 > T∗
we obtain a contradiction to the maximality of T∗.

2 Uniqueness

This section contains the proofs of Theorems 2 and 3. As before, (H, gH) denotes hyperbolic
space of dimension m ≥ 3 and gE = h−2gH the pullback of the Euclidean metric to H,
where h > 0 is a smooth function provided by the Poincaré ball model.

2.1 Upper and lower bounds

The Yamabe flow constructed in the previous section satisfies the upper and lower bounds
given in (31). The aim of this section is to find conditions under which any Yamabe flow
necessarily satisfies such bounds.
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Proposition 2.1 (Upper bound) Let η = m−2
4 . If g(t) = u(·, t)gH for t ∈ [0, T ] is any

Yamabe flow on H with initial data g(0) ≤ b gE for some constant b ∈ R, then(
u(·, t))η ≤ (

m(m − 1)t
)η + (

bh−2)η

in H for every t ∈ [0, T ].

Proof. Let ϕ : R → [0, 1] be a smooth, non-increasing cutoff function satisfying ϕ(x) = 1
for x ≤ 1 and ϕ(x) = 0 for x ≥ 2. Introducing geodesic normal coordinates (r , ϑ) ∈
]0,∞[ × S

m−1 on (H, gH) and a parameter A > 1, we define the rotationally symmetric
function φ = ϕ ◦ r

A on H. As before, spatial derivatives and inner products are taken with
respect to the hyperbolic background metric gH. With any regular function v : H → R, we
have

φ�v = �(φv) − 2

φ
〈∇φ,∇(φv)〉 + 2v

φ
|∇φ|2 − v�φ.

Setting f := bh−2 and v := (uη − f η), we denote

�(φv) − 2

φ
〈∇φ,∇(φv)〉 =: �.

Since f gH = b gE is a flat metric, it is a static solution to the Yamabe flow equation ∂t g =
−Rg which by (2) implies −� f η = mη f η. Thus,

1

m − 1

∂

∂t
(uη − f η)φ = (

mηuη + �uη
)φ

u

= mη
(uη − f η)

u
φ + φ�(uη − f η)

u

= mη
(uη − f η)

u
φ + �

u
+

(2 |∇φ|2
φ

− �φ
) (uη − f η)

u
. (34)

Since ∇φ = 1
A (ϕ′ ◦ r

A )∇r , we have

2 |∇φ|2
φ

− �φ =
(2ϕ′2

A2ϕ
− ϕ′′

A2

)
◦ ( r

A ) − ϕ′ ◦ r
A

A
�r .

As ϕ′ ◦ r
A is non-positive inH and identically zero in the unit ball around the origin, we may

apply Lemma A.3 stating�r ≤ 2(m−1) and Lemma A.4 about cutoff functions (both given
in the “Appendix”) to estimate

(2 |∇φ|2
φ

− �φ
)

≤ 1

A

(2ϕ′2

Aϕ
+

∣∣ϕ′′∣∣
A

+ 2(m − 1)
∣∣ϕ′∣∣) ◦ ( r

A ) ≤ C

A
φ
1− 1

η (35)

at points where φ �= 0 with a constant C depending only on the dimension and the choice
of ϕ. Let time t0 ∈ ]0, T ] be fixed. The function [(uη − f η)φ](·, t0) has a global, non-
negative maximum at some point q0 ∈ H which depends on t0 and the parameters A and b.
If [(uη − f η)φ](q0, t0) > 0, we have

uη − f η

u
(q0, t0) ≤ uη − f η

(uη − f η)
1
η

(q0, t0) = (uη − f η)
1− 1

η (q0, t0).
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Equation (34) and estimate (35) then yield[ 1

m − 1

∂

∂t
(uη − f η)φ

]
(q0, t0)

≤
[
mη(uη − f η)

1− 1
η φ + C

Aφ
1− 1

η (uη − f η)
1− 1

η

]
(q0, t0)

≤
[
(mη + C

A )
(
(uη − f η)φ

)1− 1
η

]
(q0, t0).

Denoting v = uη − f η as before, we obtain

lim sup
τ↘0

1

τ

(
max (vφ)(t0) − max (vφ)(t0 − τ)

)

≤ lim sup
τ↘0

1

τ

(
(vφ)(q0, t0) − (vφ)(q0, t0 − τ)

)
= ∂

∂t (vφ)(q0, t0)

≤ (m − 1)(mη + C
A )

(
max(vφ)(t0)

)1− 1
η .

The assumption g(0) ≤ b gE implies max(uη − f η)(0) ≤ 0. Since t0 > 0 is arbitrary, we
may apply Lemma A.6 stated in the “Appendix” to conclude

max
(
(uη − f η)φ

)
(t) ≤ (

(m − 1)(m + C
ηA )t

)η
. (36)

Letting A → ∞ such that φ → 1 pointwise on H, we obtain

uη(·, t) ≤ (
m(m − 1)t

)η + f η

in H for all t ∈ [0, T ].

A similar approach as for Proposition 2.1 leads to a proof of Theorem 3.

Proof of Theorem 3 Suppose, g(t) = u(·, t)gRm is a Yamabe flow on R
m for t ∈ [0, T ] with

g(0) = g0. Then

1
m−1

∂
∂t u

η = 1
u�uη, (37)

where η = m−2
4 and � denotes the Euclidean Laplacian. In the proof of Proposition 2.1, we

replace the equation for uη by (37) and f by f (x) = b |x |−4. Then, f η(x) = bη |x |2−m is
harmonic on Rm \ {0} which implies

1
m−1

∂
∂t (u

η − f η) = 1
u�(uη − f η) in (Rm \ {0}) × [0, T ].

With a cutoff function φ as in (35), we gain

[(uη − f η)φ](·, t) ≤ (
(m − 1) Ct

ηA

)η

from the assumption u(·, 0) ≤ f as in (36). Letting A → ∞, we conclude u(x, t) ≤ f (x)
for every (x, t) ∈ R

m × [0, T [. In particular, the g(t)-length of radial curves γ (r) = rσ
emitting from σ ∈ S

m−1 ⊂ R
m is estimated by∫ ∞

1

√
u(rσ, t) dr ≤ √

b
∫ ∞

1
r−2 dr = √

b < ∞

which means that (Rm, g(t)) is geodesically incomplete.
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Proposition 2.2 (Lower barrier, rotationally symmetric case) Let (g(t))t∈[0,T ] be a confor-
mally hyperbolic, instantaneously complete Yamabe flow on H. Under the assumption, that
g(t) is rotationally symmetric around some point x0 ∈ H, we have

∀t ∈ [0, T ] : m(m − 1) t gH ≤ g(t).

The proof of Proposition 2.2 is based on the following Lemma.

Lemma 2.3 Let (g(t))t∈[0,T ] be an instantaneously complete Yamabe flow on H given by
g(t) = u(·, t)gH such that u(·, t) depends only on the hyperbolic distance r from some point
x0 ∈ H for every t ∈ H. Let � : H × ]0, T ] → [0,∞[ be given by

�(r , t) =
⎧⎨
⎩

∫ r

a

√
u(s, t) ds if r > a := artanh

(m−1
m

)
,

0 else

and let A := max
t∈[0,T ]

∣∣∣ ∂
∂r u

− 1
2 (a, t)

∣∣∣. Then, whenever r > a,

(
1

m − 1

∂�

∂t
− �g�

)
≥ −mu− 1

2 + (m − 2)
∂u− 1

2

∂r
− A.

Proof. Given a conformal metric g = ugH on H and any smooth function f : H → R,

�g f = 1√|det g|∂ j

(√|det g| gi j∂i f
)

= 1

u
m
2
√|det gH|∂ j

(
u

m
2 −1

√|det gH| gi j
H

∂i f
)

= 1

u
�gH f + m − 2

2u2
〈∇u,∇ f 〉gH . (38)

In the case f = �(·, t) and since �gHr = m−1
tanh r by Lemma A.3, we have

�g� = 1

u
�gH� + m − 2

2u2
〈∇u,∇�〉gH = 1

u

∂2�

∂r2
+ (m − 1)

u tanh r

∂�

∂r
+ (m − 2)

2u2
∂u

∂r

∂�

∂r

where we used the assumption of rotational symmetry. If r > a, then

�g� = 1

u

∂
√
u

∂r
+ (m − 1)√

u tanh r
+ (m − 2)

2u
√
u

∂u

∂r
= (m − 1)√

u tanh r
+ (m − 1)

2u
√
u

∂u

∂r

≤ mu− 1
2 − (m − 1)

∂u− 1
2

∂r
(39)

since (tanh r) ≥ m−1
m for r > a by definition of a. From Eq. (1) for u, we conclude

1

m − 1

∂
√
u

∂t
= m

2
√
u

+ �gHu

2u
√
u

+ (m − 6)

8
√
u

|∇u|2gH
u2

.

Since �gHu
− 1

2 = − 1
2u

− 3
2 �gHu + 3

4u
− 5

2 |∇u|2gH we have in fact

1

m − 1

∂
√
u

∂t
= m

2
√
u

−
(
�gH

1√
u

)
+ m

8
√
u

|∇u|2gH
u2

.

Moreover, with

m

8
√
u

|∇u|2gH
u2

=
m

∣∣∣2u1+ 1
2 ∇u− 1

2

∣∣∣2
gH

8u2+ 1
2

= m

2

√
u

∣∣∣∇u− 1
2

∣∣∣2
gH
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we arrive at

1

m − 1

∂
√
u

∂t
= m

2
√
u

−
(
�gH

1√
u

)
+ m

2

√
u

∣∣∣∇u− 1
2

∣∣∣2
gH

= m

2
√
u

− ∂2u− 1
2

∂r2
− m − 1

tanh r

∂u− 1
2

∂r
+ m

√
u

2

∣∣∣∣∣∂u
− 1

2

∂r

∣∣∣∣∣
2

.

For any b, c > 0 and all X ∈ R the inequality

−bX + cX2 ≥ −b2

4c
(40)

follows by completing the square.We apply (40)with X = ∂
∂r u

− 1
2 , b = m−1

tanh r and c = 1
2m

√
u

to estimate

1

m − 1

∂
√
u

∂t
≥ m

2
√
u

− ∂2u− 1
2

∂r2
− (m − 1)2

2m(tanh r)2
√
u

≥ −∂2u− 1
2

∂r2

where the last inequality requires (tanh r) ≥ m−1
m which holds by construction whenever

r ≥ a. Hence,

1

m − 1

∂�

∂t
(r , t) ≥ ∂u− 1

2

∂r
(a, t) − ∂u− 1

2

∂r
(r , t). (41)

The claim follows by subtracting (39) from (41).

Proof of Proposition 2.2 Let (g(t))t∈[0,T [ be an instantaneously complete Yamabe flow on
H given by g(t) = u(·, t)gH and let v = 1

u . The goal is to prove the uniform estimate
v(·, t) ≤ 1

m(m−1)t for every t ∈ ]0, T [. Equation (1) implies that v satisfies

−v−2

m − 1

∂v

∂t
= m + (

2v−3 |∇v|2gH − v−2�gHv
)
v + m − 6

4
v2

∣∣v−2∇v
∣∣2
gH

and hence evolves by the equation

1

m − 1

∂v

∂t
= −mv2 + v�gHv − m + 2

4
|∇v|2gH . (42)

Let η = m−2
4 provided that m ≥ 3. Applying Eq. (38) to gH = vg, we have

v�gHv − m + 2

4
|∇v|2gH = �gv +

(m − 2

2
− m + 2

4

)
|∇v|2gH

= �gv + (η − 1) 1
v

|∇v|2g = 1
η
v1−η�gv

η.

Hence, Eq. (42) implies

1

m − 1

∂vη

∂t
= −mηvη+1 + �gv

η (43)

where we stress the fact, that (43) involves the Laplace–Beltrami operator �g with respect
to the time-dependent metric g(t).

By assumption, there exists a point x0 ∈ H such that u(·, t) and v(·, t) depend only
on the hyperbolic distance r from x0 for all t ∈ [0, T ]. Let ϕ : R → [0, 1] be a smooth,
nonincreasing cutoff function as in Lemma A.4 satisfying ϕ(s) = 1 if s ≤ 1 and ϕ(s) = 0
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if s ≥ 2. Let � : H × ]0, T ] → [0,∞[ be defined as in Lemma 2.3. Given 0 < ε < 1
4 , we

introduce the functions

χ := ϕ ◦ (ε�), χ ′ := εϕ′ ◦ (ε�), χ ′′ := ε2ϕ′′ ◦ (ε�) (44)

which are smooth in H× ]0, T ] because ϕ is constant around zero. We remark that while ϕ′
denotes the actual first derivative of the function ϕ of one variable, χ ′ is just a convenient
shorthand notation. In fact, |∇χ |2g = ∣∣χ ′∇�

∣∣2
g = ∣∣χ ′∣∣2 and �gχ = χ ′′ + χ ′�g�. Hence,

1

m − 1

∂(χvη)

∂t
= vη

m − 1

∂χ

∂t
− mηχvη+1 + �g(χvη) − vη�gχ − 2

〈∇χ,∇vη
〉
g

=
(

1

m − 1

∂�

∂t
− �g�

)
χ ′vη − mηχvη+1 + �g(χvη) − χ ′′vη

− 2
〈∇χ,∇vη

〉
g . (45)

Recall that χ ′ ≤ 0. With the estimate from Lemma 2.3, we have(
1

m − 1

∂�

∂t
− �g�

)
χ ′vη ≤ −mχ ′vη+ 1

2 + (m − 2)χ ′vη ∂v
1
2

∂r
− Aχ ′vη. (46)

Surprisingly, since ∂
∂r χ = χ ′√u, the term

(m − 2)χ ′vη ∂v
1
2

∂r
= 2χ ′v

1
2
∂vη

∂r
= 2v

∂χ

∂r

∂vη

∂r
= 2

〈∇χ,∇vη
〉
g

cancels the last term in (45). Thus,

1

m − 1

∂(χvη)

∂t
≤ −mχ ′vη+ 1

2 − Aχ ′vη − mηχvη+1 + �g(χvη) − χ ′′vη. (47)

By Lemma A.4, we may choose ϕ such that there exists a constant C depending only on m
such that

∣∣mϕ′∣∣ ≤ Cϕ
η+ 1

2
η+1 ,

∣∣ϕ′∣∣ + ∣∣ϕ′′∣∣ ≤ Cϕ
η

η+1 .

With this choice,

1

m − 1

∂(χvη)

∂t
≤ Cεχ

η+ 1
2

η+1 vη+ 1
2 + (A + ε)Cεχ

η
η+1 vη − mηχvη+1 + �g(χvη).

By Young’s inequality, ab ≤ a p

p + bq
q for any a, b ≥ 0 and p, q > 1 with 1

p + 1
q = 0. We

apply it with p = 2η + 2 to estimate

Cεχ
η+ 1

2
η+1 vη+ 1

2 ≤ C2η+2ε + εχvη+1

and with p = η + 1 to obtain

(A + ε)Cεχ
η

η+1 vη ≤ (
(A + 1)C

)η+1
ε + εχvη+1.

Consequently, introducing the constant C̃ = C2η+2 + (
(A + 1)C

)η+1,

1

m − 1

∂(χvη)

∂t
≤ C̃ε − (

mη − 2ε
)
χvη+1 + �g(χvη). (48)
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Provided that 0 < ε < 1
4 , the term involving χvη+1 in (48) has a negative sign. In this case,

since 0 ≤ χ ≤ 1, we may replace (48) by

1

m − 1

∂(χvη)

∂t
≤ C̃ε − (

mη − 2ε
)
(χvη)

η+1
η + �g(χvη). (49)

The assumption of instantaneous completeness of g(t) implies that �(r , t) → ∞ as r → ∞
for every t ∈ ]0, T ]. Therefore,χ = ϕ◦(ε�) is compactly supported inH for every t ∈ ]0, T ]
and w : ]0, T ] → ]0,∞[ given by

w(t) := max
H

(χvη)(·, t)

is well-defined. Let t0 ∈ ]0, T ] be arbitrary. Let q0 ∈ H such that w(t0) = χvη(q0, t0). We
compute

1

m − 1
lim inf

τ↘0

1

τ

((
w(t0)

)− 1
η − (

w(t0 − τ)
)− 1

η

)

≥ 1

m − 1

∂(χvη)
− 1

η

∂t
(q0, t0) = − (χvη)

− η+1
η

η(m − 1)

∂(χvη)

∂t
(q0, t0)

≥ −1

η
C̃ε

(
w(t0)

)− η+1
η + (

m − 2
η
ε
)

where −�g(χvη)(q0, t0) ≥ 0 since q0 is a maximum. We conclude that either

√
ε − C̃ε

(
w(t0)

)− η+1
η < 0

which is equivalent to
(
w(t0)

) η+1
η < C̃

√
ε, or

lim inf
τ↘0

1

τ

((
w(t0)

)− 1
η − (

w(t0 − τ)
)− 1

η

)
≥ (m − 1)

(
m − 3

η

√
ε
)

which shows that w is decreasing as long as w
η+1
η ≥ C̃

√
ε. Hence,

{
t ∈ ]0, T [ | (

w(t)
) η+1

η > C̃
√

ε
} = ]0, β[

for some β ∈ ]0, T [ because the map t �→ w(t) is continuous. By Lemma A.5, we have

(
w(t)

)− 1
η ≥ (m − 1)

(
m − 3

η

√
ε
)
t

for every t ∈ ]0, β[. For all t ∈ ]0, T [ we may conclude

(
w(t)

) 1
η ≤ max

{
1

(m − 1)(m − 3
η

√
ε)t

,
(
C̃

√
ε
) 1

η+1

}
.

Letting ε ↘ 0 such that χ → 1 pointwise in H proves the claim.

2.2 Generalisation of Topping’s interior area estimate

Topping [17] proves uniqueness of instantaneously complete Ricci flows on surfaces by
estimating differences of area. In the following, we adapt his method to the Yamabe flow in
dimension m ≥ 3.
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The Poincaré ball model realises hyperbolic space (H, gH) as the unit ball inRm equipped
with polar coordinates P : ]0, 1[×S

m−1 → Hmapping (ρ, ϑ) �→ ρϑ andRiemannianmetric

P∗gH = 4

(1 − ρ2)
2 (dρ2 + ρ2 gSm−1).

In this section however, logarithmic polar coordinates P̃ : ]0,∞[ × S
m−1 → H given by

P̃(s, ϑ) = P(e−s, ϑ) are more suitable. We record

P̃∗gH = 4e−2s

(1 − e−2s)
2

(
ds2 + gSm−1

) = 1

(sinh s)2
(
ds2 + gSm−1

)
,

P̃∗gE = e−2s(ds2 + gSm−1
) = (e−s sinh s)2 P̃∗gH (50)

and note that the Riemannian manifold (Z , ζ ) := (]0,∞[×S
m−1, ds2+gSm−1

)
has constant

scalar curvature Rζ ≡ (m − 1)(m − 2).

Proof of Theorem 2 Let g(t) = u(·, t)gH and g̃(t) = v(·, t)gH be two Yamabe flows on
H for t ∈ [0, T ]. Let U , V : Z × [0, T ] → ]0,∞[ such that P̃∗g(t) = U (·, t) ζ and
P̃∗g̃(t) = V (·, t) ζ . From Eq. (2) follows that U and V both solve

1

(η + 1)(m − 1)

∂

∂t
Uη+1 = −4ηUη + 1

η
�ζU

η, (51)

where 4η = (m − 2) = 1
m−1Rζ and �ζ = ∂2

∂s2
+ �g

Sm−1 is the Laplace-Beltrami operator

with respect to the metric ζ = ds2 + gSm−1 on Z . Note that U , V and their derivatives with
respect to s have exponential decay for s → ∞. In fact,

U ((s, θ), t) = u(e−sθ, t)

(sinh s)2
, (52)

∂

∂s
Uη((s, θ), t) = ηuη−1(e−sθ, t)

(sinh s)2η
∂

∂s

(
u(e−sθ, t)

) − 2ηuη(e−sθ, t)
cosh s

(sinh s)2η+1

= −η e−s

(sinh s)2η

[
uη−1 ∂u

∂ρ

]
(e−sθ, t) − 2ηUη((s, θ), t)

tanh s
. (53)

Since u is positive and regular at the origin, [uη−1 ∂u
∂ρ

](e−sθ, t) stays bounded as s → ∞.
By assumption (i) and Eq. (50), applying Proposition 2.1 to g̃(t), we have(

(sinh s)2V
)η ≤ (

m(m − 1)t
)η + (

b (e−s sinh s)2
)η

. (54)

Assumption (ii) is equivalent to

(sinh s)2U ≥ m(m − 1)t . (55)

Combining (54) and (55), we obtain

V η −Uη ≤ (b e−s)η ≤ bη. (56)

Let S, s0 ∈ ]0,∞[ be such that 0 < S ≤ 1
3 s0 < s0 ≤ log 2. Let ϕ : ]0,∞[ → [0, 1] be a

cutoff function which is identically equal to 1 in the interval ]s0,∞[, vanishes in ]0, S[ and
satisfies ϕ′′(s) ≤ 0 for s > 1

2 s0. Let ZS := ]S,∞[ × S
m−1. We analyse the evolution of the

quantity J : [0, T ] → R given by

J (t) :=
∫
ZS

(
V η+1(·, t) −Uη+1(·, t))+ϕ dμζ
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where x+ := max{x, 0}. Abbreviatingw := V η+1−Uη+1, we have for every fixed t ∈ ]0, T ]
and every 0 < τ < t

J (t) − J (t − τ) =
∫
ZS

w+(·, t) ϕ dμζ −
∫
ZS

w+(·, t − τ) ϕ dμζ

≤
∫
ZS∩{w(·,t)>0}

(
w+(·, t) − w+(·, t − τ)

)
ϕ dμζ

≤
∫
ZS∩{w(·,t)>0}

(
w(·, t) − w(·, t − τ)

)
ϕ dμζ .

We obtain

�(t) := lim sup
τ↘0

J (t) − J (t − τ)

τ

≤ lim sup
τ↘0

∫
ZS∩{w(·,t)>0}

1

τ

(
w(·, t) − w(·, t − τ)

)
ϕ dμζ

=
∫
ZS∩{w(·,t)>0}

∂w

∂t
(·, t) ϕ dμζ

where we may interchange limit and integral because with f := V η −Uη and (51) we have

∂w

∂t
= (m − 1)(η + 1)

(
−4η f + 1

η
�ζ f

)
(57)

which is bounded in ZS × [0, T ] with exponential decay for s → ∞. We claim that∫
ZS∩{ f (·,t)>0}

(ϕ�ζ f − f �ζ ϕ) dμζ ≤ 0. (58)

Indeed, let (mk)k∈N be a sequence of regular values for f (·, t) such that mk ↘ 0 as k → ∞.
Then, { f (·, t) > mk} ⊂ Z is a regular, open set with outer unit normal ν in the direction of
−∇ f . Moreover, since f and ∇ f have exponential decay for s → ∞ according to (52) and
(53), since ϕ(S) = 0 and since ∇ϕ is supported in [S, s0], we have by Green’s formula∫

ZS∩{ f (·,t)>mk }
(ϕ�ζ f − f �ζ ϕ) dμζ =

∫
ZS∩∂{ f (·,t)>mk }

(ϕ∇ f · ν − f ∇ϕ · ν) dσ

≤ −mk

∫
ZS∩∂{ f (·,t)>mk }

∇ϕ · ν dσ

= −mk

∫
ZS∩{ f (·,t)>mk }

�ζ ϕ dμζ

≤ mk

∫
ZS\Zs0

∣∣ϕ′′∣∣ dμζ .

Passing to the limit k → ∞ proves (58) since ZS \ Zs0 is a bounded domain. Hence,

�

m − 1
≤

∫
ZS∩{w(·,t)>0}

1

m − 1

∂w

∂t
ϕ dμζ

=
∫
ZS∩{ f (·,t)>0}

(−4η(η + 1) f + η+1
η

�ζ f
)
ϕ dμζ

≤
∫
ZS∩{ f (·,t)>0}

η+1
η

f �ζ ϕ dμζ = η+1
η

∫
ZS

(
V η −Uη

)
+ϕ′′ dμζ . (59)
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Introducing the exponent λ ∈ ]0, 1
3 [ we modify estimate (56) as follows.

(V η −Uη)+ ≤ b(1−λ)η(V η −Uη)
λ
+

≤ b(1−λ)η
(
U−1 (V η+1 −Uη+1)+

)λ
. (60)

We apply estimate (60) and Hölder’s inequality with exponents 1
λ
and 1

1−λ
to gain

�

m − 1
≤ C1

∫
Sm−1

∫ 1
2 s0

S

(
V η+1 −Uη+1)λ

+ϕλ ϕ−λU−λ
∣∣ϕ′′∣∣ ds dμg

Sm−1

≤ C1 J
λ
(∫

Sm−1

∫ 1
2 s0

S
ϕ− λ

1−λU− λ
1−λ

∣∣ϕ′′∣∣ 1
1−λ ds dμg

Sm−1

)1−λ

with constant C1 = η+1
η

b(1−λ)η. The restriction of the integration domain to [S, 1
2 s0] is

justified since ϕ′′ ≤ 0 in ] 12 s0,∞[. Substituting λ = γ
1+γ

we also have λ
1−λ

= γ and
1

1−λ
= 1 + γ with γ ∈ ]0, 1

2 [, and we obtain

�

m − 1
≤ C1 J

γ
1+γ

(∫
Sm−1

∫ 1
2 s0

S
U−γ

∣∣ϕ′′∣∣1+γ
ϕ−γ ds dμg

Sm−1

) 1
1+γ

. (61)

Since s �→ sinh(s) is convex for positive arguments, we have

∀s ∈ ]0, s0[ ⊂ ]0, log 2[ : sinh(s) ≤ sinh(log 2)
s

log 2
= 3s

4 log 2
.

The lower barrier (55) then implies

1

U
≤ (sinh s)2

m(m − 1)t
≤ C2

t
s2 (62)

with constant C2 = 1
m(m−1)

( 3
4(log 2)

)2. Substituting (62) into (61), we obtain

�(t) ≤ C
(
J (t)

) γ
1+γ

(∫ 1
2 s0

S

( s2
t

)γ ∣∣ϕ′′∣∣1+γ
ϕ−γ ds

) 1
1+γ

with constant C = (m − 1)C1C
γ

1+γ

2

∣∣Sm−1
∣∣ 1
1+γ , i. e.

lim sup
τ↘0

J (t) − J (t − τ)

τ
≤ C

( J (t)

t

) γ
1+γ

Q
1

1+γ , Q :=
∫ 1

2 s0

S
s2γ

∣∣ϕ′′∣∣1+γ
ϕ−γ ds,

which resembles Topping’s [17, (3-10)] “main differential inequality”

d
dt J

1
1+γ ≤ C t−

γ
1+γ Q

1
1+γ

in the 2-dimensional case. By Lemma A.7 stated in the “Appendix”, we conclude

J
1

1+γ (t) − J
1

1+γ (0) ≤ C t
1

1+γ Q
1

1+γ .

The assumption g̃(0) ≤ g(0) implies J (0) = 0. Therefore, we have∫
Sm−1

∫ ∞

s0

(
V η+1 −Uη+1)

+ ds dμg
Sm−1 ≤ J (t) ≤ C1+γ t Q
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for every t ∈ [0, T ]. With a clever choice of ϕ, Topping [17, Prop. 3.2] proves

Q ≤ Cγ

s0
(log s0 − log S)−γ . (63)

In the limit S ↘ 0 we have Q → 0 by (63) which yields V ≤ U in ]s0,∞[ × S
m−1. Since

s0 > 0 is arbitrary, we obtain V ≤ U globally and hence g̃(t) ≤ g(t) as claimed.
In the case that g(t) and g̃(t) both satisfy (ii) and g(0) = g̃(0) ≤ b gE, the reverse

inequality g̃(t) ≥ g(t) follows similarly by switching the roles of U and V .
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Appendix A: Auxiliary results

The previous sections depend on some standard results and computations which we collect
in this appendix for convenience of the reader.

Proposition A.1 (Inverse function theorem for Banach spaces) Let X , Y be Banach spaces
and X̃ ⊂ X be open. Let S : X̃ → Y be Fréchet differentiable at x0 with S(x0) = 0 and
invertible derivative DS(x0). Then there exists a neighbourhood U ⊂ X̃ of x0 such that

(i) V = SU is open,
(ii) S|U : U → V is a homeomorphism,
(iii) (S|U )−1 is Fréchet differentiable.

In the following proposition, we denote partial derivatives by subscripts and understand
a sum

∑m
i=1 whenever an index i appears twice in an expression.

Proposition A.2 (Linear parabolic maximum principle [14, §3.3]) Let � ⊂ R
m be an open,

bounded domain. Suppose, u satisfies{
ut − ai j uxi x j − bkuxk − cu ≤ 0 in � × [0, T ],

u ≤ 0 on � × {0} and on ∂� × [0, T ],
where the function c < λ ∈ R is bounded from above and ellipticity ai j ξi ξ j ≥ 0 for all
ξ ∈ R

m holds uniformly. Then, u ≤ 0 in � × [0, T ].

Proof. The function v(x, t) = u(x, t)e−λt satisfies the equation

vt − ai jvxi x j − bkvxk − (c − λ)v ≤ 0. (64)

Assume that v(x0, t0) = max�×[0,T ] v. If t0 = 0 or if x0 ∈ ∂�, then v ≤ 0 follows. If
(x0, t0) ∈ � × ]0, T ], then vt (x0, t0) ≥ 0, vxk (x0, t0) = 0 and −ai jvxi x j (x0, t0) ≥ 0. Thus,
(64) implies −(c − λ)v(x0, t0) ≤ 0. From (c − λ) < 0 follows v(x0, t0) ≤ 0. Therefore,
v ≤ 0 in � × [0, T ]. Since u and v share the same sign, the claim follows.
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Lemma A.3 (Laplacian of hyperbolic distance) Let r : H → [0,∞[ be the Riemannian dis-
tance function with respect to some origin in hyperbolic space (H, gH) of dimension m ≥ 2.
Then,

�gHr = m − 1

tanh r
.

In particular, (�gHr)(x) ≤ 2(m − 1) for every x ∈ H with r(x) ≥ 1.

Proof. The Poincaré ball model realises hyperbolic space (H, gH) as the unit ball equipped
with polar coordinates P : ]0, 1[ × S

m−1 → H mapping (ρ, ϑ) �→ ρϑ and conformal
Riemannian metric P∗gH = h2gE, where

h(ρ) = 2

1 − ρ2 , gE = dρ2 + ρ2 gSm−1 . (65)

Here, gSm−1 is the standard metric on the unit sphere Sm−1 ⊂ R
m and gE is the Euclidean

metric on the unit ball in R
m . We denote the radial coordinate on the unit ball by ρ and

reserve r for the hyperbolic distance which is given by

r(ρ) =
∫ ρ

0
h(x) dx = 2 artanh(ρ) = log

(
1 + ρ

1 − ρ

)
. (66)

By (66), we have

∂r

∂ρ
= h,

∂2r

∂ρ2 = ∂h

∂ρ
= ρ h2.

On the one hand, Eq. (38) implies

�gHr = h−2�gEr + (m − 2)h−3 〈∇h,∇r〉gE
= 1

h2
∂2r

∂ρ2 + (m − 1)

h2ρ

∂r

∂ρ
+ (m − 2)

ρ

h

∂r

∂ρ

= ρ + (m − 1)

hρ
+ (m − 2)ρ

= (m − 1)

(
ρ + 1 − ρ2

2ρ

)
= (m − 1)

(
1 + ρ2

2ρ

)
. (67)

On the other hand, Eq. (66) implies

tanh(r) = er − e−r

er + e−r
=

1+ρ
1−ρ

− 1−ρ
1+ρ

1+ρ
1−ρ

+ 1−ρ
1+ρ

= (1 + ρ)2 − (1 − ρ)2

(1 + ρ)2 + (1 − ρ)2
= 4ρ

2 + 2ρ2 .

Combined with (67), the claim follows.

Lemma A.4 (cutoff function) Let ε > 0 and a, b > 0 be real parameters. Then there exists
a non-increasing cutoff function ϕ ∈ C2(R) given by

ϕ(x) =
{
1, if x ≤ 1,

0, if x ≥ 2

which satisfies the inequality

∣∣ϕ′′∣∣ + a
∣∣ϕ′∣∣ + b

ϕ′2

ϕ
≤ Cϕ1−ε

in {x ∈ R | ϕ(x) �= 0} with a constant C depending only on a, b and ε.
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Proof. There exists a non-increasing function ψ ∈ C2(R) satisfying ψ(x) = 1 for x ≤ 1
and ψ(x) = 0 for x ≥ 2 as well as |ψ | , ∣∣ψ ′∣∣ , ∣∣ψ ′′∣∣ ≤ C0. Let p = 2

ε
and ϕ = ψ p . We may

assume 0 < δ ≤ 2 and p ≥ 1. Then,

ϕ′ = pψ ′ψ p−1, ϕ′′ = p
(
(p − 1)ψ ′2 + ψψ ′′)ψ p−2,

ϕ′2

ϕ
= p2ψ ′2ψ p−2,

which implies

∣∣ϕ′′∣∣ + a
∣∣ϕ′∣∣ + b

ϕ′2

ϕ
≤ p

(
(p − 1)ψ ′2 + ∣∣ψψ ′′∣∣ + a

∣∣ψ ′ψ
∣∣ + bpψ ′2)ψ p−2

≤ p
(
1 + a + (1 + b)p

)
C2
0ϕ

p−2
p ≤ 4(2 + a + b)C2

0

ε2
ϕ1−ε.

Lemma A.5 Let Q ∈ R and let f : [0, T ] → R be continuous satisfying

lim inf
τ↘0

f (ξ) − f (ξ − τ)

τ
≥ Q

for every 0 < ξ ≤ T . Then f (t) − f (0) ≥ Qt for every t ∈ [0, T ].
Proof. We follow an argument by Richard Hamilton [10, Lemma 3.1]. The function

w(t) := f (t) − f (0) − Qt

is continuous and satisfies

lim inf
τ↘0

w(ξ) − w(ξ − τ)

τ
= lim inf

τ↘0

f (ξ) − f (ξ − τ)

τ
− Q ≥ 0. (68)

Let 0 < t ≤ T and ε > 0 be arbitrary but fixed. Then there exists δ > 0 such that

∀τ ∈ [0, δ[ : w(t) − w(t − τ) ≥ −ετ (69)

because otherwise, we would obtain a contradiction to (68). We may assume that δ ∈ ]0, t]
is the largest value such that (69) holds. By continuity of w, (69) implies

w(t) − w(t − δ) ≥ −εδ. (70)

If t − δ > 0, we may repeat the argument to find some δ′ > 0 such that

∀τ ∈ [0, δ′[ : w(t − δ) − w(t − δ − τ) ≥ −ετ. (71)

In particular, (70) and (71) can be combined to

w(t) − w(t − δ − τ) ≥ −ε(δ + τ)

for all τ ∈ [0, δ′[ in contradiction to the maximality of δ. Hence, δ = t and we obtain

w(t) − w(0) ≥ −εt .

Since ε > 0 is arbitrary and w(0) = 0 we have w(t) ≥ 0 which proves the claim.

Lemma A.6 Let η > 0 and Q ≥ 0. Let v : [0, T ] → [0,∞[ be continuous satisfying

lim sup
τ↘0

v(ξ) − v(ξ − τ)

τ
≤ ηQv(ξ)

1− 1
η

for every 0 < ξ ≤ T where v(ξ) �= 0. Then v(t)
1
η − v(0)

1
η ≤ Qt for every t ∈ [0, T ].
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Proof. We consider the function f = v
1
η . Let 0 < ξ ≤ T be arbitrary. If v(ξ) �= 0, then by

assumption

ηQ ≥ f (ξ)1−η lim sup
τ↘0

1

τ

(
f (ξ)η − f (ξ − τ)η

)

= lim sup
τ↘0

1

τ

(
f (ξ) − f (ξ − τ)

) f (ξ)η − f (ξ − τ)η

f (ξ) − f (ξ − τ)
f (ξ)1−η

= lim sup
τ↘0

η

τ

(
f (ξ) − f (ξ − τ)

)
. (72)

Dividing by η yields

lim sup
τ↘0

f (ξ) − f (ξ − τ)

τ
≤ Q. (73)

If v(ξ) = 0 we have

lim sup
τ↘0

f (ξ) − f (ξ − τ)

τ
≤ 0

since f (ξ) = v(ξ)
1
η = 0 and f ≥ 0. We conclude that (73) holds not only where v(η) �= 0

but in fact for every 0 < ξ ≤ T because Q ≥ 0 is assumed. The claim follows bymultiplying
(73) with −1 and applying Lemma A.5.

Lemma A.7 Let α ∈ ]0, 1[ and C ≥ 0. Let J : [0, T ] → [0,∞[ be continuous satisfying

lim sup
τ↘0

J (t) − J (t − τ)

τ
≤ C

( J (t)

t

)1−α

for every 0 < t ≤ T . Then J (t)α − J (0)α ≤ Ctα for every t ∈ [0, T ].
Proof. As in the proof of Lemma A.6 (with α = 1

η
) we obtain

lim sup
τ↘0

J (t)α − J (t − τ)α

τ
≤ αCtα−1

for every fixed t ∈ ]0, T ]. In particular, f (ξ) = J (ξ)α − Cξα satisfies

lim sup
τ↘0

f (ξ) − f (ξ − τ)

τ
≤ αCξα−1 − C lim

τ↘0

ξα − (ξ − τ)α

τ
= 0

and we may conclude as before by multiplying with −1 and applying Lemma A.5.
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