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Abstract
We investigate nonlinear elliptic Dirichlet problems whose growth is driven by a general
anisotropic N -function, which is not necessarily of power-type and need not satisfy the �2

nor the∇2-condition. Fully anisotropic, non-reflexive Orlicz–Sobolev spaces provide a natu-
ral functional framework associated with these problems. Minimal integrability assumptions
are detectedon thedatumon the right-hand side of the equation ensuring existence andunique-
ness of weak solutions.Whenmerely integrable, or evenmeasure, data are allowed, existence
of suitably further generalized solutions—in the approximable sense—is established. Their
maximal regularity inMarcinkiewicz-type spaces is exhibited as well. Uniqueness of approx-
imable solutions is also proved in case of L1-data.
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1 Introduction

This paper concerns Dirichlet problems for elliptic equations of the form{
−div a(x,∇u) = f in �

u = 0 on ∂�,
(1.1)

where � is a bounded open set in R
n , n ≥ 2, a : � × R

n → R
n is a Carathéodory function

and the function f : � → R is assigned.
Second-order elliptic equations, in divergence form, are a very classical theme in the theory

of partial differential equations, and have been extensively investigated in the literature. The
punctum of the present contribution is in that, besides the standard monotonicity assumption

(a(x, ξ) − a(x, η)) · (ξ − η) > 0 for every ξ, η ∈ R
n such that ξ �= η, (1.2)

for a.e. x ∈ �, the function a is subject to very general coercivity and growth conditions, that
embrace and considerably extend customary instances. The leading hypotheses on a amount
to requiring that there exists a (possibly fully anisotropic) N -function � : R

n → [0,∞)

such that, for a.e. x ∈ �,

a(x, ξ) · ξ ≥ �(ξ) for every ξ ∈ R
n, (1.3)

and

�̃(c�a(x, ξ)) ≤ �(ξ) + h(x) for every ξ ∈ R
n (1.4)

for some positive constant c� and some nonnegative function h ∈ L1(�). Here, �̃ denotes the
Young conjugate of �. Of course, there is no loss of generality in assuming that c� ∈ (0, 1).
In particular, condition (1.4) is fulfilled if a(x, ξ) satisfies the stronger inequality obtained
on replacing the left-hand side of (1.4) by c��̃(a(x, ξ)).

An N -function is an even convex function, vanishing at zero, decaying faster than linearly
near zero and growing faster than linearly near infinity. Its Young conjugate is also an N -
function and comes into play in an Hölder-type inequality for the Orlicz norm defined in
terms of �. Precise definitions of N -function and Young conjugate can be found in the next
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section, where a number of notions and properties concerning the unconventional functional
framework associated with our analysis are recalled or proved.

Let us just stress here that �(ξ) does not have to depend on ξ just through its length |ξ |,
thus allowing for full anisotropy in the differential operator. Moreover, in contrast with the
assumptions imposed on p-Laplace-type equations,� need not have a polynomial growth. In
fact, � is not even supposed to fulfill the so-called �2-condition, nor the ∇2-condition, that
are usually required as a replacement for homogeneity of �. The lack of these conditions on
� results in the non-reflexivity and non-separability of the Orlicz–Sobolev spaceW 1

0 L
�(�)

built upon �, a natural function space associated with problem (1.1).
We are concerned with existence, uniqueness and regularity of solutions to the Dirichlet

problem (1.1). Our analysis initiates by discussing weak solutions to (1.1), namely solutions
u that belong to the Orlicz–Sobolev space W 1

0 L
�(�), or, more precisely, to the correspond-

ing Orlicz–Sobolev class. Due to the generality of the situation under consideration and,
specifically, to the anisotropy and non-reflexivity of the involved function spaces, standard
methods do not apply. Our approach combines various techniques, including approximation
via isotropic operators, comparison with solutions to symmetrized problems, the use of sharp
embedding theorems for Orlicz–Sobolev spaces. This enables us to exhibit an optimal inte-
grability assumption on the datum f , depending on the growth of � near infinity, for the
existence of a (unique) weak solution to problem (1.1). The relevant optimal assumption on
f amounts to its membership in a space of Orlicz–Lorentz-type, which arises as an associate
space of the optimal rearrangement-invariant target space in an anisotropic Orlicz–Sobolev
embedding. This is the content of Theorem 3.2. Let us emphasize that this result is new even
in the isotropic case, that is when � is a radial function.

When f is affected by poor integrability properties, existence of weak solutions to prob-
lem (1.1) is not guaranteed.This iswell knowneven in the linear situationwhen the differential
operator is the Laplacian. In particular, solutions that do exist in a yet weaker sense—for
instance, merely distributional solutions—typically do not belong to the pertaining Sobolev
space. Also, they need not be unique, as shown in [53].

In this connection, after disposing the issue of existence of weak solutions, we drop any
extra regularity on f besides plain integrability in �, and address the question of existence
of solutions to the Dirichlet problem (1.1) in a suitably generalized sense. Our result with
this regard is stated in Theorem 3.7. Under the mere assumption that f ∈ L1(�), it asserts
the existence and uniqueness of solutions, called approximable solutions throughout, that are
limits of weak solutions to approximating problems with regular right-hand sides. Impor-
tantly, Theorem 3.7 also provides us with maximal regularity of the solution u and of its
gradient ∇u. Such a regularity is properly described in terms of Marcinkiewicz-type spaces,
depending on�. An anisotropicOrlicz–Sobolev embedding,with optimalOrlicz target space,
is critical in dictating the form of these Marcinkiewicz-type spaces.

Our approach to problem (1.1) with right-hand side in L1(�) carries over, in fact, to the
case when f is replaced by a measure with finite total variation in �. The relevant result is
stated in Theorem 3.10. Let us point out that, though existence and regularity of solutions
hold exactly under the same conditions as for data in L1(�), their uniqueness is uncertain.
As far as we know, this is an open problem even in case of standard isotropic nonlinear
operators, such as the p-Laplacian.

The literature on elliptic equations, under such a broad ellipticity condition as that defined
in terms of N -functions �, is quite limited—see e.g. [2–5,19,24,39,40]. Our results answer
some questions in their general theory, and provide a unified framework for results available
for functions � of special forms.
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So-called operators with p-growth, modelled upon the p-Laplacian, correspond to the
choice

�(ξ) = |ξ |p for ξ ∈ R
n, (1.5)

with p > 1.The theory of equations governed by this kind of nonlinearity has been thoroughly
developed since the sixties of the last century. The analysis of solutions that are well suited
to allow for right-hand sides in L1 is more recent. Their systematic study was initiated with
the papers [14,45]. Other contributions in this direction include [6,7,11,28,29,36,50].

Existence and sharp regularity results for equations with non-polynomial growth and L1

or measure data, but still in the isotropic and reflexive setting where

�(ξ) = A(|ξ |) for ξ ∈ R
n (1.6)

for some classical N -function of one variable satisfying both the �2 and ∇2-condition, are
presented in [27]. Previous researches along this direction can be found in [12,32,33]. Results
concerning this kind of ellipticity, but involving more regular operators a, or right-hand sides
f enjoying stronger integrability properties, are the subject of [9,10,20–22,31,37,38,43,44,
49,58].

Elliptic problems with growth of the form

�(ξ) =
n∑

i=1

|ξi |pi for ξ ∈ R
n, (1.7)

where ξ = (ξ1, . . . , ξn), 1 < pi < ∞, i = 1, . . . , n, provide a basic framework for physical
models in the presence of anisotropies. They are the topic of diverse contributions, including
[17,18,35,41,46,57,61]. The case of L1 right-hand sides was considered in [15] under some
restrictions on the exponents pi . Note that functions as in (1.7) are particular examples of
those given by

�(ξ) =
n∑

i=1

Ai (|ξi |) for ξ ∈ R
n, (1.8)

where Ai are N -functions of one variable, which fall within the frames of the present dis-
cussion.

As an application of Theorems 3.2, 3.7 and 3.10, stated in Sect. 3, optimal results are
offered in the specific instances mentioned above. However, let us again emphasize that our
discussion covers more general situations than those described so far and, importantly, allows
for functions� that do not necessarily admit the split form (1.8). Examples which generalize
one from [60] are provided by N -functions � of the form

�(ξ) =
K∑

k=1

Ak

(∣∣∣ n∑
i=1

αk
i ξi

∣∣∣) for ξ ∈ R
n, (1.9)

where Ak are N -functions of one variable, K ∈ N and the coefficients αk
i ∈ R are arbitrary.

A possible instance, when n = 2, corresponds to the function

�(ξ) = |ξ1 − ξ2|p + |ξ1|q log(c + |ξ1|)α for ξ ∈ R
2, (1.10)

where either q ≥ 1 and α > 0, or q = 1 and α > 0, the exponent p > 1, and c is a sufficiently
large constant for � to be convex. Another example amounts to the function

�(ξ) = |ξ1 + 3ξ2|p + e|2ξ1−ξ2|β − 1 for ξ ∈ R
2, (1.11)
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with p > 1 and β > 1.

2 Function spaces

Assume that � is a measurable subset of R
n , with n ≥ 1, having finite Lebesgue measure

|�|. Given m ∈ N, we set

M(�;Rm) = {U : U is a measurable function from � into R
m}.

Whenm = 1, we shall make use of the abridged notationM(�) forM(�; R). An analogous
simplification will be employed in the notation of other function spaces without further
mentioning.

Given u ∈ M(�), we define the distribution function μu : [0,∞) → [0,∞) as

μu(t) = |{x ∈ � : |u(x)| > t}| for t ≥ 0, (2.1)

and the decreasing rearrangement u∗ : [0,∞) → [0,∞] as
u∗(s) = inf{t ≥ 0 : μu(t) ≤ s} for s ≥ 0. (2.2)

The function u∗ is equimeasurablewith u and right-continuous. The function u∗∗ : (0,∞) →
[0,∞], called the maximal rearrangement of u∗ and given by

u∗∗(s) = 1

s

∫ s

0
u∗(r)dr for s > 0, (2.3)

is non-increasing, and satisfies u∗ ≤ u∗∗.
A Banach function space X(�) (in the sense of Luxemburg [13]) of functions in M(�)

is called a rearrangement-invariant space if its norm ‖ · ‖X(�) satisfies

‖u‖X(�) = ‖v‖X(�) whenever u∗ = v∗. (2.4)

If X(�) is a rearrangement-invariant space, then

L∞(�) → X(�) → L1(�), (2.5)

where → stands for a continuous embedding.
Let X(�) be a rearrangement-invariant space. Its associate space is the rearrangement-

invariant space X ′(�) equipped with the norm given by

‖u‖X ′(�) = sup

{∫
�

|u(x)v(x)| dx : ‖v‖X(�) ≤ 1

}
. (2.6)

The space X ′(�) is contained in the topological dual of X(�), denoted by X(�)∗, but need
not coincide with the latter.

Let 
 : (0, |�|) → (0,∞) be a continuous increasing function. We denote by L
(·),∞(�)

the Marcinkiewicz-type space associated with 
, and defined as

L
(·),∞(�) =
{
u ∈ M(�) : there exists λ > 0 such that sup

s∈(0,|�|)
u∗(s)


−1(λ/s)
< ∞

}
.

Note that L
(·),∞(�) is not always a normed space. Special choices of the function 
 recover
standard spaces of weak-type. For instance, if 
(s) = sq for some q > 0, then L
(·),∞(�) =
Lq,∞(�), the customaryweak–Lq(�) space.When 
(s) behaves like sq(log s)β near infinity
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for some q > 0 and β ∈ R, we shall adopt the notation Lq,∞(log L)β(�) for L
(·),∞(�).
The meaning of the notation Lq,∞(log L)β(log log L)−1(�) is analogous.

Orlicz and Orlicz–Lorenz spaces generalize Lebesgue and Lorentz spaces, respectively,
and are classical instances of rearrangement-invariant spaces. Together with their anisotropic
counterpart and with the associated Sobolev-type spaces, they play a critical role in our
discussion. Their definitions and basic properties are recalled in what follows.

2.1 Orlicz, Orlicz–Lorentz and Orlicz–Sobolev spaces

We say that a function A : [0,∞) → [0,∞] is a Young function if it is convex, vanishes at 0,
and is neither identically equal to 0, nor to infinity. AYoung function Awhich is finite-valued,
vanishes only at 0 and satisfies the additional growth conditions

lim
t→0

A(t)

t
= 0 and lim

t→∞
A(t)

t
= ∞, (2.7)

is called an N -function.
The Young conjugate of a Young function A is the Young function Ã defined by

Ã(t) = sup{st − A(s) : s ≥ 0} for t ≥ 0.

Hence,

st ≤ A(s) + Ã(t) for s, t ≥ 0. (2.8)

Note that (̃ Ã) = A for any Young function A. The class of N -functions is closed under the
operation of Young conjugation. One has that

t ≤ Ã−1(t)A−1(t) ≤ 2t for t ≥ 0, (2.9)

where A−1 stands for the (generalized) left-continuous inverse of A. Hence,

A(t)

t
≤ Ã−1(A(t)) ≤ 2

A(t)

t
for t ≥ 0. (2.10)

A Young function A fulfils the�2-condition near infinity if A is finite–valued and there exist
constants c > 0 and t0 ≥ 0 such that A(2t) ≤ cA(t) for t ≥ t0.

A function A satisfies the ∇2-condition near infinity if there exist constants c > 2 and
t0 ≥ 0 such that A(2t) ≥ cA(t) for t ≥ t0.

We shall also write “A ∈ �2 near infinity” and “A ∈ ∇2 near infinity” to denote these
properties.

One has that A ∈ �2 near infinity if and only if Ã ∈ ∇2 near infinity.
We say that a Young function A dominates another Young function B near infinity if there

exist constants c > 0 and t0 ≥ 0 such that B(t) ≤ A(ct) if t ≥ t0. If two Young functions A
and B dominate each other near infinity, then we say that they are equivalent near infinity.

A Young function A is said to increase essentially faster than B near infinity if

lim
t→+∞

A−1(t)

B−1(t)
= 0. (2.11)

Let � be a measurable set in R
n , n ≥ 1, with |�| < ∞, and let A be a Young function.

The Orlicz class LA(�) is defined as

LA(�) =
{
u ∈ M(�) :

∫
�

A (|u|) dx < ∞
}
. (2.12)
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The set LA(�) is convex, but it is not a linear space in general. The Orlicz space L A(�) is
the set of all functions u ∈ M(�) such that the Luxemburg norm

‖u‖LA(�) = inf

{
λ > 0 :

∫
�

A
( 1

λ
|u|) dx ≤ 1

}
(2.13)

is finite. The space L A(�) equipped with this norm is a Banach space. It is the smallest vector
space containing LA(�). In particular, one has that L A(�) = L p(�) if A(t) = t p for some
p ∈ [1,∞), and L A(�) = L∞(�) if A(t) = ∞χ(1,∞)(t). Here, and in what follows, χE

stands for the characteristic function of a set E .
A Hölder-type inequality in the Orlicz setting reads∫

�

|uv| dx ≤ 2‖u‖LA(�)‖v‖L Ã(�)
(2.14)

for every u ∈ L A(�) and v ∈ L Ã(�).
Let A and B be two Young functions. Then

L A(�) → LB(�) if and only if A dominates B near infinity. (2.15)

In particular, L A(�) → L1(�) for any Young function A. Hence,

L A(�) = LB(�) if and only if A is equivalent to B near infinity, (2.16)

where the equality has to be interpreted up to equivalent norms.
Let us next set

E A(�) =
{
u ∈ M(�) :

∫
�

A
( 1

λ
|u|) dx < ∞ for every λ > 0

}
. (2.17)

The space E A(�) agrees with the closure in L A(�), in the norm topology, of the space of
functions which are bounded in � and have bounded support. Trivially,

E A(�) ⊂ LA(�) ⊂ L A(�). (2.18)

Both inclusions hold as equalities in (2.18) if and only if A satisfies the �2-condition near
infinity.

If A increases essentially faster than B near infinity, then

L A(�) → EB(�). (2.19)

The alternative notation A(L)(�) will also be employed, when convenient, to denote the
Orlicz space associated with any Young function equivalent to A near infinity. For instance,
if α > 0, then exp Lα(�) stands for the Orlicz space built upon a Young function equivalent
to et

α
near infinity. Moreover, if either p > 1 and α ∈ R, or p = 1 and α ≥ 0, then the

space L p logα L(�) denotes the Orlicz space associated with a Young function equivalent to
t p logα t near infinity. We refer to the monographs [1,51,52] for comprehesive treatments of
Orlicz spaces.

Given a Young function A and r ∈ (−∞,∞]\{0}, we denote by L[A, r ](�) the Orlicz–
Lorentz-type space of those functions u ∈ M(�) such that the quantity

‖u‖L[A,r ](�) = ‖s 1
r u∗∗(s)‖LA(0,|�|) (2.20)

is finite. Here, and in what follows, we use the convention that 1
∞ = 0. The space L[A, r ](�)

is a rearrangement-invariant space. It is non-trivial, namely it contains functions that do not
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vanish identically, if ‖s 1
r ‖LA(0,|�|) < ∞. In analogy with E A(�), we define

E[A, r ](�) =
{
u ∈ M(�) :

∫ |�|

0
A
(
1
λ
s
1
r u∗∗(s)

)
ds < ∞ for every λ > 0

}
. (2.21)

Similarly,wedenote by L(A, r)(�) theOrlicz–Lorentz-type spaceof all functionsu ∈ M(�)

for which the expression

‖u‖L(A,r)(�) = ‖s 1
r u∗(s)‖LA(0,|�|) (2.22)

is finite. The space E(A, r)(�) is defined accordingly. Under suitable assumptions on A and r
the functional defined by (2.22) is a norm, and, consequently, L(A, r)(�) is a rearrangement-
invariant space equipped with this norm—see [25]. In particular, for any Young function A,
formula (2.22) defines a norm provided that r < −1.

The special instance corresponding to L A(0, |�|) = Lq(0, |�|) yields
L(A, r)(�) = E(A, r)(�) = L p,q(�), (2.23)

up to equivalent norms, provided that p, q and r are suitably related. Here, L p,q(�) denotes
the customary Lorentz space of those functions u ∈ M(�) making the quantity

‖u‖L p,q (�) = ∥∥s 1
p − 1

q u∗(s)
∥∥
Lq (0,|�|) (2.24)

finite. Also, with a proper choice of p and r ,

L[A, r ](�) = E[A, r ](�) = L [p,q](�), (2.25)

up to equivalent norms, where L [p,q](�) denotes the Lorentz space equipped with the norm
given by

‖u‖L[p,q](�) = ∥∥s 1
p − 1

q u∗∗(s)
∥∥
Lq (0,|�|) (2.26)

for u ∈ M(�).
When L A(0, |�|) = Lq logα L(0, |�|), where either q ∈ (1,∞] and α ≥ 0, or q = 1 and

α ≥ 0, one has that

L[A, r ](�) = E[A, r ](�) = L [p,q](log L)α(�), (2.27)

up to equivalent norms, again with a suitable choice of p and r—see e.g. [13, Lemma 6.12,
Chapter 4]. Here, L [p,q](log L)α(�) denotes the Lorentz–Zygmund space equipped with the
norm defined as

‖u‖L[p,q](log L)α(�) = ∥∥s 1
p − 1

q log
α
q
(
1 + |�|

s

)
u∗∗(s)

∥∥
Lq (0,|�|) (2.28)

for u ∈ M(�). An analogous relation links the spaces L(A, r)(�), E(A, r)(�) and
L p,q(log L)α(�), where the latter is defined as the set of all functions u ∈ M(�) which
render the right-hand side of Eq. (2.28), with u∗∗ replaced by u∗, finite.

Assume now that � is an open set in R
n , n ≥ 2, with |�| < ∞. We define the Orlicz–

Sobolev class

W 1
0LA(�) = {u ∈ M(�) : the continuation of u by 0 outside � is

weakly differentiable in R
n and |∇u| ∈ LA(�). (2.29)
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TheOrlicz–Sobolev space W 1
0 L

A(�) is defined analogously, on replacing LA(�) by L A(�)

on the right-hand side of definition (2.29). The space W 1
0 L

A(�), endowed with the norm

‖u‖W 1
0 L

A(�) = ‖ |∇u| ‖LA(�), (2.30)

is a Banach space. Note that, thanks to a Poincaré-type inequality—see [59, Lemma 3]—the
norm defined by (2.30) is equivalent to the norm given by ‖u‖LA(�) + ‖ |∇u| ‖LA(�).

In the case when L A(�) = L p(�) for some p ∈ [1,∞) and ∂� is regular enough, the
above definition of W 1

0 L
A(�) reproduces the usual space W 1,p

0 (�) defined as the closure in
W 1,p(�) of the space C∞

0 (�) of smooth compactly supported functions in �. On the other
hand, the set of smooth bounded functions is dense in L A(�) if and only if A satisfies the
�2-condition, and hence, for arbitrary A, our definition of W 1

0 L
A(�) yields a space which

can be larger than the closure ofC∞
0 (�)with respect to the norm in (2.30). A systematic study

of Orlicz–Sobolev spaces was initiated in [32]. An account of more recent developments can
be found in [51,52].

2.2 Anisotropic Orlicz and Orlicz–Sobolev spaces

A function � : R
n → [0,∞] is called an n-dimensional Young function if it is convex,

�(0) = 0,�(ξ) = �(− ξ) for ξ ∈ R
n , and {ξ ∈ R

n : �(ξ) ≤ t} is a compact set containing
0 in its interior for every t > 0.

The function � is called an n-dimensional N -function if, in addition, � is finite–valued,
vanishes only at 0, and

lim
ξ→0

�(ξ)

|ξ | = 0 and lim|ξ |→∞
�(ξ)

|ξ | = ∞. (2.31)

Notice that, for technical reasons and ease of presentation, in the case when n = 1 we
are distinguishing Young functions or N -functions, as defined on [0,∞) as in the previous
subsection, from 1-dimensional Young functions or 1-dimensional N -functions defined on
the whole of R here. However, extending a Young function to an even function on the entire
R results in a 1-dimensional Young function; conversely, the restriction of a 1-dimensional
Young function to [0,∞) is aYoung function. Thus, any definition or result concerningYoung
functions or N -functions translates into a corresponding definition or result for 1-dimensional
Young functions or N -functions, and viceversa.

In what follows, Young or N -functions will be denoted by latin capital letters, whereas
n-dimensional Young or N -functions will be denoted by greek capital letters. Thus, there
will be no ambiguity if we simply write Young function or N -function when referring to an
n-dimensional function.

The Young conjugate of a Young function � is the Young function �̃ defined as

�̃(ξ) = sup{η · ξ − �(η) : η ∈ R
n} for ξ ∈ R

n .

Here, the dot “ · ” denotes scalar product in R
n . By the very definition of �̃, one has that

ξ · η ≤ �(ξ) + �̃(η) for ξ, η ∈ R
n . One has that (̃�̃) = � for any Young function �. The

class of N -functions is closed under the operation of Young conjugation.
A Young function � is said to satisfy the �2-condition near infinity, briefly � ∈ �2 near

infinity, if it is finite–valued and there exist positive constants c and M such that �(2ξ) ≤
c�(ξ) if |ξ | ≥ M .

A Young function � is said to satisfy the ∇2-condition near infinity, briefly � ∈ ∇2 near
infinity, if there exist constants c > 2 and M > 0 such that �(2ξ) ≥ c�(ξ) if |ξ | ≥ M .

123
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A Young function � is said to dominate another Young function  near infinity if there
exist positive constants c and M such that (ξ) ≤ �(cξ) if |ξ | ≥ M . Equivalence of Young
functions is defined accordingly.

Let � be a measurable set in R
n , n ≥ 1, with |�| < ∞, and let � be an n-dimensional

Young function. The anisotropic Orlicz space L�(�; R
n) is the set of all vector-valued

functions U ∈ M(�; R
n) such that the norm

‖U‖L�(�;Rn) = inf

{
λ > 0 :

∫
�

�
( 1

λ
U
)
dx ≤ 1

}

is finite. The space L�(�; R
n), equipped with this norm, is a Banach space. The Orlicz

class L�(�; R
n) and the space E�(�; R

n) are defined in analogy with definitions (2.12)
and (2.17), respectively. One has that E�(�; R

n) agrees with the closure in L�(�; R
n) of

the space of bounded functions in � with bounded support. Clearly,

E�(�; R
n) ⊂ L�(�; R

n) ⊂ L�(�; R
n), (2.32)

and both inclusions hold as equalities if and only if � ∈ �2 near infinity. The Hölder-type
inequality ∫

�

|U · V | dx ≤ 2‖U‖L�(�;Rn)‖V ‖L�̃(�;Rn)
(2.33)

holds for every U ∈ L�(�; R
n) and V ∈ L�̃(�; R

n).
If � and  are Young functions, then

L�(�; R
n) → L(�; R

n) if and only if � dominates  near infinity.

In particular, L�(�; R
n) → L1(�; R

n) for any Young function �. Moreover,

L�(�; R
n) = L(�; R

n) if and only if � and  are equivalent near infinity.

By [54, Corollary 7.2], given any N -function�, the space L�(�; R
n) is reflexive if and only

if � ∈ �2 ∩∇2 near infinity. In general, if � is an arbitrary n-dimensional N -function, then

the dual of E�(�; R
n) is isomorphic and homeomorphic to L�̃(�; R

n), (2.34)

see [3, Proposition 2.4]. Orlicz spaces of vector-valued functions are studied in detail in
[55,56], as special cases of more general Musielak–Orlicz spaces; the analysis of the paper
[54] also includes Orlicz spaces of functions defined on infinite dimensional spaces.

Assume that � is an open set in R
n , n ≥ 2, with |�| < ∞. Let � be an n-dimensional

Young function. The anisotropic Orlicz–Sobolev class is defined as

W 1
0L�(�) = {u ∈ M(�): the continuation of u by 0 outside �

is weakly differentiable in R
n and ∇u ∈ L�(�; R

n)}. (2.35)

The anisotropic Orlicz–Sobolev space W 1
0 L

�(�) is defined accordingly, on replacing
L�(�; R

n) by L�(�; R
n) on the right-hand side of Eq. (2.35). One has that W 1

0 L
�(�),

equipped with the norm
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‖u‖W 1
0 L

�(�) = ‖∇u‖L�(�;Rn),

is aBanach space. TheOrlicz–Sobolev spaceW 1
0 L

�(�) is reflexive if andonly if� ∈ �2∩∇2

near infinity. Classical contributions on Orlicz–Sobolev spaces are [42,60].
The use of sets of functions, whose truncations belong to an Orlicz–Sobolev space, is

crucial in dealing with approximable solutions. Given any t > 0, let Tt : R → R denote the
function defined by

Tt (s) =
{
s if |s| ≤ t,

t sign (s) if |s| > t .
(2.36)

We set

T 1,�
0 (�) = {u ∈ M(�) : Tt (u) ∈ W 1

0 L
�(�) for every t > 0}. (2.37)

The space T 1,�
0 (�) is the anisotropic counterpart of the space introduced in [11] and asso-

ciated with the standard Sobolev space W 1,p
0 (�) corresponding to the choice �(ξ) = |ξ |p .

If u ∈ T 1,�
0 (�), then there exists a (unique) measurable function Zu : � → R

n such that

∇Tt (u) = χ{|u|<t}Zu a.e. in � (2.38)

for every t > 0. This is a consequence of [11, Lemma 2.1]. One has that u ∈ W 1
0 L

�(�) if

and only if u ∈ T 1,�
0 (�) and Zu ∈ L�(�; R

n). In the latter case, Zu = ∇u a.e. in �. With

an abuse of notation, for every u ∈ T 1,�
0 (�) we denote Zu simply by ∇u throughout.

2.3 Auxiliary functions associated with8

Let � be an n-dimensional Young function. By �◦ : [0,∞) → [0,∞) we denote the Young
function obeying

|{ξ ∈ R
n : �◦(|ξ |) ≤ t}| = |{ξ ∈ R

n : �(ξ) ≤ t}| for t ≥ 0. (2.39)

The function R
n � ξ �→ �◦(|ξ |) can be regarded as a kind of “average in measure” of �. It

can be used to define the radially increasing symmetral �� : R
n → [0,∞) of � by

��(ξ) = �◦(|ξ |) for ξ ∈ R
n .

Since �� is radially symmetric, the function �♦ : [0,∞) → [0,∞), defined by

�♦(|ξ |) = (̃�̃�
)
(ξ) for ξ ∈ R

n, (2.40)

is a Young function. Moreover, the function�♦ is equivalent to�◦, and there exist constants
c1 = c1(n) and c2 = c2(n) such that

�◦(c1t) ≤ �♦(t) ≤ �◦(c2t) for t ≥ 0, (2.41)

see [42, Lemma 7]. Note that if � is an n-dimensional N -function, then the functions �◦
and �♦ are 1-dimensional N -functions and �� is an n-dimensional N -function.

Two more functions associated with �, denoted by �n and �̂◦, will be introduced in the
next section in connection with Orlicz–Sobolev-type embeddings.

Some auxiliary functions depending on � will still be needed. We denote by ◦ :
[0,∞) → [0,∞) the increasing function given by

◦(t) = �◦(t)
t

for t > 0 and ◦(0) = 0. (2.42)
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Also, we call ♦ : [0,∞) → [0,∞) the increasing function given by

♦(t) = �♦(t)

t
for t > 0 and ♦(0) = 0. (2.43)

The function � : R
n → [0,∞) is defined as

�(ξ) = �̃♦
−1

(�(ξ)) for ξ ∈ R
n, (2.44)

and the function �♦ : [0,∞) → [0,∞) as

�♦(t) = �̃♦
−1

(�♦(t)) for t ≥ 0. (2.45)

Relations among the functions introduced above are the subject of the following lemma.

Lemma 2.1 Let � : R
n → [0,∞) be an n-dimensional N-function, and let �♦, ♦, �, and

�♦ be the functions associated with � as in (2.40), (2.43), (2.44) and (2.45), respectively.
Then

(i) �♦ ◦ �−1
♦ = �̃♦,

(ii) �♦ ◦ �−1
♦ ◦ � = �,

(iii) �−1
♦
(
t−1

♦ (t)
) = −1

♦ (t) for t ≥ 0,

(iv) �♦
(
−1

♦
)
(t) ≤ 2t for t ≥ 0.

(v) �♦
(
−1

♦ (t/2)
) ≤ �̃♦(t) ≤ �♦

(
−1

♦ (t)
)

for t ≥ 0.

Proof Equations (i) and (ii) are straightforward consequences of definitions (2.44) and (2.45).
Equation (iii) easily follows on replacing t by−1

♦ (t) in the definition of♦. As for inequality
(iv), recall that, since �♦ is a Young function, then, by (2.9),

t ≤ �−1
♦ (t)�̃♦

−1
(t) ≤ 2t for t ≥ 0.

By (iii) and the second inequality above we get

�♦
(
−1

♦ (t)
) = �̃♦

−1(
�♦
(
−1

♦ (t)
)) = �̃♦

−1(
�♦
(
�−1

♦
(
t−1

♦ (t)
))) = �̃♦

−1(
t−1

♦ (t)
)

≤ 2t−1
♦ (t)

�−1
♦ (t−1

♦ (t))
= 2t−1

♦ (t)

−1
♦ (t)

= 2t for t ≥ 0. (2.46)

Finally, property (v) follows via Eq. (2.10) applied with A replaced by ♦. ��

2.4 Sobolev embeddings

The sharp embeddings for anisotropic Orlicz–Sobolev spaces collected in this subsection are
pivotal in our analysis.

Let � be an n-dimensional Young function. A basic anisotropic Poincaré-type inequality
tells us that there exists a constant κ1 = κ1(n) such that∫

�

�◦(κ1|�|− 1
n |u|) dx ≤

∫
�

�(∇u) dx, (2.47)

for every u ∈ W 1
0L�(�), and

‖u‖L�◦ (�) ≤ κ−1
1 |�| 1n ‖∇u‖L�(�) (2.48)
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for every u ∈ W 1
0 L

�(�)—see [8, Proposition 3.2].
The statement of optimal anisotropic Sobolev inequalities requires some further defini-

tions. Assume that ∫
0

(
t

�◦(t)

) 1
n−1

dt < ∞. (2.49)

If ∫ ∞ ( t

�◦(t)

) 1
n−1

dt = ∞, (2.50)

then we denote by �n : [0,∞) → [0,∞] the Sobolev conjugate of � introduced in [23].
Namely, �n is the Young function defined as

�n(t) = �◦(H−1(t)) for t ≥ 0, (2.51)

where H : [0,∞) → [0,∞) is given by

H(t) =
(∫ t

0

(
τ

�◦(τ )

) 1
n−1

dτ

) n−1
n

for t ≥ 0. (2.52)

Here, H−1 denotes the generalized left-continuous inverse of H .
By [23, Theorem 1 and Remark 1], there exists a constant κ2 = κ2(n) such that

∫
�

�n

(
|u|

κ2 (
∫
�

�(∇u)dy)
1
n

)
dx ≤

∫
�

�(∇u) dx (2.53)

for every u ∈ W 1
0L�(�), and

‖u‖L�n (�) ≤ κ2‖∇u‖L�(�) (2.54)

for every u ∈ W 1
0 L

�(�). Moreover, L�n (�) is the optimal, i.e. the smallest possible, Orlicz
space which renders (2.54) true for all n-dimensional Young functions � with prescribed
�◦.

This result can be still improved if embeddings of W 1
0 L

�(�) into the broader class of
rearrangement-invariant target spaces are considered. Indeed, denote by φ◦ : [0,∞) →
[0,∞) the non-decreasing, left-continuous function such that

�◦(t) =
∫ t

0
φ◦(τ ) dτ for t ≥ 0,

and let �̂◦ be the Young function given by

�̂◦(t) =
∫ t

0
φ̂◦(τ ) dτ for t ≥ 0, (2.55)

where φ̂◦ : [0,∞) → [0,∞) is the non-decreasing, left-continuous function defined via

(φ̂◦)−1(t) =
(∫ ∞

φ−1◦ (t)

(∫ r

0

(
1

φ◦(t)

) 1
n−1

dt

)−n dr

φ◦(r)
n

n−1

) 1
1−n

for t ≥ 0, (2.56)

and φ−1◦ and φ̂◦
−1

are the (generalized) left-continuous inverses of φ◦ and φ̂◦, respectively.
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Let L(�̂◦,−n)(�) be the Orlicz–Lorentz-type space defined as in (2.22). By [25], there
exists a constant κ3 = κ3(n) such that∫ |�|

0
�̂◦
(
κ−1
3 s− 1

n u∗(s)
)
ds ≤

∫
�

�(∇u) dx (2.57)

for every u ∈ W 1
0L�(�), and

‖u‖L(�̂◦,−n)(�) ≤ κ3‖∇u‖L�(�) (2.58)

for every u ∈ W 1
0 L

�(�). Moreover, L(�̂◦,−n)(�) is the optimal, i.e. the smallest possible,
rearrangement-invariant space which renders inequality (2.58) true for all n-dimensional
Young functions � with prescribed �◦.

Let us notice that the Orlicz–Lorentz-type space L[�̃◦, n](�), defined as in (2.20), is
the associate space of L(�̂◦,−n)(�) (up to equivalent norms). Moreover, as shown in [25,
Inequality (4.46)],∫

�

|uv| dx ≤
∫ |�|

0
u∗(s)v∗(s) ds

≤ C

(∫ |�|

0
�̂◦
(
s− 1

n u∗(s)
)
ds +

∫ |�|

0
�̃◦
(
s
1
n v∗∗(s)

)
ds

)
(2.59)

for some constant C = C(n), and for every u, v ∈ M(�).
When �◦ grows so fast near infinity that condition (2.50) fails, namely

∫ ∞ ( t

�◦(t)

) 1
n−1

dt < ∞, (2.60)

then there exists a constant κ4 = κ4(�, n, |�|) such that

‖u‖L∞(�) ≤ κ4‖∇u‖L�(�) (2.61)

for every u ∈ W 1
0 L

�(�).

2.5 Modular approximation

One obstacle to be faced when dealing with Orlicz and Orlicz–Sobolev spaces built upon
Young functions that do not satisfy the �2-condition is the lack of separability of these
spaces. In particular, functions in these spaces cannot be approximated in norm by smooth
functions. Substitutes for this property are certain approximation results in integral form,
usually referred to as “modular approximability” in the theory of Orlicz spaces, which are
well fitted for applications to partial differential equations. This kind of approximation is
well known for isotropic Orlicz and Orlicz–Sobolev spaces, and goes back to [38]. On the
other hand, a counterpart in the more general anisotropic framework seems not to be com-
pletely settled yet. In this subsection, we recall a few definitions and state the approximation
properties that are needed in view of our main results. Their proofs present some additional
difficulty with respect to the isotropic case, and are given in Sect. 5.

Let � be an n-dimensional Young function and let � be a measurable set in R
n with

|�| < ∞. A sequence {Uk} ⊂ L�(�;Rn) is said to converge modularly to U in L�(�;Rn)

if there exists λ > 0 such that
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lim
k→∞

∫
�

�

(
Uk −U

λ

)
dx = 0. (2.62)

Note that if Uk → U modularly, then Uk → U in measure.
The following proposition links modular convergence to a kind of weak convergence

against test functions in the associate space.

Proposition 2.2 Let � be an n-dimensional N-function and let � be a measurable set in R
n

with |�| < ∞. Let U ∈ L�(�;Rn). Assume that the sequence {Uk} ⊂ Lφ(�;Rn) and that
Uk → U modularly in L�(�;Rn). Then there exists a subsequence of {Uk}, still indexed by
k, such that

lim
k→∞

∫
�

Uk · V dx =
∫

�

U · V dx for every V ∈ L�̃(�;Rn). (2.63)

The next result concerns the modular density of simple functions in anisotropic Orlicz
spaces.

Proposition 2.3 Let � be an n-dimensional N-function and let � be a measurable set in
R
n with |�| < ∞. Assume that U ∈ L�(�; R

n). Then there exists a sequence of simple
functions {Uk} such that Uk → U modularly in L�(�; R

n).

We conclude with a modular smooth approximation property in anisotropic Orlicz–
Sobolev spaces on bounded Lipschitz domains. Recall that an open set� is called a Lipschitz
domain if each point of ∂� has a neighborhood U such that � ∩ U is the subgraph of a
Lipschitz continuous function of n − 1 variables.

Proposition 2.4 Let � be an n-dimensional N-function and let � be a bounded Lipschitz
domain in R

n. Assume that u ∈ W 1
0 L

�(�)∩ L∞(�). Then there exist a constant C = C(�)

and a sequence {uk} ⊂ C∞
0 (�) such that

uk → u a.e. in �, (2.64)

‖uk‖L∞(�) ≤ C‖u‖L∞(�) for every k ∈ N, (2.65)

∇uk → ∇u modularly in L�(�; R
n). (2.66)

Remark 2.5 In the isotropic case, namely when �(ξ) = A(|ξ |) for ξ ∈ R
n , for some N -

function A, properties (2.64) and (2.66) in Proposition 2.4 are known to hold even if the
assumption u ∈ L∞(�) is dropped—see [38, Theorem 4].

2.6 Some classical theorems of functional analysis

We conclude this section by recalling a few well–known results of functional analysis, for-
mulated in the anisotropic Orlicz space framework. In their statements, � is assumed to be
a measurable set in R

n with |�| < ∞.

Theorem 2.6 (Vitali) Assume that the sequence {Uk} ⊂ M(�; R
n) is uniformly integrable

in �, and there exists a function U : � → R
n such that limk→∞ Uk = U a.e. in � and

|U | < ∞ a.e. in �. Then U ∈ L1(�;Rn) and limk→∞ Uk = U in L1(�; R
n).

Theorem 2.7 (Dunford–Pettis) A family {Uσ }σ∈� of functions in M(�; R
n) is uniformly

integrable in L1(�; R
n) if and only if it is relatively compact in the weak topology.
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Theorem 2.8 (Anisotropic De La Vallée Poussin) Let � be an n-dimensional N-function.
Assume that {Uσ }σ∈� is a family of functions in M(�; R

n) such that supσ∈�

∫
�

�(Uσ )

dx < ∞. Then the family {Uσ } is uniformly integrable.
The next result follows from the customary version of the Banach–Alaoglu theorem,

owing to property (2.34) applied to� and �̃. Notice that, in view of that property, a sequence
{Uk} ⊂ L�(�; R

n) weakly-* converges to U ∈ L�(�; R
n) in L�(�; R

n) if

lim
k→∞

∫
�

Uk · V dx =
∫

�

U · V dx

for every V ∈ E�̃(�; R
n). Weak-* convergence in L�̃(�; R

n) can be characterized on
exchanging the roles of � and �̃.

Theorem 2.9 (Banach–Alaoglu in anisotropic Orlicz spaces) Let � be an n-dimensional N-
function. Then the closed unit ball in L�(�; R

n) and the closed unit ball in L�̃(�; R
n) are

weakly-* compact in the respective spaces.

3 Main results

This is a section where definitions of solutions to the Dirichlet problem (1.1) are introduced
and the pertaining existence, uniqueness, and regularity results are stated. In what follows,
when referring to assumptions (1.2)–(1.4),wemean that they are fulfilled for some N -function
�, some function h ∈ L1(�), and some constant c� ∈ (0, 1).

3.1 Weak solutions

Our first purpose is to detect a minimal integrability condition on the datum f for a weak
solution to problem (1.1) to exist. In order to allow for the largest possible class of admissible
functions f , in the definition of weak solution that will be adopted the function f is a priori
assumed to be just integrable in �. The class of test functions is thus accordingly chosen for
the weak formulation of the problem to be well posed for any such f .

Definition 3.1 (Weak solution) Let f ∈ L1(�). Under assumptions (1.2)–(1.4), a function
u ∈ W 1

0L�(�) is called a weak solution to the Dirichlet problem (1.1) if∫
�

a(x,∇u) · ∇ϕ dx =
∫

�

f ϕ dx (3.1)

for every ϕ ∈ W 1
0L�(�) ∩ L∞(�).

Observe that both sides of equality (3.1) are well defined if f , u and ϕ are as in defini-
tion 3.1. In particular, the integral on the left-hand side of (3.1) is convergent by the Hölder
inequality (2.33), since, owing to assumption (1.4), a(x,∇u) ∈ L�̃(�; R

n) provided that
u ∈ W 1

0L�(�).
Our main result about weak solutions is contained in Theorem 3.2. Its assumptions in

connection with the existence (and uniqueness) of these solutions take a form of an alterna-
tive, depending on a threshold on the growth near infinity of the function �. More precisely,
what is relevant is the growth of its “average” �◦, defined as in (2.39), and the alternative
corresponds to the two complementary conditions (2.50) and (2.60). Indeed, if �◦ grows
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fast enough near infinity for the latter condition to hold, then any integrable function f is
admissible. On the other hand, if (2.60) fails, and hence the former condition is in force,
then a proper degree of integrability has to be imposed on f . A natural ambient space for f
is the largest rearrangement-invariant space ensuring that the integral on the right-hand side
of Eq. (3.1) is convergent for every (non-necessarily bounded) test function ϕ ∈ W 1

0L�(�)

(or even ∈ W 1
0 L

�(�)). This corresponds to the associate space L[�̃◦, n](�) of the opti-
mal rearrangement-invariant target space L(�̂◦,−n)(�) for embeddings ofW 1

0 L
�(�)—see

(2.58). Theorem3.2 asserts that theDirichlet problem (1.1) does actually admit a uniqueweak
solution provided that f belongs to the separable counterpart E[�̃◦, n](�) of L[�̃◦, n](�),
defined as in (2.21).

As will be clear from Example 1 in the next section, in the classical case of p-Laplacian-
type problems, the two alternatives discussed above correspond to the situations when p ≤ n
or p > n. In particular, if p < n, our assumption amounts to requiring that f belongs to the

Lorentz space L [ np
np+p−n ,p′]

(�), where p′ = p
p−1 , thus weakening the customary condition

that f ∈ L
np

np+p−n (�).

Theorem 3.2 (Existence of weak solutions) Let � be a bounded Lipschitz domain in R
n.

Assume that conditions (1.2)–(1.4) are in force, and let �◦ be the function associated with
� as in (2.39). If either

�◦ grows so slowly that (2.50) holds and f ∈ E[�̃◦, n](�), (3.2)

or

�◦ grows so fast that (2.60) holds and f ∈ L1(�), (3.3)

then there exists a unique weak solution u ∈ W 1
0L�(�) to the Dirichlet problem (1.1).

In some applications, we need to make use of the solution u itself as a test function ϕ

in equation (3.1) in the definition of weak solution to problem (1.1). This requires u to be
bounded. An optimal condition on f for this property to hold is exhibited in the next result.

Proposition 3.3 (Boundedness of weak solutions) Assume, in addition to the assumptions
of Theorem 3.2, that ∫ |�|

0
s− 1

n′ −1◦
(
λs

1
n f ∗∗(s)

)
ds < ∞ (3.4)

for every λ > 0, where ◦ is defined as in (2.42). Then u ∈ L∞(�), and there exists a
constant C = C(n) such that

‖u‖L∞(�) ≤ C
∫ |�|

0
s− 1

n′ −1◦
(
Cs

1
n f ∗∗(s)

)
ds. (3.5)

Remark 3.4 Owing to Eq. (2.41), condition (3.4) can be equivalently formulated with ◦
replaced by the function ♦ defined by (2.43). The use of the latter function allows for an
explicit sharp value of the constant λ in corresponding condition. Actually, the weak solution
u to the Dirichlet problem (1.1)–(1.4) is bounded provided that

∫ |�|

0
s− 1

n′ −1
♦

(
s
1
n

nω
1/n
n

f ∗∗(s)
)
ds < ∞. (3.6)
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Moreover,

‖u‖L∞(�) ≤ 1

nω
1/n
n

∫ |�|

0
s− 1

n′ −1
♦

(
s
1
n

nω
1/n
n

f ∗∗(s)
)
ds. (3.7)

Both condition (3.6) and the bound given by (3.7) are sharp. The sufficiency of condition
(3.6), and the validity of estimate (3.7) are apparent from a close inspection of the proof
of Proposition 3.3. Their sharpness is due to the fact that equality holds in (3.7) if u is the
solution to a suitable symmetric problem in a ball, which is stated in Eq. (6.14) below.

Remark 3.5 If condition (3.6), or even (3.4), is dropped, boundedness of the weak solution
u to problem (1.1) u is not guaranteed. In this case, sharp integrability properties of u can be
derived via [26, Proposition 3.7].

3.2 Approximable solutions

When neither of conditions (3.2) and (3.3) holds, weak solutions to problem (1.1) do not
necessarily exist. This calls for the use of some notion of solution, still weaker than that
of weak solution, which enables to deal with arbitrary right-hand sides f ∈ L1(�), and
yet with measure data, whatever � is. Merely distributional solutions are not satisfactory,
since even for linear equations this class of solutions does not guarantee uniqueness and per-
mits well-known pathologies [53]. These drawbacks can be overcome if, instead, solutions
obtained as limits of solutions to approximating problems with regularized right-hand sides
are introduced. Such a notion of solution has been extensively exploited, more or less explic-
itly, for nonlinear problems with isotropic growth—see e.g. [11,14,28,29,47,48]. It restores
uniqueness and, importantly, is well suited to analyze regularity.

Approximable solutions to problem (1.1) under the present assumptions on the differential
operator, and with right-hand side in L1(�), can be defined as follows.

Definition 3.6 (Approximable solution with L1 data) Let f ∈ L1(�). Under assumptions
(1.2)–(1.4), a function u ∈ T 1,�

0 (�) is called an approximable solution to problem (1.1)
if there exists a sequence { fk} ⊂ L∞(�) such that fk → f in L1(�), and the sequence
of weak solutions {uk} ⊂ W 1

0L�(�) to problems{
−div a(x,∇uk) = fk in �

uk = 0 on ∂�,
(3.8)

satisfies

uk → u a.e. in �. (3.9)

Despite its apparent mildness, this definition gives grounds for an adequate generalized
notion of solution u to problem (1.1). Indeed, although the function u is a priori just assumed
to be the pointwise limit of the solutions uk to the approximating problems (3.8), its “surrogate
gradient” ∇u, in the sense of (2.38), turns out to be the pointwise limit of the weak gradients
∇uk , and hence a(x,∇uk) → a(x,∇u) a.e. in� as well. This fact, together with the unique-
ness of the approximable solution u and its regularity, are the subject of the next theorem.
Information about regularity amounts to membership of u and�(∇u) inMarcinkiewicz-type
spaces associated with the functions ϑn, 
n : (0,∞) → (0,∞) defined by

ϑn(t) = �n(t1/n
′
)

t
and 
n(t) = t

�−1
n (t)n′ for t > 0, (3.10)
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respectively. Here, �n denotes the Sobolev conjugate of � given by (2.51).

Theorem 3.7 (Well-posedness and regularity with L1 data) Let � be a bounded Lipschitz
domain in R

n and let f ∈ L1(�). Assume that conditions (1.2)–(1.4) and (2.50) are in force.
Then there exists a unique approximable solution u ∈ T 1,�

0 (�) to theDirichlet problem (1.1).
If {uk} is any sequence as in the definition of approximable solution, then ∇uk → ∇u a.e.
in �, where ∇u has to be understood in the sense of Eq. (2.38). Moreover,

u ∈ Lϑn(·),∞(�) and �(∇u) ∈ L
n(·),∞(�), (3.11)

where ϑn and 
n are the functions defined as in (3.10).

Remark 3.8 Theorem 3.7 is relevant, and therefore stated, only under assumption (2.50).
Actually, if�◦ grows so fast near infinity that (2.50) is violated, and hence (2.60) is satisfied,
then a weak solution certainly exists by Theorem 3.2, and, by their uniqueness, it agrees with
the approximable one.

We conclude this section by considering the still more general situation when the function
f in problem (1.1) is replaced by a signedRadonmeasureμwith finite total variation ‖μ‖(�).
Approximable solutions to the corresponding Dirichlet problem{

−div a(x,∇u) = μ in �

u = 0 on ∂�
(3.12)

can be defined in analogywithDefinition 3.6, provided that convergence of the approximating
sequence { fk} to f in L1(�) is replaced by weak-∗ convergence in the space of measures.
Recall that a sequence of functions { fk} ⊂ L1(�) is said to weak-∗ converge to μ in the
space of measures if

lim
k→∞

∫
�

ϕ fk dx =
∫

�

ϕ dμ (3.13)

for every function ϕ ∈ C0(�). Here, C0(�) denotes the space of continuous functions with
compact support in �.

Definition 3.9 (Approximable solution with measure data) Letμ be a signed Radon measure
with finite total variation on �. Under assumptions (1.2)–(1.4), a function u ∈ T 1,�

0 (�) is
called an approximable solution to problem (3.12) if there exists a sequence { fk} ⊂ L∞(�)

weakly-* converging to μ in the space of measures, such that the sequence of weak solutions
{uk} ⊂ W 1

0L�(�) to problems (3.8) satisfies

uk → u a.e. in �.

Apart from uniqueness, an analogue to Theorem 3.7 for approximable solutions u with
measure data can be established via essentially the same proof. In particular, a.e. convergence
of gradients, and hence of the nonlinear coefficient of the differential operator, as well as
regularity of u and ∇u hold exactly as in the case of data in L1(�).

Theorem 3.10 (Existence and regularity with measure data) Let � be a bounded Lipschitz
domain in R

n and let μ be a signed Radon measure with finite total variation on �.
Assume that conditions (1.2)–(1.4) are in force. Then there exists an approximable solu-
tion u ∈ T 1,�

0 (�) to the Dirichlet problem (3.12). If {uk} is the sequence in the definition
of approximable solution then ∇uk → ∇u a.e. in �. Moreover, u and ∇u fuflill property
(3.11).
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4 Special instances

In this section we implement the results stated above in cases when the N -function � takes
one of the forms given by (1.5)–(1.11). Model equations whose nonlinearities are driven by
these specific functions � are also exhibited.

In what follows, the relation φ1 ≈ φ2 between two functions φi : I → [0,∞], i = 1, 2,
where I is either R

n or [0,∞), means that there exist positive constants c1 and c2 such that
φ1(c1x) ≤ φ2(x) ≤ φ1(c2x) for every x ∈ I . If these inequalities hold for |x | larger than
some positive constant M , we shall write that φ1 ≈ φ2 near infinity.

Example 1 A prototypical equation with a power growth in the gradient is the p-Laplace
equation. In a slightly generalized form, involving a non-necessarily smooth coefficient, the
corresponding Dirichlet problem reads{

−div (b(x)|∇u|p−2∇u) = f in �

u = 0 on ∂�,
(4.1)

where 1 < p < ∞ and b ∈ L∞(�) is such that b(x) ≥ c for some positive constant c.
Without loss of generality, here, and in similar circumstances in the following examples, we
assume for simplicity that c = 1. Plainly, assumptions (1.3) and (1.4) are now fulfilled with
� obeying (1.5), namely �(ξ) = |ξ |p . Note that, with this choice of �, assumption (1.4)
agrees with the classical growth condition

|a(x, ξ)| ≤ c
(|ξ |p−1 + g(x)

)
for a.e.x ∈ � and every ξ ∈ R

n,

for some function g ∈ L p′
(�) and some constant c > 0. Existence and regularity of weak

and approximable solutions to problem (4.1) are discussed below in items (A) and (B),
respectively.

(A) Theorem 3.2 implies that problem (4.1) has a unique weak solution u in each of the
following cases:

1 < p < n and f ∈ L [ np
np+p−n ,p′]

(�), (4.2)

p = n and f ∈ L [1,n′](�), (4.3)

p > n and f ∈ L1(�). (4.4)

Case (4.2) extends a standard result on the existence of weak solutions under the assump-

tion that f ∈ L
np

np+p−n (�), since the latter space is strictly contained in L [ np
np+p−n ,p′]

(�).
As far as we know, the result in the borderline situation (4.3) is new. The conclusion
under (4.4) is classical.

(B) Assume now that f ∈ L1(�) and 1 < p ≤ n. Theorem 3.7 yields the existence and
uniqueness of an approximable solution u to problem (4.1). The existence of such a
solution is guaranteed by Theorem 3.10 even if f is replaced by a signed measureμwith
finite total variation on �. In both cases, if 1 < p < n, then

u ∈ L
n(p−1)
n−p ,∞

(�) and |∇u| ∈ L
n(p−1)
n−1 ,∞(�). (4.5)

In the limiting case when p = n, the approximable solution in question fulfills

u ∈ exp L(�) and |∇u| ∈ L
(·),∞(�), (4.6)
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where 
(t) ≈ tn
log t near infinity. Property (4.5) is nowadays classical—see [11]. Equa-

tion (4.6) is a special case of [27, Example 3.4]. In [30] it is shown that, indeed,
|∇u| ∈ Ln,∞(�) when p = n. This stronger piece of information is derived via ad
hoc sophisticated techniques, exploiting the fact that the differential operator has exactly
an n-growth.

Example 2 Consider next the case when problem (1.1) has still an isotropic growth, but not
necessarily of power-type. A model with this regard is provided by the problem⎧⎨

⎩−div

(
b(x)

A(|∇u|)
|∇u|2 ∇u

)
= f in �

u = 0 on ∂�,

(4.7)

where A is an N -function and b ∈ L∞(�) is such that b(x) ≥ 1. Clearly, problem (4.7)
reduces to (4.1) when A(t) = t p for some p > 1. Assumptions (1.3) and (1.4) are satisfied
with � given by (1.6), i.e. �(ξ) = A(|ξ |) for ξ ∈ R

n . In particular, owing to the first
inequality in (2.10), assumption (1.4) is equivalent to

|a(x, ξ)| ≤ c
(
A(|ξ |)/|ξ | + g(x)

)
for a.e. x ∈ � and every ξ ∈ R

n,

for some function g ∈ L Ã(�) and some constant. This agrees with a growth condition
typically imposed under the�2-condition on A. Of course, here the expression A(|ξ |)/|ξ | has
to be understood as 0 if ξ = 0. Since �◦(t) = A(t) in the situation at hand, our conclusions
about weak solutions and approximable solutions to problem (4.7) can be deduced from
Theorems 3.2 and 3.7 just on replacing �◦ by A in all relevant occurrences.

For instance, consider the case when

A(t) ≈ t p(log t)α near infinity, (4.8)

where either p > 1 and α ∈ R, or p = 1 and α > 0.
The conclusions described below can be derived via our general results. Equation (2.27)

is also exploited for such a derivation. In what follows, E[exp L 1
α , n](�) denotes the space

defined as in (2.21), with A(t) ≈ et
1/α

near infinity.

(A) Theorem 3.2 tells us that problem (4.7) admits a unique weak solution u under any of
the following assumptions:

p = 1 and α > 0, and f ∈ E[exp L 1
α , n](�), (4.9){

either 1 < p < n, α ∈ R,

or p = n, α ≤ n − 1,
and f ∈ L [ np

np+p−n ,p′]
(log L)

− α
p−1 (�), (4.10)

{
either p > n,

or p = n and α > n − 1,
and f ∈ L1(�). (4.11)

(B) If f ∈ L1(�), then Theorem 3.7 provides us with the existence and uniqueness of an
approximable solution u to problem (4.7). When f is replaced by a signed measure μ

with finite total variation, Theorem 3.10 applies to ensure the existence of a solution
of the same kind. Moreover, in both cases:

(i) if 1 ≤ p < n, then

u ∈ Lϑ(·),∞(�) and ∇u ∈ L
(·),∞(�),

123



186 Page 22 of 50 A. Alberico et al.

where ϑ(t) ≈ t
n(p−1)
n−p (log t)

nα
n−p and


(t) ≈ t
n(p−1)
n−1 (log t)

nα
n−1 near infinity; (4.12)

(ii) if p = n and α < n − 1, then

u ∈ exp L
n−1

n−1−α (�) and ∇u ∈ L
(·),∞(�)

where 
(t) ≈ tn(log t)
αn
n−1−1 near infinity; (4.13)

(iii) if p = n and α = n − 1, then

u ∈ exp exp L(�) and ∇u ∈ L
(·),∞(�),

where 
(t) ≈ tn(log t)n−1(log log t)−1 near infinity. (4.14)

Properties (4.12), (4.13) and (4.14) were established in [27, Example 3.4], except for
the case when p = 1 in (4.12), which is new. This case involves an N -function A that
does not satisfy the ∇2-condition near infinity, a situation that is not contemplated in
[27].

Example 3 Pattern anisotropic problems have the form⎧⎪⎨
⎪⎩

−
n∑

i=1

(
bi (x)|uxi |pi−2uxi

)
xi

= f in �

u = 0 on ∂�,

(4.15)

where uxi denotes the partial derivative of u with respect to the variable xi , the functions
bi ∈ L∞(�) are such that bi (x) ≥ 1, and pi > 1 for i = 1, . . . , n. Here, assumptions (1.3)
and (1.4) are fulfilled with � as in (1.7), namely �(ξ) = ∑n

i=1 |ξi |pi for ξ ∈ R
n . One has

that

�◦(t) ≈ t p for t ≥ 0, (4.16)

where p denotes the harmonic mean of the exponents pi . Namely,

p = 1
1
n

∑n
i=1

1
pi

. (4.17)

Equation (4.16) is a special case of (4.21) below.
Our results with regard to problem (4.15) can be described as follows.

(A) Owing to Theorem 3.2, a unique weak solution to problem (4.15) exists under the same
conditions as in (4.2)–(4.4), with p replaced by p.

(B) When f ∈ L1(�) and 1 < p ≤ n, Theorem 3.7 yields the existence and uniqueness
of an approximable solution u to problem (4.15). An approximable solution also exists,
owing to Theorem 3.10, if a signed measure μ with finite total variation replaces f in
problem (4.15). Moreover, if 1 < p < n, then

u ∈ L
n(p−1)
n−p ,∞

(�) and uxi ∈ L
pi n(p−1)
(n−1)p ,∞

(�) for i = 1, . . . , n, (4.18)

whereas, if p = n, then

u ∈ exp L(�) and uxi ∈ L
i (·),∞(�), where 
i (t) ≈ t pi

log t
near infinity.

(4.19)
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Property (4.18) extends and enhances a result of [15], proved only for pi ≥ 2, i =
1, . . . , n, and yielding the weaker piece of information that uxi ∈ Lq(�) for every
q <

pi n(p−1)
(n−1)p .

Example 4 Problem (4.15) is a distinguished member of a more general class of problems
taking the form ⎧⎪⎨

⎪⎩
−

n∑
i=1

(
bi (x)

Ai (|uxi |)
|uxi |2

uxi

)
xi

= f in �

u = 0 on ∂�,

(4.20)

where Ai are N -functions, and bi ∈ L∞(�) are such that bi (x) ≥ 1, for i = 1, . . . , n.
A choice of the function � that renders assumptions (1.3) and (1.4) true is now (1.8), i.e.
�(ξ) =∑n

i=1 Ai (|ξi |) for ξ ∈ R
n . One can show that

�◦(t) ≈ A(t) near infinity,

where A is the N -function obeying

A
−1

(τ ) =
( n∏

i=1

A−1
i (τ )

) 1
n

for τ ≥ 0, (4.21)

see [23, Eq. 1.9]. Thus, our results about weak and approximable solutions to problem (4.20)
follow from Theorems 3.2, 3.7, and 3.10 on replacing �◦ by A throughout.

To give the flavor of the conclusions that can be derived from these theorems, let us test
them on the example given by choosing

Ai (t) ≈ t pi (log t)αi near infinity, (4.22)

where either pi > 1 and αi ∈ R, or pi = 1 and αi > 0, for i = 1, . . . , n. Let p be given by
(4.17), and let α be defined as

α = p

n

n∑
i=1

αi

pi
.

One can verify via (4.21) that

A(t) ≈ t p(log t)α near infinity.

Then we have what follows.

(A) The existence and uniqueness of a weak solution to problem (4.20), with Ai given by
(4.22), depends on the exponents pi and αi only through p and α, according to the
same assumptions as in (4.9)–(4.11), with p and α replaced by p and α.

(B) Theorem3.7 or Theorem3.10 ensure that an approximable solution u to problem (4.20),
with Ai given by (4.22), exists whenever f ∈ L1(�), or f is replaced by a signed
measure with finite total variantion, respectively. In the former case, the uniqueness of
the solution is also assured. In both cases:

(i) if 1 ≤ p < n, then

u ∈ Lϑ(·),∞(�) and uxi ∈ L
i (·),∞(�) for i = 1, . . . , n,

where ϑ(t) ≈ t
n(p−1)
n−p (log t)

nα
n−p and 
i (t) ≈ t

pi n(p−1)
(n−1)p (log t)

n(αi (p−1)+α)

(n−1)p near infinity;
(4.23)
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(ii) if p = n and α < n − 1, then

u ∈ exp L
n−1

n−1−α (�) and uxi ∈ L
i (·),∞(�) for i = 1, . . . , n,

where 
i (t) ≈ t pi (log t)
αi (n−1)+α

n−1 −1 near infinity; (4.24)

(iii) if p = n and α = n − 1, then

u ∈ exp exp L(�) and uxi ∈ L
i (·),∞(�) for i = 1, . . . , n,

where 
i (t) ≈ t pi (log t)αi−1(log log t)−1 near infinity. (4.25)

Example 5 Assume that � ⊂ R
2, and consider any Dirichlet problem{

−div a(x,∇u) = f in �

u = 0 on ∂�
(4.26)

under assumptions (1.2)–(1.4), with � given by (1.10), namely �(ξ) = |ξ1 − ξ2|p +
|ξ1|q log(c + |ξ1|)α for ξ ∈ R

2, with p > 1 and either q ≥ 1 and α > 0, or q = 1
and α > 0. Let �2 be the function associated with this � as in (2.51), with n = 2. One has
that

(i) if pq < p + q , then �2(t) ≈ s
2pq

p+q−pq log
pα

p+q−pq (t) near infinity,

(ii) if pq = p + q and pα < p + q , then �2(t) ≈ exp
(
t

2(p+q)
p+q−pα

)
near infinity,

(iii) if pq = pα = p + q , then �2(t) ≈ exp(exp(t2)) near infinity,
(iv) if either pq > p + q , or pq = p + q and α > q , then condition (2.60) holds,

see [23, Sect. 1]. Thus the following conclusions hold.

(A) Owing to Theorem 3.2, problem (4.26) admits a unique weak solution u under any of
the following assumptions:{
either pq < p + q,

or pq=p+q and α≤q,
and f ∈ L [ 2pq

3pq−p−q ,
2pq

2pq−p−q ]
(log L)

− α p
2pq−p−q (�),

(4.27){
either pq > p + q,

or pq = p + q and α > q,
and f ∈ L1(�). (4.28)

(B) Problem (4.26) has an approximable solution u if either f ∈ L1(�), or f is replaced
by ameasureμwith finite total variation. In the former case, the solution is also unique.
These assertions are consequences of Theorems 3.7 and 3.10. Also,

(i) if pq < p + q , then

u ∈ Lϑ(·),∞(�),

whereϑ(t) ≈ t
pq

p+q−pq −1
(log t)

α p
p+q−pq near infinity, (4.29)

ux1 ∈ L
1(·),∞(�) and ux1 − ux2 ∈ L
2(·),∞(�),

where 
1(t) ≈ tq(2− 1
p )−1

(log t)α(2− 1
p ) and


2(t) ≈ tq(2− 1
p )−1

(log t)
α
q near infinity; (4.30)
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(ii) if pq = p + q and α < q , then

u ∈ exp L
q

q−α (�), ux1 ∈ L
1(·),∞(�), and ux1 − ux2 ∈ L
2(·),∞(�),

where 
1(t) ≈ tq(log t)
α
q and 
2(t) ≈ t p(log t)

α
q −1 near infinity;

(4.31)

(iii) if pq = p + q and α = q , then

u ∈ exp exp L(�), ux1 ∈ L
1(·),∞(�), and ux1 − ux2 ∈ L
2(·),∞(�),

where 
1(t) ≈ tq(log t)α(log log t)−1 and


2(t) ≈ t p(log log t)−1 near infinity. (4.32)

Example 6 Assume that � ⊂ R
2, and consider any Dirichlet problem as in (4.26), with �

now given by (1.11), namely �(ξ) = |ξ1 + 3ξ2|p + e|2ξ1−ξ2|β − 1 for ξ ∈ R
2, where p > 1

and β > 1. An analogous argument as in [23, Sect. 1] shows that

�◦(t) ≈ t2p log− p
β (1 + t) near infinity.

Hence, condition (2.60) is in force. Theorem 3.7 then tells us that there exists a unique weak
solution to problem (4.26) for every f ∈ L1(�).

5 Proofs of approximation theorems

Here, we are concerned with proofs of the results stated in Sect. 2.5.

Proof of Proposition 2.2 By our assumption, there exists λ1 > 0 such that ∫� �((Uk −
U )/λ1) dx → 0 as k → ∞, namely, �((Uk − U )/λ1) → 0 in L1(�). Hence, there exists
a subsequence of {Uk}, still indexed by k, such that Uk → U a.e. in �, and the sequence of
functions �((Uk − U )/λ1) is pointwise bounded by a function in L1(�) independent of k.
Given any function V ∈ L�̃(�; R

n), there exists λ2 > 0 such that �̃(V /λ2) ∈ L1(�). The
definition of Young’s conjugate implies that

|V · (Uk −U )|
λ1λ2

≤ �
(Uk −U

λ1

)
+ �̃

( V
λ2

)
a.e. in �.

Hence, Eq. (2.63) follows, via the dominated convergence theorem. ��
Proof of Proposition 2.3 Fix any U ∈ L�(�; R

n). Set, for � ∈ N,

�� = {x ∈ � : |U (x)| ≤ �}.
By Tchebyshev inequality, |�\��| ≤ ‖U‖L1(�;Rn)/�. Next, define U� = Uχ��

, and notice
that |U�(x)| ≤ |U (x)| and �(U�(x)) ≤ �(U (x)) for x ∈ �. Thus, if λ ≥ ‖U‖L�(�;Rn)/2,
then

lim
�→∞

∫
�

�

(
U� −U

2λ

)
dx = lim

�→∞

∫
�\��

�

(
U

2λ

)
dx = 0. (5.1)

Let Ũ� denote the representative of the function U� which is defined everywhere in � as the
limit of its averages on balls at each Lebesgue point, and by 0 elsewhere. Fix any �, k ∈ N, and
set Q = [−�, �]n .We split Q into a family of N (k) cubes Qk

i of diameter 1
k defined as follows.

Consider a dyadic decomposition of Q, and distribute the boundaries of the dyadic cubes Qk
i
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in such a way that they are pairwise disjoint, and Q = ∪N (k)
i=1 Qk

i . Define yi = argmin�|
Qk
i

for i = 1, . . . , N (k). On setting Ek
i = Ũ−1

� (Qk
i ), we have that � = ∪N (k)

i=1 Ek
i . Since

Qk
i is a Borel set and Ũ� ∈ M(�; R

n), the set Ek
i is measurable. Therefore, the family

{Ek
i : i = 1, . . . , N (k)} is a partition of � into pairwise disjoint measurable sets. Next,

define the function U�,k : � → R
n as

U�,k =
N (k)∑
i=1

yiχEk
i
.

We have that limk→∞ U�,k(x) = Ũ�(x) for every x ∈ �. Indeed, U�,k(x) = yi for every
x ∈ Ek

i , whence |yi − Ũ�(x)| ≤ diam Qk
i ≤ 1

k for every such x . As a consequence,
limk→∞ U�,k(x) = U�(x) for a.e. x ∈ �. On the other hand, �(U�,k(x)/λ) = �(yi/λ) ≤
�(U�(x)/λ) for every �, k ∈ N, and x ∈ Ek

i . Hence, owing to Jensen’s inequality,∫
�

�

(
U�,k −U�

2λ

)
dx ≤ 1

2

∫
�

�

(
U�,k

λ

)
dx + 1

2

∫
�

�

(
U�

λ

)
dx ≤

∫
�

�

(
U�

λ

)
dx

for every �, k ∈ N. Therefore, thanks to the dominated convergence theorem,

lim
k→∞

∫
�

�

(
U�,k −U�

2λ

)
dx = 0 (5.2)

for every � ∈ N. By the convexity of �,∫
�

�

(
U�,k −U

4λ

)
dx ≤ 1

2

∫
�

�

(
U�,k −U�

2λ

)
dx + 1

2

∫
�

�

(
U� −U

2λ

)
dx (5.3)

for every �, k ∈ N. Owing to equations (5.1) and (5.2), the left-hand side of (5.3) tends to 0
as k → ∞. A diagonal argument then completes the proof. ��

With Proposition 2.3 at our disposal, we are ready to prove Proposition 2.4. The proof to
be presented is based on ideas of that of [39, Theorem 2.2].

Proof of Proposition 2.4 Assume, for the time being, that � is starshaped with respect to the
ball Br (0), centered at 0 and with radius r . This means that � is starshaped with respect to
every point in Br (0). Without loss of generality, we may assume that r < 2. Let k ∈ N be so
large that 1

k ∈ (0, r
4 ), and set γk = 1 − 2

rk < 1. For any such k, we define the set

�k = γk� + 1
k B1(0). (5.4)

Our choice of k and γk ensures that �k ⊂⊂ �. Let m ∈ N, and let U ∈ L1
loc(R

n; R
m) be

such that U = 0 in R
n\�. Define Uk : � → R

m as

Uk(x) =
∫
Rn

ρk(x − y)U (y/γk) dy for x ∈ �, (5.5)

where ρk(x) = ρ(kx)kn is a standard smoothing kernel on R
n , i.e. ρ is a nonnegative

radially decreasing function, ρ ∈ C∞(Rn), supp ρ ⊂⊂ B1(0) and ∫Rn ρ(x)dx = 1. Since
U (y/γk) = 0 if y /∈ γk�, one has that Uk ∈ C∞

0 (�; R
m). Moreover, if U ∈ L∞(�; R

m),
then

‖Uk‖L∞(�;Rm ) ≤ ‖U‖L∞(�;Rm ). (5.6)
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We claim that, if m = n, then ∫
�

�(Uk) dx ≤
∫

�

�(U ) dx (5.7)

for k as above. Indeed,∫
�

�(Uk(x)) dx =
∫
Rn

�

(∫
Rn

ρk(x − y)U (y/γk) dy

)
dx

≤
∫
Rn

∫
Rn

ρk(x − y)� (U (y/γk)) dy dx

=
∫
Rn

�(U (y/γk))
∫
Rn

ρk(x − y) dx dy = γ n
k

∫
Rn

�(U (z))dz

= γ n
k

∫
�

� (U (z))dz

≤
∫

�

� (U (z)) dz,

where the first equality holds sinceUk = 0 inR
n\� and�(0) = 0, the first inequality follows

from Jensen’s inequality, and the third equality is due to the fact that ∫Rn ρk(x − y) dx = 1
for every y ∈ R

n .
Assume now that u ∈ W 1

0 L
�(�). As observed above, the function uk , defined as in (5.5),

belongs to C∞
0 (�). Moreover, since the continuation of u to R

n by 0 outside � is weakly
differentiable in R

n , the function � � x �→ u(x/γk) is weakly differentiable in �. Thus,

(∇u)k = ∇uk in �, (5.8)

where (∇u)k is defined as in (5.5), withU = ∇u. We shall show that there exists λ > 0 such
that

lim
k→∞

∫
�

�

(∇uk − ∇u

λ

)
dx = 0. (5.9)

Owing to (5.8), Eq. (5.9) will follow if we prove that

lim
k→∞

∫
�

�

(
(∇u)k − ∇u

λ

)
dx = 0 for some λ > 0. (5.10)

Fix any σ > 0. By Propositions 2.3, there exist λ > 0 and a simple function V : � → R
n

such that ∫
�

�

(
∇u − V

1
3λ

)
dx < σ. (5.11)

The convexity of � ensures that∫
�

�

(
(∇u)k − ∇u

λ

)
dx =

∫
�

�

(
(∇u)k − Vk + Vk − V + V − ∇u

λ

)
dx

≤ 1

3

∫
�

�

(
(∇u)k − Vk

1
3λ

)
dx + 1

3

∫
�

�

(
Vk − V

1
3λ

)
dx + 1

3

∫
�

�

(
V − ∇u

1
3λ

)
dx .

(5.12)
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By (5.7) and (5.11),∫
�

�

(
(∇u)k − Vk

1
3λ

)
dx =

∫
�

�

(
(∇u − V )k

1
3λ

)
dx < σ. (5.13)

On the other hand, owing to Jensen’s inequality and Fubini’s theorem∫
�

�

(
Vk − V

1
3λ

)
dx =

∫
�

�

(
3

λ

∫
B1(0)

ρ(y)
(
V ((x − y/k)/γk) − V (x)

)
dy

)
dx

≤
∫
B1(0)

ρ(y)
∫

�

�

(
3

λ

(
V ((x − y/k)/γk) − V (x)

))
dx dy. (5.14)

Therefore

lim
k→∞ �

(
3

λ

(
V ((x − y/k)/γk) − V (x)

)) = 0 for a.e. x ∈ � and every y ∈ B1(0).

Moreover,

�

(
3

λ

(
V ((x − y/k)/γk) − V (x)

)) ≤ C

for some constant C , and for every x ∈ �, y ∈ B1(0) and k such that 1
k ∈ (0, r

4 ). Hence, by
the dominated convergence theorem,

lim
k→∞

∫
�

�

(
3

λ

(
V ((x − y/k)/γk) − V (x)

))
dx = 0 for every y ∈ B1(0).

Furthermore, ∫
�

�

(
3

λ

(
V ((x − y/k)/γk) − V (x)

))
dx ≤ C |�|

for every y ∈ B1(0) and every k such that 1
k ∈ (0, r

4 ). Consequently, the rightmost side
of (5.14) converges to zero as k → ∞, thanks to the dominated convergence theorem again,
whence

lim
k→∞

∫
�

�

(
Vk − V

1
3λ

)
dx = 0. (5.15)

Inequality (5.10) follows from (5.11)–(5.13) and (5.15), owing to the arbitrariness of σ . This
completes the proof in the case when � is a starshaped domain.

Assume now that � is any bounded Lipschitz domain in R
n . Then, there exist a finite

family of open sets ω1, . . . ωJ and a corresponding family of balls B1, . . . , BJ , with radii
r1, . . . , rJ , such that � = ∪J

k=1ω j , and every set ω j is starshaped with respect to the ball
Bj . Let us introduce a partition of unity θ j subordinated to the family {ω j }. Any function
u ∈ W 1

0 L
�(�) admits the decomposition

u(x) =
J∑

j=1

θ j (x)u(x) for x ∈ �. (5.16)

If u ∈ W 1
0 L

�(�), then ∇u ∈ L�(�; R
n) and u ∈ L∞(�), whence ∇(θ j u) = (u∇θ j +

θ j∇u) ∈ L�(�; R
n). Therefore, θ j u ∈ W 1

0 L
�(ω j ). Property (2.66) then followson applying

to each function θ j u the result for domains starshaped with respect to balls.
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Inequality (2.65) is a consequence of inequality (5.6) and of the representation formula
(5.16).

As far as property (2.64) is concerned, choose any λ > 0 such that

lim
k→∞

∫
�

�

(∇uk − ∇u

λ

)
dx = 0. (5.17)

By inequality (2.47),∫
�

�◦
(

κ1|uk − u|
|�| 1n λ

)
dx ≤

∫
�

�

(∇uk − ∇u

λ

)
dx (5.18)

for every k ∈ N. From (5.17) and an application of Jensen’s inequality to the integral on the
left-hand side of inequality (5.18) we infer that uk → u in L1(�). Hence, Eq. (2.64) follows
on taking a subsequence if necessary. ��

6 Weak solutions: Proof of Theorem 3.2

The present section is split into subsections, corresponding to subsequent steps towards a
proof of Theorem 3.2.

6.1 Regularized problems

We begin by constructing a sequence of problems approximating (1.1), and whose principal
part satisfies isotropic ellipticity and growth conditions.

Let A : [0,∞) → [0,∞) be a strictly convex N -function such that A ∈ C1([0,∞)). In
particular, A′(0) = 0. Hence, the function

R
n � ξ �→ A(|ξ |) ∈ [0,∞)

is a continuously differentiable radially increasing n-dimensional N -function,whose gradient
agrees with A′(|ξ |) ξ

|ξ | for ξ ∈ R
n , with the convention that the latter expression has to be

interpreted as 0 when ξ = 0. The equality case in Young’s inequality yields

t A′(t) = A(t) + Ã(A′(t)) for t ≥ 0. (6.1)

Moreover, since A is strictly convex,(
A′(|ξ |) ξ

|ξ | − A′(|η|) η

|η|
)

· (ξ − η) > 0 for every ξ �= η. (6.2)

Given ε ∈ (0, 1), we define aε : � × R
n → R by

aε(x, ξ) = a(x, ξ) + εA′(|ξ |) ξ

|ξ | for x ∈ � and ξ ∈ R
n, (6.3)

and consider the problem {−div aε(x,∇uε) = f in �

uε = 0 on ∂�.
(6.4)

We shall show that the function aε(x, ·) satisfies isotropic ellipticity and growth conditions,
that allow to make use of an existence theory available in the literature. A priori estimates
for uε, independent of ε ∈ (0, 1), will then be derived.

123



186 Page 30 of 50 A. Alberico et al.

Proposition 6.1 (Existence of solutions to regularized problems) Let � be a bounded Lips-
chitz domain in R

n. Assume that a : � × R
n → R

n is a Carathéodory function satisfying
assumptions (1.2)–(1.4) for some n-dimensional N-function�. Let A(t) be any continuously
differentiable strictly convex N-function in [0,∞) that grows essentially faster than tq near
infinity for some q > n, and such that

A(|ξ |) ≥ �(ξ) for ξ ∈ R
n . (6.5)

Let ε ∈ (0, 1) and let aε be defined as in (6.3). If f ∈ L1(�), then there exists a weak solution
uε ∈ W 1

0LA(�) ∩ L∞(�) to problem (6.4).

The following function spaces will come into play in the proof of Proposition 6.1. Let us
denote byW1

0 L
A(�) the closure of C∞

0 (�) in W 1L A(�) with respect to the weak topology

σ
(
L A × L A, E Ã × E Ã

)
. One has that

W1
0 L

A(�) ⊂ W 1
0 L

A(�), (6.6)

see [38]. Moreover, we shall consider the space of distributions defined as

W−1E Ã(�) =
{
f ∈ D′(�) : f = f0 −

n∑
i=1

∂ fi
∂xi

, fi ∈ E Ã(�), i = 0, . . . , n

}
. (6.7)

Proof of Proposition 6.1 We begin by showing that, under condition (6.5), the function aε

fulfills the assumptions required in [37, Sect. 5]. Besides being a Carathéodory’s function,
those assumptions on aε amount to a monotonicity condition that immediately follows from
(6.2) and (1.2), and to an estimate of the form∣∣aε(x, ξ)

∣∣ ≤ c Ã−1 (cA (|c ξ |)) + c Ã−1(c h(x)) for a.e. x ∈ � and for ξ ∈ R
n, (6.8)

for some positive constant c. To verify inequality (6.8), observe that, by inequality (2.8),

aε(x, ξ) · ξ ≤ A

(∣∣∣∣ 2c�

ξ

∣∣∣∣
)

+ Ã
(∣∣∣c�

2
aε(x, ξ)

∣∣∣) (6.9)

for a.e. x ∈ � and for ξ ∈ R
n . Inequality (6.5) implies that Ã(|ξ |) ≤ �̃(ξ) for ξ ∈ R

n .
Hence, via inequalities (1.3) and (1.4),

aε(x, ξ) · ξ ≥ �(ξ) + εA (|ξ |) + ε Ã
(
A′(|ξ |)) ≥ �̃ (c�a(x, ξ)) + Ã

(
εA′(|ξ |))− h(x)

≥ 2

(
1

2
Ã (c� |a(x, ξ)|) + 1

2
Ã
(
c�εA′(|ξ |)))− h(x)

≥ 2 Ã
(c�

2

∣∣aε(x, ξ)
∣∣)− h(x) (6.10)

for a.e. x ∈ � and for ξ ∈ R
n . Combining inequalities (6.9) and (6.10) tells us that

Ã
(c�

2

∣∣aε(x, ξ)
∣∣) ≤ A

(∣∣∣∣ 2c�

ξ

∣∣∣∣
)

+ h(x)

for a.e. x ∈ � and for ξ ∈ R
n . Therefore, thanks to the monotonicity of the function Ã−1,

we obtain that∣∣aε(x, ξ)
∣∣ ≤ 2

c�

Ã−1
(
A

(∣∣∣∣ 2c�

ξ

∣∣∣∣
)

+ h(x)

)
≤ 2

c�

Ã−1
(
2A

(∣∣∣∣ 2c�

ξ

∣∣∣∣
))

+ 2

c�

Ã−1 (2h(x))

(6.11)

123



Fully anisotropic elliptic problems with minimally… Page 31 of 50 186

for a.e. x ∈ � and for ξ ∈ R
n . Hence, (6.8) follows.

Now, since q > n, we have that q ′ < n′. Then there exists a function F ∈ Lq ′
(�; R

n),
with F = (F1, . . . , Fn), such that

div F = f − f� in �, (6.12)

where f� = 1
|�| ∫� f (x) dx , the mean value of f over�. This follows, for instance, from the

use of the Bogowskii operator, and the boundedness of the latter from L1(�) into Lq ′
(�)—

see [16]. Inasmuch as A(t) grows essentially faster than tq near infinity, the function tq
′

grows essentially faster than Ã(t) near infinity. Thus, Lq ′
(�) ⊂ E Ã(�), and hence f is a

distribution of the form f = f� −∑n
i=1

∂Fi
∂xi

with Fi ∈ E Ã(�) for i = 1, . . . , n. Therefore,

f ∈ W−1E Ã(�). As a consequence, the results in [37, Sect. 5] ensure that there exists a
function uε ∈ W1

0 L
A(�) such that aε(x,∇uε) ∈ L Ã(�) and∫

�

aε(x,∇uε) · ∇ϕ dx =
∫

�

f ϕ dx (6.13)

for every ϕ ∈ W1
0 L

A(�). By (6.6), uε ∈ W 1
0 L

A(�). Moreover, an inspection of the proof of
[37, Section 5] reveals that ∫� A(∇uε) dx < ∞, whence uε ∈ W 1

0LA(�). Since the function

A(t) grows faster than tq near infinity, one has that W 1
0 L

A(�) → W 1,q
0 (�) → L∞(�), and

hence uε ∈ L∞(�) as well.
It remains to show that Eq. (6.13) holds not only for ϕ ∈ W1

0 L
A(�), but also for every

ϕ ∈ W 1
0 L

A(�), a space containing W 1
0LA(�). Fix any such ϕ and observe that, by the

embedding mentioned above, one has in fact that ϕ ∈ L∞(�) as well. An application of
Proposition 2.4 (in the isotropic case) ensures that there exists a sequence {ϕk} ⊂ C∞

0 (�)

such that ϕk → ϕ a.e. in �, ‖ϕk‖L∞(�) ≤ C‖ϕ‖L∞(�) for some constant C and for every

k ∈ N, and∇ϕk → ∇ϕ modularly in L A(�). Since aε(x,∇uε) ∈ L Ã(�), by Proposition 2.2
and the dominated convergence theorem one can pass to the limit in Eq. (6.13) applied with
ϕ replaced by ϕk , and infer that Eq. (6.13) holds for ϕ as well. This fact amounts to saying
that uε is actually a weak solution to problem (6.4). ��

A priori bounds for the solution uε to problem (6.4), independent of ε ∈ (0, 1), are estab-
lished in Proposition 6.2 below. They are critical in obtaining aweak solution to problem (1.1)
as the limit of uε as ε → 0+.

Proposition 6.2 (Uniform estimates in approximating problems) Let �, a, � and A be as
in Proposition 6.1. Suppose that f satisfies either of assumptions (3.2) and (3.3). Given
ε ∈ (0, 1), let uε be a weak solution to problem (6.4) exhibited in Proposition 6.1. Then:

(i) the family {uε} is uniformly bounded in W 1
0 L

�(�),
(ii) the family {ε Ã(A′(|∇uε|))} is uniformly bounded in L1(�),
(iii) the family {a(x,∇uε)} is uniformly bounded in L�̃(�; R

n).

Proof Weshallmake use of a comparison principle estanblished in [26], that links the solution
uε to the solution v to the symmetrized problem⎧⎨

⎩−div

(
�♦(|∇v|)

|∇v|2 ∇v

)
= f �(x) in ��

v = 0 on ∂��,

(6.14)

where �♦ is defined in (2.40), �� denotes the open ball centered at the origin such
that |��| = |�|, and f � stands for the radially decreasing symmetral of f . Recall that
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f �(x) = f ∗(ωn |x |n) for x ∈ ��, where ωn denotes Lebesgue measure of the unit ball in
R
n . According to [26, Theorem 3.1], our alternate assumptions (3.2) or (3.3) on f ensure

that problem (6.14) admits a weak solution v, given by

v(x) =
∫ |�|

ωn |x |n
1

nω
1/n
n s1/n′ 

−1
♦

(
s1/n

nω
1/n
n

f ∗∗(s)
)
ds for x ∈ ��, (6.15)

where ♦ is the function defined as in (2.43). Indeed, by (6.15),

|∇v(x)| = −1
♦

(
(ωn |x |n)1/n

nω
1/n
n

f ∗∗(ωn |x |n)
)

for a.e. x ∈ ��. (6.16)

Thus ∫
��

G(|∇v|) dx =
∫ |�|

0
G

(
−1

♦

(
s1/n

nω
1/n
n

f ∗∗(s)
))

ds (6.17)

for every continuous function G : [0,∞) → [0,∞). Equation (6.17), with G = �♦,
combined with property (v) of Lemma 2.1 and (2.41), tells us that

∫
��

�♦(|∇v|) dx ≤
∫ |�|

0
�̃◦
(
cs1/n f ∗∗(s)

)
ds (6.18)

for some constant c depending on n. If (3.2) is in force, then the last integral converges,
owing to the very definition of the space E[�̃◦, n](�). Suppose that, instead, (3.3) holds.
Then, owing to the inequality

f ∗∗(s) ≤ 1

s

∫ |�|

0
f ∗(r) dr = 1

s
‖ f ‖L1(�) for s ∈ (0, |�|),

the convergence of the integral on the right-hand side of inequality (6.18) is a consequence
of the fact that ∫

0
�̃◦
(
λs− 1

n′ ) ds < ∞ for every λ > 0. (6.19)

The validity of condition (6.19) can be verified via a change of variables in the integral, which
tells us that it can be rewritten as ∫ ∞ �̃◦(t)

tn′+1
dt < ∞. (6.20)

Condition (6.20) turns to be equivalent—see [25, Lemma 4.1]—to condition (2.60) appearing
in (3.3). Altogether, we have shown that∫

��
�♦(|∇v|) dx < ∞ (6.21)

under either assumption (3.2) or (3.3). This implies that v ∈ W 1
0L�♦(��), and hence it is

indeed a weak solution to problem (6.14).
On making use of the solution uε as a test function in the weak formulation of problem

(6.4), and recalling assumption (1.3) we deduce that
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∫
�

�(∇uε) dx +
∫

�

εA(|∇uε|) dx +
∫

�

ε Ã(A′(|∇uε|)) dx ≤
∫

�

f uε dx . (6.22)

In particular, inequality (6.22) ensures that uε ∈ W 1
0L�(�), and hence [26, Theorem 3.1]

can be exploited to infer that

(uε)∗(s) ≤ v∗(s) for s ∈ (0, |�|). (6.23)

We now distinguish between the cases when either assumption (3.2) or (3.3) holds.
Assumefirst that condition (3.2) is in force. Let us replace, if necessary,�◦ in the definition

of �̂◦ in (2.55) by another Young function �• fulfilling condition (2.49) and such that
�•(t) = �◦(t) if t ≥ 1. For instance, one can define �• in such a way that it is linear in
[0, 1]. Therefore, there exists a constant t1 > 0 such that �̃•(t) = �̃◦(t) if t ≥ t1. Denote by
�̂• the function defined as in (2.55) and (2.56), with �◦ replaced by �•. Let λ be a positive
number to be fixed later. By inequality (2.59), with �◦ replaced by �•,∫

�

f uε dx ≤ C

(∫ |�|

0
�̃•
(
λs

1
n f ∗∗(s)

)
ds +

∫ |�|

0
�̂•
( 1

λ
s− 1

n (uε)∗(s)
)
ds

)
. (6.24)

Choose λ = κ3/c1, where κ3 and c1 are the constants appearing in inequalities (2.57) and
(2.41), respectively. The following chain holds:

∫ |�|
0

�̂•
(
1

λ
s− 1

n (uε)∗(s)

)
ds ≤

∫ |�|
0

�̂•
(
1

λ
s− 1

n v∗(s)

)
ds

≤
∫
��

�•
(

κ3

λ
|∇v|

)
dx ≤

∫ |�|
0

�•
(

κ3

λ

(
−1

♦

(
s1/n

nω
1/n
n

f ∗∗(s)

)))
ds

≤
∫ |�|
s0

�•
(

κ3

λ

(
−1

♦

(
s1/n

nω
1/n
n

f ∗∗(s)

)))
ds +

∫ |�|
0

�◦
(

κ3

λ

(
−1

♦

(
s1/n

nω
1/n
n

f ∗∗(s)

)))
ds

≤ |�|�◦(1) +
∫ |�|
0

�♦
(

κ3

c1λ

(
−1

♦

(
s1/n

nω
1/n
n

f ∗∗(s)

)))
ds

= |�|�◦(1) +
∫ |�|
0

�♦
(

−1
♦

(
s1/n

nω
1/n
n

f ∗∗(s)

))
ds

≤ |�|�◦(1) +
∫ |�|
0

�̃♦
(
2s1/n

nω
1/n
n

f ∗∗(s)

)
ds ≤ |�|�◦(1) +

∫ |�|
0

�̃◦
(

2s1/n

c1nω
1/n
n

f ∗∗(s)

)
ds.

(6.25)

Note that the first inequality is due to (6.23), the second to (2.57) (with �◦ replaced by �•),
the third by (6.17), the fourth by the definition of �•, where s0 ∈ [0, |�|] is chosen in such
a way that

s0 = inf

{
s ∈ [0, |�|] : κ3

λ

(
−1

♦

(
s1/n

nω
1/n
n

f ∗∗(s)
))

≤ 1

}
,

the fifth by (2.41), the equality holds owing to the very choice of λ, the sixth inequality is a
consequence of property (v) of Lemma 2.1, and the last one follows via (2.41) again.
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On the other hand,∫ |�|

0
�̃•
(
λs

1
n f ∗∗(s)

)
ds =

∫ |�|

0
�̃•
(

κ3

c1
s
1
n f ∗∗(s)

)
ds

≤
∫ |�|

s1
�̃•
(

κ3

c1
s
1
n f ∗∗(s)

)
ds +

∫ |�|

0
�̃◦
(

κ3

c1
s
1
n f ∗∗(s)

)
ds

≤ |�|�̃◦(t1) +
∫ |�|

0
�̃◦
(

κ3

c1
s
1
n f ∗∗(s)

)
ds, (6.26)

where

s1 = inf

{
s ∈ [0, |�|] : κ3

c1
s
1
n f ∗∗(s) ≤ t1

}
.

The rightmost sides in inequalities (6.25) and (6.26) are finite, owing to assumption (3.2),
and only depend on f , n and �. From inequalities (6.22) and (6.24) one thus deduces that
there exists a constant C , depending on these data, such that∫

�

�(∇uε) dx +
∫

�

εA(|∇uε|) dx +
∫

�

ε Ã(A′(|∇uε|)) dx ≤ C (6.27)

for ε ∈ (0, 1). Assertions (i)–(ii) follow from (6.27). Assertion (iii) follows on coupling
inequality (6.27) with assumption (1.4).

Assume next that condition (3.3) holds. Then W 1
0 L

�(�) → L∞(�), and from Eqs.
(6.22), (6.23), (2.61), (6.16) and (2.41) we obtain that∫

�

�(∇uε)dx +
∫

�

εA(|∇uε|) dx +
∫

�

ε Ã(A′(|∇uε|)) dx ≤ ‖ f ‖L1(�)‖uε‖L∞(�)

≤ ‖ f ‖L1(�)‖v‖L∞(��) ≤ C‖ f ‖L1(�)‖∇v‖L�◦ (��)

≤ C‖ f ‖L1(�)

∥∥∥∥−1
♦

(
s1/n

nω
1/n
n

f ∗∗(s)
)∥∥∥∥

L�◦ (0,|�|)

≤ C ′‖ f ‖L1(�)

∥∥∥∥−1
♦

(
s1/n

nω
1/n
n

f ∗∗(s)
)∥∥∥∥

L�♦ (0,|�|)
(6.28)

for ε ∈ (0, 1), and for some constants C and C ′ depending on n, �◦ and |�|. We claim that
the last norm on the rightmost side of inequality (6.28) is finite, since f ∈ L1(�). This is a
consequence of the fact that s1/n f ∗∗(s) ≤ s−1/n′ ‖ f ‖L1(�) for s ∈ (0, |�|), of property (v) of
Lemma 2.1, of Eq. (2.41), and of (6.19), which is equivalent to (2.60). Therefore, inequality
(6.27) holds also in this case. One can then conclude as above. ��

6.2 A Browder–Minty-type result

The following proposition provides us with an anisotropic version of a classical result, known
as theBrowder–Mintymonotonicity trick. It will be applied later, in the identification of limits
of certain nonlinear expressions in an approximation process.

Proposition 6.3 (A monotonicity trick) Let � be a measurable set in R
n with |�| < ∞.

Assume that the Carathéodory function a : � × R
n → R satisfies condition (1.4) for some

N-function �. Suppose that there exist functions

Y ∈ L�̃(�; R
n) and U ∈ L�(�; R

n) (6.29)
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such that ∫
�

(
Y − a(x, V )

) · (U − V ) dx ≥ 0 for every V ∈ L∞(�; R
n). (6.30)

Then

a(x,U (x)) = Y (x) for a.e. x ∈ �. (6.31)

Proof Define the increasing family {� j } of invading subsets of � as � j = {x ∈ � :
|U (x)| ≤ j} for j ∈ N. Fix any j, k ∈ N with j < k. An application of inequality (6.30),
with V = Uχ�k + σ Zχ� j for any σ ∈ (0, 1) and any function Z ∈ L∞(�; R

n), yields∫
�

(Y − a(x,Uχ�k + σ Zχ� j )) · (U −Uχ�k − σ Zχ� j ) dx ≥ 0.

The last inequality is equivalent to∫
�\�k

(
Y − a(x, 0)

) ·U dx + σ

∫
� j

(a(x,U + σ Z) − Y ) · Z dx ≥ 0. (6.32)

The first integral on the left-hand side of inequality (6.32) tends to zero as k → ∞. Indeed,
assumption (1.4) implies that

(
Y −a(x, 0)

) ·U ∈ L1(�), and hence the convergence follows
owing to assumption (6.29) and Hölder’s inequality (2.33). Thus, passing to the limit as
k → ∞ in inequality (6.32) and dividing by σ the resultant inequality tells us that∫

� j

(a(x,U + σ Z) − Y ) · Z dx ≥ 0.

Clearly,

lim
σ→0+ a(x,U + σU ) = a(x,U ) for a.e. x ∈ � j . (6.33)

Moreover, by (1.4),

sup
σ∈(0,1)

∫
� j

�̃ (c�a(x,U + σ Z)) dx ≤
∫

� j

sup
σ∈(0,1)

� (U + σ Z) dx +
∫

� j

h(x) dx .

(6.34)

The integral on the right-hand side of (6.34) is finite, since the function supσ∈(0,1)(U +σ Z),
and hence also the function supσ∈(0,1) � (U + σ Z), is bounded in � j . By Theorem 2.8, the
family of functions {a(x,U + σ Z)}σ∈(0,1) is uniformly integrable in � j . Hence, owing to
Theorem 2.6,

lim
σ→0+ a(x,U + σ Z) = a(x,U ) in L1(� j ;Rn).

Thus,

lim
j→∞

∫
� j

(a(x,U + σ Z) − Y ) · Z dx =
∫

� j

(a(x,U ) − Y ) · Z dx .

Consequently, ∫
� j

(a(x,U ) − Y ) · Z dx ≥ 0
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for every Z ∈ L∞(�;Rn). The choice of

Z =
{

− a(x,U )−Y
|a(x,U )−Y | if a(x,U ) − Y �= 0

0 if a(x,U ) − Y = 0,

ensures that ∫
� j

|a(x,U ) − Y | dx ≤ 0,

whence

a(x,U (x)) = Y (x) for a.e. x ∈ � j .

Equation (6.31) follows, owing to the arbitrariness of j . ��

6.3 Proof of existence of weak solutions

We are now ready to accomplish the proofs of Theorem 3.2 and of Proposition 3.3.

Proof of Theorem 3.2 Let A be an N -function as in Propositions 6.1 and 6.2, and let {uε} ⊂
W 1

0LA(�)∩L∞(�) be the family of solutions to problems (6.4) for ε ∈ (0, 1). By property (i)

of Proposition 6.2, this family is bounded inW 1
0 L

�(�), and hence inW 1,1
0 (�). Therefore, it is

compact in L1(�), and consequently there exists a function u ∈ L1(�) and a sequence {uεk }
such that uεk → u in L1(�) and a.e. in �. Property (i) of Proposition 6.2 and Theorem 2.9
then ensure that the family of functions {∇uεk } is weakly-* compact in L�(�; R

n). Since
uεk → u in L1(�), we have that u is weakly differentiable, and its gradient agrees with
the weak-* limit of {∇uεk } in L�(�; R

n). Similarly, property (iii) of Proposition 6.2 and
Theorem 2.9 again imply that the family of functions {a(x,∇uεk )} is weakly-* compact
in L�̃(�; R

n). Finally, property (i) of Proposition 6.2 implies, via Theorems 2.8 and 2.7,
that the family {∇uε} is weakly compact in L1(�;Rn). Altogether, there exist a decreasing
sequence {εk}, fulfilling εk → 0+, and functions u ∈ W 1

0 L
�(�) and Y ∈ L�̃(�;Rn) such

that

uεk → u in L1(�) and a.e. in �, (6.35)

uεk −⇀ u weakly in W 1,1(�), (6.36)

∇uεk
∗−⇀ ∇u weakly − ∗ in L�(�;Rn), (6.37)

a(x,∇uεk )
∗−⇀ Y weakly − ∗ in L�̃(�;Rn). (6.38)

By the weak formulation of problem (6.4) with ε = εk ,∫
�

a(x,∇uεk ) · ∇ϕ + εk A
′(|∇uεk |) ∇uεk

|∇uεk | · ∇ϕ dx =
∫

�

f ϕ dx (6.39)

for every ϕ ∈ W 1
0LA(�). Notice that any such ϕ is automatically bounded by the classical

Sobolev embedding, since our assumptions on A imply that A(t) ≥ tq near infinity for some
q > n. We begin by observing that

lim
k→∞

∫
�

εk A
′(|∇uεk |) ∇uεk

|∇uεk | · ∇ϕ dx = 0 for every ϕ ∈ C∞
0 (�). (6.40)
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To verify this assertion, consider, for fixed j ∈ N, the set

�
εk
j = {x ∈ � : |∇uεk | ≤ j}.

Plainly,∫
�

εk A
′(|∇uεk |) ∇uεk

|∇uεk | · ∇ϕ dx

=
∫

�
εk
j

εk A
′(|∇uεk |) ∇uεk

|∇uεk | · ∇ϕ dx +
∫

�\�εk
j

εk A
′(|∇uεk |) ∇uεk

|∇uεk | · ∇ϕ dx .

(6.41)

Inasmuch as A′ is a non-decreasing function,

lim sup
k→∞

∣∣∣∣
∫

�
εk
j

εk A
′(|∇uεk |) ∇uεk

|∇uεk | · ∇ϕ dx

∣∣∣∣ ≤ |�|‖∇ϕ‖L∞(�)A
′( j) lim

k→∞ εk = 0.

(6.42)

On the other hand, since the sequence {|∇uεk |} is uniformly integrable in L1(�), there exists
a constant C , such that

sup
k∈N

|�\�εk
j | ≤ C

j
. (6.43)

Furthermore, since Ã is an N -function, one has that Ã(λt) ≤ λ Ã(t), provided that t ≥ 0
and λ ∈ (0, 1). Thereby, Ã(εk A′(|∇uεk |)) ≤ εk Ã(A′(|∇uεk |)), and hence, by property (ii)
of Proposition 6.2, the sequence {εk A′(|∇uεk |)} is uniformly bounded in L Ã(�). Thanks to
Theorem 2.8, the sequence {εk A′(|∇uεk |)} is uniformly integrable in �. Coupling this piece
of information with (6.43) implies that

lim sup
j→∞

(
sup
k∈N

∣∣∣∣
∫

�\�εk
j

εk A
′(|∇uεk |) ∇uεk

|∇uεk | · ∇ϕ dx

∣∣∣∣
)

≤ ‖∇ϕ‖L∞(�) lim
j→∞

(
sup
k∈N

∫
�\�εk

j

εk |A′(|∇uεk |)| dx
)

= 0. (6.44)

Equation (6.40) follows from (6.41), (6.42) and (6.44).
Thanks to (6.38) and (6.40), choosing ϕ ∈ C∞

0 (�) in (6.39) and passing to the limit as
k → ∞ yield ∫

�

Y · ∇ϕ dx =
∫

�

f ϕ dx . (6.45)

Since uεk ∈ W 1
0L�(�) ∩ L∞(�), for each k ∈ N the function uεk can be approximated by

a sequence of functions from C∞
0 (�) as in Proposition 2.4. On making use of Eq. (6.45)

with ϕ replaced by the functions approximating uεk , passing to the limit in the approximating
sequence, and recalling thatY ∈ L�̃(�;Rn) and that the sequence of approximating functions
is uniformly bounded in L∞(�) by C‖uεk‖L∞(�) we infer that∫

�

Y · ∇uεk dx =
∫

�

f uεk dx (6.46)
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for every k ∈ N. Inasmuch as uεk belongs to W 1
0LA(�) ∩ L∞(�), it can be used as a test

function in the weak formulation of problem (6.4) with ε = εk . Therefore,∫
�

a(x,∇uεk ) · ∇uεk + εk A
′(|∇uεk |)|∇uεk | dx =

∫
�

f uεk dx (6.47)

for every k ∈ N. Since the second term in the integral on the left-hand side of (6.47) is
nonnegative, Eqs. (6.46), (6.47) and (6.37) imply that

lim sup
k→∞

∫
�

a(x,∇uεk ) · ∇uεk dx ≤
∫

�

Y · ∇u dx . (6.48)

Now, given any function V ∈ L∞(�;Rn), we have, by assumption (1.2),

0 ≤
∫

�

(
a(x, V ) − a(x,∇uεk )

) · (V − ∇uεk ) dx

≤
∫

�

a(x, V ) · V dx −
∫

�

a(x, V ) · ∇uεk dx

−
∫

�

a(x,∇uεk ) · V dx +
∫

�

a(x,∇uεk ) · ∇uεk dx . (6.49)

Passing to the limit as k → ∞ on the rightmost side of (6.49), and making use of (6.36),
(6.38) and (6.48) imply that∫

�

(a(x, V ) − Y ) · (V − ∇u) dx ≥ 0. (6.50)

Therefore, we are in a position to apply Proposition 6.3, with U = ∇u, and deduce that

a(x,∇u(x)) = Y (x) for a.e. x ∈ �. (6.51)

Hence, in particular, a(x,∇u) ∈ L�̃(�;Rn). Fix any test function ϕ ∈ C∞
0 (�). On passing

to the limit as k → ∞ in Eq. (6.39), and exploiting (6.38), (6.51) and (6.40) one concludes
that ∫

�

a(x,∇u) · ∇ϕ dx =
∫

�

f ϕ dx (6.52)

for every ϕ ∈ C∞
0 (�). Equation (6.52) continues to hold for any test function ϕ ∈

W 1
0L�(�) ∩ L∞(�) as in the definition of weak solution to problem (1.1). Actually, let

{ϕk} ⊂ C∞
0 (�) be a sequence approximating ϕ as in Proposition 2.4. Then, from Eq. (6.52)

with ϕ replaced by ϕk , we have that∫
�

a(x,∇u) · ∇ϕ dx = lim
k→∞

∫
�

a(x,∇u) · ∇ϕk dx = lim
k→∞

∫
�

f ϕk dx =
∫

�

f ϕ dx,

where the first equality holds by properties (2.66) and (2.63), and the last equality since
‖ϕk‖L∞(�) ≤ C‖ϕ‖L∞(�) for some constant C = C(n) and every k ∈ N.

Finally, we have that ∫
�

�(∇u) dx < ∞. (6.53)

Indeed, since� is ann-dimensional N -function, inequality (6.53) follows, via semicontinuity,
from the convergence in (6.35) and estimate (6.22), whose right-hand side is uniformly
bounded as ε → 0+. Equation (6.53) ensures that, in fact, u ∈ W 1

0L�(�).
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The uniqueness of the solution u can be established along the same lines as in the case of
approximable solutions—see Step 6 of the proof of Theorem 3.7 in Sect. 7.2. We shall not
reproduce it here, for brevity. ��

Proof of Proposition 3.3 Let uεk be as in the proof of Theorem 3.2. By property (6.35), one
has that uεk → u a.e. in�.Moreover, inequality (6.23) implies that ‖uεk‖L∞(�) ≤ ‖v‖L∞(�).
The norm ‖v‖L∞(�) can be estimated onmaking use of equation (6.15). Thanks to assumption
(3.4), passing to the limit as k → ∞ in the resultant estimate yields inequality (3.5). ��

7 Approximable solutions: Proof of Theorems 3.7 and 3.10

Proofs of Theorems 3.7 and 3.10 are presented in Sect. 7.2 below. Their outline is reminis-
cent of that of the diverse contributions on approximable solutions mentioned above, and, in
particular, it is patterned on that of [11]. However, some of the specific steps require substan-
tially new ingredients, due to the nonstandard functional setting at hand. This is especially
apparent in some fundamental a priori bounds that are the subject of the next subsection.

7.1 A priori estimates

A fundamental step in the proof of Theorem 3.7 amounts to an a priori anisotropic gradient
bound for the solution uk to the approximating problem (3.8) by the L1 norm of fk . Of
course, we need such estimate to be independent of k. This is a consequence of the following
proposition.

Proposition 7.1 (A gradient estimate by the L1 norm of the datum) Let � be an open set in
R
n with |�| < ∞. Assume that assumptions (1.2)–(1.4) hold for some N-function �. Let �

be the function associated with � as in (2.44). Assume that f ∈ L1(�) and that there exists
a weak solution u to problem (1.1). Then

∫
�

�(∇u)dx ≤ c|�|1/n‖ f ‖L1(�) (7.1)

for some constant c = c(n).

Proof Standard properties of truncations of weakly differentiable functions ensure that, since
u ∈ W 1

0L�(�), the function Tτ (u − Tt (u)) is weakly differentiable for every t, τ > 0, and
belongs to W 1

0L�(�) ∩ L∞(�). Thus, the function Tτ (u − Tt (u)) can be used as a test
function in Eq. (3.1).

This choice of test functions is the point of departure to derive [26, Inequali-
ties (5.5) and (5.6)], which tell us that

1

−μ′
u(t)

≤ 1

nω
1/n
n μ

1/n′
u (t)

−1
♦

(− d
dt

∫
{|u|>t} �(∇u)dx

ω
1/n
n μ

1/n′
u (t)

)
for a.e. t > 0. (7.2)

Here, μu is the distribution function of u defined as in (2.1). Multiplying through inequal-
ity (7.2) by − d

dt ∫{|u|>t} �(∇u) dx results in
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− d
dt

∫
{|u|>t} �(∇u)dx

−μ′
u(t)

≤ − d
dt

∫
{|u|>t} �(∇u)dx

nω
1/n
n μ

1/n′
u (t)

−1
♦

(− d
dt

∫
{|u|>t} �(∇u)dx

nω
1/n
n μ

1/n′
u (t)

)
for a.e. t > 0. (7.3)

Now, Lemma 2.1 (i) ensures that the function �♦ ◦ �−1
♦ is convex. Thereby, an application

of Jensen’s inequality and Lemma 2.1 (ii) yield

�♦ ◦ �−1
♦

( 1
h

∫
{t<|u|<t+h} �(∇u)dx

1
h (−μu(t + h) + μu(t))

)
≤

1
h

∫
{t<|u|<t+h} �♦ ◦ �−1

♦ (�(∇u))dx
1
h (−μu(t + h) + μu(t))

=
1
h

∫
{t<|u|<t+h} �(∇u)dx

1
h (−μu(t + h) + μu(t))

for t, h > 0. (7.4)

Passing to the limit as h → 0+ in (7.4) tells us that

�♦ ◦ �−1
♦

(− d
dt

∫
{|u|>t} �(∇u)dx

−μ′
u(t)

)
≤ − d

dt

∫
{|u|>t} �(∇u)dx

−μ′
uk (t)

for a.e. t > 0. (7.5)

On the other hand, [26, Inequality (5.5)] implies that

− d

dt

∫
{|u|>t}

�(∇u)dx ≤
∫ μu (t)

0
f ∗(s)ds for a.e. t > 0. (7.6)

From (7.5), (7.3), Lemma 2.1 (iii), and (7.6) one deduces that

�−1
♦

(− d
dt

∫
{|u|>t} �(∇u)dx

−μ′
u(t)

)

≤ �♦−1

(− d
dt

∫
{|u|>t} �(∇u)dx

−μ′
u(t)

)

≤ �♦−1

(− d
dt

∫
{|u|>t} �(∇u)dx

nω
1/n
n μ

1/n′
u (t)

−1
♦

(− d
dt

∫
{|u|>t} �(∇u)dx

nω
1/n
n μ

1/n′
u (t)

))

= −1
♦

(− d
dt

∫
{|u|>t} �(∇u)dx

nω
1/n
n μ

1/n′
u (t)

)
≤ −1

♦

(∫ μu (t)
0 f ∗(s)ds
nω

1/n
n μ

1/n′
u (t)

)
(7.7)

for a.e. t > 0. Hence,

− d

dt

∫
{|u|>t}

�(∇u)dx ≤ −μ′
u(t)�♦ ◦ −1

♦

(∫ μu (t)
0 f ∗(s)ds
nω

1/n
n μ

1/n′
u (t)

)
for a.e. t > 0. (7.8)

Now, notice that

∫
{|u|>t}

�(∇u) dx =
∫

�

χ{∇u=0}�(∇u) dx +
∫

�

χ{∇u �=0}�(∇u) dx

=
∫

�

χ{∇u �=0}
�(∇u)

|∇u| |∇u| dx =
∫ ∞

t

∫
{|u|=τ }

�(∇u)

|∇u| dHn−1 dτ for t > 0,

(7.9)
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where the second equality holds since �(0) = 0, and the last one by the coarea formula for
Sobolev functions. Here,Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. There-
fore, the function [0,∞) � t �→ ∫{|u|>t} �(∇u)dx is absolutely continuous. Combining this
fact with inequalities (7.8) and Lemma 2.1 (iv) ensures that∫

�

�(∇u)dx =
∫ ∞

0

(
− d

dt

∫
{|u|>t}

�(∇u)dx

)
dt

≤
∫ ∞

0
(−μ′

u(t))�♦

(
−1

♦

(∫ μu(t)
0 f ∗(s)ds
nω

1/n
n μ

1/n′
uk (t)

))
dt

≤
∫ |�|

0
�♦

(
−1

♦

(∫ r
0 f ∗(s)ds
nω

1/n
n r1/n′

))
dr ≤

∫ |�|

0

2

nω
1/n
n r1/n′

∫ r

0
f ∗(s) ds dr

≤ 2

nω
1/n
n

‖ f ‖L1(�)

∫ |�|

0
r−1/n′

dr = 2ω−1/n
n |�|1/n‖ f ‖L1(�).

Inequality (7.1) is thus established. ��
The next two propositions provide us with superlevel set estimates for functions u ∈

T 1,�
0 (�) and for their gradients ∇u depending of the decay of the integrals of �(∇u) over

the sublevel sets of u.

Proposition 7.2 (Superlevel set estimate for u) Let � be an open set in R
n with |�| < ∞.

Let � be an N-function fulfilling conditions (2.49) and (2.50). Assume that u ∈ T 1,�
0 (�)

and there exist constants K > 0 and t0 ≥ 0 such that∫
{|u|<t}

�(∇u) dx ≤ Kt for t > t0. (7.10)

Then

|{|u| ≥ t}| ≤ Kt

�n
(
κ2t

1
n′ K− 1

n
) for t > t0, (7.11)

where �n and κ2 are the Young function and the constant appearing in the Sobolev inequal-
ity (2.53).

If condition (2.49) is not satisfied, then an analogous statement holds, provided that �n

is defined as in (2.51)–(2.52), with � modified near 0 in such a way that (2.49) is fulfilled. In
this case, the constant κ2 in (7.11) has to be replaced by another constant depending also on
�. Furthermore, in (7.11) the constant t0 has to be replaced by another constant depending
also on �, and the constant K has to be replaced by another constant depending on the
constant K appearing in (7.10), on � and on |�|.

In any case, irrespective of whether (2.49) holds or does not, for every ε > 0, there exists
t = t(ε, K , t0, n,�) such that

|{|u| ≥ t}| < ε if t > t . (7.12)

Proof Assume first that assumption (2.49) is in force. Thanks to the definition of Tt and to
property (2.38),∫

�

� (∇Tt (u)) dx=
∫

{|u|<t}
�(∇u) dx and {|Tt (u)| ≥ t} = {|Tt (u)| = t} = {|u| ≥ t}
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for t > 0. We have that

|{|u| ≥ t}|�n

⎛
⎜⎜⎝ t

κ2

(∫
{|u|<t} �(∇u)dy

) 1
n

⎞
⎟⎟⎠ ≤

∫
{|u|≥t}

�n

⎛
⎜⎜⎝ |Tt (u)|

κ2

(∫
{|u|<t} �(∇u)dy

) 1
n

⎞
⎟⎟⎠ dx

≤
∫

�

�n

⎛
⎜⎜⎝ |Tt (u)|

κ2

(∫
{|u|<t} �(∇u)dy

) 1
n

⎞
⎟⎟⎠ dx ≤

∫
�

�n

⎛
⎝ |Tt (u)|

κ2
(∫

�
�(∇Tt (u))dy

) 1
n

⎞
⎠ dx .

(7.13)

By inequality (2.53) applied to Tt (u),

∫
�

�n

⎛
⎝ |Tt (u)|

κ2
(∫

�
�(∇Tt (u))dy

) 1
n

⎞
⎠ dx ≤

∫
�

� (∇Tt (u)) dx =
∫

{|u|<t}
�(∇u) dx .

(7.14)

Combining inequalities (7.13), (7.14) and (7.10) yields

|{|u| ≥ t}|�n

(
t

κ2(Kt)
1
n

)
≤ Kt for t > t0,

an equivalent formulation of (7.11).
Assume next that condition (2.49) fails. Consider the n-dimensional Young function � :

R
n → [0,∞) defined as

�(ξ) =
{

�(ξ) if ξ ∈ {� ≤ 1},
�(ξ) if ξ ∈ {� > 1}, (7.15)

where � is the (unique) function, which vanishes at 0, is linear along each half-line issued
from 0, and agrees with � on {� = 1}. Clearly, �(ξ) ≤ �(ξ) for ξ ∈ R

n , and condition
(2.49) is satisfied if � is replaced by �. One has that∫

{|u|<t}
�(∇u) dx ≤

∫
{|u|<t,�(∇u)>1}

�(∇u) dx +
∫

{|u|<t,�(∇u)≤1}
�(∇u) dx

≤
∫

{|u|<t,�(∇u)>1}
�(∇u) dx + |{|u| < t}| ≤ t(K + |�|), (7.16)

if t > max{t0, 1}. Therefore, the function u satisfies assumption (7.10) with � replaced by
�, K replaced by K + |�|, and t0 replaced by max{t0, 1}. Consequently, inequality (7.11)
holds with �n replaced by (�)n , K replaced by K + |�|, and t0 replaced by max{t0, 1}.

Finally, in the light of (7.11), inequality (7.12) will follow if we show that

lim
t→∞

�n(t
1
n′ )

t
= ∞. (7.17)

By the definitions of �n and �◦, Eq. (7.17) is equivalent to

lim
t→∞

�◦(t)∫ t
0

(
τ

�◦(τ )

) 1
n−1 dτ

= ∞. (7.18)
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On the other hand, since�◦ is an N -function, there exist constants c > 0 and t̂ > 0 such that∫ t

0

(
τ

�◦(τ )

) 1
n−1

dτ ≤ c + t if t > t̂, (7.19)

whence Eq. (7.18) follows, owing to the behavior of N -functions near infinity. ��
Proposition 7.3 (Superlevel set estimate for �(∇u)) Let � be an open set in R

n with |�| <

∞. Let� be an N-function fulfilling conditions (2.49) and (2.50). Assume that u ∈ T 1,�
0 (�)

and fulfills inequality (7.10) for some constants K > 0 and t0 ≥ 0. Then there exist constants
c1 = c1(n, K ) and s0 = s0(t0,�, n, K ) such that

|{�(∇u) > s}| ≤ c1
�−1

n (s)n
′

s
for s > s0. (7.20)

If condition (2.49) is not satisfied, then an analogous statement holds, provided that �n is
defined as in (2.51)–(2.52), with � modified near 0 in such as way that (2.49) is fulfilled. In
this case, the constant c1 in (7.20) depends also on �.

Proof Inequality (7.10) implies that

|{�(∇u) > s, |u| < t}| ≤ 1

s

∫
{�(∇u)>s, |u|<t}

�(∇u) dx ≤ K
t

s
for t > t0 and s > 0.

(7.21)

On the other hand,

|{�(∇u) > s}| ≤ |{|u| ≥ t}| + |{�(∇u) > s, |u| < t}| for t > 0 and s > 0. (7.22)

From (7.21) (7.22) and (7.11) one deduces that

|{�(∇u) > s}| ≤ Kt

�n(ct
1
n′ /K

1
n )

+ K
t

s
for t > t0 and s > 0.

Choosing t = (K 1/n�−1
n (s)/c)n

′
in this inequality yields

|{�(∇u) > s}| ≤ 2

(
K

c

)n′
(�−1

n (s))n
′

s
for s > �n(ct

1/n′
0 /K 1/n),

whence (7.20) follows.
If condition (2.49) is not fulfilled, the conclusion follows on modifying the function �

near 0, via an argument analogous to that of the proof of Proposition 7.2. ��

7.2 Proof of existence of approximable solutions

The proofs of the common parts of the statements of Theorems 3.7 and 3.10 are very similar.
We shall provide details on the former, and just briefly comment on theminor variants needed
for the latter.

Proof of Theorem 3.7 For clarity of presentation, we split the proof into steps.
Step 1 Approximating problems with smooth data.

Let { fk} ⊂ L∞(�) be a sequence such that

fk → f in L1(�) and ‖ fk‖L1(�) ≤ 2‖ f ‖L1(�). (7.23)
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By Theorem 3.2, there exists a (unique) weak solution uk ∈ W 1
0L�(�) to problem (3.8). In

particular, the very definition of weak solution tells us that∫
�

a(x,∇uk) · ∇ϕ dx =
∫

�

fk ϕ dx (7.24)

for every ϕ ∈ W 1
0L�(�) ∩ L∞(�).

Step 2 A priori estimates.
The following inequality holds for every k ∈ N and for every t > 0:∫

�

�(∇Tt (uk)) dx ≤ 2t‖ f ‖L1(�). (7.25)

Inequality (7.25) is a consequence of the following chain, that relies upon assumption (1.4)
and on the use of the test function ϕ = Tt (uk) in Eq. (7.24):∫

�

�(∇Tt (uk)) dx ≤
∫

�

a(x,∇Tt (uk))∇Tt (uk) dx

=
∫

�

a(x,∇uk)∇Tt (uk) dx =
∫

�

fkTt (uk) dx ≤ 2t‖ f ‖L1(�).

Step 3 Almost everywhere convergence of solutions.
There exists a function u ∈ M(�) such that (up to subsequences)

uk → u a.e. in �. (7.26)

Indeed, let t, τ > 0. Then

|{|uk − um | > τ }| ≤ |{|uk | > t}| + |{|um | > t}| + |{|Tt (uk) − Tt (um)| > τ }| (7.27)

for k,m ∈ N. Fix any ε > 0. Inequality (7.25) ensures, via inequality (7.27) of Proposi-
tion 7.2, that

|{|uk | > t}| + |{|um | > t}| < ε (7.28)

for every k,m ∈ N, provided t is sufficiently large. Moreover, inequality (7.25) again ensures
that the sequence ∇Tt (uk) is bounded in L1(�). Hence, the sequence Tt (uk) is bounded
in W 1,1

0 (�) and since the latter space is compactly embedded into L1(�), there exists a
subsequence, still denoted by {uk}, such that Tt (uk) converges to some function in L1(�).
In particular, it is a Cauchy sequence in measure, and hence

|{|Tt (uk) − Tt (um)| > τ }| < ε (7.29)

if k andm are large enough. From inequalites (7.27)–(7.29)we infer that (up to subsequences)
{uk} is a Cauchy sequence in measure, whence (7.26) follows.
Step 4 {∇uk} is a Cauchy sequence in measure.

An application of Proposition 7.1 with f and u replaced by fk and uk yields, via (7.23),∫
�

�(∇uk) dx ≤ c|�|1/n‖ f ‖L1(�) (7.30)

for some constant c = c(n) and every k ∈ N. Here, � is the function given by (2.44). Define
the function �− : [0,∞) → [0,∞) by

�−(s) = inf|ξ |=s
�(ξ). (7.31)
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Namely, �− is the largest radially symmetric minorant of �. Note that �− is a strictly
increasing function vanishing at 0. Let ε > 0. Given any t, τ, s > 0, one has that

|{�−(|∇uk − ∇um |) > t}| ≤ |{�−(|∇uk |) > τ }| + |{�−(|um |) > τ }| + |{|uk − um | > s}|
+|{|uk − um | ≤ s, �−(|∇uk |) ≤ τ, �−(|∇um |) ≤ τ, �−(|∇uk − ∇um |) > t}|. (7.32)

Owing to inequality (7.30),

t |{�−(|∇uk |) > t}| ≤
∫

�

�−(|∇uk |)dx ≤
∫

�

�(∇uk)dx ≤ c|�|1/n‖ f ‖L1(�) (7.33)

for k ∈ N. Thus,

|{�−(|∇uk |) > τ }| + |{�−(|∇um |) > τ }| < ε (7.34)

for every k,m ∈ N, provided that τ is large enough. Next, set

G = {|uk − um | ≤ s, �−(|∇uk |) ≤ τ, �−(|∇um |) ≤ τ, �−(|∇uk − ∇um |) > t},
(7.35)

and define

S = {(ξ, η) ∈ R
n × R

n : |ξ | ≤ τ, |η| ≤ τ, |ξ − η| ≥ t},
a compact set. Consider the function ψ : � → [0,∞) given by

ψ(x) = inf
(ξ,η)∈S [(a(x, ξ) − a(x, η)) · (ξ − η)] .

The monotonicity assumption (1.2) and the continuity of the function ξ �→ a(x, ξ) for a.e.
x ∈ � on the compact set S ensure that ψ ≥ 0 in � and |{ψ(x) = 0}| = 0. Moreover,∫

G
ψ(x) dx ≤

∫
G

(a(x,∇uk) − a(x,∇um)) · (∇uk − ∇um) dx

≤
∫

{|uk−um |≤s}
(a(x,∇uk) − a(x,∇um)) · (∇uk − ∇um) dx

=
∫

�

(a(x,∇uk) − a(x,∇um)) · (∇Ts(uk − um)) dx

=
∫

�

( fk − fm) Ts(uk − um) dx ≤ 4s‖ f ‖L1(�), (7.36)

where the last but one equality follows on making use of the test function Ts(uk − um)

in (3.8) and in the corresponding equation with k replaced bym, and subtracting the resultant
equations. Inequality (7.36) and the properties of the function ψ ensure that, if s is chosen
sufficiently small, then

|{|uk − um | ≤ s, �−(|∇uk |) ≤ τ, �−(|∇um |) ≤ τ, �−(|∇uk − ∇um |) > t}| < ε.

(7.37)

On the other hand, since {uk} is a Cauchy sequence in measure,

|{|uk − um | > s}| < ε, (7.38)

if k and m are sufficiently large. From inequalities (7.32), (7.34), (7.37), and (7.38), we infer
that {∇uk} is a Cauchy sequence in measure.
Step 5 Almost everywhere convergence of gradients.
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Our aim here is to show that the function u obtained in Step 3 belongs to the class T 1,�
0 (�),

and that ∇uk → ∇u a.e. in � (up to subsequences), where ∇u denotes the “generalized
gradient” of u in the sense of the function Zu appearing in (2.38).

Since {∇uk} is a Cauchy sequence in measure, there exist a subsequence (still indexed by
k) and a function W ∈ M(�; R

n) such that

∇uk → W a.e. in �. (7.39)

We have to show that

∇u = W (7.40)

and

χ{|u|<t}W ∈ L�(�; R
n) for every t > 0. (7.41)

To this purpose, observe that estimate (7.25) ensures that, for each fixed t > 0, the sequence
{∇Tt (uk)} is bounded in L�(�; R

n). Hence, by Theorem 2.7, the sequence {∇Tt (uk)} is
compact in L�(�; R

n) with respect to the weak-* convergence. Since Tt (uk) → Tt (u) in
L1(�), the function Tt (u) is weakly differentiable, and its gradient agrees with the weak-*
limit of {∇Tt (uk)}.

Thus, for each fixed t > 0, there exists a subsequence of {uk}, still indexed by k, such
that

lim
k→∞ ∇Tt (uk) = lim

k→∞ χ{|uk |<t}∇uk = χ{|u|<t}W a.e. in �, (7.42)

and

lim
k→∞ ∇Tt (uk) = ∇Tt (u) weakly- ∗ in L�(�; R

n). (7.43)

Therefore, ∇Tt (u) = χ{|u|<t}W a.e. in �, whence Eqs. (7.40) and (7.41) follow, owing to
(2.38).
Step 6 Uniqueness of the solution.

Suppose that u and ū are approximable solutions to problem (1.1). Thus, there exist
sequences { fk} and { f k} in L∞(�), such that fk → f and f k → f in L1(�) and weak
solutions uk to (3.8) and ūk to{−div a(x,∇uk) = f k in �

uk(x) = 0 on ∂�,
(7.44)

such that uk → u and uk → u a.e. in �.
Fix any t > 0, make use of ϕ = Tt (uk − uk) as a test function in (3.8) and (7.44), and

subtract the resultant equations to obtain∫
{|uk−uk |≤t}

(a(x,∇uk) − a(x,∇uk)) · (∇uk − ∇uk) dx =
∫

�

( fk − f k) Tt (uk − uk) dx

(7.45)

for every k ∈ N. The right-hand side of (7.45) tends to 0 as k → ∞, since |Tt (uk −uk)| ≤ t .
As shown in Steps 3–5, one has that u, u ∈ T 1,�

0 (�), and {∇uk} and {∇uk} converge (up
to subsequences) a.e. in � to the generalized gradients ∇u and ∇u, respectively. Thus, by
assumption (1.2) and Fatou’s lemma, passing to the limit in (7.45) tells us that∫

{|u−u|≤t}
(a(x,∇u) − a(x,∇ū)) · (∇u − ∇u) dx = 0.
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Consequently, by (1.2) again, ∇u = ∇u a.e. in {|u − u| ≤ t} for every t > 0, whence

∇u = ∇u a.e. in �. (7.46)

Fix any t, τ > 0. Inequality (2.47), applied to the function Tτ (u − Tt (u)), and Eq. (7.46) tell
us that∫

�

�◦(c|Tτ (u − Tt (u))|) dx ≤
(∫

{t<|u|<t+τ }
�(∇u) dx +

∫
{t−τ<|u|<t}

�(∇u) dx

)
,

(7.47)

where c = κ1|�|− 1
n , and κ1 is the constant appearing in (2.47). We claim that, for each

τ > 0, the right-hand side of (7.47) converges to 0 as t → ∞. To verify this claim, choose
the test function ϕ = Tτ (uk − Tt (uk)) in Eq. (7.24) and deduce that∫

{t<|uk |<t+τ }
�(∇uk) dx ≤

∫
{t<|uk |<t+τ }

a(x,∇uk) · ∇uk dx ≤ τ

∫
{|uk |>t}

| fk | dx .
(7.48)

Passing to the limit as k → ∞ in (7.48) yields, by Fatou’s lemma,∫
{t<|u|<t+τ }

�(∇u) dx ≤ τ

∫
{|u|>t}

| f | dx . (7.49)

Thereby, the first integral on the right-hand side of (7.47) approaches 0 as t → ∞. An
analogous argument implies that also the last integral in (7.47) tends to 0 as t → ∞. On the
other hand,

lim
t→∞ Tτ (u − Tt (u)) = Tτ (u − u) a.e. in �.

From (7.47), via Fatou’s lemma, we thus infer that∫
�

�◦(c|Tτ (u − u)|) dx = 0 (7.50)

for every τ > 0. Since �◦ vanishes only at 0, Eq. (7.50) ensures that Tτ (u − u) = 0 a.e. in
� for every τ > 0, whence u = u a.e. in �.
Step 7 Property (3.11) holds.

Choosing t = 0 in inequality (7.49) tells us that u satisfies assumption (7.10) of Proposi-
tion 7.2 with K = ‖ f ‖L1(�). By Propositions 7.2 and 7.3, the solution u fulfills inequalities
(7.11) and (7.20). These inequalities in turn imply (3.11). ��

Proof of Theorem 3.10 The proof follows exactly along the same lines as Steps 1–5 and 7 of
the proof of Theorem 3.7. One has just to begin with a sequence { fk} ⊂ L∞(�), which is
weakly-∗ convergent to μ in the space of measures, and such that ‖ fk‖L1(�) ≤ 2‖μ‖(�).
Such a sequence can be defined, for instance, as in (5.5), with U (y)dy replaced by dμ(y).
Of course, the quantity ‖ f ‖L1(�) has then to be replaced by ‖μ‖(�) throughout.

Let us just point out that the proof of uniqueness, namely of Step 6 of Theorem 3.7, fails
in the present situation since, for instance, it is not guaranteed that the right-hand side of
equation (7.45) approaches 0 as k → ∞. ��
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