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Abstract
In this paper, we consider the 3-D motion of viscous gas with the vacuum free boundary. We
use the conormal derivative to establish local well-posedness of this system. One of important
advantages in the paper is that we do not need any strong compatibility conditions on the
initial data in terms of the acceleration.

Mathematics Subject Classification 35K65, 35R35, 76N10

1 Introduction

1.1 Formulation in Eulerian coordinates

In the paper, we consider a 3-D viscous compressible fluid in a moving domain �(t) with
an upper free surface �(t) and a fixed bottom �b. This model can be expressed by the 3-D
compressible Navier–Stokes equations(CNS)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∇ · (ρ u) = 0 in �(t),

ρ(∂t u + u · ∇u) + ∇ p − ∇ · S(u) = 0 in �(t),

ρ > 0 in �(t), ρ = 0 on �(t),

V(�(t)) = u · n on �(t),

(S(u) − p I)n = 0 on �(t),

u|�b = 0 on �b,

(ρ, u)|t=0 = (ρ0, u0) in �(0), �(0) = �0,

(1.1)

where V(�(t)) denotes the normal velocity of the free surface �(t), and n = n(t) is the
exterior unit normal vector of �(t), the vector-field u denotes the Eulerian velocity field, ρ is
the density of the fluid, and p = p(ρ) denotes the pressure function. The stress tensor S(u) is
defined byS(u) = μD(u)+λ(∇·u)I, where the strain tensorD(u) = ∇u+∇uT and dynamic
viscosity μ and bulk viscosity ν are constants which satisfy the following relationship

μ > 0, λ + 2

3
μ ≥ 0. (1.2)

The deviatoric (trace-free) part of the strain tensor D(u) is then D
0(u) = D(u) − 2

3div u I.
The viscous stress tensor in fluid is then given by S(u) = μD

0(u) + (λ + 2
3μ)(∇ · u) I.

Moreover, the pressure obeys the γ -law: p(ρ) = K ργ , where K is an entropy constant and
γ > 1 is the adiabatic gas exponent.

Equation (1.1)1 is the conservation of mass; Eq. (1.1)2 means the momentum conserved;
the boundary condition (1.1)3 states that the pressure (and hence the density function) van-
ishes along the moving boundary �(t), which indicates that the vacuum state appears on the
boundary �(t); the kinematic boundary condition (1.1)4 states that the vacuum boundary
�(t) is moving with speed equal to the normal component of the fluid velocity; (1.1)5 means
the fluid satisfies the kinetic boundary condition on the free boundary, (1.1)6 denotes the fluid
is no-slip, no-penetrated on the fixed bottom boundary, and (1.1)7 are the initial conditions
for the density, velocity, and domain.

In the paper, we assume the bottom �b = {y3 = b(yh)}, and the moving domain �(t) is
horizontal periodic by setting T2

yh
with yh := (y1, y2)T for T = R/Z.

1.2 Known results

Whether or not the appearance of vacuum state is related to the regularity of the solution
to the compressible Navier–Stokes equations. Even if there is no vacuum in initial data, it
cannot guarantee that vacuum state will be not generated in finite time in high-dimensional
system. Whence initial data is close to a non-vacuum equilibrium in some functional space,
Matsumura and Nishida [35,36] proved global well-posedness of strong solutions to the
3-D CNS. Moreover, for the one dimensional case, Hoff and Smoller [17] proved that if
the vacuum is not included at the beginning, no vacuum will occur in the future. Hoff and
Serre [16] showed some physical weak solution does not have to depend continuously on
their initial data when vacuum occurs.

When the initial density may vanish in open sets or on the (part of) boundary of the
domain, the flow density may contain a vacuum, the equation of velocity becomes a strong
degenerate hyperbolic-parabolic system and the degeneracy is one of major difficulties in
study of regularity and the solution’s behavior, which is completely different from the non-
vacuum case. For the existence of solutions for arbitrary data (the far field density is vacuum,
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that is, ρ(t, x) → 0 as x → ∞), the major breakthrough is due to Lions [27] (also see [8,
14,22]), where he obtains global existence of weak solutions, defined as solutions with finite
energy with suitable γ . Recently, Li and Xin [26] and Vasseur and Yu [39] independently
studied global existence of weak solutions of CNS whence the viscosities depend on the
density and satisfy theBresch andDesjardins relation [1].Yet little is knownon the structure of
such weak solutions except for the case that some additional assumptions are added (see [15]
for example). Indeed, the works of Xin etc. [24,40] showed that the homogeneous Sobolev
space is as crucial as studying the well-posedness for the Cauchy problem of compressible
Navier–Stokes equations in the presence of a vacuum at far fields even locally in time. Adding
some compatible condition on initial data, Cho and Kim [3] develop local well-posedness
for strong solutions. Moreover, if initial energy is small, Huang et al. [18] showed the global
existence of classical solutions but with large oscillations to CNS.

Physically, the vacuum problem appears extensively in the fundamental free boundary
hydrodynamical setting: for instance, the evolving boundary of a viscous gaseous star, for-
mation of shock waves, vortex sheets, as well as phase transitions.

For free boundary problem of the multi-dimensional Navier–Stokes equations with non-
vacuum state, there are many results concerning its local and global strong solutions, one
may refer to [43,44] and references therein.

But when the vacuum (in particular, the physical vacuum [28]) appears, the system
becomes much harder. To understand the difficulty of the vacuum, we introduce the sound

speed c := √
p′(ρ)(= √

Kγ ρ
γ−1
2 for polytropic gases) of the gas or fluid to describe the

behavior of the smoothness of the density connecting to vacuum boundary. A vacuum bound-
ary �(t) is called physical vacuum if there holds

− ∞ <
∂c2

∂n
< 0 (1.3)

near the boundary �(t), where n is the outward unit normal to the free surface. The physical
vacuum condition (1.3) implies the pressure (or the enthalpy c2) accelerates the boundary in
the normal direction. Thus, the initial physical vacuum condition (1.3) is equivalent to the
requirement that

− ∞ < ∂n(ρ
γ−1
0 ) < 0 on �(0) (1.4)

which means that ρ
γ−1
0 (x) ∼ dist(x, �(0)), in other words, the initial sound speed c0 is

only C
1
2 -Hölder continuous near the interface �(0).

Due to lack of sufficient smoothness of the enthalpy c2 at the vacuum boundary, a rigorous
understanding of the existence of physical vacuum states in compressible fluid dynamics has
been a challenging problem, especially in multi-dimensional cases.

Recently, the local well-posedness theory for compressible Euler system with physical
vacuum singularity was established in [4,20,21], and also global existence of smooth solu-
tions for the physical vacuum free boundary problem of the 3-D spherically symmetric
compressible Euler equations with damping was showed in [32]. And more recently, Hadzic
and Jang [13] proved global nonlinear stability of the affine solutions to the compressible
Euler system with physical vacuum, and Guo et al. [9] constructed an infinite dimensional
family of collapsing solutions to the Euler-Poisson system whose density is in general space
inhomogeneous and undergoes gravitational blowup along a prescribed space-time surface,
with continuous mass absorption at the origin.

The study of vacuum is important in understanding viscous surface flows [30]. Very little
is rigorously known about well-posedness theories available about free boundary problems of
CNS with physical vacuum boundary. For 1-D problem, global regularity for weak solutions
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to the vacuum free boundary problem of CNS was obtained in [30], which is further gener-
alized by Zeng [45] which established the strong solutions. For the multidimensional case,
regularity results related to spherically symmetric motions. Guo et al. [11] obtain a global
weak solution to the problem with spherically symmetric motions and a jump density con-
nects to vacuum. Later Liu [29] gives the existence of global solutions with small energy in
spherically symmetricmotions with the density connected to vacuum continuously or discon-
tinuously. Anyway, almost all the well-posedness results require additional strongly singular
compatibility conditions on initial data in terms of the acceleration for gaining more regular-
ities of the velocity. Some related works can refer to [2,6,7,12,19,25,28,30,31,37,41,42] and
references therein.

The purpose of this paper is to establish the local well-posedness of the 3-D compressible
Navier–Stokes equations (1.1) with physical vacuum boundary condition without any com-
patibility conditions, more precisely, we do not need any initial condition on the material
derivative Dt u or its derivatives. For simplicity, we set γ = 2 and K = 1 in this paper.

Asmentioned above, themain difficulty in obtaining regularity for the vacuum free bound-
ary problem (1.1) lies in the degeneracy of the system near vacuum boundaries. In order to
solve the system (1.1), the first idea is that we use Lagrangian coordinates to transform it to a
systemwith fixed domain. One of advantage of Lagrangian coordinates is that the density ρ is
solved directly by initial data and we only focus on the equation of velocity with coefficients
related to Lagrangian coordinates.

The second and also key idea in our paper is that we use the conormal derivatives to
obtain the high-order regularity. Because the density vanishes on the boundary, we can not
close the energy estimates if we directly take normal derivatives to the system. So another
choose is to take time derivatives in [4,21] solving the compressible Euler equations with
the physical vacuum, where high-order enough time-derivative estimates as long as spatial-
derivative estimates allow us to close the energy estimates and then get the local-in-time
existence of the strong solution of the Euler system. This high-order energy estimate in it
is reasonable since the pressure term may cancel the singularity near the vacuum boundary
when consider compatibility conditions on initial data in terms of the acceleration and its
derivatives. However, this method may not work for the Navier–Stokes system (1.1) with
constant viscosity coefficients. In fact, a strong singular compatibility conditions on initial
data in terms of the acceleration and its derivatives will appear in it when we consider the
high-order energy estimate, which is mainly due to the non-degenerate of the viscosity, but
it seems very hard to find such kind of initial data satisfying these compatibility conditions.
In order to get rid of this difficulty, our strategy is that we use conormal Sobolev space
introduced in [34] to get the tangential regularity. Based on that, we multiply ∂tv on the both

sides of equations of v to get the estimates of ρ
1
2 ∂tv which implies the two-order derivative

on the normal direction. Form this, together with high-order tangential derivatives estimates,
we get the W 1,∞ estimates of v and its conormal derivatives, which in turn guarantees the
propagation of conormal regularities of the velocity.

1.3 Derivation of the system in Lagrangian coordinates andmain result

In this paper, we consider the case that the upper boundary does not touch the bottom which
means that

dist(�(0), �b) > 0.
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Take � = {x ∈ T
2 × R| 0 < x3 < 1} as the domain of equilibrium. Let η(t, x) be the

position of the gas particle x at time t so that
{

∂tη(t, x) = u(t, η(t, x)) for t > 0,

η(0, x) = η0(x) in �.
(1.5)

Here η0 is a diffeomorphism from � to the initial moving domain �(0) which satisfies that
�(0) = η0({x3 = 1}) and �b = η0({x3 = 0}). It is easy to construct a invertible transform
η0 which satisfies that

det(Dη0) > 0.

Due to (1.5), we introduce the displacement ξ(t, x)
def= η(t, x) − x which satisfies the

following ODE
{

∂tξ(t, x) = u(t, x + ξ(t, x)) for t > 0,

ξ(0, x) = ξ0(x) := η0(x) − x in �.
(1.6)

We define the following Lagrangian quantities:

v(t, x) := u(t, η(t, x)), f (t, x) := ρ(t, η(t, x)),

A := [Dη]−1, J := det(Dη), N := JA e3.

Then, the system (1.1) is reformulated in Lagrangian coordinates as follows
⎧
⎪⎨

⎪⎩

∂tξ = v in �,

∂t f + f ∇A · v = 0 in �,

f ∂tv + ∇A( f 2) − ∇A · SA(v) = 0 in �

(1.7)

with boundary conditions
⎧
⎪⎪⎨

⎪⎪⎩

f = 0 on �,

SA(v)N = 0, on �,

v|x3=0 = 0

(1.8)

and initial data

(ξ, f , v)|t=0 = (ξ0, ρ0, u0). (1.9)

One may readily check from the definition of J that

∂t J = ∇JA · v,

which together with the equation of f in (1.7) yields

∂t ( f J ) = J∂t f + f ∂t J = −J f ∇A · v + f J∇A · v = 0.

Hence, we find

J f (t, x) = (J f )(0, x) = det(Dη0)ρ0(η0), (1.10)

whereρ0 is a given initial density function.We are interested in the initial densityρ0 satisfying

ρ0(η0) det(Dη0) = ρ(x) in �, (1.11)

C−1 d(x) ≤ ρ(x) ≤ C d(x) in �, (1.12)

|∇ρ| ≤ C, |ρ−1∇k
hρ| ≤ Ck in � (1.13)
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with some given function ρ(x) (x ∈ �), for any k ∈ N with ∇h = (∂1, ∂2), where d(x) is
the distance function to the boundary {x3 = 1}.

Thus, it follows from (1.10) that
J f = ρ(x), (1.14)

which implies that
f = J−1 ρ, q = f 2 = J−2 ρ2. (1.15)

Remark 1.1 For any smooth subdomainO of�, we know that η0(O) is a subdomain of�(0)
if η0 is a diffeomorphism from � to �(0). Hence, by using change of variables, we get

∫

η0(O)

ρ0(y) dy =
∫

O
ρ0(η0) det(Dη0) dx . (1.16)

Hence, the assumption (1.11) is equivalent to the mass conservation law
∫

η0(O)

ρ0(y) dy =
∫

O
ρ dx ∀ O ⊂ �. (1.17)

Multiplying the both side of equation v by J , we obtain the equivalent form of the system
(1.7)–(1.9) as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tξ = v in �,

ρ∂tv + ∇JA(J−2ρ2) − ∇JA · SA(v) = 0 in �,

SA(v)N = 0, on �,

v|x3=0 = 0,

ξ |t=0 = ξ0, v|t=0 = v0 in �.

(1.18)

Next, we give some useful equations which we often use in what follows. SinceA[Dη] =
I , one obtains that

∂tAk
i = −As

i ∂sv
rAk

r , ∂lAk
i = −As

i ∂s∂lη
rAk

r . (1.19)

Differentiating the Jacobian determinant, we get

∂t J = JAs
r∂sv

r , ∂l J = JAs
r∂s∂lη

r . (1.20)

Moreover, the following Piola identity holds:

∂ j (JA j
i ) = 0, (1.21)

for any i = 1, 2, 3.

1.4 Main results

Before we state our main results, we give some definitions of functional spaces. First, define
the operators:

Z1
def= ∂1, Z2

def= ∂2, Z3
def= ρ∂3. (1.22)

Using Zm to denote Zm2
3 Zm1

h = Zm2
3 Zm11

1 Zm12
2 with m1 = (m11, m12) and |m| to denote

|m| = |m1| + m2 = m11 + m12 + m2. Moreover, we use Zm2
3 to denote ρm2∂

m2
3 . By

(1.11)–(1.13), it is easy to see

[∂3, Zm] ∼ Zm−1∂3, [Zh, Z3] ∼ Z3.

123



Local well-posedness of the vacuum free boundary of 3-D… Page 7 of 35 166

We recall the following conormal Sobolev space introduced by Masmoudi and Rous-
set [34].

‖ f ‖2X N
α

:=
N∑

|m|=0

‖ρα Zm f ‖2L2 , ‖ f ‖2
Ẋ N

α
:=

N∑

|m|=1

‖ρα Zm f ‖2L2 ,

where α ∈ R. In particular, when α = 0, we the spaces X N
α and Ẋ N

α will be denoted by X N

and Ẋ N respectively for simplicity.
For T > 0, we define the energy space ET as

ET
def= C([0, T ]; X12

1
2

∩ H1(�))

with the instantaneous energy E(t) (in terms to the velocity v)

E(t)
def= ‖v‖2

X12
1
2

+ ‖v‖2H1 ,

and the dissipation D(t)

D(t)
def= ‖∇v‖2X12 + ‖ρ 1

2 ∂tv‖2L2 .

Given κ > 0, we also introduce the space Fκ in terms to the flow map η as follows:

Fκ = Fκ (�)
def= {ξ ∈ X12 ∩ H1(�)| ∇ξ ∈ X12, ρ− 1

2+κ
ξ ∈ L2}
equipped with the norm

‖ξ‖Fκ

def= ‖ξ‖X12 + ‖∇ξ‖X12 + ‖ρ− 1
2+κ
ξ‖L2 .

Now, we are in the position to state our main results.

Theorem 1.2 Under the assumptions (1.11)–(1.13), assume that there exists a positive num-
ber σ0 such that

dist(�(0), �b) > 0, (1.23)

2σ0 ≤ J0 ≤ 3σ0. (1.24)

If the initial data (v0, η0) ∈ (X12
1
2

∩ H1(�))×Fκ (�) for some constant κ ∈ (0, 1
16 ), then the

system (1.18) is locally well-posed. More precisely, there exists a positive time T > 0 such that
the system (1.18)has a unique solution (v, η) ∈ C([0, T ]; X12

1
2

∩H1(�))×C([0, T ];Fκ (�))

depending continuously on initial data (v0, η0) ∈ (X12
1
2

∩ H1(�)) ×Fκ (�), and there hold

sup
t∈[0,T ]

(‖v‖2
X12

1
2

+ ‖v‖2H1) +
∫ T

0

(
‖∇v‖2X12 + ‖ρ 1

2 ∂tv‖2L2

)
ds ≤ C,

sup
t∈[0,T ]

‖ξ(t)‖2Fκ
≤ C, σ0 ≤ sup

(t,x)∈[0,T ]×�

J (t, x) ≤ 4σ0, (1.25)

where C depends on initial data.

Remark 1.3 The assumption (1.11)–(1.13) on ρ0 is reasonable. In fact, if �(0) = � := {x ∈
T
2 × R| 0 < x3 < 1} and ρ0 = dist(x, ∂�) ∼ x3(1 − x3), then the assumptions (1.11)–

(1.13) are automatically satisfied .
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Remark 1.4 In this paper, we consider the case that γ = 2. But our method may still work
for all the cases γ > 1.

Remark 1.5 For any t ∈ [0, T ], since σ0 ≤ sup(t,x)∈[0,T ]×� J (t, x) ≤ 4σ0, the flow-map
η(t, x) defines a diffeomorphism from the equilibrium domain � to the moving domain
�(t) with the boundary �(t). From this, together with the fact that η0 is a diffeomorphism
from the equilibrium domain � to the initial domain �(0), we deduce a diffeomorphism
from the initial domain �(0) to the evolving domain �(t) for any t ∈ [0, T ]. Denote the
inverse of the flowmap η(t, x) by η−1(t, y) for t ∈ [0, T ] so that if y = η(t, x) for y ∈ �(t)
and t ∈ [0, T ], then x = η−1(t, y) ∈ �.

For the strong solution (η, v) obtained in Theorem 1.2, and for y ∈ �(t) and t ∈ [0, T ],
we denote that

ρ(t, y) := J−1(t, η−1(t, y))ρ0(η
−1(t, y)), u(t, y) := v(t, η−1(t, y)). (1.26)

Then the triple (ρ(t, y), u(t, y),�(t)) (t ∈ [0, T ]) defines a strong solution to the free
boundary problem (1.1). Furthermore, we obtain the following theorem.

Theorem 1.6 Under the assumptions in Theorem 1.2, the free boundary problem (1.1) is
locally well-posed, and the triple (ρ(t, y), u(t, y),�(t)) (t ∈ [0, T ]) defined in Remark
1.5 and (1.26) is the unique strong solution to the free boundary problem (1.1) satisfying
η − I d ∈ C([0, T ], Fκ ).

The rest of the paper is organized as follows. In Sect. 2, we derive some preliminary
estimates. Some necessary a priori estimates are obtained in Sect. 3. Finally in Sect. 4, the
proof of Theorem 1.2 is proved.

Let us complete this section with some notations that we use in this context.
Notations Let A, B be two operators, we denote [A, B] = AB − B A, the commutator
between A and B. For a � b, we mean that there is a uniform constant C, which may be
different on different lines, such that a ≤ Cb and C0 denotes a positive constant depending
on the initial data only.

2 Preliminary estimates

In what follows, we denote byC a positive constant whichmay depend on initial data (v0, η0)

if we don’t make a special explanation in it. This notation is allowed to change from one
inequality to the next.

We first introduce the following inequality which we heavily use throughout the paper.

Lemma 2.1 (Hardy inequality, [23]) For any ε > 0, there holds that

‖ρ− 1
2+ε f ‖L2(�) ≤ C(‖ρ 1

2+ε f ‖L2(�) + ‖ρ 1
2+ε∇ f ‖L2(�)).

With Hardy inequality in hand, we may get the following interpolation equalities.

Lemma 2.2 For any κ ∈ (0, 1
16 ), there hold that, for 0 ≤ � ≤ 6,

‖Z�∇ f ‖L∞
x3

(L2
h) ≤ C(‖∇ f ‖X12 + ‖ρ− 1

2+κ� f ‖L2). (2.1)

and for 0 ≤ � ≤ 4,

‖Z�∇ f ‖L∞ ≤ C(‖∇ f ‖X12 + ‖ρ− 1
2+κ� f ‖L2). (2.2)
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Proof For 0 ≤ � ≤ 6, thanks to the Sobolev embedding theorem and Lemma 2.1, we have

‖Z�∇ f ‖L∞
x3

(L2
h) ≤ C0(‖ρ− 21

44 Z�∇ f ‖L2
x3

(L2
h) + ‖ρ 21

44 ∂3Z�∇ f ‖L2
x3

(L2
h))

≤ C0(‖ρ 23
44 Z�∇ f ‖L2 + ‖ρ 23

44 ∇Z�∇ f ‖L2

+
�∑

i=0

(‖ρ 21
44 Zi+1∇ f ‖L2 + ‖ρ 21

44 Zi� f ‖L2)

≤ C‖∇ f ‖X12 + C
�∑

i=0

‖ρ 21
44 Zi� f ‖L2 . (2.3)

According to the fact |Z ρ̄| ≤ C ρ̄, we deduce from integration by parts that

‖ρ 21
44 Zi� f ‖L2 ≤ C‖ρ− 1

2+κ� f ‖1−
7
11

L2 ‖� f ‖
7
11

Ẋ11
1

≤ C(‖ρ− 1
2+κ� f ‖L2 + ‖� f ‖Ẋ11

1
), ∀ i ≤ 5, (2.4)

where we used that 14
22 + (− 1

2 + κ) 4
11 ≤ 21

44 < 1
2 with κ ∈ (0, 1

16 ).
While by using integration by parts again, one can see that

‖ρ 21
44 Z6� f ‖2L2 =

∫

�

ρ̄
21
22 Z6� f · Z6� f dx

= −
∫

�

ρ̄
21
22 Z� f · Z11� f dx −

∫

�

[ρ 21
22 ; Z5]� f · Z6� f dx,

which follows from the fact |Z ρ̄| ≤ C ρ̄ that

‖ρ 21
44 Z6� f ‖2L2 ≤ C‖� f ‖X11

1
(‖ρ̄− 1

22 � f ‖L2 + ‖ρ̄− 1
22 Z� f ‖L2).

Next, we deal with the last term in the above inequality. In fact, we may get from integration
by parts that

‖ρ̄− 1
22 Z� f ‖2L2 =

∫

�

ρ̄− 1
11 Z� f · Z� f dx ≤ C‖ρ− 1

2+κ� f ‖L2

2∑

k=0

‖ρ 1
2− 1

11−κ Zk� f ‖L2

≤ C‖ρ− 1
2+κ� f ‖L2(‖� f ‖X11

1
+ C0‖ρ− 1

2+κ� f ‖L2),

which implies

‖ρ̄− 1
22 Z� f ‖L2 ≤ C(‖� f ‖X11

1
+ ‖ρ− 1

2+κ� f ‖L2).

Hence, one has

‖ρ 21
44 Z6� f ‖2L2 ≤ C‖� f ‖X11

1
(‖ρ̄− 1

22 � f ‖L2 + ‖ρ− 1
2+κ� f ‖L2 + ‖� f ‖X11

1
). (2.5)

Inserting (2.4–2.5) into (2.3) ensures that for 0 ≤ � ≤ 6

‖Z�∇ f ‖L∞
x3

(L2
h ) ≤ C(‖∇ f ‖X12 + ‖ρ− 1

2+κ� f ‖L2),

that is, the inequality (2.1) holds.
The second inequality (2.2) comes from the Sobolev embedding theorem and (2.1):

‖Z�∇ f ‖L∞ ≤ C ‖Z�∇ f ‖L∞
x3

H2
h

≤ C(‖∇ f ‖X12 + ‖ρ− 1
2+κ� f ‖L2)

for 0 ≤ � ≤ 4, which ends the proof of Lemma 2.2. ��
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To deal with nonlinear term, we need the following product laws in the spaces X N .

Lemma 2.3 There hold true that

‖g f ‖X12 ≤ C‖g‖X12

∑

|�|≤6

‖Z� f ‖L∞
x3

(L2
h ) + C‖ f ‖X12

∑

|�|≤6

‖Z�g‖L∞
x3

(L2
h), (2.6)

and
∑

0≤| j |≤1

‖g Z j f ‖X11 ≤ C‖g‖X11

∑

|�|≤6

‖Z� f ‖L∞
x3

(L2
h ) + C‖ f ‖X12

∑

|�|≤6

‖Z�g‖L∞
x3

(L2
h ). (2.7)

Proof By the Leibnitz formula, one can see that

‖g f ‖X12 ≤ C
12∑

|m1|+|m2|=0

‖Zm1g Zm2 f ‖L2 .

Now, we focus only on the proof of the most difficulty case: |m1|+ |m2| = 12. The others
can be treated by a similar way. In fact, we divide its proof into three cases.

• Case 1. 8 ≤ |m1| ≤ 12. By Hölder’s inequality, we prove

‖Zm1g Zm2 f ‖L2 ≤ ‖Zm1g‖L2‖Zm2 f ‖L∞ ≤ C‖Zm1g‖L2‖Zm2 f ‖L∞
x3

(H2
h )

≤ C‖g‖X12

∑

|�|≤6

‖Z� f ‖L∞
x3

(L2
h ),

where we used |m2| + 2 ≤ 6.
• Case 2.6 ≤ |m1| ≤ 7.Thanks to theSobolev embedding theoremandHölder’s inequality,

one can obtain that

‖Zm1g Zm2 f ‖L2 ≤ ‖Zm1g‖L2
x3

(L∞
h )‖Zm2 f ‖L∞

x3
(L2

h)

≤ C‖g‖X12

∑

|�|≤6

‖Z� f ‖L∞
x3

(L2
h).

• Case 3. 0 ≤ |m1| ≤ 5. For this case, we only need to exchange the position of f and g
and apply the same argument as in the above two cases to get that

‖Zm1g Zm2 f ‖L2 ≤ C‖ f ‖X12

∑

|�|≤6

‖Z�g‖L∞
x3

(L2
h).

Collecting all the above cases together, we obtain

‖g f ‖X12 ≤ C‖g‖X12

∑

|�|≤6

‖Z� f ‖L∞
x3

(L2
h) + C

∑

|�|≤6

‖Z�g‖L∞
x3

(L2
h )‖ f ‖X12 ,

which follows (2.6).
Next, since we the highest order in (2.7) is 11, we may readily verify (2.7) by the same

process above, which ends the proof of Lemma 2.3. ��
We introduce a new quantityD(v)(t) which controls ‖∇v‖L∞ according to Lemma 2.2:

D(v)(t)
def= ‖∇v(t)‖X12 + ‖ρ− 1

2+κ�v(t)‖L2 . (2.8)

In what follows,P(·) stands for some polynomial function which coefficients may depend
on initial data.

123



Local well-posedness of the vacuum free boundary of 3-D… Page 11 of 35 166

Lemma 2.4 Assume that

ξ0 ∈ Fκ , ‖D(v)‖L2(0,T ) ≤ C, σ0 ≤ J ≤ 4σ0.

Then there hold that for any t ∈ [0, T ]
‖∇v : ∇v(t)‖X12 ≤ CD(v)2(t), (2.9)

and
∑

0≤|�|≤6

‖Z�(JA)(t)‖L∞
x3

(L2
h ) ≤ C(1 + t

1
2P(C)),

∑

0≤|�|≤6

‖Z�A(t)‖L∞
x3

(L2
h) ≤ C(1 + t

1
2P(C)),

‖JA(t)‖X12 ≤ C(1 + t
1
2P(C)), ‖A(t)‖X12 ≤ C(1 + t

1
2P(C)), (2.10)

where the constant C depends on ‖ξ0‖Fκ and σ0.

Proof Before giving the proof of this lemma, we state some estimates as preliminary.
First, taking f = g = ∇v in (2.6), we obtain

‖∇v : ∇v‖X12 ≤ C‖∇v‖X12

∑

|�|≤6

‖Z�∇v‖L∞
x3

(L2
h ). (2.11)

While by Lemma 2.2, one can prove that
∑

0≤|�|≤6

‖Z�(∇v : ∇v)‖L∞
x3

(L2
h) ≤ C

∑

0≤|�|≤6

‖Z�∇v‖L∞
x3

(L2
h)

∑

0≤|�|≤4

‖Z�∇v‖L∞

≤ C(‖∇v‖X12 + ‖ρ− 1
2+κ�v‖L2)2 ≤ CD(v)2, (2.12)

which along with (2.11) ensures (2.9).
Now we are in the position to prove the estimates in terms of JA and A. Notice that

JA = (Dη)−1 =
(

∇η0 +
∫ t

0
∇v ds

)−1

,

and every entry in JA is a linear combination of

∇η0, ∇η0

∫ t

0
∇vds,

(∫ t

0
∇vds

)2

.

Then, thanks to Lemmas 2.2–2.3, (2.12) and Minkowski’s inequality, one has
∑

0≤|�|≤6

‖Z�(JA)‖L∞
x3

(L2
h)

≤
∑

0≤|�|≤6

‖Z�∇η0‖L∞
x3

(L2
h ) +

∑

0≤|�|≤6

‖Z�

(

∇η0

∫ t

0
∇vds

)

‖L∞
x3

(L2
h)

+
∑

0≤|�|≤6

‖Z�

((∫ t

0
∇vds

)2
)

‖L∞
x3

(L2
h )

≤ C ‖ξ0‖Fκ + C ‖ξ0‖Fκ t
1
2 ‖D(v)‖L2

t
+ Ct‖D(v)‖2

L2
t

≤ C (1 + t
1
2 P(C)), (2.13)

which proves the first inequality in (2.10).
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Similarly, we deduce that

∑

0≤|�|≤6

‖Z�(∇η0

∫ t

0
∇vds)‖L∞

x3
(L2

h ) +
∑

0≤|�|≤6

‖Z�

((∫ t

0
∇v ds

)2
)

‖L∞
x3

(L2
h)

≤ C t
1
2 ‖D(v)‖L2

t
+ C t‖D(v)‖2

L2
t

≤ C t
1
2P(C). (2.14)

Recalling the definition of J : J = det(∇η0 + ∫ t
0 ∇vds), J is a linear combination of the

terms

(∇η0)
3, ∇η0

(∫ t

0
∇vds

)2

, (∇η0)
2
∫ t

0
∇vds,

(∫ t

0
∇vds

)3

.

Hence, similar to the proof of the first inequality in (2.10) in terms of JA, we may obtain
∑

0≤|�|≤6

‖Z� J‖L∞
x3

(L2
h) ≤ C (1 + t

1
2P(C)). (2.15)

Owing to the fact J ≥ σ0 and the formula to the composition of two functions, we obtain
∑

0≤|�|≤6

‖Z�(J−1)‖L∞
x3

(L2
h ) ≤C

∑

0≤|�|≤6

‖
∏

∑
j |k j |m j ≤|�|

(Zk j J )m j ‖L∞
x3

(L2
h).

We put ‖ · ‖L∞
x3

(L2
h ) on the highest order term Zk j J and put ‖ · ‖L∞ to other lower terms (not

more than order 4) with similar process to (2.12). It follows from Lemma 2.2 and (2.15) that
∑

0≤|�|≤6

δ|�|‖Z�(J−1)‖L∞
x3

(L2
h ) ≤ C (1 + t

1
2P(C)). (2.16)

Therefore, due to (2.13) and (2.16), we find
∑

|�|≤6

‖Z�A‖L∞
x3

(L2
h ) ≤C + C

∑

|�|≤6

‖Z�(JA)‖L∞
x3

(L2
h )

∑

|�|≤4

‖Z�(J−1)‖L∞

+ C
∑

|�|≤6

‖Z�(J−1)‖L∞
x3

(L2
h)

∑

|�|≤4

‖Z�(JA)‖L∞

≤C (1 + t
1
2P(C)).

For the high order estimate, similar to the proof of (2.9), by using Lemma 2.2, we achieve

‖∇η0

(∫ t

0
∇vds

)2

‖X12 + ‖(∇η0)
2
∫ t

0
∇vds‖X12 + ‖

(∫ t

0
∇vds

)3

‖X12 ≤ C t
1
2P(C),

(2.17)

and then

‖(J , JA)‖X12 ≤ C
(
‖∇η0‖X12 + ‖∇η0

( ∫ t

0
∇vds

)2‖X12

+ ‖(∇η0)
2
∫ t

0
∇vds‖X12 + ‖

( ∫ t

0
∇vds

)3‖X12

)

≤ C + C t
1
2 ‖D(v)‖L2

t
+ C t‖D(v)‖2

L2
t
+ C t

3
2 ‖D(v)‖3

L2
t

≤ C (1 + t
1
2P(C)). (2.18)
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While by virtue of (2.15), (2.18) and Lemma 2.3, we deduce that

‖J−1‖X12 ≤ C (1 + t
1
2P(C)),

and

‖A‖X12 = ‖JA J−1‖X12 ≤ C (1 + t
1
2P(C)),

which completes the proof of Lemma 2.4. ��
Based on the above lemma, we may get the following estimates.

Lemma 2.5 Under the assumptions in Lemma 2.4, there hold
∑

0≤| j |≤1

‖Z j (JA) ∇v‖X11 ≤ C ‖∇v‖X11 + t
1
2P(C)D(v),

∑

0≤| j |≤1

‖Z j (A) ∇v‖X11 ≤ C ‖∇v‖X11 + t
1
2P(C)D(v),

‖∇Av‖X12 ≤ C ‖∇v‖X12 + t
1
2P(C)D(v),

‖SJA(v)‖X12 ≤ C ‖∇v‖X12 + t
1
2P(C)D(v). (2.19)

Proof We mainly utilize Lemmas 2.3, 2.4 to prove (2.19). So one may focus only on the
proof of the first inequality in (2.19), and the proofs of the others are the same as it, whose
details will be omitted here.

First, by the definition of JA, we split
∑

0≤| j |≤1 ‖∇v Z j (JA)‖X11 into three parts:
∑

0≤| j |≤1

‖Z j (JA) ∇v‖X11

≤ C
∑

0≤| j |≤1

‖∇v Z j∇η0‖X11 + C
∑

0≤| j |≤1

‖∇v Z j
(

∇η0

∫ t

0
∇vds

)

‖X11

+ C
∑

0≤| j |≤1

‖∇v Z j
(∫ t

0
∇vds

)2

‖X11 �
3∑

i=1

Ii . (2.20)

For I1, we have

I1 ≤ C ‖∇v‖X11 . (2.21)

For I2, taking g = ∇v and f = JA in (2.7) in Lemma 2.3 to obtain that

I2 ≤ C‖∇v‖X11

∑

|�|≤6

‖Z j∇η0

∫ t

0
∇vds‖L∞

x3
(L2

h )

+ C
∑

|�|≤6

‖Z�∇v‖L∞
x3

(L2
h )‖Z j∇η0

∫ t

0
∇vds‖X12 .

Applying Lemma 2.2 and (2.14), (2.17) in Lemma 2.4 to get

I2 ≤ t
1
2P(C)‖∇v‖X11 + Ct

1
2P(C)D(v) ≤ t

1
2P(C)D(v). (2.22)

Similarly, we have

I3 ≤ t
1
2P(C)D(v). (2.23)
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Plugging the estimates (2.21)–(2.23) into (2.20), we prove
∑

0≤| j |≤1

‖Z j (JA) ∇v‖X11 ≤C ‖∇v‖X11 + t
1
2P(C)D(v),

which ends our proof. ��
Next we recall a version of Korn’s inequality involving only the deviatoric part D0.

Lemma 2.6 (Korn’s lemma, Theorem 1.1 in [5]) Let n ≥ 3 and U be a Lipschitz domain in
R

n, then there exists a constant C, independent of f , such that

‖ f ‖H1(U ) ≤ C (‖D0( f )‖L2(U ) + ‖ f ‖L2(U ))

for all f ∈ H1(U ).

3 A priori estimates

In this section, we give a priori estimates of the system (1.18). The main result of the section
is as follows:

Proposition 3.1 Assume (ξ, v) is a smooth solution of system (1.18) on [0, T̄ ] with initial
data (ξ0, v0) ∈ Fκ × (X12

1
2

∩ H1) and 0 < 2σ0 ≤ J0 ≤ 3σ0, and ρ satisfies (1.11)–(1.13).

Then, there exists a positive constant T ≤ T̄ which depends on the initial data such that

sup
t∈[0,T ]

E(t) +
∫ T

0
D(s)ds ≤ 2E(0).

Here, we use the bootstrap argument to prove this proposition. Now, we define a T such
that there holds that

‖D(v)‖L2(0,T ) ≤ C, σ0 ≤ sup
t∈[0,T ]

J ≤ 4σ0. (3.1)

Before, we give the proof of the proposition, we prove some useful lemmas.

Lemma 3.2 Under the assumption of Proposition 3.1, we have

‖∇v‖L1(0,t;L∞) ≤ t
1
2P(C), ‖(J , A)(t)‖L∞ ≤ C (1 + t

1
2P(C)), ∀ t ∈ [0, T ).

Proof It is a direct result from Lemma 2.2 and Lemma 2.4. ��
Lemma 3.3 Under the assumption of Proposition 3.1, the following holds

‖∇v‖X N ≤ C (‖D0(v)‖X N + ‖v‖X N
1
2

). (3.2)

Proof Thanks to Korn’s lemma (Lemma 2.6), we have

‖v‖H1 ≤ C0(‖D0(v)‖L2 + ‖v‖L2).

For any function f (s), by Lemma 2.1, we have
∫ 1

0
f 2ds ≤ C0

∫ 1

0
s2( f 2 + f ′2)ds
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By scaling, we have
∫ 1

1−ε

f 2ds ≤ C0

ε2

∫ 1

1−ε

(1 − s)2 f 2ds + C0

∫ 1

1−ε

(1 − s)2 f ′2ds.

Then (1.12) gives that

‖ f ‖2L2 ≤ C ‖ρ−1‖L∞(0≤x3≤1−ε)

∫

�

ρ f 2dx + C ε2‖ f ‖2H1 ≤ C

ε

∫

�

ρ f 2dx + C ε2‖ f ‖2H1 .

(3.3)

Taking ε small enough and f := v, we combine with Lemma 2.6 to get that

‖v‖H1 ≤ C (‖D0(v)‖L2 + ‖ρ 1
2 v‖L2).

For given m ∈ N
3: 1 ≤ |m| ≤ N ,

‖Zmv‖H1 ≤C (‖D0(Zmv)‖L2 + ‖ρ 1
2 Zmv‖L2)

≤C (‖Zm
D
0v‖L2 + ‖[D0, Zm]v‖L2 + ‖ρ 1

2 Zmv‖L2),

which follows from the fact [D0, Zm]v ∼ Zm−1 ∇ v that

‖Zmv‖H1 ≤ C (‖Zm
D
0v‖L2 + ‖Zm−1∇ v‖L2 + ‖ρ 1

2 Zmv‖L2).

Therefore, by a standard inductive argument in terms of m = 0, 1, . . . , N and the definition
of space X N , we prove (3.2). ��
Lemma 3.4 Let the initial flow map η0 = I d + ξ0 : � → �(0) satisfy its Jacobian 2σ0 ≤
J0 ≤ 3σ0 and ξ0 ∈ Fκ , and its inverse map η−1

0 : �(0) → �, v(x) = ũ(η0(x)) with x ∈ �

and ũ(y) = v(η−1
0 (y)) with y ∈ �(0), then there is a positive constant C1 ≥ 1 such that

C−1
1 (1 + ‖ξ0‖2Fκ

)−1
∫

�

|∇ v|2 dx ≤
∫

�(0)
|∇y ũ(y)|2 dy ≤ C1(1 + ‖ξ0‖2Fκ

)

∫

�

|∇ v|2 dx .

(3.4)

Proof First, taking changes of variables y = η0(x), we have
∫

�(0)
|∇y ũ(y)|2 dy =

∫

�

|∇y v(x)|2 d(η0(x)) =
∫

�

|(Dy(η
−1
0 ))(η0(x))∇x v(x)|2 J0dx,

which along with the assumptions 2σ0 ≤ J0 ≤ 3σ0, ξ0 ∈ Fκ , and (2.2) implies
∫

�(0)
|∇y ũ(y)|2 dy ≤ C‖(Dy(η

−1
0 ))(η0(x))‖2L∞

∫

�

|∇x v(x)|2 dx

≤ C1(1 + ‖ξ0‖2Fκ
)

∫

�

|∇ v|2 dx .

Similarly, one may readily check
∫

�

|∇x v(x)|2 dx =
∫

�(0)
|(Dxη0)(η

−1
0 (y))∇y ũ(y)|2 J−1

0 dy

≤ C1(1 + ‖ξ0‖2Fκ
)

∫

�(0)
|∇y ũ(y)|2 dy.

Therefore, we get (3.4), and complete the proof of Lemma 3.4. ��
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Lemma 3.5 Under the assumption of Proposition 3.1, if (3.1) holds, then we have

(c0 − t2P(C))‖∇v‖2L2 − C0‖ρ 1
2 v‖2L2 ≤ ‖D0

Av‖2L2 ≤ C0(1 + t2P(C))‖∇v‖2L2 .

Moreover, if T is small enough such that T
1
2P(C) < c0

2 , then we have

∫

�

JSAv : ∇Av dx ≥ c1‖D0
Av‖2L2 ≥ c0c1

2
‖∇v‖2L2 − C0‖ρ 1

2 v‖2L2 .

Proof We first to prove the first result. According to the fact

JA − J0A0 ∼
(∫ t

0
∇vds

)2

, (3.5)

and A−1
0 = Dη0, combining Lemmas 2.2, 3.2 with (3.1) , we have

‖JA − J0A0‖L∞ ≤C ‖∇v‖2
L1

t L∞ ≤ C tP(C), ‖(A−1
0 ,A0)‖L∞ ≤ C (1 + t

1
2P(C)),

(3.6)

which imply that

‖D0
JA−J0A0

(v)‖2L2 ≤ C ‖JA − J0A0‖2L∞‖∇v‖2L2 ≤ t2P(C)‖∇v‖2L2 , (3.7)

‖D0
J0A0

(v)‖2L2 ≤ C ‖∇v‖2L2 . (3.8)

On the other hand, we use (3.1), the coordinate transformation from � to �(0) and Lemmas
2.6, 3.4 to get that

∫

�

|D0
A0

(v)|2 J0 dx =
∫

�(0)
|D0 (̃u)|2 dx ≥ c1‖∇ ũ‖2L2(�(0)) − C1‖ũ‖2L2(�(0))

≥ c0‖v‖2H1 − C0‖v‖2L2 ,

where ũ = v ◦ η−1
0 . Hence, according to (3.1) and (3.3), we obtain that

‖D0
J0A0

(v)‖2L2 ≥ c0‖v‖2H1 − C0‖ρ 1
2 v‖2L2 ,

which combining with (3.7) gives rise to

(c0 − t2P(C))‖∇v‖2L2 − C0‖ρ 1
2 v‖2L2 ≤ ‖D0

Av‖2L2 ≤ (C0 + t2P(C))‖∇v‖2L2 ,

which we complete the first result. For the second one, we deduce

∫

�

JSAv : ∇Avdx = 1

2

∫

�

(
μ

2
|D0

Av|2 + (λ + 2

3
μ)|∇A · v|2) Jdx

≥ c1‖D0
Av‖2L2 ≥ (c0c1 − t2P(C))‖∇v‖2L2 − C0‖ρ 1

2 v‖2L2 ,

here we used (3.1) in the last step and assumption μ > 0, λ + 2
3μ ≥ 0. Combining with the

first result, we finish this proof. ��
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Zeroth-order estimate of v

Now,we are in a position to give a priori estimates. First, multiplying by v on the first equation
of (1.18) and integrating over �, from the Piola identity (1.21) and boundary conditions, we
get the basic energy estimate:

Proposition 3.6 Assume v is a smooth solution of system (1.18) on [0, T ]. Then, we have

1

2

d

dt

(∫

�

ρ|v|2dx+2
∫

�

ρ2 J−1dx

)

+ 1

2

∫

�

(
μ

2
|D0

Av|2+
(

λ+ 2

3
μ

)

|∇A · v|2
)

Jdx = v0.

First-order estimate of v

Here, to get the higher regularity of the v. We multiply ∂tv on the both sides of (1.18) to get
that

Proposition 3.7 Assume that (3.1) holds and v is a smooth solution of system (1.18) on [0, T ],
then there holds that for t ∈ [0, T ]

1

2

d

dt

∫

�

(
μ

2
|D0

Av|2 +
(

λ + 2

3
μ

)

|∇A · v|2
)

J dx + ‖ρ 1
2 ∂tv‖2L2

≤ (C + t
1
2P(C))(D(v)‖∇v‖2L2 + 1).

Proof Taking L2 product with ∂tv to the first equation of (1.18) to get that

‖ρ 1
2 ∂tv‖2L2 +

∫

�

∇JA(ρ2 J−2) · ∂tvdx −
∫

�

∇JA · SA(v) · ∂tvdx = 0.

Due to the Piola identity (1.21) and the boundary condition SA(v) ·N |x3=1 = 0 and v|x3=0 =
0, integration by parts yields

−
∫

�

∇JA · SA(v) · ∂tvdx =
∫

�

SJA(v) : ∂t (∇Av)dx −
∫

�

SJA(v) : ∇∂tAvdx .

Since DA(v) and (∇A · v)I are symmetric, it implies that
∫

�

SJA(v) : ∂t (∇Av)dx =
∫

�

(μDJA(v) + λ(∇JA · v)I) : ∂t (∇Av)dx

= μ

2

∫

�

DJA(v) : ∂tDA(v)dx + λ

∫

�

∇JA · v ∂t (∇A · v)

= 1

2

d

dt

∫

�

J
(μ

2
|D0

Av|2 +
(
λ + 2

3
μ

)
|∇A · v|2

)
dx

− 1

2

∫

�

∂t J
(μ

2
|DA(v)|2 + λ|∇A · v|2

)
dx

= 1

2

d

dt

∫

�

SJA(v) : ∇Av dx − 1

2

∫

�

SA(v) : ∇Av∂t J dx,

which gives that

−
∫

�

∇JA · SA(v) · ∂tvdx = 1

2

d

dt

∫

�

J

(
μ

2
|D0

Av|2 +
(

λ + 2

3
μ

)

|∇A · v|2
)

dx

− 1

2

∫

�

SA(v) : ∇Av∂t J dx −
∫

�

SJA(v) : ∇∂tAv dx .
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To estimate the last two terms of right hand of the above equation, we recall that formula
(1.19)–(1.20), Lemmas 2.2 and 3.2 to get that

‖∂t J , ∂tA‖L∞ ≤ C ‖A‖2L∞‖∇v‖L∞ ≤ (C + t
1
2P(C))D(v),

which implies that
∣
∣
∣
∣

∫

�

SA(v) : ∇Av∂t J dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

SJA(v) : ∇∂tAv dx

∣
∣
∣
∣

≤ (C + t
1
2P(C))D(v)‖JA‖L∞‖∇v‖2L2 ≤ (C + t

1
2P(C))D(v)‖∇v‖2L2 .

For the pressure term, we notice it contains ρ2. Thus, we have

ρ− 1
2 ∇JA(ρ2 J−2) = ρ− 1

2 ∂k(J−1Ak
i ρ

2) = ρ− 1
2

(
J−1Ak

i ∂kρ
2 + ∂k(J−2)JAk

i ρ
2
)
,

which implies that for all t ∈ [0, T ], we have
‖ρ− 1

2 ∇JA(ρ2 J−2)‖L2 ≤ ‖ρ 1
2 ρ′‖L∞(C + t

1
2P(C))‖A‖L2

+(C + t
1
2P(C))‖Z J‖L∞‖JA‖L2

≤ C + t
1
2P(C),

where we used Lemma 2.4. Thus, by Hölder’s inequality, we get
∣
∣
∣

∫

�

∇JA(ρ2 J−2) ∂tvdx
∣
∣
∣ ≤ ‖ρ 1

2 ∂tv‖L2‖ρ− 1
2 ∇JA(ρ2 J−2)‖L2

≤ (C + t
1
2P(C))‖ρ 1

2 ∂tv‖L2 ≤ C + t
1
2P(C) + 1

2
‖ρ 1

2 ∂tv‖2L2 .

This ends the proof of Proposition 3.7. ��

High-order estimates of v

In this subsection, we use the conormal derivative to get the regularity of the horizontal
direction. For this, we recall the conormal Sobolev space with a parameter δ introduced
by Masmoudi and Rousset [34].

‖ f ‖2
X N

α,δ

:=
N∑

|m|=0

δ2|m|‖ρα Zm f ‖2L2 , ‖ f ‖2
Ẋ N

α,δ

:=
N∑

|m|=1

δ2|m|‖ρα Zm f ‖2L2 ,

where δ is a small positive constantwhichwill be determined later on andα ∈ R. In particular,
when δ = 1, the spaces X N

α,δ and Ẋ N
α,δ will be denoted by X N

α and Ẋ N
α respectively for

simplicity.
For T > 0, δ > 0, and t ∈ [0, T ], we define the modified instantaneous energy Eδ(t) (in

terms to the velocity v)

Eδ(t)
def= ‖v‖2

X12
1
2 ,δ

+ ‖v‖2H1 ,

and the modified dissipation Dδ(t)

Dδ(t)
def= ‖∇v‖2

X12
0,δ

+ ‖ρ 1
2 ∂tv‖2L2 .
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In particular, if δ = 1, then Eδ(t) and Dδ(t) become the usual instantaneous energy E(t) and
the dissipation D(t) respectively.

Let’s now state our main results of this subsection:

Proposition 3.8 Assume that (3.1) holds and v is a smooth solution of system (1.18) on [0, T ],
then it holds that

d

dt
‖v‖2

X12
1
2 ,δ

+
(

c0 − δ(C0 + t
1
2P(C))

)
‖∇v‖2

X12
0,δ

≤ t
1
2P(C)D2(v) + C0‖v‖2

X12
1
2 ,δ

+ C0 + t
1
2P(C),

where the positive constants c0 and C0 are independent of δ, and P(C) may depend on δ.

Proof Acting Zm on the first equation of (1.18) and taking L2 inner product with δ2|m| Zmv,
then summing

∑12
|m|=0, we obtain

1

2

d

dt
‖v‖2

X12
1
2 ,δ

−
12∑

|m|=0

δ2|m|
∫

�

Zm(∇JA · SAv
) · Zmv dx = I1 + I2

with

I1 =
12∑

|m|=1

δ2|m|
∫

�

[ρ, Zm]∂tv · Zmv dx,

I2 = −
12∑

|m|=0

δ2|m|
∫

�

Zm(∇JA(J−2ρ2)
) · Zmv dx .

Estimate of dissipation term. For the dissipation term, by using integration by parts, we
split it into three parts:

−
12∑

|m|=0

δ2|m|
∫

�

Zm(∇JA · SAv
) · Zmvdx

=
12∑

|m|=0

δ2|m|
∫

�

JSA(Zmv) : ∇AZmv dx +
12∑

|m|=1

δ2|m|
∫

�

[Zm,SA]v : ∇JA(Zmv)dx

−
12∑

|m|=1

δ2|m|
( ∫

x3=1
N · Zm

h SAv · Zm
h vd S +

∫

�

[Zm,∇JA] · SAv · Zmv dx

)

=: I3 + I4 + I5.

Next, we deal with the commutators I3, I4 and I5 step by step.

• Estimates of I3. Thanks to Lemma 3.5, one can see that for any m : |m| = 0, 1, . . . , 12
∫

�

JSA(Zmv) : ∇AZmv dx

=
∫

�

(
μ

4
|D0

AZmv|2 + λ + 2
3μ

2
|∇A · Zmv|2

)

J dx

≥ c1‖D0
AZmv‖2L2 ≥ c1

(

(c0 − t2P(C))‖∇(Zmv)‖2L2 − C0‖ρ 1
2 Zmv‖2L2

)

,
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which implies

12∑

|m|=0

δ2|m|
∫

�

JSA(Zmv) : ∇AZmv dx ≥
12∑

|m|=0

δ2|m|c1
(
1

2
(c0 − t2P(C))‖Zm∇ v‖2L2

− 1

2
(c0 + t2P(C))‖[∇, Zm]v‖2L2 − C0‖ρ 1

2 Zmv‖2L2

)

, (3.9)

For |m| ≥ 1, by a direct calculation, we have

[∇, Zm] = m∇ρZm−1∂3, (3.10)

which implies that

12∑

|m|=1

δ2|m| c1
2

(c0 + t2P(C))‖[∇, Zm]v‖2L2 ≤ (C0 + t2P(C))δ2‖∇v‖2
X11
0,δ

. (3.11)

Plugging (3.11) into (3.9) shows

12∑

|m|=0

δ2|m|
∫

�

JSA(Zmv) : ∇AZmv dx

≥ (c2 − t2P(C))‖∇ v‖2
X12
0,δ

− (C0 + t2P(C))δ2‖∇v‖2
X11
0,δ

− C0‖v‖2
X12

1
2 ,δ

.

• Estimates of I4. For |m| ≥ 1, by a direct calculation, we have

[Zm,DA]v = Zm
(
Ak

i ∂kv j + Ak
j∂kvi

)
−

(
Ak

i ∂k(Zmv j ) + Ak
j∂k(Zmvi )

)

= Ak
i [Zm, ∂k]v j + Ak

j [Zm, ∂k]vi

+
∑

|m1|+|m2|=|m|,
|m1|≥1

(Zm1Ak
i Zm2∂kv j + Zm1Ak

j Zm2∂kvi )

= m∂kρA3
i Zm−1∂3v j + m∂kρA3

j Zm−1∂3vi

+
∑

|m1|+|m2|=|m|,
|m1|≥1

(Zm1Ak
i Zm2∂kv j + Zm1Ak

j Zm2∂kvi ).

By Lemmas 2.5, 3.2, we have

δ|m|‖[Zm,DA]v‖L2 ≤ δ
(
(C0 + t

1
2P(C))‖∇v‖X11

0,δ
+ C0‖∇v‖X11

0,δ
+ t

1
2P(C)D(v)

)

≤ δ
(

C0‖∇v‖X11
0,δ

+ t
1
2P(C)D(v)

)
.

By the same argument, we have

δ|m|‖[Zm, divA]v‖L2 ≤ δ
(

C0‖∇v‖X11
0,δ

+ t
1
2P(C)D(v)

)
.

Combining the above two estimates, we have

I4 ≤δ(C0 + t
1
2P(C))(δ‖∇v‖X11

0,δ
+ ‖∇v‖X12

0,δ
)(C0‖∇v‖X11

0,δ
+ t

1
2P(C)D(v))

≤δ(C0 + t
1
2P(C))‖∇v‖2

X12
0,δ

+ t
1
2P(C)D(v)2.

123



Local well-posedness of the vacuum free boundary of 3-D… Page 21 of 35 166

• Estimates of I5. A direct calculation gives that

[Zm,∇JA] · SAv = Zm(JAk
i ∂k(SAv)i ) − ∂k(JAk

i (Zm(SAv))i )

= ∂k

(
Zm(JAk

i (SAv)i )− JAk
i (Zm(SAv))i

)
+[Zm, ∂k](JAk

i (SAv)i ).

(3.12)

For the commutator term, we see

[Zm, ∂3] = −m∂3ρZm−1∂3 ∼ Zm−1∂3, [Zm, ∂h] = −m∂hρZm−1∂3 ∼ Zm, (3.13)

where we used (1.13). Then one has
∣
∣
∣

∫

�

[Zm, ∂k](JAk
i (SAv)i ) · Zmvdx

∣
∣
∣

≤ C0

∣
∣
∣

∫

�

Zm−1∂3(JAk
i (SAv)i ) · Z3Zm−1vdx

∣
∣
∣

+ C0

∣
∣
∣

∫

�

Zm(JAk
i (SAv)i ) · Zmvdx

∣
∣
∣ ≤ C0

∣
∣
∣

∫

�

Zm(JAk
i (SAv)i ) · Zm−1∇vdx

∣
∣
∣,

which combining with Lemma 2.5 follows

∣
∣
∣

12∑

|m|=1

δ2|m|
∫

�

[Zm, ∂k](JAk
i (SAv)i ) · Zmvdx

∣
∣
∣

≤ δ(C0‖∇v‖X12
0,δ

+ t
1
2P(C)D(v))‖∇v‖X11

0,δ
.

Now, we deal with the first term of the right hand of (3.12). By using integration by parts,
one has

12∑

|m|=1

δ2|m|
∫

�

∂k

(
Zm(JAk

i (SA(v))i ) − JAk
i (Zm(SA(v)))i

)
· Zmvdx

= −
12∑

|m|=1

δ2|m|
∫

�

(
Zm(JAk

i (SA(v))i ) − JAk
i (Zm(SA(v)))i

)
· ∂k Zmvdx

+
12∑

|m|=1

δ2|m|
∫

x3=1

(
Zm

h (JA3
i e3(SA(v))i ) − JA3

i e3(Zm
h (SA(v)))i

)
· Zm

h vd S.

Because of SA(v)N = 0 on the boundary {x3 = 1}, JA3
i e3 = N , and Zm

h (SAvN ) = 0 on
{x3 = 1}, the second term on the above equality plus the second term of I5 is zero:

12∑

|m|=1

δ2|m|
∫

x3=1

(
Zm

h (N (SA(v))) − N (Zm
h (SA(v)))

)
Zm

h vd S

+
12∑

|m|=1

δ2|m|
∫

x3=1
N Zm

h SA(v) Zm
h vd S = 0.

Hence, all we left is to deal with the commutator
∫

�

(
Zm(JAk

i (SA(v))i ) − JAk
i (Zm(SA(v)))i

)
· ∂k Zmvdx .
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By the same arguments as I4 and using Lemma 2.2–2.5, we deduce that

∣
∣
∣

12∑

|m|=1

δ2|m|
∫

�

(
Zm(JAk

i (SA(v))i ) − JAk
i (Zm(SA(v)))i

)
· ∂k Zmvdx

∣
∣
∣

≤ δ(C0 + t
1
2P(C))‖∇v‖2

X12
0,δ

+ t
1
2P(C)D(v)2.

Combining all the above estimates, we get that

I5 ≤ δ(C0 + t
1
2P(C))‖∇v‖2

X12
0,δ

+ t
1
2P(C)D(v)2.

So far, we obtain

−
12∑

|m|=0

δ2|m|
∫

�

Zm(∇JA · SAv
) · Zmvdx

≥
(

c2 − δ(C0 + t
1
2P(C))

)
‖∇v‖2

X12
0,δ

− C0‖v‖2
X12

1
2 ,δ

− t
1
2P(C)D(v)2.

Estimate of I2. Now, we deal with the pressure.

I2 =
12∑

|m|=0

δ2|m|
∫

�

∂k Zm(Ak
i J−1ρ2) · Zmvi dx

+
12∑

|m|=1

δ2|m|
∫

�

[Zm, ∂k]
(Ak

i J−1ρ2) · Zmvi dx � I21 + I22.

• Estimates of I22. Since Zmρ2 ∼ ρ2 for any m, we use (3.10) and Lemmas 2.3–2.4 to get

I22 ≤ δ(C0 + t
1
2P(C))‖∇v‖X11

0,δ
.

• Estimates of I21. Because of ρ|x3=1 = 0, the boundary terms vanish when we integrate
by parts. By the same argument as I5, it is easy to see I21 is bounded by

I21 ≤ (C0 + t
1
2P(C))(‖∇v‖X12

0,δ
+ δ‖∇v‖X11

0,δ
).

Combining the two estimates, we get

I2 ≤ (C0 + t
1
2P(C))(‖∇v‖X12

0,δ
+ δ‖∇v‖X11

0,δ
).

Estimate of I1. For m ≥ 1, it holds that

[ρ, Zm] ∼
m−1∑

k=0

fk Zk(ρ·).

where fk are smooth functions which are defined by ρ. Thus

I1 ≤ C0

12∑

|m|=1

m−1∑

k=0

δ2|m|
∣
∣
∣

∫

�

Zk(ρ∂tv) · Zmvdx
∣
∣
∣

= C0

12∑

|m|=1

m−1∑

k=0

δ2|m|
∣
∣
∣

∫

�

Zk(−∇JA(J−2ρ2) + ∇JA · SAv) · Zmvdx
∣
∣
∣.
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From the formula above, I1 can be regarded as lower term to I2 plus dissipation term with
the highest order 11. Since k ≤ m − 1, extra δ is left. Thus, we have

I1 ≤ δ(C0 + t
1
2P(C))(‖∇v‖X12

0,δ
+ δ‖∇v‖X11

0,δ
)

+ δ(C0 + t
1
2P(C))(C0‖∇v‖X11

0,δ
+ t

1
2P(C)D(v))‖∇v‖X12

0,δ
.

Collecting all estimates together, we finally obtain

d

dt
‖v‖2

X12
1
2 ,δ

+
(

c0 − δ(C0 + t
1
2P(C))

)
‖∇v‖2

X12
0,δ

≤ t
1
2P(C)D2(v) + C0‖v‖2

X12
1
2 ,δ

+ C0 + t
1
2P(C),

which implies the desired results. ��

Estimate forD(v)

To close the energy estimates, all we left is the estimate ofD(v) which should be controlled
by the energy.

Lemma 3.9 Assume that (3.1) holds. Then there exists 0 < T ≤ T̄ and δ0 > 0 which depend
on the initial data, σ0 and C such that for any t ∈ [0, T ] and δ ∈ (0, δ0), there holds that

D(v) ≤ CD
1
2
δ (t) + (C + t

1
2P(C))(1 + t

1
2D(v)).

Proof Here we only need to control the term ‖ρκ− 1
2 �v‖L2 . To do that, we go back to the

equation of v. Since

ρ− 1
2+κ∇J0A0 · SA0(v) = ρ− 1

2+κ∇JA · SA(v) + ρ− 1
2+κ

(∇J0A0 · SA0(v) − ∇JA · SA(v)
)

= ρ− 1
2+κ

(
− ρ∂tv − ∇JA(J−2ρ2)

)

+ ρ− 1
2+κ

(∇J0A0 · SA0(v) − ∇JA · SA(v)
)
,

which implies that

‖ρ− 1
2+κ∇J0A0 · SA0(v)‖L2 ≤ ‖ρ 1

2 ∂tv‖L2 + ‖ρ− 1
2+κ∇JA(J−2ρ2)‖L2

+ ‖ρ− 1
2+κ∇J0A0−JA · SA0(v)‖L2

+ ‖ρ− 1
2+κ∇JA · SA0−A(v)‖L2

� ‖ρ 1
2 ∂tv‖L2 + I1 + I2 + I3.

Owing to Lemma 2.4, we have

I1 ≤ C0 + t
1
2P(C).

For I2, by Lemma 2.1, Lemma 2.4 and (3.5)–(3.6), we have

I2 ≤ ‖J0A0 − JA‖L∞‖ρ− 1
2+κ∇ · SA0(v)‖L2

≤ t
1
2 (C0 + t

1
2P(C))(‖ρ− 1

2+κ∇v‖L2 + ‖ρ− 1
2+κ∇2v‖L2)
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≤ t
1
2 (C0 + t

1
2P(C))(‖ρ− 1

2+κ�v‖L2 + ‖ρ− 1
2+κ Zh∂3v‖L2 + ‖ρ− 1

2+κ Z2
hv‖L2 + D(v))

≤ t
1
2 (C0 + t

1
2P(C))(‖ρ− 1

2+κ�v‖L2 + ‖ρ 1
2+κ Zh�v‖L2 + ‖ρ 1

2+κ Z2
h∇v‖L2 + D(v))

≤ t
1
2 (C + t

1
2P(C))D(v).

Similarly, by the fact that

A − A0 = (AJ − A0 J0)J−1 + J−1(J0 − J )A0

and

J − J0 =
∫ t

0
∂t Jds =

∫ t

0
J∇Avds,

combine (3.5) with Lemma 3.2 to get

I3 ≤ t
1
2 (C + t

1
2P(C))D(v).

Collecting all above estimates to obtain

‖ρ− 1
2+κ∇J0A0 · SA0(v)‖L2 ≤‖ρ 1

2 ∂tv‖L2 + (C + t
1
2P(C))(1 + t

1
2D(v)). (3.14)

Next, we give the relationship between �v and ∇J0A0 · SA0(v). It is easy to find that

∇J0A0 · SA0(v) =
⎛

⎜
⎝

μJ−1
0 ∂23v1

μJ−1
0 ∂23v2

(2μ + λ)J−1
0 ∂23v3

⎞

⎟
⎠ + some terms likes Z∇v.

By Lemma 2.1 and the interpolation inequality, we have

‖ρ− 1
2+κ Zh∇v‖L2 ≤ C0‖ρ 1

2+κ Zh∇v‖L2 + C0‖ρ 1
2+κ Zh∇2v‖L2

≤ C0‖∇v‖L2
x3

(H2
h ) + C0‖ρ− 1

2+κ�v‖θ
L2‖ρ�v‖1−θ

L2

≤ Cε‖∇v‖L2
x3

(H2
h ) + ε‖ρ− 1

2+κ�v‖L2 , (3.15)

where we use Young inequality in the last step and θ ∈ (0, 1).
Taking ε small enough and using (3.1), (3.14), (3.15), we have

‖ρ− 1
2+κ�v‖L2 ≤ ‖ρ 1

2 ∂tv‖L2 + (C + t
1
2P(C))(1 + t

1
2D(v)) + C0

δ2
‖∇v‖X12

0,δ
. (3.16)

Combining (3.14) and (3.16), we obtain the desired results. ��

3.1 Proof of Proposition 3.1

Now, from Propositions 3.7 to 3.8, we obtain that

(
c0 − δ(C0 + t

1
2P(C))

)(
sup

τ∈[0,t]
Eδ(τ ) +

∫ t

0
Dδ(τ )

)

≤
(

c0 − δ(C0 + t
1
2P(C))

)
E(0) + t

1
2P(C)(1 + sup

τ∈[0,t]
Eδ(τ )).

123



Local well-posedness of the vacuum free boundary of 3-D… Page 25 of 35 166

Now, we give the estimates of J . By the definition of J , we have

J − J0 =
∫ t

0
∂t Jds =

∫ t

0
J∇Avds,

which implies that

|J − J0| ≤ ‖J‖L∞‖A‖L∞‖∇v‖L1
t L∞ ≤ t

1
2 (C + t

1
2P(C)).

Then by the Lemma 3.9 and standard bootstrap argument, we finish the proof of Proposition
3.1.

4 Local well-posedness

In this section,wewill first give existence and uniqueness of strong solutions of system (1.18),
which ismotivated by themethod in [10]. First, we give some definitions of functional spaces.
Given T > 0, let ỸT and YT are defined by

ỸT � C([0, T ], X0
1
2
) ∩ L2([0, T ], H1),

YT � {v ∈ ỸT ∩ C([0, T ], X12
1
2

∩ H1) : ‖v‖YT < +∞},

where ‖v‖2
ỸT

:= supt∈[0,T ] ‖ρ
1
2 v‖2

L2 + ‖v‖2
L2

T (H1)
and ‖v‖2YT

:= supt∈[0,T ](‖v‖2
X12

1
2

+

‖∇v‖2
L2) + ‖ρ− 1

2+κ�v‖2
L2

T (L2)
+ ‖∇v‖2

L2
T (X12)

+ ‖ρ 1
2 ∂tv‖2

L2
T (L2)

.

Now, we define map � : YT → YT as follows. For any given ṽ ∈ YT , v := �(̃v) is the
solution of the following linear A-equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ∂tv + ∇ J̃Ã(( J̃ )−2ρ2) − ∇ J̃Ã · SÃ(v) = 0 in �,

SÃ(v) Ñ = 0, on �,

v|x3=0 = 0,

v|t=0 = v0 in �.

(4.1)

4.1 Existence and uniqueness of the strong solution to (4.1).

Our aim in this subsection is to construct strong solutions to linear A-equations (4.1).

Lemma 4.1 Assume that ρ
1
2 v0,∇v0 ∈ L2 and ṽ ∈ YT , then there exists a positive time

T1 ∈ (0, T ] such that the system (4.1) has a unique strong solution v with

ρ
1
2 v ∈ C([0, T1], L2), v ∈ C([0, T1], H1),

ρ∂tv ∈ L2(0, T1; (H1)∗), ρ
1
2 ∂tv ∈ L2([0, T1], L2), ρ− 1

2+κ�v ∈ L2([0, T1], L2).

Moreover, the solution satisfies the following estimate

sup
t∈[0,T1]

(‖ρ 1
2 v‖2L2 + ‖∇v‖2L2) + ‖v‖2

L2
T1

(H1)
+ ‖ρ 1

2 ∂tv‖2
L2

T1
(L2)

+ ‖ρ− 1
2+κ�v‖2

L2
T1

(L2)
+ ‖ρ∂tv‖2

L2
T1

(H1)∗ ≤ C0‖ρ 1
2 v0‖2L2 + C0‖∇v0‖2L2 + C0(1 + T1).
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Proof We split the proof of the lemma into four steps.
Step 1: Galerkin approximation. We first use Galerkin method to construct approximate

solutions of the system (4.1). Let {wk}∞k=1 are orthonormal basis of H1(�) which satisfy
boundary condition SÃ(wk) Ñ |x3=1 = 0 and wk |x3=0 = 0 and set approximate solution
with the form

vm(t, x) :=
m∑

k=1

dm
k (t)wk(x), dm

k (t) will be determined later on,

which solves the linear system
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tv
m + ∇ J̃Ã(( J̃ )−2ρ2) − ∇ J̃Ã · SÃ(vm) = 0. in �,

SÃ(vm) Ñ = 0, on �,

vm |x3=0 = 0,

vm |t=0 = vm
0 =

m∑

k=1

dm
k (0)wk(x) in �

(4.2)

in the sense of the distribution, where dm
k (0) = ∫

�
v0wk for k = 1, . . . , m.

Taking the test function φ = w�, � = 1, . . . , m, from the weak formula of the system
(4.2), we obtain the following ordinary differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑m
k=1

∫

�
ρwkw�dx dm

k (t)′+∑m
k=1

∫

�
SÃwk : ∇ J̃Ãw�dx dm

k (t)

= ∫

�
ρ2 J̃−2∇ J̃Ã · w�dx,

dm
k (0) = ∫

�
v0wk .

(4.3)

Notice that the matrix
( ∫

�
ρwkw�dx

)

m×m
is invertible for any m ≥ 1, and the coefficient

∫

�
SÃwk : ∇ J̃Ãw�dx (in front of dm

k (t)) is continuous in terms of t ∈ [0, T ] because of ṽ ∈
YT , we know that (4.3) is a non-generate linearODE systemwith continuous coefficients. Due
to the classical theory of ODE, we find solutions dm

k (t) ∈ C1([0, T ]), k = 1, . . . , m, which
means approximate solutions vm(t, x) exist and belong to the space C1([0, T ], H1(�)).

Step 2: Uniform estimates for vm . Multiplying dm
� (t) on the both sides of (4.3) and taking

the summation in terms of � = 1, . . . , m, one has
∫

�

ρ∂tv
m · vm +

∫

�

SÃ(vm) : ∇ J̃Ãvmdx =
∫

�

ρ2 J̃−2∇ J̃Ã · vmdx .

Then Lemmas 2.4 and 3.3 give that

1

2

d

dt
‖ρ 1

2 vm‖2L2 + c0‖vm‖2H1 ≤
∫

�

ρ2 J̃−2∇ J̃Ã · vmdx + C0‖ρ 1
2 vm‖2L2

≤C0‖∇vm‖L2 + C0‖ρ 1
2 vm‖2L2 , (4.4)

for t small enough.
By Gronwall’s inequality, we know there exists T1 > 0 independent of m such that

sup
t∈[0,T1]

‖ρ 1
2 vm‖2L2 +

∫ T1

0
‖vm‖2H1ds ≤ C0‖ρ 1

2 vm
0 ‖2L2 + C0T1. (4.5)
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For any test function φ ∈ C([0, T ], H1) with φ|x3=0 = 0 and ‖φ‖L2
T H1 ≤ 1, owing to

the weak formula of the system (4.2), we deduce from (4.5) that

|
∫ T1

0
〈ρ∂tv

m, φ 〉 ds|=| −
∫ T1

0

∫

�

SÃ(vm) : ∇ J̃Ãφ dxds+
∫ T1

0

∫

�

ρ2 J̃−2∇ J̃Ã · φ dxds|

≤ (C0 + C0‖∇vm‖L2
T1

L2)‖φ‖L2
T H1 ≤ (C0(1 + T

1
2
1 ) + C0‖ρ 1

2 vm
0 ‖L2)‖φ‖L2

T H1 ,

which follows from the dual argument that

‖ρ∂tv
m‖L2

T1
(H1)∗ ≤ C0(1 + T

1
2
1 ) + C0‖ρ 1

2 vm
0 ‖L2 . (4.6)

Multiplying dm
� (t)′ on the both sides of (4.3) and taking the summation in terms of

� = 1, . . . , m, we have
∫

�

ρ|∂tv
m |2 +

∫

�

SÃ(vm) : ∇ J̃Ã∂tv
mdx =

∫

�

ρ2 J̃−2∇ J̃Ã · ∂tv
mdx .

Similar estimate in Proposition 3.7 implies that

1

2

d

dt

∫

�

J̃SÃ(vm) : ∇Ãvmdx + ‖ρ 1
2 ∂tv

m‖2L2

≤
∣
∣
∣
1

2

∫

�

SÃ(vm) : ∇Ãvm∂t J̃ dx
∣
∣
∣ +

∣
∣
∣

∫

�

J̃SÃ(vm) : ∇∂t Ãvmdx
∣
∣
∣

+
∣
∣
∣

∫

�

ρ2 J̃−2∇ J̃Ã · ∂tv
mdx

∣
∣
∣.

Since ṽ ∈ YT , we infer that
∣
∣
∣
1

2

∫

�

SÃ(vm) : ∇Ãvm∂t J̃ dx
∣
∣
∣ +

∣
∣
∣

∫

�

J̃SÃ(vm) : ∇∂t Ãvm dx
∣
∣
∣ ≤ C‖∇vm‖2L2D(̃v)

and
∣
∣
∣

∫

�

ρ2 J̃−2∇ J̃Ã · ∂tv
mdx

∣
∣
∣ ≤ C0‖ρ 1

2 ∂tv
m‖L2 .

As a result, we get

1

2

d

dt

∫

�

J̃SÃ(vm) : ∇Ãvmdx + ‖ρ 1
2 ∂tv

m‖2L2 ≤C‖∇vm‖2L2D(̃v) + C0‖ρ 1
2 ∂tv

m‖L2 .

Integrating time from 0 to T1 and using ṽ ∈ YT and Lemma 3.9, we obtain

sup
t∈[0,T1]

‖∇vm‖2L2 + ‖ρ 1
2 ∂tv

m‖2
L2

T1
L2

≤ C0‖∇vm
0 ‖2L2 + C0T

1
2
1 sup

t∈[0,T1]
‖∇vm‖2L2(

∫ T1

0
D(̃v)2ds)

1
2 + C0T1.

Taking T1 small enough such that the second term on the right hand side absorbed by the left
hand side, we obtain

sup
t∈[0,T1]

‖∇vm‖2L2 + c0‖ρ 1
2 ∂tv

m‖2
L2

T1
L2 ≤ 2C0‖∇vm

0 ‖2L2 + C0T1. (4.7)
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Combining estimate (4.5), (4.6) and (4.7) together, there holds that

sup
t∈[0,T1]

(‖ρ 1
2 vm‖2L2 + ‖∇vm‖2L2) + ‖vm‖2

L2
T1

H1 + ‖ρ 1
2 ∂tv

m‖2
L2

T1
L2 + ‖ρ∂tv

m‖2
L2

T1
(H1)∗

≤ 2C0‖ρ 1
2 vm

0 ‖2L2 + 2C0‖∇vm
0 ‖2L2 + C0(1 + T1). (4.8)

Step 3: Passing to the limit. Since

sup
t∈[0,T1]

(‖ρ 1
2 vm‖2L2 + ‖∇vm‖2L2) + ‖vm‖2

L2
T1

H1 + ‖ρ 1
2 ∂tv

m‖2
L2

T1
L2 + ‖ρ∂tv

m‖2
L2

T1
(H1)∗

is uniformly bounded, up to the extraction of a subsequence, we know as m → ∞
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ
1
2 vm⇀∗ρ

1
2 v in L∞

T1 L2,

∇vm⇀∗∇v in L∞
T1 L2,

ρ∂tv
m⇀ρ∂tv in L2

T1(H1)∗,
vm⇀v in L2

T1 H1.

(4.9)

By lower semicontinuity and energy estimate (4.8), we use the fact ‖vm(0) − v0‖L2(�) → 0
as m → ∞ to infer that

sup
t∈[0,T1]

(‖ρ 1
2 v‖2L2 + ‖∇v‖2L2) + ‖v‖2

L2
T1

H1 + ‖ρ 1
2 ∂tv‖L2

T1
L2 + ‖ρ∂tv‖2

L2
T1

(H1)∗

≤ 4C0‖ρ 1
2 v0‖2L2 + 4C0‖∇v0‖2L2 + C0(1 + T1), (4.10)

and v is a weak solution to the linear A-equations (4.1). Moreover, according to (4.10), we
may obtain from Aubin–Lions’s lemma [38] that v ∈ C([0, T1], X0

1
2

∩ H1).

Step 4: The strong solution. Now, we prove the above weak solution v is a strong one. In
fact, for a.e t ∈ [0, T ], v(t) is a weak solution to the elliptic system in the sense of

∫

�

SÃ(v) : ∇ J̃Ãφ dx =
∫

�

(
∇ J̃Ã(ρ2 J̃−2) − ρ∂tv

)
φdx (4.11)

for φ ∈ H1. Since ρ− 1
2

(
∇ J̃Ã(ρ2 J̃−2)−ρ∂tv

)
∈ L2 for a.e t ∈ [0, T ], by elliptic regularity

theory, we know this system admires a strong solution v solving (4.1) with ρ− 1
2+κ�v ∈

L2([0, T ], L2). The uniqueness comes from energy estimates with zero initial data. ��

4.2 High regularity of v

In this subsection, we prove when ṽ ∈ YT , so does v := �(̃v). It is mainly based on the
priori estimates in Sect. 3.

Lemma 4.2 Assume that v is a strong solution obtained in Lemma 4.1 and ṽ ∈ YT with initial
data v0 ∈ Y0, then we have v ∈ YT1 and satisfies

‖v‖YT1
≤ CT1 + C0‖v0‖Y0 ,

where the constant C depends on ‖̃v‖YT .
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Proof We take Ã, J̃ instead of A, J respectively in those estimates in Propositions 3.7 and
3.8. System (4.1) is a linear system due to Ã, J̃ are regarded as known quantities, so for small
T1 > 0, it is easy to arrive at the following estimate:

‖vm‖YT1
≤ CT1 + C0‖vm

0 ‖Y0 .

Passing to the limit, we get the desired results. ��
Remark 4.3 By Lemma 4.2, we know that � : YT1 → YT1 is well-defined.

4.3 Contraction

By Lemmas 4.1 and 4.2, we know that if ṽ ∈ YT with T > 0 sufficiently small , we can find
a unique strong solution of equation (4.1) with regular v = �(̃v) ∈ YT . In order to construct
the solution to (1.18), we need to construct approximate solutions. The approximate solutions
{ξ (n), v(n)}∞n=1 we defined are iterated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tξ
(n) = v(n) in �,

ρ∂tv
(n) + ∇J (n−1)A(n−1) ((J (n−1))−2ρ2) − ∇J (n−1)A(n−1) · SA(n−1) (v

(n)) = 0 in �,

SA(n−1) (v
(n)) N (n−1) = 0, on �,

v(n)|x3=0 = 0,

(ξ (n), v(n)|t=0 = (ξ0, v0) in �.

(4.12)

with {ξ (1), v(1)} be the solution of linear equation
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tξ
(1) = v(1) in �,

ρ∂tv
(1) + ∇J0A0(ρ

2 J−1
0 ) − ∇J0A0 · SA0(v

(1)) = 0 in �,

SA0(v
(1)) N0 = 0, on �,

v(1)|x3=0 = 0,

(ξ (1), v(1)|t=0 = (ξ0, v0) in �,

(4.13)

where A0, J0 are given by η0(x) = x + ξ0(x) and N0 = ∂1η0 × ∂2η0 on {x3 = 1}. Since
(4.12) is a decouple linear system in terms of ξ (n) and v(n), we need only to solve first v(n)

then ξ (n) according to the first equation in (4.12). Notice that (4.13) is linear, the assumption
on initial data ‖v0‖2Y0 := ‖v0‖2X12

1
2

+ ‖∇v0‖2L2 ≤ M
2C0

guarantees that v(1) ∈ YT with bound

‖v(1)‖2YT
≤ M . By Lemma 4.2, we obtain {v(n)}∞n=1 ⊂ YT for any n ≥ 1.

Next, our goal in this subsection is to prove sequence {v(n)}∞n=1 is contracted under norm
ỸT .
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First of all, we deduce σ(v(n)) � v(n+1) − v(n) satisfies the following equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tσ(v(n)) −
(
∇J (n)A(n) · SA(n)v

(n+1) − ∇J (n−1)A(n−1) · SA(n−1)v
(n)

)

+
(
∇J (n)A(n)

(
(J (n))−2ρ2) − ∇J (n−1)A(n−1)

(
(J (n−1))−2ρ2)

)
= 0 in �,

SA(n)v
(n+1) N (n) − SA(n−1)v

(n) N (n−1) = 0, on �,

σ(v(n))|x3=0 = 0,

σ (v(n))|t=0 = v
(n+1)
0 − v

(n)
0 = 0 in �.

(4.14)

Lemma 4.4 Assume that {v(n)}∞n=1 be the solutions of Eq. (4.12) with bound ‖v(n)‖2YT
≤ M

for each n ≥ 1. It holds that

d

dt
‖ρ 1

2 σ(v(n))‖2L2 + ‖σ(v(n))‖2H1 ≤ Ct‖σ(v(n−1))‖2
L2

t L2(1 + D(σ (v(n)))2).

Moreover, taking T small enough, the sequence v(n) is a Cauchy sequence in the space ỸT .

Proof Taking L2 inner product between (4.14) and σ(v(n)), we obtain

1

2

d

dt
‖ρ 1

2 σ(v(n))‖2L2 −
∫

�

(
∇J (n)A(n) · SA(n)v

(n+1) − ∇J (n−1)A(n−1) · SA(n−1) v
(n)

)
σ(v(n))dx

= −
∫

�

(
∇J (n)A(n)

(
(J (n))−2ρ2) − ∇J (n−1)A(n−1)

(
(J (n−1))−2ρ2)

)
σ(v(n))dx .

Estimate of dissipation term. Since

e3 J (n)(A(n))3i = N (n), e3 J (n−1)(A(n−1))3i = N (n−1)

and

SA(n) (v
(n+1)) N (n) − SA(n−1) (v

(n)) N (n−1) = 0 on �,

we get by using integration by parts that

−
∫

�

(
∇J (n)A(n) · SA(n)v

(n+1) − ∇J (n−1)A(n−1) · SA(n−1)v
(n)

)
σ(v(n))dx

=
∫

�

(
J (n)(A(n))k

i (SA(n)v
(n+1))i

l − J (n−1)(A(n−1))k
i (SA(n−1)v

(n))i
l

)
∂kσ(v

(n)
l )dx .

=
∫

�

J (n)A(n)
SA(n)σ (v(n)) · ∂kσ(v

(n)
l )dx

+
∫

�

(J (n)A(n) − J (n−1)A(n−1))SA(n) (v
(n)) · ∂kσ(v

(n)
l )dx

+
∫

�

J (n−1)A(n−1) · S(
A(n)−A(n−1)

)v(n) · ∂kσ(v
(n)
l )dx

123



Local well-posedness of the vacuum free boundary of 3-D… Page 31 of 35 166

Under the assumption ‖v(n)‖2YT
≤ M , we have

−
∫

�

(
∇J (n)A(n) · SA(n)v

(n+1) − ∇J (n−1)A(n−1) · SA(n−1)v
(n)

)
σ(v(n))dx

≥ c0‖σ(v(n))‖2H1 − C0‖ρ 1
2 σ(v(n))‖2L2

−
∣
∣
∣

∫

�

(J (n)A(n) − J (n−1)A(n−1))SA(n) (v
(n)) : ∇σ(v(n))dx

∣
∣
∣

−
∣
∣
∣

∫

�

J (n−1)A(n−1) · S(
A(n)−A(n−1)

)v(n) : ∇σ(v(n))dx
∣
∣
∣

� c0‖σ(v(n))‖2H1 − C0‖ρ 1
2 σ(v(n))‖2L2 − I1 − I2,

where we use |J (n)| ≥ σ0 and Lemma 3.5 for A(n).

For I1, owing to

J (n)A(n) − J (n−1)A(n−1) = (∇(η(n) − η(n−1))
)∗

=
(∫ t

0
∇σ(v(n−1))ds

)∗
∼

(∫ t

0
∇σ(v(n−1))ds

)2

,

then

‖J (n)A(n) − J (n−1)A(n−1)‖L2

≤ Ct‖∇σ(v(n−1))‖L2
t L2‖D(σ (v(n−1)))‖L2

t
≤ Ct‖∇σ(v(n−1))‖L2

t L2 .

Applying Holder inequality and Lemma 3.2 to A(n), one has

I1 ≤ ‖J (n)A(n) − J (n−1)A(n−1)‖L2‖A(n)‖L∞‖∇v(n)‖L∞‖∇σ(v(n))‖L2

≤ Ct‖∇σ(v(n−1))‖L2
t L2D(v(n))‖∇σ(v(n))‖L2 .

Similarly, we have

I2 ≤ Ct‖∇σ(v(n−1))‖L2
t L2D(v(n))‖∇σ(v(n))‖L2 .

Combining all above estimates, we obtain

−
∫

�

(
∇J (n)A(n) · SA(n)v

(n+1) − ∇J (n−1)A(n−1) · SA(n−1)v
(n)

)
σ(v(n))dx

≥ 3

4
c0‖σ(v(n))‖2H1 − C0‖ρ 1

2 σ(v(n))‖2L2 − Ct2‖∇σ(v(n−1))‖2
L2

t L2D(v(n))2.

Estimate of pressure term. Integrating by parts and using ρ|x3=1 = 0, σ (v(n))|x3=0 = 0, we
prove that

−
∫

�

(
∇J (n)A(n)

(
(J (n))−2ρ2) − ∇J (n−1)A(n−1)

(
(J (n−1))−2ρ2)

)
σ(v(n))dx

=
∫

�

(
A(n)

(
(J (n))−1ρ2) − A(n−1)((J (n−1))−1ρ2)

)
: ∇σ(v(n))dx

=
∫

�

(A(n) − A(n−1))(J (n))−1ρ2 : ∇σ(v(n))dx
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+
∫

�

A(n−1)((J (n))−1 − (J (n−1))−1)ρ2 : ∇σ(v(n))dx

≤ Ct
1
2 ‖∇σ(v(n−1))‖L2

t L2‖∇σ(v(n))‖L2 .

Collecting all above estimates together, we finally obtain

d

dt
‖ρ 1

2 σ(v(n))‖2L2 + c0
2

‖∇σ(v(n))‖2L2

≤ Ct‖∇σ(v(n−1))‖2
L2

t L2(1 + D(v(n))2) + C0‖ρ 1
2 σ(v(n))‖2L2 . (4.15)

Integrating (4.15) in t ∈ [0, T ] and taking T small enough, we have

sup
t∈[0,T ]

‖ρ 1
2 σ(v(n)(t))‖2L2 + c0

2

∫ T

0
‖σ(v(n)(t))‖2H1dt

≤ ‖ρ 1
2 σ(v(n)(0))‖2L2 + CT ‖∇σ(v(n−1))‖2

L2
T L2(T +

∫ T

0
D(v(n))2dt), (4.16)

and then

sup
t∈[0,T ]

‖ρ 1
2 σ(v(n)(t))‖2L2 + c0

2

∫ T

0
‖σ(v(n)(t))‖2H1dt

≤ CT (T + M)‖∇σ(v(n−1)‖2
L2

T L2 ≤ CT ‖∇σ(v(n−1))‖2
L2

T L2 .

By now, we get that when T takes small enough, then we get

sup
t∈[0,T ]

‖ρ 1
2 σ(v(n)(t))‖2L2 + ‖σ(v(n)(t))‖2

L2
T H1

≤ 1

2
( sup
t∈[0,T ]

‖ρ 1
2 σ(v(n−1)(t))‖2L2 + ‖σ(v(n−1)(t))‖2

L2
T H1),

which completes this Lemma. ��

4.4 Proof of Theorem 1.2.

From Lemma 4.4, we know {v(n)}∞n=1 is Cauchy sequence in the space ỸT . So as n → ∞,

{
ρ

1
2 v(n) → ρ

1
2 v in C([0, T ], L2),

v(n) → v in L2([0, T ], H1).
(4.17)

Due to Lemma 4.2 that ‖v(n)‖2YT
≤ M uniformly in n ≥ 1, sequence {v(n)}∞n=1 have weakly

convergent subsequence. Along with strong convergence (4.17), we infer that as n → 0

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(n)⇀∗v in L∞([0, T ], X12
1
2

),

v(n)⇀v, ∇v(n)⇀∇v in L2([0, T ], X12),

∇v(n)⇀∗∇v in L∞([0, T ], L2),

ρ
1
2 ∂tv

(n)⇀ρ
1
2 ∂tv in L2([0, T ], L2).
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So the function v satisfies equation (1.18) in weak sense. On the other hand, lower semiconti-
nuity gives bound ‖v‖2YT

≤ 2M , and then (1.25) holds. As a result, thanks to Aubin–Lions’s

lemma [38], we get that (v, η) ∈ C([0, T ]; X12
1
2

∩ H1(�)) × C([0, T ];Fκ (�)) by using

a standard procedure (cf. the proof of Theorem 3.5 in [33]), which is a strong solution to
(1.18). The uniqueness comes from L2 energy estimates with zero initial data. More precise,
let (ξ1, v1) and (ξ2, v2) are solutions to (1.18) with same initial data. The same process in
Lemma 4.4 deduce that

‖v1 − v2‖2ỸT
≤ 1

2
‖v1 − v2‖2ỸT

,

which implies v1 = v2 and then ξ1 = ξ2 on the time interval [0, T ]. Furthermore, applying

(4.16) to the system (1.18), we may readily prove that the solution (v, η) ∈ C([0, T ]; X12
1
2

∩
H1(�)) × C([0, T ];Fκ (�)) depends continuously on the initial data (v0, η0) ∈ (X12

1
2

∩
H1(�)) × Fκ (�). This finishes the proof of Theorem 1.2. ��
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