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Abstract

In this paper, we consider the 3-D motion of viscous gas with the vacuum free boundary. We
use the conormal derivative to establish local well-posedness of this system. One of important
advantages in the paper is that we do not need any strong compatibility conditions on the
initial data in terms of the acceleration.

Mathematics Subject Classification 35K65, 35R35, 76N 10

1 Introduction
1.1 Formulation in Eulerian coordinates
In the paper, we consider a 3-D viscous compressible fluid in a moving domain €2 () with

an upper free surface I'(¢) and a fixed bottom I',. This model can be expressed by the 3-D
compressible Navier—Stokes equations(CNS)
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hp+V-(pu)=0 in Q(1),

p@u+u-Vuy+Vp—V-Su) =0 in Q(1),

p>0 in Q), p=0 on I'(r),

VI@)=u-n on I'(), (1.1)
Swm)—phn=0 on I'(2),

ulr, =0 on T,

(P, w)li=0 = (po, uo) in Q(0), €(0) = o,

where V(I'(¢)) denotes the normal velocity of the free surface I'(¢), and n = n(t) is the
exterior unit normal vector of I'(¢), the vector-field u# denotes the Eulerian velocity field, p is
the density of the fluid, and p = p(p) denotes the pressure function. The stress tensor S(u) is
defined by S(u) = uD(u) +A(V-u)I, where the strain tensor D(1) = Vu+Vu T and dynamic
viscosity © and bulk viscosity v are constants which satisty the following relationship

2
w0 h+ pn =0, (1.2)

The deviatoric (trace-free) part of the strain tensor D(u) is then DO(u) = D(u) — %div ul.
The viscous stress tensor in fluid is then given by S(u) = wDOw) + ( + %u)(V ~u) .
Moreover, the pressure obeys the y-law: p(p) = K p?, where K is an entropy constant and
y > 1 is the adiabatic gas exponent.

Equation (1.1); is the conservation of mass; Eq. (1.1), means the momentum conserved,;
the boundary condition (1.1)3 states that the pressure (and hence the density function) van-
ishes along the moving boundary I"(#), which indicates that the vacuum state appears on the
boundary I'(¢); the kinematic boundary condition (1.1)4 states that the vacuum boundary
I'(¢) is moving with speed equal to the normal component of the fluid velocity; (1.1)s means
the fluid satisfies the kinetic boundary condition on the free boundary, (1.1)g denotes the fluid
is no-slip, no-penetrated on the fixed bottom boundary, and (1.1)7 are the initial conditions
for the density, velocity, and domain.

In the paper, we assume the bottom I', = {y3 = b(y3)}, and the moving domain €2 (¢) is
horizontal periodic by setting Tgh with v, := (y1, y2)T for T = R/Z.

1.2 Known results

Whether or not the appearance of vacuum state is related to the regularity of the solution
to the compressible Navier—Stokes equations. Even if there is no vacuum in initial data, it
cannot guarantee that vacuum state will be not generated in finite time in high-dimensional
system. Whence initial data is close to a non-vacuum equilibrium in some functional space,
Matsumura and Nishida [35,36] proved global well-posedness of strong solutions to the
3-D CNS. Moreover, for the one dimensional case, Hoff and Smoller [17] proved that if
the vacuum is not included at the beginning, no vacuum will occur in the future. Hoff and
Serre [16] showed some physical weak solution does not have to depend continuously on
their initial data when vacuum occurs.

When the initial density may vanish in open sets or on the (part of) boundary of the
domain, the flow density may contain a vacuum, the equation of velocity becomes a strong
degenerate hyperbolic-parabolic system and the degeneracy is one of major difficulties in
study of regularity and the solution’s behavior, which is completely different from the non-
vacuum case. For the existence of solutions for arbitrary data (the far field density is vacuum,
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that is, p(¢, x) — 0 as x — 00), the major breakthrough is due to Lions [27] (also see [8,
14,22]), where he obtains global existence of weak solutions, defined as solutions with finite
energy with suitable y. Recently, Li and Xin [26] and Vasseur and Yu [39] independently
studied global existence of weak solutions of CNS whence the viscosities depend on the
density and satisfy the Bresch and Desjardins relation [1]. Yetlittle is known on the structure of
such weak solutions except for the case that some additional assumptions are added (see [15]
for example). Indeed, the works of Xin etc. [24,40] showed that the homogeneous Sobolev
space is as crucial as studying the well-posedness for the Cauchy problem of compressible
Navier—Stokes equations in the presence of a vacuum at far fields even locally in time. Adding
some compatible condition on initial data, Cho and Kim [3] develop local well-posedness
for strong solutions. Moreover, if initial energy is small, Huang et al. [18] showed the global
existence of classical solutions but with large oscillations to CNS.

Physically, the vacuum problem appears extensively in the fundamental free boundary
hydrodynamical setting: for instance, the evolving boundary of a viscous gaseous star, for-
mation of shock waves, vortex sheets, as well as phase transitions.

For free boundary problem of the multi-dimensional Navier—Stokes equations with non-
vacuum state, there are many results concerning its local and global strong solutions, one
may refer to [43,44] and references therein.

But when the vacuum (in particular, the physical vacuum [28]) appears, the system
becomes much harder. To understand the difficulty of the vacuum, we introduce the sound

speed ¢ 1= /p'(p)(= Ky p%l for polytropic gases) of the gas or fluid to describe the
behavior of the smoothness of the density connecting to vacuum boundary. A vacuum bound-
ary I'(¢) is called physical vacuum if there holds

ac?

—oco< — <0 (1.3)
on

near the boundary I'(¢), where n is the outward unit normal to the free surface. The physical
vacuum condition (1.3) implies the pressure (or the enthalpy ¢?) accelerates the boundary in
the normal direction. Thus, the initial physical vacuum condition (1.3) is equivalent to the
requirement that

— 00 < 8,(0) ") <0 on T(0) (1.4)

which means that ,og - (x) ~ dist(x,T(0)), in other words, the initial sound speed cg is

only C > ‘Holder continuous near the interface ().

Due to lack of sufficient smoothness of the enthalpy ¢ at the vacuum boundary, a rigorous
understanding of the existence of physical vacuum states in compressible fluid dynamics has
been a challenging problem, especially in multi-dimensional cases.

Recently, the local well-posedness theory for compressible Euler system with physical
vacuum singularity was established in [4,20,21], and also global existence of smooth solu-
tions for the physical vacuum free boundary problem of the 3-D spherically symmetric
compressible Euler equations with damping was showed in [32]. And more recently, Hadzic
and Jang [13] proved global nonlinear stability of the affine solutions to the compressible
Euler system with physical vacuum, and Guo et al. [9] constructed an infinite dimensional
family of collapsing solutions to the Euler-Poisson system whose density is in general space
inhomogeneous and undergoes gravitational blowup along a prescribed space-time surface,
with continuous mass absorption at the origin.

The study of vacuum is important in understanding viscous surface flows [30]. Very little
is rigorously known about well-posedness theories available about free boundary problems of
CNS with physical vacuum boundary. For 1-D problem, global regularity for weak solutions
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to the vacuum free boundary problem of CNS was obtained in [30], which is further gener-
alized by Zeng [45] which established the strong solutions. For the multidimensional case,
regularity results related to spherically symmetric motions. Guo et al. [11] obtain a global
weak solution to the problem with spherically symmetric motions and a jump density con-
nects to vacuum. Later Liu [29] gives the existence of global solutions with small energy in
spherically symmetric motions with the density connected to vacuum continuously or discon-
tinuously. Anyway, almost all the well-posedness results require additional strongly singular
compatibility conditions on initial data in terms of the acceleration for gaining more regular-
ities of the velocity. Some related works can refer to [2,6,7,12,19,25,28,30,31,37,41,42] and
references therein.

The purpose of this paper is to establish the local well-posedness of the 3-D compressible
Navier—Stokes equations (1.1) with physical vacuum boundary condition without any com-
patibility conditions, more precisely, we do not need any initial condition on the material
derivative D;u or its derivatives. For simplicity, we set y = 2 and K = 1 in this paper.

As mentioned above, the main difficulty in obtaining regularity for the vacuum free bound-
ary problem (1.1) lies in the degeneracy of the system near vacuum boundaries. In order to
solve the system (1.1), the first idea is that we use Lagrangian coordinates to transform it to a
system with fixed domain. One of advantage of Lagrangian coordinates is that the density p is
solved directly by initial data and we only focus on the equation of velocity with coefficients
related to Lagrangian coordinates.

The second and also key idea in our paper is that we use the conormal derivatives to
obtain the high-order regularity. Because the density vanishes on the boundary, we can not
close the energy estimates if we directly take normal derivatives to the system. So another
choose is to take time derivatives in [4,21] solving the compressible Euler equations with
the physical vacuum, where high-order enough time-derivative estimates as long as spatial-
derivative estimates allow us to close the energy estimates and then get the local-in-time
existence of the strong solution of the Euler system. This high-order energy estimate in it
is reasonable since the pressure term may cancel the singularity near the vacuum boundary
when consider compatibility conditions on initial data in terms of the acceleration and its
derivatives. However, this method may not work for the Navier—Stokes system (1.1) with
constant viscosity coefficients. In fact, a strong singular compatibility conditions on initial
data in terms of the acceleration and its derivatives will appear in it when we consider the
high-order energy estimate, which is mainly due to the non-degenerate of the viscosity, but
it seems very hard to find such kind of initial data satisfying these compatibility conditions.
In order to get rid of this difficulty, our strategy is that we use conormal Sobolev space
introduced in [34] to get the tangential regularity. Based on that, we multiply d;v on the both
sides of equations of v to get the estimates of ,0% d;v which implies the two-order derivative
on the normal direction. Form this, together with high-order tangential derivatives estimates,
we get the W12 estimates of v and its conormal derivatives, which in turn guarantees the
propagation of conormal regularities of the velocity.

1.3 Derivation of the system in Lagrangian coordinates and main result
In this paper, we consider the case that the upper boundary does not touch the bottom which

means that
dist(T'(0), Tp) > 0.
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Take @ = {x € T> x R| 0 < x3 < 1} as the domain of equilibrium. Let 7 (¢, x) be the
position of the gas particle x at time 7 so that
an(t,x) =u(t,n(,x)) for t>0, (15)
n(0,x) = no(x) in Q. '
Here 7o is a diffeomorphism from €2 to the initial moving domain €2 (0) which satisfies that
') = no({x3 = 1}) and I', = no({x3 = 0}). It is easy to construct a invertible transform
no which satisfies that

det(Dng) > 0.

Due to (1.5), we introduce the displacement & (¢, x) déf n(t, x) — x which satisfies the
following ODE

0 E(t, x) =u(t,x+&(,x)) for t >0,
{sw, x) = §o(x) 1= no(x) —x in Q. o
We define the following Lagrangian quantities:
v(t, x) = ut,nt, x)), f@ x):=p n x),
A:=[Dnl™", J:=det(Dn), N :=JAes.
Then, the system (1.1) is reformulated in Lagrangian coordinates as follows
& =v in Q,
f+fVa-v=0 in Q, 1.7
fov+VaA(fH) —Va -Sa)=0 in
with boundary conditions
f=0 on T,
SAWN =0, on T, (1.8)
V=0 =0
and initial data
&, f,v)t=0 = (50, po, uo). (1.9)
One may readily check from the definition of J that
0J =Vjya-v,
which together with the equation of f in (1.7) yields
u(fhH=Jof+ foJ=—JfVa-v+ fIVya-v=0.
Hence, we find
Jf (@, x) = (J)O,x) = det(Dno)po(no), (1.10)
where pp is a given initial density function. We are interested in the initial density pp satisfying
po(no) det(Dno) = p(x) in €, (1.11)
C'd(x) <p(x) < Cd(x) in Q, (1.12)
Vol < C, [p~'Vypl <G in Q (1.13)
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with some given function p(x) (x € ), for any k € N with V,, = (91, d2), where d(x) is
the distance function to the boundary {x3 = 1}.
Thus, it follows from (1.10) that
If =500, (1.14)

which implies that
f=7"%, g=f*=77p" (1.15)

Remark 1.1 For any smooth subdomain O of €2, we know that 19 (QO) is a subdomain of €2 (0)
if ng is a diffeomorphism from €2 to €2(0). Hence, by using change of variables, we get

/ po(y)dyZ/ po(ro) det(Dno) dx. (1.16)
10(0) o

Hence, the assumption (1.11) is equivalent to the mass conservation law

/ po(y)dy :f odx Y O C Q. (1.17)
n0(O) @]

Multiplying the both side of equation v by J, we obtain the equivalent form of the system
(1.7)—(1.9) as follows

& =v in £,
PO+ Vya(J72p%) —Vya-Sa) =0 in Q,
SAWN =0, on T, (1.18)

v|x3:0 = O?

Eli=o =&, V=0 =1vp in Q.

Next, we give some useful equations which we often use in what follows. Since A[Dn] =
1, one obtains that

A = —ASo " AK AR = — A8 0,0 AR (1.19)
Differentiating the Jacobian determinant, we get
0 J = JAdV, 0 = JA0". (1.20)
Moreover, the following Piola identity holds:
3;(JA)) =0, (1.21)
foranyi =1, 2, 3.

1.4 Main results

Before we state our main results, we give some definitions of functional spaces. First, define
the operators:

def def def _
L0, =8 73 s (1.22)
Using Z™ to denote Z32Z,"" = Z3?Z""' Z5"? with my = (my1,m12) and |m| to denote
Im| = |mi| + my = my1 + m12 + ma. Moreover, we use Z3° to denote p"295". By

(1.11)—(1.13), it is easy to see
(03, Z"1 ~ 2" 95, [Zn, Z3] ~ Zs.
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We recall the following conormal Sobolev space introduced by Masmoudi and Rous-
set [34].

N N
1w = D2 102" fU22e Iy = D 1P Z" fl 2

m|=0 lm|=1

wher? a € R. In particular, when o = 0, we the spaces X é\’ and X 2’ will be denoted by X N
and XV respectively for simplicity.
For T > 0, we define the energy space E7 as

Er € cqo. 11 x2n H' ()
2

with the instantaneous energy £(¢) (in terms to the velocity v)
def 2 2
E@) = ||v|IX112 + vl
2

and the dissipation D(¢)

def _1
D(1) = Vol + P2 0,v]7..

Given k > 0, we also introduce the space F| in terms to the flow map 7 as follows:

1

Fo=F(@ g e x2n HY(Q)| VEe X2, 573 As e LY

equipped with the norm

def _ 1
€Nz = NElye + IVEIxi2 + 15727 A&l 2.

Now, we are in the position to state our main results.

Theorem 1.2 Under the assumptions (1.11)—(1.13), assume that there exists a positive num-
ber o such that

dist(I'(0), I'p) > 0, (1.23)
200 < Jo < 30y. (1.24)

If the initial data (vo, no) € (le NHY Q) x F¢ (R2) for some constant k € (0, 1—16), then the

2
system (1.18) is locally well-posed. More precisely, there exists a positive time T > 0 such that
the system (1.18) has a unique solution (v, n) € C([0, T]; XllzﬁH1 (R))xC(0, T]; Fe(2))
2

depending continuously on initial data (vo, no) € (Xll2 N HY(Q)) x Fe(Q), and there hold
2

T
_1
sup (||v||§(112+||v||§,1)+/0 (||VU||§12+ ||pza,v||iz) ds < C,
1 2

tel0,T
sup €M%, <C, o0 < sup  J(#,x) <4oo, (1.25)
t€[0,7] (t,x)€l0,TIxQ

where C depends on initial data.

Remark 1.3 The assumption (1.11)—(1.13) on pq is reasonable. In fact, if 2(0) = Q := {x €
T2 x R| 0 < x3 < 1}and pg = dist(x, d2) ~ x3(1 — x3), then the assumptions (1.11)—
(1.13) are automatically satisfied .
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Remark 1.4 In this paper, we consider the case that y = 2. But our method may still work
for all the cases y > 1.

Remark 1.5 For any t € [0, T], since og < SUP (¢ x)e[0,T]x 2 J(t,x) < 4oy, the flow-map
n(t, x) defines a diffeomorphism from the equilibrium domain €2 to the moving domain
Q(¢) with the boundary I'(¢). From this, together with the fact that ng is a diffeomorphism
from the equilibrium domain €2 to the initial domain €2(0), we deduce a diffeomorphism
from the initial domain €2(0) to the evolving domain €2(¢) for any ¢ € [0, T']. Denote the
inverse of the flow map 7 (¢, x) by n~ (@, y) fort € [0, T]sothatif y = (¢, x) for y € Q(t)
andt € [0, T], thenx = n~1(¢, y) € Q.

For the strong solution (7, v) obtained in Theorem 1.2, and for y € Q(¢) and ¢ € [0, T,
we denote that

p(t, y) == J7 e, 7 e, yPon e, y)),  ule, y) =, 7N e, ). (1.26)

Then the triple (o(t, y), u(t,y), 2(t)) (t € [0, T]) defines a strong solution to the free
boundary problem (1.1). Furthermore, we obtain the following theorem.

Theorem 1.6 Under the assumptions in Theorem 1.2, the free boundary problem (1.1) is
locally well-posed, and the triple (p(t, y),u(t,y), Q(t)) (t € [0, T]) defined in Remark
1.5 and (1.26) is the unique strong solution to the free boundary problem (1.1) satisfying
n—1d e C([0, T], Fe).

The rest of the paper is organized as follows. In Sect. 2, we derive some preliminary
estimates. Some necessary a priori estimates are obtained in Sect. 3. Finally in Sect. 4, the
proof of Theorem 1.2 is proved.

Let us complete this section with some notations that we use in this context.

Notations Let A, B be two operators, we denote [A, B] = AB — BA, the commutator
between A and B. For ¢ < b, we mean that there is a uniform constant C, which may be
different on different lines, such that a < Cb and C( denotes a positive constant depending
on the initial data only.

2 Preliminary estimates

In what follows, we denote by C a positive constant which may depend on initial data (v, 179)
if we don’t make a special explanation in it. This notation is allowed to change from one
inequality to the next.

We first introduce the following inequality which we heavily use throughout the paper.

Lemma 2.1 (Hardy inequality, [23]) For any € > 0, there holds that
_1 _1 1
15727 fll2@) < CUPTY Fli2 + 1927V Fll2@)-
With Hardy inequality in hand, we may get the following interpolation equalities.

Lemma 2.2 Forany k € (0, %), there hold that, for 0 < £ < 6,

__1
1Z°V s az) < CUV Flixn + 172D fl2). 2.1)
and for 0 < ¢ <4,
__1
1Z*V fllzse < CUIV Fllxr + 1P 2T AF N 2). 22)
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Proof For O < ¢ < 6, thanks to the Sobolev embedding theorem and Lemma 2.1, we have
4 __2L _, _ 21 Y
12V Flligsaz) < Collp™ M2V fl 3 12y + 1PHBZV Fll 2 12)
_23 _y _23 Y]
<ColPPZ V2 +IIpHVZV [l

¢
a2, .
+ Y AB=Z IVl + 1pH Z A S 12)
i=0

¢ i
<CIVflixe+CY IpHZ Afllpe. (2.3)
i=0
According to the fact |Zp| < Cp, we deduce from integration by parts that
2 —— 3tk 1_177 lll
o Z Afllp2 = Cllo" 2™ Af 2 ”Af”)'(lll
1
< CUP ™Al + 1A, ¥ i<5, (24)
where we used that % + (—% + /()14—1 < % < % with « € (0, %).
While by using integration by parts again, one can see that

_2 ¢ 2 _2l ¢ 6
0% Z°Aflli. = | pRZ°Af-Z°Afdx
Q

-3 11 3. 75 6
=— | pRZAf-Z"Afdx — | [p2; Z°]Af - Z°Afdx,
Q Q
which follows from the fact | Zp| < Cp that
_21 __ 1 __ 1
||P“Z6Af||iz = ClAaflixudlo™ 2 ALl + 0”2 ZAS ).

Next, we deal with the last term in the above inequality. In fact, we may get from integration
by parts that

2
1
1F2ZAf 12, =/ FUZAf-ZAfdx <Clo ¥ Afl2 Y ot T ZEA S,
Q
k=0

_1 __1
= Cllo™ 7™ Af (A flixn + Colla 2T Afl12),
which implies
4 __1
o= 2ZASN 2 = CUASlx + 1o AL 2.
Hence, one has
21 L __1
||ﬁ4426Af||i2 = ClAflxndlo™2 ALl + 1o AL 2 + IAfIxm- (25
Inserting (2.4-2.5) into (2.3) ensures that for 0 < £ < 6
__1
12V Fllss 12y < CAV Sl + 1072 A f 1112,

that is, the inequality (2.1) holds.
The second inequality (2.2) comes from the Sobolev embedding theorem and (2.1):

N
1Z°V il < CUZ'V ez < CUV fllxn + 1572 Afl112)

for 0 < £ < 4, which ends the proof of Lemma 2.2. O
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To deal with nonlinear term, we need the following product laws in the spaces XV

Lemma 2.3 There hold true that

g flixz = Cligllx D 1Z Fllpeqazy + ClIFlx D 1280 12)- (2.6)
[£1<6 ’ [£]<6 ’
and
> 18 Z7 flixn < Cliglhxn 3o 0Z Flleqz +ClFlxe Y0 1Z5 Nz 27)
0<ljl=1 [£]<6 [€1<6

Proof By the Leibnitz formula, one can see that

12
lg fllxz<C Y 1Z™g 2™ flle.

[my|+|m2|=0

Now, we focus only on the proof of the most difficulty case: |m |+ |m2| = 12. The others
can be treated by a similar way. In fact, we divide its proof into three cases.

e Case 1. 8 < |m1| < 12. By Holder’s inequality, we prove
1Z"'g Z™ fllp2 < N1 Z™ gl 2 127 fllLee < CIIZ””gIILzIIZ'”szlL%(H,g)
¢
< Cliglxe Y- 12" Fllzaz),
[€]=6

where we used |m3| + 2 < 6.
e Case2.6 < |mp| < 7.Thanks to the Sobolev embedding theorem and Holder’s inequality,
one can obtain that

12" g 2" flle < 12" 8lli a2 Fllss a2y
< Cliglxi2 Y 1Z° fllgrz)-
|€]<6

e Case 3.0 < |mp| < 5. For this case, we only need to exchange the position of f and g
and apply the same argument as in the above two cases to get that

4
1z™g 2™ fll2 < Cllfllxn l;é 128N e 0)-
=

Collecting all the above cases together, we obtain

< ¢ ¢ i
g Fllxiz < Cliglxz Y 12" fllzsazy +C D 128l ) 1 2,

[€]<6 [e]<6
which follows (2.6).
Next, since we the highest order in (2.7) is 11, we may readily verify (2.7) by the same
process above, which ends the proof of Lemma 2.3. O

We introduce a new quantity ® (v)(¢) which controls || Vv| e~ according to Lemma 2.2:

D (1) Vo)l + 1572 Av0) 2. 2.8)

In what follows, P(-) stands for some polynomial function which coefficients may depend
on initial data.
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Lemma 2.4 Assume that
§0 € Fie, I1PWl20,r) =€ 00 = J =< 4oyp.
Then there hold that for any t € [0, T']
IVv: Vu@llxe < COW0), (2.9)
and

> IZ A0z, = CU+1PE).

0<|¢|<6
> 1ZEAD N g2y < CU +13P@),
0<[1<6 °
IJA® Iy < CA+P@), [ADIyn < CA+2PE), (210

where the constant C depends on ||&|| . and oy.

Proof Before giving the proof of this lemma, we state some estimates as preliminary.
First, taking f = g = Vv in (2.6), we obtain

Vv : Vol < CIVolixe Y ||Z[VU||L;§(L§)~ .11
[€]=6 ’
While by Lemma 2.2, one can prove that
PN AGLE Vo)l ey =€ > ||zva||L;§,(L%) DEARIE
0</¢<6 ‘ 0<[¢|<6 ‘ 0<|e|<4
= CUVvllxe + IIﬁ_%J”(AUIILZ)2 < CO)?, (2.12)

which along with (2.11) ensures (2.9).
Now we are in the position to prove the estimates in terms of J.A and A. Notice that

-1

!
JA = (Dn)_1 = <Vno —I—/ Vvds) ,
0

and every entry in J A is a linear combination of
2

t t
Vno, Vn()/ Vuds, ([ Vvds) .
0 0

Then, thanks to Lemmas 2.2-2.3, (2.12) and Minkowski’s inequality, one has

2 12U ez

0=|¢]=<6
t
L ¢
= Z |z VUOHL;;([%)“‘ Z V4 (VUO/O VUdS) ”L%(L%)
0<|¢|<6 0<|¢|<6
‘ 2
VA Vud o
e ([ vue) s
0<[¢]<6

1 1
= Cléollz + Clligollz 2 1P 2 + Ctllf‘J(v)IIQLtz =CA+r2PQ), (213

which proves the first inequality in (2.10).
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Similarly, we deduce that

t t 2
4 4
>z (vnof Vods)l oo 12, + >z ((fo Vvds) )IIL;;@,Z,)

0<]e/<6 0 0<|¢|<6

= C D)z + CHIDWI; < CrHP©). (2.14)

Recalling the definition of J: J = det(Vno + fot Vuds), J is a linear combination of the

terms
t 2 t t 3
(Vn0)3, Vno </ Vvds) , (Vn0)2/ Vuds, <f Vvds) .
0 0 0

Hence, similar to the proof of the first inequality in (2.10) in terms of J.A, we may obtain
1
2 N2z = C U+ 2P Q). (2.15)
0<[£|<6 l
Owing to the fact / > o9 and the formula to the composition of two functions, we obtain

;-1 ki yym;
2120 Dlzaz <€ D01 [T @ gas)-

0=<|¢|<6 0=[E1=6 7, Ik;lm;<le]

We put || - || Le(L2) On the highest order term Zki J and put || - || L to other lower terms (not
3
more than order 4) with similar process to (2.12). It follows from Lemma 2.2 and (2.15) that

_ 1
> MNZE I Dl 2y = CA+12PQ). (2.16)
0<le|<6
Therefore, due to (2.13) and (2.16), we find
l l Lo y—1
D NZ Al g az) <C+C D NIZ5 I M azy X 120Dl
|E1<6 1€1<6 lEl<4

Coy—1 £
+C D N2 D gy Do 12T Al
[€]=6 [e|<4

<C (1 +12P(Q)).

For the high order estimate, similar to the proof of (2.9), by using Lemma 2.2, we achieve

t 2 t t 3
IVno </ Vvds) | x12 + ||(V7]0)2/ Vuds| iz + || (/ Vvds) Ix12 < CI%P(Q:),
0 0 0

2.17)
and then
4 2
I, T A = € (I1Vnollxe + IIVno</O Vods)
t t 3
+ ||(vno)2/ Vuds| g2 + ||(/ Vvds) ||X|2)
0 0
1 3
< C+CH PO+ CHPWIE, +CE PO,
<C(1+12P@©). (2.18)
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While by virtue of (2.15), (2.18) and Lemma 2.3, we deduce that
17 Iy < CA+12P(©),
and
Al = 1JA T ge < € (1 +127P©),
which completes the proof of Lemma 2.4. O
Based on the above lemma, we may get the following estimates.

Lemma 2.5 Under the assumptions in Lemma 2.4, there hold

Z ||Zj(JA) Voullxn < C[|[Vullxn + t%P(e)SD(v),
0<ljl=1

D 1ZI(A) Volgn < C [ Vollxn +12P(@)D(v),
0=|jl=1

IVavlixn < C[Vllg + 2PE@D (),
1S, 4W) g2 < C [Vollxi2 + 12PE@D(v). (2.19)

Proof We mainly utilize Lemmas 2.3, 2.4 to prove (2.19). So one may focus only on the
proof of the first inequality in (2.19), and the proofs of the others are the same as it, whose
details will be omitted here.

First, by the definition of J A, we split ZOgmsl Vv Z7(JA)| 1 into three parts:

Y I1Z/ A Vol

0=<ljI=1

t
<C Y IVvZiVillgu+C ) Vvz/ (vnof vm) llxn
0

0=ljl=1 0=|jl=1
' t 2 3
+C Y vvz/ (/ st) lxu =3I (2.20)
0<ljl=<1 0 i=1
For I, we have
I1 < C||Vvu|xu. (2.21)
For I, taking g = Vv and f = JAin (2.7) in Lemma 2.3 to obtain that

t
L < C|Vv zZiv Vuds| ;s
2= C| ||XHWZ<6|| o /0 Sz

t
, .
Jrc%:6 Iz W||L§§(L5)||vano/0 Vuds| yi2.

Applying Lemma 2.2 and (2.14), (2.17) in Lemma 2.4 to get

b < 2P|Vl + CHEPE@D W) < 12 P(E)D(v). 2.22)
Similarly, we have

I < 12 P(@)D(v). (2.23)
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Plugging the estimates (2.21)—(2.23) into (2.20), we prove

Z ||Z~’(JA) Vol xu <C ||Vullyxn —H%P(@)@(v),
0=ljl=1

which ends our proof. O

Next we recall a version of Korn’s inequality involving only the deviatoric part DO,

Lemma 2.6 (Korn’s lemma, Theorem 1.1 in [5]) Let n > 3 and U be a Lipschitz domain in
R", then there exists a constant C, independent of f, such that

I gy < € ADY A 2wy + I 2wy
forall f € H'(U).

3 A priori estimates

In this section, we give a priori estimates of the system (1.18). The main result of the section
is as follows:

Proposition 3.1 Assume (£, v) is a smooth solution of system (1.18) on [0, T with initial
data (&, vo) € Fe x (X12N HY and 0 < 209 < Jy < 300, and P satisfies (1.11)—(1.13).
2

Then, there exists a positive constant T < T which depends on the initial data such that

T
sup E(1) +/ D(s)ds <2£(0).
t€[0,T] 0

Here, we use the bootstrap argument to prove this proposition. Now, we define a T such
that there holds that

1D)lI20,7) =€ 00 = sup J = 4op. (B.1
tel0,T]

Before, we give the proof of the proposition, we prove some useful lemmas.
Lemma 3.2 Under the assumption of Proposition 3.1, we have
VUl 10y < 2P@, (7, Al < C(1+13P©), V1el0,T).
Proof Tt is a direct result from Lemma 2.2 and Lemma 2.4. O

Lemma 3.3 Under the assumption of Proposition 3.1, the following holds

IVullxy < CAD°@)lIxn + vllxx)- (3.2)
2

Proof Thanks to Korn’s lemma (Lemma 2.6), we have
vl < Co(IDO)lIz2 + vl 22)-

For any function f(s), by Lemma 2.1, we have

1 1
/ F2ds < Co / S2(f2 + fPds
0 0
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By scaling, we have

1 1 1
C
flds < —;’ (1 — )2 f2ds + CO/ (1 —s)2fds.
l—¢ &% J1-¢ 1—e
Then (1.12) gives that
_ _ cC [ _
If12, <Clp 1||Loo<osxgsl_g>[9pf2dx +CE|fI3, < ;fgpfzdx +CEfI3
(3.3)
Taking ¢ small enough and f := v, we combine with Lemma 2.6 to get that
_1
ol < € (D)2 + 152 vllL2).
For given m € N3 1< lm| < N,
1
1Z™ vl g1 <C (ID°(Z™ V)|l 2 + 152 Z™ vl 2)
1
<C (IZ"D°]| ;2 4+ [IID°, Z™Jvll 2 + 152 Z™v ] 12),
which follows from the fact [D°, Z"Jv ~ Z™~! V v that
1
1Z"v]l g1 < C (1Z™" D]l 2 + 12"V ull 2 + 152 2™l 12).
Therefore, by a standard inductive argument in terms of m = 0, 1, ..., N and the definition
of space XV, we prove (3.2). O

Lemma 3.4 Let the initial flow map no = Id + &y : Q@ — 2(0) satisfy its Jacobian 20y <
Jo < 309 and &y € Fi, and its inverse map 770_1 :Q0) = , v(x) = u(no(x)) withx € Q
and u(y) = v(r](;1 () with y € Q2(0), then there is a positive constant C1 > 1 such that

C;‘(1+||so||%ck>*1/ |V v|? dx 5f IVy (P dy < c1<1+||so||2ﬂ)/ IV v[*dx.
Q Q(0) Q "
3.

Proof First, taking changes of variables y = no(x), we have
[ v amPdy = [ 19, 000P dne) = [ 10,05 0000 s v P dod,
Q(0) Q Q
which along with the assumptions 209 < Joy < 309, &y € F, and (2.2) implies

f IVy (1> dy < CI(Dy (15 ")) (0 () 1 / |V, v(x)|* dx
Q(0) Q

<Ci+ ||so||2ﬂ>/ IV ul? dx.
Q

Similarly, one may readily check

/ IV, v dx f (Do) (15 )Yy TP I dy
Q Q(0)

IA

Ci(1+ II%‘ollsz)/ IV, T(y)[* dy.
Q(0)

Therefore, we get (3.4), and complete the proof of Lemma 3.4. ]
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Lemma 3.5 Under the assumption of Proposition 3.1, if (3.1) holds, then we have

1
(co — PPE@)IIVv3, — Collp2vll2, < [DYvII3, < Co(l + 2PE@)[V|3,.

Moreover, if T is small enough such that T%P(C) < %0, then we have

coc

1 _1
/QJSAU : Vavdx = ¢[DYvl?, = 5 IVvl, = Collp2vll3 .

Proof We first to prove the first result. According to the fact
t 2
JA — Jo Ay ~ (/ Vvds) , (3.5
0

and Aa] = Do, combining Lemmas 2.2, 3.2 with (3.1) , we have

IJA = JoAollze <CIVv[13,,0 < C1P@), (A", Aol < C (1 +1IP(Q)),

LiLe =
(3.6)
which imply that
DY A joae @72 < CITA= Jo Aol IVVI7, < PP@VVIZ,,  (B.7)
DYy 4,72 < C VY17, (3.8)

On the other hand, we use (3.1), the coordinate transformation from 2 to 2(0) and Lemmas
2.6, 3.4 to get that

0 2 _ 0/~ 12 ~12 ~12
/;2 |DA0(U)| Jo dx = /Q(O) |D (I,l)| dx > CIHV””LZ(Q(O)) - Cl”“”LZ(Q(O))
> collvlly — Collvl7a,
where it = v o 1y ! Hence, according to (3.1) and (3.3), we obtain that
_1
DG4 @172 = collvliz — Collp2 w72,
which combining with (3.7) gives rise to
1
(co — PP@)IIVV]7, — Collpzvl3, < DY, < (Co+ 2P@)[IVull3,,

which we complete the first result. For the second one, we deduce

1 2
/ JS v Vvdx = f/(ﬁm)‘;‘m? + A+ =)V -v?) Jdx
o 2 Jq 2 3
_1
> ¢ ID%vlI2, = (coct — £*P(E) V2, — CollB2vl12,,

here we used (3.1) in the last step and assumption u > 0, A + % > 0. Combining with the
first result, we finish this proof. O
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Zeroth-order estimate of v

Now, we are in a position to give a priori estimates. First, multiplying by v on the first equation
of (1.18) and integrating over €2, from the Piola identity (1.21) and boundary conditions, we
get the basic energy estimate:

Proposition 3.6 Assume v is a smooth solution of system (1.18) on [0, T]. Then, we have
1d —02 —2 -1 1 / om0 2 2 2

—— dx+2 Jd - —|D At — Va - Jdx=0.
2dt</9p|v| x4+ /Q'O X +2 A 2| AV + +3u [Va-v| xX=v

First-order estimate of v

Here, to get the higher regularity of the v. We multiply 9;v on the both sides of (1.18) to get
that

Proposition 3.7 Assume that (3.1) holds and v is a smooth solution of system (1.18) on [0, T,
then there holds that for t € [0, T]

1d Km0 2 2 2 —ha 2
2 o (50t + (34 30) 9. 0) dax + bl
1
< (C+2PE)@W)Voll7, + D).
Proof Taking L? product with d;v to the first equation of (1.18) to get that
_1 2 -
|mwwﬁrﬁ/vmwhzy@wx—/vursuwﬂwm=o
Q Q

Due to the Piola identity (1.21) and the boundary condition S 4 (v) - A|x;=1 = 0and v|,=0 =
0, integration by parts yields

—f Via-Sa() - dvdx :/ Sya) : 0,(V4v)dx —/ Ssa) : Vy, avdx.
Q Q Q
Since D 4 (v) and (V4 - v)I are symmetric, it implies that

/QSJA(U) 10, (Vav)dx = /Q(M]D)JA(U) +A(Vya-v)D : 0,(Vav)dx

m
= 5/ Dja): 8;]D)A(v)dx+A/ Vja-v98(Va-v)
Q Q
1d Km0 2 2 2
. J(—]D) » 7)V~ )d
2ar )7 (5100w + (24 50) 1V 0P ) dx
1 M 2 2
- 8,J<—|]DA(U)I F AV )dx
2 ), 7\
1d 1
:EE QSJA(U):VAUdX—E QSA(v):VAUB,de,

which gives that

1d 2
—/VJA-SA(U)-G,vdx=f— J E|1D>?4v|2+ A+ =p)|IVa-v?) dx

1
—*/SA(U)ZVAvatJdX—/SJA(U)ZV&,AUd)C.
2 Ja Q
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To estimate the last two terms of right hand of the above equation, we recall that formula
(1.19)—(1.20), Lemmas 2.2 and 3.2 to get that

1
19: 7, 3 Allzoe < C AN I VVllzoe < (C + 12 P(@)D(v),

which implies that

‘/ SA() : Vavd, J dx
Q

+ ‘/ Sya() : Vg, avdx
Q

1 1
< (C+12P@O)DW)[|J AL ||VU||i2 =< (C +t27’(¢))@(v)IIVvI|iz-
For the pressure term, we notice it contains ﬁz. Thus, we have
_1 B, N __1 _ - __1 _ — _ -
PIVIAG D) = (T A = 52 (VT AR + 0 (DA,
which implies that for all ¢ € [0, T'], we have

1 1 1
1P~ 2V,4@ T D2 < 1527l (C + 12 P@)IAll 2
1
H(C + 2 P@)IZT [l 1T Al 2
<C +t%7>(€),

where we used Lemma 2.4. Thus, by Holder’s inequality, we get
—2 ;-2 —1 ——1 —2 ;-2
| [ 954007 trudx| < 5 a0lal5 4V G e
Q

1 1 1 1
< (C+12P@©)lp28vll2 < C+12P(€) + Ellﬁfazvllim

This ends the proof of Proposition 3.7. O

High-order estimates of v

In this subsection, we use the conormal derivative to get the regularity of the horizontal
direction. For this, we recall the conormal Sobolev space with a parameter § introduced
by Masmoudi and Rousset [34].

N N
2 . 2lm| = 7m g2 2 . 2lm| = 7zm g2
= E 5 Z , Ly = E ) VA ,
||f||X(11v{S o f||L2 ”f”XéVa o f||L2

|m|=0 |m|=1

where § is a small positive constant which will be determined later on and o € R. In particular,
when § = 1, the spaces X ‘iv s and X (va s will be denoted by Xé\' and Xé\' respectively for
simplicity.

ForT > 0,8 > 0,and ¢ € [0, T], we define the modified instantaneous energy Es () (in
terms to the velocity v)

def
£ = Il + vl
1

and the modified dissipation Ds(t)

def _1
Ds() = Vol + 172 8,vlI72-
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In particular, if § = 1, then & (¢) and Ds(¢) become the usual instantaneous energy £(¢) and
the dissipation D(¢) respectively.
Let’s now state our main results of this subsection:

Proposition 3.8 Assume that (3.1) holds and v is a smooth solution of system (1.18) on [0, T,
then it holds that

d 2
", + (co = 8(Co+12P@)) IVl
< 12P@D*() + Collvl% + Co+13P(®),
1s
’

where the positive constants co and Cq are independent of 8, and P (&) may depend on §.

Proof Acting Z™ on the first equation of (1.18) and taking L? inner product with 8"z y,
then summing Z‘lnzl‘zo, we obtain

1d
¥ ||v||X12 Z 52""'/ Z"(Vya-Sav)-Z"vdx =5 + b
38 |m|=0

with
12

L=y 52""'/[,0 Z™9,v - Z"v dx,

[m|=1

Z szlml/ Z"(Vya(J 7)) - ZMv dx.

|m|=0

Estimate of dissipation term. For the dissipation term, by using integration by parts, we
split it into three parts:

12
— Z 82|m|/ Z"(Vya-Sav) - Z"vdx
\m\:O 2

Z 52ImI/ JSA(Z™v) 1 VAZvdx + Z 82"”'/[2’" Salv: Vya(Z"v)dx
Q
|m|=0 |m|=1

- Z 52'm|(/ N - ZISqv- 201 vdS+/[Z’" Vial-Sav- Z’"vdx)

|m|=1
=L+ 14+ Is.
Next, we deal with the commutators I3, 14 and /s step by step.

e Estimates of I3. Thanks to Lemma 3.5, one can see that for any m : |m| =0, 1, ..., 12

/ JSA(ZMv) : VAZ™vdx
Q

At 3
:f <“|D§zmu|2+3“|v,4-zmv|2) Jdx
o\ 4 2

_1
> 1 [D% 2|7, = e ((Co — PP@)V(Z™)||72 — co||p22"’v||iz),
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which implies

12 12
1
> W’”[ JSA(Z"™v) : VaZ " vdx = Y 82‘”"01(5(60 — 2P 2"V vll3,
Im|=0 @ m|=0
1 2 m 2 —Lom 2
- 5(60 +1P@O)IV, Z™vll; 2 — Collp2 Z™vll;2 ). (3.9
For |m| > 1, by a direct calculation, we have
[V,Z" =mVpZ" 'os, (3.10)
which implies that
12 ol
> M o+ PP, 2" wl7s = (Co+PP@IPIVolSy, - GID)
=1 0,8
Plugging (3.11) into (3.9) shows
12
Z 82""‘/ JSA(ZMv) : VAZMvdx
|m|=0
> (2 = PPE@)V vl — (Co+ P8 Vul2, — Collvl, -
Xo%s Xoss X%.[s

e Estimates of 14. For |m| > 1, by a direct calculation, we have
(2", Dl = 2" (Alopv; + Aspvr ) — (a2 v)) + Abo(Z") )
= ASZ", 8lvj + ASLZ™, 3k lv;
+ Y @MAZ o+ 2 A2 o)

[mi]+|m2|=|m],
[mi]=1

= makﬁA?Z’"*lawj + mBkﬁAimelaw,-
+ Y @mAlzmaw; + z2m Az o).

[my|+ma|=|m],
[mp|=1

By Lemmas 2.5, 3.2, we have
SMIZ", Dalvll 2 = 8((Co+ 12 PEDIVolyp, + CollVollyy, +12 P@DW))
< 8(CollVullyp, + 1 P@©DW)).
By the same argument, we have
S Z", divalvl e < 8(CollVollyy, + 12 P@OD®)).
Combining the above two estimates, we have
14 28(Co + 12 P@)GIVllxyy, + IV0lx2) (Coll Vol gy, + 1 PE@D))

<8(Co + t%P(Q))IIVvHi& +12P@D ).
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e Estimates of Is. A direct calculation gives that
(2", V4] - Sav = Z" (J A 0 (S av)) — h(J AL (Z" (S av)))
= ak(ZM(JAi-‘(SAvY)—JAf(Z’" (SAv))")ﬂz'", 1 (J AL (S 4v)).
(3.12)
For the commutator term, we see
(2", 83] = —mdspZ™ Yo3 ~ 2" Loy, (2™, 0p) = —mdppZ™ o3 ~ 2™, (3.13)

where we used (1.13). Then one has
( /Q[zm, 3 1(J AL(S 4v)7) - vadx‘
< Co‘/QZ’”_183(JA§‘(SAv)")-Z3Zm_lvdx‘
+C0‘/S22m(JAf(SAv)i)-Z’"va’x‘ 5Co‘/;zz”’(JAf(SAv)i)~Z”’_1Vvdx,

which combining with Lemma 2.5 follows

12
’ 3 g2l / (2", 81 (JAKS 4v)) - Z"vdx
Im|=1 2
< 8(CollVullyp + 1 POD) Vollgy .
Now, we deal with the first term of the right hand of (3.12). By using integration by parts,
one has

12
> azlmlf ak(zmuAff(SA(v))f) - JA{F(Z’"(SA(u)))") - Z"vdx
Q

Im|=1

12
--y 52‘""/ (2" AEEA@)) = JAEZ" SAW)) ) - 52" vdx
Q

Im|=1

12
+ Z 82\171\/

Im|=1 x3=1

(zg’(JA?e3(S AW)) = T Ae3(ZI" (S A1) ) - Z"vds.

Because of S 4(v)N = 0 on the boundary {x3 = 1}, JA?e3 =N, and Z;'(S4vN) =0 on
{x3 = 1}, the second term on the above equality plus the second term of /s is zero:

i 52|m|/

= =l

(Zr W Ea@)) = N(Z S 40)) Zjrvds
12

+ > 82"“‘/ 1/\/2,';’8,4(:;) Z'vdS = 0.
3=

Im|=1

Hence, all we left is to deal with the commutator

/ (zm(JAjf(SA(v))") — JAK(zZm (SA(U)))") - R ZMvdx.
Q
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By the same arguments as /4 and using Lemma 2.2-2.5, we deduce that

12
> 82|m|/§2<2’"(1A§‘(SA(v})")— JAZ" S A@))') - 52" vlx]

m|=1

< 8(Co+ 12 P@)|Vu[% + 12 P@D ()%
0,8
Combining all the above estimates, we get that
1 1
Is < 8(Co+ 2P| Vol + 12 POD @),

So far, we obtain
12

— Z 82|'”|/ Z"(Vya - SAv) - Z™vdx
m|=0 £
1 1
> (Cz —8(Co+ zw(a))nwni& = Collvl, =12 P@OD ).
; v,

Estimate of I,. Now, we deal with the pressure.

12
L=Y" 52lm'/ WZ™ (AL 1P%) - 2V dx
|m|=0

12
+ 2 Sz‘m‘f[zm,ak](Aﬁ‘J“ﬁz) Z™dx £ b+ In.

Im|=1 @

o Estimates of I»». Since Z"p> ~ 52 for any m, we use (3.10) and Lemmas 2.3-2.4 to get
1
In < 8(Co+ 11 PE@)[[Volly1 .

e Estimates of I;. Because of p|y;=1 = 0, the boundary terms vanish when we integrate
by parts. By the same argument as /s, it is easy to see I is bounded by

1
D1 = (Co+ 2 P@)(IV0ll 2 + 8IVollx1)-
Combining the two estimates, we get
1
I = (Co+ 2 P@) Vvl +81IVollxp).

Estimate of 1. For m > 1, it holds that
m—1
P, 2"~ Y K Z" @),
k=0
where f; are smooth functions which are defined by p. Thus

12 m—1
I <Cp Z 282\171\
Im|=1 k=0
12 m—1
=Co Y 252""“/ ZF(=V 47502 4+ Vi - Sav) - Z"vdx|.
Im|=1 k=0 v

/ ZK@o,v) - Z’"vdx‘
Q
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From the formula above, /| can be regarded as lower term to /5 plus dissipation term with
the highest order 11. Since k < m — 1, extra § is left. Thus, we have

I < 8(Co+ 12 PE@)(IVoll 2 + 8 Vil )
+8(Co+ 12 P@)(Coll Vol a1 + T POD) Voll sz

Collecting all estimates together, we finally obtain

d. 2 3 2
— —8(Co+12P(C \Y%
= ||v||X1;5+(co (Co+17P(@) Vo

XG5
< 1ITP(OD () + Collvl}r +Co+ 12P(Q),
7,5

which implies the desired results. O

Estimate for O (v)

To close the energy estimates, all we left is the estimate of © (v) which should be controlled
by the energy.

Lemma 3.9 Assume that (3.1) holds. Then there exists 0 < T < T and 8y > 0 which depend
on the initial data, o¢ and € such that for any t € [0, T] and § € (0, 8o), there holds that

D) < CDL(1) + (C + 13P@)(1 + FDW)).

1
Proof Here we only need to control the term ||p“~2 Av||;2. To do that, we go back to the
equation of v. Since

PV 4 -S4 (0) = 7TV - S40) + 52 (Vg - 8.4, (0) — Vi - Sa(v)
== pohv — Vsa )
+ 5 (Vindy -S4y (0) = Vo - Sa)),
which implies that
1575 Va - Sy l2 < 152002 + 17737 V5 40 5D 2
17 Vi dg—sa - Sa @)l 2
+ 1772 V4 - Sap-a Wl 2
25200l 2 + 1 + b + .
Owing to Lemma 2.4, we have
I < Co +12P(@).
For I, by Lemma 2.1, Lemma 2.4 and (3.5)—(3.6), we have

_1
L < |JoAo = JAll= 527V - S 4, (0) |l 2

1

1 1 1
<12(Co+12PE@)Ip 2TVl 2 + 152 V20| 2)
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< 12(Co+12PE@)(I5~ T Avll 2 + 57 2 Zudsvll 2 + 15T Z3vll 2 + D)
3 3 —— L4k . L4k 52
=t2(Co+12P@) o 2™ Avll2 + 1027 ZpAvllg2 + 1027 Z Vol 2 + D (v))
<12(C 4+ 12P(©)D(v).
Similarly, by the fact that
A— Ay = (AJ — Ao Jo)J ' + 77 (o — D) Ao
and
t t
J—Jy :/ o, Jds :/ JV quds,
0 0
combine (3.5) with Lemma 3.2 to get
I3 < 12(C + 127P(€)D(v).
Collecting all above estimates to obtain
__l _1 1 1
1572 Vyodp - SagW)ll 2 NP2 vl 2 + (C 4+ 12P()(1 412D (v)). (3.14)
Next, we give the relationship between Av and V4, - S 4, (v). It is easy to find that

,u,JO_] 8321)1
Vigdy - Sy (v) = gt 82v, + some terms likes ZVv.
Qu+1)Jy 93

By Lemma 2.1 and the interpolation inequality, we have

1 1 1
1524 2, Vol 12 < Collp2 ™ Zu Vvl 12 + Collp2 1 2, V0] 2

——1 0 = 1-0
= COHVU”L)ZQ(H}%) + Collp 2+KAU”L2”/)AU”L2

__1
= CellVullz 2y +£llp 2 AV 2, (3.15)

where we use Young inequality in the last step and 6 € (0, 1).
Taking & small enough and using (3.1), (3.14), (3.15), we have

C
1P72 Avllp2 < [P20vl2 + (C + P@)(1 +12DW) + Vol (3.16)

Combining (3.14) and (3.16), we obtain the desired results. O

3.1 Proof of Proposition 3.1

Now, from Propositions 3.7 to 3.8, we obtain that

(co—a(co+z%7>(¢)))( sup]c‘fa(t)+/(;tD5(r))

t€l0,r

< (co = 8(Co+12P(€))€O) + 1TP@(1 + sup &(7)).
1

t€l0,1
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Now, we give the estimates of J. By the definition of J, we have

t t
J—Jo:/ 0;Jds :/ JV qvds,
0 0
which implies that

1 1
I/ = Jol = Il ll Al VUl 1 oo < 22(C +12P(T)).

Then by the Lemma 3.9 and standard bootstrap argument, we finish the proof of Proposition
3.1

4 Local well-posedness

In this section, we will first give existence and uniqueness of strong solutions of system (1.18),
which is motivated by the method in [10]. First, we give some definitions of functional spaces.
Given T > 0, let Y7 and Y7 are defined by

Yr 2 (0,71, X9) N L*([0,T1, HY),
2

Yr 2 {we¥rnCc(qo, T, X220 HY : |lly, < +oo},
2

2. =L 0 2 2. 2
where Il = supepo,ry 02 vl7 + IIvIILgT(Hl) and |jv]ly, = supte[o,r](llvllxlf +
2
2 B 2 2 1 2
IVully,) + 162 AvIILzT(LQ)+IIVvIILzT(Xlz)+IIPZMIILQT(Lz)-

Now, we define map © : Y7 — Y7 as follows. For any given v € Y7, v := O (V) is the
solution of the following linear .4-equations:

PO+ Viz((D)7?p") = Viz-Sz(0) =0 in Q,
Sg(v)ﬁ: 0, on I,

(4.1)
U|X3:0 = 07

V|;=0 = vp in K.

4.1 Existence and uniqueness of the strong solution to (4.1).
Our aim in this subsection is to construct strong solutions to linear .4-equations (4.1).

Lemma 4.1 Assume that ﬁ% vo, Vg € L% and ¥ € Yr, then there exists a positive time
T1 € (0, T] such that the system (4.1) has a unique strong solution v with

72veC(0,Ti1. LY, veC(0,Til, HY),
1

pov e L20, Ty: (HY), powe L2(0. 711, LY, 7 2T Av e L0, T}], LY.

Moreover, the solution satisfies the following estimate

—L 2 2 2 1 2
sup (520l + IVolz2) + 0l 0 + 1220005, o)
1€[0.71] | 1
——L+i 2 —a 02 -1 2 2
FIP DG ) + 1BV . = Col D v0llZ2 + CollVuol 2 + Coll + Th).
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Proof We split the proof of the lemma into four steps.

Step 1: Galerkin approximation. We first use Galerkin method to construct approximate
solutions of the system (4.1). NLet {wy}72, are orthonormal basis of H 1(Q) which satisfy
boundary condition S z(wy) Nly=1 = 0 and wi|y,=0 = 0 and set approximate solution
with the form

m
V" (1, x) = Zd,i” (Hwr(x), d'(r) will be determined later on,
k=1
which solves the linear system
o™ + Vig(N 7255 = Vig-Sz0™) =0. in Q,
Sz N =0, on T,
V" x3=0 =0, (4.2)

m
V=0 = vy = Zd,i"(O)wk(x) in Q

k=1
in the sense of the distribution, where d,f” 0) = fQ vowg fork =1, ..., m.
Taking the test function ¢ = wy, £ = 1, ..., m, from the weak formula of the system

(4.2), we obtain the following ordinary differential equations
Yot Jo Pwiwedx (1) + 312 o S zwk 1 Vi gwedx df (1)
= [ PPT V55 - wedx, (4.3)

d}zn 0) = fQ VoW .

Notice that the matrix ( fQ DWgk wgdx) is invertible for any m > 1, and the coefficient
mxm

fQ S gwy : Vi zwedx (in front of d; (¢)) is continuous in terms of ¢ € [0, T'] because of vV e
Yr, we know that (4.3) is anon-generate linear ODE system with continuous coefficients. Due
to the classical theory of ODE, we find solutions 4} (¢) € CY[0, T,k =1, ..., m, which
means approximate solutions v™ (¢, x) exist and belong to the space C Lo, 71, HY(Q)).

Step 2: Uniform estimates for v". Multiplying d; () on the both sides of (4.3) and taking
the summation in terms of £ = 1, ..., m, one has

/ﬁa,v’"- vm—l—/ SzW™) : Vyqu"dx = / ﬁ2f_2V7g-vmdx.
Q Q Q
Then Lemmas 2.4 and 3.3 give that
ld 1,09 my2 —2 52 m —1 my2
EEII;OZU 72 +collv™ g = P J 7 Vg v"dx + Collp2v™ I},
_1
<CollVv" |l 2 + ColpZv™ 172 (4.4)

for ¢ small enough.
By Gronwall’s inequality, we know there exists 77 > 0 independent of m such that

T
_1 _1
swuwWﬁﬁ/’wwgstmwm;+@n (4.5)
te[0,T1] 0
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For any test function ¢ € C([0, T], HY) with @|r;=0 = 0 and ||¢||L%H1 < 1, owing to
the weak formula of the system (4.2), we deduce from (4.5) that

T T T -
|/ (P V™, ¢)ds|=| —/ / Sz : ijqﬁdxds—i—/ / ﬁzj_2VJ~;l.¢dxds|
0 0 Q 0 Q
1 1
< (Co+ CollV™ll2 ) 1Bl,2 1 = (Coll + T7) + CollHuf 102

which follows from the dual argument that

1 1
129" 13 arye < Coll+ 1) 4 Coll P20 2. (4.6)

Multiplying d' (t)" on the both sides of (4.3) and taking the summation in terms of
¢=1,...,m,wehave

/ﬁ|8,v’"|2+f Sj(v'"):vma,v’"dxzfﬁzf—zvm-a,v’"dx.
Q Q Q

Similar estimate in Proposition 3.7 implies that

1d
2dt Jo

1 - -
< 'E/ Sg(vm):V;va,de‘—i-‘/ TS 7™ : V,, zo"dx
Q Q

TS 7™ : V" dx + 52 0,0 |2,

+ ‘/ ﬁzj_zviz . atvmdx‘.
Q
Since v € Yr, we infer that

1 ~ ~
’5/ S_Z(vm) : V_;\‘vmat.]dx‘ + ‘f JS_Z(U'”) : VB,_ZUm dx| < C”va”%}/D(T)‘)
Q Q

and
2727 m 1 m
p"J V- 0v"dx| < Collp2 00" | 2.
Q

As aresult, we get

1d ~ . -~ )
2di / TS 7™ : V gv"dx + 520, |72 <C V" [.D@) + Coll 52 0,v™ || 2.
Q

Integrating time from 0 to 7} and using ¥ € Y7 and Lemma 3.9, we obtain

2

2 _1
sup V" I3, + 1520”17, 4
1

1€[0,T1]

1 I 1
< GOV 2, + CoTy? sup V0™ 2, / D@ds)} + CoTh.
t€[0,T1] 0

Taking 77 small enough such that the second term on the right hand side absorbed by the left
hand side, we obtain

_1
sup (Vo™ |7, + coll220,0™ I3, > < 2ColIVug'll72 + CoTh. (4.7)
tel0,T1] T
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Combining estimate (4.5), (4.6) and (4.7) together, there holds that

2

1 2 m 2 my2 1 my 2 — m
su 2™ +||Vv + v + |p20;v + |posv
p B I3 + IV 1)+ "1+ 100" s o+ 1700”1

1€[0,T1]

_1
< 2ColIp2 v 112, + 2Co V|2, + Co(1 + Th). (4.8)
Step 3: Passing to the limit. Since

1 2 my2 my2 Lo m2 —a m 2
su 2™ Vv v 20,0 o;v
IE[OI;IJ(HP 2+l 72) + 1 ||L%1H1 +1lp20; ||L2T1L2 + [po: ||L2Tl (H1y*

is uniformly bounded, up to the extraction of a subsequence, we know as m — 00
ﬁ% vm—\*ﬁ% v in L‘}?LZ,
Vu"—=*Vu in LPL?,
pa " —=pdv in L7 (H')*,

v —v in LzT]Hl.

(4.9)

By lower semicontinuity and energy estimate (4.8), we use the fact [[v™ (0) — voll 2(q) — O
as m — oo to infer that

L2 2 2 1 — 2
sup ([[o2vll72 + 1IVully2) + lvll72 1 + 10200l 2 12 + 100V, .
1€[0,T1] L L LTlHl Ly L LTI(H])

_1
< 4Collp2v0l13, + 4Coll Vuol2, + Co(1 + T), (4.10)

and v is a weak solution to the linear A-equations (4.1). Moreover, according to (4.10), we
may obtain from Aubin—Lions’s lemma [38] that v € C([0, T1], X (1) N HY.

2
Step 4: The strong solution. Now, we prove the above weak solution v is a strong one. In
fact, for a.e t € [0, T'], v(¢) is a weak solution to the elliptic system in the sense of

/Sg(v):viqudx:/ (vm(ﬁzf—z)—ﬁa,v)wx @.11)
Q Q

for¢ € H'. Since ﬁ_% (V;j(ﬁzf_z) — oy v) e L%foraet € [0, T], by elliptic regularity

. . . . . _1
theory, we know this system admires a strong solution v solving (4.1) with p~2T¥Av e
L2([0, T, L?). The uniqueness comes from energy estimates with zero initial data. ]

4.2 Highregularity of v

In this subsection, we prove when ¥ € Y7, so does v := O(V). It is mainly based on the
priori estimates in Sect. 3.

Lemma 4.2 Assume that v is a strong solution obtained in Lemma 4.1 and v € Yr with initial
data vy € Yy, then we have v € Yr, and satisfies

Iollyy, < CT1 + Collwolvy,

where the constant C depends on ||V]|y;.
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Proof We take A, J instead of A, J respectively in those estimates in Propositions 3.7 and
3.8. System (4.1) is a linear system due to A, J are regarded as known quantities, so for small
T1 > 0, it is easy to arrive at the following estimate:

10" llyy, < CTi + Collvf! Iy

Passing to the limit, we get the desired results. O

Remark 4.3 By Lemma 4.2, we know that ® : Y7, — Y7, is well-defined.

4.3 Contraction

By Lemmas 4.1 and 4.2, we know that if v € Y7 with T > 0 sufficiently small , we can find
a unique strong solution of equation (4.1) with regular v = ® (V) € Y7. In order to construct
the solution to (1.18), we need to construct approximate solutions. The approximate solutions
{gm, v(")} | we defined are iterated as follows:

9EM =™ in Q,

200" +V ety g0 (J )25 = V0o g0 - S go-n (™) =0 in Q,
S_A(n—l)(v(n)) NO=D = 0, on T,

v(n) |x3:0 = O!

€™, v")—0 = (. vo) in Q.

(4.12)
with {£D, v} be the solution of linear equation
&M =0 in Q,
200D + V54, @ Ig ) = Vi, - Sa, @) =0 in @,
S4, YNy =0, on T, (4.13)

v(1)|x3:0 =0,
ED, vV = (%0, vo) in Q,

where Ay, Jo are given by no(x) = x + & (x) and Ny = d1n9 X dn9 on {x3 = 1}. Since
(4.12) is a decouple linear system in terms of &€ and v, we need only to solve first v
then £ according to the first equation in (4 12). Notice that (4.13) is linear, the assumption
on initial data ||vo||%,0 = ||vo||2 = + IIVvoIIL2 < 2C guarantees that v e Y7 with bound

||v(1)||2 < M. By Lemma 4. 2 we obtain {v(")}Oo C Yr foranyn > 1.

Next our goal in this subsection is to prove sequence {v }o2 ; is contracted under norm
YT.
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First of all, we deduce o (v™) £ v®+1) — 4 satisfies the following equation

poo (™) — (VJ(V')A(") S gmv " = V) g -SA@_l)v(”))
(V50040 (F)2) = Vg g (V) 725%)) =0 in- @,
S 4o ™D A S 0 v AD =0, on T,
6 W™)lx=0 = 0.

o (™)|,—p = v(()"+l) — v(()") =0 in Q.

(4.14)

Lemma 4.4 Assume that {v(”)}flo:l be the solutions of Eq. (4.12) with bound ||v® ||%,T <M
for each n > 1. It holds that

d _1 _
S 1P20 @I + 1o @G < Crio @™ D)5, .(1+ D @™))?).

Moreover, taking T small enough, the sequence v is a Cauchy sequence in the space ?T.

Proof Taking L? inner product between (4.14) and o (v™), we obtain

S S Ipte M2, - /Q (V40 400D = ¥yt gomr - S g0 ) 0/ (0)dx
= —/;2 (Vﬂn)Aw) (™) 2p%) — Vj<n—1>,4(n—1>((J("_l))_zﬁz)) o(")dx.
Estimate of dissipation term. Since

e3J W (AM) = N0 gy D (0=D)3 _ prrD)
and
S 4o WY N S 4y @Y N =0 on T,
we get by using integration by parts that
- /Q (VJ(n)A(n) S 4wVt = Vo) ga-n -SA(,H)U(")) o(v™)dx
= /Q (7 CADYES 0™ = T ACTES gun v ) o (v
= /Q TWAMS yoo ™) - 8o (v])dx
+ /Q(J(")A(”) — TN ATNS oy ™) - o (v )dx

" /sz sehAny S(.A(n)_A(n—l))v(n) - 0ko (vf")dx
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Under the assumption |v™ ||f,T < M, we have

— / (Vj(n)A(n) -SA(n)v('H'l) — Vo-1 g0-1 'SA(nfl)U(n)) U(v("))dx
Q
_1
> collo@™)1%, — CollpZo(™)|1%,
_ ‘/(Jm)A(n) _ D 40D ) V(,(vm))dx‘
Q
(n=1) 4(n=1) ) . (n)
- ‘/QJ DA 'S(A('I)—A(”*l))v Vo @V )dx‘
_1
2 collo ™) = Collp2o )7, — I — I,

where we use |J ™| > oy and Lemma 3.5 for A™.
For 71, owing to

JW g0 _ =1 fn=1) _ (V(ﬁ(n) _ n(n—l)))*

t * t
= (/ Va(v("_l))ds> ~ (f Va(v(”_]))ds)
0 0

”J(n)A(") _ J(”*l).A(’lfl)”L2
< Ct|Vo @ Dl 2 2 1D@ "2 < CrlIVo ") 120,

2

then

Applying Holder inequality and Lemma 3.2 to A™, one has

I < [TWA™ — gO=D A=) AP Lo [V oo [ Vo 0™)]] 2
< CtVo @)l 122D ") Vo ™) ] 2.

Similarly, we have
L < Ct|Vo ") 12 2D ™) Vo 0™ 2.

Combining all above estimates, we obtain

— / (VJ(n)_A(n) . SA(n)U(n+1) — VJ(n—I)A(nfl) . SA(nfl)U(n)) O'(U(n))dx
Q

3 _1 _
> Seollo @3 = Collp?o @)z, = Cr2IVe 0", D ™).

Estimate of pressure term. Integrating by parts and using p|,=1 = 0, U(v(”))|x3:0 =0, we
prove that

_ /Q (VJ(n)A(n) ((J(n))—2ﬁ2) _ Vj(n—l)A(n—l) ((J(n—l))—2ﬁ2)) O_(v(n))dx
= / (A(Vl)((‘](n))—IEZ) _ A(Vl—l)((](l’l—]))—IEZ)) . Vo'(v(n))dx
Q

:/ (AW — A=Y (152 Vo (0™ dx
Q
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+/ AP — (D) "hp? Vo (v™)dx
Q
< CrEIVo ") 22V )] 2.

Collecting all above estimates together, we finally obtain

d _1 co
J P70 @I, + Ve @)L
1
< Ct|Vo 0" )7, (1 + D)%) + Collp2o 0™) 7. (4.15)

Integrating (4.15) in ¢ € [0, T'] and taking 7 small enough, we have

T
_1 co
sup (P20 @™ ()72 + 5 / llo @™ )13t
t€(0,T] 0

T
1 —
<1520 @™ O)lI7z + CTIVo "™ D)7, 5 (T + fo D),  (4.16)

and then

T
_1 [&0]
sup P20 (@)l + / lo ™ ) 13,1d1
te[0,T] 0

< CT(T + M)|[Vo 0"V} 1, < CTIVo @D, .

By now, we get that when 7 takes small enough, then we get

_1
sup 220 @) + llo @™ @3,
te[0,T] T

1 1
< =1 (=1 (4y)112 =D )12
< z(zes[g?T] lp2o (v @72+ llo( ())IILzTHl),

which completes this Lemma. O

4.4 Proof of Theorem 1.2.

o0

From Lemma 4.4, we know {v(”)}n | is Cauchy sequence in the space I?T. Soasn — oo,

p2v™ - prv in C([0,T1, L%,

4.17)
v™ v in L%*([0,T1, HY).

Due to Lemma 4.2 that [ ||%,T < M uniformly in n > 1, sequence {v(")};‘lo=l have weakly
convergent subsequence. Along with strong convergence (4.17), we infer that as n — 0

vW*yin L([0, T, X 12,
2

vW—y, vo®vy  in L2([0, T, X',
v —~*vy in L®([0, T], L?),
229,0™F39,0  in L2([0,T], L.
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So the function v satisfies equation (1.18) in weak sense. On the other hand, lower semiconti-
nuity gives bound ||v ||§T < 2M, and then (1.25) holds. As a result, thanks to Aubin—Lions’s

lemma [38], we get that (v, n) € C([0, T]; X'> N HY(Q)) x C([0, T]; Fi(R)) by using

a standard procedure (cf. the proof of Theorem2 3.5 in [33]), which is a strong solution to
(1.18). The uniqueness comes from L2 energy estimates with zero initial data. More precise,
let (§1, v1) and (&2, vy) are solutions to (1.18) with same initial data. The same process in
Lemma 4.4 deduce that

1
2 2
lor = v2lly, = S lve = wally, .

which implies v; = vy and then & = &; on the time interval [0, T']. Furthermore, applying
(4.16) to the system (1.18), we may readily prove that the solution (v, 7) € C([0, T]; X'>N
2

H! (R)) x C([0, T]; Fi(L2)) depends continuously on the initial data (vo, no) € (Xll2 N
2
H'(Q)) x F¢(Q). This finishes the proof of Theorem 1.2. O
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