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Abstract
This paper is devoted to the analysis of problems of optimal control of ensembles governed
by the Liouville (or continuity) equation. The formulation and study of these problems have
been put forward in recent years by R.W. Brockett, with the motivation that ensemble control
may provide a more general and robust control framework. Following Brockett’s formulation
of ensemble control, a Liouville equation with unbounded drift function, and a class of cost
functionals that include tracking of ensembles and different control costs is considered.
For the theoretical investigation of the resulting optimal control problems, a well-posedness
theory in weighted Sobolev spaces is presented for the Liouville and transport equations.
Then, a class of non-smooth optimal control problems governed by the Liouville equation
is formulated and existence of optimal controls is proved. Furthermore, optimal controls are
characterised as solutions to optimality systems; such a characterisation is the key to get
(under suitable assumptions) also uniqueness of optimal controls.

Mathematics Subject Classification Primary 49J20; Secondary 35L03 · 35B65 · 49K20 ·
35Q93

1 Introduction

The notion of ensemble control was proposed by Brockett [8], and further in [9,10], while
considering the problem of a trade-off between the complexity of implementing a control
strategy and the performance of the control system. For the former, Brockett discusses the
concept of minimum attention control that results in costs of the control that involve a time
derivative of the control function. For the latter, he emphasizes the advantage of considering
an ensemble of trajectories, which stem from a distribution of initial conditions, rather than
individual trajectories. By these two consideration, Brockett concludes that the natural setting
for investigating both aspects of the resulting control problem is by means of the Liouville
(or continuity) equation that governs the evolution of the ensemble of trajectories.
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The Liouville equation is a hyperbolic-type PDE, which arises in diverse areas of sciences
as biology, finances, mechanics, and physics; see e.g. [13,15,16,19,22]. It is often used to
model the evolution of density functions representing the probability density ofmultiple trials
of a single evolving ordinary differential equation (ODE in brief) system, or the physical
(e.g. particle) density of multiple non-interacting systems. In both cases, the function of
the dynamics of the ODE model appears as the drift coefficient of the Liouville equation.
Therefore the problem of controlling a trajectory of a finite-dimensional dynamical system is
lifted to the problem of controlling a continuum of dynamical systems with the same control
strategy. Specifically, this setting results in the problem of determining a single closed- or
open-loop controller, which applies to a particular system over an infinite number of repeated
trials, or to steer a family of finite-dimensional dynamical systems. As discussed by Brockett,
this approach represents a new control framework that is able to address a number of issues
as uncertainty in initial conditions and the trade-off mentioned above.

1.1 The Liouville equation and a control mechanism

Given some time T > 0, consider a smooth vector field a(t, x) over R
d , where (t, x) ∈

[0, T ] × R
d . We refer to a as the drift function. It is well-known that, if a scalar function ρ,

defined on [0, T ] × R
d , satisfies the Liouville equation

∂tρ(t, x) + div
(
a(t, x) ρ(t, x)

) = 0, (1.1)

with some (say) smooth initial datum ρ|t=0 = ρ0, then we can represent ρ by the formula

ρ(t, x) = 1

det J
(
t, ψ−1

t (x)
) ρ0

(
ψ−1
t (x)

)
,

where ψt (x) = ψ(t, x) denotes the flow map associated to a, J (t, x) = ∇xψt (x) is its
Jacobian matrix, and ψ−1

t (x) means the inverse with respect to the space variable, at t fixed.
By definition of flow map, ψ verifies the following system of ODEs:

∂tψ(t, x) = a
(
t, ψ(t, x)

)
, ψ(0, x) = x . (1.2)

In view of physical considerations, it is often natural to assume an initial condition ρ0
verifying ρ0 ≥ 0, together with the normalization

∫
Rd ρ0(x)dx = 1. By Eq. (1.1), if a is

smooth enough and growing not too fast at infinity (see e.g. [18]), it is standard to deduce
that, for all times t ≥ 0, there holds that

ρ(t, x) ≥ 0 and
∫

Rd
ρ(t, x) dx =

∫

Rd
ρ0(x)dx = 1.

Nonetheless, we remark that most of our results do not require the latter two assumptions on
ρ0.

Next, let us discuss the control mechanism we will consider throughout this paper. The
focus of ensemble control is the development of a control strategy for the differential model
(1.2) augmented with a control mechanism, as follows:

ẋ = a(t, x; u), (1.3)

where u denotes the control function. We refer to [9,10] for a discussion on the choice of
u as a function of time only, which corresponds to a so-called open-loop control, or as a
function of time and of the state variable, which may represent a feedback law. In this paper,
while considering the controlled Liouville model in a general setting that accommodates both
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choices, we focus our attention on open-loop optimal control problems: this point of view
is motivated by the fact that the most used control mechanisms for (1.3) are the linear and
bilinear ones, as follows:

a(t, x; u) = a0(t, x) + u1(t) + x ◦ u2(t), (1.4)

where a0 is a given smooth vector field and u = (u1, u2) is the control, which, for the scope
of the present discussion, we assume to be smooth. The control u1 represents a linear control
mechanism and u2 multiplying the state variable x represents the bilinear control term. Both
functions u1 and u2 are defined on the time interval [0, T ] with values in R

d . The symbol
◦ : R

d × R
d → R

d denotes the Hadamard product of two vectors, i.e. the multiplication
component by component.

Notice that, corresponding to the controlled evolution model (1.3), we have the following
controlled Liouville equation:

∂tρ(t, x) + div
(
a(t, x; u) ρ(t, x)

) = 0. (1.5)

The Liouville equation offers a convenient framework to accommodate any control mecha-
nism and any possible initial distribution including multi-modal ones. Indeed with (1.4) and
a0 = 0, in the simplest case of a Gaussian unimodal distribution, the Liouville dynamics
can be completely described by the first- and second-moment equations, where the control
u1 appears as the main driving force of the mean value of the density, and u2 determines the
evolution of the variance of the density.We refer to [10] formore details on this interpretation.
We remark that, also related to this interpretation but in terms of differential inclusions, is
the work in [12], that deals with a time-optimal control problem.

As a final comment, we point out that, for the characterization of the solution to our
Liouville optimal control problems, we shall deal with (1.5) and with an adjoint Liouville
problem, namely a transport problem, given by

∂t q(t, x) + a
(
t, x; u) · ∇q(t, x) = g(t, x), with q|t=0 = q0, (1.6)

where g and q0 depend on the optimization data.

1.2 Formulation of ensemble optimal control problems

In order to discuss Brockett’s formulation of ensemble control, consider the following ODE
optimal control problem:

min j(x, u) :=
∫ T

0

(
θ
(
x(t)

) + κ
(
u(t)

))
dt + ϕ

(
x(T )

)
(1.7)

s.t. ẋ(t) = a
(
t, x(t); u(t)

)
, x(0) = x0, (1.8)

where “s.t.” stands for “subject to”. Here, θ , κ and ϕ are usually taken to be continuous
convex functions of their arguments; we will better specify their properties later on.

The optimal control function u is sought in the following set of admissible controls:

Uad :=
{
u ∈ L

∞
T (Rd)

∣∣ ua ≤ u(t) ≤ ub for a.e. t ∈ [0, T ]
}

. (1.9)

In particular, in the case of (1.4), we have two box constraints ua = (ua1, u
a
2) and ub =

(ub1, u
b
2), where uaj < ubj , j = 1, 2, are given vectors in R

d . Clearly, the optimal control
function u that solves (1.7)–(1.8) with u ∈ Uad depends on the initial condition x0, which
is fixed, and it represents a control strategy that is determined once and for all times for the
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given x0 and the given optimization setting. Therefore no uncertainty on the initial condition
is taken into account in the formulation (1.7)–(1.8), hence, from this point of view, the
resulting control is not robust. On the other hand, a closed loop control, say, u = u(t, x),
would appropriately control the system based on the actual state of the system, but, as pointed
out in [9], the cost of implementing such a control mechanism is often prohibitive and may
be not justified by real applications.

With the purpose to strike a balance between the desired performance of the system and the
cost of implementing an effective control, the ensemble control strategy considers instead
a density of initial conditions, and therefore ensemble of trajectories. In this way, it aims
at achieving robustness, while choosing control costs which promote controls allowing for
easier implementation. Thus, one is led to the formulation of the following ensemble optimal
control problem:

min
u∈Uad

J (ρ, u) :=
∫ T

0

∫

Rd
θ(x) ρ(x, t) dx dt +

∫

Rd
ϕ(x) ρ(x, T ) dx +

∫ T

0
κ
(
u(t)

)
dt

(1.10)

s.t. ∂tρ + div
(
a(t, x; u) ρ

) = 0, ρ|t=0 = ρ0. (1.11)

This problem is defined on the space-time cylinder R
d × [0, T ], for some T > 0 fixed. In

this formulation, the initial density ρ0 represents the probability distribution of the initial
condition x0 in (1.7)–(1.8), and thus it models the known uncertainty on the initial data.

Next, we discuss some specific choices of the optimization components in (1.7)–(1.8),
and correspondingly in (1.10)–(1.11).

For example, if x = 0 is a critical point for (1.8), which requires a(t, 0; u) = 0, then the
choice θ(x) = x2 appears standard for stabilization purposes. Usually, in this context, the
so-called L2 cost of the control is considered, which corresponds to the choice k(u) = γ u2,
where γ > 0 is the weight of the cost of the control. On the other hand, if the purpose
of the control in (1.7)–(1.8) is to track a desired and even non-attainable trajectory xd ∈
L2(0, T ; R

d), and to come close to a given final configuration xT ∈ R
d at the final time

(possibly with xd(T ) 	= xT ), then a natural choice appears to be θ
(
x(t)

) = α
(
x(t)− xd(t)

)2

and ϕ
(
x(T )

) = β
(
x(T ) − xT

)2, with appropriately chosen weights α, β > 0. Notice
however that the role of those functions is to define an attracting potential (i.e. a well centred
at a minimum point, such that the minus gradient of the potential is directed towards this
minimum): hence, other choices are possible.

As discussed in [8–10], the choice of the cost function κ should be such that the effort
of implementing the control strategy is as small as possible. In this sense, the cost of imple-
menting a slowly varying control function, and (we add) a control that does not act for all
times, should be smaller than that corresponding to a control having large variations. From
this perspective, a constant input that controls the system is the cheapest choice, and the next
possible choice is a control that slowly changes in time. This requirement leads naturally to
a cost of the form

ν

∫ T

0

(
du

dt
(t)

)2

dt,

where ν ≥ 0. In fact, as ν is taken larger, the resulting optimal control will have smaller
values of its time derivative, that is, a slowly varying control, which is called “minimum
attention control” in [8].
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More recently, there has been a surge of interest in L1-costs, originating from signal
reconstruction and magnetic resonance imaging [11]. This cost is given by

δ

∫ T

0
|u(t)| dt,

where δ ≥ 0. The effect of this cost is that it promotes sparsity of the control function, in
the sense that, as δ > 0 is increased, the u resulting from the minimisation procedure will
be zero on open intervals in ]0, T [ , and these intervals become larger and eventually cover
all of ]0, T [ as δ → +∞. In the present paper, we introduce the L1-cost in the context of
ensemble control and call the resulting sparse control a “minimum action control”.

All together, we specify the term
∫ T
0 κ

(
u(t)

)
dt in (1.7) and in (1.10) as follows:

κ
(
u(t)

) := γ

2

(
u(t)

)2 + δ |u(t)| + ν

2

(
du

dt
(t)

)2

, (1.12)

where γ + δ + ν > 0 and the factor 1/2 is chosen for convenience of later calculations.
Notice that different choices of the value of the positive coefficients γ, δ, ν will result in
different features of the resulting optimal control function.

1.3 Goals of the paper and overview of themain results

The purpose of this paper is to give a solid theoretical basis to Brockett’s ensemble control
based on Liouville models. For this, we present a rigorous investigation of a class of Liouville
optimal control problems with unbounded coefficients and cost functionals that are formu-
lated in terms of the density and of different control costs. To the best of our knowledge, no
similar investigation is available in the literature yet.

The first step of our analysis, carried out in Sect. 2 consists in investigating the well-
posedness of continuity and transport equations with unbounded drift function, which
presents the structure (1.4). We do not strive for minimal regularity hypotheses on the drift
vector field a, and frame our work within a setting that can be considered classical. We refer
to e.g. Chapter 3 of [4] for the case of bounded drifts, and to the cornerstone paper [18] for
the case of unbounded drifts having at most linear growth at infinity (see also [1–3,17] and
references therein for recent advances).

However, in order to give full rigorous justification to Brockett’s formulation, including
the presence of quadratic potentials in the cost functional, we need to extend (in Sect. 2.2) the
classical well-posedness theory to a class of weighted Sobolev spaces Hm

k , see Definition 2.1
below. Roughly speaking, a tempered distribution ρ ∈ Hm belongs to Hm

k if ρ and all its
derivatives up to order m belong to the measurable space

(
L2(Rd), (1 + |x |)k dx). Such an

extension, which is natural in our context, seems to be new in the literature. We point out also
that existence, uniqueness and regularity properties are derived in this context by standard
arguments: the key of the analysis reduces to show suitable a priori estimates on the solutions
in weighted norms.

In passing, we mention that the well-posedness theory in weighted spaces can be adapted
with no special problems to L p-based spaces, for any 1 ≤ p < +∞. In addition, we
believe that the Hm

k theory should generalise also to general hyperbolic systems which are
symmetrizable in the sense of Friedrichs (see e.g. [6,21]). However, extensions of the present
work (well-posedness and investigation of optimal control problems) to both the previous
directions go beyond the scopes of our paper, and we leave them for further studies.
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After establishing well-posedness of the Liouville equation in a suitable framework, we
pass to investigating the related optimal control problem. The main novelties of this part are
the following ones: the adoption of Brockett’s problem setting and of a non-smooth functional
framework; the fact that we deal with optimal control problems governed by a hyperbolic
PDE; the control mechanism, which acts in the coefficients of the principal part of the partial
differential operator.

We follow a standard scheme. First of all, in Sect. 3 we define the Liouville control-to-state
mapG, namely themapwhich associates to any control state u the unique solutionρ = G(u)

to the corresponding Liouville equation, and study its main properties. A fundamental issue
in this part is to show Fréchet differentiability (in a suitable topology) of G: our method to
prove that property (see Sect. 3.2) relies on performing stability estimates on the Liouville
equation. Now, dealing with the growth in space of our drift function at +∞ requires the use
of weighted norms; moreover, due to the hyperbolicity of transport and continuity equations,
a loss of regularity occurs, which requires to consider both higher smoothness and higher
integrability on the initial data (namely, both m ≥ 2 and k ≥ 2).

Then, in Sect. 4, we complete the investigation of the ensemble optimal control problem in
the case of attracting potentials which are moreover in L2; the adaptations needed to treat the
case of quadratic potentials are mentioned in Sect. 4.4. The first step consists in establishing
(see Theorem 4.1) the existence of optimal controls. Then, we characterise these optimal
controls as solutions of a first-order optimality system, which can be interpreted in terms
of the Fréchet differential of the reduced functional Ĵ (u) := J

(
u,G(u)

)
. Remark that the

differentiability properties of J (and Ĵ ) change radically depending on the choice of the
optimization weights. For instance, if γ > 0 and δ = ν = 0, then the optimization space is
L2(0, T ) and we have Fréchet differentiability of the cost functional. This is the “standard”
case. If instead δ > 0, then we have a semi-smooth optimal control problem and we have
to resort to the use of sub-differentials. Finally, if ν > 0, then H1(0, T ) is the appropriate
control space, and the optimality condition accounts for this fact. If all weights are positive
and with control constraints, we have an optimal control problemwhose structure (to the best
of our knowledge) has never been investigated in PDE optimization. For this general case, we
prove (see Theorem 4.2) existence of Lagrange multipliers, and derive the optimality system.

In Sect. 4.3, we address the uniqueness of optimal ensemble controls, in the special case
γ > 0 and δ = ν = 0. More precisely, in Theorem 4.3 we show uniqueness of optimal
controls for the control-constrained problem, provided a smallness condition is satisfied;
such a condition requires the time T and the size of the data ρ, g, θ and ϕ to be small enough,
or the coefficient γ to be sufficiently large. This part of the analysis exploits in a fundamental
way the optimality system previously derived, and the characterisation of optimal controls
as solutions to it.

Notation

In this section, we present our notation that we use throughout the paper.
Given a domain 
 ⊂ R

d , the symbol C∞
c (
) denotes the space of infinitely often dif-

ferentiable functions with compact support in 
. Given k ∈ N, we denote by Ck(
) the
space of all k-times continuously differentiable functions defined on 
, and by Ck

b (
)

the subspace of Ck(
) formed by functions which are uniformly bounded together with
all their derivatives up to the order k. We equip Ck

b (
) with the Wk,∞-norm as follows:
‖v‖Ck

b
:= ∑

|α|≤k ‖Dαv‖L∞ .
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For α ∈ ]0, 1] , we denote with C0,α(
) the classical Hölder space (Lipschitz space if
α = 1), endowedwith the norm ‖�‖C0,α := supx∈
 |�(x)|+sup

(|�(x)−�(y)| / |x−y|α)
,

where the sup is taken over all x 	= y ∈ 
 such that |x − y| < 1-. In particular, C0,1(
) ≡
W 1,∞(
).

For k ∈ N and 1 ≤ p ≤ +∞, we denote with Wk,p(
) the usual Sobolev space of L p

functions with all the derivatives up to the order k in L p; we also set Hk(
) := Wk,2(
). For
1 ≤ p < +∞, let W−k,p(
) denote the dual space of Wk,p(
). For any p ∈ [1,+∞], the
space L p

loc(
) is the set formed by all functions which belong to L p(
0), for any compact
subset 
0 of 
.

Furthermore, we make use of the so-called Bochner spaces. Given two Banach spaces
X and Y and a fixed time T > 0, we define XT (Y ) := X

([0, T ]; Y )
, with ‖u‖XT (Y ) :=

∫ T
0 ‖u(t)‖Y dt .
Given a Banach space X and a sequence

(
�n

)
n , we use the notation

(
�n

)
n ≺ X meaning

that �n ∈ X for all n ∈ N and that this sequence is uniformly bounded in X : there exists
some constant M > 0 such that ‖�n‖X ≤ M ∀n ∈ N.

Given two Banach spaces X and Y , the space X ∩Y , endowed with the norm ‖ · ‖X∩Y :=
‖ · ‖X + ‖ · ‖Y , is still a Banach space.

For every p ∈ [1,+∞], we use the notationL
p
T (Rd) := L p

T (Rd)×L p
T (Rd). Analogously,

H
1
T (Rd) := H1

T (Rd) × H1
T (Rd). In addition, given two vectors u and v in R

d , we write
u ≤ v if the inequality is satisfied component by component by the two vectors: namely,
ui ≤ vi for all 1 ≤ i ≤ d .

Given two operators A and B, we use the standard symbol [A, B] to denote their commu-
tator: [A, B] := AB − BA.

2 Theory of Liouville and transport equations with unbounded drifts

In this section, we present results concerning the well-posedness theory of Liouville and
transport equations in the class of Sobolev spaces. In view of formula (1.4), we are especially
interested in the case when the drift function a may be unbouded, but has at most a linear
growth at infinity.

In Sect. 2.1, we review the well-posedness theory in classical Hm spaces, for m ∈ N (for
simplicity); we do not present all the proofs here, and refer to e.g. [1,17,18] for the details and
more general results. Afterwards in Sect. 2.2, motivated by the study of our optimal control
problem, we extend these results to weighted Sobolev spaces.

2.1 Classical theory of Liouville and transport equations

We start our discussion by considering the Liouville equation. Notice that our statements can
be repeated in a very similar way (with just slight modifications) also for the adjoint Liouville
problem, namely the transport equation: we treat this case in Paragraph 2.1.2, without giving
details.
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2.1.1 Liouville equations in classical Sobolev spaces

Consider the following Liouville initial-value problem
{

∂tρ + div
(
a(t, x) ρ

) = g(t, x) in [0, T ] × R
d

ρ|t=0 = ρ0 on R
d .

(2.1)

Whenever attempting at solving Eq. (2.1), we have in mind its weak formulation. Namely,
for all φ ∈ C∞

c

(
R
d × [0, T [ ), we want to verify the following equality:

−
∫ T

0

∫

Rd
ρ ∂tφ dx dt −

∫ T

0

∫

Rd
ρ a · ∇φ dx dt =

∫ T

0

∫

Rd
g φ dx dt +

∫

Rd
ρ0 φ(0) dx .

(2.2)

The theory for this equation is classical, at least in the case of a bounded drift function a.
The following well-posedness result is adapted to our needs from Theorem 3.19 in [4].

Theorem 2.1 Let us fix T > 0 andm ∈ N, and let a ∈ L1
([0, T ];Cm+1

b (Rd)
)
, ρ0 ∈ Hm(Rd)

and g ∈ L1
([0, T ]; Hm(Rd)

)
.

Then there exists a unique weak solution ρ to (2.1), with ρ ∈ C
([0, T ]; Hm(Rd)

)
.

Moreover, there exists a “universal” constant C > 0, independent of ρ0, a, g, ρ and T , such
that the following estimate holds true for any t ∈ [0, T ]:

‖ρ(t)‖Hm ≤ C

(
‖ρ0‖Hm +

∫ t

0
‖g(τ )‖Hm dτ

)
exp

(
C

∫ t

0
‖∇a(τ )‖Cm

b
dτ

)
.

Remark 2.1 In the case m = 0, one can replace ‖∇a‖C0
b
with ‖div a‖L∞ inside the integral

in the exponential term.

Motivated by the study of our optimal control problem, see Sect. 1.1 and especially
Definition (1.4), we are rather interested in the case when a may be unbounded, with at most
a linear growth at infinity. More precisely, given m ∈ N, we assume

{
g ∈ L1

([0, T ]; Hm(Rd)
)

and ρ0 ∈ Hm(Rd)

a ∈ L1
([0, T ];Cm+1(Rd)

)
, with ∇a ∈ L1

([0, T ];Cm
b (Rd)

)
.

(2.3)

Remark 2.2 Notice that hypotheses (2.3) imply, in particular, that a(t, ·) has at most linear
growth in space at infinity: for almost every (t, x) ∈ [0, T ] × R

d , one has

|a(t, x)| ≤ C c(t) (1 + |x |), for c = ‖∇a‖L∞ ∈ L1([0, T ]).
The condition of at most linear growth at infinity can be proved to be somehow sharp for
well-posedness, see e.g. [17,18] and the references therein.

The main result of this section is the following statement, proved by DiPerna and Lions
in [18] (see also [17]). However, we give here a self-contained presentation of its proof.

Theorem 2.2 Let T > 0 and m ∈ N fixed, and let a, ρ0 and g satisfy hypotheses (2.3).
Then there exists a unique solution ρ ∈ C

([0, T ]; Hm(Rd)
)
to problem (2.1). Moreover,

there exists a “universal” constant C > 0, independent of ρ0, a, g, ρ and T , such that the
following estimate holds true for any t ∈ [0, T ]:

‖ρ(t)‖Hm ≤ C

(
‖ρ0‖Hm +

∫ t

0
‖g(τ )‖Hm dτ

)
exp

(
C

∫ t

0
‖∇a(τ )‖Cm

b
dτ

)
. (2.4)

123



A theoretical investigation of Brockett’s ensemble optimal… Page 9 of 34 162

We notice that Remark 2.1 applies also in this case.
The rest of this paragraph is devoted to sketch the proof of Theorem 2.2. As for existence,

we derive it from Theorem 2.1, after truncation, approximation and passage to the limit in
the truncation parameter. We conclude by discussing time regularity and uniqueness issues.

Existence. The first step is to construct a suitable truncation of the drift function. For this
purpose, let us introduce a smooth cut-off function χ ∈ C∞

c (Rd) such that χ is radially
decreasing, χ(x) = 1 for |x | ≤ 1 and χ(x) = 0 for |x | ≥ 2. For all real M > 0, we define

aM (t, x) := χ
( x

M

)
a(t, x). (2.5)

Notice that, by assumptions (2.3), we immediately get that aM ∈ L1
T (Cm+1

b ) for all M > 0.
Moreover, in view of Remark 2.2, an easy computation shows that

(∇aM
)
M ≺ L1

T (Cm
b ), with ‖∇aM‖L1

T (L∞) ≤ C, (2.6)

for a constant C > 0 independent of M . Indeed, denoting by 1A the characteristic function
of a set A ⊂ R

d and by B(x, R) the ball in R
d of center x and radius R > 0, we can compute

‖∇aM‖L∞ =
∥∥∥∥
1

M
∇χ

( x

M

)
a + χ

( x

M

)
∇a

∥∥∥∥
L∞

≤ C
1

M

∥∥a 1B(0,2M)

∥∥
L∞ + ‖∇a‖L∞ ≤ C .

The bounds for higher order derivatives follow the same lines, after noticing that, at each
order of differentiation, we gain a factor 1/M in front of a.

At this point, for each fixed M > 0, we can consider the truncated problem
{

∂tρ + div (aM ρ) = g

ρ|t=0 = ρ0,
(2.7)

which possesses a unique weak solution ρM ∈ C
([0, T ]; Hm(Rd)

)
, by virtue of Theo-

rem 2.1. Moreover, each ρM satisfies the energy estimate (2.4), up to replacing a by aM .
Thus, we have

‖ρM (t)‖Hm ≤ C

(
‖ρ0‖Hm +

∫ t

0
‖g(τ )‖Hm dτ

)
exp

(
C

∫ t

0
‖∇aM (τ )‖Cm

b
dτ

)
.

(2.8)

Thanks to property (2.6), we deduce the uniform bounds
(
ρM

)
M ≺ L∞([0, T ]; Hm(Rd)

)
.

As a consequence, we obtain the existence of a ρ ∈ L∞
T (Hm) such that, up to the extraction

of a subsequence, one has ρM
∗
⇀ ρ in L∞

T (Hm).
Our next goal is to show that ρ actually solves problem (2.1) in the weak form, see (2.2).

For this purpose, we need to pass to the limit, for M → +∞, in the weak formulation of
(2.7): for any φ ∈ C∞

c

(
R
d × [0, T [ ), we have

−
∫ T

0

∫

Rd
ρM ∂tφ dx dt −

∫ T

0

∫

Rd
ρM aM · ∇φ dx dt

=
∫ T

0

∫

Rd
g φ dx dt +

∫

Rd
ρ0 φ(0) dx . (2.9)
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Of course, it is enough to prove the convergence in the case of minimal regularity, i.e. for
m = 0. Thus, we restrict to this case in the next argument.

The only term which presents some difficulties is (2.9) is the “non-linear” term ρM aM :
its convergence is based on the next lemma, whose proof is elementary hence omitted.

Lemma 2.1 For all compact set K ⊂ R
d , there holds

‖aM − a‖L1
T (L∞(K )) −→ 0 as M → +∞.

Let now K denote the support in x of φ, where φ is the test function appearing in (2.9).
Thanks to uniform bounds, to the strong convergence of aM to a in L1

T

(
L∞(K )

)
(given by

Lemma 2.1) and the weak-∗ convergence of ρM to ρ in L∞
T (L2), it is an easy exercice to

deduce that
(
ρM aM

)
M is uniformly bounded in L1

T

(
L2(K )

)
, and ρM aM

∗
⇀ ρ a in that

space, in the limit when M → +∞.
In the end, we have proved that the limit function ρ is a weak solution to (2.1). Observe

that, thanks to (2.8), the uniform bounds (2.6) and lower semicontinuity of the norm, we also
deduce that ρ verifies the energy estimate (2.4).

Time regularity and uniqueness It remains to prove uniqueness of solutions and their time
regularity. They are both consequences of the next proposition.

Proposition 2.1 Let T > 0 and take m ∈ N. Let ρ ∈ L∞
T (Hm) be a weak solution to

Eq. (2.1) under hypotheses (2.3).
Then ρ ∈ C

([0, T ]; Hm(Rd)
)
and it verifies the energy estimate (2.4).

We present the proof of the previous claim just in the minimal regularity case, namely
for m = 0. The general case follows by the same token. To start with, let us state a classical
lemma (see e.g. [1,18] for details), whose proof is hence omitted.

For later use, let us fix a function s ∈ C∞
c (Rd), with s ≡ 1 for |x | ≤ 1 and s ≡ 0

for |x | ≥ 2, s radially decreasing and such that
∫
Rd s = 1. For all n ∈ N, we then define

sn(x) := nd s(nx). We refer to the family
(
sn

)
n as a family of standard mollifiers.

Lemma 2.2 Let
(
sn

)
n be a family of standard mollifiers, as constructed here above. For all

n ∈ N, define the operator Sn, acting on tempered distributions overR+×R
d , by the formula

Snρ := sn ∗x ρ,

where the symbol ∗x means that the convolution is taken only with respect to the space
variable. For given ρ ∈ L∞

T (L2) and a ∈ L1
T (C1) such that ∇a ∈ L1

T (Cb), we set, for all
n ∈ N and 1 ≤ j ≤ d,

r j
n (ρ) := ∂ j

([
a, Sn

]
ρ
)
.

Then, for all j fixed, we have
(
r j
n
)
n ⊂ L1

T (L2); moreover, for n → +∞, we have the

strong convergence r j
n −→ 0 in L1

T (L2).

Let us also recall the following standard notation. For X a Banach space and X∗ its
predual, we denote by Cw

([0, T ]; X)
the set of measurable functions f : [0, T ] → X which

are continuous with respect to the weak topology. Namely, for any φ ∈ X∗, the function
t �→ 〈φ, f (t)〉X∗×X is continuous over [0, T ].

With this preparation, we are now ready to prove Proposition 2.1.
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Proof of Proposition 2.1 With the same notations as in Lemma 2.2, let us define ρn := Snρ.
Notice that

(
ρn

)
n ⊂ L∞

T (L2). Moreover, ρn satisfies the equation

∂tρn + div
(
a ρn

) = gn + rn, with
(
ρn

)
|t=0 = Snρ0, (2.10)

where we have set rn := div
([
a, Sn

]
ρ
)
. Notice that one has ‖Snρ0‖L2 ≤ C ‖ρ0‖L2 and

‖gn‖L1
T (L2) ≤ C ‖g‖L1

T (L2). Furthermore, when n → +∞, we have the strong convergences

gn −→ g in L1
T (L2) and Snρ0 −→ ρ0 in L2. In addition, by Lemma 2.2, we know that

‖rn‖L1
T (L2) ≤ C and rn −→ 0 in L1

T (L2).

Next, an easy inspection of (2.10) shows that
(
∂tρn

)
n ≺ L1

T (H−1
loc ), which in turn gives

us the uniform embedding
(
ρn

)
n ≺ CT (H−1

loc ). From this latter property, combined with a
density argument and the uniform boundedness of

(
ρn

)
n in L∞

T (L2), we deduce that
(
ρn

)
n

is uniformly bounded in Cw

([0, T ]; L2(Rd)
)
.

Now, let us take the L2 scalar product of Eq. (2.10) by ρn : by standard computations we
get

1

2

d

dt
‖ρn‖2L2 + 1

2

∫
div a |ρn |2 dx =

∫
gn ρn dx, (2.11)

which implies that, for all n ∈ N, one has ‖ρn(t)‖L2 ∈ C
([0, T ]). Thanks to this property,

together with the fact that ρn ∈ Cw

([0, T ]; L2(Rd)
)
, after writing

‖ρn(t + h) − ρ(t)‖2L2 = ‖ρn(t + h)‖2L2 − 2 〈ρn(t + h), ρn(t)〉L2×L2 + ‖ρn(t)‖2L2 ,

one immediately deduces that ρn belongs to CT (L2) for all n ∈ N.
On the other hand, by straightforward computations, relation (2.11) also yields

‖ρn(t)‖L2 ≤ C exp

(
C

∫ t

0
‖div a(τ )‖L∞ dτ

)

×
(

‖Snρ0‖L2 +
∫ t

0

(‖gn(τ )‖L2 + ‖rn(τ )‖L2
)
dτ

)

≤ C exp

(
C

∫ t

0
‖div a(τ )‖L∞ dτ

) (
‖ρ0‖L2 +

∫ t

0
‖g(τ )‖L2 dτ

)
, (2.12)

for all t ∈ [0, T ], thanks also to the previous properties on (
Snρ0

)
n ,

(
gn

)
n and

(
rn

)
n . In view

of this energy estimate, we deduce that
(
ρn

)
n is uniformly bounded in CT (L2).

By a similar argument, using the fact that
(
Snρ0

)
n ,

(
gn

)
n and

(
rn

)
n are strongly convergent

in the respective functional spaces, one canmoreover deduce that (ρn)n is a Cauchy sequence
in CT (L2).

That properties implies that the limit ρ of the sequence
(
ρn

)
n belongs to CT (L2), and the

convergence ρn −→ ρ is strong in this space. Finally, passing to the limit in the left-hand
side of (2.12) we discover that ρ verifies the energy estimate (2.4). ��

Now, stability and uniqueness are easy consequences of Proposition 2.1.

Proposition 2.2 Fix T > 0 and m ∈ N, and let a be as in (2.3). For i = 1, 2, take an
initial datum ρi

0 ∈ Hm(Rd) and an external force gi ∈ L1
([0, T ]; Hm(Rd)

)
, and let

ρi ∈ L∞
T (Hm) be a corresponding solution to (2.1) (whose existence is guaranteed by the

previous arguments).
Then, after defining δρ0 := ρ1

0 − ρ2
0 , δg := g1 − g2 and δρ := ρ1 − ρ2, the following

estimate holds true for all t ∈ [0, T ], for some constant C independent of the data and the
respective solutions:
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‖δρ(t)‖Hm ≤ C

(
‖δρ0‖Hm +

∫ t

0
‖δg(τ )‖Hm dτ

)
exp

(
C

∫ t

0
‖∇a(τ )‖Cm

b
dτ

)
.

Indeed, it is enough to remark that, by taking the difference of the equations satisfied by ρ1

and ρ2, one deduces that δρ ∈ L∞
T (L2) is a weak solution to the following equation:

{
∂tδρ + div

(
a δρ

) = δg

δρ|t=0 = δρ0.

2.1.2 The case of the transport equation

The characterization of ensemble controls with the optimality conditions given in Sect. 4.2,
requires the solution of an adjoint Liouville problem, which is given by a linear transport
problem. In preparation of that discussion, and to complete the analysis of the present section,
we consider the following transport problem:

{
∂t q + a · ∇q + b q = g in [0, T ] × R

d

q|t=0 = q0 on R
d .

(2.13)

We assume that the data q0, a and g verify the assumptions in (2.3), where ρ0 is
replaced by q0. Moreover, we assume that b has the same regularity as div a: that is,
b ∈ L1

([0, T ];Cm
b (Rd)

)
.

The weak formulation of (2.13) now reads as follows: for all φ ∈ C∞
c

(
R
d ×[0, T [ ), one

has

−
∫ T

0

∫

Rd
ρ ∂tφ −

∫ T

0

∫

Rd
ρ a · ∇φ −

∫ T

0

∫

Rd
ρ div a φ +

∫ T

0

∫

Rd
ρ b φ

=
∫ T

0

∫

Rd
g φ +

∫

Rd
ρ0 φ(0). (2.14)

For (2.13), we have the following well-posedness result, analogous to Theorem 2.2 for
the Liouville equation.

Theorem 2.3 Fix T > 0 and m ∈ N, and let a, b, q0 and g satisfy the assumptions stated
above.

Then there exists a unique solution q ∈ C
([0, T ]; Hm(Rd)

)
to Eq. (2.13). Moreover,

there exists a “universal” constant C > 0, independent of q0, a, b, g, q and T , such that the
following estimate holds true for any t ∈ [0, T ]:

‖q(t)‖Hm ≤ C

(
‖q0‖Hm +

∫ t

0
‖g(τ )‖Hm dτ

)

× exp

(
C

∫ t

0

(
‖∇a(τ )‖Cm

b
+ ‖b(τ )‖Cm

b

)
dτ

)
. (2.15)

The proof is analogous to the one given for Theorem 2.1, so it is omitted here. The only
point which deserves some attention is passing to the limit in the weak formulation (2.14)
at step n of the regularization procedure, especially in the terms involving div an and bn :
for this, one can use Proposition 4.21 and Theorem 4.22 of [7] to deduce that both terms
converge respectively to div a and b in L1

T

(
L∞(K )

)
for n → +∞.
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2.2 Well-posedness theory in weighted spaces

In this section, we extend the previous theory to Sobolev spaces with weights. This analysis
is especially important for the investigation of the Liouville control-to-state map and of the
Liouville ensemble optimal control problem, carried out in the next sections.

Remark 2.3 We limit ourselves to treat the case of the Liouville equation. However, the
statements that follow hold also for the transport problem, with minor modifications in the
proofs.

2.2.1 Definition of weighted spaces

For the analysis of the Liouville control-to-state map in Sect. 3, we need to prove weighted
integrability of ρ, due to the growth of the drift function. For this purpose, we introduce the
following definition.

Definition 2.1 Fix (m, k) ∈ N
2. We define the space Hm

k (Rd) in the following way:

H0
k (Rd) = L2

k(R
d) :=

{
f ∈ L2(Rd)

∣∣ |x |k f ∈ L2(Rd)
}

,

and, for m ≥ 1, we set

Hm
k (Rd) :=

{
f ∈ Hm(Rd) ∩ Hm−1

k (Rd)
∣∣ |x |k Dα f ∈ L2(Rd) ∀ |α| = m

}
.

The space Hm
k is endowed with the following norm:

‖ f ‖Hm
k

:=
∑

|α|≤m

∥∥∥
(
1 + |x |k) Dα f

∥∥∥
L2

.

Sometimes, given m ∈ N, we will use the notation ‖∇m f ‖L2 = ∑
|α|=m ‖Dα f ‖L2 , and

analogous writing for weighted norms.
Notice that, for all m and k in N, one has Hm

k ⊂ Hm . Of course, Hm = Hm
0 for all

m ≥ 0. Furthermore, since we want to avoid too singular behaviours close to 0, we will often
focus on the special case (which will be enough for our scopes) m ≤ k. In that case, we
have a simple characterization of the spaces Hm

k , which will be useful especially in Sect. 3,
when studying the control-to-state map related to our optimal control problem.

Proposition 2.3 (i) Given k ∈ N, one has f ∈ L2
k if and only if (1 + |x |k) f ∈ L2.

(ii) For k ∈ N\{0} and 1 ≤ m ≤ k, let f ∈ Hm ∩ Hm−1
k . Then f ∈ Hm

k if and only if
|x |k f ∈ Hm.
In particular, a tempered distribution f belongs to H1

1 if and only if both f and |x | f
belong to H1; it belongs to H2

2 if and only if both f and |x |2 f belong to H2 and ∇ f
belongs to L2

2.

Proposition 2.3 relies on the next lemma, whose proof is elementary, hence omitted.

Lemma 2.3 Let (m, k) ∈ N
2, with m ≤ k. If f ∈ Hm

k , then (1 + |x |k) f ∈ Hm.

Thanks to Lemma 2.3, we can prove Proposition 2.3.

Proof of Proposition 2.3 Assertion (i) is trivial. So, let us focus on the proof of (ii).
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Suppose that f ∈ Hm∩Hm−1
k . Then, by Lemma 2.3 above, we have that |x |k f ∈ Hm−1

k .
At this point, for |α| = m, we write, using Leibniz rule,

Dα
(
|x |k f

)
= |x |k Dα f +

∑

β

Dβ |x |k Dα−β f ,

where the sum is performed for all β ≤ α such that |β| ≥ 1. By the previous arguments, and
the fact that m ≤ k, we have that all the terms in the sum belong to L2. Then, the term on
the left-hand side belongs to L2 if and only if the first term on the right-hand side does.

The last sentences follow by straightforward computations, using the equality ∂ j
(|x | f ) =

∂ j |x | f + |x | ∂ j f , where 1 ≤ j ≤ d , and the relation

∇2(|x |2 f
) ∼ ∇(|x | f + |x |2 ∇ f

) ∼ ∇|x | f + (|x | + |x |2) ∇ f + |x |2 ∇2 f .

We omit the details here. ��

2.2.2 The Liouville equation in weighted spaces

After the above preliminaries, we are ready to state the main result of this section, which
show well-posedness of the Liouville equation in Hm

k spaces.

Theorem 2.4 Let T > 0 and (m, k) ∈ N
2 fixed, and let a be a vector field satisfying hypothe-

ses (2.3). Assume also that ρ0 ∈ Hm
k (Rd) and g ∈ L1

([0, T ]; Hm
k (Rd)

)
.

Then there exists a unique solution ρ ∈ C
([0, T ]; Hm

k (Rd)
)
to problem (2.1). Moreover,

there exists a “universal” constant C > 0, independent of ρ0, a, g, ρ and T , such that the
following estimate holds true for any t ∈ [0, T ]:

‖ρ(t)‖Hm
k

≤ C exp

(
C

∫ t

0
‖∇a(τ )‖Cm

b
dτ

) (
‖ρ0‖Hm

k
+

∫ t

0
‖g(τ )‖Hm

k
dτ

)
. (2.16)

Most of the claims of the previous statement directly follow from Theorem 2.2. We
have just to prove propagation of higher integrability (i.e. k ≥ 1). Omitting a standard
regularization procedure for the sake of brevity, we focus only on energy estimates for
Eq. (2.1).

Before proving Theorem 2.4 in its full generality, let us consider its version for simpler
cases, which will be needed in the proof of the general case. Moreover, their precise form is
important, in view of their application in Sect. 3.

We start with the case m = 0.

Lemma 2.4 Assume that the hypotheses of Theorem 2.4 hold true with m = 0.
Then there exists a unique solution ρ ∈ C

([0, T ]; L2
k(R

d)
)
to problem (2.1). Moreover,

there exists a “universal” constant C > 0 such that the following estimate holds true for any
t ∈ [0, T ]:

‖ρ(t)‖L2
k

≤ C exp

(
C

∫ t

0
‖∇a(τ )‖L∞ dτ

) (
‖ρ0‖L2

k
+

∫ t

0
‖g(τ )‖L2

k
dτ

)
.

Proof of Lemma 2.4 Recall that, in the case k = 0, taking the L2 scalar product of Eq. (2.1)
by ρ and performing standard computations yield

1

2

d

dt
‖ρ‖2L2 + 1

2

∫
div a |ρ|2 dx =

∫
g ρ dx,
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which readily implies

d

dt
‖ρ‖L2 ≤ ‖div a‖L∞ ‖ρ‖L2 + ‖g‖L2 . (2.17)

Analogously, multiplying Eq. (2.1) by |x |k , we get that ρk := |x |k ρ satisfies

∂tρk + div
(
a ρk

) = |x |k g + ρ a · ∇|x |k .
Taking now the L2 scalar product by ρk and repeating the same computations as above, we
find

d

dt
‖ρk‖L2 ≤ ‖div a‖L∞ ‖ρk‖L2 +

∥
∥
∥|x |k g

∥
∥
∥
L2

+
∥
∥
∥ρ a · ∇|x |k

∥
∥
∥
L2

. (2.18)

We need to control the last term on the right-hand side of the previous estimate. For this,
we use the fact that ∇|x |k ∼ |x |k−1 for all k ≥ 1, and Remark 2.2, to obtain

∥
∥
∥ρ a · ∇|x |k

∥
∥
∥
L2

≤ C ‖∇a‖L∞
∥
∥
∥
(
1 + |x |k) ρ

∥
∥
∥
L2

.

Inserting this bound into (2.18) and summing up the resulting expression to (2.17), we have

d

dt

∥
∥∥
(
1 + |x |k) ρ

∥
∥∥
L2

≤ C ‖∇a‖L∞
∥
∥∥
(
1 + |x |k) ρ

∥
∥∥
L2

+
∥
∥∥
(
1 + |x |k) g

∥
∥∥
L2

. (2.19)

Hence, an application of Grönwall’s lemma gives the desired estimate. ��
Next, we present the result for m = 1. For notational convenience, let us set

[x]k := 1 + |x |k .
Lemma 2.5 Assume that the hypotheses of Theorem 2.4 hold true with m = 1.

Then there exists a uniqueweak solutionρ ∈ C
([0, T ]; H1

k (Rd)
)
to (2.1), whichmoreover

satisfies, for some “universal” constant C > 0 and for all t ∈ [0, T ], the estimate

‖ρ(t)‖H1
k

≤ C exp

(
C

∫ t

0
‖∇a(τ )‖C1

b
dτ

) (
‖ρ0‖H1

k
+

∫ t

0
‖g(τ )‖H1

k
dτ

)
.

Proof of Lemma 2.5 We start by differentiating equation (2.1) with respect to x j , for some
1 ≤ j ≤ d , getting

∂t∂ jρ + div
(
a ∂ jρ

) = ∂ j g − ∂ jdiv a ρ − ∂ j a · ∇ρ.

Applying estimate (2.19) to this equation gives

d

dt

∥∥[x]k ∂ jρ
∥∥
L2 ≤ C ‖∇a‖L∞

∥∥[x]k ∂ jρ
∥∥
L2 + ∥∥[x]k ∂ j g

∥∥
L2

+ ∥∥[x]k ∂ jdiv a ρ
∥∥
L2 + ∥∥[x]k ∂ j a · ∇ρ

∥∥
L2 ,

from which we obtain, for another constant C > 0, the following bound:

d

dt
‖[x]k ∇ρ‖L2 ≤ C ‖∇a‖L∞ ‖[x]k ∇ρ‖L2 + ‖[x]k ∇g‖L2 + ∥∥∇2a

∥∥
L∞ ‖[x]k ρ‖L2 .

(2.20)

We can now sum up (2.19) and (2.20) to get

d

dt
‖ρ‖H1

k
≤ C ‖∇a‖C1

b
‖ρ‖H1

k
+ ‖g‖H1

k
, (2.21)

and Grönwall’s lemma allows us to get the result. ��
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Now, we can address the proof of the general case, namely of Theorem 2.4.

Proof of Theorem 2.4 We argue by induction on the order of derivatives, i.e. on m, the cases
m = 0 and m = 1 being given by Lemmas 2.4 and 2.5, respectively.

Let m ≥ 2, and let us assume that, for any 0 ≤ � ≤ m − 1, the following inequality holds
true

d

dt

∥
∥
∥[x]k ∇�ρ

∥
∥
∥
L2

≤ C‖∇a‖L∞
∥
∥
∥[x]k ∇�ρ

∥
∥
∥
L2

+
∥
∥
∥[x]k ∇�g

∥
∥
∥
L2

+
∑

0≤p≤�−1

∥
∥∇ p+1a

∥
∥
L∞

∥
∥[x]k ∇ pρ

∥
∥
L2 . (2.22)

Our goal is to prove an analogous estimate also for ‖[x]k ∇mρ‖L2 .
For this purpose, let us take an α ∈ N

d such that |α| = m. Applying the operator Dα to
(2.1), we deduce

∂t D
αρ + div

(
a Dαρ

) = Dαg −
∑

0<β≤α

Dβdiv a Dα−βρ −
∑

0<β≤α

Dβa·∇Dα−βρ, (2.23)

where the notation 0 < β means that β ∈ N
d has at least one non-zero component.

Following the computations of Lemma 2.5, we need to estimate the L2
k norm of the last

two terms in the right-hand side of the previous equation. First of all, we have
∥∥[x]k Dβdiv a Dα−βρ

∥∥
L2 ≤

∥∥∥∇|β|+1a
∥∥∥
L∞

∥∥[x]k Dα−βρ
∥∥
L2 .

Notice that, since β > 0, the terms Dα−βρ are lower order. The same can be said of the
terms

∥∥[x]k Dβa · ∇Dα−βρ
∥∥
L2 ≤

∥∥∥∇|β|a
∥∥∥
L∞

∥∥[x]k ∇Dα−βρ
∥∥
L2 ,

whenever |β| ≥ 2; on the contrary, when |β| = 1, the terms ∇Dα−βρ contain exactly m
derivatives.

Therefore, applying estimate (2.19) to Eq. (2.23), and using the previous controls, we
infer

d

dt

∥∥[x]k ∇mρ
∥∥
L2 ≤ C‖∇a‖L∞

∥∥[x]k ∇mρ
∥∥
L2 + ∥∥[x]k ∇mg

∥∥
L2

+
∑

0<β≤α

∥∥∥∇|β|+1a
∥∥∥
L∞

∥∥[x]k Dα−βρ
∥∥
L2

≤ C‖∇a‖L∞
∥∥[x]k ∇mρ

∥∥
L2 + ∥∥[x]k ∇mg

∥∥
L2

+
∑

0≤�≤m−1

∥∥∥∇�+1a
∥∥∥
L∞

∥∥∥[x]k ∇�ρ

∥∥∥
L2

,

which proves formula (2.22) at the level m. Therefore that formula is true for any m ∈ N, by
induction.

Now, it is just a matter of summing up inequality (2.20) for � = 0 to m to get, for some
constant also depending on m, the following bound:

d

dt
‖ρ‖Hm

k
≤ C ‖∇a‖Cm

b
‖ρ‖Hm

k
+ ‖g‖Hm

k
,

which immediately implies the claimed estimate. Theorem 2.4 is now proved. ��
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3 The Liouville control-to-state map

In this section, we define the Liouville control-to-state map and investigate its continuity and
differentiability properties. For reasons which will appear clear in the following analysis, we
need to resort to weighted spaces Hm

k , as introduced in Sect. 2.2.
We start by making an important remark.

Remark 3.1 Throughout this section, the data of the Liouville equation has to be thought as
fixed. Specifically, for m ≥ 0 and k ≥ 0, we take an initial datum ρ0 ∈ Hm

k , a source term
g ∈ L1

T (Hm
k ), and a drift function a0 ∈ L1

T (Cm+1), with ∇a0 ∈ L1
T (Cm

b ).
We are then interested in the dependence of the solution ρ to the Liouville equation (2.1),

with drift a given by (1.4), on the control state u ∈ Uad , whereUad has been defined in (1.9).

3.1 Definition and continuity properties

We remark that the statements of Theorems 2.2 and 2.4 cover the case of the Liouville
equation with the controlled drift function given by (1.4), where u ∈ Uad . In particular, the
next proposition-definition immediately follows.

Proposition 3.1 Fixed data ρ0, g and a0 as in Remark 3.1, let us consider drift functions a
of the form (1.4), with u ∈ Uad . Introduce the Liouville control-to-state map G, defined by

G : Uad −→ L∞([0, T ]; L2(Rd)
)
, u �→ ρ := G(u),

where ρ is the unique solution to the Liouville equation with the given data.
Then G is well-defined.

Let us make an important comment about the previous definition.

Remark 3.2 The theory developed in Sects. 2.1 and 2.2 entails that the solution ρ actually
belongs to CT (Hm

k ). However, due to a loss of regularity, both in m and k, when proving
Fréchet differentiability of G, it is convenient to look at G as a map with values in the space
with the weakest topology.

Finally, we consider L∞ regularity with respect to time, because it will be convenient also
to look at weak continuity properties of G, see Proposition 3.2.

Next, we study some properties of the mapG that are relevant for the analysis of ensemble
optimal control problems.We start by establishing thatG is weak-weak continuous fromUad

into L∞
T (L2). Notice that we do not need any restriction on m and k (and so, on the initial

data) in this case.

Proposition 3.2 Take m ≥ 0 and k ≥ 0 and initial data ρ0, g and a0 as in Remark 3.1. Let

u ∈ Uad and
(
ul

)
l ⊂ Uad be a sequence of controls, and assume that ul

∗
⇀ u in L

∞
T .

Then G(ul)
∗
⇀ G(u) in the weak-∗ topology of L∞

T (L2).

Proof Of course, it is enough to prove the previous proposition in the case of minimal
regularity and integrability, namely for m = k = 0.

By definition of the setUad , we infer that (ul)l is uniformly bounded in L
∞
T . On the other

hand, by hypotheses and Theorem 2.2, for all l ∈ N there exists a unique ρl := G(ul) ∈
CT (L2)which solves the Liouville equation (2.1). In addition, by inequality (2.4), we deduce
that

(
ρl

)
l is uniformly bounded in CT (L2); then there exists ρ ∈ L∞

T (L2) such that, up to

extraction of a subsequence, ρl ∗
⇀ ρ in L∞

T (L2).
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So, the proof reduces to showing that ρ is a weak solution to the Liouville equation

∂tρ + div
(
a(t, x; u) ρ

) = g, with ρ|t=0 = ρ0. (3.1)

Indeed, if this is the case, by uniqueness we get ρ = G(u) and that the whole sequence
(
ρl

)
l

converges.
The previous property follows by passing to the limit in the weak formulation of the

equation for ρl . This can be easily obtained; notice that, in order to treat the products between
ρl and ul , one also needs to establish strong convergence for ρl in suitable spaces (as done
in the proof to Proposition 2.1). We leave the details to the reader. ��

For the analysis of our optimal control problem, we need stronger regularity properties
for G. We start by showing Lipschitz continuity, which will be the basis to prove Gâteaux
differentiability of G. The key here is to perform careful estimates in order to identify the
right topology: the reason is that, due to hyperbolicity of the Liouville equation, stability
estimates involve a loss of regularity.

Lemma 3.1 Let the data ρ0, g and a0 be fixed as in Remark 3.1 above, with m ≥ 1 and k ≥ 1.
Let u and v be in Uad , and denote by G(u) and G(v) the corresponding CT (Hm

k ) solutions
to (2.1), with drift a given by (1.4). Set δG := G(u) − G(v).

Then there exists a constant C > 0, independent of the data and respective solutions, such
that, for all 1 ≤ � ≤ k, if we set

K (�)
0 := C exp

(
C

(
‖∇a0‖L1

T (C1
b ) + ‖u‖

L
1
T

+ ‖v‖
L
1
T

) )
×

(
‖ρ0‖H1

�
+ ‖g‖L1

T (H1
� )

)
,

(3.2)
then, for all t ∈ [0, T ], one has

‖δG(t)‖L2
�−1

≤ K (�)
0

∫ t

0
|u(τ ) − v(τ)| dτ.

If moreover m ≥ 2 and we set

K (�)
1 := C exp

(
C

(
‖∇a0‖L1

T (C2
b ) + ‖u‖

L
1
T

+ ‖v‖
L
1
T

) )
×

(
‖ρ0‖H2

�
+ ‖g‖L1

T (H2
� )

)
,

(3.3)
we also have

‖δG(t)‖H1
�−1

≤ K (�)
1

∫ t

0
|u(τ ) − v(τ)| dτ.

Proof By linearity of the Liouville equation, we find that δG satisfies

∂tδG + div
(
a(t, x; u) δG

) = − div
(
a(t, x; u − v)G(v)

)
, δG |t=0 = 0, (3.4)

where we have set a(t, x; u − v) := a(t, x; u) − a(t, x; v) = (u1 − v1) + x ◦ (u2 − v2).
Applying L2

�−1 estimates of Theorem 2.2 to Eq. (3.4), we immediately get

‖δG(t)‖L2
�−1

≤ C exp

(
C

∫ t

0
‖∇a(τ, x; u)‖L∞ dτ

)

×
∫ t

0

∥∥div
(
a(τ, x; u − v)G(v)

)∥∥
L2

�−1
dτ.

By explicit computations and using the Leibniz rule, we deduce that
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∥
∥div

(
a(τ, x; u − v)G(v)

)∥∥
L2

�−1
≤ |u(τ ) − v(τ)|

(
‖G(v)‖L2

�−1
+ ‖∇G(v)‖L2

�

)

≤ C |u(τ ) − v(τ)| exp
(
C

∫ τ

0
‖∇a(s, x; v)‖C1

b
ds

) (
‖ρ0‖H1

�
+

∫ τ

0
‖g(s)‖H1

�
ds

)
,

(3.5)

where the second inequality holds true in view of the bound ‖G(v)‖L2
�−1

+ ‖∇G(v)‖L2
�

≤
‖G(v)‖H1

�
and Lemma 2.5. This estimate completes the proof of the first inequality.

Now, we focus on H1
�−1 bounds for δG. Thanks to Lemma 2.5, we have

‖δG(t)‖H1
�−1

≤ C exp

(
C

∫ t

0
‖∇a(τ, x; u)‖C1

b
dτ

) ∫ t

0

∥
∥div

(
a(τ, x; u − v)G(v)

)∥∥
H1

�−1
dτ.

(3.6)
By definition, we have that ‖ f ‖H1

�−1
= ‖ f ‖L2

�−1
+‖∇ f ‖L2

�−1
. Concerning the first term, we

have
∥
∥div

(
a(τ, x; u − v)G(v)

)∥∥
L2

�−1
= ‖div a G(v)‖L2

�−1
+ ‖a · ∇G(v)‖L2

�−1

≤ C |u(τ ) − v(τ)|
(
‖G(v)‖L2

�−1
+ ‖∇G(v)‖L2

�

)
≤ C |u(τ ) − v(τ)| ‖G(v)‖H1

�
.

(3.7)

Next, we need to bound in L2
�−1 the quantity ∇div

(
a(τ, x; u − v)G(v)

)
: we have then to

control four terms. First of all, we notice that ∇div a ≡ 0. Moreover, we can write

‖div a ∇G(v)‖L2
�−1

≤ |u(τ ) − v(τ)| ‖∇G(v)‖L2
�−1

, (3.8)

and the same estimate holds true also for the term ∇a · ∇G(v). Finally, we have
∥∥a · ∇2G(v)

∥∥
L2

�−1
≤ C |u(τ ) − v(τ)| ∥∥ ∇2G(v)

∥∥
L2

�
. (3.9)

Putting (3.7), (3.8) and (3.9) together, we infer the control
∥∥div

(
a(τ, x; u − v)G(v)

)∥∥
H1

�−1
≤ C |u(τ ) − v(τ)| ‖G(v)‖H2

�
.

Inserting this last inequality into (3.6) and using the bounds of Theorem 2.4, we finally get
the claimed estimate for the H1-type norms of δG. ��

3.2 Differentiability of the control-to-state map

In this section, we investigate differentiability properties of the control-to-state map G,
defined above.

First of all, with Lemma 3.1 at hand, we can establish Gâteaux differentiability of G. For
any given u in an open setU0 ⊂ Uad , let G(u) be the corresponding solution to the Liouville
equation, as defined in Proposition 3.1, and let δu = (δu1, δu2) be an admissible variation
of u, such that u + εδu ∈ Uad for ε ∈ R\{0} sufficiently small. Then the Gâteaux derivative
of G with respect to the variation δu at u is defined as the limit (whenever such a limit exists)

δδuG(u) := lim
ε→0

G(u + εδu) − G(u)

ε
. (3.10)

The next proposition holds true.
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Proposition 3.3 Let m ≥ 2 and k ≥ 2. Let the data ρ0, g and a0 be fixed as in Remark 3.1
above. Let u belong to intUad , where intUad denotes the interior part of the set Uad .

Then, for any admissible variation δu of u, the limit (3.10) exists in L∞
T (L2). In partic-

ular, the control-to-state map G is Gâteaux differentiable at u. Moreover, δδuG satisfies the
Liouville problem

∂tδδuG + div
(
a(t, x; u) δδuG

) = − div
(
a(t, x; δu)G(u)

)
, with δδuG |t=0 = 0,

(3.11)
where we have defined a(t, x; δu) := δu1 + x ◦ δu2.

Proof For any 0 < |ε| < 1 small enough, let us define δGε := (
G(u + εδu) − G(u)

)
/ε.

It is easy to see that δGε solves the equation

∂tδG
ε + div

(
a(t, x; u) δGε

) = − div
(
a(t, x; δu)G(u + εδu)

)
, (3.12)

with initial datum δGε|t=0 = 0.
Notice that, by uniform bounds provided by Lemma 3.1 (which holds for m ≥ 1 and

k ≥ 1) and weak compactness methods, we can prove that δGε converges (up to extraction of
a suitable subsequence) to some ρ ∈ L∞

T (L2) in the weak-∗ topology of that space, and that ρ
satisfies the same equation as (3.12), with right-hand side equal to− div

(
a(t, x; δu)G(u)

) ∈
L1
T (L2). Now, by uniqueness we deduce that ρ has to coincide with δδuG, and in addition

the whole sequence
(
δGε

)
ε
converges to it.

Unfortunately, the previous argument does not yield the Gâteaux differentiability of G,
because we need that the limit exists in the strong topology, namely in the L∞

T (L2) norm. In
order to get this property, let us write the equation for ρε := δGε − ρ: since G(u + εδu) −
G(u) = ε δGε, we find

∂tρ
ε + div

(
a(t, x; u) ρε

) = − ε div
(
a(t, x; δu) δGε

)
,

with zero initial datum. Then, an energy estimate immediately gives

∥∥ρε(t)
∥∥
L2 ≤ C ε exp

(
C

∫ t

0
‖div a(τ, x; u)‖L∞

) ∫ t

0

∥∥div
(
a(τ, x; δu) δGε

)∥∥
L2 dτ

≤ C ε exp

(
C

∫ t

0
‖div a(τ, x; u)‖L∞

) ∫ t

0
|δu(τ )| ∥∥δGε

∥∥
H1
1
dτ,

where we have argued as in the first line of (3.5) in order to pass from the first inequality to
the second one. At this point, applying the second estimate of Lemma 3.1 to Eq. (3.12) yields

∥∥δGε(τ )
∥∥
H1
1

≤ C0

∫ τ

0
|δu(s)| ds, (3.13)

for any τ ∈ [0, t], t ≤ T , for a fixed constant C0 (depending on T , ua , ub, and ‖∇a0‖L1
T (C2

b ),
‖ρ0‖H2

2
and ‖g‖L1

T (H2
2 )). Putting this bound in the previous estimate entails

∥∥ρε(t)
∥∥
L2 ≤ C C0 ε e

(
C

∫ t
0 ‖div a(τ,x;u)‖L∞

) (∫ t

0
|δu(τ )| dτ

)2

≤ εC ‖δu‖2L∞
T
e
C‖div a(t,x;u)‖

L1T (L∞) ,

fromwhich we deduce that ρε −→ 0 in L∞
T (L2), for ε → 0. The proposition is now proved.

��
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Next, we tackle the proof of the Fréchet differentiability of G.

Theorem 3.1 Let m ≥ 2 and k ≥ 2. Let the data ρ0, g and a0 be fixed as in Remark 3.1
above, and let u ∈ intUad . Define DG(u)[δu] to be the unique solution to Eq. (3.11).

Then there exists a constant C > 0 (depending only on T , ua, ub, and ‖∇a0‖L1
T (C2

b ),
‖ρ0‖H2

2
and ‖g‖L1

T (H2
2 )) such that

∥
∥
∥G(u + δu) − G(u) − DG(u)[δu]

∥
∥
∥
L∞
T (L2)

≤ C ‖δu‖2L∞
T

.

In particular, the map G is Fréchet differentiable from intUad into L∞
T (L2), and its Fréchet

differential at any point u ∈ intUad is given by DG(u).

Proof In order to prove that G is Fréchet differentiable, with Fréchet differential given by
DG(u)[δu], we have to show that

lim‖δu‖L∞
T

→0

∥
∥
∥G(u + δu) − G(u) − DG(u)[δu]

∥
∥
∥
L∞
T (L2)

‖δu‖L∞
T

= 0.

We recall also that, if G is Fréchet differentiable at u, then it is also Gâteaux differentiable
at the same point, and one has δδuG = DG(u)[δu].

For simplicity, let us introduce the notation Gu(δu) := G(u+ δu)−G(u)− DG(u)[δu].
The same computations performed on ρε , in the proof of Proposition 3.3 above, lead us to
an equation for Gu(δu):

∂tGu(δu) + div
(
a(t, x; u)Gu(δu)

) = − div
(
a(t, x; δu)

(
G(u + δu) − G(u)

))
,

with initial datumGu(δu)|t=0 = 0.Now, it is just amatter of repeating the estimates performed
on ρε: we easily find, for every t ∈ [0, T ], the inequality

‖Gu(δu)(t)‖L2 ≤ C exp

(
C

∫ t

0
‖div a(τ, x; u)‖L∞

) ∫ t

0
|δu(τ )| ‖G(u + δu) − G(u)‖H1

1
dτ.

Observe that an inequality analogous to (3.13) holds also for G(u + δu) − G(u): inserting
this relation in the previous estimate, we find

‖Gu(δu)(t)‖L2 ≤ C C0 exp

(
C

∫ t

0
‖div a(τ, x; u)‖L∞

) (∫ t

0
|δu(τ )| dτ

)2

≤ K ‖δu‖2L∞
T

,

for a new positive constant K . From this last inequality, the claims of the theorem follow.
��

4 Analysis of the Liouville optimal control problem

In this section, we investigate our Liouville ensemble optimal control problem. In the first
part, we prove the existence of optimal controls by means of classical arguments. However,
notice that one has to carefully justify that the reduced functional Ĵ (see its definition below) is
weakly lower semi-continuous. In fact, this property is not obvious, since ρ = G(u) depends
non-linearly on u. After that, in Sect. 4.2 we characterise optimal controls as solutions of a
related first-order optimality system. In Sect. 4.3 we discuss uniqueness of optimal controls.
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4.1 Existence of optimal controls

In this section, we deal with existence of optimal solutions to an ensemble optimal control
problem. Our analysis is based on the following assumptions.

(A.1) We fix (m, k) ∈ N
2, and we take an initial datum ρ0 ∈ Hm

k (Rd), a force g ∈
L1

([0, T ]; Hm
k (Rd)

)
and a vector field a0 ∈ L1

([0, T ];Cm+1(Rd)
)
, with ∇a0 ∈

L1
([0, T ];Cm

b (Rd)
)
.

(A.2) We fix parameters (γ, δ, ν) ∈ R
3 such that γ > 0, δ ≥ 0 and ν ≥ 0.

(A.3) Chosen ua = (
ua1, u

a
2

)
and ub = (

ub1, u
b
2

)
in R

2d , with ua ≤ ub, we define the set of
admissible controls to be

Uad :=
{
u ∈ L

∞
T (Rd)

∣
∣ ua ≤ u(t) ≤ ub for a.e. t ∈ [0, T ]

}
if ν = 0

(4.1)

Uad :=
{
u ∈ H

1
T (Rd)

∣
∣ ua ≤ u(t) ≤ ub for all t ∈ [0, T ]

}
if ν > 0.

(4.2)

(A.4) We take two attracting potentials θ and ϕ in L2(Rd), in the sense specified in Sect. 1.2.

Remark 4.1 We point out that assumption (A.4) (which will be strengthened in Sect. 4.3 for
getting uniqueness, see condition (A.4)* there) is taken for simplicity of presentation, since
more general θ and ϕ can be considered in our framework. For instance, we can allow for θ

to depend on time: θ ∈ L1
T (L2), or θ ∈ L1

T (H1
1 ) in (A.4)* below. The case θ(x) = |x |2

and ϕ(x) = |x |2 is more delicate, and will be matter of further discussions in Sect. 4.4.

Now, consider our cost functional given by

J (ρ, u) :=
∫ T

0

∫

Rd
θ(x) ρ(x, t) dx dt +

∫

Rd
ϕ(x) ρ(x, T ) dx

+ γ

2

∫ T

0

∣∣u(t)
∣∣2 dt + δ

∫ T

0

∣∣u(t)
∣∣ dt + ν

2

∫ T

0

∣∣∣∣
d

dt
u(t)

∣∣∣∣

2

dt . (4.3)

Remark that J is well-defined whenever u ∈ L
2
T if ν = 0, or u ∈ H

1
T if ν > 0, and

ρ ∈ C
([0, T ]; L2(Rd)

)
.

Our ensemble optimal control problem requires to find

min
u∈Uad

J (ρ, u), (4.4)

subject to the differential constraint
{

∂tρ + div
(
a(t, x; u) ρ

) = g in [0, T ] × R
d

ρ|t=0 = ρ0 on R
d ,

(4.5)

where the drift function a(t, x; u) is defined as

a(t, x; u) := a0(t, x) + u1(t) + x ◦ u2(t). (4.6)

Under our assumptions, Theorem 2.4 applies. Thus, for every u ∈ Uad , there exists a
unique corresponding solution ρ ∈ C

([0, T ]; Hm
k (Rd)

)
to the problem (4.5). Therefore,

resorting to the control-to-state map G defined in Sect. 3, we can introduce the so-called
reduced cost functional, given by

Ĵ (u) := J
(
G(u), u

)
. (4.7)
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Hence, the ensemble optimal control problem (4.4)–(4.5) can be rephrased as follows:

min
u∈Uad

Ĵ (u). (4.8)

Remark 4.2 Recall that we have defined G with values in L∞
T (L2). However, under our

assumptions, we know that the solution to the Liouville equation actually belongs toCT (L2),
so that the ϕ-term in (4.3) is well-defined, and so is Ĵ .

In the following, we prove existence of a minimizer to (4.8).

Theorem 4.1 Under assumptions (A.1)–(A.2)–(A.3)–(A.4), the ensemble optimal control
problem (4.8) admits at least one solution u∗ ∈ Uad . The corresponding state ρ∗ := G(u∗)
belongs to the space C

([0, T ]; Hm
k (Rd)

)
.

Proof Let us focus on the case ν = 0 for simplicity; the case ν > 0 follows from the same
argument.

The functional J given in (4.3) is well-defined for (ρ, u) ∈ CT (L2) × L
∞
T , and Uad is a

bounded subset of L
∞
T . On the other hand, owing to estimate (2.16) in Theorem 2.4, and the

embedding CT (Hm
K ) ↪→ L∞

T (L2), the map G takes its values in a bounded set of L∞
T (L2).

It follows that Ĵ is bounded; in particular, Ĵ is a proper map, i.e. infUad Ĵ > −∞, and Ĵ is
not identically equal to +∞.

Next, we claim that Ĵ is weakly lower semi-continuous. To prove this fact, it is enough
to use the weak-weak continuity of G, as stated in Proposition 3.2, and to remark that J is
weakly lower semi-continuous. Indeed, the last three terms in (4.3) are norms, so they are
weakly lower semi-continuous. On the other hand, the first two terms are linear in ρ, and
then they are weakly continuous with respect to the L∞

T (L2) and L2 topologies, respectively.
Thus we immediately get that, if

(
un

)
n ⊂ Uad is a sequence which converges weakly-∗ to a

u ∈ Uad in L∞
T , we have

lim inf
n→+∞ Ĵ (un) = lim inf

n→+∞ J
(
G(un), un

) ≥ J
(
G(u), u

) = Ĵ (u).

At this point, proving the existence of a minimizer for Ĵ is standard. Let us take a mini-
mizing sequence

(
un

)
n ⊂ Uad . SinceUad is a bounded set in L

∞
T , we can extract a weakly-∗

convergent subsequence, which we do not relabel for simplicity; let us call u∗ ∈ Uad its
limit-point. Then, by the weak-lower semi-continuity of Ĵ , we can conclude that u∗ is a
minimizer for Ĵ . ��

We discuss uniqueness of the minimizers in Sect. 4.3 below. For this purpose, we use
characterization of minimizers as solutions to a suitable optimality system, which we derive
in the next section.

4.2 Liouville optimality systems

This section is devoted to the characterization of ensemble optimal controls as solutions of
the related first-order optimality system. For this purpose, in addition to hypotheses (A.1)–
(A.2)–(A.3)–(A.4) stated above, from now on we take

m ≥ 1 and k ≥ 1.

In correspondence to (4.3)–(4.4)–(4.5), we consider the Lagrange multipliers framework,
see e.g. [20,24], and introduce the Lagrange functional L as follows:
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L(ρ, u, q) := J (ρ, u) +
∫ T

0

∫

Rd

(
∂tρ + div

(
a(x, t; u)ρ

) − g
)
q dxdt

+
∫

Rd

(
ρ(0, x) − ρ0(x)

)
q0(x) dx, (4.9)

where, for the sake of generality, we have included a right-hand side g. The variable q
represents the Lagrange multiplier. Notice that L is well-defined whenever u ∈ L

∞
T if ν = 0,

u ∈ H
1
T if ν > 0, q ∈ L∞

T (L2), q0 ∈ L2 and ρ ∈ CT (L2) such that both ∂tρ and

div
(
a(x, t; u) ρ

)
belong to L1

T (L2). In particular, it is enough to have ρ ∈ W 1,1
T (L2) ∩

L∞
T (H1

1 ), recall also Proposition 2.3. Notice that, a posteriori, we will find q ∈ CT (L2) and
q0 = q(0); see the discussion below for details.

For clarity, in order to derive the optimality system, we first discuss the case with L2 costs
only, then the case with L2 − H1 costs, and finally the case with L2 − L1 − H1 costs.

The case δ = ν = 0. If δ = 0, then J is Fréchet differentiable over CT (L2) × intUad ,
since it is linear in ρ and the control costs with γ > 0, ν ≥ 0 are given by differentiable
norms. It is then an easy computation to show that L is Fréchet differentiable over the space

XT :=
(
W 1,1

T (L2) ∩ L∞
T (H1

1 )
)

× L
2
T × CT (L2),

where L
2
T has to be replaced by H

1
T in the case when ν > 0. The Fréchet differential of L at

(ρ, u, q) is given by the linearization of each of its terms at that point.
Now, consider in addition ν = 0. The optimality system is obtained by putting to zero the

Fréchet derivatives of L(ρ, u, q) with respect to each of its arguments separately. We obtain

∂tρ + div
(
a(x, t; u) ρ

) = g, with ρ|t=0 = ρ0 (4.10)

− ∂t q − a(x, t; u) · ∇q = − θ, with q|t=T = −ϕ (4.11)
(

γ urj +
∫

Rd
div

(
∂a

∂urj
ρ

)

q dx , vrj − urj

)

L2(0,T )

≥ 0

∀v ∈ Uad , j = 1, 2, r = 1 . . . d. (4.12)

We remark that, denoting by er the r -th unit vector of the canonical basis of R
d and by xr

the r -th component of the vector x ∈ R
d , by Definition 4.6 we have ∂a/∂ur1 = er and

∂a/∂ur2 = xr er . Then, equation (4.12) can be equivalently written in the following form:
for any 1 ≤ r ≤ d ,

⎧
⎪⎪⎨

⎪⎪⎩

(
γ ur1 +

∫

Rd
∂rρ q dx , vr1 − ur1

)

L2(0,T )

≥ 0
(

γ ur2 +
∫

Rd
∂r

(
xr ρ

)
q dx , vr2 − ur2

)

L2(0,T )

≥ 0.

Further, if we sum up equations (4.12) for all m and all r , we can write, in the following
compact form

(
γ u +

∫

Rd
div

(
(e + x) ρ

)
q dx , v − u

)

L
2
T

≥ 0 for all v ∈ Uad , (4.13)

where we have defined the vector e = (1 . . . 1).
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Equation (4.10) is our Liouville model (also called the forward equation in this context).
The results of Sect. 2.2 guarantee that, under our assumptions, there exists a unique solution
ρ ∈ CT (H1

1 ). Moreover, since u ∈ Uad , an inspection of (4.10) reveals that ∂tρ ∈ L1
T (L2).

Equation (4.11) is the adjoint Liouville equation; it is obtained by taking the Fréchet
derivative of (4.9) with respect to ρ. This is a transport equation that evolves backwards in
time. By setting q̃(t, x) = q(T − t,−x), we obtain a transport problem for q̃ , as in (2.13),
with source term −θ and initial condition q̃|t=0 = −ϕ. Thus, the results of Paragraph 2.1.2
guarantee the existence and uniqueness of a Lagrange multiplier q ∈ CT (L2), provided that
θ and ϕ are in L2.

From the discussion above, we get that any solution to the optimality system (4.10)–
(4.11)–(4.12), with u ∈ Uad , belongs indeed to the space XT .

Equation (4.12) represents the optimality condition. To better illustrate this fact, we sup-
pose from now on that

m ≥ 2 and k ≥ 2.

Then, the reduced cost functional Ĵ , defined in (4.7), is Fréchet differentiable; in terms of
the reduced minimisation problem (4.8), the optimal solution u∗ in the convex, closed and
bounded set Uad is characterized by the optimality condition given by

(∇u Ĵ (u∗) , v − u∗)
L
2
T

≥ 0, for all v ∈ Uad ,

where ∇u Ĵ denotes the L2-gradient of Ĵ with respect to u. In fact, a direct computation of
∇u J

(
G(u), u

)
, with the introduction of the auxiliary adjoint variable q , gives the optimality

system above, and the following relation:

∇urj
Ĵ (u) = γ urj +

∫

Rd
div

(
∂a

∂urj
ρ

)

q dx .

The case = 0, ˚ > 0. Next, assume that δ = 0 and γ, ν > 0. Recall that, in this case, the
setUad is defined by (4.2). Then, the natural Hilbert space where u∗ is sought is H̃

1
T (Rd) :=

H̃1
T (Rd) × H̃1

T (Rd), where H̃1
T corresponds to the H1

T space, endowed with the weighted
H1-product given by

(u, v)H̃1
T

:= γ

∫ T

0
u(t) · v(t) dt + ν

∫ T

0
u′(t) · v′(t) dt .

The notation ′ = d/dt stands for the weak time derivative.
Now, let μ be the H̃1-Riesz representative of the continuous linear functional

v �→
(∫

Rd
div

(
∂a

∂u
ρ

)
q dx , v

)

L
2
T

.

Assuming that u ∈ Uad ∩H1
0

([0, T ]; R
2d

)
, thenμ can be computed by solving the equation

(
− ν

d2

dt2
+ γ

)
μ =

∫

Rd
div

(
∂a

∂u
ρ

)
q dx, μ(0) = μ(T ) = 0, (4.14)

which is understood in aweak sense. Notice that the choice u ∈ H1
0

([0, T ]; R
2d

)
corresponds

to the modelling requirement that the control is switched on at t = 0 and switched off at
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t = T . Other initial and final time conditions on u may be required and encoded as boundary
conditions in (4.14).

With the setting above, the H̃1-gradient is given, for j = 1, 2 and all r = 1 . . . d , by

∇̃urj
Ĵ (u) = urj + μr

j . (4.15)

The optimality condition (4.12) then becomes

(
urj + μr

j , vrj − urj
)
H̃1
T

≥ 0 (4.16)

for all v ∈ Uad , j = 1, 2 and 1 ≤ r ≤ d .

The case > 0. In this case, a L1 norm of the control appears in the cost functional. This
term is not Gâteaux differentiable and the discussion becomes more involved. By using of
the control-to-state map, we start by defining

f (u) :=
∫ T

0

∫

Rd
θ(x)G(u)(x, t) dx dt +

∫

Rd
ϕ(x)G(u)(x, T ) dx

+ γ

2

∫ T

0

∣∣u(t)
∣∣2 dt + ν

2

∫ T

0

∣∣∣∣
d

dt
u(t)

∣∣∣∣

2

dt

g(u) := δ ‖u‖L1
T

.

The L1-cost, represented by g, admits a subdifferential ∂g(u) = δ ∂
( ‖u‖L1

)
, see e.g.

Section 2.3 of [5]. If we denote by L
∗
T := (

L
∞
T (Rd)

)∗ and by 〈·, ·〉 the duality product in
L

∗
T × L

∞
T , the following formula holds true:

∂
( ‖u‖L1

) =
{
φ ∈ L

∗
T

∣∣ ‖v‖L1 − ‖u‖L1 ≥ 〈
φ, v − u

〉 ∀ v ∈ Uad

}

=
{{

φ ∈ L
∗
T

∣∣ ‖φ‖L∗
T

= 1, 〈φ, u〉 = ‖u‖L∞
T

}
if u 	≡ 0

unit ball in L
∗
T if u ≡ 0.

(4.17)

Now, the reduced functional can be written as Ĵ (u) = f (u) + g(u). In this case, the
Eqs. (4.10) and (4.11) in the corresponding optimality system are the same; however, we
have a different optimality condition (4.12). In the case ν = 0, as in Theorem 2.2 in [14],
we have the following result; for its proof, we refer to [14] and [23]. Notice that, as for Eqs.
(4.10)–(4.11)–(4.12), Eq. (4.18) can be written even when G, and hence Ĵ , are not Fréchet
differentiable.

Theorem 4.2 Under assumptions (A.1)–(A.2)–(A.3)–(A.4), where we take m ≥ 1 and k ≥ 1,
suppose moreover that the pair (ρ, u) ∈ CT (Hm

k ) ×Uad is a minimizer for (4.8).
Then there exists a unique q ∈ CT (L2) which solves (4.11), and a λ̂ ∈ ∂g(u) such that

the following inequality condition is satisfied:

(

γ urj + λ̂rj +
∫

Rd
div

(
∂a

∂urj
ρ

)

q dx , vrj − urj

)

L2(0,T )

≥ 0

∀ v ∈ Uad , j = 1, 2, r = 1 . . . d. (4.18)
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Moreover, there exist λ+ and λ−, belonging to L∞
T (Rd), such that (4.18) is equivalent to the

equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ urj +
∫

Rd
div

(
∂a

∂urj
ρ

)

q dx + (λ+)rj − (λ−)rj + λ̂rj = 0

(λ+)rj ≥ 0, ub − urj ≥ 0, (λ+)rj (ub − urj ) = 0
(λ−)rj ≥ 0, urj − ua ≥ 0, (λ−)rj (urj − ua) = 0

λ̂rj = δ a.e. in
{
t ∈ [0, T ] ∣

∣ urj (t) > 0
}

∣
∣
∣̂λrj

∣
∣
∣ ≤ δ a.e. in

{
t ∈ [0, T ] ∣

∣ urj (t) = 0
}

λ̂rj = δ a.e. in
{
t ∈ [0, T ] ∣

∣ urj (t) < 0
}

,

for j = 1, 2 and all 1 ≤ r ≤ d.

Remark 4.3 In our case, λ̂rj can be understood to be δ sgn(urj ), where sgn(x) is the sign
function, equal to 1 or −1 depending if x > 0 or x < 0 respectively, and equal to 0 if x = 0.

Furthermore, we notice that the additional Lagrange multipliers (λ±)rj are due to the

constraints ua ≤ u(t) ≤ ub for almost all t ∈ [0, T ].
Finally, the case δ > 0 and ν > 0 can be treated as done before. After resorting once again

to the space H̃
1
T , let μ be the H̃1-Riesz representative of the continuous linear functional

v �→
(

λ̂ +
∫

Rd
div

(
∂a

∂u
ρ

)
q dx , v

)

L
2
T

.

Then, assuming that u ∈ Uad ∩ H1
0

([0, T ]; R
2d

)
, we can compute μ as above, by solving

the equation
(

− ν
d2

dt2
+ γ

)
μ = λ̂ +

∫

Rd
div

(
∂a

∂u
ρ

)
q dx, μ(0) = μ(T ) = 0.

With this definition, relation (4.15) still holds true, and the optimality condition (4.12) can
be expressed once again by equations (4.16).

4.3 Uniqueness of optimal controls

In this section, we prove uniqueness of optimal controls in the situation when δ = 0 and
ν = 0 in (4.3). Our proof relies on the characterization of optimal controls as solutions to
the corresponding optimality system. The cases δ > 0 or ν > 0 read more complicated and
are left aside in our discussion.

To begin with, in order to prove uniqueness, we need additional regularity on the cost
functions θ and ϕ. We then formulate the following assumption, which strengthen (A.4).

(A.4)* Suppose that both θ and ϕ belong to H1
1 (Rd).

In the constrained-control case, the characterization of optimal controls is given by an
inequality, see (4.12). This is a very weak information: this is the reason why we are able to
prove uniqueness only under a smallness condition, either on the time T or on the size of the
data ρ0, g, ∇a0, θ and ϕ in their respective functional spaces.

Let us recall that existence of an optimal control has been proved in Theorem 4.1 above.
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Theorem 4.3 Under assumptions (A.1)–(A.2)-(A.3)-(A.4)*, suppose that both m ≥ 2 and
k ≥ 2. Take moreover δ = ν = 0 in (4.3). Finally, define

K̃ := C exp
(
C

(
‖∇a0‖L1

T (C2
b ) + T max

{∣
∣ua

∣
∣,

∣
∣ub

∣
∣
}) ) (

‖ρ0‖H2
2

+ ‖g‖L1
T (H2

2 )

)

×
(
‖ϕ‖H1

1
+ T ‖θ‖H1

1

)
,

where the constant C > 0 can be taken as the maximum of the constants C appearing in
(4.20), (4.22), (4.23) and in the definition (3.3) of K (2)

1 .
If the condition K̃ T /γ < 1 holds true, then there exists at most one optimal control u∗

in intUad .

Proof The previous result being classical in optimal control problems, let us just give a sketch
of the proof. Let (u, ρ1, q1) and (v, ρ2, q2) be two optimal triplets solving the minimization
problem (4.8). From (4.13) we deduce that, for all w ∈ Uad ,

(
γ u +

∫

Rd
div

(
(e + x)ρ1

)
q1, u − w

)

L
2
T

≤ 0

and

(
γ v +

∫

Rd
div

(
(e + x)ρ2

)
q2, w − v

)

L
2
T

≥ 0.

Take w = v in the former inequality, w = u in the latter and compute the difference of
the resulting expressions. After setting δρ := ρ1 − ρ2 and δq := q1 − q2, straightforward
computations lead to

γ

∫ T

0
|u(t) − v(t)|2 dt ≤

∫ T

0

(∫

Rd

∣∣div
(
(e + x) δρ

)
q1

∣∣ +
∫

Rd

∣∣div
(
(e + x) ρ2

)
δq

∣∣
)

× |u(t) − v(t)| dt . (4.19)

Now we estimate the two space integrals, at any time t ∈ [0, T ]. We start with the former
term, for which we obtain

∫

Rd

∣∣div
(
(e + x) δρ(t)

)
q1(t)

∣∣ dx ≤ ‖q1(t)‖L2

∥∥div
(
(e + x) δρ(t)

)∥∥
L2

≤ C1
(‖δρ(t)‖L2 + ∥∥(

1 + |x |)∇δρ(t)
∥∥
L2

) ≤ C1 ‖δρ(t)‖H1
1

,

where we have also used Theorem 2.3 applied to the transport Eq. (4.11) for treating the q1
term. Notice that the constant C1 can be expressed as

C1 := C exp
(
C

(
‖div a0‖L1

T (L∞) + ‖u1‖L1
T

) )( ‖ϕ‖L2 + T ‖θ‖L2
)
, (4.20)

for a “universal” constant C > 0 that depends on the space dimension d . At this point, we
recall that bothρ1 andρ2 satisfy Eq. (4.10), with controls u1 and u2, respectively. Then, taking
their difference and applying Lemma 3.1 finally yields, for a new constant C̃1 = C1 K

(2)
1

just depending on the data of the problem, the following bound:
∫

Rd

∣∣div
(
(e + x) δρ(t)

)
q1(t)

∣∣ dx ≤ C̃1

∫ t

0

∣∣u(τ ) − v(τ)
∣∣ dτ. (4.21)

Next, consider the second integral in (4.19). The computations are similar to the previous
ones: first of all, we can estimate

∫

Rd

∣∣div
(
(e + x)ρ2(t)

)
δq(t)

∣∣ dx ≤ ‖δq(t)‖L2 ‖ρ2(t)‖H1
1

≤ C2 ‖δq(t)‖L2 ,
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where we have applied Theorem 2.4 to equation (4.10) for ρ2 to control its H1
1 norm. In

particular, it follows from that theorem that

C2 := C exp
(
C

(
‖∇a0‖L1

T (C1
b ) + ‖u2‖L1

T

)) (
‖ρ0‖H1

1
+ ‖g‖L1

T (H1
1 )

)
, (4.22)

for a “universal” constant C > 0.
Now, we use the fact that q1 and q2 are both solutions of (4.11), related to the controls

u1 and u2 respectively. Hence, taking the difference of those equations and arguing as in the
proof of Lemma 3.1 (keep in mind also Remark 2.3), one easily infers the existence of a
“universal” constant C > 0 such that

‖δq(t)‖L2 ≤ C exp
(
C

(
‖div a0‖L1

T (L∞) + ‖u1‖L1
T

) )

×
∫ T

t
|u(τ ) − v(τ)| ∥

∥(
1 + |x |)∇q2(τ )

∥
∥
L2 dτ

≤ C exp
(
C

(
‖∇a0‖L1

T (C1
b ) + ‖u1‖L1

T
+ ‖u2‖L1

T

) ) (
‖ϕ‖H1

1
+ T ‖θ‖H1

1

)

×
∫ T

t

∣
∣u(τ ) − v(τ)

∣
∣ dτ.

Notice that the integral is from t to T , because (4.11) is a backward transport equation. After
defining the constants

K̃ (1)
1 := C exp

(
C

(
‖∇a0‖L1

T (C1
b ) + ‖u1‖L1

T
+ ‖u2‖L1

T

) ) (
‖ϕ‖H1

1
+ T ‖θ‖H1

1

)
(4.23)

and C̃2 := C2 K̃
(1)
1 , we obtain

∫

Rd

∣∣div
(
(e + x) ρ2(t)

)
δq(t)

∣∣ dx ≤ C̃2

∫ T

t

∣∣u(τ ) − v(τ)
∣∣ dτ. (4.24)

At this point, we can insert estimates (4.21) and (4.24) into (4.19), and get, for a new
constant K = C̃1 + C̃2, the relation

γ

∫ T

0

(
σ(τ)

)2
dt ≤ K

∫ T

0
σ(t)

(∫ T

0
σ(s) ds

)
dt = K

(∫ T

0
σ(τ)

)2

,

where, for simplicity of notation, we have defined σ(t) := ∣∣u(t)−v(t)
∣∣. Hence, by Cauchy-

Schwarz inequality we easily deduce

γ

∫ T

0

(
σ(t)

)2
dt ≤ K T

∫ T

0

(
σ(t)

)2
dt,

which obviously implies σ ≡ 0 almost everywhere on [0, T ] whenever K T /γ < 1. Then,
we conclude the proof remarking that K ≤ K̃ . ��

4.4 The case of confining� and'

As pointed out in Remark 4.1, from the applications viewpoint, it may be desirable to consider
the case when both θ and ϕ are quadratic potentials. In this section, we discuss the necessary
adaptations to be implemented in our arguments in order to address this case.

Therefore, from now on we choose

θ(x) = |x |2 and ϕ(x) = |x |2,
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although the discussion can be further adapted, in order to treat more general polynomial
growths. In order to simplify the presentation, we also assume that δ = ν = 0.

First of all, we notice that, in view of (4.3), for J to be well-defined it is necessary that
|x |2 ρ belongs to L1. Then, we have to assume higher integrability on ρ, namely that

ρ ∈ C
([0, T ]; L2

k(R
d)

)
, for some k > 2 + d

2
.

This of course entails that, in (A.1), one has to take ρ0 ∈ Hm
k and g ∈ L1

T (Hm
k ), with the

same restriction k > 2 + d/2. However, Theorem 4.1 still holds true.
The main changes pertain Sect. 4.2, starting from the Definition 4.9 of the functional L.

First of all, let us focus on the Lagrangian multiplier q . On the one hand, we need it to
be in some duality pairing with ρ: then, keeping in mind Definition 2.1, we introduce, for
(m, k) ∈ N

2, the spaces

Hm
−k(R

d) :=
{
f ∈ Hm

loc(R
d)

∣
∣ (

1 + |x |)−k
Dα f ∈ L2(Rd) ∀ 0 ≤ |α| ≤ m

}
.

This space is endowed with the natural norm

‖ f ‖Hm−k
=

∑

0≤|α|≤m

∥
∥∥
(
1 + |x |)−k

Dα f
∥
∥∥
L2

.

On the other hand, we still expect q to solve (4.11) to an extent, although the meaning of
that equation is now no more clear, owing to the fact that θ and ϕ do not belong anymore to
L2. To deal with both issues, we need the following lemma, whose proof can be performed
arguing as in the proof of Theorem 2.4 above, using this time the weight

(
1 + |x |)−k . We

omit to give the details here.

Lemma 4.1 Let T > 0 and (m, k) ∈ N
2 fixed, and let a be a vector field satisfying hypotheses

(2.3). Moreover, assume that q0 ∈ Hm
−k(R

d) and g ∈ L1
([0, T ]; Hm

−k(R
d)

)
.

Then there exists a unique solution q ∈ C
([0, T ]; Hm−k(R

d)
)
to the problem

∂t q + a · ∇q = g, with q|t=0 = q0.

Moreover, there exists a constant C > 0 such that the following estimate holds true for any
t ∈ [0, T ]:

‖q(t)‖Hm−k
≤ C exp

(
C

∫ t

0
‖∇a(τ )‖Cm

b
dτ

) (
‖q0‖Hm−k

+
∫ t

0
‖g(τ )‖Hm−k

dτ

)
.

(4.25)

Let us come back to our optimal control problem. In view of Lemma 4.1, we can solve
Eq. (4.11) with θ and ϕ equal to |x |2, getting a unique solution in the space CT (L2−k) for any
k > 2 + d/2. Let us fix, once for all, the choice1

k0 = 3 +
[
d

2

]
.

Then, it is easy to see that the functional L is well-defined on the space

X̃T :=
(
W 1,1

T (L2
k0) ∩ L∞

T (H1
k0+1)

)
× L

2
T × CT (L2−k0).

Of course, we also need to take ρ0 and g as in assumption (A.1), withm ≥ 1 and k ≥ k0 +1.

1 Given z ∈ R, we denote by [z] its entire part.
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Thereafter, we can write the optimality system (4.10)–(4.11)–(4.12), as done above. In
order to characterize Eq. (4.12) in terms of the gradient of the reduced functional Ĵ , we need
to further assume that m ≥ 2 and k ≥ k0 + 2.

Finally, also the analysis in Sect. 4.3 works similarly as above. Of course, assumption
(A.4)* is now too strong, and we have to dismiss it.

However, it is still possible to get a result analogous to Theorem 4.3. More precisely, we
have the following statement for the unconstrained problem.

Proposition 4.1 Under assumptions (A.1)–(A.2)–(A.3), suppose also that both m ≥ 2 and
k ≥ k0 + 2. In addition, take δ = ν = 0 in (4.3), and θ(x) = ϕ(x) = |x |2. Finally, define
K̃ := C (1 + T )

∥
∥
∥
(
1 + |x |)−k0+2

∥
∥
∥
L2

×

× exp
(
C

(
‖∇a0‖L1

T (C2
b )

+ T max
{∣
∣ua

∣
∣,

∣
∣ub

∣
∣
}) ) (

‖ρ0‖H2
k0+2

+ ‖g‖L1
T (H2

k0+2)

)
,

where the constant C > 0 is a suitable positive constant.
If the condition K̃ T /γ < 1 holds true, then there exists at most one optimal control u∗

in intUad .

Proof The proof is very similar to the one to Theorem 4.3, therefore we limit ourselves to
put in evidence the main changes to be adopted, and to treat the most delicate points of the
analysis.

As before, let (u1, ρ1, q1) and (u2, ρ2, q2) be two optimal controls with corresponding
state and adjoint state. Arguing as above, we find that δu = u1 − u2 fulfils estimate (4.19).
Let us now focus on the estimate of each integral appearing in that relation.

As for the former integral term, also by use of Lemma 4.1, we can write
∫

Rd

∣∣div
(
(e + x) δρ(t)

)
q1(t)

∣∣ dx ≤ ‖q1(t)‖L2−k0

∥∥div
(
(e + x) δρ(t)

)∥∥
L2
k0

≤ C3 ‖δρ(t)‖H1
k0+1

.

Notice that the constant C3 can be expressed as follows

C3 := C (1 + T )

∥∥∥|x |2 (
1 + |x |)−k0

∥∥∥
L2

exp
(
C

(
‖div a0‖L1

T (L∞) + ‖u1‖L1
T

) )
, (4.26)

for a “universal” constant C > 0. At this point, the estimate for δρ works as before, finally
leading to ∫

Rd

∣∣div
(
(e + x) δρ(t)

)
q1(t)

∣∣ dx ≤ C̃3

∫ t

0

∣∣δu(τ )
∣∣ dτ, (4.27)

where we have defined C̃3 = C3 K
(k0+2)
1 , just depending on the data of the problem.

Next, consider the second integral in (4.19): we can estimate
∫

Rd

∣∣div
(
(e + x) ρ2(t)

)
δq(t)

∣∣ dx ≤ ‖δq(t)‖L2−k0
‖ρ2(t)‖H1

k0+1
≤ C4 ‖δq(t)‖L2−k0

,

where, by Theorem 2.4 applied to Eq. (4.10) for ρ2, we obtain that

C4 := C exp
(
C

(
‖∇a0‖L1

T (C1
b ) + ‖u2‖L1

T

)) (
‖ρ0‖H1

k0+1
+ ‖g‖L1

T (H1
k0+1)

)
, (4.28)

for a “universal” constant C > 0. On the other hand, Lemma 4.1 applied to the equation for
δq gives, for a new constant C > 0, the estimate
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‖δq(t)‖L2−k0
≤ C exp

(
C

(
‖div a0‖L1

T (L∞) + ‖u1‖L1
T

) )

×
∫ T

t
|δu(τ )| ∥

∥(
1 + |x |) ∇q2(τ )

∥
∥
L2−k0

dτ.

Notice that
∥
∥(
1 + |x |)∇q2(τ )

∥
∥
L2−k0

≤ ‖∇q2(τ )‖L2−k0+1
. In order to bound this quantity, we

can differentiate the equation for q2 with respect to x j , for 1 ≤ j ≤ d , and get (notice that
∂ j |x |2 = 2 x j )

∂t

((
1 + |x |)−k0+1

∂ j q2
)

+ a(t, x; u2) · ∇
((
1 + |x |)−k0+1

∂ j q2
)

=
= 2 x j (1 + |x |)−k0+1 − (

1 + |x |)−k0+1
∂ j a(t, x; u2) · ∇q2,

with initial datum equal to 2 x j
(
1 + |x |)−k0+1. Obviously, the latter term in the right-hand

side can be absorbed by a Grönwall argument; in addition, an easy computation shows that
the former is in L2. Therefore, by applying an L2 estimate of Theorem 2.3 to the previous
equation implies, for a “universal” constant C > 0, the following bound:

‖∇q2(τ )‖L2−k0+1
≤ C exp

(
C

(
‖∇a0‖L1

T (L∞) + ‖u2‖L1
T

) )
(1 + T )

∥
∥
∥|x | (1 + |x |)−k0+1

∥
∥
∥
L2

.

By use of this latter estimate, we finally obtain
∫

Rd

∣∣div
(
(e + x) ρ2(t)

)
δq(t)

∣∣ dx ≤ C̃4

∫ T

t

∣∣δu(τ )
∣∣ dτ, (4.29)

where we have defined C̃4 := C4 K̃(1)
1 and

K̃(1)
1 : =C exp

(
C

(
‖∇a0‖L1

T (C1
b )

+‖u1‖L1
T

+‖u2‖L1
T

) )
(1 + T )

∥
∥
∥|x | (1 + |x |)−k0+1

∥
∥
∥
L2

.

(4.30)

We can now insert (4.27) and (4.29) into (4.19), and conclude as done in the proof to Theo-
rem 4.3. ��
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