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Abstract
H. Kneser (Jahresber Dt Math Vereinigung 35:123–124, 1926) showed by an ingenious
method that plane harmonic mappings on the unit disc B, which attribute the circumference
∂B in a topological way to a convex curve �, necessarily yield a diffeomorphism of B onto
the interior G of the contour � and a homeomorphism between their closures. E. Heinz has
generalized this method to solutions of nonlinear elliptic systems [see Chap.13, Sect. 6 of
Sauvigny (Partial differential equations. 1. Foundations and integral representations; 2. Func-
tional analytic methods; with consideration of lectures by E. Heinz. Springer, London, 2012],
however, this reasoning is restricted to the local situation and requires Lipschitz conditions
for certain linear combinations of their coefficient functions. These Lewy-Heinz-systems
comprise the equations for harmonic mappings with respect to a Riemannian metric and
were utilized by Jost (J Reine AngewMath 342:141–153, 1981) to prove univalency for har-
monic mappings between Riemannian surfaces. A global result is achieved by reconstruction
of the solution for the Dirichlet problem, since this problem is uniquely determined by the
uniqueness result of Jäger and Kaul (Manuscr Math 28:269–291, 1979). Here we shall adapt
the original method of H. Kneser for harmonic mappings with respect to Riemannian metrics
in order to receive harmonic diffeomorphisms from B onto stable Riemannian domains �.
We construct a global nonlinear auxiliary function associated with an embedding into a field
of geodesics. In the special case of planar harmonic mappings under semi-free boundary
conditions, this procedure already appears in Proposition 3 of Hildebrandt and Sauvigny
(J Reine Angew Math 422:69–89, 1991). By our present method to show univalency and
to obtain a diffeomorphism between the domains, we can dispense of the uniqueness for
the associate Dirichlet problem. The crucial idea consists of the notion stable Riemannian
domains �, which possess a family of non-intersecting geodesic rays emanating from each
boundary point and furnish a simple covering of thewhole domain. Furthermore, we establish
a convex hull property for harmonic mappings within �. On the basis of investigations by
Hildebrandt et al. (Acta Math 138:1–16, 1977), we construct harmonic embeddings within
the hemisphere by direct variational methods.
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1 The Dirichlet problem of harmonic mappings

For the coordinates (x1, x2) we define the domain

�1 := {X = (x1, x2) ∈ R
2 : |X | < 1}

and introduce the unit disc

B := {w = u + iv ∈ C : |w| < 1}
with the parameters u + iv ∼= (u, v). Now we prescribe the Riemannian metric

ds2 =
∑

j,k=1,2

g jk(x
1, x2) dx j dxk

= g11(x
1, x2) (dx1)2 + 2g12(x

1, x2) dx1 dx2 + g22(x
1, x2) (dx2)2 (1.1)

on the disc �1. Here we require our coefficients to satisfy

g jk = g jk(x
1, x2) ∈ C1+α(�1,R) for j, k = 1, 2,

g12(x
1, x2) = g21(x

1, x2) in �1, (1.2)

λ |ξ |2 ≤
∑

j,k=1,2

g jk(x
1, x2)ξ jξ k ≤ 1

λ
|ξ |2

for all ξ = (ξ1, ξ2) ∈ R
2 and (x1, x2) ∈ �1, (1.3)

with the Hölder constant α ∈ (0, 1) and the quantity λ ∈ (0, 1].
By a continuity method the following profound result is established:

Theorem 1 (Conformal mappings w. r. t. Riemannian metrics) For the Riemannian metric
(1.1), (1.2), (1.3) there exists a C2+α(B,�1)-diffeomorphic, positive-oriented mapping

X = X(u, v) = (x1(u, v), x2(u, v)) : B → �1 ∈ C2+α(B,�1)

satisfying the weighted conformality relations
∑

j,k=1,2

x j
u (u, v)g jk(x

1(u, v), x2(u, v))xkv (u, v) = 0

∑

j,k=1,2

x j
u (u, v)g jk(x

1, x2)xku (u, v) =
∑

j,k=1,2

x j
v (u, v)g jk(x

1, x2)xkv (u, v) in B.

(1.4)

Proof See our uniformization theorem from [12] Chap. 12 the Theorem 8.2. ��

Due to Proposition 7.1 of [12] Chap. 12, the function X then satisfies the nonlinear elliptic
system

�xl +
∑

j,k=1,2

�l
jk(x

j
u x

k
u + x j

v x
k
v ) = 0 in B for l = 1, 2. (1.5)
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Here we use the Christoffel symbols

�l
jk := 1

2

∑

i=1,2

gli (gki,x j + gi j,xk − g jk,xi ), j, k, l = 1, 2 (1.6)

with the inverse matrix (g jk) j,k=1,2 := (g jk)
−1
j,k=1,2. Therefore, X represents a one-to-one

harmonic mapping of the disc {B, (δ jk)}with the Euclidean metric (δ jk) j,k=1,2 onto the disc
{�1, (g jk)}. On account of well-known regularity results, the associate boundary function


(u, v) := X(u, v), (u, v) ∈ ∂B with 
 : ∂B → ∂�1 ∈ C2+α(∂B, ∂�1) (1.7)

appearing within this approximation and selection procedure, yields a positive-oriented
C2+α(∂B, ∂�1)-diffeomorphism between the circumferences ∂B and ∂�1. This weighted-
conformal mapping is uniquely determined by a three-point-condition on the boundary. Of
course, this boundary representation optimally appears for these weighted-conformal map-
pings and cannot be prescribed!

Remark 1 Starting with an analogous result to Theorem 1 above, Jost [7] has constructed har-
monic diffeomorphisms, for arbitrary convex boundary data, by deformation of the boundary
values via a topological method. This has been combined with a priori estimates for their
Jacobian by E. Heinz. With the aid of the maximum principle by Jäger and Kaul [6], then
Jost obtained the diffeomorphic character of harmonic maps by reconstruction.

In Sect. 4 we shall see directly the one-to-one character of our harmonic maps, established
in Theorem 2 below, and may dispense of the uniqueness for the associate Dirichlet problem.
Here we prescribe the Riemannian metric (1.1) on the whole plane R2, which is Euclidean
outside of the disc

�M := {X = (x1, x2) ∈ R
2 : |X | < M}

of a fixed radius 0 < M < +∞. More precisely, we assume that our coefficients satisfy the
following conditions with the Hölder constant α ∈ (0, 1) and a positive number λ ∈ (0, 1]
as follows:

g jk = g jk(x
1, x2) ∈ C1+α(R2,R) for j, k = 1, 2,

g12(x
1, x2) = g21(x

1, x2) in R
2,

g jk(x
1, x2) = δ jk in R

2\�M for j, k = 1, 2, (1.8)

and

λ |ξ |2 ≤
∑

j,k=1,2

g jk(x
1, x2)ξ jξ k ≤ 1

λ
|ξ |2

for all ξ = (ξ1, ξ2) ∈ R
2 and (x1, x2) ∈ R

2. (1.9)

Furthermore, we require that the metric ds2 possesses a moderate deviation in the disc

�M from the Euclidean metric with the constant a ∈ (0,
1

2M
) in the following sense: The

associate Christoffel symbols (1.6) satisfy the estimate
√√√√

( ∑

j,k=1,2

�1
jkξ

jξ k
)2 +

( ∑

j,k=1,2

�2
jkξ

jξ k
)2 ≤ a|ξ |2

for all ξ = (ξ1, ξ2) ∈ R
2 and (x1, x2) ∈ R

2. (1.10)
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By the Leray–Schauder degree of mapping we can establish the following

Theorem 2 (Dirichlet problem for moderate harmonic mappings) Let the Riemannian metric

(1.1), (1.8), (1.9) be given with a moderate deviation (1.10) by the constant a ∈ (0,
1

2M
)

from the Euclidean metric. For each boundary function


 ∈ C2+α(∂B,R2) with |
(u, v)| ≤ M, ∀ (u, v) ∈ ∂B

there exists a solution

X = X(u, v) = (x1(u, v), x2(u, v)) : B → R
2 ∈ C2+α(B,R2)

with |X(u, v)| ≤ M for all (u, v) ∈ B (1.11)

for the system (1.5), (1.6) of harmonic mappings under the boundary condition

X(u, v) = 
(u, v) for all (u, v) ∈ ∂B. (1.12)

Proof From Theorem 4.4 of [12] Chap. 12 we deduce the existence of a harmonic mapping
(1.11) under the boundary conditions (1.12). ��

Remark 2 Due to the geometric maximum principle by E. Heinz (see Theorem 1.4 in [12]
Chap. 12), the solution X of Theorem 2 is subject to the inequality

sup
(u,v)∈B

|X(u, v)| ≤ sup
(u,v)∈∂B

|X(u, v)|. (1.13)

When the boundary values satisfy |
(u, v)| < M, ∀(u, v) ∈ ∂B, then the estimate

sup
(u,v)∈B

|X(u, v)| < M (1.14)

follows, and X : B → �M represents an inner solution of the system (1.5), (1.6), briefly an
inner harmonic mapping.

2 Geodesically stable Riemannian domains

We begin our considerations with the central

Definition 1 Wecall the disc�M of radius 0 < M < +∞ endowedwith aRiemannianmetric
(1.1), (1.8), (1.9) a geodesically stable Riemannian domain or simply a stable Riemannian
domain, if each geodesic—in unit velocity—emanating from an arbitrary boundary point
X0 ∈ ∂�M into an interior direction ξ ∈ S1—within the disc �M -

{
Y (t) = Y (t; ξ, X0) ∈ �M , 0 ≤ t ≤ τ(X0, ξ)

}
(2.1)

of the lenght τ(X0, ξ) > 0 does not contain conjugate points.

Remark 3 Let the Riemannian metric (1.1), (1.8), (1.9) of the regularity class C3 be given,
such that their Gaussian curvature K satisfies

K (x1, x2) ≤ κ, ∀ (x1, x2) ∈ R
2 (2.2)
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with the barrier κ ∈ [0,+∞). Furthermore, let the diameter of the Riemannian domain be

bounded by the constant
π√
κ

∈ (0,+∞] as follows:

τ(X0, ξ) <
π√
κ

for all X0 ∈ ∂�M and every interior direction ξ ∈ S1. (2.3)

Then this Riemannian domain is necessarily stable.

In this context, we refer our readers to the comparison theorem of J.C.F.Sturm in Satz3 of
Kapitel VII, §7 from our treatise Analysis [13].

Of central importance is the subsequent

Lemma 1 (Geodesic central fields) Let the domain�M be endowedwith a stable Riemannian
metric from Definition 1, and a boundary point X0 ∈ ∂�M be chosen arbitrarily. Then the
family of geodesics

Y(t, s) = Y(t, s; X0), 0 < t ≤ τ(X0, s), −π

2
< s < +π

2
(2.4)

with their initial position

Y(0+, s; X0) = X0, −π

2
< s < +π

2
(2.5)

and their initial velocity

Yt (0+, s; X0) = − exp(is) · |X0|−1 X0, −π

2
< s < +π

2
(2.6)

yields a simple covering of the pointed disc �M\{X0}.

Proof For arbitrary −π

2
< s1 < s2 < +π

2
we consider the geodesic

Y(t, s1) = Y(t, s1; X0), 0 ≤ t ≤ τ(X0, s1), (2.7)

the circular arc

Z(s; X0) = Y(τ (X0, s), s; X0), s1 ≤ s ≤ s2, (2.8)

and the geodesic

Y(t, s2) = Y(τ (X0, s2) − t, s2; X0), 0 ≤ t ≤ τ(X0, s2). (2.9)

Since our geodesics do not contain conjugate points within �M , the arcs (2.7) and (2.8)
and (2.9) consecutively constitute a Jordan contour �(s1, s2; X0) for parameters s1 < s2
chosen sufficiently near. They form a Jordan curve �(s1, s2; X0) for arbitrary parameters

−π

2
< s1 < s2 < +π

2
as well, since the mapping

Z(s; X0) = Y(τ (X0, s), s; X0), −π

2
< s < −π

2
(2.10)

is strictly monotonic. Therefore, the interior of the Jordan curves �(s1, s2; X0) exhausts the

domain �M for s1 → −π

2
+ and s2 → +π

2
−. These contours �(s1, s2; X0) cover ∂�M in

the limit s1 = −π

2
and s2 = +π

2
, where the singularity X0 remains fixed. ��

As in [13] Kap. VII, Sect. 5 we introduce
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Definition 2 The Riemannian inner product of the planar vector fields Y (t) = (y1(t), y2(t))
and Z(t) = (z1(t), z2(t)) along the plane curve X(t) = (x1(t), x2(t)) with the parameter
a < t < b is determined as follows:

[
Y (t), Z(t)

]

X(t)
:=

∑

j,k=1,2

g jk(X(t))y j (t)zk(t), a < t < b. (2.11)

Remark 4 From the Gauß–Riemann-Lemma (see Satz2 in [13] Kap. VII, Sect. 4), we realize
the following identities for our geodesic central field in Lemma 1 above:

[
Yt (t, s),Yt (t, s)

]

Y(t,s)
= 1, G(t, s) :=

[
Ys(t, s),Ys(t, s)

]

Y(t,s)
> 0,

[
Yt (t, s),Ys(t, s)

]

Y(t,s)
= 0 ; 0 < t ≤ τ(X0, s), −π

2
< s < +π

2
. (2.12)

Definition 3 Let the stable Riemannian domain�M of Definition 1 with the geodesic central
fields (2.4) of Lemma 1 be given. For all points X ∈ �M with their unique representation

X = Y(t, s) = Y(t, s; X0), 0 < t < τ(X0, s), −π

2
< s < +π

2
(2.13)

we define the lifted vector fields

Ŷt (x
1, x2; X0) = Ŷt (X; X0) := Yt (t, s), X = (x1, x2) ∈ �M ,

Ŷs(x
1, x2; X0) = Ŷs(X; X0) := Ys(t, s), X = (x1, x2) ∈ �M (2.14)

and the lifted Gaussian fundamental coefficient

Ĝ(x1, x2; X0) = Ĝ(X; X0) := G(t, s), X = (x1, x2) ∈ �M . (2.15)

We obtain with
{
Ŷt (X; X0),

Ŷs(X; X0)√
Ĝ(X; X0)

}
, X = (x1, x2) ∈ �M (2.16)

the Gaussian geodesic frame, which constitutes an orthonormal, positive-oriented system
of vectors—with respect to the Riemannian inner product (2.11)—on account of Remark4
above.

In stable Riemannian domains, we can conveniently characterize the convex hull of arbi-
trary compact sets F ⊂ �M with the subsequent

Definition 4 Let the stable Riemannian domain�M of Definition 1 with the geodesic central

fields (2.4) of Lemma 1 be given. For all −π

2
< s0 < +π

2
we introduce the geodesic region

�(s0; X0) :=
{
Y(t, s; X0) ∈ �M

∣∣∣ 0 < t < τ(X0, s), −π

2
< s ≤ s0

}
. (2.17)

This region is closed by the geodesic arc

Y(τ (X0, s0) − t, s0) = Y(τ (X0, s0) − t, s0; X0), 0 ≤ t ≤ τ(X0, s0) (2.18)

and furthermore bounded by the circular arc

Z(s; X0) = Y(τ (X0, s), s; X0), −π

2
< s < s0, (2.19)
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where these curves constitute with ∂�(s0; X0) a positive-oriented Jordan contour. For an
arbitrary compact set F ⊂ �M , we define the convex hull H(F) of F within the stable
Riemannian domain �M as follows:

H(F) :=
⋂{

�(s0; X0)

∣∣∣ X0 ∈ ∂�M , s0 ∈ (−π

2
,+π

2
) : F ⊂ �(s0; X0)

}
. (2.20)

Finally, we introduce the important geodesic function with

Definition 5 Let the stable Riemannian domain�M of Definition 1 with the geodesic central
fields (2.4) of Lemma 1 be given. For all points X ∈ �M\{X0} with their unique represen-
tation

X = Y(t, s) = Y(t, s; X0), 0 < t ≤ τ(X0, s), −π

2
< s < +π

2
(2.21)

we define the geodesic function

�(x1, x2; X0) = �(X; X0) := s ∈ (−π

2
,+π

2
), X = (x1, x2) ∈ �M\{X0}. (2.22)

Remark 5 Obviously, the equation �(X; X0) = s0, X ∈ �M describes the geodesic

Y(t, s0; X0), 0 < t < τ(X0, s0)

for all −π

2
< s0 < +π

2
, and the following characterization is valid:

�(s0; X0) =
{
X ∈ �M

∣∣∣ �(X; X0) ≤ s0
}
. (2.23)

3 Pseudoharmonic nonlinear combination for harmonic mappings

We refer to the covariant differentiation
∇
dt

from [13] Kap. VII, § 5 and begin with

Definition 6 Let us consider the Riemannian metric (1.1), (1.8), (1.9) with its inverse tensor

gi j = gi j (x1, x2) ∈ C1+α(R2,R) for i, j = 1, 2 satisfying
∑

j=1,2

gi j (x
1, x2) g jk(x1, x2) = δik, (x1, x2) ∈ R

2 for i, k = 1, 2. (3.1)

Now we define the cogradient of the function �( ., X0) from Definition 5 as follows

∇�(X; X0) :=
( ∑

j=1,2

gi j (X)�x j (X; X0)
)

i=1,2
=:

(
f i (X)

)

i=1,2

for all X = (x1, x2) ∈ �M , (3.2)

where the boundary point X0 ∈ ∂�M is arbitrary.

Remark 6 Differentiation of the identity (3.1) yields

−
∑

j=1,2

∂gi j (x1, x2)

∂xl
g jk(x1, x2) =

∑

j=1,2

gi j (x
1, x2)

∂g jk(x1, x2)

∂xl
,

for all (x1, x2) ∈ R
2 and i, k, l = 1, 2. (3.3)
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When an arbitrary mapping

X(u, v) = (x1(u, v), x2(u, v)) : B → �M ∈ C2(B,R2) (3.4)

is given, we consider the associate auxiliary function

ψ(u, v) := �(X(u, v); X0) = �(x1(u, v), x2(u, v); X0), (u, v) ∈ B. (3.5)

We immediately comprehend the following covariant chain rule

ψu(u, v) =
[
∇�(X(u, v); X0), Xu(u, v)

]

X(u,v)
, (u, v) ∈ B,

ψv(u, v) =
[
∇�(X(u, v); X0), Xv(u, v)

]

X(u,v)
, (u, v) ∈ B. (3.6)

With the aid of the covariant product rule (see Satz2 in [13] Kap. VII, § 5) we calculate

ψuu(u, v) =
[∇ ∇�(X(u, v); X0)

du
, Xu(u, v)

]

X(u,v)

+
[
∇�(X(u, v); X0),

∇ Xu(u, v)

du

]

X(u,v)
, (u, v) ∈ B. (3.7)

Here
∇
du

denotes the covariant derivative of the respective vector field along the curve X(., v)

due to Definition1 in [13] Kap. VII, § 5. In order to evaluate the first bracket term in (3.7),
we determine the partial derivative

d

du

(
f i (X(u, v))

)

i=1,2
= d

du
∇�(X(u, v); X0)

= d

du

( ∑

j=1,2

gi j (x1(u, v), x2(u, v))�x j (x1(u, v), x2(u, v); X0)
)

i=1,2

=
( ∑

j,k=1,2

gi j (x1(u, v), x2(u, v))�x j xk (x
1(u, v), x2(u, v); X0)x

k
u

)

i=1,2

+
( ∑

j,k=1,2

∂gi j (x1(u, v), x2(u, v))

∂xk
�x j (x1(u, v), x2(u, v); X0)x

k
u

)

i=1,2

for all (u, v) ∈ B. (3.8)

Now we utilize the Christoffel symbols of the first kind (see (1.6) and the formula (10) in [13]
Kap. VII, § 3):

γmjk := 1

2
(gkm,x j + gmj,xk − g jk,xm ) = 1

2

∑

i,l=1,2

gmlg
li (gki,x j + gi j,xk − g jk,xi )

=
∑

l=1,2

gml�
l
jk for j, k,m = 1, 2. (3.9)

With the aid of the identities (3.8) and (3.9) and the Remark6, we determine the first bracket
term in (3.7):

[∇ ∇�(X(u, v); X0)

du
, Xu(u, v)

]

X(u,v)

=
[∇

(
f i (X(u, v))

)

i=1,2

du
,
(
xlu(u, v)

)

l=1,2

]

X(u,v)
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=
∑

l,k=1,2

�xl xk (x
1(u, v), x2(u, v); X0)x

l
ux

k
u

+
∑

i, j,k,l=1,2

gli (X(u, v))
∂gi j (X(u, v))

∂xk
�x j (X(u, v); X0)x

l
u x

k
u

+
∑

l, j,k=1,2

γl jk(X(u, v))xlu f j (X(u, v)) xku

=
∑

l,k=1,2

�xl xk (x
1(u, v), x2(u, v); X0)x

l
ux

k
u

−
∑

i, j,k,l=1,2

gli,xk (X(u, v))gi j (X(u, v))�x j (X(u, v); X0)x
l
ux

k
u

+
∑

l, j,k=1,2

γl jk(X(u, v))xlu f j (X(u, v)) xku

=
∑

l,k=1,2

�xl xk (x
1(u, v), x2(u, v); X0)x

l
ux

k
u

−
∑

i,k,l=1,2

gli,xk (X(u, v)) f i (X(u, v))xlu x
k
u

+
∑

l,i,k=1,2

γlik(X(u, v))xlu f i (X(u, v)) xku

=
∑

l,k=1,2

�xl xk (x
1(u, v), x2(u, v); X0)x

l
ux

k
u

+
∑

l,i,k=1,2

γ̃lik(X(u, v))xlu f i (X(u, v)) xku , (u, v) ∈ B. (3.10)

Here we use the modified Christoffel symbols of the first kind

γ̃lik := 1

2
(gkl,xi − gli,xk − gik,xl ) = −1

2
(gli,xk + gik,xl − gkl,xi ) = −γikl

for i, k, l = 1, 2. (3.11)

Definition 7 We define the covariant Hessian bilinear form
[
Xu(u, v),∇2 �(X(u, v); X0), Xu(u, v)

]

X(u,v)

:=
∑

l,k=1,2

�xl xk (x
1(u, v), x2(u, v); X0)x

l
ux

k
u

−
∑

i,k,l=1,2

γikl(X(u, v)) f i (X(u, v)) xku x
l
u, (u, v) ∈ B. (3.12)

The combination of (3.7) and (3.10) – (3.12) yields the identity

ψuu(u, v) =
[
Xu(u, v),∇2 �(X(u, v); X0), Xu(u, v)

]

X(u,v)

+
[
∇�(X(u, v); X0),

∇ Xu(u, v)

du

]

X(u,v)
, (u, v) ∈ B. (3.13)

Analogously, we derive the identity
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ψvv(u, v) =
[
Xv(u, v),∇2 �(X(u, v); X0), Xv(u, v)

]

X(u,v)

+
[
∇�(X(u, v); X0),

∇ Xv(u, v)

dv

]

X(u,v)
, (u, v) ∈ B. (3.14)

With the aid of Lemma 1 we shall see that the bilinear form in Definition 7 vanishes at
each point on an appropriate one-dimensional space. More precisely, we have the

Lemma 2 (Covariant derivatives of the geodesic function)
For the geodesic function � in Definition 5 the cogradient satisfies the equations

[
∇�(Y(t, s; X0); X0),Yt (t, s; X0)

]

Y(t,s;X0)
= 0 and

[
∇�(Y(t, s; X0); X0),Ys(t, s; X0)

]

Y(t,s;X0)
= 1

for all 0 < t < τ(X0, s), −π

2
< s < +π

2
. (3.15)

Moreover, the identity

∇�(X; X0) = Ŷs(X; X0)

Ĝ(X; X0)
, X ∈ �M (3.16)

holds true. Finally, the covariant Hessian form (3.12) of the second derivatives vanishes as
follows:

[
Yt (t, s; X0),∇2 �(Y(t, s; X0); X0), Yt (t, s; X0)

]

Y(t,s;X0)
= 0

for all 0 < t < τ(X0, s), −π

2
< s < +π

2
. (3.17)

Here the boundary point X0 ∈ ∂�M is chosen arbitrarily.

Proof 1. We consider the auxiliary function

ψ(t, s) := �(Y(t, s; X0); X0) = s, 0 < t < τ(X0, s), −π

2
< s < +π

2
. (3.18)

With the covariant chain rule (3.6) we determine the derivatives

0 = ψt (t, s) =
[
∇�(Y(t, s; X0); X0), Yt (t, s; X0)

]

Y(t,s;X0)
,

1 = ψs(t, s) =
[
∇�(Y(t, s; X0); X0), Ys(t, s; X0)

]

Y(t,s;X0)
,

for all 0 < t < τ(X0, s), −π

2
< s < +π

2
, (3.19)

which yields the Eq. (3.15). With the aid of the Gaussian geodesic frame (2.16), we
deduce the identity (3.16) from the Eq. (3.15).

2. Since the curve Y(., s; X0) represents a geodesic, we have the identity

∇ Yt (t, s; X0)

dt
= 0, 0 < t < τ(X0, s), −π

2
< s < +π

2
. (3.20)

Now the Eq. (3.13) yields
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0 = ψt t (t, s) =
[
Yt (t, s; X0),∇2 �(Y(t, s; X0); X0), Yt (t, s; X0)

]

Y(t,s;X0)

+
[
∇�(Y(t, s; X0); X0),

∇ Yt (t, s; X0)

dt

]

Y(t,s;X0)

=
[
Yt (t, s; X0) ,∇2 �(Y(t, s; X0); X0), Yt (t, s; X0)

]

Y(t,s;X0)

for all 0 < t < τ(X0, s) , −π

2
< s < +π

2
, (3.21)

which implies the statement (3.17). ��
Now we present the principal device of our investigations within

Lemma 3 (Pseudoharmonic nonlinear combination for harmonic maps)
Let the mapping X(u, v) from (3.4) be harmonic, i.e. the Eqs. (1.5), (1.6) hold true.

Then the geodesic auxiliary function ψ(u, v) in (3.5) satisfies the elliptic partial differential
equation

�ψ(u, v) + a(u, v)ψu(u, v) + b(u, v)ψv(u, v) = 0 , (u, v) ∈ B (3.22)

with the continuous functions a = a(u, v) : B → R and b = b(u, v) : B → R. The gradient
∇ψ possesses only isolated zeroes in B and allows expansions of Hartman–Wintner-type
(see Theorem 1.2 in [12] Chap. 9) there. Since this function ψ shares important properties
with harmonic functions, we may address ψ as being pseudoharmonic.

Proof 1. The mapping X is harmonic, and we have the identity

∇ Xu(u, v)

du
+ ∇ Xv(u, v)

dv
= 0 , (u, v) ∈ B. (3.23)

Now we add the Eqs. (3.13) and (3.14), and we obtain the following identity for our
auxiliary function ψ(u, v), (u, v) ∈ B on account of (3.23):

�ψ(u, v) = ψuu(u, v) + ψvv(u, v)

=
[
Xu(u, v) ,∇2 �(X(u, v); X0), Xu(u, v)

]

X(u,v)

+
[
Xv(u, v) ,∇2 �(X(u, v); X0), Xv(u, v)

]

X(u,v)

+
[
∇�(X(u, v); X0),

∇ Xu(u, v)

du
+ ∇ Xv(u, v)

dv

]

X(u,v)

=
[
Xu(u, v) ,∇2 �(X(u, v); X0), Xu(u, v)

]

X(u,v)

+
[
Xv(u, v) ,∇2 �(X(u, v); X0), Xv(u, v)

]

X(u,v)
, (u, v) ∈ B.

(3.24)

2. With the aid of the Gaussian geodesic frame (2.16) and the identity (3.16), we expand
the vector Xu(u, v) via the covariant chain rule (3.6) as follows:

Xu(u, v) =
[
Xu(u, v), Ŷt (X(u, v); X0)

]

X(u,v)
Ŷt (X(u, v); X0)

+
[
Xu(u, v),

Ŷs(X(u, v); X0)√
Ĝ(X(u, v); X0)

]

X(u,v)

Ŷs(X(u, v); X0)√
Ĝ(X(u, v); X0)
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=
[
Xu(u, v), Ŷt (X(u, v); X0)

]

X(u,v)
Ŷt (X(u, v); X0)

+
[
Xu(u, v),

Ŷs(X(u, v); X0)

Ĝ(X(u, v); X0)

]

X(u,v)

Ŷs(X(u, v); X0)

=
[
Xu(u, v), Ŷt (X(u, v); X0)

]

X(u,v)
Ŷt (X(u, v); X0)

+
[
Xu(u, v),∇�(X(u, v); X0)

]

X(u,v)
Ŷs(X(u, v); X0)

=
[
Xu(u, v), Ŷt (X(u, v); X0)

]

X(u,v)
Ŷt (X(u, v); X0)

+ψu(u, v) Ŷs(X(u, v); X0) , (u, v) ∈ B. (3.25)

Proceeding in the same way for the derivative with respect to v, we arrive at the following
equations:

Xu(u, v) =
[
Xu(u, v), Ŷt (X(u, v); X0)

]

X(u,v)
Ŷt (X(u, v); X0)

+ψu(u, v) Ŷs(X(u, v); X0) , (u, v) ∈ B ;
Xv(u, v) =

[
Xv(u, v), Ŷt (X(u, v); X0)

]

X(u,v)
Ŷt (X(u, v); X0)

+ψv(u, v) Ŷs(X(u, v); X0) , (u, v) ∈ B. (3.26)

3. When we insert the vectors Xu(u, v) and Xv(u, v) from (3.26) into the covariant Hessian
forms within (3.24) and observe the property (3.17), we receive the representation (3.22)
with continuous coefficient functions. ��

Remark 7 Similar arguments for the Euclidean situation under semi-free boundary conditions
have been established in [5] Proposition3 within my joint investigation with Hildebrandt.

4 Convex hull property, univalency and transversality for harmonic
mappings

We start with the central definition and assume that setting throughout this section.

Definition 8 Let ds2 denote a stable Riemannian metric (1.1), (1.8), (1.9) on the disc �M of

radius 0 < M < +∞ with a moderate deviation (1.10) by the constant a ∈ (0,
1

2M
) from

the Euclidean metric. For each continuous boundary function


 ∈ C0(∂B,R2) with |
(u, v)| ≤ M, ∀ (u, v) ∈ ∂B

we call the function

X = X(u, v) = (x1(u, v), x2(u, v)) : B → R
2 ∈ C2(B,R2) ∩ C0(B,R2)

with |X(u, v)| ≤ M for all (u, v) ∈ B (4.1)

a solution of the Dirichlet problem P(�M , ds2;
) , when the function X satisfies the system
(1.5), (1.6) of harmonic mappings and fulfills the boundary condition

X(u, v) = 
(u, v) for all (u, v) ∈ ∂B. (4.2)
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Theorem 3 (Convex hull property for harmonic mappings)
Let the continuous function 
 : ∂B → �M ∈ C0(∂B) with the boundary point set

F := 
(∂B) ⊂ �M and its convex hullH(F) ⊂ �M due to Definition 4 be given. For each
solution

X = X(u, v) = (x1(u, v), x2(u, v)) ∈ P(�M , ds2;
)

of the Dirichlet problem we have the following inclusion:

X(u, v) ∈ H(F) for all (u, v) ∈ B. (4.3)

Proof 1. The boundary point set F := 
(∂B) ⊂ �M is compact in �M , and the convex
hull of the boundary valuesH(F) ⊂ �M as well. Therefore, we can find a unique number

σ(X0, F) ∈ (−π

2
,+π

2
) , such that

⋂{
�(s0; X0)

∣∣∣ s0 ∈ (−π

2
,+π

2
) : F ⊂ �(s0; X0)

}
= �(σ(X0, F); X0)

=
{
X ∈ �M

∣∣∣ �(X; X0) ≤ σ(X0, F)
}

for each point X0 ∈ ∂�M . (4.4)

Here we have utilized the characterization (2.23) for the last identity. Now we determine
the convex hull of the boundary point set as follows:

H(F) =
⋂{

�(s0; X0)

∣∣∣ X0 ∈ ∂�M , s0 ∈ (−π

2
,+π

2
) : F ⊂ �(s0; X0)

}

=
⋂

X0∈∂�M

�(σ(X0, F); X0) =
⋂

X0∈∂�M

{
X ∈ �M

∣∣∣ �(X; X0) ≤ σ(X0, F)
}
.

(4.5)

2. With the aid of the geometric maximum principle by E.Heinz, we can see as in Remark2
that the inclusion X(∂B) ⊂ �M implies the property X(B) ⊂ �M . For arbitrary points
X0 ∈ ∂�M we consider the geodesic auxiliary function

ψ(u, v) := �(X(u, v); X0) , (u, v) ∈ B. (4.6)

Since the inclusion F ⊂ �(σ(X0, F); X0) for all X0 ∈ ∂�M holds true, we receive

ψ(u, v) ≤ σ(X0, F) for all (u, v) ∈ ∂B. (4.7)

Now Lemma 3 implies that the function ψ is subject to the maximum principle, which
gives us the following statement:

�(X(u, v); X0) ≤ σ(X0, F) , (u, v) ∈ B for all points X0 ∈ ∂�M . (4.8)

On account of (4.5), we obtain that X(B) ⊂ H(F) holds true. ��
Definition 9 A Jordan contour � ⊂ �M is called convex in �M , when the following
properties are fulfilled:

(i) The Jordan contour � coincides with the boundary ∂H(�) of its convex hull, and the
interior I (�) of the contour � corresponds to the open kernel of the convex hull H(�).

(ii) A geodesic Y(t, s0; X0), 0 ≤ t ≤ τ(X0, s0) for the parameter s0 ∈ (−π

2
,+π

2
), such

that Y(., s0; X0) meets the interior I (�) at an inner point Y0 ∈ I (�), shall decompose
the Jordan curve into the closed Jordan arcs

�−(X0, s0) := � ∩ �(s0, X0) and �+(X0, s0) := �\�(s0, X0).
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These arcs meet at their end points on the geodesic Y(., s0; X0) above.

With the original method by Kneser [9] for the Euclidean plane, which we adapt to the
Riemannian situation here, we shall establish the subsequent

Theorem 4 (Univalency for harmonic mappings)
Let the convex Jordan contour� ⊂ �M and the topological boundary function
 : ∂B →

� ∈ C0(∂B,R2) be given. Then each solution

X = X(u, v) = (x1(u, v), x2(u, v)) ∈ P(�M , ds2;
)

of the Dirichlet problem furnishes a topological mapping of B onto I (�) and a C2-
diffeomorphism of B onto I (�).

Proof 1. From Theorem 3 and Definition 9, (i) we infer the inclusion

X(B) ⊂ H(�) = I (�) ∪ �. (4.9)

Moreover, the strict inclusion

X(B) ⊂ I (�) (4.10)

is valid, which we deduce as follows:
If the statement (4.10) were violated, there exists a point (u0, v0) ∈ B with Y0 =
X(u0, v0) ∈ �. On account of Definition 9 we can find a point X0 ∈ ∂�M and a value

−π

2
< s0 < +π

2
, such that

� ⊂ �(s0; X0) and Y0 ∈ � ∩ ∂�(s0; X0) (4.11)

holds true. Now we consider the auxiliary function

ψ(u, v) := �(X(u, v); X0) ≤ s0, (u, v) ∈ B withψ(u0, v0) = �(Y0; X0) = s0.

(4.12)

From Lemma 3 we see that ψ is a pseudoharmonic function and cannot attain a strict
maximum within B. Consequently, the equality

ψ(u, v) = s0 for all (u, v) ∈ B (4.13)

holds true, which yields an evident contradiction. Therefore, the strict inclusion (4.10) is
valid.

2. Now we show indirectly that the Jacobian of the mapping X does not vanish:

JX (u, v) := ∂(x1(u, v), x2(u, v))

∂( u , v )
=

∣∣∣∣∣
x1u (u, v), x1v (u, v)

x2u (u, v), x2v (u, v)

∣∣∣∣∣ �= 0 ,∀ (u, v) ∈ B.

(4.14)

If the statement (4.14) were violated, there exists a point

(u0, v0) ∈ B with Y0 := X(u0, v0) ∈ I (�) ,

such that the vectors {Xu(u0, v0), Xv(u0, v0)} are linearly dependent. Consequently, we
find a unit vector Z0 orthogonal to these vectors as follows:

Z0 ∈ R
2\{(0, 0)} with

[
Z0 , Z0

]

X(u0,v0)
= 1 ,

[
Z0 , Xu(u0, v0)

]

X(u0,v0)
= 0 =

[
Z0 , Xv(u0, v0)

]

X(u0,v0)
. (4.15)
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3. Now the Gaussian geodesic frame at the fixed point Y0 ∈ �M
{
Ŷt (Y0; X0) ,

Ŷs(Y0; X0)√
Ĝ(Y0; X0)

}
, X0 ∈ ∂�M (4.16)

performs one positive-oriented and continuous rotation, when X0 traverses the circumfer-
ence ∂�M once in positive orientation. This results from the construction of the geodesic
vector fields, which depend continuously on the point X0 ∈ ∂�M together with their
nonvanishing derivatives. Therefore, we can choose a point X0 ∈ ∂�M such that

Ŷs(Y0; X0)√
Ĝ(Y0; X0)

= Z0 (4.17)

holds true. With the aid of (3.16) and (4.17), we obtain the following representation for
the cogradient of the geodesic function �

∇�(Y0; X0) = Ŷs(Y0; X0)

Ĝ(Y0; X0)
= λ Z0 with λ := 1√

Ĝ(Y0; X0)
. (4.18)

4. Let us now consider the geodesic auxiliary function

ψ(u, v) := �(X(u, v); X0) , (u, v) ∈ B. (4.19)

With the aid of (4.15) and (4.18) we derive

ψu(u0, v0) =
[
∇�(Y0; X0), Xu(u0, v0)

]

X(u0,v0)

= λ
[
Z0, Xu(u0, v0)

]

X(u0,v0)
= 0 ;

ψv(u0, v0) =
[
∇�(Y0; X0), Xv(u0, v0)

]

X(u0,v0)

= λ
[
Z0, Xv(u0, v0)

]

X(u0,v0)
= 0. (4.20)

Since the function ψ is pseudoharmonic due to Lemma 3 and ∇ψ(u0, v0) = (0, 0)
holds true, nowψ represents a saddle point near (u0, v0). This behavior propagates to the
boundary ∂B on account of themaximum/minimumprinciple. This yields a contradiction
to the behavior of the function ψ : ∂B → R on the boundary, which only possesses two
points for the level s0 due toDefinition 9, (ii) Consequently, the Jacobian JX is not allowed
to vanish within B, and the statement (4.14) holds true. For an exact proof, we can follow
the arguments for harmonic functions in Lemma2 and Lemma3 of our book onMinimal
Surfaces [2] within Section 4.9. These arguments remain valid for the pseudoharmonic
functionψ , due to the asymptotic expansions of P.Hartman andA.Wintner (see Theorem
1.2 in [12] Chap.9.) at their critical points.

5. With themonodromyprinciple (seeLemma1 in [2], Sect. 4.9)we can infer the topological
character of the mapping

X : B → I (�) ⊂ �M

from (4.14) and the property that the boundary representation X : ∂B → � is topological.
Alternatively, we can use an index-argument from [11] Hilfssatz7 in order to show that
the mapping X : B → I (�) is one-to-one. ��

Remark 8 In the Euclidean situation, we find this result by T.Radó and H.Kneser in §398 of
J.C.C.Nitsche’s monograph [10] Vorlesungen über Minimalflächen.
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Furthermore, we refer to Proposition 4.2 in my joint treatise [4] with S.Hildebrandt.
The following statement contains the transversality of harmonic mappings to the bound-

ary. More precisely, we shall establish

Theorem 5 (Existence of C2+α(B,�M )-diffeomorphisms for P(�M , ds2;
)) Let the
C2+α(∂B, ∂�M )-diffeomorphic boundary function 
 : ∂B → ∂�M be given. Then there
exists a C2+α(B,�M )-diffeomorphism

X = X(u, v) = (x1(u, v), x2(u, v)) : B → �M ,

which furnishes a solution of the Dirichlet Problem P(�M , ds2;
).

Proof 1. We build upon our exsistence result in Theorem 2, and we receive a solution X =
X(u, v) ∈ C2+α(B,�M ) for the Dirichlet problem P(�M , ds2;
). By the geometric
maximum principle of E.Heinz the function

χ(u, v) := |X(u, v)|2 , (u, v) ∈ B satisfies �χ(u, v) ≥ 0 , (u, v) ∈ B.

The boundary point lemma of E.Hopf implies the following inequality for the derivative
w. r. t. the exterior normal ν to B:

0 <
d

dν
χ(u1, v1) = 2 X(u1, v1) · d

dν
X(u1, v1) for all points (u1, v1) ∈ ∂B.

(4.21)

This property (4.21) together with the arguments in [11] Satz2 yield that our mapping
X is transversal in the following sense:

JX (u, v) �= 0 for all (u, v) ∈ ∂B. (4.22)

2. Now we follow the parts (2)–(4) in the proof of Theorem 4, in order to exclude zeroes of
the Jacobian JX within B. When the geodesic fieldY(t, s; X0) has the center X0 ∈ ∂�M ,
we exempt from �M a disc about this singularity for a sufficiently small number ε > 0.
With the domain

�ε
M (X0) :=

{
X ∈ �M

∣∣∣ |X − X0| > ε
}

we modify the arguments in part (4) within the proof of Theorem 4, and we consider
alternatively the auxiliary function

ψ(u, v) := �(X(u, v); X0), (u, v) ∈ Bε :=
{
(u, v) ∈ B

∣∣∣X(u, v) ∈ �ε
M (X0)

}
.

(4.23)

Thus we can exclude each zero of the Jacobian in the interior of the disc B. With the part
(5) in the proof of Theorem4, we complete the derivation of our result above. ��

Remark 9 In order to show that a conformally parametrized H -surface represents a graph,
one has to prove that the associate plane mapping is one-to-one. Here the investigation [11]
contains as the decisive step that transversal mappings yield necessarily a diffeomorphism.
There we need a stability condition in the sense that the second variation of the associate
parametric integral is nonnegative.
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5 Harmonic embeddings within the hemisphere

For all radii 0 < M < +∞ with their associate discs

�M :=
{
X = (x1, x2) ∈ R

2 : |X | < M
}

we consider the upper hemisphere S+
M in the following representation

Z(x1, x2) :=
(
x1, x2,

√
M2 − |X |2

)
, X = (x1, x2) ∈ �M . (5.1)

Then we derive

Zxi (x
1, x2) =

(
δ1i , δ2i ,

− xi√
M2 − |X |2

)
, X = (x1, x2) ∈ �M , i = 1, 2 (5.2)

and determine their first fundamental form (1.1) as follows

gi j := Zxi · Zx j (x1, x2) = δ1iδ1 j + δ2iδ2 j + xi x j

M2 − |X |2 = δi j + xi x j

M2 − |X |2
for all X = (x1, x2) ∈ �M and i, j = 1, 2.

(5.3)

We denote the hemispherical metric (1.1), (5.3) by ds2(M) . This metric becomes singular
near the boundary ∂�M , and our Theorem2 is not applicable globally. S.Hildebrandt, H.Kaul
and K.Widman have constructed harmonic mappings into complete Riemannian manifolds
with positive sectional curvature by direct variational methods (see [3]). Since this result is
especially valid for hemispheres, we receive the following

Theorem 6 (Dirichlet problem for hemispherical harmonicmappings)Let a radius 0 < M <

+∞ be chosen arbitrarily. For each boundary function


 ∈ C0(∂B,�M ) possessing a W 1,2(B,R2) − extension (5.4)

there exists a solution

X = X(u, v) = (x1(u, v), x2(u, v)) : B → �M ∈ C2+α(B,R2) ∩ C0(B,R2) (5.5)

for the Dirichlet problem P(�M , ds2(M);
) of the harmonic mapping associated with the
hemispherical metric ds2(M) .

Proof See the Theorems 1–4 in [3]. ��
We construct a field of geodesics, which emanates from an arbitrary equatorial point

Zϑ =
(
M cosϑ, M sin ϑ, 0

)
∈ ∂S+

M , 0 ≤ ϑ ≤ 2π (5.6)

and simply covers the hemisphere. We begin with the great circle on S+
M

(
M cos

( t

M

)
, 0 , M sin

( t

M

))∗
, 0 < t < Mπ. (5.7)

This circle represents a geodesic without interior conjugate points; it starts at the point
Z0 = (M, 0, 0) and ends at the antipodal point Zπ = (−M, 0, 0), which is conjugate to Z0.
We use the rotation by the angle s about the x1-axis

D1
s :=

⎛

⎝
1 0 0
0 cos s − sin s
0 sin s cos s

⎞

⎠ , −π

2
< s < +π

2
(5.8)
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and the rotation by the angle ϑ about the x3-axis

D3
ϑ :=

⎛

⎝
cosϑ − sin ϑ 0
sin ϑ cosϑ 0

0 0 1

⎞

⎠ , 0 ≤ ϑ ≤ 2π. (5.9)

We obtain the field of geodesics

Z(t, s;ϑ) := D3
ϑ ◦ D1

s ◦
(
M cos

( t

M

)
, 0 , M sin

( t

M

))∗
,

0 < t < Mπ, −π

2
< s < +π

2
for all angles 0 ≤ ϑ ≤ 2π.

(5.10)

Via the projection from the Euclidean space onto the plane

�3(Z) = �3(x1, x2, x3) := (x1, x2) = X ∈ R
2 , Z = (x1, x2, x3) ∈ R

3 (5.11)

we see from the construction above that the family of functions

Y(t, s;ϑ) := �3 ◦ Z(t, s;ϑ) , 0 < t < Mπ, −π

2
< s < +π

2
(5.12)

constitutes a central field of geodesics for the hemispherical metric (1.1), (5.3). This central
field Y(., .;ϑ) simply covers the disc �M and emanates from the singular point X0 =
�3(Xϑ) ∈ ∂�M , where 0 ≤ ϑ ≤ 2π denotes an arbitrary angle.

With the aid of this central field of geodesics, we introduce geodesic regions and convex
hulls for compact sets within�M as in Definition 4. Furthermore, we can define the geodesic
function parallel to Definition 5 and receive the fundamental Lemma 3 for the hemispherical
metric ds2(M) . Finally, we characterize convex Jordan contours � ⊂ �M as in Definition 9
with respect of the hemispherical metric. By the arguments in the proofs for Theorem3 and
Theorem4, we can establish

Theorem 7 (Harmonic embeddings within the hemisphere) Let the convex Jordan contour
� ⊂ �M and the topological boundary function
 : ∂B → � as in (5.4) be given. Then each
solution X(u, v) = (x1(u, v), x2(u, v)) of the regularity (5.5) for the Dirichlet problem
P(�M , ds2(M);
) of the hemispherical metric ds2(M) furnishes a topological mapping
of B onto I (�) and a C2+α-diffeomorphism of B onto I (�).

Remark 10 Let M denote a 2-dimensional, geodesically complete, connected and oriented
Riemannianmanifold of the classC3 without boundary,whoseGaussian curvature is bounded
from above by the constant κ ∈ [0,+∞) as follows:

K (X) ≤ κ for all X ∈ M. (5.13)

On this manifold we choose an arbitrary point P ∈ M and a radius 0 < M <
π

2
√

κ+ such

that the geodesic disc

BM (P) :=
{
Q ∈ M

∣∣∣ dist(Q, P) ≤ M
}

(5.14)

satisfies a cut-locus-condition (see the treatise [3] by S.Hildebrandt, H.Kaul andK.Widman).
Then we can solve the Dirichlet problem for harmonic mappings in the interior of BM (P) by
these investigations using direct variational methods. Here we can apply our methods from
above in order to obtain harmonic diffeomorphisms.

Example 1 Harmonic diffeomorphisms in the Poincaré half-plane.
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We consider the Poincaré half-plane (see [8] 5.1.3 in the Lectures by W.Klingenberg)
with the following coefficients for their first fundamental form ds2 from (1.1):

gi j (X) := 1

x 2
2

δi j , X ∈ R
2+ :=

{
X = (x1, x2) ∈ R

2
∣∣∣ x2 > 0

}
for i, j = 1, 2. (5.15)

Due to [8] Satz5.1.7, the geodesics in the Poincaré half-plane with their Gaussian curvature
K ≡ −1 consist of all circular arcs within R

2+ meeting the x1-axis perpendicularly and the
rays emanating orthogonally from the x1-axis, which we address as orthocircles. From [1]
§§81–84 we see that the geodesic discs BM (P) ⊂ R

2+ with their center P on the positive
x2-axis possess a convex circumference

∂BM (P) :=
{
Q ∈ M

∣∣∣ dist(Q, P) = M
}

(5.16)

with the constant geodesic curvature

κg(X) > 0 for all X ∈ ∂BM (P). (5.17)

Due to Figure 14 in [1] §84 of the Grundlehren by W.Blaschke and K.Leichtweiß the cir-
cumferences for these geodesic discs constitute the orthogonal trajectories of the orthocircles.
The geodesic discs BM (PM ) exhaust the Poincaré half-plane for M → +∞. Here we also
refer to Abb. 5.1 in [8] 5.1.

Each boundary point X0 ∈ ∂BM (PM ) possesses a central field of geodesics, which
emanates from X0 and foliates BM (PM ). Consequently, the variational solution X(u, v),

(u, v) ∈ B of the Dirichlet problem for harmonic mappings by Hildebrandt, Kaul and Wid-
man [3] exists within the geodesic discs of all radii M > 0. Then we can apply the methods
from Sects. 2 to 4 above, and we see that this solution X shares the convex-hull property.
Furthermore, this variational solution X yields a diffeomorphism in B and a topological map-
ping on B for topological boundary representations onto convex Jordan contours �, which
are contained in the interior of the disc BM (PM ). Thus we receive an analogue of Theorem7
within the Poincaré half-plane.
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