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Abstract
Incorporating free boundary into time-delayed reaction–diffusion equations yields a com-
patible condition that guarantees the well-posedness of the initial value problem. With the
Fisher–KPP type nonlinearity we then establish a vanishing–spreading dichotomy result.
Further, when the spreading happens, we show that the spreading speed and spreading pro-
file are nonlinearly determined by a delay-induced nonlocal semi-wave problem. It turns out
that time delay slows down the spreading speed.

Mathematics Subject Classification 35K57 · 35R35 · 35B40 · 92D25

1 Introduction

In the pioneer work of Fisher [17], and Kolmogorov, Petrovski and Piskunov [22], it was
shown that

ut = uxx + f (u), x ∈ R (1.1)

with
f ∈ C1(R,R), f (0) = 0 = f (1), f (s) � f ′(0)s, s � 0, (1.2)

admits traveling waves solutions of the form u(t, x) = φ(x − ct) satisfying φ(−∞) = 1
and φ(+∞) = 0 if and only if c � c0 := 2

√
f ′(0). In 1970s’, Aronson and Weinberger [2]
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proved that the minimal wave speed c0 is also the asymptotic speed of spread (spreading
speed for short) in the sense that

lim
t→∞ sup

|x |�(c0+ε)t
u(t, x) = 0, lim

t→∞ inf|x |�(c0−ε)t
u(t, x) = 1 (1.3)

for any small ε > 0 provided that the initial function u(0, x) is compactly supported. These
works have stimulated volumes of studies for the propagation dynamics of various types of
evolution systems. Among others, of particular interest to the Fisher–KPP equation (1.1)–
(1.2) with time delay or free boundary are two typical ones.

Schaaf [32] studied the following time-delayed reaction–diffusion equation

ut (t, x) = uxx (t, x) + f (u(t, x), u(t − τ, x)), x ∈ R, t > 0, (1.4)

where τ > 0 is the time delay. With the Fisher–KPP condition on f̃ (s) := f (s, s) and the
quasi-monotone condition ∂2 f � 0, it was shown that the minimal wave speed c0 = c0(τ )

exists and it is determined by the system of two transcendental equations

F(c, λ) = 0,
∂F

∂λ
(c, λ) = 0, (1.5)

where
F(c, λ) = λ2 + cλ + ∂1 f (0, 0) + ∂2 f (0, 0)e

−λτ . (1.6)

The delay-induced spatial non-locality was brought to attention by So et al. [28], where
they derived the following time-delayed reaction–diffusion model equation with nonlocal
response for the study of age-structured population

ut = uxx − du + γ

∫

R

b(u(t − τ, x − y))k(y)dy, x ∈ R, t > 0, (1.7)

where u represents the density of mature population, τ > 0 is the maturation age, d is the
death rate, b is the birth rate function, γ is the survival rate from newborn to beingmature, and
k is the redistribution kernel during the maturation period. As such, introducing time delay
into diffusive equation usually gives rises to spatial non-locality due to the interaction of time
lag (for maturation) and diffusion of immature population. In the extreme case where the
immature population does not diffuse, the kernel k becomes the Dirac measure, and hence
(1.7) reduces to (1.4). We refer to the survey article [21] for the delay-induced nonlocal
reaction–diffusion problems. In [28], the authors obtained the minimal wave speed c0(τ )

that is determined by a similar system to (1.5) provided that b is nondecreasing and b(s)−ds
is of Fisher–KPP type. Wang et al. [37] proved that c0(τ ) is decreasing in τ . Liang and
Zhao [23] showed that c0(τ ) is also the spreading speed for the solutions satisfying the
following initial condition

u(θ, x) is continuous and compactly supported in θ ∈ [−τ, 0] and x ∈ R. (1.8)

Similar to the classical Fisher–KPP equation, the spreading speed c0(τ ) for time-delayed
reaction–diffusion equation is still linearly determined for both local and nonlocal problems
thanks to the Fisher–KPP type condition.

We refer to [26] for more properties that are induced by time delay in reaction–diffusion
equations, including the well-posedness of initial value problems as well as the role of the
quasi-monotone condition on the comparison principle, and [14,15] for the delay-induced
weak compactness of time-t solution maps when t ∈ (0, τ ] as well as its role in the study of
wave propagation.
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Recently, Du and Lin [10] proposed a Stefan type free boundary to the Fisher–KPP equa-
tion ⎧

⎨

⎩

ut = uxx + u(1 − u), g(t) < x < h(t), t > 0,
u(t, g(t)) = 0, g′(t) = −μux (t, g(t)), t > 0,
u(t, h(t)) = 0, h′(t) = −μux (t, h(t)), t > 0,

(1.9)

where the free boundaries x = g(t) and x = h(t) represent the spreading fronts, which are
determined jointly by the gradient at the fronts and the coefficient μ in the Stefan condition.
For more background of proposing such free boundary conditions, we refer to [4,10]. It was
proved in [10] that the unique global solution (u, g, h) has a spreading-vanishing dichotomy
property as t → ∞: either (g(t), h(t)) → R and u → 1 (spreading case), or g(t) → g∞,
h(t) → h∞ with h∞ − g∞ � π , and u → 0 (vanishing case). Moreover, it was also proved
that when spreading happens, there is a constant k0 > 0 such that−g(t) and h(t) behave like
a straight line k0t for large time, where k0 is called the asymptotic speed of spread (spreading
speed for short). Different from the classical Fisher–KPP speed, k0 is the unique value of c
such that the following nonlinear semi-line problem is solvable:

⎧
⎨

⎩

q ′′ − cq ′ + q(1 − q) = 0, z > 0,
q(∞) = 1, μq ′+(0) = c, q(z) > 0, z � 0,
q(z) = 0, z � 0,

(1.10)

where q ′+(0) is the right derivative of q(z) at 0. In particular, as μ increases to infinity, k0
increases to the classical Fisher–KPP speed 2. Later on, Du and Lou [11] obtained a rather
complete characterization on the asymptotic behavior of solutions for (1.9) with some general
nonlinear terms. For further related work on free boundary problems, we refer to [8,9,12]
and the references therein.

In this paper, we aim to explore how to incorporate time delay and free boundary into the
Fisher–KPP equation (1.1)–(1.2) so that the problem is well-posed, and then study their joint
influence on the propagation dynamics.

Keeping a smooth flow for the organizations of the paper, we write down here the problem
of interest while leaving in the next section the derivation details, including the emergence
of the compatible condition (1.12) for the well-posedness of the initial value problem.

⎧
⎪⎪⎨

⎪⎪⎩

ut (t, x) = uxx (t, x) − du(t, x) + f (u(t − τ, x)), x ∈ (g(t), h(t)), t > 0,
u(t, g(t)) = 0, g′(t) = −μux (t, g(t)), t > 0,
u(t, h(t)) = 0, h′(t) = −μux (t, h(t)), t > 0,
u(θ, x) = φ(θ, x), g(θ) � x � h(θ), θ ∈ [−τ, 0],

(P)

where d and τ are two positive constants, the nonlinear function f satisfies

(H)

⎧
⎪⎪⎨

⎪⎪⎩

f (s) ∈ C1+ν̃ ([0,∞)) for some ν̃ ∈ (0, 1), f (0) = 0, f ′(0) − d > 0;
f (s) − ds = 0 has a unique positive constant root u∗;
f (s) is monotonically increasing in s ∈ [0, u∗];
f (s)
s is monotonically decreasing in s ∈ [0, u∗],

and the initial data (φ(θ, x), g(θ), h(θ)) satisfies
⎧
⎨

⎩

φ(θ, x) ∈ C1,2([−τ, 0] × [g(θ), h(θ)]),
0 < φ(θ, x) � u∗ for (θ, x) ∈ [−τ, 0] × (g(θ), h(θ)),

φ(θ, x) ≡ 0 for θ ∈ [−τ, 0], x /∈ (g(θ), h(θ)),

(1.11)
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as well as the compatible condition

[g(θ), h(θ)] ⊂ [g(0), h(0)] for θ ∈ [−τ, 0]. (1.12)

Assumption (H) ensures the Fisher–KPP structure as well as the comparison principle.
Due to the nature of delay differential equations, the initial value, including the initial domain,
has to be imposed over the history period [−τ, 0], as in (1.11). The interaction of time delay
and free boundary gives rise to the compatible condition (1.12) that is essential for the well-
posedness of the problem. If τ = 0, then the compatible condition (1.12) becomes trivial
and problem (P) reduces to (1.9). First, we obtain the following existence and uniqueness
theorem for (P).

Theorem 1.1 (Well-posedness) For any given initial data (φ(θ, x), g(θ), h(θ)) satisfying
(1.11) and (1.12), there exists a unique triple (u, g, h) solving (P) with u ∈ C1,2((0,∞) ×
[g(t), h(t)]) and g, h ∈ C1([0,∞)).

With the compatible condition (1.12) we can cast problem (P) into a fixed boundary problem
and then apply the Schauder fixed point theorem to establish the local existence of solutions.
The extension to all positive time is based on some a priori estimates.1

From the maximum principle and (H), it follows that when t > 0 the solution u > 0 for
x ∈ (g(t), h(t)), and ux (t, g(t)) > 0 > ux (t, h(t)), and hence, g′(t) < 0 < h′(t) for all
t > 0. Therefore, we can denote

g∞ := lim
t→∞ g(t) and h∞ := lim

t→∞ h(t).

The next theorem gives the long-time behavior of the solution, which is stated as follows.

Theorem 1.2 (Spreading-vanishing dichotomy) Let (u, g, h) be the solution of (P) with the
initial date (φ(θ, x), g(θ), h(θ)) satisfying (1.11) and (1.12). Then the following alternative
holds:

Either

(i) Spreading: (g∞, h∞) = R and

lim
t→∞ u(t, x) = u∗ locally uniformly in R,

or
(ii) Vanishing: (g∞, h∞) is a finite interval with length no bigger than π√

f ′(0)−d
and

lim
t→∞ max

g(t)�x�h(t)
u(t, x) = 0.

In Sect. 4, we give some sufficient conditions for spreading or vanishing, and see that the
number π√

f ′(0)−d
plays a key role for the spreading process: If h(0)−g(0) � π√

f ′(0)−d
, then

spreading will happen regardless of the choice of u(θ, x); while if h(0) − g(0) < π√
f ′(0)−d

and u(θ, x) is small, then vanishing will happen. We refer to Lemmas 4.2 and 4.4 for the
details.

When spreading happens, we characterize the spreading speed and profile of the solutions.
The nonlinear and nonlocal semi-wave problem

⎧
⎨

⎩

q ′′ − cq ′ − dq + f (q(z − cτ)) = 0, z > 0,
q(∞) = u∗, μq ′+(0) = c, q(z) > 0, z > 0,
q(z) = 0, z � 0,

(1.13)

1 We sincerely thank Professor Avner Friedman for his valuable comments and suggestions on the proof of
the well-posedness.
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will play an important role. If τ = 0 then (1.13) reduces to the local form (1.10). We obtain
the following result.

Theorem 1.3 Problem (1.13) admits a unique solution (c∗, qc∗) and c∗ = c∗(τ ) is decreasing
in delay τ � 0.

Due to the presence of time delay, the proof of Theorem 1.3 highly relies on the distribution
of complex solutions of the following transcendental equation

λ2 − cλ − d + f ′(0)e−λcτ = 0. (1.14)

We refer to Lemma 3.2 and Proposition 3.3, which are independently of interest.
With the semi-wave established above, we can construct various super- and subsolutions

to estimate the spreading fronts h(t), g(t) and the spreading profile as t → ∞, and obtain
the following theorem.

Theorem 1.4 (Spreading profile) Let u be a solution satisfying Theorem 1.2(i). Then there
exist two constants H1 and G1 such that

lim
t→∞[h(t) − c∗t] = H1, lim

t→∞ h′(t) = c∗,

lim
t→∞[g(t) + c∗t] = G1, lim

t→∞ g′(t) = −c∗,

lim
t→∞

∥∥u(t, ·) − qc∗(c∗t + H1 − ·)∥∥L∞([0,h(t)]) = 0, (1.15)

lim
t→∞

∥∥u(t, ·) − qc∗(c∗t − G1 + ·)∥∥L∞([g(t),0]) = 0, (1.16)

where (c∗, qc∗) is the unique solution of (1.13).

The rest of this paper is organized as follows. In Sect. 2 we derive the compatible condition
(1.12), with which we formulate problem (P) and then establish the well-posedness as well
as the comparison principle. Section 3 is devoted to the study of the semi-wave problem
(1.13). In Sect. 4, we establish the spreading-vanishing dichotomy result. Finally in Sect. 5,
we characterize the spreading speed and profile of spreading solutions of (P).

2 The compatible condition, well-posedness and comparison principle

2.1 The compatible condition

To formulate problem (P), we start from the age-structured population growth law

pt + pa = D(a)pxx − d(a)p, (2.1)

where p = p(t, x; a) denotes the density of species of age a at time t and location x , D(a)

and d(a) denote the diffusion rate and death rate of species of age a, respectively.
Next we consider the scenario that the species has the following biological characteristics.

(A1) The species can be classified into two stages by age: mature and immature. An individual
at time t belongs to the mature class if and only if its age exceeds the maturation time
τ > 0. Within each stage, all individuals share the same behavior.

(A2) Immature population does not move in space.
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The total mature population u at time t and location x can be represented by the integral

u(t, x) =
∫ ∞

τ

p(t, x; a)da. (2.2)

We assume that the mature population u lives in the habitat [g(t), h(t)], vanishes in the
boundary

u(t, g(t)) = 0 = u(t, h(t)), t > 0, (2.3)

and extends the habitat by obeying the Stefan type moving boundary conditions:

h′(t) = −μux (t, h(t)), g′(t) = −μux (t, g(t)), t > 0, (2.4)

where μ is a given positive constant. Note that the immature population does not contribute
to the extension of habitat due to their immobility, as assumed in (A2).

According to (A1) we may assume that

D(a) =
{
1, a � τ,

0, 0 � a < τ,
d(a) =

{
d, a � τ,

dI , 0 � a < τ,

where d and dI are two positive constants. Differentiating the both sides of the Equation (2.2)
in time yields

ut =
∫ ∞

τ

ptda =
∫ ∞

τ

[−pa + pxx − dp]da
= uxx − du + p(t, x; τ) − p(t, x;∞). (2.5)

Since no individual lives forever, it is natural to assume that

p(t, x;∞) = 0. (2.6)

To obtain a closed form of the model, one then needs to express p(t, x; τ) by u in a certain
way. Indeed, p(t, x; τ) denotes the newly matured population at time t , and it is the evolution
result of newborns at t−τ . In otherwords, there is an evolution relation between the quantities
p(t, x; τ) and p(t−τ, x; 0). Such a relation is obeyed by the growth law (2.1) for 0 < a < τ ,
and hence it is the time-τ solution map of the following equation

{
qs = −dI q, x ∈ R, 0 � s � τ,

q(0, x) = p(t − τ, x; 0), x ∈ R.
(2.7)

Thus, p(t, x; τ) = q(τ, x) = e−dI τ p(t−τ, x, 0). Further, the newborns p(t−τ, x; 0) is given
by the birth b(u(t − τ, x)), where b is the birth rate function with b(0) = 0. Consequently,

p(t, x; τ) = e−dI τb(u(t − τ, x)). (2.8)

Combining (2.3)–(2.6) and (2.8), we are led to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

ut (t, x) = uxx (t, x) − du(t, x) + e−dI τ b(u(t − τ, x)), t > 0, x ∈ [g(t − τ), h(t − τ)],
ut (t, x) = uxx (t, x) − du(t, x), t > 0, x ∈ [g(t), h(t)]\[g(t − τ), h(t − τ)],
u(t, g(t)) = 0 = u(t, h(t)), t > 0,
h′(t) = −μux (t, h(t)), g′(t) = −μux (t, g(t)), t > 0.

(2.9)
For t > 0, outside the habitat (g(t), h(t)) the mature population does not exist, that is,

u(t, x) ≡ 0 for t > 0, x /∈ (g(t), h(t)). (2.10)
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Clearly, since the habitat is expanding for t > 0, we have

[g(t − τ), h(t − τ)] ⊂ [g(t), h(t)], t � τ. (2.11)

Hence, the first two equations in (2.9) can be written as the following single one

ut (t, x) = uxx (t, x) − du(t, x) + e−dI τb(u(t − τ, x)), t > 0, x ∈ [g(t), h(t)], (2.12)

provided that (2.11) holds for t � 0. As such, in view of (2.11) we need an additional
condition

[g(t − τ), h(t − τ)] ⊂ [g(t), h(t)], t ∈ [0, τ ). (2.13)

Note that [g(0), h(0)] ⊂ [g(t), h(t)] for t > 0. And as the coefficient μ → 0 we have
[g(t), h(t)] → [g(0), h(0)] uniformly for t ∈ [0, τ ]. Then, regardless of the influence of μ,
(2.13) is strengthened to be

[g(θ), h(θ)] ⊂ [g(0), h(0)] for θ ∈ [−τ, 0],
which is the aforementioned compatible condition (1.12).

Setting f (s) := e−dI τb(s) in (2.9), we obtain problem (P).

2.2 Well-posedness

We employ the Schauder fixed point theorem to establish the local existence of solutions to
(P), and prove the uniqueness, then extend the solutions to all time by an estimate on the
free boundary.

Theorem 2.1 Suppose (H) holds. For any α ∈ (0, 1), there is a T > 0 such that problem (P)
with the initial data (φ(θ, x), g(θ), h(θ)) satisfying (1.11) and (1.12), admits a solution

(u, g, h) ∈ C (1+α)/2,1+α([0, T ] × [g(t), h(t)]) × C1+α/2([0, T ]) × C1+α/2([0, T ]).
Proof We divide the proof into three steps.

Step 1. We use a change of variable argument to transform problem (P) into a fixed
boundary problem with a more complicated equation which is used in [5,10]. Denote l1 =
g(0) and l2 = h(0) for convenience, and set h0 = 1

2 (l2 − l1). Let ξ1(y) and ξ2(y) be two
nonnegative functions in C3(R) such that

ξ1(y) = 1 if |y − l2| <
h0
4

, ξ1(y) = 0 if |y − l2| >
h0
2

, |ξ ′
1(y)| <

6

h0
for y ∈ R;

ξ2(y) = 1 if |y − l1| <
h0
4

, ξ2(y) = 0 if |y − l1| >
h0
2

, |ξ ′
2(y)| <

6

h0
for y ∈ R.

Define y = y(t, x) through the identity

x = y + ξ1(y)(h(t) − l2) + ξ2(y)(g(t) − l1) for t > 0,

x ≡ y for − τ � t � 0,

and set

w(t, y) := u(t, y + ξ1(y)(h(t) − l2) + ξ2(y)(g(t) − l1)) = u(t, x) for t > 0,

w(θ, y) := φ(θ, y) for − τ � θ � 0.
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Then the free boundary problem (P) becomes
⎧
⎨

⎩

wt − A(g, h, y)wyy + B(g, h, y)wy = f (w(t − τ, y)) − dw, y ∈ (l1, l2), t > 0,
w(t, li ) = 0, t > 0, i = 1, 2,
w(θ, y) = φ(θ, y), y ∈ [l1, l2], θ ∈ [−τ, 0],

(2.14)
and

g′(t) = −μwy(t, l1), h′(t) = −μwy(t, l2), t > 0, (2.15)

with f (w(t−τ, y))= f (u(t−τ, y)) and [A(g, h, y)=[1+ξ ′
1(y)(h(t)−l2)+ξ ′

2(y)(g(t)−l1)]−2, ],

B(g, h, y) = [ξ ′′
1 (y)(h(t) − l2) + ξ ′′

2 (y)(g(t) − l1)]A(g, h, y)
3
2

−[ξ1(y)h′(t) + ξ2(y)g
′(t)]A(g, h, y)

1
2 .

Denoteh1 = −μ(u0)y(0, l2), andh2 = μ(u0)y(0, l1). For 0<T � min
{ h0
16(1+h1+h2)

, τ
}
,

we define T := [0, T ] × [l1, l2],
Dh

T = {h ∈ C1([0, T ]) : h(0) = l2, h′(0) = h1, ‖h′ − h1‖C([0,T ]) � 1},
Dg

T = {g ∈ C1([0, T ]) : g(0) = l1, g′(0) = −h2, ‖g′ + h2‖C([0,T ]) � 1}.
Clearly, D := Dg

T × Dh
T is a bounded and closed convex set of C1([0, T ]) × C1([0, T ]).

Noting that the restriction on T , it is easy to see that the transformation (t, y) → (t, x) is
well defined. By a similar argument as in [36], applying standard L p theory and the Sobolev
embedding theorem, we can deduce that for any given (g, h) ∈ D, problem (2.14) admits a

unique w(t, y; g, h) ∈ W 1,2
p (T ) ↪→ C

1+α
2 ,1+α(T ), which satisfies

‖w‖W 1,2
p (T )

+ ‖w‖
C

1+α
2 ,1+α

(T )
� C1, (2.16)

where p > 1 andC1 is a constant dependent on g(θ), h(θ),α, p and ‖φ‖C1,2([−τ,0]×[g(θ),h(θ)]).
Defining ĥ and ĝ by ĥ(t) = l2 − ∫ t

0 μwy(s, l2)ds and ĝ(t) = l1 − ∫ t
0 μwy(s, l1)ds,

respectively, then we have

ĥ′(t) = −μwy(t, l2), ĥ(0) = l2, ĥ′(0) = −μwy(0, l2) = h1,

and thus ĥ′ ∈ C
α
2 ([0, T ]), which satisfies

‖ĥ′‖
C

α
2 ([0,T ]) � μC1 =: C2. (2.17)

Similarly ĝ′ ∈ C
α
2 ([0, T ]), which satisfies

‖ĝ′‖
C

α
2 ([0,T ]) � μC1 =: C2. (2.18)

Step 2. For any given triple (g, h) ∈ D, we define an operator F by

F(g, h) = (ĝ, ĥ).

Clearly, F is continuous in D, and (g, h) ∈ D is a fixed point of F if and only if (w, g, h)

solves (2.14) and (2.15). We will show that if T > 0 is small enough, then F has a fixed
point by using the Schauder fixed point theorem.

Firstly, it follows from (2.17) and (2.18) that

‖ĥ′ − h1‖C([0,T ]) � C2T
α
2 , ‖ĝ′ + h2‖C([0,T ]) � C2T

α
2 .
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Thus ifwe choose T � min
{ h0
16(1+h1+h2)

, τ, C
− 2

α

2

}
, thenF mapsD into itself. Consequently,

F has at least one fixed point by using the Schauder fixed point theorem, which implies that
(2.14) and (2.15) have at least one solution (w, g, h) defined in [0, T ]. Moreover, by the
Schauder estimates, we have additional regularity for (w, g, h) as a solution of (2.14) and
(2.15), namely,

(w, g, h) ∈ C1+α/2,2+α((0, T ] × [l1, l2]) × C1+α/2((0, T ]) × C1+α/2((0, T ])
and for any given 0 < ε < T , there holds

‖w‖C1+α/2,2+α([ε,T ]×[l1,l2]) � C3,

where C3 is a constant dependent on ε, g(θ), h(θ), α and ‖φ‖C1,2 . Thus we deduce a local
classical solution (u, g, h) of (P) by (w, g, h), and u ∈ C1+α/2,2+α((0, T ] × [g(t), h(t)])
satisfies

‖u‖C1+α/2,2+α([ε,T ]×[g(t),h(t)]) � C3.

Step 3. We will prove the uniqueness of solutions of (P). Let (ui , gi , hi ), i = 1, 2, be
two solutions of (P) and set

wi (t, y) := ui (t, y + ξ1(y)(hi (t) − l2) + ξ2(y)(gi (t) − l1)).

Then it follows from (2.16), (2.17) and (2.18) that

‖wi‖W 1,2
p (T )

+ ‖wi‖
C

1+α
2 ,1+α

(T )
� C1, ‖h′

i‖C α
2 ([0,T ]) � C2, ‖g′

i‖C α
2 ([0,T ]) � C2.

Set

w̃(t, y) := w1(t, y) − w2(t, y), g̃(t) := g1(t) − g2(t), and h̃(t) := h1(t) − h2(t),

then we find that w̃(t, y) satisfies that
⎧
⎨

⎩

w̃t − A2(t, y)w̃yy + B2(t, y)w̃y = f̃ (t, y), y ∈ (l1, l2), t ∈ (0, T ),

w̃(t, l1) = w̃(t, l2) = 0, t ∈ (0, T ),

w̃(θ, y) = 0, y ∈ [l1, l2], θ ∈ [−τ, 0],
(2.19)

where

f̃ (t, y) = (A1 − A2)(w1)yy − (B1 − B2)(w1)y + f (w1(t − τ, y)) − f (w2(t − τ, y)) − dw̃,

and Ai and Bi are the coefficients of problem (2.14) with (wi , gi , hi ) instead of (w, g, h).
Recalling that T � τ , then f (w1(t − τ, y)) − f (w2(t − τ, y)) = 0 for all (t, y) ∈ T ,

thus

f̃ (t, y) = (A1 − A2)(w1)yy − (B1 − B2)(w1)y − dw̃.

Thanks to this, we can apply the L p estimates for parabolic equations to deduce that

‖w̃‖W 1,2
p (T )

� C4(‖g̃‖C1([0,T ]) + ‖h̃‖C1([0,T ])) (2.20)

with C4 depending on C1 and C2. By a similar argument as in [36], we obtain that

‖w̃‖
C

1+α
2 ,1+α

(T )
� C‖w̃‖W 1,2

p (T )

for some positive constant C independent of T−1. Thus

‖w̃‖
C

1+α
2 ,1+α

(T )
� CC4(‖g̃‖C1([0,T ]) + ‖h̃‖C1([0,T ])). (2.21)
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Since h̃′(0) = h′
1(0) − h′

2(0) = 0, then

‖h̃′‖
C

α
2 ([0,T ]) = μ‖w̃y‖C α

2 ,0
(T )

� μ‖w̃‖
C

1+α
2 ,1+α

(T )
.

This, together with (2.21), implies that

‖h̃‖C1([0,T ]) � 2T
α
2 ‖h̃′‖

C
α
2 ([0,T ]) � C5T

α
2 (‖g̃‖C1([0,T ]) + ‖h̃‖C1([0,T ])),

where C5 = 2μCC4. Similarly, we have

‖g̃‖C1([0,T ]) � C5T
α
2 (‖g̃‖C1([0,T ]) + ‖h̃‖C1([0,T ])).

As a consequence, we deduce that

‖g̃‖C1([0,T ])‖ + ‖h̃‖C1([0,T ]) � 2C5T
α
2 (‖g̃‖C1([0,T ]) + ‖h̃‖C1([0,T ])).

Hence for

T := min
{ h0
16(1 + h1 + h2)

, τ, C
− 2

α

2 , (4C5)
− 2

α

}
,

we have

‖g̃‖C1([0,T ])‖ + ‖h̃‖C1([0,T ]) � 1

2
(‖g̃‖C1([0,T ]) + ‖h̃‖C1([0,T ])).

This shows that g̃ ≡ 0 ≡ h̃ for 0 � t � T , thus w̃ ≡ 0 in [0, T ] × [l1, l2]. Consequently, the
uniqueness of solution of (P) is established, which ends the proof of this theorem. ��
Lemma 2.2 Assume that (H) holds. Then every positive solution (u, g, h) of problem (P)
exists and is unique for all t ∈ (0,∞).

Proof Let [0, Tmax ) be the maximal time interval in which the solution exists. In view of
Theorem 2.1, it remains to show that Tmax = ∞. We proceed by a contradiction argument
and assume that Tmax < ∞. Thanks to the choice of the initial data, the comparison principle
implies that u(t, x) � u∗ for (t, x) ∈ (0, Tmax ) × [g(t), h(t)]. Construct the auxiliary
function

ū(t, x) = u∗[2M(h(t) − x) − M2(h(t) − x)2
]
, t ∈ [−τ, Tmax ), x ∈ [h(t) − M−1, h(t)],

where

M := max
{√

d,
2

h(−τ) − g(−τ)
,

4

3u∗ max−τ�θ�0
‖φ(θ, ·)‖C1([g(θ),h(θ)])

}
.

It follows the proof of [10, Lemma 2.2] to prove that there is a constant C0 independent on
Tmax such that h′(t) � C0 for t ∈ (0, Tmax ). The proof for −g′(t) � C0 for t ∈ (0, Tmax ) is
parallel.

Let us nowfix ε ∈ (0, Tmax ). Similar to the proof of Theorem2.1, by standard L p estimate,
the Sobolev embedding theorem and the Hölder estimates for parabolic equation, we can find
C1 > 0 depending only on ε, Tmax , u∗, h0, ‖φ‖C1,2([−τ,0]×[g(θ),h(θ)]) and C0 such that

||u||C1+α/2,2+α([ε,Tmax ]×[g(t),h(t)]) � C1.

This implies that (u, g, h) exists on [0, Tmax ]. Choosing tn ∈ (0, Tmax ) with tn ↗ Tmax , and
regarding (u(tn − θ, x), g(tn − θ), h(tn − θ)) for θ ∈ [0, τ ] as the initial function, it then
follows from the proof of Theorem 2.1 that there exists s0 > 0 depending on C0, C1 and
u∗ independent of n such that problem (P) has a unique solution (u, g, h) in [tn, tn + s0].
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This yields that the solution (u, g, h) of (P) can be extended uniquely to [0, tn + s0). Hence
tn + s0 > Tmax when n is large. But this contradicts the assumption, which ends the proof
of this lemma. ��
Proof of Theorem 1.1: Combining Theorem 2.1 and Lemma 2.2, we complete the proof. ��

2.3 Comparison principle

In this subsection, we establish the comparison principle, which will be used in the rest of
this paper. Let us start with the following result.

Lemma 2.3 Suppose that (H) holds, T ∈ (0,∞), g, h ∈ C1([−τ, T ]), u ∈ C(DT ) ∩
C1,2(DT ) satisfies u � u∗ in DT with DT = {(t, x) ∈ R

2 : −τ < t � T , g(t) < x < h(t)},
and

⎧
⎨

⎩

ut � uxx − du + f (u(t − τ, x)), 0 < t � T , g(t) < x < h(t),
u = 0, g′(t) � −μux , 0 < t � T , x = g(t),

u = 0, h
′
(t) � −μux , 0 < t � T , x = h(t).

If [g(θ), h(θ)] ⊆ [g(θ), h(θ)] for θ ∈ [−τ, 0] and u(θ, x) ∈ C1,2([−τ, 0] × [g(θ), h(θ)])
satisfies

φ(θ, x) � u(θ, x) � u∗ in [−τ, 0] × [g(θ), h(θ)],
then the solution (u, g, h) of problem (P) satisfies g(t) � g(t), h(t) � h(t) in (0, T ], and

u(t, x) � u(t, x) for (t, x) ∈ (0, T ] × (g(t), h(t)).

Proof We integrate the ideas of [10, Lemma 5.7] and [26, Corollary 5] to deal with free
boundary and time delay.

Firstly, for small ε > 0, let (uε, gε, hε) denote the unique solution of (P) with g(θ)

and h(θ) replaced by gε(θ) := g(θ)(1 − ε) and hε(θ) := h(θ)(1 − ε) for θ ∈ [−τ, 0],
respectively, with μ replaced by με := μ(1 − ε), and with φ(θ, x) replaced by some
φε(θ, x) ∈ C1,2([−τ, 0] × [gε(θ), hε(θ)]), satisfying

0 < φε(θ, x) � φ(θ, x), φε(θ, gε(θ)) = φε(θ, hε(θ)) = 0

for θ ∈ [−τ, 0], x ∈ [gε(θ), hε(θ)],
and for any fixed θ ∈ [−τ, 0] as ε → 0, φε(θ, x) → φ(θ, x) in the C2([g(θ), h(θ)]) norm.

We claim that hε(t) < h(t), gε(t) > g(t) and uε(t, x) < u(t, x) for all t ∈ [0, T ] and
x ∈ [gε(t), hε(t)]. Obviously, this is true for all small t > 0. Now, let us use an indirect
argument and suppose that the claim does not hold, then there exists a first t∗ ∈ (0, T ] such
that

uε(t, x) < u(t, x) for t ∈ [0, t∗), x ∈ [gε(t), hε(t)] ⊂ (g(t), h(t)),

and there is some x∗ ∈ [gε(t∗), hε(t∗)] such that uε(t∗, x∗) = u(t∗, x∗).
Later, let us compare uε and u over the region

t∗ := {(t, x) ∈ R
2 : 0 < t � t∗, gε(t) < x < hε(t)}.

An direct computation shows that for (t, x) ∈ t∗ ,

(u − uε)t − (u − uε)xx + d(u − uε) � f (u(t − τ, x)) − f (uε(t − τ, x)) � 0,
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it then follows from the strong maximum principle that

uε(t, x) < u(t, x) in t∗ . (2.22)

Thus either x∗ = hε(t∗) or x∗ = gε(t∗). Without loss of generality we may assume that
x∗ = hε(t∗), then u(t∗, hε(t∗)) = uε(t∗, hε(t∗)) = 0. This, together with (2.22), implies
that ux (t∗, hε(t∗)) � (uε)x (t∗, hε(t∗)), from which we obtain that

h′
ε(t

∗) = −με(uε)x (t
∗, hε(t

∗)) < −μux (t
∗, hε(t

∗)) = h
′
(t∗). (2.23)

As hε(t) < h(t) for t ∈ [0, t∗) and hε(t∗) = h(t∗), then h′
ε(t

∗) � h
′
(t∗), which contradicts

(2.23). This proves our claim.
Finally, thanks to the unique solution of (P) depending continuously on the parameters in

(P), as ε → 0, (uε, gε, hε) converges to (u, g, h), the unique of solution of (P). The desired
result then follows by letting ε → 0 in the inequalities uε < u, gε > g and hε < h. ��

By slightly modifying the proof of Lemma 2.3, we obtain a variant of Lemma 2.3.

Lemma 2.4 Suppose that (H) holds, T ∈ (0,∞), g, h ∈ C1([−τ, T ]), u ∈ C(DT ) ∩
C1,2(DT ) satisfies u � u∗ in DT with DT = {(t, x) ∈ R

2 : −τ < t � T , g(t) < x < h(t)},
and

⎧
⎨

⎩

ut � uxx − du + f (u(t − τ, x)), 0 < t � T , g(t) < x < h(t),
u � u, 0 < t � T , x = g(t),

u = 0, h
′
(t) � −μux , 0 < t � T , x = h(t),

with g(t) � g(t) in [0, T ], h(θ) � h(θ), φ(θ, x) � u(θ, x) for θ ∈ [−τ, 0] and x ∈
[g(θ), h(θ)], where (u, g, h) is a solution to (P). Then

h(t) � h(t) in (0, T ], u(x, t) � u(x, t) for (t, x) ∈ (0, T ] × (g(t), h(t)).

Remark 2.5 The function u, or the triple (u, g, h), in Lemmas 2.3 and 2.4 is often called a
supersolution to (P). A subsolution can be defined analogously by reversing all the inequal-
ities. There is a symmetric version of Lemma 2.4, where the conditions on the left and
right boundaries are interchanged. We also have corresponding comparison results for lower
solutions in each case.

3 Semi-waves

This Sect. is devoted to proving the existence and uniqueness of a semi-wave q(z) of (1.13),
which will be used to construct some suitable sub- and supersolutions to study the asymptotic
profiles of spreading solutions of (P). Let us consider the following nonlocal elliptic problem

{
q ′′ − cq ′ − dq + f (q(z − cτ)) = 0, z > 0,
q(z) = 0, z � 0,

(3.1)

where c � 0 is a constant.
If z is understood as the time variable, then wemay regard problem (3.1) as a time-delayed

dynamical system in the phase spaceC([−cτ, 0],R2).When cτ = 0, the phase space reduces
toR2 and it follows from the phase plane analysis that (3.1) admits a unique positive solution
q0(z), which is increasing in z and q0(z) → u∗ as z → ∞. When cτ > 0, the phase space is
of infinite dimension and the positivity and boundedness of the unique solution are not clear.
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Proposition 3.1 Suppose (H) holds. For any given constant c > 0, problem (3.1) has a
maximal nonnegative solution qc. Moreover, either qc(z) ≡ 0 or qc(z) > 0 in (0,∞).
Furthermore, if qc > 0, then it is the unique positive solution of (3.1), q ′

c(z) > 0 in (0,∞)

andqc(z) → u∗ as z → ∞, in addition, for anygiven constant c1 < c, onehasqc(z) < qc1(z)
for z ∈ (0,∞), and (qc)′+(0) < (qc1)

′+(0).

Proof We divide the proof into four steps.
Step 1. Problem (3.1) always has a maximal nonnegative solution q and it satisfies

q � u∗ for z ∈ [0,∞).

Clearly, 0 is a nonnegative solution of (3.1). For any l > 0, consider the following problem:
{

w′′ − cw′ − dw + f (w(z − cτ)) = 0, 0 < z < l,
w(l) = u∗, w(z) = 0, z � 0.

(3.2)

It is well known problem (3.2) admits a unique solution wl(z) > 0 for z ∈ (0, l]. Applying
the maximal principle, we can deduce that wl(z) � u∗ for z ∈ [0, l]. Moreover, it is easy to
check that wl(z) is decreasing in l > 0 and increasing in z ∈ [0, l] and

wl(z) → W (z) as l → ∞,

where W (z) is a nonnegative solution of problem (3.1) and it satisfies W (z) � u∗ for
z ∈ [0,∞).

In what follows, we want to prove that W is the maximal nonnegative solution of (3.1).
Let q be an arbitrary nonnegative solution of (3.1), then q(z) � u∗ for z ∈ [0,∞). If q ≡ 0,
then q � W . Suppose now q �, �≡ 0, then q > 0 in (0,∞). Let us show q(z) � W (z) for
z ∈ [0,∞).

Firstly, for any fixed l > 0 we can find M > 0 large such that Mwl(z) � q(z) for
z ∈ [0, l]. We claim that the above inequality holds for M = 1. On the contrary, define

M0 := inf{M > 0 : Mwl(z) � q(z) for z ∈ [0, l]},
then M0 > 1 and M0w

l(z) �, �≡ q(z) for z ∈ [0, l]. Thanks to the monotonicity of wl(z)
in z ∈ [0, l], then there is z0 ∈ (0, l) such that M0w

l(z0) = u∗ and M0w
l(z) < u∗ for

z ∈ [0, z0). It is easy to check that q(z0) < u∗. Then the strong maximal principle yields
that M0(w

l)′(0) > q ′(0) and M0w
l(z) > q(z) for z ∈ (0, z0]. Thus we can find a constant

0 < ε � 1 such that

M1 := M0(1 + ε)−1 > 1, M1w
l(z) > q(z) for z ∈ (0, z0], (3.3)

and M1w
l(z0+ z̃) > u∗ for z̃ = min{cτ, l− z0}. So there is z1 ∈ (0, z̃] such that M1w

l(z0+
z1) = u∗ and M1w

l(z0 + z) > u∗ for z ∈ (z1, l − z0].
Later, we want to prove that M1w

l(z) > q(z) for all z ∈ (z0, l]. Combining the definition
of z1, we only need to proveM1w

l(z) � q(z) for all z ∈ (z0, z0+z1]. SinceM1w
l(z) � q(z)

for z = z0 + z1 and z = z0, and for z ∈ (z0, z0 + z1),
(
M1w

l − q
)′′ − c

(
M1w

l − q
)′ − d

(
M1w

l − q
)

= f (q(z − cτ)) − M1 f
(
wl(z − cτ)

)

� f (q(z − cτ)) − f
(
M1w

l(z − cτ)
)

� 0,

where themonotonicity of f (v)/v and f (v) in v ∈ [0, u∗] and the factwhereM1w
l(z−cτ) �

q(z − cτ) for z � z0 + z1 are used. The comparison principle yields that M1w
l(z) � q(z)
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for all z ∈ [z0, z0 + z1]. This, together with the definition of z1 and (3.3), yields that
M1w

l(z) � q(z) for all z ∈ (0, l], which contradicts the definition ofM0. Thenwl(z) � q(z)
for z ∈ [0, l] is proved.

Finally, letting l → ∞, we deduce that

W (z) � q(z) for z ∈ [0,∞),

as we wanted. Thus Step 1 is proved.
Step 2. For any c � 0, if q is a positive solution of (3.1), then q ′+(0) > 0, q ′(z) > 0 for

z ∈ (0,∞), and q(z) → u∗ as z → ∞.
Since q > 0 for z > 0, then the Hopf lemma can be used to deduce q ′+(0) > 0, it follows

that q ′(z) > 0 for all small z > 0. Setting

γ ∗ := sup{γ > 0 : q(2γ − z) > q(z) for z ∈ [0, γ ), q ′(z) > 0 for z ∈ (0, γ ]}.
In the following, we shall show γ ∗ = ∞. Suppose by way of contradiction that γ ∗ ∈ (0,∞),
then

q(2γ ∗ − z) � q(z), and q ′(z) � 0 for z ∈ [0, γ ∗].
Define q̃(z) = q(2γ ∗ − z) for z ∈ [γ ∗, 2γ ∗], then

q̃ ′′ − cq̃ ′ − dq̃ + f (q̃(z − cτ)) = −2cqξ , ξ = 2γ ∗ − z ∈ [0, γ ∗].
Let us set

Q(z; γ ∗) = Q(z) = q̃(z) − q(z) = q(ξ) − q(2γ ∗ − ξ).

Then Q � 0 for z ∈ [γ ∗, 2γ ∗] and it satisfies
{
Q′′ − cQ′ − dQ = f (q(z − cτ)) − f (q̃(z − cτ)) − 2cqξ � 0, γ ∗ � z � 2γ ∗,
Q(γ ∗) = 0, Q(2γ ∗) = −q(2γ ∗) < 0.

(3.4)

The strong maximal principle and the Hopf lemma imply that

Q(z) < 0, z ∈ (γ ∗, 2γ ∗], Q′(γ ∗) < 0.

It follows the continuity that for all small ε � 0,

Q′(γ ∗ + ε; γ ∗ + ε) < 0, Q(z; γ ∗ + ε) < 0 for z ∈ (γ ∗ + ε, 2γ ∗ + 2ε],
which implies that q(2γ ∗ + 2ε − ξ) > q(ξ) for ξ ∈ [0, γ ∗ + ε). Moreover, since Q′(γ ∗ +
ε; γ ∗ + ε) = −2q ′(γ ∗ + ε), it then follows that q ′(γ ∗ + ε) > 0. But these facts contradict
the definition of γ ∗. Thus the monotonicity of positive solutions of (3.1) is established.

Next,we consider the asymptotic behavior of positive solutionq of (3.1). Themonotonicity
of q in z > 0 implies that there is a constant a > 0 such that limz→∞ q(z) = a. We claim
that a = u∗. For any sequence {zn} with zn → ∞ as n → ∞, define qn(z) = q(z + zn).
Then qn solves the same equation as q but over (−zn,∞). Since qn � u∗, it follows that
there is a subsequence of {qn} (still denoted by {qn}) such that qn → q̂ locally in C2(R) as
n → ∞, and q̂ solves

v′′ − cv′ − dv + f (v(z − cτ)) = 0, z ∈ R.

On the other hand, it follows from limz→∞ q(z) = a that q̂ ≡ a, which implies that
a = u∗, as we wanted. Thus this completes the proof of Step 2.

Step 3. We show that problem (3.1) has at most one positive solution.
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Suppose problem (3.1) has two positive solutions q1 and q2, then 0 < qi < u∗ in (0,∞),
and qi (z) → u∗ as z → ∞ for i = 1, 2. Define

ρ∗ := inf

{
q1(z)

q2(z)
: z > 0

}
.

From Step 2 we have (qi )′+(0) > 0, i = 1, 2. Then by L’Hôpital’s rule we obtain

limz↓0 q1(z)
q2(z)

> 0, which together with limz→+∞ q1(z)
q2(z)

= 1 implies that ρ∗ ∈ (0, 1]. Next we
show ρ∗ = 1. Indeed, assume for the sake of contraction that ρ∗ ∈ (0, 1). Define

w(z) := q1(z) − ρ∗q2(z).

Then w(z) � 0 for z � 0, w(0) = 0, w(+∞) = (1 − ρ∗)u∗ > 0 and

w′′ − cw′ − dw = − f (q1(z − cτ)) + ρ∗ f (q2(z − cτ)) � 0,

where the sub-linearity and monotonicity of f (z) for z ∈ (0, u∗) are used. By Hopf’s lemma,
we see that 0 < w′(0) = (q1)′+(0) − ρ∗(q2)′+(0), which implies that limz↓0 q1(z)

q2(z)
> ρ∗.

Thus, in view of the definition of ρ∗, we have an z0 ∈ (0,+∞) such that w(z0) = 0. By
the elliptic strong maximum principle, we infer that w(z) ≡ 0 for z > 0, a contradiction to
w(+∞) > 0. Therefore, ρ∗ = 1, and hence, q1(z) � q2(z). Changing the role of q1 and q2
and repeating the above arguments, we obtain q2(z) � q1(z). The uniqueness is proved.

Step 4. Let us consider the monotonicity of positive solutions in c.
Assume that qc is a positive solution of (3.1). Choose c1 < c and let qc1 be the maximal

nonnegative solution of (3.1) with c = c1. Since u∗ is a supersolution of (3.1), and by Step 2
we know that qc is a subsolution of (3.1) with c = c1, in view of the uniqueness of positive
solution of this problem, then we see that qc1(z) � qc(z) for z ∈ [0,∞). It thus follows from
the maximum principle and the Hopf lemma that

qc1(z) > qc(z) for z ∈ (0,∞), and (qc1)
′+(0) > (qc)

′+(0).

The proof of this proposition is complete now. ��
Next we give a necessary and sufficient condition for the existence of a positive solution

of (3.1). For this purpose, we need the following property on the distribution of complex
solutions to a transcendental equation.

Lemma 3.2 Let c � 0 and τ � 0. Define

�c(λ, τ ) = λ2 − cλ − d + f ′(0)e−λcτ . (3.5)

Then there exists c0(τ ) ∈ (0, 2
√

f ′(0) − d) such that the following statements hold:

(i) �c(λ, τ ) = 0 has a positive solution if and only if c � c0(τ );
(ii) �c(λ, τ ) = 0 has a complex solution in the domain

 :=
{
λ ∈ C : Reλ > 0, Imλ ∈

(
0,

π

cτ

)}
, (3.6)

provided that c ∈ (0, c0(τ )).

Before the proof, we note that if τ = 0 then �c(λ, τ ) = 0 reduces to a polynomial equation
of order 2. It admits at least one positive solution if and only if c � 2

√
f ′(0) − d and exactly

a pair of complex eigenvalues in  when c ∈ (0, 2
√

f ′(0) − d).
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Proof (i) Note that �c(λ, τ ) is convex in λ, decreasing in c > 0 when λ > 0, �0(λ, τ ) > 0
and �c(λ, τ ) = 0 is negative for some λ > 0 when c is sufficiently large. Therefore,
such c0(τ ) exists.

(ii) We employ a continuation method with τ being the parameter. From the proof of [31,
Theorem 2.1], we can infer that the solutions of �c(λ, τ ) = 0 is continuous in τ > 0.
We write λ = α(τ) + iβ(τ), where α(τ) and β(τ) are continuous in τ > 0. Separating
the real and imaginary parts of �c(λ, τ ) = 0 yields

{
F1(α, β, τ ) := α2 − β2 − cα − d + f ′(0)e−cτα cos cτβ = 0,

F2(α, β, τ ) := 2αβ − cβ − f ′(0)e−cτα sin cτβ = 0.
(3.7)

We proceed with four steps.
Step 1. If τ is small enough, then there is a solution in . Indeed, At τ = 0, (3.7) admits

a solution (α, β) =
(

c
2 ,

√
|c2−( f ′(0)−d)2|

2

)
. Note that

det

(
∂αF1 ∂βF1
∂αF2 ∂βF2

)
|τ=0 = det

(
2α − c −2β
2β 2α + c

)
> 0. (3.8)

It then follows from the implicit function theorem that for small τ ,�c(λ, τ ) admits a complex

solution near c
2 + i

√
|c2−( f ′(0)−d)2|

2 , and hence, in the open domain .
Step 2. For any τ > 0, �c(λ, τ ) admits no solution with β = 0 or β = π

cτ when cτ > 0.
It follows from statement (i) that there is no solution with β = 0 when c < c0(τ ). If β equals
π
cτ , then from the second equation of (3.7) we can infer that α = c

2 . Substituting α = c
2 and

β = π
cτ into the first equation of (3.7), we obtain 0 = − 1

4c
2 − (

π
cτ

)2 − d − f ′(0)e−c2τ/2, a
contradiction.

Step 3. If a solution α(τ) + iβ(τ) touches pure imaginary axis at some τ = τ ∗ > 0, then
α′(τ ∗) > 0. We use the implicit function theorem. By direct computations, we have

det

(
∂αF1 ∂βF1
∂αF2 ∂βF2

)
|τ=τ∗

= det

(−c − cτ f ′(0) cos cτβ −2β − cτ f ′(0) sin cτβ
2β + cτ f ′(0) sin cτβ −c − cτ f ′(0) cos cτβ

)

= [−c − cτ f ′(0) cos cτβ]2 + [2β + cτ f ′(0) sin cτβ]2 � 0,

where the equality holds if and only if−c−cτ f ′(0) cos cτβ = 0 and 2β+cτ f ′(0) sin cτβ =
0. Taking these two relations into (3.7) with α = 0, we obtain

{
−β2 − d − 1

τ
= 0,

−cβ + 2β
cτ = 0,

(3.9)

which is not solvable for β. Therefore,

det

(
∂αF1 ∂βF1
∂αF2 ∂βF2

)
|τ=τ∗ > 0.

On the other hand,
(

∂τ F1
∂τ F2

)
|τ=τ∗ = −cβ f ′(0)

(
sin cτβ
cos cτβ

)
.

123



Propagation dynamics of Fisher–KPP equation… Page 17 of 38 148

Consequently, by the implicit function theorem we have
(

α′(τ ∗)
β ′(τ ∗)

)
|τ=τ∗ = −

(
∂αF1 ∂βF1
∂αF2 ∂βF2

)−1

|τ=τ∗
(

∂τ F1
∂τ F2

)
|τ=τ∗ ,

from which we compute to have

α′(τ ∗) = (2β4 + 2dβ2 + c2)c

det

(
∂αF1 ∂βF1
∂αF2 ∂βF2

)
|τ=τ∗

> 0. (3.10)

Step 4. Completion of the proof. In Steps 2 and 3, we have verified that the perturbed
solution at Step 1 can not escape  continuously as τ increases from 0 to ∞. Therefore, it
always stays in . ��

Based on the above results, we are ready to give the following necessary and sufficient
condition for (3.1) to have a unique positive solution.

Proposition 3.3 Suppose (H) holds. Problem (3.1) has a unique positive solution q ∈
C2([0,∞)) if and only if c ∈ [0, c0(τ )), where c0(τ ) is given in Lemma 3.2.

Proof Firstly, let us employ the super- and subsolution method to show that problem (3.1)
admits a unique positive solution when c ∈ [0, c0(τ )). The case where cτ = 0 is trivial and
the proof is omitted. Fix c ∈ (0, c0(τ )). It follows from Lemma 3.2 that there exists γ > 0
such that

�̃c(λ) = λ2 − cλ − d + (1 − γ ) f ′(0)e−λcτ = 0 (3.11)

has a solution λ = α + iβ in .
Claim. The function

v(x) :=
{

δeαx cosβx, βx ∈ ( 3π2 , 5π
2 ),

0, elsewhere,
(3.12)

is a subsolution provided that δ is small enough.
Indeed, for βx ∈ ( 3π2 , 5π

2 ), we have

L[v](x) := v′′(x) − cv′(x) − dv(x) + f (v(x − cτ))

= v(x)
[
α2 − β2 − cα − d − [2αβ − cβ] tan βx

] + f (v(x − cτ))

= −v(x)
1

cosβx
(1 − γ ) f ′(0)e−cτα cos(β(x − cτ)) + f (v(x − cτ))

= −(1 − γ ) f ′(0)δeα(x−cτ) cosβ(x − cτ) + f (v(x − cτ)).

Choose δ > 0 sufficiently small such that

f (v(x − cτ)) � (1 − γ ) f ′(0)v(x − cτ),

with which we obtain

L[v](x) � (1 − γ ) f ′(0)[v(x − cτ) − δeα(x−cτ) cosβ(x − cτ)], βx ∈
(
3π

2
,
5π

2

)
.

Clearly, if β(x − cτ) ∈
(
3π
2 , 5π

2

)
, then v(x − cτ) = δeα(x−cτ) cosβ(x − cτ), and hence,

L[v](x) � 0. If β(x − cτ) /∈
(
3π
2 , 5π

2

)
, then v(x − cτ) = 0, and hence,

L[v](x) � −(1 − γ ) f ′(0)δeα(x−cτ) cosβ(x − cτ)

123



148 Page 18 of 38 N. Sun, J. Fang

with β(x − cτ) ∈
(
3π
2 − βcτ, 5π

2 − βcτ
)

\
(
3π
2 , 5π

2

)
. Since βcτ � π (as proved in

Lemma 3.2), we obtain cosβ(x − cτ) � 0 when β(x − cτ) ∈
(
3π
2 − βcτ, 5π

2 − βcτ
)

\
(
3π
2 , 5π

2

)
. To summarize, L[v](x) � 0 for βx ∈

(
3π
2 , 5π

2

)
and L[v](x) = 0 for

βx /∈
[
3π
2 , 5π

2

]
. The claim is proved.

Having such a subsolution, we can infer that (3.1) admits a positive solution when c ∈
[0, c0(τ )). The proof of uniqueness of the solution of (3.1) follows from Proposition 3.1.

Next we show that (3.1) does not admit a positive solution when c � c0(τ ). We employ
a sliding argument. Assume for the sake of contradiction that there is a solution q(z). Since
c � c0(τ ), �c(λ, τ ) = 0 admits a positive solution λ1. Define w(z) = σeλ1z − q(z), σ > 0.
Since q(0) = 0 and q(+∞) = u∗, we may choose σ such that w(z) � 0 for z � 0 and w(z)
vanishes at some z ∈ (0,+∞). Note that f (u) � f ′(0)u. It then follows that

w′′(z)−cw′(z)−dw(z) = − f ′(0)w(z−cτ)+[ f (q(z−cτ))− f ′(0)q(z−cτ)] � 0, z � 0.
(3.13)

By the elliptic strong maximum principle, we obtain w(z) = 0 for z � 0, a contradiction.
The nonexistence is proved. ��

Based on the above results, we obtain the solvability of (1.13).

Theorem 3.4 For any given τ > 0, let c0(τ ) be given in Lemma 3.2. For each μ > 0, there
exists a unique c∗ = c∗

μ(τ) ∈ (0, c0(τ )) such that (qc∗)′+(0) = c∗
μ
, where qc∗(z) is the unique

positive solution of (3.1) with c replaced by c∗. Moreover, c∗
μ(τ) is increasing in μ with

lim
μ→∞ c∗

μ(τ) = c0(τ ).

Proof From Propositions 3.1 and 3.3 , it is known that for each c ∈ [0, c0(τ )), problem
(3.1) admits a unique solution qc(z) > 0 for z > 0, and for any 0 � c1 < c2 � c0(τ ),
qc1(z) > qc2(z) in (0,∞). Define

P(0; c, τ ) := (qc)
′+(0). (3.14)

Then P(0; c, τ ) > 0 for all c ∈ [0, c0(τ )) and it decreases continuously in c ∈ [0, c0(τ )). Let
cn ↑ c0(τ ). For each cn problem (3.1) admits a unique solution qcn (z). Clearly, qcn converges
to some q∗ and (qcn )

′ converges to (q∗)′ locally uniformly in z ∈ [0,+∞), and q∗ solves
(3.1) with c = c0(τ ). By the nonexistence established in Proposition 3.3 we obtain q∗ ≡ 0.
In particular,

lim
c↑c0(τ )

(qc)
′+(0) = (q∗)′+(0) = 0. (3.15)

We now consider the continuous function

η(c; τ) = ημ(c; τ) := P(0; c, τ ) − c

μ
for c ∈ [0, c0(τ )).

By the above discussion we know that η(c; τ) is strictly decreasing in c ∈ [0, c0(τ )). More-
over, η(0; τ) = P(0; 0, τ ) > 0 and limc↑c0(τ ) η(c; τ) = −c0(τ )/μ < 0. Thus there exists a
unique c∗ = c∗

μ(τ) ∈ (0, c0(τ )) such that η(c∗; τ) = 0, which means that

(qc∗)′+(0) = c∗

μ
.

Next, let us view (c∗
μ, c∗

μ/μ) as the unique intersection point of the decreasing curve
y = P(0; c, τ ) with the increasing line y = c/μ in the cy-plane, then it is clear that c∗

μ(τ)

increases to c0(τ ) as μ increases to ∞. The proof is complete. ��
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Remark 3.5 In [11], the authors considered the case τ = 0. They obtained that for each
μ > 0, there is a unique c∗ = c∗

μ(0) ∈ (0, c0(0)) such that (qc∗)′+(0) = c∗
μ
, where qc∗(z) is

the unique solution of (3.1) with τ = 0 and c = c∗, and c0(0) = 2
√

f ′(0) − d. Moreover,
c∗
μ(0) is increasing in μ with

lim
μ→∞ c∗

μ(0) = c0(0).

In the rest of this part, we study the monotonicity of c∗
μ(τ) in τ . For any given τ � 0, the

unique positive solution of (3.1) with c ∈ [0, c0(τ )) may be denoted by qc(z; τ). Now we
give the proof of Theorem 1.3.

Proof of Theorem 1.3: For τ � 0 and μ > 0, let c∗
μ(τ) be given in Theorem 3.4 and

Remark 3.5 for τ > 0 and τ = 0, respectively. By Propositions 3.1 and 3.3 , we see
that for τ � 0 and c ∈ (0, c0(τ )), problem (3.1) admits a unique positive solution qc(z; τ).
Moreover, qc(z; τ) is increasing in z > 0 and decreasing in c ∈ (0, c0(τ )). Let P(0; c, τ ) be
defined as in (3.14).

Claim. For 0 � τ1 < τ2 , P(0; c, τ1) > P(0; c, τ2) when c ∈ (0, c0(τ2)).
We postpone the proof of the claim and reach the conclusion in a few lines. Note that c∗

μ(τ)

is the unique positive solution of P(0; c, τ ) − c
μ

= 0. In view of limc↑c0(τ2) P(0; c, τ2) = 0,
we have c∗

μ(τ2) ∈ (0, c0(τ2)). If c∗
μ(τ1) � c0(τ2), then we are done. Otherwise, c∗

μ(τ1) ∈
(0, c0(τ2)), which, together with the claim, implies that

c∗
μ(τ1)

μ
= P(0; c∗

μ(τ1), τ1) > P(0; c∗
μ(τ1), τ2).

This further implies that c∗
μ(τ1) > c∗

μ(τ2), due to the monotonicity of P(0; c, τ2) − c
μ
in

c ∈ (0, c0(τ2)). Thus, c∗
μ(τ) is decreasing in τ � 0.

Proof of the claim. Since c0(τ ) is decreasing in τ � 0, we see that P(0; c, τ1) is well-
defined when c ∈ (0, c0(τ2)). By the monotonicity of qc(z; τ2) in z > 0, we have qc(z −
cτ2; τ2) < qc(z − cτ1; τ2). This, together with the monotonicity of f (v) in v, implies that
f (qc(z − cτ2; τ2)) < f (qc(z − cτ1; τ2)). Consequently,

q ′′
c (z; τ2) − cq ′

c(z; τ2) − dqc(z; τ2) + f (qc(z − cτ1; τ2)) > 0, z > 0.

Consider the initial value problem
⎧
⎪⎨

⎪⎩

vt = vzz − cvz − dv + f (v(t, z − cτ1)), t > 0, z > 0,

v(t, z) = 0, t > 0, z � 0,

v(0, z) = qc(z; τ2).

(3.16)

By the maximum principle we know that v(t, z) is nondecreasing in t � 0 and its limit v∗(z)
as t → ∞ satisfies (3.1) with τ = τ1. By the uniqueness established in Proposition 3.1, we
obtain v∗(z) = qc(z; τ1). Therefore,

qc(z; τ2) = v(0, z) � v(t, z) � v(+∞, z) = v∗(z) = qc(z; τ1). (3.17)

The claim is proved. ��

4 Long time behavior of the solutions

In this section we assume that the initial date (φ(θ, x), g(θ), h(θ)) satisfies (1.11)–(1.12) and
study the asymptotic behavior of solutions of (P). Firstly, we give some sufficient conditions
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for vanishing and spreading. Next, we prove the spreading-vanishing dichotomy result of
(P). Let us start this section with the following equivalent conditions for vanishing.

Lemma 4.1 Assume that (H) holds. Let (u, g, h) be a solution of (P). Then the following
three assertions are equivalent:

(i) h∞ or g∞ is finite; (ii) h∞ − g∞ � π/
√

f ′(0) − d;
(iii) lim

t→∞ ‖u(t, ·)‖L∞([g(t),h(t)]) = 0.

Proof “(i)⇒ (ii)”. Without loss of generality we assume h∞ < ∞ and prove (ii) by contra-
diction. Assume that h∞ − g∞ > π/

√
f ′(0) − d, then there exists t1 � 1 such that

h(t1) − g(t1) >
π

√
f ′(0) − d

.

Let us consider the following auxiliary problem:
⎧
⎪⎪⎨

⎪⎪⎩

vt = vxx − dv + f (v(t − τ, x)), t > t1, x ∈ (g(t1), ξ(t)),
v(t, ξ(t)) = 0, ξ ′(t) = −μvx (t, ξ(t)), t > t1,
v(t, g(t1)) = 0, t > t1,
ξ(t1) = h(t1), v(s, x) = u(s, x), s ∈ [t1 − τ, t1], x ∈ [g(s), h(s)].

(4.1)

It is easy to check that v is a subsolution of (P), then ξ(t) � h(t) and ξ(∞) < ∞ by our
assumption. Using a similar argument as in [9, Lemma 3.3] one can show that

‖v(t, ·) − V (·)‖C2([g(t1),ξ(t)]) → 0, as t → ∞,

where V (x) is the unique positive solution of the problem

V ′′ − dV + f (V ) = 0 for x ∈ (g(t1), ξ(∞)), V (g(t1)) = V (ξ(∞)) = 0.

Thus,

lim
t→∞ ξ ′(t) = −μ lim

t→∞ vx (t, ξ(t)) = −μV ′(ξ(∞)) = δ,

for some δ > 0, which contradicts the fact that ξ(∞) < ∞.
“(ii)⇒(iii)”. It follows from the assumption and [39, Proposition 2.9] that the unique

positive solution of the following problem
⎧
⎨

⎩

vt = vxx − dv + f (v(t − τ, x)), t > 0, x ∈ [g∞, h∞],
v(t, g∞) = v(t, h∞) = 0, t > 0,
v(θ, x) � 0, θ ∈ [−τ, 0], x ∈ [g∞, h∞],

(4.2)

with v(θ, x) � φ(θ, x) in [−τ, 0]×[g(θ), h(θ)], satisfies v → 0 uniformly for x ∈ [g∞, h∞]
as t → ∞. Then the conclusion (iii) follows easily from the comparison principle.

“(iii)⇒(ii)”: Suppose by way of contraction argument that for some small ε > 0 there
exists t2 � 1 such that h(t) − g(t) > π√

f ′(0)−d
+ 3ε for all t > t2 − τ . Let lε :=

π/
√

f ′(0) − d + ε, it is well known that the following eigenvalue problem
{−ϕxx + dϕ − f ′(0)ϕ = λ1ϕ, 0 < x < lε,

ϕ(0) = ϕ(lε) = 0,

has a negative principal eigenvalue, denoted by λ1, whose corresponding positive eigenfunc-
tion, denoted by ϕ, can be chosen positive and normalized by ‖ϕ‖L∞ = 1. Set

w(t, x) := εϕ(x) for x ∈ [0, lε],
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with ε > 0 small such that

f (εϕ) � f ′(0)εϕ + 1

2
λ1εϕ in [0, lε].

It is easy to compute that for x ∈ [0, lε],
wt − wxx + dw − f (w(t − τ, x)) = εϕ[ f ′(0) + λ1] − f (εϕ) � 0.

Moreover one can see that

0 � w(x) = εϕ(x) < u(t2 + s, x + g(t2 + s) + ε), x ∈ [0, lε], s ∈ [−τ, 0]
provided that ε is sufficiently small. Then we can apply the comparison principle to deduce

u(t + t2, x + g(t2) + ε) � w(x) > 0, (t, x) ∈ [0,∞) × (0, lε),

contradicting (iii).
“(ii)⇒(i)”. When (ii) holds, (i) is obvious. This proves the lemma. ��
Next, we give a sufficient condition for vanishing, which indicates that if the initial domain

and initial function are both small, then the species dies out eventually in the environment.

Lemma 4.2 Assume that (H) holds. Let (u, g, h) be a solution of (P). Then vanishing happens
provided that h(0) − g(0) < π√

f ′(0)−d
and ‖φ‖L∞([−τ,0]×[g(θ),h(θ)]) is sufficient small.

Proof Set

h0 = h(0) − g(0)

2
,

then h0 < π/(2
√

f ′(0) − d), so there exists a small ε > 0 such that

π2

4(1 + ε)2h20
− ( f ′(0) + ε)eετ + d � ε. (4.3)

For such ε, we can find a small positive constant δ such that

πμδ � ε2h20, f (v) � ( f ′(0) + ε)v for v ∈ [0, δ].
Define

k(t) := h0
(
1 + ε − ε

2
e−εt

)
, w(t, x) := δe−εt cos

( πx

2k(t)

)
, t > 0, x ∈ [−k(t), k(t)],

k(θ) ≡ k0 := h0
(
1 + ε

2

)
, w(θ, x) ≡ w0(x) := δ cos

( πx

h0(2 + ε)

)
,

θ ∈ [−τ, 0], x ∈ [−k0, k0],
and extend w(t, x) by 0 for t ∈ [−τ,∞), x ∈ (−∞,−k(t)] ∪ [k(t),∞).

A direct calculation shows that for t > 0, x ∈ (−k(t), k(t)),

wt − wxx + dw − f (w(t − τ, x))

=
[

π2

4k2(t)
− ε + d − ( f ′(0) + ε)

w(t − τ, x)

w(t, x)
+ πxk′(t)

2k2(t)
tan

( πx

2k(t)

)]
w

�
[
−ε + π2

4k2(t)
+ d − ( f ′(0) + ε)

w(t − τ, x)

w(t, x)

]
w,
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where we have used k′(t) > 0, k(t) > 0 for t > 0 and y tan y � 0 for y ∈ (−π
2 , π

2 ).
When t � τ and x ∈ (−k(t), k(t)), it is easy to check that

A := −ε + π2

4k2(t)
+ d − ( f ′(0) + ε)

w(t − τ, x)

w(t, x)

� −ε + π2

4h20(1 + ε)2
+ d − ( f ′(0) + ε)eετ � 0,

where the fact that cos
(

πx
2k(t−τ)

)
� cos

(
πx
2k(t)

)
for (t, x) ∈ [τ,∞) × [−k(t), k(t)] and the

monotonicity of k(t) in t ∈ [0,∞) are used. If t ∈ [0, τ ) and x ∈ (−k(t), k(t)), we have
that

A � −ε + π2

4h20(1 + ε)2
+ d − ( f ′(0) + ε)eεt

cos
(

πx
h0(2+ε)

)

cos
(

πx
2k(t)

)

� −ε + π2

4h20(1 + ε)2
+ d − ( f ′(0) + ε)eετ � 0.

Thus we have

wt − wxx + dw − f (w(t − τ, x)) � 0 in (0,∞) × (−k(t), k(t)).

On the other hand,

k′(t) = ε2h0
2

e−εt � πμδ

2h0
e−εt � πμδ

2k(t)
e−εt � −μwx (t, k(t)) = μwx (t,−k(t)).

As a consequence, (w(t, x),−k(t), k(t)) will be a supersolution of (P) ifw(θ, x) � φ(θ, x)
in [−τ, 0] × [g(θ), h(θ)]. Indeed, choose σ1 := δ cos π

2+ε
, which depends only on μ, h0, d

and f . Then when ‖φ‖L∞([−τ,0]×[g(θ),h(θ)]) � σ1 we have φ(θ, x) � σ1 � w(θ, x) in
[−τ, 0] × [g(θ), h(θ)], since h0 < k(0) = h0(1 + ε

2 ). It follows from the comparison
principle that h(t) � k(t), so

h∞ � h0(1 + ε).

This, together with the previous lemma, implies that vanishing happens. ��
Remark 4.3 When τ = 0, the proof of Lemma 4.2 reduces to that of [11, Theorem 3.2(i)].

We now present a sufficient condition for spreading, which reads as follows.

Lemma 4.4 Assume that (H) holds. If h(0)−g(0) � π/
√

f ′(0) − d, then spreading happens
for every positive solution (u, g, h) of (P).

Proof Since g′(t) < 0 < h′(t) for t > 0, we have h(t) − g(t) > π/
√

f ′(0) − d for any
t > 0. So the conclusion −g∞ = h∞ = ∞ follows from Lemma 4.1. In what follows we
prove

lim
t→∞ u(t, x) = u∗ locally uniformly in R. (4.4)

First, it is well known that for any L > π/(2
√

f ′(0) − d), the following problem

Wxx − dW + f (W ) = 0, x ∈ (−L, L), W (±L) = 0,
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admits a unique positive solution WL , which is increasing in L and satisfies

lim
L→∞ WL (x) = u∗ locally uniformly in R. (4.5)

Moreover we can find an increasing sequence of positive numbers Ln with Ln → ∞ as
n → ∞ such that Ln > π/

√
f ′(0) − d for all n � 1. Since WLn converges to u∗ locally

uniformly in R, we can choose tn such that h(t) � Ln and g(t) � −Ln for t � tn . It then
follows from [39] the following problem

⎧
⎨

⎩

wt = wxx − dw + f (w(t − τ, x)), t � tn + τ, x ∈ [−Ln, Ln],
w(t,±Ln) = 0, t � tn + τ,

w(s, x) = u(s, x), s ∈ [tn, tn + τ ], x ∈ [−Ln, Ln],
has a unique positive solution wn(t, x), which satisfies that

wn(t, x) → WLn (x) uniformly for x ∈ [−Ln, Ln] as t → ∞.

Applying the comparison principle we have wn(t, x) � u(t, x) for all t � tn + τ , x ∈
[−Ln, Ln]. This, together with (4.5), yields that

lim inf
t→∞ u(t, x) � u∗ locally uniformly for x ∈ R. (4.6)

Later, since the initial data u0(s, x) satisfies 0 � u0(s, x) � u∗ for (s, x) ∈ [−τ, 0] ×
[g(s), h(s)], it thus follows from the comparison principle that

lim sup
t→∞

u(t, x) � u∗ locally uniformly for x ∈ R.

Combining with (4.6), one can easily obtain (4.4), which ends the proof of this lemma. ��
Now we are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2 It is easy to see that there are two possibilities: (i) h∞ − g∞ �
π/

√
f ′(0) − d; (ii) h∞ − g∞ > π/

√
f ′(0) − d . In case (i), it follows from Lemma 4.1

that limt→∞ ‖u(t, ·)‖L∞([g(t),h(t)]) = 0. For case (ii), it follows from Lemma 4.4 and its
proof that (g∞, h∞) = R and u(t, x) → u∗ as t → ∞ locally uniformly in R, which ends
the proof. ��

5 Asymptotic profiles of spreading solutions

Throughout this section we assume that (H) holds and (u, g, h) is a solution of (P) for which
spreading happens. In order to determine the spreading speed, wewill construct some suitable
sub- and supersolutions based on semi-waves. Let c∗ and qc∗(z) be given in Theorem 3.4.
The first subsection covers the proof of the boundedness for |h(t) − c∗t | and |g(t) + c∗t |.
Based on these results, we prove Theorem 1.4 in the second subsection.

5.1 Boundedness for |h(t) − c∗t| and |g(t) + c∗t|.

Let us begin this subsection with the following estimate.

Lemma 5.1 Let (u, g, h) be a solution of (P) for which spreading happens. Then for any
c ∈ (0, c∗), there exist small β∗ ∈ (0, d − f ′(u∗)) , T > 0 and M > 0 such that for t � T ,
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(i) [g(t), h(t)] ⊃ [−ct, ct];
(ii) u(t, x) � u∗(1 − Me−β∗t ) for x ∈ [−ct, ct];
(iii) u(t, x) � u∗(1 + Me−β∗t ) for x ∈ [g(t), h(t)].
Proof In order to prove conclusions (i) and (ii), inspired by [16], we will use the semi-
wave qc∗ to construct the suitable subsolution. Here we mainly use the the monotonicity and
exponential convergence of qc∗ .

(i) Since qc∗(z) is the unique positive solution of
⎧
⎨

⎩

q ′′
c∗ − c∗q ′

c∗ − dqc∗ + f (qc∗(z − c∗τ)) = 0, q ′
c∗(z) > 0, z > 0,

qc∗(z) = 0, z � 0,
μ(qc∗)′+(0) = c∗, qc∗(∞) = u∗,

(5.1)

then it is easy to check that (qc∗)′′+(0) > 0. Since q ′
c∗(z) > 0 for z � 0 and qc∗(z) → u∗ as

z → ∞, thus there is z0 � 1 such that q ′′
c∗(z) < 0 for z � z0. Thus there exists ẑ ∈ (0,∞)

such that q ′′
c∗(ẑ) = 0 and q ′′

c∗(z) > 0 for z ∈ [0, ẑ). This means that q ′
c∗(z) is increasing in

z ∈ [0, ẑ). Let p̂0 ∈ (0, qc∗(ẑ)) be small. Define

G(u, p) =
{
d + [ f (u − p) − f (u)]/p, p > 0,
d − f ′(u), p = 0,

for p > 0 and u > p. ThenG(u, p) is a continuous function for 0 � p � p̂0 andG(u∗, p) >

0, G(u∗, 0) = d − f ′(u∗) > 0, thus there exists 0 < γ � d such that G(u∗, p) � 2γ
for 0 � p � p̂0. By continuity, there exists ρ > 0 small such that G(u, p) � γ for
u∗ −ρ � u � u∗, 0 � p � p̂0. Furthermore, as f (u∗) = du∗, then there is a constant b > 0
such that

f (v) − dv � b(u∗ − v) for v ∈ [u∗ − ρ, u∗]. (5.2)

Inspired by [16], let us construct the following function:

u(t, x) := max{0, qc∗(x + c∗t + ξ(t)) + qc∗(c∗t − x + ξ(t)) − u∗ − p(t)}, t > 0,

and denote g(t) and h(t) be the zero points of u(t, x) with t > 0, that is

u(t, g(t)) = u(t, h(t)) = 0.

In the following, we will show that (u, g, h) is a subsolution of problem (P). We only
prove the case where x � 0, since the other is analogous. For any function J depended on t ,
we write Jτ (t) := J (t − τ) if no confusion arises. For simplicity of notations, we will write

ζ−(t) := −x + c∗t + ξ(t), ζ+(t) := x + c∗t + ξ(t), ζ−
τ := ζ−(t − τ), ζ+

τ := ζ+(t − τ).

Firstly, a direct calculation shows that for (t, x) ∈ (τ,∞) × [0, h(t)],
N [u] : = ut − uxx + du − f (u(t − τ, x))

= ξ ′[q ′
c∗(ζ−) + q ′

c∗(ζ+)] + f (qc∗(ζ−
τ )) + f (qc∗(ζ+

τ ))

− f (qc∗(ζ−
τ ) + qc∗(ζ+

τ ) − u∗ − pτ ) − d(u∗ + p) − p′.

Assume that ξ ′(t) � 0, and choose ξ large such that u∗ − ρ
2 � qc∗(ζ+

τ ) � u∗ in (τ,∞) ×
[0, h(t)]. The monotonicity of qc∗ and its exponential rate of convergence to u∗ at ∞ imply
that if we choose ξ sufficiently large, then there exist positive constants ν, K0 and K such
that

u∗ − qc∗(ζ+
τ ) � K0e

−νζ+
τ � Ke−ν(ξ(t)+c∗t).
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Set p(t) = p0e−βt with p0 := 1
2 min{ p̂0, ρ

2 } and β := 1
2 min{νc∗, α0}, where α0 is the

unique zero point of

d(eτ y − 1) − γ eτ y + y = 0.

Thus, when qc∗(ζ−
τ ) ∈ [u∗ − ρ, u∗] and (t, x) ∈ (τ,∞) × [0, h(t)], since q ′

c∗(z) � 0,
then

N [u] = ξ ′[q ′
c∗(ζ−) + q ′

c∗(ζ+)] + f (qc∗(ζ−
τ )) + f (qc∗(ζ+

τ ))

− f (qc∗(ζ−
τ ) + qc∗(ζ+

τ ) − u∗ − pτ ) − d(u∗ + p) − p′

� γ [qc∗(ζ+
τ ) − u∗ − pτ ] + b[u∗ − qc∗(ζ+

τ )] + d(pτ − p) − p′

� b[u∗ − qc∗(ζ+
τ )] + d(pτ − p) − p′ − γ pτ

� Kbe−ν(ξ(t)+c∗t) + p0e
−βt [d

(
eβτ − 1

) − γ eβτ + β
]

� 0,

provided that ξ is sufficiently large.
For the partqc∗(ζ−

τ ) ∈ [0, u∗−ρ], then for (t, x) ∈ (τ,∞)×[0, h(t)] and sufficiently large
ξ , there are two positive constants d1 and d2 where d1 < 1 such that q ′

c∗(ζ−)+q ′
c∗(ζ+) � d1,

and

f
(
qc∗(ζ−

τ )
) − f

(
qc∗(ζ−

τ ) + qc∗(ζ+
τ ) − u∗ − pτ

)

+d[qc∗(ζ+
τ ) − u∗ − pτ ] � d2[u∗ + pτ − qc∗(ζ+

τ )],
thus we have

N [u] = ξ ′[q ′
c∗(ζ−) + q ′

c∗(ζ+)] + f (qc∗(ζ−
τ )) + f (qc∗(ζ+

τ ))

− f (qc∗(ζ−
τ ) + qc∗(ζ+

τ ) − u∗ − pτ ) − d(u∗ + p) − p′

� d1ξ
′ + d2[u∗ + pτ − qc∗(ζ+

τ )] + b[u∗ − qc∗(ζ+
τ ) + d(pτ − p) − p′

� d1ξ
′ + (d2 + b)Ke−ν(ξ+c∗t) + p0e

−βt [d2eβτ + d
(
eβτ − 1

) + β
]

� d1ξ
′ + p0e

−βt [d2eβτ + d(eβτ − 1) + 2β
]
.

Now let us choose ξ satisfies

d1ξ
′ + κ p0e

−βt = 0

with ξ(0) = ξ0 sufficiently large, and κ := d2eβτ + d
(
eβτ − 1

) + 2β, then ξ ′(t) � 0. Hence
from the above we obtain that N [u] � 0 in this part.

Next, let us check the free boundary condition. When x = h(t), we set ζ1(t) = −h(t) +
c∗t + ξ(t) and ζ2(t) = h(t) + c∗t + ξ(t), then

qc∗(ζ1(t)) + qc∗(ζ2(t)) = u∗ + p(t). (5.3)

We differentiate (5.3) with respect to t to obtain
[
q ′
c∗(ζ2) − q ′

c∗(ζ1)
](
h′(t) − c∗) = p′ − 2c∗q ′

c∗(ζ2) − [
q ′
c∗(ζ2) + q ′

c∗(ζ1)
]
ξ ′. (5.4)

By shrinking p0 and enlarge ξ0 if necessary, then we can see that ζ2(t) � 1, and qc∗(ζ2(t)) ≈
u∗. This, together with (5.3), yields that qc∗(ζ1(t)) ≈ p(t). Since q ′′

c∗(z) > 0 > q ′′
c∗(y) for

0 � z � 1 and y � 1 and q ′
c∗(z) ↘ 0 as z → ∞, thus we have

0 < q ′
c∗(ζ2) < (qc∗)′+(0) < q ′

c∗(ζ1). (5.5)
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Thanks to the choice of ξ(t), we can compute that

p′−2c∗q ′
c∗(ζ2)−[q ′

c∗(ζ2)+q ′
c∗(ζ1)]ξ ′ �

(κ(qc∗)′+(0)

d1
−β

)
p0e

−βt−2c∗K1e
−ν(ξ(t)+c∗t) � 0,

(5.6)
where K1 is a positive constant, κ := d2eβτ + d

(
eβτ − 1

) + 2β > 2β and we have used that
by shrinking d1 if necessary, then κ(qc∗)′+(0) > βd1.

It follows from (5.4)–(5.6) and the monotonicity of q ′
c∗(z) in z that

h′(t) � c∗ = μ(qc∗)′+(0) � μ[q ′
c∗(ζ1) − q ′

c∗(ζ2)] = −μux (t, h(t)).

Using (5.3) again, it is easy to see that ζ1(t) is non-increasing in t � T1, thus for all
t � T1,

h(t) − c∗t � C̃0 := h(T1) − c∗T1 + ξ(∞) − ξ(0). (5.7)

Since (u, g, h) is a spreading solution of (P), then there exists T2 > 0 such that

u(T1 + T2 + s̃, x) � u(T1 + τ, x) for s̃ ∈ [0, τ ], x ∈ [g(τ ), h(τ )],
g(T1 + T2) � g(T1 + τ) and h(T1 + T2) � h(T1 + τ).

Consequently, (u, g, h) is a subsolution of problem (P), thenwe can apply the comparison
principle to conclude that u(t + T1 + T2, x) � u(t + T1, x), h(t + T1 + T2) � h(t + T1) for
t > 0, x ∈ [0, h(t)]. This, together with (5.7), implies that

h(t) − c∗t � −C1 for t > 0,

with C1 := |C̃0|+h(T1 +T2 +τ)+c∗(T1 +T2 +τ). Similarly, by enlargingC1 if necessary,
we can have g(t) + c∗t � C1 for t > 0. Thus result (i) holds for large T .

(ii) From the proof of (i), it is easy to see that u(t + T2) � u(t, x) for t > T1. The
monotonicity of qc∗ and its exponential rate of convergence to u∗ at ∞ can be used again to
conclude that for any c ∈ (0, c∗) there exist constants ν, K > 0 such that for any x ∈ [0, ct]
and t > 0,

u∗ − qc∗(x + c∗t + ξ(t)) � u∗ − qc∗(c∗t + ξ(t)) � Ke−ν(c∗t+ξ(t)),

qc∗(−x + c∗t + ξ(t)) � qc∗((c∗ − c)t + ξ(t)) � u∗ − Ke−ν[(c∗−c)t+ξ(t)].

Based on above results, we can find T3 > T1 + T2 large such that for t > T3 and x ∈ [0, ct],
u(t, x) � qc∗(x + c∗(t − T2) + ξ(t − T2)) + qc∗(−x + c∗(t − T2) + ξ(t − T2))

− u∗ − p0e
β(t−T2)

� u∗ − 2Ke−ν
[
(c∗−c)(t−T2)+ξ(t−T2)

]
− p0e

β(t−T2) � u∗ − Mu∗e−β∗t ,

where M > 0 is sufficiently large and β∗ := 1
2 min

{
ν(c∗ − c), β, d − f ′(u∗)

}
. The case

where x ∈ [−ct, 0] can be proved by a similar argument as above. The proof of (ii) is now
complete.

(iii) Thanks to the choice of the initial data, we know that for any given β∗ > 0 and
M > 0,

u(t, x) � u∗ + Mu∗e−β∗t for (t, x) ∈ [0,∞) × [g(t), h(t)].
This completes the proof. ��

Next we prove the boundedness of h(t) − c∗t and show that u(t, ·) ≈ u∗ in the domain
[0, h(t) − Z ], where Z > 0 is a large number.
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Proposition 5.2 Assume that spreading happens for the solution (u, g, h). Then

(i) there exists C > 0 such that

|h(t) − c∗t | � C for all t � 0; (5.8)

(ii) for any small ε > 0, there exist Zε > 0 and Tε > 0 such that

‖u(t, ·) − u∗‖L∞([0,h(t)−Zε]) � u∗ε for t > Tε. (5.9)

Proof In order to prove conclusions in this proposition, inspired by [12], wewill use the semi-
wave qc∗ to construct the suitable sub- and supersolution. Compared with [12], our problem
considers the case where τ > 0. Due to τ > 0, there will be some space-translation of the
semi-wave qc∗ , which make our problem difficult to deal with. To overcome this difficulty,
we mainly use the the monotonicity and exponential convergence of qc∗ . Moreover, this idea
also be used in the proof of Lemma 5.6. For clarity we divide the proof into several steps.

Step 1. To give some upper bounds for h(t) and u(t, x).
Fix c ∈ (0, c∗). It follows from Lemma 5.1 that there exist β∗ ∈ (0, d − f ′(u∗)), M > 0,

and T > 0 such that for t � T , Lemma 5.1 (i), (ii) and (iii) hold. Thanks to (H), by shrinking
β∗ if necessary, we can find ρ > 0 small such that

d − f ′(v)eβ∗τ � β∗ for v ∈ [u∗ − ρ, u∗ + ρ]. (5.10)

For any T∗ > T + τ large satisfying Mu∗e−β∗(T∗−τ) <
ρ
2 , there is M ′ > M such that

M ′u∗e−β∗(T∗−τ) < ρ. Since qc∗(z) → u∗ as z → ∞, we can find Z0 > 0 such that
(
1 + M ′e−β∗(T∗+τ)

)
qc∗(Z0) � u∗. (5.11)

Now we construct a supersolution (ū, g, h̄) to (P) as follows:

h̄(t) := c∗(t − T∗) + h(T∗ + τ) + KM ′(e−β∗T∗ − e−β∗t) + Z0 for t � T∗,
ū(t, x) := min

{(
1 + M ′e−β∗t)qc∗

(
h̄(t) − x

)
, u∗} for t � T∗, x � h̄(t),

where K is a positive constant to be determined below.
Clearly, for all t � T∗, ū(t, g(t)) > 0 = u(t, g(t)), ū

(
t, h̄(t)

) = 0, and

−μūx (t, h̄(t)) = μ
(
1 + M ′e−β∗t )(qc∗)′+(0) = (

1 + M ′e−β∗t )c∗

< c∗ + M ′Kβ∗e−β∗t = h̄′(t),

if we choose K with Kβ∗ > c∗. By the definition of h̄ we have h(T∗ + s) < h̄(T∗ + s) for
s ∈ [0, τ ]. It then follows from (5.11) that for (s, x) ∈ [0, τ ] × [g(T∗ + s), h(T∗ + s)],

(
1 + M ′e−β∗(T∗+s))qc∗

(
h̄(T∗ + s) − x

)
�

(
1 + M ′e−β∗(T∗+τ)

)
qc∗(Z0) � u∗,

which yields that ū(T∗+s, x) = u∗ � u(T∗+s, x) for (s, x) ∈ [0, τ ]×[g(T∗+s), h(T∗+s)].
We now show that

N [ū] := ūt − ūxx + dū − f (ū(t − τ, x)) � 0, x ∈ [g(t), h̄(t)], t > T∗ + τ. (5.12)

Thanks to the definition of ū(t, x) and themonotonicity ofqc∗(z) in z, we canfind a decreasing
function η(t) < h̄(t) for t > T∗, such that

(
1 + M ′e−β∗t )qc∗

(
h̄(t) − x

)
⎧
⎨

⎩

> u∗, x < η(t),
= u∗, x = η(t),
< u∗, x ∈ (

η(t), h̄(t)
]
,
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which implies that

ū(t, x) = u∗ for x � η(t), and ū(t, x) = (
1 + M ′e−β∗t )qc∗

(
h̄(t) − x

)
for x ∈ [

η(t), h̄(t)
]
.

As Nu∗ = 0, thus in what follows, we only consider the case x ∈ [
η(t), h̄(t)

]
. Set qτ :=

qc∗
(
h̄τ − x

)
for convenience. A direct calculation shows that, for t > T∗ + τ ,

N [ū] : = ūt − ūxx + dū − f (ū(t − τ, x))

= −β∗M ′e−β∗t qc∗ + (
1 + M ′e−β∗t){Kβ∗M ′e−β∗t q ′

c∗ + f (qτ )}
− f

(
(1 + M ′e−β∗(t−τ))qτ

)

= M ′e−β∗t
{
f (qτ ) + Kβ∗(1 + M ′e−β∗t )q ′

c∗ − β∗qc∗
}

+ f (qτ )

− f
(
(1 + M ′e−β∗(t−τ))qτ

)

� M ′e−β∗t
{
Kβ∗(1 + M ′e−β∗t )q ′

c∗

− [(
f ′((1 + θM ′e−β∗(t−τ))qτ

)
eβ∗τ − d

)
qτ − β∗qc∗

]}
,

for some θ ∈ (0, 1). Since

qc∗(z) → u∗ and
(qc∗(z) − u∗)′

qc∗(z) − u∗ → k∗ as z → ∞, (5.13)

where k∗ := c∗ − √
(c∗)2 + 4(d − f ′(u∗)) < 0, there are z0 > 0 and k1 > 0 such that

q ′′
c∗(z) < 0, qc∗(z) � u∗ − ρ and q ′

c∗(z − 2c∗τ) � k1q
′
c∗(z) for z > z0. (5.14)

Moreover, we can compute that

�h̄(t) := h̄(t) − h̄τ (t) = c∗τ + KM ′e−β∗t (eβ∗τ − 1).

For any given K > 0, by enlarging T∗ if necessary, we have that

�h̄(t) ∈ [c∗τ, 2c∗τ ] for t � T∗. (5.15)

When h̄τ − x > z0 and t > T∗ + τ , it then follows that

B : = Kβ∗(1 + M ′e−β∗t )q ′
c∗ − [(

f ′((1 + θM ′e−β∗(t−τ))qτ

)
eβ∗τ − d

)
qτ − β∗qc∗

]

�
[
d − f ′((1 + θM ′e−β∗(t−τ)

)
qτ

)
eβ∗τ − β∗]qτ + Kβ∗q ′

c∗ + β∗(qτ − qc∗)

� Kβ∗q ′
c∗(h̄(t) − x) − β∗q ′

c∗(h̄(t) − x − θ̃�h̄(t))�h̄(t) (with θ̃ ∈ (0, 1))

� (K − 2k1c
∗τ)β∗q ′

c∗(h̄(t) − x) � 0

provided that K is sufficiently large, and we have used M ′e−β∗(t−τ)u∗ � ρ for t > T∗,
q ′
c∗(z) > 0 for z > 0, (5.10), (5.14) and (5.15). Thus N [ū] � 0 in this case.
When 0 � h̄τ − x � z0 and t > T∗ + τ , for sufficiently large K , we have

N [ū] � M ′e−β∗t [Kβ∗D1 − D2u
∗eβ∗τ − β∗u∗] � 0,

where D1 := minz∈[0,z0+2c∗τ ] q ′
c∗(z) > 0, D2 := maxv∈[0,2u∗] f ′(v), and (5.15) are used.

Summarizing the above results we see that (ū, g, h̄) is a supersolution of (P). Thus we
can apply the comparison principle to deduce

h(t) � h̄(t) and u(t, x) � ū(t, x) � u∗ + M ′u∗e−β∗t for x ∈ [g(t), h(t)], t > T∗.
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By the definition of h̄ we see that, for Cr := h(T∗ + τ) + Z0 + KM ′, we have

h(t) < c∗t + Cr for all t � 0. (5.16)

For any ε > 0, if we choose T1(ε) > T∗ large such that M ′e−β∗T1(ε) < ε, then we have

u(t, x) � ū(t, x) � u∗(1 + ε), x ∈ [g(t), h(t)], t > T1(ε), (5.17)

which ends the proof of Step 1.
Step 2. To give some lower bounds for h(t) and u(t, x).
Let c, M , T and β∗ be as before. By shrinking c if necessary, we can find T ∗ > T + τ

large such that

Mu∗e−β∗(t−τ) � ρ

2
for t � T ∗ and h(T ∗) − cT ∗ � c∗τ. (5.18)

We will define the following functions

g(t) = ct, h(t) = c∗(t − T ∗) + cT ∗ − σM(e−β∗T ∗ − e−β∗t ), t � T ∗,

u(t, x) = (
1 − Me−β∗t )qc∗(h(t) − x), t � T ∗, x ∈ [g(t), h(t)],

where σ is a positive constant to be determined later.
We will prove that (u, g, h) is a subsolution to (P) for t > T ∗. Firstly, for t � T ∗,

u
(
t, g(t)

) = u(t,−ct) � u∗ − Mu∗e−β∗t � u(t,−ct) = u
(
t, g(t)

)
.

Next, we check that h and u satisfy the required conditions at x = h(t). It is obvious that
u(t, h(t)) = 0. If we choose σ satisfying σβ∗ � c∗, then

−μux (t, h(t)) = μ
(
1 − Me−β∗t )(qc∗)′+(0) = c∗(1 − Me−β∗t)

> c∗ − σMβ∗e−β∗t = h′(t).

Later, let us check the initial conditions. From Lemma 5.1, it is easy to see that

h(T ∗ + s) � cT ∗ + c∗τ � h(T ∗ + s),

u(T ∗ + s, x) � u∗(1 − Me−β∗(T ∗+s)) � u(T ∗ + s, x),

for s ∈ [0, τ ] and x ∈ [g(T ∗ + s), h(T ∗ + s)].
Finally we will prove that ut − uxx + du − f (u(t − τ, x)) � 0 for t � T ∗ + τ . Put

z = h(t) − x and qτ = qc∗(h(t − τ) − x). It is easy to check that

N [u] : = ut − uxx + du − f (u(t − τ, x))

� Me−β∗t
{
β∗qc∗ − σβ∗(1 − Me−β∗t )q ′

c∗ + [
f ′((1 − θ1Me−β∗(t−τ)

)
qτ

)
eβ∗τ − d

]
qτ

}
,

for some θ1 ∈ (0, 1). It follows from (5.13) that there are two constants z1 > 0, k2 > 0 such
that

q ′′
c∗(z) < 0, qc∗(z) � u∗ − ρ

2
and q ′

c∗(z − c∗τ) � k2q
′
c∗(z) for z > z1. (5.19)

Moreover, we can compute that

�h(t) := h(t) − hτ (t) = c∗τ − σMe−β∗t (eβ∗τ − 1).

For any given σ > 0, by enlarging T ∗ if necessary, we have that

�h(t) ∈ [0, c∗τ ] for t � T ∗. (5.20)
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When hτ − x > z1 and t � T ∗ + τ , it then follows that

C : = β∗qc∗ − σβ∗(1 − Me−β∗t)q ′
c∗ + [

f ′((1 − θ1Me−β∗(t−τ)
)
qτ

)
eβ∗τ − d

]
qτ

�
[
f ′((1 − θ1Me−β∗(t−τ)

)
qτ

)
eβ∗τ − d + β∗]qτ − σβ∗q ′

c∗ + β∗(qc∗ − qτ )

� −σβ∗q ′
c∗(h(t) − x) + β∗q ′

c∗(h(t) − x − θ̃1�h(t))�h(t) (with θ̃1 ∈ (0, 1))

� (k2c
∗τ − σ)β∗q ′

c∗(h(t) − x) � 0

provided that σ is sufficiently large, and we have used
(
1− θ1Me−β∗(t−τ)

)
qτ ∈ [u∗ −ρ, u∗]

and (5.18) for t � T ∗, and (5.10), (5.19), (5.20). Thus N [u] � 0 in this case.
When 0 � hτ − x � z1 and t � T ∗ + τ , for sufficiently large σ , we have

N [u] � Me−β∗t
[
β∗u∗ − σβ∗(1 − ρ

2u∗ e
−β∗τ

)
D′
1 + D′

2u
∗eβ∗τ

]
� 0,

where D′
1 := minz∈[0,z1+c∗τ ] q ′

c∗(z) > 0, D′
2 := maxv∈[0,2u∗] f ′(v) and (5.20) are used.

Consequently, (u, g, h) is a subsolution to (P), then the comparison principle implies that

h(t) � h(t), u(t, x) � u(t, x) for t � T ∗, x ∈ [g(t), h(t)],
which yields that

h(t) � h(t) − max
t∈[0,T ∗] |h(t) − h(t)| � c∗t − Cl for all t � 0, (5.21)

where Cl = maxt∈[0,T ∗] |h(t)−h(t)|+c∗T ∗ +σM . Combining with (5.16) we obtain (5.8).
On the other hand, for any ε > 0, since qc∗(∞) = u∗, there exists Z1(ε) > 0 such that

qc∗(z) > u∗(1 − ε

2

)
for z � Z1(ε).

It follows from (5.21) and (5.16) that

h(t) − x � c∗t − Cl − x � h(t) − Cr − Cl − x � Z1(ε) for t > T ∗,

which yields that for (t, x) ∈ �1 := {(t, x) : ct � x � h(t) − Cr − Cl − Z1(ε), t > T ∗},
u(t, x) � u(t, x) �

(
1 − Me−β∗t )qc∗

(
Z1(ε)

)
� u∗(1 − Me−β∗t )

(
1 − ε

2

)
.

Moreover, if we choose T2(ε) > T ∗ such that 2Me−β∗T2(ε) < ε, then

u(t, x) � u∗(1 − ε

2

)2
> u∗(1 − ε) for (t, x) ∈ �1 and t > T2(ε), (5.22)

which completes the proof of Step 2.
Step 3. Completion of the proof of (5.9). Denote Tε := T1(ε) + T2(ε) and Zε := Cr +

Cl + Z1(ε), then by (5.17) and (5.22) we have

|u(t, x) − u∗| � u∗ε for 0 � x � h(t) − Zε, t > Tε.

This yields the estimate in (5.9), which completes the proof of this proposition. ��
Using a similar argument as above we can obtain the following result.

Proposition 5.3 Assume that spreading happens for the solution (u, g, h). Then

(i) there exists C ′ > 0 such that

|g(t) + c∗t | � C ′ for all t � 0; (5.23)
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(ii) for any small ε > 0, there exists Z ′
ε > 0 and T ′

ε > 0 such that

‖u(t, ·) − u∗‖L∞([g(t)+Z ′
ε,0]) � u∗ε for t > T ′

ε . (5.24)

5.2 Asymptotic profiles of the spreading solutions

This subsection is devoted to the proof of Theorem 1.4. We will prove this theorem by a
series of results. Firstly, it follows from Proposition 5.2 that there exist positive constant C
such that

−C � h(t) − c∗t � C for t � 0.

Let us use the moving coordinate y := x − c∗t + 2C and set

h1(t) := h(t) − c∗t + 2C, g1(t) := g(t) − c∗t + 2C for t � 0,
and u1(t, y) := u(t, y + c∗t − 2C) for y ∈ [g1(t), h1(t)], t � 0.

Then (u1, g1, h1) solves
⎧
⎨

⎩

(u1)t = (u1)yy + c∗(u1)y − du1 + f (u1(t − τ, y + c∗τ)), g1(t) < y < h1(t), t > 0,
u1(t, y) = 0, g′

1(t) = −μ(u1)y(t, y) − c∗, y = g1(t), t > 0,
u1(t, y) = 0, h′

1(t) = −μ(u1)y(t, y) − c∗, y = h1(t), t > 0.
(5.25)

Let tn → ∞ be an arbitrary sequence satisfying tn > τ for n � 1. Define

vn(t, y) = u1(t + tn, y), Hn(t) = h1(t + tn), kn(t) = g1(t + tn).

Lemma 5.4 Subject to a subsequence,

Hn(t) → H in C
1+ ν

2
loc (R) and ‖vn − V ‖

C
1+ν
2 ,1+ν

loc (n)
→ 0, (5.26)

where ν ∈ (0, 1), n = {(t, y) ∈  : y � Hn(t)},  = {(t, y) : −∞ < y � H(t), t ∈ R},
and (V (t, y), H(t)) satisfies

{
Vt = Vyy + c∗Vy − dV + f (V (t − τ, y + c∗τ)), (t, y) ∈ ,

V (t, H(t)) = 0, H ′(t) = −μVy(t, H(t)) − c∗, t ∈ R.
(5.27)

Proof It follows from the proof of Lemma 2.2 that there is C0 > 0 such that 0 < h′(t) � C0

for all t > 0. One can deduce that

−c∗ < H ′
n(t) � C0 for t + tn large and every n � 1.

Define

z = y

Hn(t)
, wn(t, z) = vn(t, y),

and direct computations yield that

(wn)t = 1

H2
n (t)

(wn)zz + c∗ + zH ′
n(t)

Hn(t)
(wn)z − dwn + f

(
wn

(
t − τ,

Hn(t)z + c∗τ
Hn(t − τ)

))

for kn(t)
Hn(t)

< z < 1, t > τ − tn , and

wn(t, 1) = 0, H ′
n(t) = −μ

(wn)z(t, 1)

Hn(t)
− c∗, t > τ − tn .
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Since wn � u∗, then f
(
wn

(
t − τ,

Hn(t)z+c∗τ
Hn(t−τ)

))
is bounded. For any given Z > 0 and

T0 ∈ R, using the partial interior-boundary L p estimates and the Sobolev embedding theorem
(see [13,18]), for any ν′ ∈ (0, 1), we obtain

‖wn‖
C

1+ν′
2 ,1+ν′

([T0,∞)×[−Z ,1])
� CZ for all large n,

where CZ is a positive constant depending on Z and ν′ but independent of n and T0. Thanks
to this, we can find a positive constant C1 independent of n and T0 such that

‖Hn‖
C1+ ν′

2 ([T0,∞))
� C1 for all large n.

Hence by passing to a subsequence we may assume that as n → ∞,

wn → W in C
1+ν
2 ,1+ν

loc (R × (−∞, 1]), Hn → H in C
1+ ν

2
loc (R),

with ν ∈ (0, ν′). Based on above results, we can see that (W , H) satisfies that
{
Wt = Wzz

H2(t)
+ c∗+zH ′(t)

H(t) Wz − dW + f (W (t − τ, H(t)z + c∗τ)), (t, z) ∈ (−∞, 1] × R,

W (t, 1) = 0, H ′(t) = −μ
Wz(t,1)
H(t) − c∗, t ∈ R.

Define V (t, y) = W
(
t, y

H(t)

)
. It is easy to check that (V , H) satisfies (5.27), and (5.26)

holds. ��
Later, we show by a sequence of lemmas that H(t) ≡ H0 is a constant and hence

V (t, y) = qc∗(H0 − y).

Since C � h(t) − c∗t + 2C � 3C for all t � 0, then C � H(t) � 3C for t ∈ R. Denote

φ(z) := qc∗(−z) for z ∈ R,

it follows from the proof of Proposition 5.2 that for x ∈ [(c − c∗)(t + tn), Hn(t)] and t + tn
large,

(
1 − Me−β∗(t+tn)

)
φ(y − C) � vn(t, y) � min

{(
1 + M ′e−β∗(t+tn)

)
φ(y − 3C), u∗}.

Letting n → ∞ we have

φ(y − C) � V (t, y) � φ(y − 3C) for all t ∈ R, y < H(t).

Define

X∗ := inf{X : V (t, y) � φ(y − X) for all (t, y) ∈ D}
and

X∗ := sup{X : V (t, y) � φ(y − X) for all (t, y) ∈ D},
Then

φ(y − X∗) � V (t, y) � φ(y − X∗) for all (t, y) ∈ D,

and

C � X∗ � inf
t∈R H(t) � sup

t∈R
H(t) � X∗ � 3C .

By a similar argument as in [13], we have the following result.
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Lemma 5.5 X∗ = supt∈R H(t), X∗ = inf t∈R H(t), and there exist two sequences {sn},
{s̃n} ⊂ R such that

H(t + sn) → X∗, V (t + sn, y) → φ(y − X∗) as n → ∞
uniformly for (t, y) in compact subsets of R × (−∞, X∗], and

H(t + s̃n) → X∗, V (t + s̃n, y) → φ(y − X∗) as n → ∞
uniformly for (t, y) in compact subsets of R × (−∞, X∗].
Based on Lemma 5.5, we have the following lemma.

Lemma 5.6 X∗ = X∗, and hence H(t) ≡ H0 is a constant, which yields V (t, y) = φ(y −
H0).

Proof Argue indirectly we may assume that X∗ < X∗. Choose ε = (X∗ − X∗)/4. We will
show next that there is Tε > 0 such that

H(t) − X∗ � −ε and H(t) − X∗ � ε for t � Tε, (5.28)

which implies that X∗ − X∗ � 2ε. This contraction would complete the proof.
To complete the proof, we need to prove that for given ε = (X∗ − X∗)/4, there exist n1(ε)

and n2(ε) such that

H(t) − X∗ � −ε (∀t � sn1), H(t) − X∗ � ε (∀t � s̃n2).

It follows from φ(y − X∗) � V (t, y) � φ(y − X∗) that there exist C1 > 0 and β1 > 0 such
that

|u∗ − V (t, y)| � C1e
β1 y .

By Lemma 5.5, for any ε > 0, there exist K > 0, T > 0 such that for s̃n > T + τ and
s ∈ [0, τ ],

sup
y∈(−∞,K ]

|V (s̃n + s, y) − φ(y − X∗)| < ε, (5.29)

Set G(t) = H(t) + c∗t and U (t, y) = V (t, y − c∗t), then (W ,G) satisfies
{
Ut = Uyy − dU + f (U (t − τ, y)), t ∈ R, y � G(t),
U (t,G(t)) = 0, G ′(t) = −μUy(t,G(t)), t ∈ R.

(5.30)

It follows from Lemma 5.5 and (5.29) that there is n1 = n1(ε) such that for n � n1,

H(s̃n + s) � X∗ + ε for s ∈ [0, τ ], (5.31)

V (s̃n + s, y) � φ(y − X∗ − ε) + ε for s ∈ [0, τ ], y � X∗. (5.32)

Thanks to (H), for β0 ∈ (0, β∗) small with β∗ is given in the proof of Proposition 5.2,
there is η > 0 small such that

d − f ′(v)eβ0τ � β0 for v ∈ [u∗ − η, u∗ + η], (5.33)

and we can find N > 1 independent of ε satisfies

φ(y − X∗ − ε) + ε �
(
1 + Nεe−β0τ

)
φ(y − X∗ − Nε) for y � X∗ + ε.

Let us construct the following supersolution of problem (5.30):

Ḡ(t) := X∗ + Nε + c∗t + Nσε
(
1 − e−β0(t−s̃n)

)
,

Ū (t, y) := min
{(
1 + Nεe−β0(t−s̃n)

)
φ
(
y − Ḡ(t)

)
, u∗}.
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Since limy→−∞
(
1+ Nεe−β0(t−s̃n)

)
φ
(
y− Ḡ(t)

)
> u∗, then there is a smooth function K̄ (t)

of t � s̃n such that K̄ (t) → −∞ as t → ∞ and
(
1 + Nεe−β0(t−s̃n)

)
φ
(
K̄ (t) − Ḡ(t)

) = u∗.
We will check that (Ū , K̄ , Ḡ) is a supersolution for t � s̃n + τ and y ∈ [K̄ (t), Ḡ(t)]. We
note that

Ū (t, y) = (
1 + Nεe−β0(t−s̃n)

)
φ
(
y − Ḡ(t)

)
when y ∈ [K̄ (t), Ḡ(t)].

Firstly, it follows from (5.31) that for s ∈ [0, τ ],
G(s̃n + s) � X∗ + ε + c∗(s̃n + s) � X∗ + Nε + c∗(s̃n + s) � Ḡ(s̃n + s).

In view of (5.32), we have

Ū (s̃n + s, y) = (
1 + Nεe−β0s

)
φ
(
y − Ḡ(s̃n + s)

)

�
(
1 + Nεe−β0τ

)
φ
(
y − X∗ − Nε − c∗(s̃n + s)

)

� φ
(
y − X∗ − ε − c∗(s̃n + s)

) + ε

� V
(
s̃n + s, y − c∗(s̃n + s)

) = U (s̃n + s, y),

for s ∈ [0, τ ] and y � G(s̃n + s). By definition Ū (t, Ḡ(t)) = 0 and direct computation
yields

−μŪy(t, Ḡ(t)) = c∗(1 + Nεe−β0(t−s̃n)
)

< c∗ + Nεσβ0e
−β0(t−s̃n) = Ḡ ′(t),

if we choose σ with σβ0 > c∗. Since U � u∗, it then follows from the definition of K̄ (t)
that Ū (t, K̄ (t)) = u∗ � U (t, K̄ (t)).

Finally, let us show

N [Ū ] := Ūt − Ūyy + dŪ − f (Ū (t − τ, y)) � 0, y ∈ [K̄ (t), Ḡ(t)], t > s̃n + τ. (5.34)

Put z := y − Ḡ(t), ζ(t) := Nεe−β0(t−s̃n) and φτ := φ
(
y − Ḡ(t − τ)

)
. It is easy to compute

that

N [Ū ] = ζ
{
f (φτ ) − β0φ − σβ0(1 + ζ )φ′ − f ′((1 + θ2ζe

β0τ
)
φτ

)
eβ0τ φτ

}
(with θ2 ∈ (0, 1))

� ζ
{

− σβ0(1 + ζ )φ′ − [
f ′((1 + θ2ζe

β0τ
)
φτ

)
eβ0τ − d

]
φτ − β0φ

}
.

Since

φ(z) → u∗ and
(φ(z) − u∗)′

φ(z) − u∗ → k∗ as z → −∞,

where k∗ := c∗ − √
(c∗)2 + 4(d − f ′(u∗)) < 0, there are two constants zη < 0 and k0 such

that

φ′′(z) > 0, φ(z) � u∗ − η and φ′(z − 2c∗τ) � k0φ
′(z) for z < zη. (5.35)

Moreover, we can compute that

�Ḡ(t) : = Ḡ(t) − Ḡ(t − τ) = c∗τ + Nσεe−β0(t−s̃n)(eβ0τ − 1).

For any given σ > 0, by shrinking ε if necessary, we have that

�Ḡ(t) ∈ [c∗τ, 2c∗τ ] for t > s̃n + τ. (5.36)
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For y − Ḡ(t − τ) � zη and t > s̃n + τ , direct calculation implies

N [Ū ] � ζ
{ − σβ0(1 + ζ )φ′ − [

f ′((1 + θ2ζe
β0τ

)
φτ

)
eβ0τ − d

]
φτ − β0φ

}

� ζ
{[
d − f ′((1 + θ2ζe

β0τ
)
φτ

)
eβ0τ − β0

]
φτ − σβ0φ

′ + β0(φτ − φ)
}

� ζ
[
β0φ

′(y − Ḡ(t) + θ̃2�Ḡ(t))�Ḡ(t) − σβ0φ
′(y − Ḡ(t))

]
(with θ̃2 ∈ (0, 1))

� ζ(2k0c
∗τ − σ)β0φ

′(y − Ḡ(t)) � 0

provided that σ is sufficiently large, and we have used
(
1 + θ2ζeβ0τ

)
φτ ∈ [u∗ − η, u∗ + η]

for t > s̃n + τ , (5.33), φ′(z) � 0 for z � zη, (5.35) and (5.36).
When zη � y − Ḡ(t − τ) � 0 and t > s̃n + τ , for sufficiently large σ , we have

N [Ū ] � ζ
[ − σβ0Cz − u∗eβ0τC f − β0u

∗] � 0,

where Cz := maxz∈[0,zη+2c∗τ ] φ′(z) < 0, C f := maxv∈[0,2u∗] f ′(v), and (5.36) are used.
Thus (5.34) holds, then we can apply the comparison principle to conclude that

U (t, y) � Ū (t, y), G(t) � Ḡ(t) for y ∈ [K̄ (t), Ḡ(t)] and t > s̃n + τ.

This, together with the definition of H(t), yields that H(t) � X∗ +Nε(1+σ) for t > s̃n +τ .
By shrinking ε if necessary, we obtain

H(t) � X∗ + ε for t > s̃n + τ and n > n1. (5.37)

In the following, we show H(t) � X∗ − ε for all large t . As in the construction of
supersolution, for any ε > 0, there exists n2 = n2(ε) such that, for n � n2,

H(sn + s) � X∗ − ε for s ∈ [0, τ ], (5.38)

V (sn + s, y) � φ(y − X∗ + ε) − ε for s ∈ [0, τ ], y � X∗ − ε. (5.39)

We also can find N0 > 1 independent of ε such that

φ(y − X∗ + ε) − ε � (1 − N0εe
−β0τ )φ(y − X∗ + N0ε) for y � X∗ − ε.

We can define a subsolution as follows:

G(t) := X∗ − N0ε + c∗t − N0σε
(
1 − e−β0(t−sn)

)
,

U (t, y) := (
1 − N0εe−β0(t−sn)

)
φ
(
y − G(t)

)
.

Since U (t, y) � φ(y − X∗), there are C0 and α > 0 such that V (t, y) � u∗ − C0eαy for
all y � 0, which implies that U (t, y) � u∗ − C0eα(y−c∗t). Let us fix c ∈ (0, c∗) such that
β0 � α(c+ c∗). By enlarging n if necessary we may assume that C0 � u∗N0εeβ0sn . Denote
K (t) ≡ −ct .

By a similar argument as above and in Step 2 of Proposition 5.2, we can show that
(U ,G, K ) is a subsolution of problem (5.30) by taking σ > 0 sufficiently large. The com-
parison principle can be used to conclude that

U (t, y) � U (t, y), G � G(t) for t � sn + τ, y ∈ [−ct,G(t)],
which implies that G(t) � X∗ − N0ε(1 + σ) for t � sn + τ . By shrinking ε if necessary,
we have

X∗ − ε � G(t) for t � sn + τ and n � n2.

This completes the proof of this lemma. ��

123



148 Page 36 of 38 N. Sun, J. Fang

Theorem 5.7 Assume that (H) and spreading happens. Then there exists H1 ∈ R such that

lim
t→∞[h(t) − c∗t] = H1, lim

t→∞ h′(t) = c∗, (5.40)

lim
t→∞ ‖u(t, ·) − qc∗(c∗t + H1 − ·)‖L∞([0,h(t)]) = 0, (5.41)

where (c∗, qc∗) is the unique solution of (1.13).

Proof It follows fromLemmas 5.4 and 5.6 that for any tn → ∞, by passing to a subsequence,

h(t + tn) − c∗(t + tn) → H1 := H0 − 2C in C
1+ ν

2
loc (R). The arbitrariness of {tn} implies that

h(t) − c∗t → H1 and h′(t) → c∗ as t → ∞, which proves (5.40).
In what follows, we use the moving coordinate z := x − h(t) to prove (5.41). Set

g2(t) := g(t) − h(t), u2(t, z) := u(t, z + h(t)) for z ∈ [g2(t), 0], t � τ,

g̃n(t) = g(t + tn) − h(t + tn), h̃n(t) = h(t + tn), ũn(t, z) = u2(t + tn, z),

then the pair (ũn, g̃n, h̃n) solves

⎧
⎪⎪⎨

⎪⎪⎩

(ũn)t = (ũn)zz + h̃′
n(ũn)z + f (ũn(t − τ, z + h̃n(t) − h̃n(t − τ)) − dũn, z ∈ (g̃n(t), 0), t > τ,

ũn(t, z) = 0, g̃′
n(t) = −μ(ũn)z(t, z) − h̃′

n(t), z = g̃n(t), t > τ,

ũn(t, 0) = 0, h̃′
n(t) = −μ(ũn)z(t, 0), t > τ.

(5.42)
By the same reasoning as in the proof of Lemma 5.4, the parabolic regularity to (5.42)
plus the Sobolev embedding theorem can be used to conclude that, by passing to a further

subsequence if necessary, as n → ∞, ũn → W in C
1+ν
2 ,1+ν

loc (R× (−∞, 0]), andW satisfies,
in view of h̃′

n(t) → c∗,
{
Wt = Wzz + c∗Wz − dW + f (W (t − τ, z + c∗τ)), −∞ < z < 0, t ∈ R,

W (t, 0) = 0, c∗ = −μWz(t, 0), t ∈ R.

This is equivalent to (5.27) with V = W and H = 0. Hence we can conclude

W (t, z) ≡ φ(z) for (t, z) ∈ R × (−∞, 0].
Thus we have proved that, as n → ∞,

u(t + tn, z + h(t + tn)) − qc∗(−z) → 0 in C
1+ν
2 ,1+ν

loc (R × (−∞, 0]).
This, together with the arbitrariness of {tn}, yields that

lim
t→∞[u(t, z + h(t)) − qc∗(−z)] = 0 uniformly for z in compact subsets of (−∞, 0].

Then, for any L > 0,

‖u(t, ·) − qc∗(h(t) − ·)‖L∞([h(t)−L,h(t)]) → 0 as t → ∞.

Using the limit h(t) − c∗t → H1 as t → ∞ we obtain

‖u(t, ·) − qc∗(c∗t + H1 − ·)‖L∞([h(t)−L,h(t)]) → 0 as t → ∞. (5.43)

Finally we prove (5.41). For any given small ε > 0, it follows from (5.9) in Proposition 5.2
that there exist two positive constants Zε and Tε such that

|u(t, x) − u∗| � u∗ε for 0 � x � h(t) − Zε, t > Tε.
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Since qc∗(z) → u∗ as z → ∞, there exists Z∗
ε > Zε such that

|qc∗(c∗t + H1 − x) − u∗| � u∗ε for x � c∗t + 2H1 − Z∗
ε .

Taking T ∗
ε > Tε large such that h(t) < c∗t + 2H1 for t > T ∗

ε , then we obtain

|u(t, x) − qc∗(c∗t + H1 − x)| � 2u∗ε for 0 � x � h(t) − Z∗
ε , t > T ∗

ε .

Taking L = Z∗
ε in (5.43) we see that for some T ∗∗

ε > T ∗
ε ,

|u(t, x) − qc∗(c∗t + H1 − x)| � u∗ε for h(t) − Z∗
ε � x � h(t), t > T ∗∗

ε .

This completes the proof of (5.41). ��
Taking use of a similar argument as above one can obtain the following result.

Theorem 5.8 Assume that (H) and spreading happens. Then there exists G1 ∈ R such that

lim
t→∞[g(t) + c∗t] = G1, lim

t→∞ g′(t) = −c∗, (5.44)

lim
t→∞ ‖u(t, ·) − qc∗(c∗t − G1 + ·)‖L∞([g(t),0]) = 0, (5.45)

where (c∗, qc∗) is the unique solution of (1.13).

Proof of Theorem 1.4. The results in Theorem 1.4 follow from Theorems 5.7 and 5.8 . ��
Acknowledgements The authors would like to thank the anonymous referee for the helpful comments and
suggestions which led to an improvement of the original manuscript.
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