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Abstract
We prove several classification results for p-Laplacian problems on bounded and unbounded
domains, and dealwith qualitative properties of sign-changing solutions to p-Laplacian equa-
tions on R

N involving critical nonlinearities. Moreover, on radial domains we characterise
the compactness of possibly sign-changing Palais–Smale sequences.
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1 Introduction

Throughout the paper we use the following notation:

�pu := div(|∇u|p−2∇u), 1 < p < ∞,

p∗ := Np/(N − p), 1 < p < N ,

D1,p(RN ) = {u ∈ L p∗
(RN ) : ∇u ∈ L p(RN ;RN )},

||u|| = ||∇u||L p(RN ),

H = R
N+ = {x ∈ R

N : xN > 0}.
For a smooth possibly unbounded domain O we denote by D1,p

0 (O) the closure of D(O) in

D1,p(RN ). When O is bounded we set D1,p
0 (O) = W 1,p

0 (O).
Let 1 < p < N , � be a smooth bounded domain of RN and a ∈ LN/p(�). We define on
W 1,p

0 (�)

φ(u) =
∫

�

( |∇u|p
p

+ a(x)
|u|p
p

− |u|p∗

p∗
)
dx,

and on D1,p(RN )

φ∞(u) =
∫
RN

( |∇u|p
p

− |u|p∗

p∗
)
dx .

Recall that

(φ′(u), h) =
∫

�

[|∇u|p−2∇u · ∇h + a(x)|u|p−2u h − |u|p∗−2u h]dx,

(φ′∞(u), h) =
∫
RN

[|∇u|p−2∇u · ∇h − |u|p∗−2u h]dx .

From [10] a blow-up theory for the Palais–Smale sequences {un}n ⊂ W 1,p
0 (�) for φ is

available when {un}n is a bounded sequence ‘nearby’ the positive cone of W 1,p
0 (�). We

assume here that

φ(un) → c φ′(un) → 0 in W−1,p′
(�)

and

‖(un)−‖L p∗ (�) → 0, n → ∞.

Then, a p-Laplacian generalisation of Struwe’s global compactness result, see e.g. [9,16,21]
holds. In fact by [10], passing if necessary to a subsequence, there exists a possibly nontrivial
solution v0 ∈ W 1,p

0 (�) to

−�pu + a(x)u p−1 = u p∗−1 in �,

u ≥ 0 in �,

k possibly nontrivial solutions {v1, . . . , vk} ⊂ D1,p(RN ) to
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−�pu = u p∗−1 in R
N ,

u ≥ 0 in R
N ,

and k sequences {yin}n ⊂ � and {λin}n ⊂ R+, such that

1

λin
dist (yin, ∂�) → ∞, n → ∞,

‖un − v0 −
k∑

i=1

(λin)
(p−N )/pvi ((· − yin)/λ

i
n)‖ → 0, n → ∞,

‖un‖p →
k∑

i=0

‖vi‖p, n → ∞,

φ(v0) +
k∑

i=1

φ∞(vi ) = c.

Recent symmetry results of Sciunzi [15] (see also Vétois [20]) together with the uniqueness
of the radial positive solutions to −�pu = u p∗−1 on R

N (see Guedda–Veron [7]), allow to
prove that the limiting profiles {v1, . . . , vk}, when nontrivial, they are necessarily the classical
Talenti functions [17]. Among the various applications of this result, it is worth mentioning
[11], which extends to the case p �= 2 the classical result of Coron [1].
When considering arbitrary sign-changing Palais–Smale sequences the scenario is much
richer. In fact, one may have

lim inf
n→∞

1

λin
dist (yin, ∂�) < ∞

and as a consequence some of the limiting functions vi may live on a half-space. Ruling
out that this situation may occur would yield a complete generalisation of Struwe’s result
for the p-Laplace operator. More precisely, one may conjecture the following Liouville-type
theorem

Conjecture Let u ∈ D1,p
0 (RN+) be a weak solution of the equation

− �pu = |u|p∗−2u in R
N+ . (1)

Then u ≡ 0.

In [10] it has been shown that this conjecture is true under the additional assumption u ≥ 0.
In a more delicate regularity setting, following [4] the proof in [10] consists in showing that
the normal derivative of a nontrivial solution vanishes along the boundary of RN+ . Therefore
u extends by zero to a solution on RN , contradicting the strong maximum principle [14,19].
However, when dealing with the p-Laplacian operator, a unique continuation principle seems
to be a major open question.

1.1 Main results

Among the main results of the present paper we have an a priori quantitative bound on the
number of nodal regions for the solutions to (1).More preciselywe have the following general
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result for possibly unbounded domains. Hereafter we refer to the Sobolev constant as defined
as

S = S(N , p) := inf
{ ∫

RN
|∇u|pdx, u ∈ D1,p(RN ) :

∫
RN

|u|p∗
dx = 1

}
, (2)

achieved on functions

Uλ,x0 :=
⎡
⎣λ

1
p−1 N

1
p (

N−p
p−1 )

p−1
p

λ
p

p−1 + | · −x0|
p

p−1

⎤
⎦

N−p
p

, λ ∈ R+, x0 ∈ R
N ,

see [17] .

Theorem 1.1 Let 1 < p < N, let O be a smooth domain of RN and u ∈ D1,p
0 (O) be a

solution to the equation

− �pu = |u|p∗−2u in D′(O). (3)

Then

(i) for every nodal domain ω of u it holds that∫
ω

|∇u|p =
∫

ω

|u|p∗ ;

(ii) if u ∈ D1,p
0 (O)\{0} then u has at most a finite number of nodal domains. More precisely

let Nu be the set of nodal domains of u and �Nu its cardinality, it holds that

�Nu ≤ S(N , p)−N/p
∫
O

|u|p∗

where S(N , p) is the best Sobolev constant defined in (2).

As a consequence of the above theorem we have two propositions in a radially symmetric
setting, which are of independent interest.
For R, μ > 0 consider the radial problem{

−�pu = μ|u|p∗−2u in B(0, R) ⊂ R
N ,

u ∈ W 1,p
0 (B(0, R)).

(4)

For p = 2, 0 is the only solution by the unique continuation principle. When 2N
N+2 ≤ p ≤ 2,

0 is the only radial solution, see [10] p. 482. Following a different method, we can now
improve this nonexistence result for all p ∈ (1, N ). Set B = B(0, R). We have the following

Proposition 1.2 Let 1 < p < N, and let u ∈ W 1,p
0 (B) be a possibly sign-changing radial

weak solution to the Eq. (4). Then u ≡ 0.

Proposition 1.3 Let 1 < p < N and let u ∈ D1,p(RN )\{0} be a possibly sign-changing
radial weak solution to the equation

− �pu = |u|p∗−2u in R
N . (5)

Then, necessarily

u ≡ Uλ := ±
⎡
⎣λ

1
p−1 N

1
p (

N−p
p−1 )

p−1
p

λ
p

p−1 + | · | p
p−1

⎤
⎦

N−p
p

(6)
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for some λ > 0.

In Sect. 4 we show that the above propositions yield a precise representation of the Palais–
Smale sequences for radial problems, see Propositions 4.1 and 4.2.
In a nonradial settingwehave the following classification results bymeans of theMorse index,
we recall its definition in Sect. 5. The assumption p > 2 allows to have twice differentiability
of the associated energy functionals. In the spirit of [2], the following theorem states that the
number of nodal regions of a solution cannot exceed its own index.

Theorem 1.4 Let O be a smooth domain of RN , 2 < p < N, and let u ∈ D1,p
0 (O) be a

solution to the equation

−�pu = |u|p∗−2u in D′(O).

Then

�Nu ≤ i(u),

where i(u) is the Morse index of u.

As a consequence of the above theorem we have the following classification results which
are suitable when studying solutions with min–max methods, see e. g. [21].
In the spirit of [5] we have the following

Theorem 1.5 Let 2 < p < N.

(1) Let u ∈ D1,p
0 (RN+) be a weak solution to the equation

− �pu = |u|p∗−2u in R
N+ . (7)

Then u ≡ 0 if and only if i(u) ≤ 1.
(2) Let u ∈ D1,p(RN ) be a weak solution to

− �pu = |u|p∗−2u in R
N . (8)

If i(u) ≤ 1, then either u ≡ 0 or for some x0 ∈ R
N and λ > 0 and up to the sign

u ≡ Uλ,x0 :=
⎡
⎣λ

1
p−1 N

1
p (

N−p
p−1 )

p−1
p

λ
p

p−1 + | · −x0|
p

p−1

⎤
⎦

N−p
p

.

Remark 1 To the best of our knowledge it is not clear whether Talenti’s functions have index
exactly equal to 1.

For bounded domains we have the following

Theorem 1.6 Let 2 < p < N, and � is a smooth bounded domain of RN , starshaped about
the origin, namely such that x · ν ≥ 0 on ∂�, where ν is the exterior normal unit vector. Let
u ∈ W 1,p

0 (�) be such that

− �pu = |u|p∗−2u in D′(�). (9)

If i(u) ≤ 1, then it holds that u ≡ 0.

Remark 2 In the case p = 2 and N ≥ 3, this result is well-known without any restriction on
the index, as a consequence of the unique continuation principle.

Remark 3 If � is an Esteban–Lions type domain (namely a generalisation of Pohozaev’s
starshaped domains, see [13]), we believe that Theorem 1.6 holds, see [4].
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2 The normal derivative vanishes at the boundary

In this section we show that, regardless of their sign, solutions to (1) have vanishing normal
derivative along the boundary. Hereafter we set H = R

N+ = {x ∈ R
N : xN > 0}, and

BR = {x ∈ R
N : |x | < R}, for some R > 0. Moreover, we denote by n(·) the exterior unit

normal to ∂(H ∩ BR) whose N -th component is nN (·). The N -th partial derivative will be
denoted by ∂N .

Lemma 2.1 Let 1 < p < N and u ∈ D1,p
0 (H) be a weak solution to Eq. (1). Then ∂Nu = 0

everywhere on ∂H.

Proof The case 1 < p < 2 had been obtained in [10] without any positivity assumption,
while the case p = 2 is known from [4].
For 2 < p < N we argue as follows. We observe that solutions of (1) are C1,α

loc (H̄), see e.g.
[3,12,18].
As in [10] we prove the following local Pohozaev’s identity, in the spirit of a similar identity
proved in [4] in the case p = 2 :

(
1 − 1

p

) ∫
BR∩∂H

|∂Nu|pdσ =
∫
H∩∂BR

[∂Nu|∇u|p−2∇u · n(σ ) − |∇u|p
p

nN (σ )]dσ

+
∫
H∩∂BR

|u|p∗

p∗ nN (σ )dσ.

(10)

The desired conclusion will be then achieved. Indeed, since ∇u ∈ L p(H) and u ∈ L p∗
(H)

the right hand side is bounded by a function M(R) such that for some sequence Rk → ∞,
M(Rk) → 0.
In order to prove (10) we use a regularisation argument, see e.g. [3] and [6]. We point out
that in [6] a Pohozaev identity for the p-Laplacian is available in the context of Dirichlet
problems on bounded domains.
By antireflection with respect to ∂H extend (and still denote by) u to a solution on the whole
R

N . Following [p. 833, [3]], we consider uε solution to the boundary value problem

−div

((
ε + |∇uε|2

) p−2
2 ∇uε

)
= |u|p∗−2u in B2R,

uε = u on ∂B2R;

uε ∈ C2(B̄R) and uniformly bounded for ε ∈ (0, 1] in C1,α(B̄R). By the Ascoli–Arzelá
theorem for a suitable sequence ε → 0+, uε → u and ∇uε → ∇u uniformly on B̄R .
Consider the vector field

vε := (
ε + |∇uε|2

) p−2
2 ∂Nuε∇uε.

Since

div vε = ∂Nuε div

((
ε + |∇uε|2

) p−2
2 ∇uε

)
+ (

ε + |∇uε|2
) p−2

2 ∇uε · ∇∂Nuε,

by the divergence theorem we obtain
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∫
BR∩H

∂Nuε div

((
ε + |∇uε|2

) p−2
2 ∇uε

)
dx

=
∫

∂(H∩BR)

vε · n(σ )dσ −
∫
BR∩H

(
ε + |∇uε|2

) p−2
2 ∇uε · ∇∂Nuεdx

=
∫

∂(H∩BR)

vε · n(σ )dσ −
∫

∂(H∩BR)

[ε + |∇uε|2]p/2
p

nN (σ )dσ.

Moreover
∫
H∩BR

∂Nu|u|p∗−2u dx =
∫

∂(H∩BR)

|u|p∗

p∗ nN (σ )dσ =
∫
H∩∂BR

|u|p∗

p∗ nN (σ )dσ.

Equating the above two expressions and passing to the limit, as ε → 0+ we obtain (10). This
concludes the proof. ��

3 General facts about nodal regions and proof of Theorem 1.1

The following approximation result will be used to prove Theorems 1.1 and 1.4.

Lemma 3.1 Let u ∈ C0,1
loc (RN ) ∩ D1,p(RN ) and let ω be a nodal domain of u, and u|ω its

restriction to ω. Then there exists a sequence {un}n ⊂ C0,1
c (ω) such that

(i) un → u|ω in L p∗
(ω) and everywhere in ω,

(ii) ∇un → ∇u|ω in L p(ω;RN ) and almost everywhere in ω.

Proof We can suppose that u > 0 in ω. Let f ∈ C1(R;R) an odd function such that

f (t) =
{
0, if |t | ≤ 1,
t, if |t | ≥ 2,

and define for all n ∈ N, fn(t) := 1
n f (nt). We also define v := u|ω, vn := fn(v). It is

standard to see that

vn ∈ C0,1
loc (ω) ∩ L p∗

(ω)

∇vn ∈ L∞
loc(ω;RN ) ∩ L p(ω;RN )

suppvn ⊆ {x ∈ ω | u(x) ≥ 1/n} ⊂ ω,

moreover by the dominated convergence theorem and the definition of fn we have

(a) vn → u|ω in L p∗
(ω) and everywhere in ω,

(b) ∇vn → ∇u|ω in L p(ω;RN ) and almost everywhere in ω.

Let now θ ∈ C1(R+), with θ(t) ∈ [0, 1], and such that

θ(t) =
{
0, if t ≥ 2
1, if 0 ≤ t ≤ 1

and define

θn(x) := θ
( x
n

)
.

Finally define un := θnvn . It is immediate to verify that (i) and (ii) hold. ��
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We are in the position to prove Theorem 1.1.

Proof of Theorem 1.1 Since u ∈ C1(O), extending u by zero outside O we have that u ∈
C0,1
loc (RN ) ∩ D1,p(RN ).

Proof of (i). Pick (un) given by Lemma 3.1 extending by zero outside ω. By a standard
density argument for every n ∈ N one can test (3) with un , namely

∫
ω

|∇u|p−2∇u∇un =
∫

ω

|u|p∗−2uun .

By Lemma 3.1, as n → ∞ (i) follows.
Proof of i i). For p ∈ (1, N ) and for all v ∈ D1,p(RN ) we write Sobolev’s inequality as

S(N , p)
( ∫

RN
|v|p∗)p/p∗

≤
∫
RN

|∇v|p. (11)

Using Sobolev’s inequality with v = u|ω extended by zero outside ω we have by (i)
∫

ω

|∇u|p =
∫
RN

|∇v|p ≥ S(N , p)
( ∫

ω

|u|p∗)p/p∗
= S(N , p)

( ∫
ω

|∇u|p
)p/p∗

, (12)

hence
( ∫

ω

|∇u|p
)1− p

p∗ ≥ S(N , p), (13)

namely
∫

ω

|∇u|p ≥ S(N , p)N/p. (14)

It follows that∫
O

|u|p∗ =
∫
O

|∇u|p =
∑

ω∈Nu

∫
ω

|∇u|p ≥
∑

ω∈Nu

S(N , p)N/p = S(N , p)N/p �Nu .

And this concludes the proof. ��

4 Radial problems and proof of Propositions 1.2 and 1.3

Proof of Proposition 1.2 It is standard to see that u ∈ C1,α(B), see [3,8,12,18]. Suppose
u �≡ 0. By the strong maximum principle and [6], the solution u must change sign (and so it
has a zero in B\{0}). The nodal regions of u are spherically symmetric, and the number of
those is finite, by Theorem 1.1. Now pick a nodal region, say A = {x ∈ B : R1 < |x | < R2}
with 0 < R1 < R2 ≤ R. We can assume that u solves

⎧⎨
⎩

−�pu = μ|u|p∗−2u in B(0, R2)

u > 0 in A
u = 0 on ∂A.

By Pohozaev’s identity, Theorem 1.1 of [6], we have ∇u = 0 on ∂B(0, R2), and this is in
contradiction with Hopf’s boundary point lemma, see e.g. [19], since u is positive in A. This
concludes the proof. ��
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Proof of Proposition 1.3 By [7] p.160 and the strong maximum principle, it is enough to
prove that u does not change sign. Let us assume that u changes sign. The nodal regions
are spherically symmetric and their number is finite. Therefore, by replacing u by −u if
necessary, there exists R > 0 large enough such that

u ≡ 0, on ∂B(0, R),

u > 0, on R
N\B(0, R),

and so, by Proposition 1.2

u ≡ 0, on B(0, R),

u > 0, on R
N\B(0, R).

On the other hand by continuity ∇u = 0 on ∂B(0, R), and this contradicts Hopf’s boundary

point lemma on RN\B(0, R). This concludes the proof. ��

Consider the following assumptions:

(A) � is the unit ball in R
N , 1 < p < N , a ∈ LN/p

rad (�). Assume also
(B)

inf
u∈W 1,p

0 (�)

‖∇u‖L p=1

∫
�

[|∇u|p + a(x)|u|p]dx > 0.

Define on W 1,p
0 (�)

φ(u) =
∫

�

( |∇u|p
p

+ a(x)
|u|p
p

− |u|p∗

p∗
)
dx,

and denote by W 1,p
0,rad(�) (resp. D1,p

rad (RN )) the space of radial functions in W 1,p
0 (�) (resp.

D1,p(RN )). We also define on D1,p
rad (RN )

φ̃∞(u) =
∫
RN

( |∇u|p
p

− |u|p∗

p∗
)
dx .

Proposition 4.1 Under assumptions (A), (B) let {un}n be a sequence in W 1,p
0,rad(�) such that

φ(un) → c φ′(un) → 0 in (W 1,p
0,rad(�))′.

Then, passing if necessary to a subsequence, there exists a possibly nontrivial solution v0 ∈
W 1,p

0,rad(�) to

−�pu + a(x)|u|p−2u = |u|p∗−2u,

and k sequences {λin}n ⊂ R+, with λin → 0, n → ∞, such that
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‖un − v0 −
k∑

i=1

(λin)
(p−N )/pvi (·/λin)‖ → 0,

‖un‖p →
k∑

i=0

‖vi‖p,

φ(v0) +
k∑

i=1

φ̃∞(vi ) = c,

where for i ≥ 1 vi is either identically zero, or for some λ > 0 and up to the sign, it holds
that

vi ≡
⎡
⎣λ

1
p−1 N

1
p (

N−p
p−1 )

p−1
p

λ
p

p−1 + | · | p
p−1

⎤
⎦

N−p
p

,

and

φ̃∞(vi ) = SN/p

N
.

Moreover if a ≡ 0, then all weakly convergent subsequences of {un}n are weakly convergent
to zero in W 1,p

0,rad(�). In particular v0 ≡ 0 and hence φ(v0) = 0.

Proof Let a ≡ 0. Since the weak limit of {un}n , v0, solves Eq. (4) with R, μ = 1, then
by Proposition 1.2 v0 ≡ 0. The rest of the proof follows by Theorem 5.1 in [10] and
Proposition 1.3. In this radial setting φ̃∞(vi ) can be computed explicitly by [17], using
Proposition 1.3. And this concludes the proof. ��
Now define on D1,p(RN )

φ(u) =
∫
RN

( |∇u|p
p

+ a(x)
|u|p
p

− |u|p∗

p∗
)
dx

and

φ̃∞(u) :=
∫
RN

( |∇u|p
p

− |u|p∗

p∗
)
dx .

We assume
(C) 1 < p < N , and a ∈ LN/p(RN ) is radial such that

inf
u∈D1,p

rad (RN )

||∇u||L p=1

∫
RN

[|∇u|p + a(x)|u|p]dx > 0.

Proposition 4.2 Under assumption (C), let {un}n be a sequence in D1,p
rad (RN ) such that

φ(un) → c φ′(un) → 0 in (D1,p
rad (RN ))′.

Then, passing if necessary to a subsequence, there exists a possibly nontrivial solution v0 ∈
D1,p
rad (RN ) to

−�pu + a(x)|u|p−2u = |u|p∗−2u
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and k sequences {λin}n ⊂ R+, such that λin → 0 or λin → ∞ satisfying

‖un − v0 −
k∑

i=1

(λin)
(p−N )/pvi (·/λin)‖ → 0, n → ∞,

‖un‖p →
k∑

i=0

‖vi‖p, n → ∞,

φ(v0) +
k∑

i=1

φ̃∞(vi ) = c,

where for i ≥ 1 vi is either identically zero, or for some λ > 0 and up to the sign, it holds
that

vi ≡
⎡
⎣λ

1
p−1 N

1
p (

N−p
p−1 )

p−1
p

λ
p

p−1 + | · | p
p−1

⎤
⎦

N−p
p

,

and

φ̃∞(vi ) = SN/p

N
.

Moreover if a ≡ 0, then either v0 is identically zero, or it holds that for some λ > 0 and up
to the sign

v0 ≡
⎡
⎣λ

1
p−1 N

1
p (

N−p
p−1 )

p−1
p

λ
p

p−1 + | · | p
p−1

⎤
⎦

N−p
p

,

and

φ(v0) = φ̃∞(v0) = SN/p

N
.

Proof It follows by Theorem 5.4 of [10] and Proposition 1.3.When a ≡ 0, c can be computed
explicitly by [17], using Proposition 1.3. ��

5 Finite Morse index solutions

5.1 Bounds on the number of nodal regions and proof of Theorem 1.4

Let O be a domain of RN , and u ∈ W 1,p
loc (O) be such that

−�pu = |u|p∗−2u in D′(O).

For all v ∈ C1
c (O) define

φ′′∞(u)[v, v] =
∫
RN

|∇u|p−2|∇v|2 + (p − 2)|∇u|p−4(∇u,∇v)2 − (p∗ − 1)|u|p∗−2|v|2.

We say that u has Morse index i(u), see for instance [2,5], if i(u) is the maximal dimension
of the subspaces V of C1

c (O) such that
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φ′′∞(u)[v, v] < 0, for all v ∈ V \{0}.

Proof of Theorem 1.4 Define on D1,p
0 (O)

φ∞(u) =
∫
O

( |∇u|p
p

− |u|p∗

p∗
)
dx .

The linearised functional is

φ′′∞(u)[v, v] =
∫
O

|∇u|p−2|∇v|2 + (p − 2)|∇u|p−4(∇u,∇v)2 − (p∗ − 1)|u|p∗−2|v|2.

Pick the sequence (un) as given by Lemma 3.1 and with u|ω being the restriction of u to ω.
Extend by zero outside ω u|ω and all un . By Lemma 3.1 we have

φ′′∞(u)[un, un] −→
∫

ω

|∇u|p + (p − 2)|∇u|p − (p∗ − 1)|u|p∗

=
∫

ω

(p − 1)|∇u|p − (p∗ − 1)|u|p∗.

This and Lemma 1.1 yields

φ′′∞(u)[un, un] −→ (p − p∗)
∫

ω

|u|p∗ < 0.

This means that for every nodal domain ω there exists a direction un ∈ C0,1
c (ω) (and by

density in C1
c (ω)) such that

φ′′∞(u)[un, un] < 0

and this concludes the proof. ��

5.2 Proof of Theorem 1.5

Proof of Theorem 1.5 (1) If u ≡ 0 then i(u) = 0.
Assume that u �≡ 0 and i(u) ≤ 1. By Theorem 1.4 there is exactly one nodal region, say
A. If A = R

N+ we have a contradiction by [10]. If A is a proper subset, we can assume,
up to consider −u instead of u, that A = {u > 0}. Since u ∈ C1(RN+) by Lemma 2.1
it follows that ∇u = 0 on ∂A. Pick now any interior point p ∈ A. There exists a ball
B(p, R) ⊂ A centered at p for some radius R > 0 such that B(p, R) touches internally
∂A at some points. Let p′ be such an intersection point. Since p′ is a boundary point
and satisfies the interior sphere condition, Hopf’s boundary point lemma implies that
∇u(p′) �= 0, which is a contradiction. This concludes the proof of part (1).

(2) Let now i(u) ≤ 1. By Theorem 1.4 u has at most a nodal domain A. If A is a proper
subset, the preceding proof of part (1) shows that u ≡ 0. Otherwise if A ≡ R

N then the
conclusion follows by the recent classification result [15]. And this concludes the proof
of part (2). ��

Remark 4 The above proof shows also that u cannot have a nodal domain A surrounded by a
region where u is identically zero. Moreover, all nodal domains have always some boundary
points satisfying an interior sphere condition.
We observe that in the case of (7) an alternative way to conclude the proof is by the strong
maximum principle [19].
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5.3 Starshaped domains: Proof of Theorem 1.6

Proof of Theorem 1.6 By a refinement of Moser’s iteration, see e.g. Appendix E of [12] and
[18], u ∈ L∞(�). By classical regularity results of DiBenedetto [3] and Liebermann [8], we
have that u ∈ C1,α(�). By Theorem 1.1 of [6] it holds that the normal derivative uν = 0 at
some point x0 ∈ ∂�. By Theorem 1.4 u has at most one nodal region. If u were nontrivial,
this would be in contrast with Hopf’s boundary point lemma, see [19]. It follows that u ≡ 0,
and this concludes the proof. ��
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