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Abstract
We consider the following quasilinear Schrodinger equations of the form
Au—eV(x)u+ubu®*+u? =0, u>0inRY and lim u(x) =0,
|x]—o00

where N > 3, p > %, ¢ > 0 and V(x) is a positive function. By imposing appropriate

conditions on V (x), we prove that, for ¢ = 1, the existence of infinity many positive solutions
2

with slow decaying O (x| »-T) atinfinity if p > %—f% and, for ¢ sufficiently small, a positive
solution with fast decaying O (|x|>~V) if % < p< % The proofs are based on

perturbative approach. To this aim, we also analyze the structure of positive solutions for the
zero mass problem.

Mathematics Subject Classification 35J20 - 35J60 - 35Q55

1 Introduction

The nonlinear Schrodinger equation
iz =—Az+ W)z — [Alz17z — 2177z, (1, %) € (0, 00) x RY, (1.1)

where W : RN — R is a given potential, has been introduced in [1-3] to study a model of
a self-trapped electrons in quadratic or hexagonal lattices (see also [4]). In those references
numerical and analytical results have been given.
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Here of particular interest is in the existence of standing wave solutions, that is, solutions of
type z(x, t) = exp(—i Et)u(x), where E € R. Assuming that the amplitude u(x) is positive
and vanishing at infinity, it is well known that z satisfies (1.1) if and only if the function u
solves the following equation of quasilinear elliptic type

Au—eV(X)u+ulu?+uP =0, x e RY;

u>0and lim u(x) =0,
[x]—o00

(1.2)

where V(x) = W(x) — E is the new potential function. In the rest of this paper we will
assume that V (x) is a bound and positive function.

Because of the presence of the quasilinear term uAu?, we can see that p = 31<,Vf22 is
the critical exponent for the existence of solutions from the view of variational methods.
For the subcritical case, thatis, 1 < p < 31<,Vf22, construction of solutions to this problem
by variational methods has been a hot topic during the last decade. A typical result for the
Eq. (1.2) is, up to our knowledge, due to Liu et al. [5]. The idea in [5] is to make a change
of variable and reduce the quasilinear problem (1.2) to a semilinear one and the Orlicz space
framework is used to prove the existence of positive solutions via the mountain pass theorem.
Subsequently, the same method of changing of variable is also used in Colin and Jeanjean
[6], but the usual Sobolev space H'(RY) is used as the working space. Recently, Shen and
Wang [7] study the following generalized quasilinear Schrodinger equation:

—div(g® () Vu) + gw)g' )| Vul*> + V(x)u = h(u), x € RV, (1.3)

where gz(s) =1+ %(l ()2, By introducing the variable replacement

v=Gu) = /u gdt, u=G"1(v) (1.4)
0

and imposing some conditions on V (x), the authors obtain the positive solution for (1.3) with
a general function /(s) when A (s) is superlinear and subcritical. But under the condition

lim |x|>V(x) =0, (1.5)
|x|—>o00

the solvability of the Eq. (1.2) with 1 < p < 3A]>/f22 still remains open.

Subcriticality is a rather essential constraint in the use of many variational methods devised
in the literature and many papers [8—12] focused on the subcritical case. Very little is known in
the supercritical case since a major technical obstacle in understanding such problems stems
from the lack of Sobolev embeddings suitably fit to a weak formulation of this problem.
Direct tools of the calculus of variation, very useful in subcritical, and even critical cases,
are not appropriate in the supercritical. In the critical case, Liu et al. [5] asked the following
open question: are there solutions for (1.2) in the case of p = = NN_+22 ? However, generally
speaking, except some results relate to the critical exponent, see, for instance, [13-20], there

are still no conclusive results about the existence of positive solutions for the problem (1.2)

with p = 3V or p > 32,

In all the papers mentioned above variational methods are used. In this paper, we shall
explore the distinctive nature of this problem for having fwo critical exponents, one being
p= % (from the quasilinear term uAu?) and the other being p = %—f% which is H'-
critical (from the term Au). We shall concentrate in the problem (1.2) when the exponent
p is H'-supercritical, that is, p > %—f% (which includes p = %), and we establish
a new phenomenon from the viewpoint of singular perturbations. Noticing that (1.2) is a
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quasilinear problem, we adopt the change of variables which enable us to convert the original
quasilinear problem (1.2) into a semilinear problem
—eV(@) @ )y =0, x e RY;

g(G T() (1.6)

v>0and lim v(x) =0,
|x|]—o00

where f(v) = % and g(s) = +/1 + 2s2. Thus, if v is a solution of (1.6), we have
u = G~ (v) is a solution of (1.2).

A solution v to (1.6) is called fast decaying if v = O(|x|>~) at infinity and slow decaying
if v >> O(]x|>~V). Then, to describe our result about the fast and slow decaying solutions,
our starting point is the zero mass problem

Au+ulu?+uP =0, x e RY;

u>0and lim u(x)=0.
[x]—o00

1.7)

Applying the change of variables (1.4) again, the quasilinear problem (1.7) can be reduced
to the equations of the form

Av—i—f(v):O,xe]RN;

v>0and lim v(x)=0.
[x]—o00

(1.8)

Our first result concerns with the structure of positive radial solutions of the zero mass
problem (1.7).

Theorem 1.1 Suppose that p > 1. Then

3N+2 N+2

yorl <p=<§:
lfN+2

(1) there exist no fast decaying solutions to the problem (1.7) if p >

(2) there exist a unique fast decaying radial solution to the problem (1 7)

3NH2.
N-2°
(3) there exist a one-parameter family of slow decaying radial solutions to the problem

; N+2
AN ifp > 375.

<p<

Remark 1.1 Some cases of the results of Theorem 1.1 are contained in [21,22]. More specif-
ically, similarly to the standard Liouville theorem, if | < p < % the authors proved
the nonexistence results of fast decaying solutions to (1.7) (see [21]). In [22], the authors
showed the existence of a unique fast decaying solution and a one-parameter family of slow
decaying solutions to (1.7) if N +2 <p< 3]<,V +22 via the results introduced in [23]. Moreover,
the authors in [22] also pointed out that they did not know whether there are solutions for
the Eq. (1.7) with p = N +2 . Particularly, in Theorem 1.1, we draw the definite conclusion

about this case by using the Pohozeav identity.

Theorem 1.1 shows that the structure of solutions changes along with the variations of the
power p and we remark that the solvability of the Eq. (1.7) heavily depends on the power
p- Let us explain the main reason for such a rich phenomenon. On one hand, f(v) — v? as
v — 0. On the other hand, f(v) — 2,,7_31),77-1 as v — 4-o00. That is, the nonlinearity f is
not a pure power of v but f has both H'-subcritical and H'-supercritical growth in v > 0.
In [24], the authors consider a similar model

Flu) = {”p uz b

ud u <1,
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where | < p < ,’Y]—‘f% < ¢ and give an almost complete description for the structure of

positive radial solutions by a shooting argument.
The following result is about the fast decaying solutions of the Eq. (1.2).

Theorem 1.2 Assume that

V>0, Ve L®RY)and V(x) = o(x|™?) as |x| - 400 (1.9)
hold. Then for ¢ sufficiently small the problem (1.2) has a positive fast decaying solution if

Compared with Theorem 1.1, itis natural to ask whether the nonexistence of a fast decaying
solution remains true for (1.2) when p > % This may be in general a difficult question to
answer if no other conditions imposed on V (x). For the special case x - VV (x) +2V (x) > 0,
the authors in [25] show the nonexistence results of fast decaying solutions by a Pohozeav
identity for the Eq. (1.2) in the case p > 31<,Vj22 ande = 1.

Our final result concerns the existence of slow decaying solutions.

Theorem 1.3 Assume that ¢ = 1. Then the problem (1.2) has a continuum of solutions u; (x)

such that ){imou;\(x) = 0 uniformly in RN provided that either N > 4, p > % and the
—

condition (1.9) holds or N > 3, %—f% <p< %—fé and there exist C > 0, u > N such that
V(x) < Clx| ™" forx e RV, (1.10)
3N42

Remark 1.2 In this theorem, we answer the question raised in [5] for p = N7

The proofs of Theorems 1.2 and 1.3 are based on perturbative approach, introduced by
Dévila et al. [26-29] in the study of fast and slow decaying solutions for second order
or nonlinear Schrodinger equations and exterior domain problems. Some of our ideas are
motivated from these papers.

In the fast-decaying case, we consider the problem (1.6) as small perturbation of the
problem (1.8) when & > 0 is sufficiently small. For a point & € R¥ used as the reference
origin, the function v 7 (x +&) is considered as an initial approximation, where v s is a solution
of (1.8). This function will constitute a good approximation for small ¢. By adjusting &, we
prove that the solutions we want can be achieved.

As for the slow decaying solution of the Eq. (1.2), we set ¢ = 1 and consider the equation

2
with a parameter A by means of replacing the variable v in the Eq. (1.6) by A7~ Tv(Ax 4 &)

2 _ % 2p 2
Av— Vi(o)a 1G0T =58 5Ty = 0, x € RY;
g(G=t(xP-To)) (1.11)

v>0and lim v(x) =0,
[x]—o00

9|

2
2 ol T
where > 0, & € RV and Vi (x) = A2V (x‘ff). We observe that A~ 71 -G G- Tv)

P}
g(G10.P=Tw))

2p 2
vand AP f(ArTv) — vP as A — 0. Thus the problem may be regarded as small
perturbation of the problem

Av—Vov+1vP =0

when A > 0 is sufficiently small. Consequently, infinitely many positive solutions with slow

2
decaying O(|x|” »=T) at infinity can be constructed similar to the perturbative procedure
introduced by Davila et al. [26].
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In this paper, we make use of the following notations: the symbol C denotes a positive
constant (possibly different) independent with . A ~ B if and only if there exist two positive
constants a, b suchthataA < B < bA. vy denotes the unique fast decaying solution of (1.8).

2 Proof of Theorem 1.1

In this section, we analyze the structure of positive decaying solutions of (1.7). We first
prove the nonexistence of fast-decaying solutions for p < %—fg or p > % by using the
Pohozaev identity. Then we show the existence of the fast decaying solution for (1.7) by
using the classical Berestycki-Lions condition in [30] for % <p< % Finally we

use a perturbative approach to prove the existence of a family of slow-decaying solutions for

N+2
P> N5

To prove the nonexistence results for the Eq. (1.8), we recall the following Pohozaev
identity.

Lemma 2.1 (Pohozaev identity) Suppose F(x,u,r) € C'(RY x R x RN) satisfies
divF,(x,u, Vu) = F,(x,u, Vu), 2.1)
where
F(x,u,r)=Fx,u, 1), Fy(x,u,r), ..., Fry(x,u, 1), r =(r1,7r2, ..., IN),

oF(x,u,r)

Fri(xvusr): ar'
l

i=12,....,N

and
OF (x,u,r)
ou '

Then, if F(x,u,Vu),x - Fx(x,u, Vu) and F,(x,u,Vu) - Vu € LY(RN), there holds the
Sfollowing identity

Fu(x,u,r) =

N/ F(x,u,Vu)dx—i—/ x~Fx(x,u,Vu)dx—/ F.(x,u, Vu) - Vudx = 0.
RN RN RN

2.2)
We omit the proof of this lemma, since it can be mainly found in [31].
To present the Pohozaev identity associated to (1.7), we rewrite the Eq. (1.7) as
div (g2 (u)Vu) — gu)g' ()| Vul* + u” = 0. (2.3)

Thus, the integrands in (2.2) can be expressed as

1 1
F(x,u,Vu) = =g*w)|Vu|* — ——uP*!,
2 p+1
x-Fy(x,u,Vu) =0
and
F.(x,u,Vu)-Vu = gz(u)|Vu|2.

Consequently, we achieve the following lemma based on Lemma 2.1 under the conditions
IVul?, u?|Vu|? and u?t! € LY(RYN).
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Lemma 2.2 Suppose that u € C2(RN) is a solution of (1.7). Then

NT_Z/RN (1 +2u?) |Vul*dx = % P+ dx (2.4)
if [Vul?, u?|Vu|?> and u?*' € L'(RN).
Equation (1.7) can be rewritten as
— div(g> W) Vu) + gu)g' ()| Vul> = u?, x e RV, (2.5)

where g?(u) = 1 + 2u”. By Lemma 2.2, the Pohozaev identity associated to (2.5) is

N =2

N
7/ |Vu|2dx+(N—2)/ u? | Vu|dx = 7/ uPtdx. (2.6)
2 RN RN p+1 RN

On the other hand, the classical solution u € D'2(R") of (2.5) satisfies
/ (8 () VuVe + gu)g' w)|Vu*¢pldx = / uPpdx.
RN RN
By taking ¢ = u, we achieve

/ |Vu|2dx+4/ u2|W|2dx=f uPldx. (2.7)
RN RN RN

Consequently, combining (2.6) and (2.7), we have

[N—Z N } » [ 4N } 20 12
_— / [Vul"dx + [ (N —2) — —— / u”|Vul"dx =0. (2.8)
N RN

2 p+1 p+1
If p > 342 then (N —2) — - > 0and Y32 — +07 > 0. Therefore, (2.8) implies that
u=20 under this situation. Slmllarly, if p < N +2, it follows that (N — 2) — ﬂ < 0 and
NT4 - % < 0. Thus, (2.8) also shows that u = 0. So there are no nonzero solutlons for

(1.7)if p < ¥45 or p > 32

This proves (1) of Theorem 1.1.

Next we prove the existence of fast decaying solutions to (1.7). By the change of variable
u =G ) we only need to consider (1.8). To this end we recall the following classical
proposition by Berestycki and Lions [30].

Proposition 2.1 Suppose that the following assumptions hold:

(F-1) f(0) =0 and §+Lﬂ <0, where | = ¥+2;

(F-2) There exists ¢ > 0 such that F(¢) > 0, where F(¢) = fog f(s)ds;
(F-3) Letgo =inf{¢ : ¢ >0, F(¢) > O} I f(s) > Oforalls > go. then lim 9 o
§—> 100
Then the problem (1.8) has a positive, spherically symmetric and decreasing (with r) solution
v such that v € DLV2@RN) N CHRY).
We now show that f(s) satisfies the conditions (F-1)—(F-3) in Proposition 2.1.
By the definition of f(s), we know that (F-2) is trivial. Noticing that Im}) G 1, we

have

. f() . G l(s)r . sP
lim = lim —————— = lim — =0,
s—0+ s s—0t g(G—1(s)s! 5o+ s
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which shows that f(s) satisfies the condition (F-1).
To verify the condition (F-3), it suffices to show that

i 1O
1m

s—>+oo sl

=0

,](‘

since {o = 0 and f(s) > O for all s > 0. Combining the fact lim SY) = 2%, we deduce

§—>—400
that
,3 D—
f& . Gl 2t
lim = lim ——— = lim — =0.
sot+oo sl soto0g(GTI(s))s!  sotoo sl

This proves (2) of Theorem 1.1.

Finally we prove (3) of Theorem 1.1. To prove the existence of slow decaying solutions,
since we are considering the autonomous case, that is, V(x) = 0, we can restrict to the
radially symmetric case. For this reason, we take v(x) = v(r), where r = |x|.

We first consider the problem in the entire space

Au+uP =0, x e RV;
u(0) =1.

It is well known that this problem possesses a unique positive symmetric solution w(|x|)

whenever p > %—f% Then all radial solutions to this problem defined in R can be expressed

as
2
wi(Ix]) = AP-Tw(i|x]), A >0

and, at a main order, one has

2
w(r) =Cpnr 77T +o(l)asr = |x| = 400,

which implies that this behavior is actually common to all solutions wy (7).
Since the problem (1.8) does not carry any parameter explicitly, for A > 0, we can make

2
parameters appear by means of replacing the variable v in the equation by A7-Tv(A|x[), in
such a way the problem (1.8) becomes

2 2
A+ AT AP TY) =0, r € (0, +-00);

. 2.9)
v > 0and lim v(r) =0.
r—00

Then, jointly with the properties of G~!(v) = v + o(1) and g(G W) = 1+ 0(1) as
v — 0, if v is uniformly bounded, we observe that 1.~ Pll f()w Ty) — vP as A — 0. Thus
the problem may be regarded as small perturbation of the problem

Av+vP =0

when A > 0 is sufficiently small. Consequently, a positive solution with slow decaying

2
O(|x| »=T) at infinity can be constructed by asymptotic analysis and Liapunov-Schmidt
reduction method. To be more specific, the idea of the proof of Theorem 1.1-(3) is, for A small,

to consider the function A = w(A|x]|) as an initial approximation. This scaling will constitute
a good approximation under our situations for A sufficiently small. Then, by a classical fixed
point argument for contraction mappings, we prove that (2.9) possesses solutions as desired.
Similar idea has been used in [26,28].
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Under appropriate norms

2

Ipll = sup [x|%[¢(x)| + sup |x| 7T |p(x)] (2.10)
[x]<1 [x]>1
and
2
[l = sup lx>*7 [h()| + sup |x[*T 77T [A(x)], @2.11)
[x]<1 [x]>1

where o > 0, we first consider the solvability of the linear problem

{“’” + =Ly 4 puwp~lg = h. r € (0, +00);

i 9 =0 o

and thus we need the following lemma which is Lemma A. 1 proved by Ddvila et al. [26].
Lemma 2.3 Assume 0 <o < N —2and p > %—f% Then there exists a constant C > 0
such that for any h satisfying ||h||« < 400, Eq. (2.12) has a solution ¢ = T (h) such that

T define a linear map and
ol = 1T (W) llx = CllAlls.

Let us look for a solution to (2.9) of the form v = w + ¢, which yields the following
equation for ¢ = ¢ (r)

Ap + pwP~lp = S(w) + N(@), r € (0, +00);
lim ¢(r) =0,

r—+400

(2.13)

where
_2p 2
S(w)=—-Aw—A P TfRArTw)
and
2 _1 2 2
N(@) =21 7T frTw)+pwl™ ¢ — 1" T frT(w+¢)).
We first estimate the error || S(w) ||+« of the approximate solution. The fact
_ 2 2
|S(w)| = [~ 77T fF(Ar-Tw) — w?|

and the properties of the change of variables (1.4) show that, for C,, > 0,
4 4
S(w) = CparT wPt? 4+ o ()»Fw“'z) as A — 0.

Thus, it follows that

4
IS(w)| < CAPT [w|PF2,

‘We then conclude

4 4
sup [x 77 |S(w)| < CAPT [[w|[ZF? sup x>+ < €A1, (2.14)

|x|=<1 |x|=<1

2

On the other hand, recalling that w(x) < C(1 + |x|)” »-T forx € R¥ we obtain

2(p+2)

2 4 p—1 4
sup |x|2+ﬁ|5(w)| < CA»=T sup < al ! < CAPT. (2.15)
x|=1 =1 \ 1+ x|
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From (2.14) and (2.15), we have

1SW) | < CAFT. 2.16)

In what follows, the proof relies on the contraction mapping theorem. We observe that ¢
solves (2.13) if and only if ¢ is a fixed point for the operator

¢ =T(S(w)+ N(9)),

where 7 is introduced in Lemma 2.3. That is to say, ¢ solves (2.13) if and only if ¢ is a fixed
point for the operator

A@) :==T(S(w) + N(¢)).
We define
x={p:RY > R|lgl, < Ca7T)
and we will prove that .4 has a fixed point in 2.

Forany ¢ € X and o € (0, min {2
we have

R % ]) , according to the arguments given in [26],

IN@ s < CLIBIZ + lI¢117] (2.17)
since
N(¢p) = w” + pwP~'¢ — (w+ ¢)” +o(1) as A — 0.
Therefore, combining (2.16), (2.17) and Lemma 2.3, it follows that
[A@ N+ = CUIS (W) [l + [IN (@) ll55]
48 dp 4 (2.18)
SCAPT AP T AP T] < CAPT,

which implies that A(X) C X.
We still have to prove that A is a contraction mapping in 2. Let us take ¢, ¢» € 2. Then
we have

lA@1) = AGDlls = CIN@D) = N(@2) . (2.19)
Moreover, noting that
IN(@1) = N @)l = C (wP™2(p1] + Ig2]) + 61177 + [g21”™") Ier — al.
we have the estimate
lA4@1) = AGDIls = CIN@) = N (@)l
= LIl g P g = ol

1
= 5 llér — 2l

for suitable small A.. This means that A is a contraction mapping from X into itself, and hence a

2
fixed point ¢ in this region indeed exists. So the function vy (|x|) := A7~ T (w(A|x])+ @ (A]x]))
is a continuum solutions of (2.13) satisfying }irr})vk(|x|) = 0 uniformly in RN and uy (|x]) =
—

G! (vy (]x])) is our desired solution. This complete the proof of Theorem 1.1.
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3 Proof of Theorem 1.2

In this section, we will construct a fast decaying solution to the problem (1.2) when NE2

N-2
p < % by the reduction method. The idea of the proof of Theorem 1.2 is, for £ € R" and
& small, to consider the function v ¢ (x + &) as an initial approximation, where v s (x) is the
unique positive radial solution of the zero mass problem (1.7) stated in Theorem 1.1. These
functions will constitute good approximations under our situations for suitable £ € RY and
¢ sufficiently small. Then, by adjusting &, we prove that (1.2) possesses a solution as desired.
At the beginning, we state some notations which will be used in the following. We consider

the initial value problem

v+ =y 4 f(0) =0, 7 € (0, +00); 3.0
v(0) =d >0, v/(0) =0, '
where f(s) = G L) By Theorem 1.1, there exists a unique d* > 0 such that the

g(G=1s)”
corresponding solution v ¢ (r; d*) is the unique positive fast decaying solution. Moreover,

z0(r) = %{(r; d*) satisfies the following initial value problem

Lb” + 5+ f1(w)g =0, 1 € (0, +00); (32)

$0)=1>0, ¢/(0) =0.

Then by Lemma 4.4 in [22], we have that v s is non-degenerate in Drl’2 (RN )—radial functions
in D2, Our next lemma shows that it is nondegenerate in the class of bounded functions.

LetZ;, = ?)l;,f for 1 <i < N.Then we have the following result.

Lemma 3.1 If ¢ satisfies |¢p| < C and
Ap+ fvp)p =0, x e RY, (3.3)
thenp € W = Span{Zy, Z>, ..., Z,}.

Proof 1If ¢ is bounded and satisfies (3.3), by bootstrapping, we achieve ¢ (x) = o(|x|>~N)
as |x| — 4o00. Expanding ¢ as

PO =Y (O,

k=0
we see that ¢ is a solution of
N -1
r

A
oL+ @+<f@0—£)m:0mmnmAMMkzu (3.4)

For mode 0, noticing that 1o = 0, we know ¢q(#) is a solution of (3.4) and, by Lemma 4.2
in [22], ¢o(r) satisfies

r”d)o(r) — —ooasr — 00,

N—1 :
2= if N > 4, .
where 2* = { 2 " =" Thus, if go(r) € DI2(RY), we conclude that
N,
¥ _ 0(1" 2 )7 1fN247
r* zo(r) = 1 .
o %), iftN=3,
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which is a contradiction. For mode k with k& > 1, according to Lemma A. 3 in [26], we
conclude that the solution ¢y to (3.4) is zero by the maximum principle. Consequently,
jointly with the nondegeneracy in radial class, we have

¢ = ¢ € Span{Zy, Z,, ..., Zy}.

O
We introduce appropriate norms
[l = sup <x —&>7 [p(x)] (3.5
xeRN
and
Il = sup < x —& > |hx)], (3.6)
xeRN
1
where < - >:= (14| [*)? and 0 < 0 < N — 2. We first solve the linear problem
Ap+ flwpp =h+ 2L cif v)Zi, x eRY;
Jon f[wp)$Zi =0, i=1,2,....N; (3.7)
lim ¢(x) = 0.
[x]—>+00

Lemma3.2 Let A > 0 and || < A. Assume % <p< 31<,Vj'22 and 0 < N — 2. Then
there is a linear map (¢, cy, ...,cy) = 7T (h) defined whenever ||h|se < 00 such that

(¢, c1, ..., cn) satisfies (3.7) and

N
Il + Y leil < Clihllene. (3.8)
i=1

Moreover, c; = 0 forall 1 <i < N ifand only if

8 .
fh % —0for1<i<N. (3.9)
R

Bx,-

Proof We will divide the proof into two steps.

Step 1. A priori estimate
By taking & = K" + 1@ in (3.7), where h'V € W, = {f'(vp)Zi, f'(v)Zs, ...,
f'(wp)Zy}and i € Wi, we have

N
A+ fwpg=hD +h® +Y cif ()i (3.10)
i=1
If we take D = — SN | ¢; f'(vy) Z;, that is,

Jan 102

- —fori=1,2,..., N, 3.11)
Jrv fPIZi?

¢ =

it follows from (3.10) that
Ap+ flwp)g =hP (3.12)
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andc¢; =0forall 1 <i < N if and only if

duy .
h =0forl <i <N.
R 0x;

So, in what follows, we consider
Ap+ f(vp)p =hP, x e RY;

Jon ff0p)dpZi =0, i=1,2,...,N; (3.13)

lim ¢(x) =0.
[x]—>+00

We first prove the priori estimates (3.8) by using the contradiction argument. Suppose
that there exist ¢, hflz) such that [|¢,|l«¢ = 1 and ||h£,2) lss,e = o(1) as n — +o0c. By the
definition of [|¢, |+, we can take x, € RV with the property

< — £ 5 )] = % (3.14)

Then, we again have to distinguish two possibilities. Along a subsequence, it follows that
xn — x0 € RN or |x,| — +o00.

If x,, = xo, standard elliptic estimates show that ¢,, — ¢ uniformly on compact sets of
RV Moreover, ¢ is a solution to (3.13) with #?® = 0 satisfying

1
<xo—§&>7 [p(x0)] > 5 (3.15)
and |¢ (x)| < +00. Thus Lemma 3.1 shows that
¢ =¢1 € Span{Z, Z3, ..., ZN}.

Then the facts fRN V¢ -VZ; =0fori = 1,2,..., N show that V¢p = 0. We achieve a

contradiction to (3.15) since lim ¢ (x) = 0.
x| =00

If x, — 400, We consider ¢, (y) = |%,|° ¢n(|xn|y +xn +&) and observe that ¢, satisfies
A‘zn + |xn|2f/(vf,n)(in = Ef)v y € RN’
where vy, () = v (1Xaly + %p + &) and A () = 1xa 27 1P (1xaly + x, + £). Noticing
that ||@, ||+, = 1, we have

- 1
6 = Gy Y€ RV\ {—%,}. (3.16)

where %, 1= . So ¢y is uniformly bounded on compact sets of RV\ {—%,} . Similarly,
considering that

- 1 3
BP0 = g I lenes Vo € BV [=8a),
n

we obtain ﬁ,(qz) — 0 uniformly on compact sets of RN\ {—)En } asn — 4-00. Thus, by elliptic
estimates, we have ¢, — ¢ uniformly on compact sets of RV\ {é} and ¢ satisfies

£d =0, y e RN\ {¢};
PO < g ¥y R\ {2},
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Xn

where ¢ = — lim By the maximum principle, we conclude that ¢ = 0 which is

n— oo lxnl’

impossible since ¢ (—¢) # 0.

Step 2. Existence
We first want to solve (3.7) on a bounded domain By (€). Let us consider the subspace

X = {¢ € Dy (Bg(£)) and /

Br(&

V' Zi =0, i=1,2,...,N}.
)

Then, according the arguments in [32], finding solution to (3.7) in this case is equivalent to
finding ¢ € X such that

/ VoV —/ ' ney +/ hy =0 forall ¥ € X. (3.17)
Br(©) Br(©) Br(®)

Now, for £ satisfying ||/« ¢ < 400, let us denote by ¢ = A(h) the unique solution of the
problem

/ v¢v¢+/ hy =0 forall ¥ € X.
Br(®) Br(®)

Thus, (3.17) can be written as
¢ —A(f (vp)p) = A(h) for ¢ € X

and, by the compactness of Sobolev’s embedding, the map ¢ — f'(v )¢ is compact.
Hence, we conclude the existence of the solution by the Fredholm alternative since the
priori estimate (3.8) implies that the only solution of this equation is ¢ = 0 when 7 = 0.
Finally, thanks to the priori estimate again, we can let R — +o00 and obtain the existence in
the whole space. O

Now we begin to prove Theorem 1.2. We look for a solution of the form v = vy + ¢ to
the Eq. (1.6) and thus acieve the following equation for ¢

Ap+ f'(vp)p = E(vp) + F(¢) + M($), x € RY;

lim ¢(x) =0, G-18)
|x|—+00
where
1
E(ys) =¢V(x — z?)g((;_il(:vff))),
F(¢) = flup) + f(vp)¢ — f(oy +¢)
and

Gluyp+¢) Gy ]
(G s +)  gGlwp) ]
However, the problem (3.18) may not be solvable under our situation unless & can be chosen

in a very special way. So instead of solving (3.18), we consider the following projected
problem

M@) = eV (x —s)[

AP+ fp)p = E(yp) + F(¢) + M@) + XN cif (v))Zi, x € RV;

lim ¢(x) =0, (3.19)
x|—+00

@ Springer



144 Page 14 0f 24 Y. Cheng, J. Wei

where ¢; are constants.

For % < 0 < N — 2, we first estimate the error ||E(vy)|l«¢ of the approximate
solution v r. Considering that

Rl
(G~ (vy))
and
lupl < €A+ x>~V forall x € RV,
we have

IEQ ) e = sup <x —& > |E(vy)]

xeRN
<gsup <x—£>FT V(- vyl
xeRN
o
< Ce sup (&) (14 [x])2N+o
xerV \ 1+ Ix]
< Ce.

In what follows, by applying the Banach fixed point theorem, we can prove that (3.19)
is indeed solvable and achieve a solution (¢, c1, ..., cy). We then obtain a solution of the
problem (3.18) if ¢; =0 foralli =1,2,..., N.

Based on the description of Lemma 3.2, solving (3.19) reduces now to a fixed point
problem. Namely, we need to find a fixed point for the map

(p.cr.c2,....cn) =A@, cr, 2, ... en) =T (N1(d) + Na(9)).

Here, we will restrict ¢ to be small enough such that the function vy + ¢ is always positive
and we define the set

N
0= {(qb,cl,cz,...,cm RV [ Igllue + Y leil < Cs}.

i=1

We now prove that A has a fixed point in ©.

For any (¢, c1,c2,...,cn) € ©, we first estimate M (¢). Note that
G™! ' 1
( 71(S) ) = < Iforalls > 0.
g(G—(s) gr (G (s)
We have
G l'wr+9) Gy
‘ ! — | < ||

8GN vr+9¢)  g(G(vy))
and then

IM(@)llaxe = sup <x —& >>77 |M(@)]

xeRN

<gsup <x—£&>TV(x -8l (3.20)

xeRN

< CelPllxz-
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To estimate F'(¢p), we need the following fact: if 1 < p < 2, then
|£/(s1) = f/(s2)] < Clsy — s2/P "' forall s, 5 > 0and |s) — 55| < 1. (3.21)
Indeed, since
G lor  Gler!
g2(G71(s)  gH G

[l =(@-1

we have
G 1(s))P! B G (5P !
g2(G71s))  g2H(GH(s2)

If'Gs) = fs)l = (p =1

G lspPt G N(sp)P! (322
g4G 1)) 4G ()|
Then, noticing that |s; — s2| < 1, we have

G ls)rt Gl (spP!

g2(G1(s1)  g2(G ()

A +267 620G )P = (14267 65D G (527

B g2(G~1(51)82(G~ 1 (s2))

G )P = GNP |G )2 G 5P = G (1) G (s2)P T

g2 (G (s1))g* (G (2)) g2 (G (5183 (G (s2))

267N (s)P1G (sp)P 7!

g2 (G (s1))g* (G (s2))

23— p)G (512> PG (s)P G (s2)P 7!
8(G71(512))8%(G~1(51))8*(G~(52))

< Cls; — so|P7! (3.23)

<CIG 1) -G 1P + 1G (52377 — G (s1)* 77|

[s1 — 52|

<Clsi —s2|” ' +

since
23— p)G 1 (512)> PG M (s)P G (sp) P!
(G (512)82(G1(51))g%(G 1 (52))

where 517 belongs to the segment jointing s1 and s2. On the other hand, by a similar strategy
as the proof of the inequality (3.23), we conclude that

< C forall 51, s, > 0,

G e Gl )P
G T61)  gHG ()

and thus show the inequality (3.21).
Since ¢ is small, based on the fact (3.21), we observe that

IF()| = 1fp)+ f'wpo — fuy +¢)l
<If'(we — f'vy)el
_ I —vpligl, if p = 2;
T |Clvi —vp)P gl ifl < p <2
- {C|vz|f’2|¢|2, if p=2;

< Clsy — 5|77

(3.24)

| ClgplP, ifl < p <2,
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where vy lies in the segment jointing vy, vy + ¢ and v2 = tvy + (1 — t)vy with ¢t € [0, 1].
Thus, jointly with the fact |vz| < C(1 + |x|) 77 forall x € RV, we have

IF@)llsxe = sup <x —& >>T7 |F()]

xeRN
Csup <x —& > |n|P=2 g%, if p > 2;
< xeRN
“|Csup <x—& >0 |g|P, ifl < p <2,
xeRN ) (3.25)
_ p—2)o .
Csup <x—g =2 bo (SE2) Ip12 . if p > 2:
< xeRN
Csup <x—§&>2"(p=Do ||¢||f§, ifl <p<2,
xeRN '
< ClollY.

where y = min {2, p}.
Therefore, by (3.20) and (3.25), jointly with Lemma 3.2, it follows that

lA(@, c1.ca, .o eN)lse < CUTEWE) lsse + 1M (@) s + 1 F (@) llsx,8)
< C(e+ellgllse + |I¢>IIZ,E) (3.26)
< Ce,

which shows A(®) C ®.
We still have to prove that A is a contraction mapping in ®. If we take

(@r.c1 6215+, en 1), (@2, €12, €22, .., CN2) €O,
then we have
lA(P1, c11. 2,15 - - en1) — Ald, €12, €22, -, N 2) s
< ClIM(@1) — M(P2) e + 1 F(B1) — F(@2) |l ]
To estimate || M (¢p1) — M (¢2) |l4+,&, We note that
|M(¢1) — M(¢2)| = |DpM()(d1 — $2)|. (3.28)

where gz_S lies in the segment joining ¢ and ¢». Moreover, a direct calculation shows

(3.27)

eVix —§) 267 vy + )2 ”
DyM = 1—
DM = | 26T, + o) [ e2(G1(vs + ¢)) (3.29)
At Y eV(x — ).
G lwr+o) |~
Then,
sup < x — & >2F0 | M(p1) — M(¢n)| < sup <x —& >2 [DyN1(@)|[ld1 — balls.e
xeRN xeRN
< Cellpr — dallsg sup <x —& >2 V(x — &)
xeRN
< Cellgpr — dallse. (3.30)
Thus, we have
M (¢1) — M($2)|lsse < Cellpr — ¢allse- (3.31)
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Now we estimate || F (¢1) — F(¢2) [l«,e. We note that
|F(¢1) — F(¢2)| = Dy N2 () ($1 — $2)|, (3.32)
where ¢ lies in the segment joining ¢ and ¢. Moreover,

Dy N2 ()| = | f (vy) — [/ + @)l
_ Clvi|P72|¢], if p > 2; (3.33)
ClolP~!, if1 < p <2,

where vy = tvy + (1 —1)(vy + @) with ¢ € [0, 1]. Then, similarly as the proof of (3.25), we
have

1 1} i _
IF@1) = F@D e < CIBITE" g1 — allie < Ce™™ P~ ig) — o e

(3.34)
Thus, under our situation, combining (3.27), (3.31) and (3.34), we have that .A is a contraction
mapping in ® and hence there indeed exists a fixed point (¢¢, c1, €2, ..., CN).
In what follows of this section, we will complete the proof of Theorem 1.2.
We have found a solution (¢,, c1, 2, ..., cy) to (3.19) satisfying

N
Ielles + > leil < Ce.

i=1

To prove the result contained in Theorem 1.2, it suffices to show that the point £ can be
adjust so that the constants ¢y, ¢2, ..., cy are all contemporarily equal to zero. Combining
Lemma 3.2, we only need to show

(E(vg) + M(¢e) + F(¢8))aﬂ =0forj=1,2,...,N. (3.35)
RN 8xj

We first define

a .
Fj(e, §) :/R (E(vy) + M () +F(¢s))%~ (3.36)
N J

The subordinate terms in (3.36) are f]RN F (¢5) an and fRN M(p.) avf Indeed, we have the
following estimates

dvy vi
/ Fpe) 7| = ||F(¢a)||**,s/ <x—§&>" =0(") (337)
RN ay; RN dy;
and
dvg dv dvy
/ M(¢pe) —| < ||M(¢e)||**$/ <x—§&>" 0(8 ). (3.38)
RN ayj RV ay;
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Noticing that there exist ko € (0, 1) and k; > 1 such that kpv < <kyvy, the

,1 (‘U
8(G~ ‘(v ) —
dominant term in (3.36) satisfies

duy f l(vf) 3Uf f duy
Ep) L — Viy — &) ——1 V(y — &)vp L.
/RN o5y = VO S)g(G Ty, e VO T 5y,

_ v .8vf
—8fRN (y—é&)UfT

&

=3 L -9

:Ei/ BV (- ). (3.39)
208 Jrw

Combining (3.37)—(3.39), we achieve

il

Fi(e, &) ~ 235,/ ViV(y — &) +o(e)for j=1,2,....N.

Thus, if we set G(§) = f]RN vf,V(y —&),then G(0) > 0and lim G(&) = 0. This implies
[x|—+00

that G attains a global maximum point &y € Bj/(0) for some M > 0. By the definition of
stable critical point [33], G has a stable critical point in Bys(0) and as a result, we deduce
that, for ¢ small, F(¢g, &) = (Fi(¢, &), Fa(e, &), ..., Fn(g, §)) has a zero point in By (0).
Consequently,c; =0for j =1,2,...,N

4 Proof of Theorem 1.3

In this section, we will construct slow decaying solutions to the problem (1.2) with ¢ = 1.
The results of Theorem 1.3 are based on a suitable linear theory devised for the linearized
operator associated to the Eq. (1.2) at # = w in the entire space R" and in the application of
perturbation arguments. We consider w as an approximation for a solution of (1.2), provided
that A > 0 is chosen small enough. To this aim, we need to know the solvability of the
operator A — V5, + pw?~! in suitable weighted L™ space.

Let

ow .
Zi=n—,i=1,2,...,N,
3)6,'

where n € CSO(RN) satisfies 0 < n < 1. Moreover, n(x) = 1 if |x| < Rp and n(x) = 0 if
|x] > Ro + 1 for a fixed number Ry > 0 large enough.
Under appropriate norms

i
Ipllee = sup |x —EI°1p()+ sup |x — &7 T |p(x)] (4.1)
[x—&1<1 [x—&[>1
and
2
Al = sup |x —EPT R+ sup |x — &P T A(x)], 4.2)
[x—&l<1 [x—&|>1
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where ¢ > 0 and £ € RY, we first consider the solvability of the linear problem

Ap—Vi(x)p+pwP o =h+ YN 7, x eRV;
lim ¢(x)=0
+

|x|—4o00

(4.3)

and thus we need the following lemma which is proved by Davila et al. [26].
Lemma4.1 Let |§| < A. Suppose V satisfies (1.9) and ||h| s < 00. Then, for A > 0
sufficiently small,

(1) if N=>=4,p > M , Eq. (43) withc; =0for1 <i < N and & = 0 has a solution
¢ = T (h) whlch a’epends linearly on h and there exist a constant C independent with
A such that

1. (W) ll+,0 = CllAllsx,0:

2) if N = 3, N—Jrz <p< M and V also satisfies (1.10), Eq. (4.3) has a solution
(p,c1,¢2,...,¢cN) = ﬁ(h) whzch depends linearly on h and there exist a constant C
independent with A such that

lPllse + ]riniegNICil < Cllhllss -
Moreover, c; = 0 forall 1 <i < N if and only if

ow
/RNhax =0for1 <N <N. “4.4)

Based on Lemma 4.1, we can prove Theorem 1.3. We look for a solution of the form
—1
v = w + ¢ to the Eq. (1.11) and, for S(w), N(¢) defined in Sect. 2 and I(s) 1= —Z_—©)

g(G1()”
we achieve the following equation
Ap — Vi(x)¢ + pwP~'¢ = Si(w) + N(¢) + P(¢), x € RY;
lim ¢(x) =0, 4.5)
Jx|—+00
where
2
S1(w) = S) + Vu (A TR T w)
and

L L
-1 —T

P(¢) = Vi()lr »= PTG (w+ @) —I(Ar=Tw)) — ¢].

N+1
The case p > 75

2
In this case, we rescale v(x) as A7—Tv(Ax), that is, & = 0 in the previous paragraph.
Computations show that
2 2
A Tl Tw) =w+o(l)as A — 0.

According to the arguments in [26], we know

2
=T

IV GOA TT LT W) |0 1= 8(A) = 0(1) as A — 0.

Thus, foro € (0, min {2, % }) , the error of the approximate solution in the norm (4.2) is

2
—T

I1S1 @) llex,0 = 1S(w) + Vi) r= 107 W) [l4x,0 = Cp(R), (4.6)
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4
where p(X) := A»~T + §()). Consequently, for the operator A, (¢) := 7, (S1(w) + N(¢) +
P(¢)), where 7, is given in Lemma 4.1-(1), we can use the contraction mapping theorem
on

= {6 :RY > R[Ig]l.0 = Co0)}

and we will prove that A, has a fixed point in ;.
For any ¢ € X;, we first give the estimate of || P(¢)|««,0. We observe that, for a number
Cy >0,

2 2 4
KTTAGTT (w4 $) — 7T w) — ¢ = —C3A7T [(w + ¢)° — w’)
n 4.7)
( ‘) as A — 0.
Thus, we have
4
sup [x|[**7|P(@)| < C sup KPPV (W] + (91
[x]=1 lx|=1
4
< CA7T sup [x|” (lw’gl + |91 4.8)
[x|=<1
4
< Car=1|@]lx,0.
On the other hand, combining
_2
(@) < Clx| P71 |@ll«,0 for x| > 1 4.9)
and
2
w(x) < C(1+ |x) 771 forx € RV, (4.10)
we have
24-2 4 2+ -4 2 3
sup [x |7 P P(@)| = CAr=tsup [x|77 P V() (|lw | + [9]7)
[x[=1 [x[=1
4 _ 4 4
= G sup (14 D)7 g oo + 17T 91
[x[=1
4
< CATT(|9lls0 + I813.0) (4.11)
Consequently, combining (4.8) and (4.11), we have
4
1P (@)lsx,0 < CAP=T([@]lx,0 + ||¢||i,0)- (4.12)
Thus, jointly with the estimate of || N (¢) ||, 0 in Sect. 2, we conclude
A (@) .0 < CliS1(w) + N (@) + P(P)llxx.0
< CloM) +p()> + pW)P + p(1) + p(2)*]
< Cp()) forany ¢ € Z;.
That is, A)L(E)\) C Xy,
For any ¢1, ¢2 € X;, we want to estimate || P(¢1) — P(¢2) |l«+.0. We note that
[P(¢1) — P(¢2)| = [Dy P($) (1 — $2)I. (4.13)
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where q_S lies in the segment joining ¢; and ¢,. Then, it follows that
XPF7P(@1) — P(¢2)| < 1xI*|Dg P(®)IlI¢1 — 2,0 for x| < 1
and
IXI2+%IP(</>1) — P(¢)| < [xI*[Dg P(®)ll¢1 — h2ll.0 for |x| = 1.

Thus, we have

IP(¢1) = P(@)llsx.0 < C sup (|x[*|Dy P()]) d1 — ¢2llx.0- (4.14)
xeRN

Moreover, a direct calculation shows

1 GG w+9) _1)
LG w+9)  gH G T (w + )
= V(%) [1 — BT (w4 $)? + 00T (w + ¢)?) — 1] askh— 0. (415

Dy P(9) =V, (x) (

To go a step further, based on the arguments in the previous paragraph, we conclude that
5 - 4
sup (|x|°|Dy P(¢)]) < CAP-T. (4.16)
xeRN

Consequently, combining (4.14) and (4.16), it follows that

1
I1P(¢1) = P(@2)llsx0 = 7161 = S2llx0 (4.17)

for A sufficiently small.
It is straightforward to show that

A (@1) — Ai(@2) 5,0 = CUIN (@1) — N(@2)lls,0 + | P(d1) — P(¢2) 14,01

1 (4.18)
< §||¢1 — @2llx,0 for @1, 2 € Ty,

since we can achieve that

1
IN@1) = N(@2)llsx0 = 7llé1 = ¢2ll0

according to Sect. 2 for A sufficiently small. This means that A, is a contraction mapping

from %, into itself and hence a fixed point ¢, indeed exists. So the function v, (x) :=
2

AP~ (w(Ax) + ¢ (Ax)) is a continuum solutions of (1.11) satisfying limy g v, (x) = 0

uniformly in R¥ and uy (x) = G~ (vy(x)) is our desired solution to (1.2).

N+2 N+1
The case =5 < p < ¥ 53

In this case, the problem (4.5) may not be solvable under our situation unless & is chosen in
a very special way. So, instead of solving (4.5), we consider the following projected problem

A — Vi () + pwP~lg = Si(w) + N(p) + P(9) + Yivy i Zi, x € RY;
lim ¢(x) =0,

|x|—400

(4.19)

where ¢; are constants. Moreover, we will slightly change the previous definition of the norms

as

2
-1

||q>||5f§— sup |x—$| 16|+ sup |x —&|7

lx—§|< |x—&1=1

¢ ()]
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and
242
11 = sup 1x =P Rl + sup |x — TP ).
l[x—=§|<1 [x—=§|=1

Just as the case p > %—f;, we can prove that (4.19) is indeed solvable and achieve a solution
(D, &), c1(M &), c2(A, &), ...,cn (X, E)). We then obtain a solution of the problem (4.5)
ifc;i(A, &) =0foralli =1,2,..., N

Here, we also fix o € (0, min {2, ﬁ }) and find the error of the approximate solution
is

151 )19, < Cp(n), (4.20)

**S—

where p(A) = o(1) as A — 0. So we can define

Sho = [(¢,c1,cz,.. cen) € RV g ) + Z|cl| < Cp()
i=1

Similarly, as the proof of the previous case, jointly with Lemma 4.1-(2), we conclude that
the operator (¢, ¢, ¢2, ..., cn) = Ax(p, c1.c2, ..., cn) = T (S1(w) + N(p) + P()) is
a contraction mapping in X, , and hence achieve a fixed point

(@A, &), c1 (A, ), 2, 8) ..., en (A, §)) € By g,

which satisfies the Eq. (4.19). Moreover, under the condition (1.10), we observe that p (i)
can be taken as A? in (4.20) for any 0 € (O = 1) That is,

2
N Vil Tw) ||, < €A% for6 € (0.N —2), “.21)
4
IS)IY, < €% for o e <o - 1) (4.22)
and
©) 0 4
oG, Ol ¢ + max |c,(A)| < Cxr” for6 € (0, p— (4.23)
p—
Thus, to complete our proof, by Lemma 4.1-(2) we need to find £ = &, such that
2
[, (800 + Va7 1167 w) 4 N @60 + PG s»)— =0 1=j=N.
RN
(4.24)
Combining the arguments in [26] and noticing that < N — 2, we know
2w 4
f A p- IVAZ(A Tw)— =oXrT)ask — 0 (4.25)
RN 8xj

and

i
—T

/ N(¢(A,E))a—w o(Ar~T)yasi — 0. (4.26)
RN 8)6]

Moreover, noticing that

4

|P(p(x, £)) < CAP TV, (Jw?p(h, &) + 9 (1, E)1),
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we have

SC/\H/ V,\¢(A,S)(w2+¢2()»,‘§))§l
RN X

J

4 Jw
< CAP-T ‘f Vig (A, &) —
RN 0x

J
4
=o(rT)asA — 0. (4.27)
Now, we claim that the dominant term in (4.24) is
/ S(w )7 (4.28)
RN 8x,
Note that
4
Sw) =C, AFTwPH? 4o TwPt2) as A — 0,
We have
/ S(w)——C A= 1/ wp"'z(x—i—é) (x—i—é)dx—i—o()» Nyas i — 0.
RN 8xj RN
(4.29)
If we define

) —H o dw
FP@ = [ (S0 + VAT TTI0TT0) 4 N@ .60 + POG.) 5o
RN Xj
and ;. (5) = (F" ), F2 &), ..., FV)(£)). Then, by (4.25)~(4.27) and (4.29), we achieve
that

L
—T

ﬂ%azqm%é‘””u+ﬂ—u+QM+m yas k=0

and so we can show the existence of a solution &) to (4.24) since 0 is a critical point of w.
Thus, we conclude that

(F.(6),8) < Ofor |§] =,

where § is a fixed small constant. Using this fact and degree theory we obtain the existence
of &, such that F; (§,) = 0 in Bs. This complete the proof of Theorem 1.3.
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