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Abstract
We consider the following quasilinear Schrödinger equations of the form

�u − εV (x)u + u�u2 + u p = 0, u > 0 in R
N and lim|x |→∞u(x) = 0,

where N ≥ 3, p > N+2
N−2 , ε > 0 and V (x) is a positive function. By imposing appropriate

conditions on V (x),we prove that, for ε = 1, the existence of infinitymany positive solutions

with slow decaying O(|x |− 2
p−1 ) at infinity if p > N+2

N−2 and, for ε sufficiently small, a positive

solution with fast decaying O(|x |2−N ) if N+2
N−2 < p < 3N+2

N−2 . The proofs are based on
perturbative approach. To this aim, we also analyze the structure of positive solutions for the
zero mass problem.

Mathematics Subject Classification 35J20 · 35J60 · 35Q55

1 Introduction

The nonlinear Schrödinger equation

i zt = −�z + W (x)z − [�|z|2]z − |z|p−1z, (t, x) ∈ (0,∞) × R
N , (1.1)

where W : RN → R is a given potential, has been introduced in [1–3] to study a model of
a self-trapped electrons in quadratic or hexagonal lattices (see also [4]). In those references
numerical and analytical results have been given.
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Here of particular interest is in the existence of standingwave solutions, that is, solutions of
type z(x, t) = exp(−i Et)u(x), where E ∈ R. Assuming that the amplitude u(x) is positive
and vanishing at infinity, it is well known that z satisfies (1.1) if and only if the function u
solves the following equation of quasilinear elliptic type

⎧
⎨

⎩

�u − εV (x)u + u�u2 + u p = 0, x ∈ R
N ;

u > 0 and lim|x |→∞u(x) = 0, (1.2)

where V (x) = W (x) − E is the new potential function. In the rest of this paper we will
assume that V (x) is a bound and positive function.

Because of the presence of the quasilinear term u�u2, we can see that p = 3N+2
N−2 is

the critical exponent for the existence of solutions from the view of variational methods.
For the subcritical case, that is, 1 < p < 3N+2

N−2 , construction of solutions to this problem
by variational methods has been a hot topic during the last decade. A typical result for the
Eq. (1.2) is, up to our knowledge, due to Liu et al. [5]. The idea in [5] is to make a change
of variable and reduce the quasilinear problem (1.2) to a semilinear one and the Orlicz space
framework is used to prove the existence of positive solutions via the mountain pass theorem.
Subsequently, the same method of changing of variable is also used in Colin and Jeanjean
[6], but the usual Sobolev space H1(RN ) is used as the working space. Recently, Shen and
Wang [7] study the following generalized quasilinear Schrödinger equation:

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = h(u), x ∈ R
N , (1.3)

where g2(s) = 1 + 1
2 (l(s

2)′)2. By introducing the variable replacement

v = G(u) =
∫ u

0
g(t)dt, u = G−1(v) (1.4)

and imposing some conditions on V (x), the authors obtain the positive solution for (1.3) with
a general function l(s) when h(s) is superlinear and subcritical. But under the condition

lim|x |→∞|x |2V (x) = 0, (1.5)

the solvability of the Eq. (1.2) with 1 < p < 3N+2
N−2 still remains open.

Subcriticality is a rather essential constraint in the use ofmany variationalmethods devised
in the literature andmany papers [8–12] focused on the subcritical case. Very little is known in
the supercritical case since a major technical obstacle in understanding such problems stems
from the lack of Sobolev embeddings suitably fit to a weak formulation of this problem.
Direct tools of the calculus of variation, very useful in subcritical, and even critical cases,
are not appropriate in the supercritical. In the critical case, Liu et al. [5] asked the following
open question: are there solutions for (1.2) in the case of p = 3N+2

N−2 ? However, generally
speaking, except some results relate to the critical exponent, see, for instance, [13–20], there
are still no conclusive results about the existence of positive solutions for the problem (1.2)
with p = 3N+2

N−2 or p > 3N+2
N−2 .

In all the papers mentioned above variational methods are used. In this paper, we shall
explore the distinctive nature of this problem for having two critical exponents, one being
p = 3N+2

N−2 (from the quasilinear term u�u2) and the other being p = N+2
N−2 which is H1-

critical (from the term �u). We shall concentrate in the problem (1.2) when the exponent
p is H1-supercritical, that is, p > N+2

N−2 , (which includes p = 3N+2
N−2 ), and we establish

a new phenomenon from the viewpoint of singular perturbations. Noticing that (1.2) is a
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quasilinear problem, we adopt the change of variables which enable us to convert the original
quasilinear problem (1.2) into a semilinear problem

⎧
⎨

⎩

�v − εV (x) G−1(v)

g(G−1(v))
+ f (v) = 0, x ∈ R

N ;
v > 0 and lim|x |→∞v(x) = 0,

(1.6)

where f (v) = G−1(v)p

g(G−1(v))
and g(s) = √

1 + 2s2. Thus, if v is a solution of (1.6), we have

u = G−1(v) is a solution of (1.2).
A solution v to (1.6) is called fast decaying if v = O(|x |2−N ) at infinity and slow decaying

if v >> O(|x |2−N ). Then, to describe our result about the fast and slow decaying solutions,
our starting point is the zero mass problem

⎧
⎨

⎩

�u + u�u2 + u p = 0, x ∈ R
N ;

u > 0 and lim|x |→∞u(x) = 0. (1.7)

Applying the change of variables (1.4) again, the quasilinear problem (1.7) can be reduced
to the equations of the form

⎧
⎨

⎩

�v + f (v) = 0, x ∈ R
N ;

v > 0 and lim|x |→∞v(x) = 0. (1.8)

Our first result concerns with the structure of positive radial solutions of the zero mass
problem (1.7).

Theorem 1.1 Suppose that p > 1. Then

(1) there exist no fast decaying solutions to the problem (1.7) if p ≥ 3N+2
N−2 or 1 < p ≤ N+2

N−2 ;
(2) there exist a unique fast decaying radial solution to the problem (1.7) if N+2

N−2 < p <
3N+2
N−2 ;

(3) there exist a one-parameter family of slow decaying radial solutions to the problem
(1.7) if p > N+2

N−2 .

Remark 1.1 Some cases of the results of Theorem 1.1 are contained in [21,22]. More specif-
ically, similarly to the standard Liouville theorem, if 1 < p < N+2

N−2 , the authors proved
the nonexistence results of fast decaying solutions to (1.7) (see [21]). In [22], the authors
showed the existence of a unique fast decaying solution and a one-parameter family of slow
decaying solutions to (1.7) if N+2

N−2 < p < 3N+2
N−2 via the results introduced in [23]. Moreover,

the authors in [22] also pointed out that they did not know whether there are solutions for
the Eq. (1.7) with p = N+2

N−2 . Particularly, in Theorem 1.1, we draw the definite conclusion
about this case by using the Pohozeav identity.

Theorem 1.1 shows that the structure of solutions changes along with the variations of the
power p and we remark that the solvability of the Eq. (1.7) heavily depends on the power
p. Let us explain the main reason for such a rich phenomenon. On one hand, f (v) → v p as

v → 0. On the other hand, f (v) → 2
p−3
4 v

p−1
2 as v → +∞. That is, the nonlinearity f is

not a pure power of v but f has both H1-subcritical and H1-supercritical growth in v > 0.
In [24], the authors consider a similar model

f (u) =
{
u p u ≥ 1;
uq u < 1,
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where 1 < p < N+2
N−2 < q and give an almost complete description for the structure of

positive radial solutions by a shooting argument.
The following result is about the fast decaying solutions of the Eq. (1.2).

Theorem 1.2 Assume that

V > 0, V ∈ L∞(RN ) and V (x) = o(|x |−2) as |x | → +∞ (1.9)

hold. Then for ε sufficiently small the problem (1.2) has a positive fast decaying solution if
N+2
N−2 < p < 3N+2

N−2 .

ComparedwithTheorem1.1, it is natural to askwhether the nonexistence of a fast decaying
solution remains true for (1.2) when p ≥ 3N+2

N−2 . This may be in general a difficult question to
answer if no other conditions imposed on V (x). For the special case x ·∇V (x)+2V (x) ≥ 0,
the authors in [25] show the nonexistence results of fast decaying solutions by a Pohozeav
identity for the Eq. (1.2) in the case p ≥ 3N+2

N−2 and ε = 1.
Our final result concerns the existence of slow decaying solutions.

Theorem 1.3 Assume that ε = 1. Then the problem (1.2) has a continuum of solutions uλ(x)
such that lim

λ→0
uλ(x) = 0 uniformly in R

N provided that either N ≥ 4, p > N+1
N−3 and the

condition (1.9) holds or N ≥ 3, N+2
N−2 < p < N+1

N−3 and there exist C > 0, μ > N such that

V (x) ≤ C |x |−μ for x ∈ R
N . (1.10)

Remark 1.2 In this theorem, we answer the question raised in [5] for p = 3N+2
N−2 .

The proofs of Theorems 1.2 and 1.3 are based on perturbative approach, introduced by
Dávila et al. [26–29] in the study of fast and slow decaying solutions for second order
or nonlinear Schrödinger equations and exterior domain problems. Some of our ideas are
motivated from these papers.

In the fast-decaying case, we consider the problem (1.6) as small perturbation of the
problem (1.8) when ε > 0 is sufficiently small. For a point ξ ∈ R

N used as the reference
origin, the function v f (x+ξ) is considered as an initial approximation, where v f is a solution
of (1.8). This function will constitute a good approximation for small ε. By adjusting ξ, we
prove that the solutions we want can be achieved.

As for the slow decaying solution of the Eq. (1.2), we set ε = 1 and consider the equation

with a parameter λ by means of replacing the variable v in the Eq. (1.6) by λ
2

p−1 v(λx + ξ)

⎧
⎪⎨

⎪⎩

�v − Vλ(x)λ
− 2

p−1 G−1(λ
2

p−1 v)

g(G−1(λ
2

p−1 v))

+ λ
− 2p

p−1 f (λ
2

p−1 v) = 0, x ∈ R
N ;

v > 0 and lim|x |→∞v(x) = 0,
(1.11)

where λ > 0, ξ ∈ R
N and Vλ(x) = λ−2V (

x−ξ
λ

). We observe that λ
− 2

p−1 G−1(λ
2

p−1 v)

g(G−1(λ
2

p−1 v))

→

v and λ
− 2p

p−1 f (λ
2

p−1 v) → v p as λ → 0. Thus the problem may be regarded as small
perturbation of the problem

�v − Vλv + v p = 0

when λ > 0 is sufficiently small. Consequently, infinitely many positive solutions with slow

decaying O(|x |− 2
p−1 ) at infinity can be constructed similar to the perturbative procedure

introduced by Dávila et al. [26].
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In this paper, we make use of the following notations: the symbol C denotes a positive
constant (possibly different) independent with λ. A ∼ B if and only if there exist two positive
constants a, b such that aA ≤ B ≤ bA. v f denotes the unique fast decaying solution of (1.8).

2 Proof of Theorem 1.1

In this section, we analyze the structure of positive decaying solutions of (1.7). We first
prove the nonexistence of fast-decaying solutions for p ≤ N+2

N−2 or p ≥ 3N+2
N−2 by using the

Pohozaev identity. Then we show the existence of the fast decaying solution for (1.7) by
using the classical Berestycki–Lions condition in [30] for N+2

N−2 < p < 3N+2
N−2 . Finally we

use a perturbative approach to prove the existence of a family of slow-decaying solutions for
p > N+2

N−2 .

To prove the nonexistence results for the Eq. (1.8), we recall the following Pohozaev
identity.

Lemma 2.1 (Pohozaev identity) Suppose F(x, u, r) ∈ C1(RN × R × R
N ) satisfies

divFr (x, u,∇u) = Fu(x, u,∇u), (2.1)

where

Fr (x, u, r) = (Fr1(x, u, r), Fr2(x, u, r), . . . , FrN (x, u, r)), r = (r1, r2, . . . , rN ),

Fri (x, u, r) = ∂F(x, u, r)

∂ri
, i = 1, 2, . . . , N

and

Fu(x, u, r) = ∂F(x, u, r)

∂u
.

Then, if F(x, u,∇u), x · Fx (x, u,∇u) and Fr (x, u,∇u) · ∇u ∈ L1(RN ), there holds the
following identity

N
∫

RN
F(x, u,∇u)dx +

∫

RN
x · Fx (x, u,∇u)dx −

∫

RN
Fr (x, u,∇u) · ∇udx = 0.

(2.2)

We omit the proof of this lemma, since it can be mainly found in [31].
To present the Pohozaev identity associated to (1.7), we rewrite the Eq. (1.7) as

div
(
g2(u)∇u

) − g(u)g′(u)|∇u|2 + u p = 0. (2.3)

Thus, the integrands in (2.2) can be expressed as

F(x, u,∇u) = 1

2
g2(u)|∇u|2 − 1

p + 1
u p+1,

x · Fx (x, u,∇u) = 0

and

Fr (x, u,∇u) · ∇u = g2(u)|∇u|2.
Consequently, we achieve the following lemma based on Lemma 2.1 under the conditions
|∇u|2, u2|∇u|2 and u p+1 ∈ L1(RN ).
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Lemma 2.2 Suppose that u ∈ C2(RN ) is a solution of (1.7). Then

N − 2

2

∫

RN

(
1 + 2u2

) |∇u|2dx = N

p + 1

∫

RN
|u|p+1dx (2.4)

if |∇u|2, u2|∇u|2 and u p+1 ∈ L1(RN ).

Equation (1.7) can be rewritten as

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 = u p, x ∈ R
N , (2.5)

where g2(u) = 1 + 2u2. By Lemma 2.2, the Pohozaev identity associated to (2.5) is

N − 2

2

∫

RN
|∇u|2dx + (N − 2)

∫

RN
u2|∇u|2dx = N

p + 1

∫

RN
u p+1dx . (2.6)

On the other hand, the classical solution u ∈ D1,2(RN ) of (2.5) satisfies
∫

RN
[g2(u)∇u∇φ + g(u)g′(u)|∇u|2φ]dx =

∫

RN
u pφdx .

By taking φ = u, we achieve
∫

RN
|∇u|2dx + 4

∫

RN
u2|∇u|2dx =

∫

RN
u p+1dx . (2.7)

Consequently, combining (2.6) and (2.7), we have
[
N − 2

2
− N

p + 1

] ∫

RN
|∇u|2dx +

[

(N − 2) − 4N

p + 1

] ∫

RN
u2|∇u|2dx = 0. (2.8)

If p ≥ 3N+2
N−2 , then (N − 2) − 4N

p+1 ≥ 0 and N−2
2 − N

p+1 > 0. Therefore, (2.8) implies that

u = 0 under this situation. Similarly, if p ≤ N+2
N−2 , it follows that (N − 2) − 4N

p+1 < 0 and
N−2
2 − N

p+1 ≤ 0. Thus, (2.8) also shows that u = 0. So there are no nonzero solutions for

(1.7) if p ≤ N+2
N−2 or p ≥ 3N+2

N−2 .

This proves (1) of Theorem 1.1.
Next we prove the existence of fast decaying solutions to (1.7). By the change of variable

u = G−1(v) we only need to consider (1.8). To this end we recall the following classical
proposition by Berestycki and Lions [30].

Proposition 2.1 Suppose that the following assumptions hold:

(F-1) f (0) = 0 and lim
s→0+

f (s)
sl

≤ 0, where l = N+2
N−2 ;

(F-2) There exists ζ > 0 such that F(ζ ) > 0, where F(ζ ) = ∫ ζ

0 f (s)ds;
(F-3) Let ζ0 = inf {ζ : ζ > 0, F(ζ ) > 0} . If f (s) > 0 for all s > ζ0, then lim

s→+∞
f (s)
sl

= 0.

Then the problem (1.8) has a positive, spherically symmetric and decreasing (with r) solution
v such that v ∈ D1,2(RN ) ∩ C2(RN ).

We now show that f (s) satisfies the conditions (F-1)–(F-3) in Proposition 2.1.

By the definition of f (s), we know that (F-2) is trivial. Noticing that lim
s→0

G−1(s)
s = 1, we

have

lim
s→0+

f (s)

sl
= lim

s→0+
G−1(s)p

g(G−1(s))sl
= lim

s→0+
s p

sl
= 0,
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which shows that f (s) satisfies the condition (F-1).
To verify the condition (F-3), it suffices to show that

lim
s→+∞

f (s)

sl
= 0

since ζ0 = 0 and f (s) > 0 for all s > 0. Combining the fact lim
s→+∞

G−1(s)√
s

= 2
1
4 , we deduce

that

lim
s→+∞

f (s)

sl
= lim

s→+∞
G−1(s)p

g(G−1(s))sl
= lim

s→+∞
2

p−3
4 s

p−1
2

sl
= 0.

This proves (2) of Theorem 1.1.
Finally we prove (3) of Theorem 1.1. To prove the existence of slow decaying solutions,

since we are considering the autonomous case, that is, V (x) ≡ 0, we can restrict to the
radially symmetric case. For this reason, we take v(x) = v(r), where r = |x |.

We first consider the problem in the entire space
{

�u + u p = 0, x ∈ R
N ;

u(0) = 1.

It is well known that this problem possesses a unique positive symmetric solution w(|x |)
whenever p > N+2

N−2 . Then all radial solutions to this problem defined inRN can be expressed
as

wλ(|x |) = λ
2

p−1 w(λ|x |), λ > 0

and, at a main order, one has

w(r) = Cp,Nr
− 2

p−1 + o(1) as r = |x | → +∞,

which implies that this behavior is actually common to all solutions wλ(r).
Since the problem (1.8) does not carry any parameter explicitly, for λ > 0, we can make

parameters appear by means of replacing the variable v in the equation by λ
2

p−1 v(λ|x |), in
such a way the problem (1.8) becomes

⎧
⎨

⎩

�v + λ
− 2p

p−1 f (λ
2

p−1 v) = 0, r ∈ (0,+∞);
v > 0 and lim

r→∞v(r) = 0.
(2.9)

Then, jointly with the properties of G−1(v) = v + o(1) and g(G−1(v)) = 1 + o(1) as

v → 0, if v is uniformly bounded, we observe that λ− 2p
p−1 f (λ

2
p−1 v) → v p as λ → 0. Thus

the problem may be regarded as small perturbation of the problem

�v + v p = 0

when λ > 0 is sufficiently small. Consequently, a positive solution with slow decaying

O(|x |− 2
p−1 ) at infinity can be constructed by asymptotic analysis and Liapunov-Schmidt

reductionmethod. To bemore specific, the idea of the proof of Theorem1.1-(3) is, for λ small,

to consider the function λ
2

p−1 w(λ|x |) as an initial approximation. This scaling will constitute
a good approximation under our situations for λ sufficiently small. Then, by a classical fixed
point argument for contraction mappings, we prove that (2.9) possesses solutions as desired.
Similar idea has been used in [26,28].
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Under appropriate norms

‖φ‖∗ = sup
|x |≤1

|x |σ |φ(x)| + sup
|x |≥1

|x | 2
p−1 |φ(x)| (2.10)

and

‖h‖∗∗ = sup
|x |≤1

|x |2+σ |h(x)| + sup
|x |≥1

|x |2+ 2
p−1 |h(x)|, (2.11)

where σ > 0, we first consider the solvability of the linear problem
{

φ′′ + N−1
r φ′ + pw p−1φ = h, r ∈ (0,+∞);

lim
r→+∞φ(r) = 0

(2.12)

and thus we need the following lemma which is Lemma A. 1 proved by Dávila et al. [26].

Lemma 2.3 Assume 0 < σ < N − 2 and p > N+2
N−2 . Then there exists a constant C > 0

such that for any h satisfying ‖h‖∗∗ < +∞, Eq. (2.12) has a solution φ = T (h) such that
T define a linear map and

‖φ‖∗ = ‖T (h)‖∗ ≤ C‖h‖∗∗.

Let us look for a solution to (2.9) of the form v = w + φ, which yields the following
equation for φ = φ(r)

{�φ + pw p−1φ = S(w) + N (φ), r ∈ (0,+∞);
lim

r→+∞φ(r) = 0,
(2.13)

where

S(w) = −�w − λ
− 2p

p−1 f (λ
2

p−1 w)

and

N (φ) = λ
− 2p

p−1 f (λ
2

p−1 w) + pw p−1φ − λ
− 2p

p−1 f (λ
2

p−1 (w + φ)).

We first estimate the error ‖S(w)‖∗∗ of the approximate solution. The fact

|S(w)| = |λ− 2p
p−1 f (λ

2
p−1 w) − w p|

and the properties of the change of variables (1.4) show that, for Cp > 0,

S(w) = Cpλ
4

p−1 w p+2 + o
(
λ

4
p−1 w p+2

)
as λ → 0.

Thus, it follows that

|S(w)| ≤ Cλ
4

p−1 |w|p+2.

We then conclude

sup
|x |≤1

|x |2+σ |S(w)| ≤ Cλ
4

p−1 ‖w‖p+2∞ sup
|x |≤1

|x |2+σ ≤ Cλ
4

p−1 . (2.14)

On the other hand, recalling that w(x) ≤ C(1 + |x |)− 2
p−1 for x ∈ R

N , we obtain

sup
|x |≥1

|x |2+ 2
p−1 |S(w)| ≤ Cλ

4
p−1 sup

|x |≥1

( |x |
1 + |x |

) 2(p+2)
p−1 ≤ Cλ

4
p−1 . (2.15)
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From (2.14) and (2.15), we have

‖S(w)‖∗∗ ≤ Cλ
4

p−1 . (2.16)

In what follows, the proof relies on the contraction mapping theorem. We observe that φ
solves (2.13) if and only if φ is a fixed point for the operator

φ = T (S(w) + N (φ)),

where T is introduced in Lemma 2.3. That is to say, φ solves (2.13) if and only if φ is a fixed
point for the operator

A(φ) := T (S(w) + N (φ)).

We define


 =
{
φ : RN → R

∣
∣ ‖φ‖∗ ≤ Cλ

4
p−1

}

and we will prove that A has a fixed point in 
.

For any φ ∈ 
 and σ ∈
(
0,min

{
2, 2

p−1

})
, according to the arguments given in [26],

we have

‖N (φ)‖∗∗ ≤ C[‖φ‖2∗ + ‖φ‖p∗ ] (2.17)

since

N (φ) = w p + pw p−1φ − (w + φ)p + o(1) as λ → 0.

Therefore, combining (2.16), (2.17) and Lemma 2.3, it follows that

‖A(φ)‖∗ ≤ C[‖S(w)‖∗∗ + ‖N (φ)‖∗∗]
≤ C[λ 4

p−1 + λ
8

p−1 + λ
4p
p−1 ] ≤ Cλ

4
p−1 ,

(2.18)

which implies that A(
) ⊂ 
.

We still have to prove thatA is a contraction mapping in 
. Let us take φ1, φ2 ∈ 
. Then
we have

‖A(φ1) − A(φ2)‖∗ ≤ C‖N (φ1) − N (φ2)‖∗∗. (2.19)

Moreover, noting that

|N (φ1) − N (φ2)| ≤ C
(
w p−2(|φ1| + |φ2|) + |φ1|p−1 + |φ2|p−1) |φ1 − φ2|,

we have the estimate

‖A(φ1) − A(φ2)‖∗ ≤ C‖N (φ1) − N (φ2)‖∗∗

≤ C
[
‖φ1‖min{1,p−1}∗ + ‖φ2‖min{1,p−1}∗

]
‖φ1 − φ2‖∗

≤ 1

2
‖φ1 − φ2‖∗

for suitable smallλ.Thismeans thatA is a contractionmapping from
 into itself, and hence a

fixed point φ in this region indeed exists. So the function vλ(|x |) := λ
2

p−1 (w(λ|x |)+φ(λ|x |))
is a continuum solutions of (2.13) satisfying lim

λ→0
vλ(|x |) = 0 uniformly inRN and uλ(|x |) =

G−1(vλ(|x |)) is our desired solution. This complete the proof of Theorem 1.1.
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3 Proof of Theorem 1.2

In this section, we will construct a fast decaying solution to the problem (1.2) when N+2
N−2 <

p < 3N+2
N−2 by the reduction method. The idea of the proof of Theorem 1.2 is, for ξ ∈ R

N and
ε small, to consider the function v f (x + ξ) as an initial approximation, where v f (x) is the
unique positive radial solution of the zero mass problem (1.7) stated in Theorem 1.1. These
functions will constitute good approximations under our situations for suitable ξ ∈ R

N and
ε sufficiently small. Then, by adjusting ξ,we prove that (1.2) possesses a solution as desired.

At the beginning, we state some notationswhichwill be used in the following.We consider
the initial value problem

{
v′′ + N−1

r v′ + f (v) = 0, r ∈ (0,+∞);
v(0) = d > 0, v′(0) = 0,

(3.1)

where f (s) = G−1(s)p

g(G−1(s))
. By Theorem 1.1, there exists a unique d∗ > 0 such that the

corresponding solution v f (r; d∗) is the unique positive fast decaying solution. Moreover,

z0(r) := ∂v f
∂d (r; d∗) satisfies the following initial value problem

{
φ′′ + N−1

r φ′ + f ′(v f )φ = 0, r ∈ (0,+∞);
φ(0) = 1 > 0, φ′(0) = 0.

(3.2)

Then by Lemma 4.4 in [22], we have that v f is non-degenerate in D1,2
r (RN )–radial functions

in D1,2. Our next lemma shows that it is nondegenerate in the class of bounded functions.
Let Zi = ∂v f

∂xi
for 1 ≤ i ≤ N . Then we have the following result.

Lemma 3.1 If φ satisfies |φ| ≤ C and

�φ + f ′(v f )φ = 0, x ∈ R
N , (3.3)

then φ ∈ W = Span {Z1, Z2, . . . , Zn} .

Proof If φ is bounded and satisfies (3.3), by bootstrapping, we achieve φ(x) = O(|x |2−N )

as |x | → +∞. Expanding φ as

φ(x) =
∞∑

k=0

φk(r)�k(ϑ),

we see that φk is a solution of

φ′′
k + N − 1

r
φ′
k +

(

f ′(v f ) − λk

r2

)

φk = 0 for all r > 0 and k ≥ 0. (3.4)

For mode 0, noticing that λ0 = 0, we know φ0(r) is a solution of (3.4) and, by Lemma 4.2
in [22], φ0(r) satisfies

rλ∗
φ0(r) → −∞ as r → ∞,

where λ∗ =
{

N−1
2 if N ≥ 4;

1
2 if N = 3.

Thus, if φ0(r) ∈ D1,2
r (RN ), we conclude that

rλ∗
z0(r) =

{
O(r

3−N
2 ), if N ≥ 4;

O(r− 1
2 ), if N = 3,
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which is a contradiction. For mode k with k > 1, according to Lemma A. 3 in [26], we
conclude that the solution φk to (3.4) is zero by the maximum principle. Consequently,
jointly with the nondegeneracy in radial class, we have

φ = φ1 ∈ Span {Z1, Z2, . . . , ZN } .

��
We introduce appropriate norms

‖φ‖∗,ξ = sup
x∈RN

< x − ξ >σ |φ(x)| (3.5)

and

‖h‖∗∗,ξ = sup
x∈RN

< x − ξ >2+σ |h(x)|, (3.6)

where < · >:= (
1 + | · |2) 1

2 and 0 < σ < N − 2. We first solve the linear problem
⎧
⎪⎪⎨

⎪⎪⎩

�φ + f ′(v f )φ = h + ∑N
i=1 ci f

′(v f )Zi , x ∈ R
N ;

∫

RN f ′(v f )φZi = 0, i = 1, 2, . . . , N ;
lim|x |→+∞φ(x) = 0.

(3.7)

Lemma 3.2 Let  > 0 and |ξ | ≤ . Assume N+2
N−2 < p < 3N+2

N−2 and σ < N − 2. Then
there is a linear map (φ, c1, . . . , cN ) = T (h) defined whenever ‖h‖∗∗,ξ < ∞ such that
(φ, c1, . . . , cN ) satisfies (3.7) and

‖φ‖∗,ξ +
N∑

i=1

|ci | ≤ C‖h‖∗∗,ξ . (3.8)

Moreover, ci = 0 for all 1 ≤ i ≤ N if and only if
∫

R

h
∂v f

∂xi
= 0 for 1 ≤ i ≤ N . (3.9)

Proof We will divide the proof into two steps.

Step 1. A priori estimate
By taking h = h(1) + h(2) in (3.7), where h(1) ∈ W1 = {

f ′(v f )Z1, f ′(v f )Z2, . . . ,

f ′(v f )ZN
}
and h(2) ∈ W⊥

1 , we have

�φ + f ′(v f )φ = h(1) + h(2) +
N∑

i=1

ci f
′(v f )Zi . (3.10)

If we take h(1) = −∑N
i=1 ci f

′(v f )Zi , that is,

ci = −
∫

RN h(1)Zi
∫

RN f ′(v f )|Zi |2 for i = 1, 2, . . . , N , (3.11)

it follows from (3.10) that

�φ + f ′(v f )φ = h(2) (3.12)
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and ci = 0 for all 1 ≤ i ≤ N if and only if
∫

R

h
∂v f

∂xi
= 0 for 1 ≤ i ≤ N .

So, in what follows, we consider
⎧
⎪⎪⎨

⎪⎪⎩

�φ + f ′(v f )φ = h(2), x ∈ R
N ;

∫

RN f ′(v f )φZi = 0, i = 1, 2, . . . , N ;
lim|x |→+∞φ(x) = 0.

(3.13)

We first prove the priori estimates (3.8) by using the contradiction argument. Suppose
that there exist φn, h

(2)
n such that ‖φn‖∗,ξ = 1 and ‖h(2)

n ‖∗∗,ξ = o(1) as n → +∞. By the
definition of ‖φn‖∗,ξ , we can take xn ∈ R

N with the property

< xn − ξ >σ |φn(xn)| ≥ 1

2
. (3.14)

Then, we again have to distinguish two possibilities. Along a subsequence, it follows that
xn → x0 ∈ R

N or |xn | → +∞.

If xn → x0, standard elliptic estimates show that φn → φ uniformly on compact sets of
R

N . Moreover, φ is a solution to (3.13) with h(2) = 0 satisfying

< x0 − ξ >σ |φ(x0)| ≥ 1

2
(3.15)

and |φ(x)| < +∞. Thus Lemma 3.1 shows that

φ = φ1 ∈ Span {Z1, Z2, . . . , ZN } .

Then the facts
∫

RN ∇φ · ∇Zi = 0 for i = 1, 2, . . . , N show that ∇φ = 0. We achieve a
contradiction to (3.15) since lim|x |→+∞φ(x) = 0.

If xn → +∞,We consider φ̃n(y) = |xn |σ φn(|xn |y+xn +ξ) and observe that φ̃n satisfies

�φ̃n + |xn |2 f ′(v f ,n)φ̃n = h̃(2)
n , y ∈ R

N ,

where v f ,n(y) = v f (|xn |y + xn + ξ) and h̃(2)
n (y) = |xn |2+σ h(2)

n (|xn |y + xn + ξ). Noticing
that ‖φn‖∗,ξ = 1, we have

|φ̃n(y)| ≤ 1

(y + x̂n)σ
, ∀y ∈ R

N\ {−x̂n
}
, (3.16)

where x̂n := xn|xn | . So φ̃n is uniformly bounded on compact sets of RN\ {−x̂n
}
. Similarly,

considering that

|h̃(2)
n (y)| ≤ 1

(y + x̂n)σ
‖h(2)

n ‖∗∗,ξ , ∀y ∈ R
N\ {−x̂n

}
,

we obtain h̃(2)
n → 0 uniformly on compact sets ofRN\ {−x̂n

}
as n → +∞. Thus, by elliptic

estimates, we have φ̃n → φ̃ uniformly on compact sets of RN\ {
ê
}
and φ̃ satisfies

{
�φ̃ = 0, y ∈ R

N\ {
ê
} ;

|φ̃(y)| ≤ 1
|y−ê|σ , ∀y ∈ R

N\ {
ê
}
,
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where ê = − lim
n→+∞

xn|xn | . By the maximum principle, we conclude that φ̃ = 0 which is

impossible since φ̃
(−ê

) �= 0.

Step 2. Existence
We first want to solve (3.7) on a bounded domain BR(ξ). Let us consider the subspace

X =
{

φ ∈ D1,2
0 (BR(ξ)) and

∫

BR(ξ)

ψ f ′(v f )Zi = 0, i = 1, 2, . . . , N

}

.

Then, according the arguments in [32], finding solution to (3.7) in this case is equivalent to
finding φ ∈ X such that

∫

BR(ξ)

∇φ∇ψ −
∫

BR(ξ)

f ′(v f )φψ +
∫

BR(ξ)

hψ = 0 for all ψ ∈ X . (3.17)

Now, for h satisfying ‖h‖∗∗,ξ < +∞, let us denote by φ = A(h) the unique solution of the
problem

∫

BR(ξ)

∇φ∇ψ +
∫

BR(ξ)

hψ = 0 for all ψ ∈ X .

Thus, (3.17) can be written as

φ − A( f ′(v f )φ) = A(h) for φ ∈ X

and, by the compactness of Sobolev’s embedding, the map φ → f ′(v f )φ is compact.
Hence, we conclude the existence of the solution by the Fredholm alternative since the

priori estimate (3.8) implies that the only solution of this equation is φ = 0 when h = 0.
Finally, thanks to the priori estimate again, we can let R → +∞ and obtain the existence in
the whole space. ��

Now we begin to prove Theorem 1.2. We look for a solution of the form v = v f + φ to
the Eq. (1.6) and thus acieve the following equation for φ

⎧
⎨

⎩

�φ + f ′(v f )φ = E(v f ) + F(φ) + M(φ), x ∈ R
N ;

lim|x |→+∞φ(x) = 0, (3.18)

where

E(v f ) = εV (x − ξ)
G−1(v f )

g(G−1(v f ))
,

F(φ) = f (v f ) + f ′(v f )φ − f (v f + φ)

and

M(φ) = εV (x − ξ)

[
G−1(v f + φ)

g(G−1(v f + φ))
− G−1(v f )

g(G−1(v f ))

]

.

However, the problem (3.18) may not be solvable under our situation unless ξ can be chosen
in a very special way. So instead of solving (3.18), we consider the following projected
problem

⎧
⎨

⎩

�φ + f ′(v f )φ = E(v f ) + F(φ) + M(φ) + ∑N
i=1 ci f

′(v f )Zi , x ∈ R
N ;

lim|x |→+∞φ(x) = 0, (3.19)

123



144 Page 14 of 24 Y. Cheng, J. Wei

where ci are constants.
For 2

p−1 < σ < N − 2, we first estimate the error ‖E(v f )‖∗∗,ξ of the approximate
solution v f . Considering that

∣
∣
∣
∣

G−1(v f )

g(G−1(v f ))

∣
∣
∣
∣ ≤ v f

and

|v f | ≤ C(1 + |x |)2−N for all x ∈ R
N ,

we have

‖E(v f )‖∗∗,ξ = sup
x∈RN

< x − ξ >2+σ |E(v f )|

≤ ε sup
x∈RN

< x − ξ >2+σ V (x − ξ)|v f |

≤ Cε sup
x∈RN

(
< x − ξ >

1 + |x |
)σ

(1 + |x |)2−N+σ

≤ Cε.

In what follows, by applying the Banach fixed point theorem, we can prove that (3.19)
is indeed solvable and achieve a solution (φε, c1, . . . , cN ). We then obtain a solution of the
problem (3.18) if ci = 0 for all i = 1, 2, . . . , N .

Based on the description of Lemma 3.2, solving (3.19) reduces now to a fixed point
problem. Namely, we need to find a fixed point for the map

(φ, c1, c2, . . . , cN ) = A(φ, c1, c2, . . . , cN ) := T (N1(φ) + N2(φ)).

Here, we will restrict φ to be small enough such that the function v f + φ is always positive
and we define the set

� =
{

(φ, c1, c2, . . . , cN ) ∈ R
N+1

∣
∣ ‖φ‖∗,ξ +

N∑

i=1

|ci | ≤ Cε

}

.

We now prove that A has a fixed point in �.

For any (φ, c1, c2, . . . , cN ) ∈ �, we first estimate M(φ). Note that

(
G−1(s)

g(G−1(s))

)′
= 1

g4(G−1(s))
≤ 1 for all s ≥ 0.

We have
∣
∣
∣
∣

G−1(v f + φ)

g(G−1(v f + φ))
− G−1(v f )

g(G−1(v f ))

∣
∣
∣
∣ ≤ |φ|

and then

‖M(φ)‖∗∗,ξ = sup
x∈RN

< x − ξ >2+σ |M(φ)|

≤ ε sup
x∈RN

< x − ξ >2+σ V (x − ξ)|φ|

≤ Cε‖φ‖∗,ξ .

(3.20)

123



Fast and slow decaying solutions for H1-supercritical… Page 15 of 24 144

To estimate F(φ), we need the following fact: if 1 < p < 2, then

| f ′(s1) − f ′(s2)| ≤ C |s1 − s2|p−1 for all s1, s2 ≥ 0 and |s1 − s2| ≤ 1. (3.21)

Indeed, since

f ′(s) = (p − 1)
G−1(s)p−1

g2(G−1(s))
+ G−1(s)p−1

g4(G−1(s))
,

we have

| f ′(s1) − f ′(s2)| ≤ (p − 1)

∣
∣
∣
∣
G−1(s1)p−1

g2(G−1(s1))
− G−1(s2)p−1

g2(G−1(s2))

∣
∣
∣
∣

+
∣
∣
∣
∣
G−1(s1)p−1

g4(G−1(s1))
− G−1(s2)p−1

g4(G−1(s2))

∣
∣
∣
∣ .

(3.22)

Then, noticing that |s1 − s2| ≤ 1, we have
∣
∣
∣
∣
G−1(s1)p−1

g2(G−1(s1))
− G−1(s2)p−1

g2(G−1(s2))

∣
∣
∣
∣

=
∣
∣(1 + 2G−1(s2)2)G−1(s1)p−1 − (1 + 2G−1(s1)2)G−1(s2)p−1

∣
∣

g2(G−1(s1))g2(G−1(s2))

≤ |G−1(s1)p−1 − G−1(s2)p−1|
g2(G−1(s1))g2(G−1(s2))

+ 2

∣
∣G−1(s2)2G−1(s1)p−1 − G−1(s1)2G−1(s2)p−1

∣
∣

g2(G−1(s1))g2(G−1(s2))

≤ C |G−1(s1) − G−1(s2)|p−1 + 2G−1(s1)p−1G−1(s2)p−1

g2(G−1(s1))g2(G−1(s2))
|G−1(s2)

3−p − G−1(s1)
3−p|

≤ C |s1 − s2|p−1 + 2(3 − p)G−1(s12)2−pG−1(s1)p−1G−1(s2)p−1

g(G−1(s12))g2(G−1(s1))g2(G−1(s2))
|s1 − s2|

≤ C |s1 − s2|p−1 (3.23)

since

2(3 − p)G−1(s12)2−pG−1(s1)p−1G−1(s2)p−1

g(G−1(s12))g2(G−1(s1))g2(G−1(s2))
≤ C for all s1, s2 ≥ 0,

where s12 belongs to the segment jointing s1 and s2. On the other hand, by a similar strategy
as the proof of the inequality (3.23), we conclude that

∣
∣
∣
∣
G−1(s1)p−1

g4(G−1(s1))
− G−1(s2)p−1

g4(G−1(s2))

∣
∣
∣
∣ ≤ C |s1 − s2|p−1

and thus show the inequality (3.21).
Since φ is small, based on the fact (3.21), we observe that

|F(φ)| = | f (v f ) + f ′(v f )φ − f (v f + φ)|
≤ | f ′(v1)φ − f ′(v f )φ|

≤
{

| f ′′(v2)(v1 − v f )||φ|, if p ≥ 2;
C |(v1 − v f )

p−1φ|, if 1 < p < 2

≤
{
C |v2|p−2|φ|2, if p ≥ 2;
C |φ|p, if 1 < p < 2,

(3.24)
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where v1 lies in the segment jointing v f , v f + φ and v2 = tv f + (1 − t)v1 with t ∈ [0, 1].
Thus, jointly with the fact |v2| ≤ C(1 + |x |)−σ for all x ∈ R

N , we have

‖F(φ)‖∗∗,ξ = sup
x∈RN

< x − ξ >2+σ |F(φ)|

≤

⎧
⎪⎨

⎪⎩

C sup
x∈RN

< x − ξ >2+σ |v2|p−2|φ|2, if p ≥ 2;
C sup

x∈RN
< x − ξ >2+σ |φ|p, if 1 < p < 2,

≤

⎧
⎪⎪⎨

⎪⎪⎩

C sup
x∈RN

< x − ξ >2−(p−1)σ
(

<x−ξ>
1+|x |

)(p−2)σ ‖φ‖2∗,ξ , if p ≥ 2;
C sup

x∈RN
< x − ξ >2−(p−1)σ ‖φ‖p

∗,ξ , if 1 < p < 2,

≤ C‖φ‖γ
∗,ξ ,

(3.25)

where γ = min {2, p} .

Therefore, by (3.20) and (3.25), jointly with Lemma 3.2, it follows that

‖A(φ, c1, c2, . . . , cN )‖∗,ξ ≤ C(‖E(v f )‖∗∗,ξ + ‖M(φ)‖∗∗,ξ + ‖F(φ)‖∗∗,ξ )

≤ C(ε + ε‖φ‖∗,ξ + ‖φ‖γ
∗,ξ )

≤ Cε,

(3.26)

which shows A(�) ⊂ �.

We still have to prove that A is a contraction mapping in �. If we take

(φ1, c1,1, c2,1, . . . , cN ,1), (φ2, c1,2, c2,2, . . . , cN ,2) ∈ �,

then we have

‖A(φ1, c1,1, c2,1, . . . , cN ,1) − A(φ2, c1,2, c2,2, . . . , cN ,2)‖∗,ξ

≤ C[‖M(φ1) − M(φ2)‖∗∗,ξ + ‖F(φ1) − F(φ2)‖∗∗,ξ ]. (3.27)

To estimate ‖M(φ1) − M(φ2)‖∗∗,ξ , we note that

|M(φ1) − M(φ2)| = |DφM(φ̄)(φ1 − φ2)|, (3.28)

where φ̄ lies in the segment joining φ1 and φ2. Moreover, a direct calculation shows

|DφM(φ)| =
∣
∣
∣
∣

εV (x − ξ)

g2(G−1(v f + φ))

[

1 − 2G−1(v f + φ)2

g2(G−1(v f + φ))

]∣
∣
∣
∣

=
∣
∣
∣
∣

εV (x − ξ)

g4(G−1(v f + φ))

∣
∣
∣
∣ ≤ εV (x − ξ).

(3.29)

Then,

sup
x∈RN

< x − ξ >2+σ |M(φ1) − M(φ2)| ≤ sup
x∈RN

< x − ξ >2 |DφN1(φ)|‖φ1 − φ2‖∗,ξ

≤ Cε‖φ1 − φ2‖∗,ξ sup
x∈RN

< x − ξ >2 V (x − ξ)

≤ Cε‖φ1 − φ2‖∗,ξ . (3.30)

Thus, we have

‖M(φ1) − M(φ2)‖∗∗,ξ ≤ Cε‖φ1 − φ2‖∗,ξ . (3.31)
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Now we estimate ‖F(φ1) − F(φ2)‖∗∗,ξ . We note that

|F(φ1) − F(φ2)| = |DφN2(φ̄)(φ1 − φ2)|, (3.32)

where φ̄ lies in the segment joining φ1 and φ2. Moreover,

|DφN2(φ)| = | f ′(v f ) − f ′(v f + φ)|

≤
{
C |v1|p−2|φ|, if p ≥ 2;
C |φ|p−1, if 1 < p < 2,

(3.33)

where v1 = tv f + (1− t)(v f + φ) with t ∈ [0, 1]. Then, similarly as the proof of (3.25), we
have

‖F(φ1) − F(φ2)‖∗∗,ξ ≤ C‖φ̄‖min{1,p−1}
∗,ξ ‖φ1 − φ2‖∗,ξ ≤ Cεmin{1,p−1}‖φ1 − φ2‖∗,ξ .

(3.34)

Thus, under our situation, combining (3.27), (3.31) and (3.34), we have thatA is a contraction
mapping in � and hence there indeed exists a fixed point (φε, c1, c2, . . . , cN ).

In what follows of this section, we will complete the proof of Theorem 1.2.
We have found a solution (φε, c1, c2, . . . , cN ) to (3.19) satisfying

‖φε‖∗,ξ +
N∑

i=1

|ci | ≤ Cε.

To prove the result contained in Theorem 1.2, it suffices to show that the point ξ can be
adjust so that the constants c1, c2, . . . , cN are all contemporarily equal to zero. Combining
Lemma 3.2, we only need to show

∫

RN
(E(v f ) + M(φε) + F(φε))

∂v f

∂x j
= 0 for j = 1, 2, . . . , N . (3.35)

We first define

Fj (ε, ξ) =
∫

RN
(E(v f ) + M(φε) + F(φε))

∂v f

∂x j
. (3.36)

The subordinate terms in (3.36) are
∫

RN F(φε)
∂v f
∂ y j

and
∫

RN M(φε)
∂v f
∂ y j

. Indeed, we have the
following estimates

∣
∣
∣
∣

∫

RN
F(φε)

∂v f

∂ y j

∣
∣
∣
∣ ≤ ‖F(φε)‖∗∗,ξ

∫

RN
< x − ξ >−2−σ

∣
∣
∣
∣
∂v f

∂ y j

∣
∣
∣
∣ = O(εγ ) (3.37)

and
∣
∣
∣
∣

∫

RN
M(φε)

∂v f

∂ y j

∣
∣
∣
∣ ≤ ‖M(φε)‖∗∗,ξ

∫

RN
< x − ξ >−2−σ

∣
∣
∣
∣
∂v f

∂ y j

∣
∣
∣
∣ = O(ε2). (3.38)
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Noticing that there exist k0 ∈ (0, 1) and k1 > 1 such that k0v f ≤ G−1(v f )

g(G−1(v f ))
≤ k1v f , the

dominant term in (3.36) satisfies

∫

RN
E(v f )

∂v f

∂ y j
= ε

∫

RN
V (y − ξ)

G−1(v f )

g(G−1(v f ))

∂v f

∂ y j
∼ ε

∫

RN
V (y − ξ)v f

∂v f

∂ y j

= ε

∫

RN
V (y − ξ)v f

∂v f

∂ y j

= ε

2

∫

RN
v2f

∂V

∂ξ j
(y − ξ)

= ε

2

∂

∂ξ j

∫

RN
v2f V (y − ξ). (3.39)

Combining (3.37)–(3.39), we achieve

Fj (ε, ξ) ∼ ε

2

∂

∂ξ j

∫

RN
v2f V (y − ξ) + o(ε) for j = 1, 2, . . . , N .

Thus, if we set G(ξ) = ∫

RN v2f V (y− ξ), then G(0) > 0 and lim|x |→+∞G(ξ) = 0. This implies

that G attains a global maximum point ξ0 ∈ BM (0) for some M > 0. By the definition of
stable critical point [33], G has a stable critical point in BM (0) and as a result, we deduce
that, for ε small, F(ε, ξ) = (F1(ε, ξ), F2(ε, ξ), . . . , FN (ε, ξ)) has a zero point in BM (0).
Consequently, c j = 0 for j = 1, 2, . . . , N .

4 Proof of Theorem 1.3

In this section, we will construct slow decaying solutions to the problem (1.2) with ε = 1.
The results of Theorem 1.3 are based on a suitable linear theory devised for the linearized
operator associated to the Eq. (1.2) at u = w in the entire space RN and in the application of
perturbation arguments. We consider w as an approximation for a solution of (1.2), provided
that λ > 0 is chosen small enough. To this aim, we need to know the solvability of the
operator � − Vλ + pw p−1 in suitable weighted L∞ space.

Let

Zi = η
∂w

∂xi
, i = 1, 2, . . . , N ,

where η ∈ C∞
0 (RN ) satisfies 0 ≤ η ≤ 1. Moreover, η(x) = 1 if |x | ≤ R0 and η(x) = 0 if

|x | ≥ R0 + 1 for a fixed number R0 > 0 large enough.
Under appropriate norms

‖φ‖∗,ξ = sup
|x−ξ |≤1

|x − ξ |σ |φ(x)| + sup
|x−ξ |≥1

|x − ξ | 2
p−1 |φ(x)| (4.1)

and

‖h‖∗∗,ξ = sup
|x−ξ |≤1

|x − ξ |2+σ |h(x)| + sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 |h(x)|, (4.2)
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where σ > 0 and ξ ∈ R
N , we first consider the solvability of the linear problem

⎧
⎨

⎩

�φ − Vλ(x)φ + pw p−1φ = h + ∑N
i=1 ci Zi , x ∈ R

N ;
lim|x |→+∞φ(x) = 0 (4.3)

and thus we need the following lemma which is proved by Dávila et al. [26].

Lemma 4.1 Let |ξ | ≤ . Suppose V satisfies (1.9) and ‖h‖∗∗,ξ < ∞. Then, for λ > 0
sufficiently small,

(1) if N ≥ 4, p > N+1
N−3 , Eq. (4.3) with ci = 0 for 1 ≤ i ≤ N and ξ = 0 has a solution

φ = Tλ(h) which depends linearly on h and there exist a constant C independent with
λ such that

‖Tλ(h)‖∗,0 ≤ C‖h‖∗∗,0;
(2) if N ≥ 3, N+2

N−2 < p < N+1
N−3 and V also satisfies (1.10), Eq. (4.3) has a solution

(φ, c1, c2, . . . , cN ) = Tλ(h) which depends linearly on h and there exist a constant C
independent with λ such that

‖φ‖∗,ξ + max
1≤i≤N

|ci | ≤ C‖h‖∗∗,ξ .

Moreover, ci = 0 for all 1 ≤ i ≤ N if and only if
∫

RN
h

∂w

∂xi
= 0 for 1 ≤ N ≤ N . (4.4)

Based on Lemma 4.1, we can prove Theorem 1.3. We look for a solution of the form

v = w + φ to the Eq. (1.11) and, for S(w), N (φ) defined in Sect. 2 and l(s) := G−1(s)
g(G−1(s))

,
we achieve the following equation

⎧
⎨

⎩

�φ − Vλ(x)φ + pw p−1φ = S1(w) + N (φ) + P(φ), x ∈ R
N ;

lim|x |→+∞φ(x) = 0, (4.5)

where

S1(w) = S(w) + Vλ(x)λ
− 2

p−1 l(λ
2

p−1 w)

and

P(φ) = Vλ(x)[λ− 2
p−1 (l(λ

2
p−1 (w + φ)) − l(λ

2
p−1 w)) − φ].

The case p > N+1
N−3

In this case, we rescale v(x) as λ
2

p−1 v(λx), that is, ξ = 0 in the previous paragraph.
Computations show that

λ
− 2

p−1 l(λ
2

p−1 w) = w + o(1) as λ → 0.

According to the arguments in [26], we know

‖Vλ(x)λ
− 2

p−1 l(λ
2

p−1 w)‖∗∗,0 := δ(λ) = o(1) as λ → 0.

Thus, for σ ∈
(
0,min

{
2, 2

p−1

})
, the error of the approximate solution in the norm (4.2) is

‖S1(w)‖∗∗,0 = ‖S(w) + Vλ(x)λ
− 2

p−1 l(λ
2

p−1 w)‖∗∗,0 ≤ Cρ(λ), (4.6)
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where ρ(λ) := λ
4

p−1 + δ(λ). Consequently, for the operator Aλ(φ) := Tλ(S1(w) + N (φ) +
P(φ)), where Tλ is given in Lemma 4.1-(1), we can use the contraction mapping theorem
on


λ =
{
φ : RN → R

∣
∣ ‖φ‖∗,0 ≤ Cρ(λ)

}

and we will prove that Aλ has a fixed point in 
λ.

For any φ ∈ 
λ, we first give the estimate of ‖P(φ)‖∗∗,0. We observe that, for a number
C3 > 0,

λ
− 2

p−1 (l(λ
2

p−1 (w + φ)) − l(λ
2

p−1 w)) − φ = −C3λ
4

p−1 [(w + φ)3 − w3]
+ o

(
λ

4
p−1

)
as λ → 0.

(4.7)

Thus, we have

sup
|x |≤1

|x |2+σ |P(φ)| ≤ C sup
|x |≤1

|x |2+σVλ(x)λ
4

p−1 (|w2φ| + |φ|3)

≤ Cλ
4

p−1 sup
|x |≤1

|x |σ (|w2φ| + |φ|3)

≤ Cλ
4

p−1 ‖φ‖∗,0.

(4.8)

On the other hand, combining

|φ(x)| ≤ C |x |− 2
p−1 ‖φ‖∗,0 for |x | ≥ 1 (4.9)

and

w(x) ≤ C(1 + |x |)− 2
p−1 for x ∈ R

N , (4.10)

we have

sup
|x |≥1

|x |2+ 2
p−1 |P(φ)| ≤ Cλ

4
p−1 sup

|x |≥1
|x |2+ 2

p−1 Vλ(x)(|w2φ| + |φ|3)

≤ Cλ
4

p−1 sup
|x |≥1

(
(1 + |x |)− 4

p−1 ‖φ‖∗,0 + |x |− 4
p−1 ‖φ‖3∗,0

)

≤ Cλ
4

p−1 (‖φ‖∗,0 + ‖φ‖3∗,0). (4.11)

Consequently, combining (4.8) and (4.11), we have

‖P(φ)‖∗∗,0 ≤ Cλ
4

p−1 (‖φ‖∗,0 + ‖φ‖3∗,0). (4.12)

Thus, jointly with the estimate of ‖N (φ)‖∗∗,0 in Sect. 2, we conclude

‖Aλ(φ)‖∗,0 ≤ C‖S1(w) + N (φ) + P(φ)‖∗∗,0

≤ C[ρ(λ) + ρ(λ)2 + ρ(λ)p + ρ(λ) + ρ(λ)3]
≤ Cρ(λ) for any φ ∈ 
λ.

That is, Aλ(
λ) ⊂ 
λ.

For any φ1, φ2 ∈ 
λ, we want to estimate ‖P(φ1) − P(φ2)‖∗∗,0. We note that

|P(φ1) − P(φ2)| = |DφP(φ̄)(φ1 − φ2)|, (4.13)
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where φ̄ lies in the segment joining φ1 and φ2. Then, it follows that

|x |2+σ |P(φ1) − P(φ2)| ≤ |x |2|DφP(φ̄)|‖φ1 − φ2‖∗,0 for |x | ≤ 1

and

|x |2+ 2
p−1 |P(φ1) − P(φ2)| ≤ |x |2|DφP(φ̄)|‖φ1 − φ2‖∗,0 for |x | ≥ 1.

Thus, we have

‖P(φ1) − P(φ2)‖∗∗,0 ≤ C sup
x∈RN

(|x |2|DφP(φ̄)|) ‖φ1 − φ2‖∗,0. (4.14)

Moreover, a direct calculation shows

DφP(φ)=Vλ(x)

(
1

g2(G−1(λ
2

p−1 (w+φ)))

− 2(G−1(λ
2

p−1 (w+φ)))2

g4(G−1(λ
2

p−1 (w + φ)))

−1

)

= Vλ(x)
[
1 − 4λ

4
p−1 (w + φ)2 + o(λ

4
p−1 (w + φ)2) − 1

]
as λ → 0. (4.15)

To go a step further, based on the arguments in the previous paragraph, we conclude that

sup
x∈RN

(|x |2|DφP(φ̄)|) ≤ Cλ
4

p−1 . (4.16)

Consequently, combining (4.14) and (4.16), it follows that

‖P(φ1) − P(φ2)‖∗∗,0 ≤ 1

4
‖φ1 − φ2‖∗,0 (4.17)

for λ sufficiently small.
It is straightforward to show that

‖Aλ(φ1) − Aλ(φ2)‖∗,0 ≤ C[‖N (φ1) − N (φ2)‖∗∗,0 + ‖P(φ1) − P(φ2)‖∗∗,0]
≤ 1

2
‖φ1 − φ2‖∗,0 for φ1, φ2 ∈ 
λ

(4.18)

since we can achieve that

‖N (φ1) − N (φ2)‖∗∗,0 ≤ 1

4
‖φ1 − φ2‖∗,0

according to Sect. 2 for λ sufficiently small. This means that Aλ is a contraction mapping
from 
λ into itself and hence a fixed point φλ indeed exists. So the function vλ(x) :=
λ

2
p−1 (w(λx) + φλ(λx)) is a continuum solutions of (1.11) satisfying limλ→0 vλ(x) = 0

uniformly in R
N and uλ(x) = G−1(vλ(x)) is our desired solution to (1.2).

The case N+2
N−2 < p < N+1

N−3
In this case, the problem (4.5) may not be solvable under our situation unless ξ is chosen in

a very special way. So, instead of solving (4.5), we consider the following projected problem
⎧
⎨

⎩

�φ − Vλ(x)φ + pw p−1φ = S1(w) + N (φ) + P(φ) + ∑N
i=1 ci Zi , x ∈ R

N ;
lim|x |→+∞φ(x) = 0, (4.19)

where ci are constants.Moreover, wewill slightly change the previous definition of the norms
as

‖φ‖(θ)
∗,ξ = sup

|x−ξ |≤1
|x − ξ |θ |φ(x)| + sup

|x−ξ |≥1
|x − ξ | 2

p−1 |φ(x)|
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and

‖h‖(θ)
∗∗,ξ = sup

|x−ξ |≤1
|x − ξ |2+θ |h(x)| + sup

|x−ξ |≥1
|x − ξ |2+ 2

p−1 |h(x)|.

Just as the case p > N+1
N−3 , we can prove that (4.19) is indeed solvable and achieve a solution

(φ(λ, ξ), c1(λ, ξ), c2(λ, ξ), . . . , cN (λ, ξ)). We then obtain a solution of the problem (4.5)
if ci (λ, ξ) = 0 for all i = 1, 2, . . . , N .

Here, we also fix σ ∈
(
0,min

{
2, 2

p−1

})
and find the error of the approximate solution

is

‖S1(w)‖(σ )
∗∗,ξ ≤ Cρ(λ), (4.20)

where ρ(λ) = o(1) as λ → 0. So we can define


λ,σ =
{

(φ, c1, c2, . . . , cN ) ∈ R
N+1

∣
∣ ‖φ‖(σ )

∗,ξ +
N∑

i=1

|ci | ≤ Cρ(λ)

}

.

Similarly, as the proof of the previous case, jointly with Lemma 4.1-(2), we conclude that
the operator (φ, c1, c2, . . . , cN ) = Aλ(φ, c1, c2, . . . , cN ) := Tλ(S1(w) + N (φ) + P(φ)) is
a contraction mapping in 
λ,σ and hence achieve a fixed point

(φ(λ, ξ), c1(λ, ξ), c2(λ, ξ) . . . , cN (λ, ξ)) ∈ 
λ,σ ,

which satisfies the Eq. (4.19). Moreover, under the condition (1.10), we observe that ρ(λ)

can be taken as λθ in (4.20) for any θ ∈
(
0, 4

p−1

)
. That is,

‖λ− 2
p−1 Vλl(λ

2
p−1 w)‖(θ)

∗∗,ξ ≤ Cλθ for θ ∈ (0, N − 2) , (4.21)

‖S(w)‖(θ)
∗∗,ξ ≤ Cλθ for θ ∈

(

0,
4

p − 1

)

(4.22)

and

‖φ(λ, ξ)‖(θ)
∗,ξ + max

1≤i≤N
|ci (λ)| ≤ Cλθ for θ ∈

(

0,
4

p − 1

)

. (4.23)

Thus, to complete our proof, by Lemma 4.1-(2) we need to find ξ = ξλ such that
∫

RN

(
S(w) + Vλλ

− 2
p−1 l(λ

2
p−1 w) + N (φ(λ, ξ)) + P(φ(λ, ξ))

) ∂w

∂x j
= 0, 1 ≤ j ≤ N .

(4.24)

Combining the arguments in [26] and noticing that 4
p−1 < N − 2, we know

∫

RN
λ

− 2
p−1 Vλl(λ

2
p−1 w)

∂w

∂x j
= o(λ

4
p−1 ) as λ → 0 (4.25)

and
∫

RN
N (φ(λ, ξ))

∂w

∂x j
= o(λ

4
p−1 ) as λ → 0. (4.26)

Moreover, noticing that

|P(φ(λ, ξ))| ≤ Cλ
4

p−1 Vλ(|w2φ(λ, ξ)| + |φ(λ, ξ)|3),
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we have
∣
∣
∣
∣

∫

RN
P(φ(λ, ξ))

∂w

∂x j

∣
∣
∣
∣ ≤ Cλ

4
p−1

∣
∣
∣
∣

∫

RN
Vλφ(λ, ξ)(w2 + φ2(λ, ξ))

∂w

∂x j

∣
∣
∣
∣

≤ Cλ
4

p−1

∣
∣
∣
∣

∫

RN
Vλφ(λ, ξ)

∂w

∂x j

∣
∣
∣
∣

= o(λ
4

p−1 ) as λ → 0. (4.27)

Now, we claim that the dominant term in (4.24) is
∫

RN
S(w)

∂w

∂x j
. (4.28)

Note that

S(w) = Cpλ
4

p−1 w p+2 + o(λ
4

p−1 w p+2) as λ → 0.

We have
∫

RN
S(w)

∂w

∂x j
= Cpλ

4
p−1

∫

RN
w p+2(x + ξ)

∂w

∂x j
(x + ξ)dx + o(λ

4
p−1 ) as λ → 0.

(4.29)

If we define

F ( j)
λ (ξ) =

∫

RN

(
S(w) + Vλλ

− 2
p−1 l(λ

2
p−1 w) + N (φ(λ, ξ)) + P(φ(λ, ξ))

) ∂w

∂x j

and Fλ(ξ) = (F (1)
λ (ξ), F (2)

λ (ξ), . . . , F (N )
λ (ξ)).Then, by (4.25)–(4.27) and (4.29),we achieve

that

F ( j)
λ (ξ) = Cpλ

4
p−1

∫

RN
w p+2(x + ξ)

∂w

∂x j
(x + ξ)dx + o(λ

4
p−1 ) as λ → 0

and so we can show the existence of a solution ξλ to (4.24) since 0 is a critical point of w.

Thus, we conclude that

〈Fλ(ξ), ξ 〉 < 0 for |ξ | = δ,

where δ is a fixed small constant. Using this fact and degree theory we obtain the existence
of ξλ such that Fλ(ξλ) = 0 in Bδ. This complete the proof of Theorem 1.3.
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