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Abstract
In this paper, we first prove that each positive solution of

−�u = (Iα ∗ |u|2∗
α
)|u|2∗

α−2u, u ∈ D1,2(RN )

is radially symmetric, monotone decreasing about some point and has the form

cα

(
t

t2 + |x − x0|2
) N−2

2

,

where 0 < α < N if N = 3 or 4, and N − 4 ≤ α < N if N ≥ 5, 2∗
α := N+α

N−2 is the
upper Hardy–Littlewood–Sobolev critical exponent, t > 0 is a constant and cα > 0 depends
only on α and N . Based on this uniqueness result, we then study the following nonlinear
Choquard equation

−�u + V (x)u =
(
Iα ∗ |u|2∗

α

)
|u|2∗

α−2u, u ∈ D1,2(RN ).

By using Lions’ Concentration-Compactness Principle, we obtain a global compactness
result, i.e.wegive a complete description for thePalais–Smale sequences of the corresponding
energy functional. Adopting this description, we are succeed in proving the existence of at
least one positive solution if ‖V (x)‖

L
N
2
is suitable small. This result generalizes the result

for semilinear Schrödinger equation by Benci and Cerami (J Funct Anal 88:90–117, 1990)
to Choquard equation.

Mathematics Subject Classification 35J91 · 35A01 · 35A02 · 35B65 · 35J20

1 Introduction andmain results

Recently, the following nonlinear Choquard problem

−�u + V (x)u = (Iα ∗ |u|p)|u|p−2u, x ∈ R
N (1.1)
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has been investigated by many authors, where Iα : R
N\{0} → R is the Riesz potential

defined by

Iα(x) := Aα
|x |N−α = �( N−α

2 )

�(α2 )π
N/22α|x |N−α , α ∈ (0, N )

and � is the Gamma function, see [31,34].
Equation (1.1) is usually called the nonlinear Choquard or Choquard–Pekar equation. It

has several physical motivations. In the physical case N = 3, p = 2 and α = 2, the problem

−�u + u = (I2 ∗ |u|2)u, x ∈ R
3 (1.2)

appeared as early as in 1954, in a work by Pekar describing the quantum mechanics of a
polaron at rest [33]. See also [24,30] for more physical background of Eqs. (1.1)–(1.2). In
particular, Lieb [21] proved that the ground state solution of Eq. (1.2) is radial and unique
up to translations (see also [25]). Later, Wei and Winter [37] showed that the ground state
solution is nondegenerate.

Problem (1.1) has a variational structure, setting V (x) ≡ 1 for example, the corresponding
energy functional is defined by

Eα,p(u) = 1

2

∫

RN

(|∇u|2+u2
)
dx− 1

2p

∫

RN

(
Iα∗|u|p)|u|pdx, u ∈ W 1,2(RN )∩L

2Np
N+α (RN ).

(1.3)
It follows by the Hardy–Littlewood–Sobolev inequality that the functional Eα,p(u) is well
defined and belongs to C1(H1(RN ),R) if p ∈ [ N+α

N , N+α
N−2 ]. Moreover, the critical points of

Eα,p are weak solutions of Eq. (1.1).

Theorem A (See [22,23], Hardy–Littlewood–Sobolev inequality) Suppose α ∈ (0, N ), and
p, r > 1 with 1

p + 1
r = 1 + α

N . Let f ∈ L p(RN ), g ∈ Lr (RN ), then there exists a sharp
constant C(p, r , α, N ), independent of f and g, such that

∣∣∣
∫

RN

∫

RN

f (x)g(y)

|x − y|N−α dxdy
∣∣∣ ≤ C(p, α, r , N )‖ f ‖L p‖g‖Lr , (1.4)

where ‖ · ‖L p = (∫
RN |u|pdx) 1p . If p = r = 2N

N+α , then

C(p, r , α, N ) = C(N , α) = π N−α
2

�(α2 )

�( N+α
2 )

{�( N2 )
�(N )

}− α
N
. (1.5)

In this case, the equality in (1.4) is achieved if and only if f ≡ (const.)g and

g(x) = A(γ̃ 2 + |x − ã|2)− (N+α)
2

for some A ∈ C, ã ∈ R
N and 0 �= γ̃ ∈ R.

For N ≥ 3, 0 < α < N , let 2α∗ = N+α
N and 2∗

α = N+α
N−2 . By the Sobolev embedding

theorem, W 1,2(RN ) ⊂ L
2Np
N+α (RN ) if and only if p ∈ [2α∗ , 2∗

α]. In [31], Moroz and Van
Schaftingen proved that Eα,p(u) has no nontrivial critical points when p /∈ [2α∗ , 2∗

α

]
. Hence,

2α∗ and 2∗
α are critical exponents for existence and nonexistence of solutions to Eq. (1.1). In the

past few years, there is plenty of work dealt with Eq. (1.1) with p ∈ (2α∗ , 2∗
α) by variational

methods, see for example [2,28–32,37]. When p = 2α∗ , Moroz and Van Schaftingen [32]
proved the existence of one nontrivial solution to Eq. (1.1) if V (x) satisfies

lim inf|x |→+∞
(
1 − |x |2)V (x) > N 2(N − 2)

4(N + 1)
.
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As for the upper Hardy–Littlewood–Sobolev exponent, Gao and Yang [12] considered the
following Brézis–Nirenberg type problem on bounded domains

−�u =
(∫

�

|u(y)|2∗
α

|x − y|N−α dy
)

|u|2∗
α−2u + λu, x ∈ �, u ∈ H1

0 (�).

In this paper, we first consider

−�u = (Iα ∗ |u|2∗
α
)|u|2∗

α−2u, u ∈ D1,2(RN ). (1.6)

By using Theorem A, one can verify that, up to translations and scalings, the ground state
solution of Eq. (1.6) is unique and has the form

u(x) = cα

(
t

t2 + |x − x0|2
) N−2

2

(1.7)

where t > 0, x0 ∈ R
N and

cα = [N (N − 2)] N−2
2

[
C(N , α)AαS

α
2
] N−2
4+2α

, (1.8)

here S is the best Sobolev constant for the embedding D1,2(RN ) ↪→ L2∗
(RN ).

A natural question is whether positive solution of Eq. (1.6) is unique and has the form of
(1.7). Our result on this aspect can be stated as follows.

Theorem 1.1 Suppose 0 < α < N if N = 3 or 4, and N − 4 ≤ α < N if N ≥ 5, let u(x)
be a positive solution of Eq. (1.6), then u(x) is radially symmetric and monotone decreasing
about some point x0 ∈ R

N . Moreover, u(x) has the form of (1.7).

Remark 1.1 (i) If p < N+α
N−2 , by Pohozaev type identity, the following equation

−�u = (Iα ∗ |u|p)|u|p−2u, x ∈ R
N (1.9)

has no nontrivial solution u ∈ W 1,2(RN ) ∩ L
2Np
N+α (RN ) with ∇u ∈ W 1,2

loc (R
N ) ∩

L
2Np
N+α
loc (R

N ).

(ii) We prove Theorem 1.1 by a moving plane method, which was invented by Alexanderov
in [1]. Later, it was further developed by Serrin [35], Gidas et al. [14], Caffarelli et al. [5]
when classifying the solutions of semilinear elliptic equation

−�u = u
N+2
N−2 , x ∈ R

N .

Subsequently, Chen and Li [8] and Li [17] simplified the proof,Wei andXu [38] andChen
et al. [11] generalized the classification result to the solutions of higher order conformally
invariant equations

(−�)su = u
N+s
N−s , x ∈ R

N , 0 < s < N .

Li [18] used the method of moving spheres to obtain the same classification result as that
in [11]. For other applications, we refer the readers to [7,9,10,16,28].

Based on the uniqueness result, we can investigate the following Choquard equation

−�u + V (x)u = (Iα ∗ |u|2∗
α
)|u|2∗

α−2u, x ∈ R
N , N ≥ 3, (1.10)
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where the potential function V (x) ∈ L
N
2 (RN )∩Cγ (RN ) is nonnegative for some γ ∈ (0, 1).

Define the energy functionals I , I∞ corresponding to Eqs. (1.10), (1.6) respectively by

I (u) = 1

2

∫

RN

(|∇u|2 + V (x)u2
)
dx − 1

2 · 2∗
α

∫

RN

(
Iα ∗ |u|2∗

α
)|u|2∗

αdx, u ∈ D1,2(RN )

and

I∞(u) = 1

2

∫

RN
|∇u|2dx − 1

2 · 2∗
α

∫

RN

(
Iα ∗ |u|2∗

α
)|u|2∗

αdx, u ∈ D1,2(RN ).

The Nehari manifolds corresponding to I and I∞ denoted by N and N∞ respectively are

N :=
{
u ∈ D1,2(RN )\{0} : 〈I ′(u), u〉 = 0

}
,

N∞ :=
{
u ∈ D1,2(RN )\{0} : 〈I ′∞(u), u〉 = 0

}
.

Moreover, we define
m := inf

u∈N I (u)

and
m∞ := inf

u∈N∞
I∞(u).

Obviously, m is the mountain pass level of the functional I and

m = inf
u∈D1,2(RN )\{0}

max
t>0

I (tu) > 0.

Our main result on Eq. (1.10) can be stated as follows.

Theorem 1.2 Let 0 < α < N if N = 3 or 4, and N − 4 ≤ α < N if N ≥ 5, and suppose

that V (x) ∈ L
N
2 (RN ) ∩ Cγ (RN ) is nonnegative for some γ ∈ (0, 1), then m = m∞ holds

and m is not achieved. If V (x) in addition satisfies

0 < ‖V (x)‖
L

N
2

:=
(∫

RN
|V (x)| N2 dx

) 2
N

< (2
α+2
N+α − 1)S,

then Eq. (1.10) possesses at least one positive solution.

We prove Theorem 1.2 by following the variational approach developed by Benci and
Cerami [3], in which a similar result was proved for the following Schrödinger equation

−�u + V (x)u = u
N+2
N−2 , x ∈ R

N , N ≥ 3. (1.11)

However, we cannot apply this approach directly, several difficulties arise because of the
nonlocal nonlinearity with critical exponent. The main obstacle is lack of compactness,
even if we get a (PS)c sequence with c ∈ (m∞, 2m∞), we still cannot obtain the strongly
convergence of (PS)c sequence, because the nodal solutions of Eq. (1.6) doesn’t possess the
double energy property (see [39]), i.e. there may exist nodal solutions of Eq. (1.6) with energy
between m∞ and 2m∞ (see Theorem 3, [13]), but the double energy property is crucial for
proving the main result in [3]. We solve this difficulty by using Linking Theorem to seek
a nonnegative (PS)c sequence with c ∈ (m∞, 2m∞) and analysing carefully the nonlocal
nonlinearity. To this end, a nonlocal version of the Concentration-Compactness Principle
(see Lemma 2.1, [27]) is used, which is totally different from the usual local case.

The following splitting result for Palais–Smale sequences is crucial for proving Theorem
1.2, while the local case on bounded domain has been established by Struwe [36].
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Theorem 1.3 Suppose V (x) ≥ 0 and V (x) ∈ L
N
2 (RN ), let {un} be a Palais–Smale sequence

of I at level c. Then {un} has a subsequence which converges strongly in D1,2(RN ), or oth-
erwise, replacing {un} if necessary by a subsequence, there exists a function ū ∈ D1,2(RN )

satisfying un⇀ū in D1,2(RN ). Moreover, there exists a number k ∈ N, k functions
u1, . . . , uk ∈ D1,2(RN ); k sequences of points {yin} ⊂ R

N , 1 ≤ i ≤ k and k sequences
of positive numbers {σ in}, 1 ≤ i ≤ k, such that

∥
∥
∥
∥
∥
un(·)− ū(·)−

k∑

i=1

(σ in)
− N−2

2 ui
( · − yin
σ in

)∥∥
∥
∥
∥

→ 0, (1.12)

where ū is a nontrivial solution of Eq. (1.10) and ui , 1 ≤ i ≤ k, are the nontrivial solutions
of Eq. (1.6). Moreover, as n → +∞, we have

‖un‖2 → ‖ū‖2 +
k∑

i=1

‖ui‖2 (1.13)

and

I (un)→ I (ū)+
k∑

i=1

I∞(ui ). (1.14)

where ‖u‖2 = ∫
RN |∇u|2dx for u ∈ D1,2(RN ).

The paper is organized as follows. In Sect. 2, via the moving plane method, we prove that,
up to translations and scalings, the positive solution of Eq. (1.6) is unique. In Sect. 3, by study-
ing the behavior of Pslais–Smale sequences, we obtain a global compactness result, which
provides a complete description of Palais–Smale sequences. In Sect. 4, we first show that the
mountain pass value is not achieved. Then, combining Linking Theorem with Theorem 1.3,
we prove the existence of at least one positive solution for Eq. (1.10).

2 Uniqueness of positive solution

In this section, we set Aα ≡ 1 for convenience. We will use the moving planes method
to show the uniqueness of the positive solution of Eq. (1.6). To do this, we first show the
invariance of (1.6) under Kelvin transform. Denote Ku the Kelvin transform of u, that is,

Ku(x) = 1

|x |N−2 u

(
x

|x |2
)
.

Lemma 2.1 Let u(x) be a solution of Eq. (1.6), then, U = Ku is still a solution of Eq. (1.6).

Proof Note that

�Ku(x) = 1

|x |N+2�u

(
x

|x |2
)
.

On the other hand,

(
1

| · |N−α ∗ |Ku |2∗
α

)
(x) =

∫

RN

∣
∣u
(

y
|y|2
) ∣
∣2∗
α

|x − y|N−α |y|N+α dy =
∫

RN

|u(y)|2∗
α

|x − y
|y|2 |N−α |y|N+α |y|−2Ndy

= |x |α−N
∫

RN

|u(y)|2∗
α

| x
|x |2 − y|N−α dy = |x |α−N

(
1

| · |N−α ∗ |u|2∗
α

)(
x

|x |2
)
,
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128 Page 6 of 34 L. Guo et al.

where we use the identity

|y|∣∣x − y

|y|2
∣
∣ = |x |∣∣ x

|x |2 − y
∣
∣

in the third step. Therefore, we have

�Ku(x) = |x |−2−N (−�u)
(

x

|x |2
)

= |x |α−N
(

1

| · |N−α ∗ |u|2∗
α

)(
x

|x |2
)

×|x |−α−2
∣
∣u
(

x

|x |2
) ∣
∣2∗
α−1

u

(
x

|x |2
)
.

This shows thatU = Ku is also a solution of Eq. (1.6), which implies that Eq. (1.6) is invariant
under Kelvin transform. ��

Now, we transform Eq. (1.6) to an equivalent integral system. Let v(x) = |x |−N+α ∗|u|2∗
α .

Then, up to a normalization constant, Eq. (1.6) is equivalent to
⎧
⎪⎪⎨

⎪⎪⎩

u(x) =
∫

RN

|u(y)|2∗
α−2u(y)v(y)

|x − y|N−2 dy,

v(x) =
∫

RN

|u(y)|2∗
α

|x − y|N−α dy.
(2.1)

Byu ∈ L
2N
N−2 (RN ) andHardy–Littlewood–Sobolev inequality,weknow thatv ∈ L

2N
N−α (RN ).

Making use of themoving planemethod in integral forms, we show that each positive solution

(u, v) of system (2.1) in L
2N
N−2 (RN ) × L

2N
N−α (RN ) is radially symmetric and monotone

decreasing about some point x0 ∈ R
N .

For this purpose, we first introduce some notation. For x = (x1, x2, . . . , xN ) ∈ R
N ,

λ ∈ R, we define xλ = (2λ− x1, x2, . . . , xN ) and

uλ(x) = u(xλ), vλ(x) = v(xλ).
Let �λ = {x = (x1, x2, . . . , xN ) ∈ R

N : x1 ≥ λ}. We set

�u
λ := {x ∈ �λ : u(x) < uλ(x)}, �u

λ := {x ∈ �λ : u(x) ≤ uλ(x)},
�vλ := {x ∈ �λ : v(x) < vλ(x)}.

Moreover, we denote the complement of�λ in R
N by�c

λ, and the reflection of�
u
λ about the

plane x1 = λ by (�u
λ

)∗.
We decompose uλ(x), u(x) in �λ and vλ(x), v(x) in �λ as follows.

Lemma 2.2 For each positive solution (u, v) of system (2.1), we have

uλ(x)−u(x) =
∫

�λ

(
1

|x − y|N−2 − 1

|xλ − y|N−2

) (|uλ(y)|2∗
α−1vλ(y)−|u(y)|2∗

α−1v(y)
)
dy

(2.2)
and

vλ(x)− v(x) =
∫

�λ

(
1

|x − y|N−α − 1

|xλ − y|N−α

) (|uλ(y)|2∗
α − |u(y)|2∗

α
)
dy. (2.3)

Proof By (2.1) and the fact that |x − yλ| = |xλ − y|, we then obtain
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u(x) =
∫

RN

|u(y)|2∗
α−1v(y)

|x − y|N−2 dy

=
∫

�λ

|u(y)|2∗
α−1v(y)

|x − y|N−2 dy +
∫

�c
λ

|u(y)|2∗
α−1v(y)

|x − y|N−2 dy

=
∫

�λ

(
|u(y)|2∗

α−1v(y)

|x − y|N−2 + |uλ(y)|2∗
α−1vλ(y)

|xλ − y|N−2

)

dy, (2.4)

which leads to

uλ(x) = u(xλ) =
∫

�λ

(
|u(y)|2∗

α−1v(y)

|xλ − y|N−2 + |uλ(y)|2∗
α−1vλ(y)

|x − y|N−2

)

dy. (2.5)

From (2.4) and (2.5), we then get (2.2). By a similar argument, we can also prove (2.3). ��
Using the above preliminaries, we then prove the following proposition.

Proposition 2.3 Suppose 0 < α < N if N = 3 or 4 and N − 4 ≤ α < N if N ≥ 5, and let

(u, v) be a positive solution of system (2.1) in L
2N
N−2 (RN ) × L

2N
N−α (RN ). Then u and v are

both radially symmetric and decreasing about some point x0 ∈ R
N .

Proof The proof consists of three steps.
Step 1 There exists l0 > 0 such that for any λ < −l0, we have

u(x) ≥ uλ(x) and v(x) ≥ vλ(x), for all x ∈ �λ. (2.6)

For the sufficiently negative value of λ, we show that both �u
λ and �

v
λ must be empty.

In fact, for any x ∈ �u
λ , we have

0 < uλ(x)− u(x) =
∫

�λ

(
1

|x − y|N−2 − 1

|xλ − y|N−2

) (|uλ(y)|2∗
α−1vλ(y)− |u(y)|2∗

α−1v(y)
)
dy

≤
∫

�λ∩{|uλ|2∗α−1vλ>|u|2∗α−1v}
1

|x − y|N−2

(|uλ(y)|2∗
α−1vλ(y)− |u(y)|2∗

α−1v(y)
)
dy.

Hence, if 2∗
α ≥ 2, we then get

0 < uλ(x)− u(x)

≤
∫

�u
λ

(2∗
α − 1)|uλ(y)|2∗

α−2vλ(y)(uλ(y)− u(y))

|x − y|N−2 dy +
∫

�vλ

|u(y)|2∗
α−1(vλ(y)− v(y))
|x − y|N−2 dy.

(2.7)

By Lemma 2.2 and Hölder’s inequality, we obtain

‖uλ − u‖
L

2N
N−2 (�u

λ )
≤ C1‖u2

∗
α−2
λ vλ(uλ − u)‖

L
2N
N+2 (�u

λ )
+ C2‖u2∗

α−1(vλ − v)‖
L

2N
N+2 (�vλ)

≤ C1‖uλ‖2
∗
α−2

L
2N
N−2 (�u

λ )

‖vλ‖
L

2N
N−α (�u

λ )
‖uλ − u‖

L
2N
N−2 (�u

λ )

+ C2‖u‖2∗
α−1

L
2N
N−2 (�vλ)

‖vλ − v‖
L

2N
N−α (�vλ)

(2.8)

and
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‖vλ − v‖
L

2N
N−α (�vλ)

≤ C3‖uλ‖2
∗
α−1

L
2N
N−2 (�u

λ )

‖uλ − u‖
L

2N
N−2 (�u

λ )
. (2.9)

Hence, substituting (2.9) into (2.8), we then obtain

‖uλ − u‖
L

2N
N−2 (�u

λ )
≤ C1‖uλ‖2

∗
α−2

L
2N
N−2 (�u

λ )

‖vλ‖
L

2N
N−α (�u

λ )
‖uλ − u‖

L
2N
N−2 (�u

λ )

+ C4‖u‖2∗
α−1

L
2N
N−2 (�vλ)

‖uλ‖2
∗
α−1

L
2N
N−2 (�u

λ )

‖uλ − u‖
L

2N
N−2 (�u

λ )
. (2.10)

Recalling that u ∈ L
2N
N−2 (RN ), v ∈ L

2N
N−α (RN ), by the dominated convergence theorem that

we can choose l0 sufficiently large such that λ < −l0 and

C1‖uλ‖2
∗
α−2

L
2N
N−2 (�u

λ )

‖vλ‖
L

2N
N−α (�u

λ )
+ C4‖u‖2∗

α−1

L
2N
N−2 (�vλ)

‖uλ‖2
∗
α−1

L
2N
N−2 (�u

λ )

≤ C1‖uλ‖2
∗
α−2

L
2N
N−2 (�λ)

‖v‖
L

2N
N−α (�c

λ)
+ C4‖u‖2∗

α−1

L
2N
N−2 (�λ)

‖u‖2∗
α−1

L
2N
N−2 (�c

λ)

≤ 1

2
. (2.11)

Thus, it follows by (2.10) and (2.11) that

‖uλ − u‖
L

2N
N−2 (�u

λ )
= 0.

This implies that �u
λ must be a set with zero measure, hence must be empty up to a set with

zero measure. By (2.9), �vλ must be empty.
Step 2 We move the plane continuously from λ < −l0 to the right as long as (2.6) holds.

We show that if the procedure stops at x1 = λ0 for some λ0, then u(x) and v(x) must be
symmetric and monotone about the plane x1 = λ0. Otherwise, we can move the plane all the
way to the right.

Moving the plane x1 = λ to the right as long as (2.6) holds. Suppose that at some λ0, we
have

u(x) ≥ uλ0(x) and v(x) ≥ vλ0(x) on �λ0 ,

but
u(x) �≡ uλ0(x) or v(x) �≡ vλ0(x) on �λ0 .

In the following,we show that the plane canbemoved further to the right.Moreprecisely, there
exists δ = δ(N , u, v) such that u(x) ≥ uλ(x) and v(x) ≥ vλ(x) on�λ for allλ ∈ [λ0, λ0+δ).

Assume that
v(x) �≡ vλ0(x) on �λ0 .

By (2.2), we have u(x) > uλ0(x) in the interior of �λ0 . Note that

meas(�u
λ0
) = 0 and lim

λ→λ0
�u
λ ⊆ �u

λ0
,

where meas(�u
λ0
) denotes the Lebesgue measure of �u

λ0
. Since u ∈ L

2N
N−2 (RN ), v ∈

L
2N
N−α (RN ) and meas(�u

λ0
) = 0, then using the dominated convergence theorem, we can

choose δ > 0 sufficiently small, such that for all λ ∈ [λ0, λ0 + δ), we have

C1‖uλ‖2
∗
α−2

L
2N
N−2 (�λ)

‖v‖
L

2N
N−α
(
(�u
λ )

∗
) + C4‖u‖2∗

α−1

L
2N
N−2 (�λ)

‖u‖2∗
α−1

L
2N
N−2
(
(�u
λ )

∗
) ≤ 1

2
.

It follows from (2.10) that
‖uλ − u‖

L
2N
N−2 (�u

λ )
= 0.
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Hence, �u
λ must be empty for all λ ∈ [λ0, λ0 + δ), which also implies that �vλ is empty for

all λ ∈ [λ0, λ0 + δ).
Assume that

u(x) �≡ uλ0(x) on �λ0 .

By (2.3), we see v(x) > vλ0(x) in the interior of �λ0 . By the above analysis, we know that
�u
λ and �

v
λ must also be empty for all λ ∈ [λ0, λ0 + δ). This completes the proof.

Step 3 By step 1, we know that the plane cannot keep moving all the way to the right in
Step 2. That is, the plane will eventually stop at some point. In fact, with the similar analysis
as that in Step 1 and Step 2, we then assert that there exists a large l̄, such that for λ > l̄,

u(x) ≤ uλ(x) and v(x) ≤ vλ(x), for all x ∈ �λ. (2.12)

Now we can move the plane continuously from λ > l̄ to the left as long as the above fact
holds. The planes moved from the left and the right will eventually meet at some point.
Finally, since the direction of x1 can be chosen arbitrarily, we deduce that u(x) and v(x)
must be radially symmetric and decreasing about some point. ��

Now we use the elliptic regularity theory to show the following proposition.

Proposition 2.4 Assume that u is a positive solution of (1.6). Then u is uniformly bounded
in R

N . Furthermore, u is C∞(RN ) and

lim|x |→+∞ |x |N−2u(x) = u∞ (2.13)

for some positive constant u∞.

Proof Step 1 We first show that u is uniformly bounded and smooth. For A > 0, we define

� = {x ∈ R
N : u(x) > A} and uA(x) =

{
u(x), x ∈ �,
0, x ∈ R

N\�.
Hence

u − uA ∈ L
2N
N−2 (RN ) ∩ L∞(RN ), for any A > 0. (2.14)

Since u is a solution of Eq. (1.6), we have

u(x) =
∫

RN

(
| · |α−N ∗ |u|2∗

α

)
|u(y)|2∗

α−1

|x − y|N−2 dy, ∀x ∈ R
N ,

which implies that for any x ∈ �,

uA(x) =
∫

RN

(
| · |α−N ∗ |u|2∗

α

)
|u(y)|2∗

α−1

|x − y|N−2 dy

=
∫

RN

(
| · |α−N ∗ |uA|2∗

α

)
|uA(y)|2∗

α−1

|x − y|N−2 dy

+
∫

RN

(
| · |α−N ∗ |u − uA|2∗

α

)
|uA(y)|2∗

α−1

|x − y|N−2 dy

+
∫

RN

(
| · |α−N ∗ |uA|2∗

α

)
|u − uA(y)|2∗

α−1

|x − y|N−2 dy

123



128 Page 10 of 34 L. Guo et al.

+
∫

RN

(
| · |α−N ∗ |u − uA|2∗

α

)
|u − uA(y)|2∗

α−1

|x − y|N−2 dy.

Next we divide our argument into three cases.
Case 1 0 < α ≤ 2. For any r ≥ 2N

N−2 , by Hardy–Littlewood–Sobolev inequality, we see

∥∥∥
∫

RN

(
Iα ∗ |uA(y)|2∗

α
)|uA(y)|2∗

α−1

|x − y|N−2 dy
∥∥∥
Lr

≤
[ ∫

RN

(
Iα ∗ |uA|2∗

α
) Nr
N+2r |uA(y)|(2∗

α−1) Nr
N+2r dx

] N+2r
Nr

≤
[ ∫

RN

(
Iα ∗ |uA|2∗

α
)p Nr

N+2r dx
] N+2r

pNr
[ ∫

RN
|uA(y)|q(2∗

α−1) Nr
N+2r dx

] N+2r
qNr

≤
[ ∫

RN
|uA|2∗

dx
] 2∗α−1

2∗
[ ∫

RN
|uA|r dx

] 1
r
[ ∫

RN
|uA|2∗

dx
] 2∗α−1

2∗
,

where q = 2N+4r
r(2+α) and 1/p + 1/q = 1. One can easily check that q > 1 for every r ≥ 2N

N−2
and 0 < α ≤ 2. Thus, using the Hardy–Littlewood–Sobolev inequality again, one finds

‖uA‖Lr ≤ C‖uA‖2(2∗
α−1)

L
2N
N−2

‖uA‖Lr + C‖uA‖2∗
α−1

L
2N
N−2

‖u − uA‖2∗
α−1

L
2N
N−2

‖u − uA‖Lr

+ C‖uA‖2(2∗
α−1)

L
2N
N−2

‖u − uA‖Lr + C‖u − uA‖2(2∗
α−1)

L
2N
N−2

‖u − uA‖Lr . (2.15)

On one hand, by u ∈ L
2N
N−2 (RN ), we can choose A large enough, such that

C‖uA‖2(2∗
α−1)

L
2N
N−2

≤ 1

2
. (2.16)

On the other hand, by u ∈ L
2N
N−2 (RN ) and (2.14), we verify that

C‖uA‖2∗
α−1

L
2N
N−2

‖u − uA‖2∗
α−1

L
2N
N−2

‖u − uA‖Lr + C‖uA‖2(2∗
α−1)

L
2N
N−2

‖u − uA‖Lr

+ C‖u − uA‖2(2∗
α−1)

L
2N
N−2

‖u − uA‖Lr ≤ C(A). (2.17)

Substituting (2.16) and (2.17) into (2.15), we then assert that, for any r ≥ 2N
N−2

‖uA‖Lr ≤ 1

2
‖uA‖Lr + C(A), (2.18)

which implies that uA ∈ Lr (RN ) for any r ≥ 2N
N−2 . Therefore, we have u ∈ Lr (RN ) for any

r ≥ 2N
N−2 . Using Hardy–Littlewood–Sobolev inequality again, we get

−�u = (| · |α−N ∗ |u|2∗
α
)|u|2∗

α−2u ∈ L p(RN ), for any p ≥ 2N

N − 2
.

Using the L p-theory and Sobolev embedding theorem (see Theorem 9.9, [15]), we know that
u is uniformly bounded and belongs to C0,s(RN ) for all 0 < s < 1. In fact, we also conclude
u ∈ C∞(RN ) from Theorem 4.4.8 in [6].

Case 2 2 < α < N − 4. Let p = N+α
N−2 < 2. First, we claim that uA ∈ Ls for every

2∗ = 2N
N−2 ≤ s ≤ Np

α
. Set s0 = 2∗, we assume that uA ∈ Ls for every s ∈ [2∗, sn] and

sn <
Np
α
. We will prove that uA ∈ Lr if r ≥ sn satisfies

1

r
>

p − 1

sn
− 2

N
, (2.19)
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1

r
<

2p − 1

sn
− 2 + α

N
. (2.20)

Moreover, we compare r0 = (
p−1
sn

− 2
N )

−1 with Np
α
. If r0 ≥ Np

α
, then the claim is proved.

If r0 <
Np
α
, set sn+1 = r0 and proceed again. Since

1

sn
− 1

sn+1
= 2 − p

sn
+ 2

N
>

1

N
,

our argument must terminate at a finite number of steps. We should note that if sn < N
α
p,

snNr > (N + 2r)sn − (p − 1)Nr + snrα. (2.21)

Then using the Hardy–Littlewood–Sobolev inequality and the condition (2.19)–(2.21), we
find ∥

∥
∥
∫

RN

(
Iα ∗ |uA|p)|uA(y)|p−1

|x − y|N−2 dy
∥
∥
∥
Lr

≤
∥
∥
∥Iα ∗ |uA|p · u p−1

A

∥
∥
∥
L

Nr
N+2r

≤
∥∥∥(Iα ∗ |uA|p) Nr

N+2r

∥∥∥
N+2r
Nr

L
sn (N+2r)

sn (N+2r)−(p−1)Nr
×
∥∥∥u
(p−1) Nr

N+2r
A

∥∥∥
N+2r
Nr

L
sn (N+2r)
(p−1)Nr

≤ ∥∥Iα ∗ |uA|p∥∥
L

sn Nr
sn (N+2r)−(p−1)Nr

× ‖uA‖p−1
Lsn

and ∥∥Iα ∗ |uA|p∥∥
L

sn Nr
sn (N+2r)−(p−1)Nr

≤ ‖uA‖p

L
sn Nrp

sn (N+2r)−(p−1)Nr+snrα

.

Setting t = sn Nrp
sn(N+2r)−(p−1)Nr+snrα

, we know that sn < t < r . Hence t = (1 − θ)sn + θr
where θ = t−sn

r−sn
. It yields that

‖uA‖p
Lt ≤ ‖uA‖(1−θ)pLsn ‖uA‖θ pLr .

Similarly to (2.18), we have

‖uA‖Lr ≤ ‖uA‖p−1+(1−θ)p
Lsn × ‖uA‖θ pLr + ‖u − uA‖p−1

Lsn ‖uA‖(1−θ)pLsn ‖uA‖θ pLr + C(A).

Then we choose A > 0 sufficiently large such that

2‖uA‖Lr ≤ ‖uA‖θ pLr + C(A). (2.22)

Note that θ p < 1. To see this, we only need to prove

t − s = (2p − 1)sNr − s2(N + 2r + rα)

s(N + 2r + rα)− (p − 1)Nr
<

r − s

p
, (2.23)

which is equivalent to

LHS = 2psNr + Nr2 < s2(N + 2r + rα)+ sr2(N − 2) = RHS.
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Since s ≥ 2N
N−2 , we compute that

RHS ≥ s2N + s2r(N − 2)(p − 1)+ 2Nr2

≥ s2N + 2Nsr(p − 1)+ 2Nr2

≥ 2Nsrp + Nr2 + N (s − r)2

> 2Nsrp + Nr2 = LHS.

From this, by (2.22) we know

‖uA‖Lr ≤ max{1,C(A) 1
θ p }.

It follows that uA ∈ Lr (RN ) for A > 0 sufficiently large. Thus u ∈ L
Np
α (RN ) and Iα ∗|u|p ∈

L∞(RN ).
Finally, since u satisfies

−�u = (Iα ∗ |u|2∗
α )|u|2∗

α−2u, in R
N .

Then, by standard elliptic regularity theory, u ∈ C∞(RN ).
Case 3 N − 4 ≤ α < N . In this case, 2∗

α = N+α
N−2 ≥ 2. Then a(x) := (Iα ∗ |u|2∗

α )u2
∗
α−2 ∈

LN/2(RN ). The Brézis–Kato theorem [4] implies that u ∈ Lt
loc(R

N ) for all 1 ≤ t < ∞.
Thus, u ∈ W 2,t (RN ) for all 1 ≤ t <∞. By elliptic regularity theory, u ∈ C∞(RN ).

Step 2 We want to prove the asymptotic behavior at infinity of u. We prove it by contra-
diction. Consider the Kelvin transform:

U (x) = 1

|x |N−2 u

(
x

|x |2
)

⇒ |x |N−2u(x) = U

(
x

|x |2
)
.

Applying Proposition 2.3 toU (x), we conclude thatU (x)must be radially symmetric about
some point and continuous. Hence

lim|x |→+∞ |x |N−2u(x) = U (0) > 0,

which completes the proof of Proposition 2.4. ��
Lemma 2.5 Let u be a solution of Eq. (1.6), then there exist λ > 0 and x ∈ R

N such that

u(y) =
(

λ

|y − x |
)N−2

u

(
x + λ2(y − x)

|y − x |2
)
. (2.24)

Proof Let u be a solution of Eq. (1.6). By Proposition 2.3, we can assume that u(x) is
symmetric about the origin, and we prove this lemma with x = 0. Moreover, without loss of
generality we assume that λ = 1. Otherwise, we just need to make a translation or a scaling.

By Proposition 2.4, suppose that lim|x |→+∞ |x |N−2u(x) = u∞ = u(0). Let e be any unit

vector in R
N . We define

w(y) =
(

1

|y|
)N−2

u

(
y

|y|2 − e

)
.

Obviously,w(y) is the Kelvin transform of u(y− e). By Lemma 2.1,w satisfies the Eq. (1.6)
and hence should be radially symmetric about some point z0 ∈ R

N . Note that

w(0) = u∞ and w(e) = u(0).
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Thus, w must be symmetric about the plane � = {x : (x − e
2 ) · e = 0}. Now, choosing

y = e
2 − he for any h > 0, similarly to the proof of Lemma 3.1 in [11], we can prove that

w
( e
2

− he
)

=
(

1

| 12 − h|

)N−2

u

(
e
2 + he

| 12 − h|

)

. (2.25)

Taking y = e
2 + he, h > 0, we have

w
( e
2

+ he
)

=
(

1

| 12 + h|

)N−2

u

(
e
2 − he

| 12 + h|

)

. (2.26)

Combining (2.25) with (2.26) and noticing the radial symmetry of u, we find
(

1

| 12 − h|

)N−2

u

(∣∣
∣
∣
∣

1
2 + h
1
2 − h

∣
∣
∣
∣
∣
e

)

=
(

1

| 12 + h|

)N−2

u

(∣∣
∣
∣
∣

1
2 − h
1
2 + h

∣
∣
∣
∣
∣
e

)

.

Let t = ( 12 − h)/( 12 + h), then

u

(
e

|t |
)

= |t |N−2u(|t |e).

Replacing |t |, e by 1/|y|, y/|y|, respectively, we obtain

u(y) = 1

|y|N−2 u

(
y

|y|2
)
.

Furthermore, we can take a translation transform to obtain (2.24). ��
To prove Theorem 1.1, we also need the following proposition from Li and Zhang [19].

Earlier version with stronger assumptions was first proved by Li and Zhu [20].

Proposition 2.6 [19] Let f ∈ C1(RN ,R), λ > 0 and μ > 0. Suppose that for every x ∈ R
N ,

there exists λ(x) > 0 such that

f (y) =
(

λ

|y − x |
)μ

f

(
x + λ2(y − x)

|y − x |2
)
, y ∈ R

N\{x}.

Then,

f (x) ≡ ±a

(
1

d + |x − x̄ |2
)μ/2

for some a ≥ 0, d > 0 and x̄ ∈ R
N .

Proof of Theorem 1.1 Using Lemma 2.5 and Proposition 2.6, we obtain that the solution of
Eq. (1.6) must be of form (1.7). ��

3 A global compactness result

In this section, we study the behavior of Palais–Smale sequences of the energy functional I
and then prove Theorem 1.3. The following result is a Brézis–Lieb’s type lemma for problem
(1.10), and the proof is similar as Lemma 2.4 in [31].
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Lemma 3.1 Let N ≥ 3 and α ∈ (0, N ). If {un} is a bounded sequence in L
2N
N−2 (RN ) such

that un → u almost everywhere in R
N as n → +∞, then

∫

RN

(
Iα ∗ |un |2∗

α
)|un |2∗

αdx −
∫

RN

(
Iα ∗ |un −u|2∗

α
)|un −u|2∗

αdx →
∫

RN

(
Iα ∗ |u|2∗

α
)|u|2∗

αdx

(3.1)
and
(
Iα ∗ |un |2∗

α
)|un |2∗

α−2un − (Iα ∗ |un − u|2∗
α
)|un − u|2∗

α−2(un − u)⇀
(
Iα ∗ |u|2∗

α
)|u|2∗

α−2u,

in
(D1,2(RN )

)′
, (3.2)

where
(D1,2(RN )

)′
is the dual space of D1,2(RN ).

In order to prove Theorem 1.3, we need the following concentration principle for Riesz
potential.

Lemma 3.2 Let {un} ⊂ D1,2(RN ) be a sequence of functions such that

un⇀0 weakly in D1,2(RN ).

Assume that there exist a bounded open set Q ⊂ R
N and a positive constant � > 0 such that

∫

Q
|∇un |2dx ≥ � (3.3)

and ∫

Q
(Iα ∗ |un |2∗

α )|un |2∗
αdx ≥ �. (3.4)

Moreover, suppose that

�un + (Iα ∗ |un |2∗
α )|un |2∗

α−2un = χn, (3.5)

where χn ∈ (D1,2(RN )
)′
and

〈χn, ψ〉 ≤ εn‖ψ‖, for all ψ ∈ C∞
0 (�), (3.6)

with � being an open neighborhood of Q and {εn} being a sequence of positive numbers
converging to 0. Then there exist a sequence of positive numbers {σn} and a sequence of
points {yn} ⊂ Q̄ such that

vn(x) := σ
N−2
2

n un(σnx + yn)

converges weakly in D1,2(RN ) to v, which is a nontrivial solution of Eq. (1.6).

Proof Since un⇀0 in D1,2(RN ), then by Concentration Compactness Principle II (see
Lemma I.1, [26]), we obtain an at most countable index set �, a sequence of {xi }i∈� ⊂ R

N

and a family of {νi }i∈� ⊂ (0,+∞) such that
|unφ�|2∗

⇀
∑

i∈�
νiδxi ,

where φ�(x) is a cut-off function with φ�(x) = 1 in Q; φ�(x) = 0 in R
N\� and 0 ≤

φ�(x) ≤ 1.

For the readers’ convenience, we will prove this lemma through three claims.

Claim 1 There is at least one i0 ∈ � such that xi0 ∈ Q̄ with νi0 > 0.
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Proof Otherwise, then un → 0 in L2∗
(Q), which together with Hardy–Littlewood–Sobolev

inequality implies that ∫

Q

(
Iα ∗ |un |2∗

α
)|un |2∗

αdx → 0.

This is a contradiction to the assumption (3.4) and the claim is proved. ��
Now, we define the concentration function

Gn(r) := sup
z∈Q̄

∫

Br (z)
|un |2∗

dx .

For a given small τ ∈ (0, [ S
AαC(N ,α)

] N
α+2
)
, we choose σn = σn(τ ) > 0, yn ∈ Q̄ such that

∫

Bσn (yn)
|un |2∗

dx = Gn(σn) = τ. (3.7)

Let vn(x) := σ
N−2
2

n un(σnx + yn), then

G̃n(r) := sup
z∈Q̄n

∫

Br (z)
|vn |2∗

dx = sup
z∈Q̄

∫

Bσnr (z)
|un |2∗

dx = Gn(σnr), (3.8)

where Q̄n := {x ∈ R
N : σnx + yn ∈ Q̄}. It follows by (3.7) and (3.8) that

G̃n(1) =
∫

B1(0)
|vn |2∗dx =

∫

Bσn (yn)
|un |2∗

dx = Gn(σn) = τ. (3.9)

Claim 2 There exists some τ ∈ (0, [ S
AαC(N ,α)

] N
α+2
)
such that σn(τ )→ 0 as n → +∞.

Proof Assume by contradiction, for any ε > 0, that there exists r0 > 0 such that σn(ε) ≥ r0.
Then a direct calculation shows that

∫

Br0 (xi0 )
|un |2∗

dx ≤ sup
z∈Q̄

∫

Bσn (ε)(z)
|un |2∗

dx = Gn(σn(ε)) = ε. (3.10)

In particular

νi0 ≤
∫

Br0 (xi0 )
|un |2∗

dx + on(1) ≤ ε + on(1), for any ε > 0, (3.11)

where on(1) → 0 as n → +∞. Then, it follows by (3.11) that we have νi0 ≤ 0, which
contradicts Claim 1.

By the definition of vn , we have
∫
RN |∇vn |2dx = ∫

RN |∇un |2dx , which together with the
boundness of {un} in D1,2(RN ) implies that {vn} is bounded in D1,2(RN ). Without loss of
generality, wemay assume that there exists some v ∈ D1,2(RN ) such that vn⇀v inD1,2(RN )

up to a subsequence.

Claim 3 v is a nontrivial solution of Eq. (1.6).

Proof In fact, for any ϕ ∈ C∞
0 (R

N ), we define

ϕ̃n(x) = σ
2−N
2

n ϕ

(
x − yn
σn

)
. (3.12)
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Since σn → 0 and yn ∈ Q̄, then we assert that ϕ̃n(x) ∈ C∞
0 (�̄) for n large enough. In virtue

of (3.5) and (3.6), we obtain that

on(1)‖ϕ‖ = on(1)‖ϕ̃n‖ =
∫

RN
∇un∇ϕ̃ndx −

∫

RN

(
Iα ∗ |un |2∗

α
)|un |2∗

α−2un ϕ̃ndx

=
∫

RN
∇vn∇ϕdx −

∫

RN

(
Iα ∗ |vn |2∗

α
)|vn |2∗

α−2vnϕdx . (3.13)

Thus, v is a weak solution of Eq. (1.6). Before concluding the proof, we still need to prove
v �= 0. To this end, it is sufficient to prove that, up to a subsequence,

vn → v strongly in L2∗
(B1(0)). (3.14)

Since vn⇀v in D1,2(RN ), by Concentration Compactness Principle (see Lemma I.1 in [26]
and Lemma 2.1 in [27]), wemay assume that there exist three bounded nonnegative measures

μ̃, ν̃, ω̃, such that |∇vn |2⇀μ̃, |vn |2∗
⇀ν̃ and

∣
∣Iα ∗ |vn |2∗

α

∣
∣

2N
N−α⇀ω̃ weakly in finite measure

space M(RN ) (see Page 26 in [40]). Moreover,

μ̃ ≥ |∇v|2+
∑

j∈�̃
μ̃ jδx j , ν̃ = |v|2∗+

∑

j∈�̃
ν̃ jδx j , ω̃ = ∣∣Iα∗|v|2∗

α
∣
∣

2N
N−α +

∑

j∈�̃
ω̃ jδx j inM(RN )

(3.15)
and

μ̃ j ≥ Sν̃
N−2
N

j , ν̃ j ≥
(

1

AαC(N , α)

) 2N
N+α

ω̃
N−α
N+α
j , (3.16)

where �̃ is an at most countable index set. In order to prove (3.14), we only need to prove

{x j } j∈�̃ ∩ B1(0) = ∅.
If not, we suppose that there exists x j0 ∈ B1(0) for some j0 ∈ �̃ and define φρ(x) :=
φ
( x−x j0

ρ

)
, φ is a cut-off function which satisfies φ = 1 on B1(0), suppφ ⊂ B2(0) and

0 ≤ φ ≤ 1. Denote by φ̃ρ,n(x) = φρ
( x−yn
σn

)
, by the facts that yn ∈ Q̄, x j0 ∈ B1(0) and

σn → 0, we then observe that suppφ̃ρ,n(x) ⊂ B2σnρ(yn + σnx j0) ⊂ �, which implies
φ̃ρ,n(x)un ∈ D1,2

0 (�). A direct calculation yields that
∫

RN
|∇(φ̃ρ,nun)|2dx ≤ C

∫

RN
|∇φ̃ρ,n|2u2ndx + C

∫

RN
|φ̃ρ,n|2|∇un |2dx

≤ C

(∫

B2σnρ(yn+σn xi0 )
|∇φ̃ρ,n|Ndx

) 2
N

·
(∫

RN
|un |2∗

dx

) N−2
N

+ C
∫

RN
|∇un |2dx

≤ C . (3.17)

Hence, {φ̃ρ,nun} is bounded in D1,2(RN ) and the bound is independent of ρ. Combining
(3.5), (3.6) with the fact that C∞

0 (R
N ) is dense in D1,2(RN ), we then get

∫

RN
∇vn∇(φρvn)dx −

∫

RN
(Iα ∗ |vn |2∗

α )|vn |2∗
α−2vn(φρvn)dx

=
∫

RN
∇un · ∇(φ̃ρ,nun)dx −

∫

RN
(Iα ∗ |un |2∗

α )|un |2∗
α−2un(φ̃ρ,nun)dx = on(1). (3.18)
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Let ρ → 0, then

lim sup
n→∞

∣
∣∣
∣

∫

RN
(∇vn · ∇φρ)vndx

∣
∣∣
∣ ≤ lim sup

n→∞

(∫

RN
|∇vn |2dx

) 1
2
(∫

B2ρ(x j0 )
v2n |∇φρ |2dx

) 1
2

≤ C

(∫

B2ρ(x j0 )
|∇φρ |Ndx

) 1
N
(∫

B2ρ(x j0 )
|vn |2∗

dx

) 1
2∗

→ 0.

(3.19)

Moreover,

lim sup
n→∞

∫

RN
|∇vn |2φρdx ≥

∫

RN
|∇v|2φρdx + μ̃ j0 → μ̃ j0 (3.20)

and
∫

RN
(Iα ∗ |vn |2∗

α )|vn |2∗
αφρdx ≤

(∫

suppφ
(Iα ∗ |vn |2∗

α )
2N
N−α dx

) N−α
2N
(∫

suppφ
|vn |2∗

dx

) N+α
2N

→ ω̃
N−α
2N
j0
ν̃

N+α
2N
j0

≤ AαC(N , α)̃ν
N+α
N

j0
. (3.21)

It follows from (3.18)–(3.20) that

Sν̃
N−2
N

j0
≤ μ̃ j0 ≤ AαC(N , α)̃ν

N+α
N

j0
,

then

ν j0 ≥
[

S

AαC(N , α)

] N
α+2

.

Combining the inequality above and (3.9), then we get

[
S

AαC(N , α)

] N
α+2 ≤ ν j0 ≤

∫

B1(0)
|vn |2∗

dx = τ,

which contradicts the assumption τ ∈ (
0,

[
S

AαC(N ,α)

] N
α+2

)
. Therefore, (3.14) is proved.

Combining (3.9) and (3.14), we have
∫

B1(0)
|v|2∗

dx = lim
n→+∞

∫

B1(0)
|vn |2∗

dx = τ > 0,

which implies that v �= 0. Thus, combining Claims 1–3, we can complete the proof. ��
Lemma 3.3 Let {un} be a Palais–Smale sequence for I∞, such that un ∈ C∞

0 (R
N ) and

un⇀0 weakly in D1,2(RN ); un � 0 strongly in D1,2(RN ).

Then there exist a sequence of points {yn} ⊂ R
N , a sequence of positive numbers {σn} such

that

vn(x) := σ
N−2
2

n un(σnx + yn)

converges weakly in D1,2(RN ) to v, which is a nontrivial solution of Eq. (1.6). Moreover,

I∞(un) = I∞(v)+ I∞(vn − v)+ on(1); (3.22)

‖un‖2 = ‖v‖2 + ‖vn − v‖2 + on(1). (3.23)
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Proof Since un⇀0 inD1,2(RN ), then {un} is bounded inD1,2(RN ). Furthermore, as {un} is
a Palais–Smale sequence for I∞, we then know that

�un − (Iα ∗ |un |2∗
α )|un |2∗

α−2un = χn, (3.24)

where χn ∈ (D1,2(RN )
)′ satisfies

〈χn, ψ〉 ≤ εn‖ψ‖, for all ψ ∈ C∞
0 (�). (3.25)

Multiplying by un on both sides of (3.24) and integrating on R
N , we then have

∫

RN
|∇un |2dx =

∫

RN

(
Iα ∗ |un |2∗

α
)|un |2∗

αdx + on(1). (3.26)

Let us decompose R
N in N-dimensional hypercubes Qi with unitary sides and vertices

with integer coordinates. Next, we assert that for any n ∈ N, there exists some �̃ > 0
satisfying

dn := sup
Qi

∫

Qi

(
Iα ∗ |un |2∗

α
)|un |2∗

αdx ≥ �̃.

If not, then we have dn → 0 as n → +∞. A direct calculation shows that

∫

RN

(
Iα ∗ |un |2∗

α
)|un |2∗

αdx ≤ d
1− 1

2∗α
n

∑

i

(∫

Qi

(Iα ∗ |un |2∗
α )|un |2∗

αdx

) 1
2∗α

≤ d
1− 1

2∗α
n

(
C(N , α)Aα

) 1
2∗α
∑

i

(∫

Qi

|un |2∗
dx

) 1
2∗
(∫

RN
|un |2∗

dx

) 1
2∗

≤ Cd
1− 1

2∗α
n

(
C(N , α)Aα

) 1
2∗α ‖un‖2. (3.27)

Combining (3.26) with (3.27) and letting dn → 0 as n → +∞, we observe that ‖un‖ → 0,
which leads to a contradiction.

In the following, let ỹn be the center of a hypercube Qi such that
∫

Qi

(Iα ∗ |un |2∗
α )|un |2∗

αdx ≥ �̃

2
> 0. (3.28)

Set wn = un(x + ỹn), then
∫

Q
(Iα ∗ |wn |2∗

α )|wn |2∗
αdx ≥ �̃

2
> 0, (3.29)

where Q denote a hypercube of unitary side centered at the origin. Using the Hardy–
Littlewood–Sobolev inequality and the boundedness of {un} in D1,2(RN ) again, we get

�̃

2
≤
∫

Q
(Iα ∗ |wn |2∗

α )|wn |2∗
αdx ≤ C

(∫

Q
|wn |2∗

dx

) N+α
N

.

Hence we can deduce that there exists �̄ > 0 such that
∫

Q
|wn |2∗

dx > �̄.

At this point, we have verified the conditions (3.3)–(3.5) in Lemma 3.2 for {wn}. The first
part of Lemma 3.3 follows from Lemma3.2. Obviously,
∫

RN
|∇un |2dx =

∫

RN
|∇vn |2dx,

∫

RN

(
Iα ∗ |un |2∗

α
)|un |2∗

αdx =
∫

RN

(
Iα ∗ |vn |2∗

α
)|vn |2∗

αdx .
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Then we can prove (3.23). Similarly, (3.22) follows from (3.1). ��
It follows from Theorems A and 1.1 that

Sα := inf
D1,2(RN )\{0}

∫
RN |∇u|2dx

(∫
RN (Iα ∗ |u|2∗

α )|u(x)|2∗
αdx

) N−2
N+α

= S

[C(N , α)Aα]
N−2
N+α

. (3.30)

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 Since {un} is a Palais–Smale sequence for I at level c, then it is easy to
prove that {un} is bounded inD1,2(RN ) and consequently bounded in L2∗

(RN ). Without loss
of generality, we may assume that un⇀ū inD1,2(RN ) and L2∗

(RN ) as n → +∞. Moreover,
ū is a weak solution of Eq. (1.10). In fact, for any ϕ1 ∈ C∞

0 (R
N ), we have

〈I ′(ū), ϕ1〉 = 〈I ′(un), ϕ1〉 +
∫

RN
V (x)(ū − un)ϕ1dx +

∫

RN
∇(ū − un)∇ϕ1dx

−
∫

RN
(Iα ∗ |ū|2∗

α )|ū|2∗
α−2ūϕ1dx +

∫

RN
(Iα ∗ |un |2∗

α )|un |2∗
α−2unϕ1dx . (3.31)

By Lemma 3.1, we know
∫

RN
(Iα ∗ |un |2∗

α )|un |2∗
α−2unϕ1dx −

∫

RN
(Iα ∗ |ū|2∗

α )|ū|2∗
α−2ūϕ1dx = on(1). (3.32)

Moreover, by Lemma 2.13 [40], we have
∫

RN
V (x)(ū − un)

2dx → 0, as n → +∞

and
∫

RN
V (x)(ū − un)ϕ1dx → 0;

∫

RN
∇(ū − un)∇ϕ1dx → 0, as n → +∞. (3.33)

Thus, it follows by (3.31)–(3.33) that

〈I ′(ū), ϕ1〉 = 〈I ′(un), ϕ1〉 + on(1),

which leads to I ′(ū) = 0, I (ū) = I (un)− I∞(un − ū)+ on(1).
Let z1n := un − ū, then z1n⇀0 in D1,2(RN ) and {z1n} is a Palais–Smale sequence for I∞.

In fact, for any ϕ2 ∈ C∞
0 (R

N ), we have

〈I ′∞(z1n), ϕ2〉 = 〈I ′(un), ϕ2〉 − 〈I ′(ū), ϕ2〉 +
∫

RN
V (x)(ū − un)ϕ2dx

−
∫

RN
(Iα ∗ |ū|2∗

α )|ū|2∗
α−2ūϕ2dx

−
∫

RN
(Iα ∗ |z1n |2

∗
α )|z1n |2

∗
α−2z1nϕ2dx +

∫

RN
(Iα ∗ |un |2∗

α )|un |2∗
α−2unϕ2dx

= on(1)‖ϕ2‖,
where (3.33) and (3.2) are used. Hence {z1n} is a Palais–Smale sequence of I∞.

For any n ∈ N
+, there exists a sequence {u1n} ⊂ C∞

0 (R
N ) such that

‖u1n − z1n‖ <
1

n
and ‖I ′∞(u1n)− I ′∞(z1n)‖ <

1

n
. (3.34)
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It is not difficult to verify that

‖u1n‖2 = ‖z1n‖2 + on(1); I∞(u1n) = I∞(z1n)+ on(1); I ′∞(u1n) = I ′∞(z1n)+ on(1).
(3.35)

Furthermore, one has

‖u1n‖2 = ‖z1n‖2 + on(1) = ‖un‖2 − ‖ū‖2 + on(1) (3.36)

and
I∞(u1n) = I∞(z1n)+ on(1) = I (un)− I (ū)+ on(1). (3.37)

If u1n → 0 in D1,2(RN ), then we have done. Now we suppose that u1n � 0 strongly in
D1,2(RN ). From (3.35) that we know that {u1n} is a Palais–Smale sequence of I∞ and {u1n} ⊂
C∞
0 (R

N ) satisfies

u1n⇀0 in D1,2(RN ) and u1n � 0 strongly in D1,2(RN ).

Applying Lemma 3.3 to {u1n}, we assert that there exist a sequence of points {x1n } ⊂ R
N , a

sequence of positive numbers {η1n} ⊂ R such that

v1n := (η1n)
N−2
2 u1n(η

1
n · +x1n )

converges weakly in D1,2(RN ) to a nontrivial solution u1 of Eq. (1.6). Moreover,

I∞(u1n) = I∞(u1)+ I∞(v1n−u1)+on(1) and ‖u1n‖2 = ‖u1‖2+‖v1n−u1‖2+on(1). (3.38)

Combining (3.38) with (3.35), we obtain that

I (un) = I (ū)+ I∞(u1)+ I∞(v1n − u1)+ on(1) (3.39)

and
‖un‖2 = ‖ū‖2 + ‖v1n − u1‖2 + ‖u1‖2 + on(1). (3.40)

Let z jn = v
j−1
n − u j−1 and repeat the above procedure. If z jn → 0 in D1,2(RN ), we have

done. If z jn � 0 in D1,2(RN ), the analogously {z jn} is a Palais–Smale sequence of I∞, then
we can find {u j

n} ⊂ C∞
0 (R

N ) such that

‖u j
n − z jn‖ < 1

n
and ‖I ′∞(u

j
n)− I ′∞(z

j
n)‖ < 1

n
, (3.41)

and there exist a sequence of positive numbers {η jn} ⊂ R and a sequence of points {x j
n } ⊂ R

N

such that
v
j
n := (η jn) N−2

2 u j
n(η

j
n · +x j

n )

convergesweakly inD1,2(RN ) to a nontrivial solutionu j ofEq. (1.6).Moreover, the following
properties hold:

I∞(v jn ) = I∞(u j )+ I∞(v jn − u j )+ on(1) and ‖v jn‖2 = ‖u j‖2 + ‖v jn − u j‖2 + on(1).
(3.42)

Furthermore, we deduce that

I (un) = I (ū)+
j−1∑

i=1

I∞(ui )+ I∞(v jn − u j )+ on(1) (3.43)
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and

‖un‖2 = ‖ū‖2 +
j−1∑

i=1

‖ui‖2 + ‖v jn − u j‖2 + on(1). (3.44)

Since u j is a nontrivial weak solution of Eq. (1.6), then ‖u j‖2 ≥ S
N+α
α+2
α , which together with

(3.44) and the fact that un is bounded in D1,2(RN ) tells us that the iteration procedure must
terminate after finitely-many steps. Therefore, we complete the proof of Theorem 1.3. ��

4 Existence of positive bound state solution

In this section, we prove the existence of bound state solutions to Eq. (1.10). Firstly, we show

that, providing V (x) ≥ 0 and V (x) ∈ L
N
2 (RN ), then there is no minimizer for functional I

restrict on the Nehari manifold N .

Proposition 4.1 Assume that V (x) ≥ 0 and V (x) ∈ L
N
2 (RN ), then m = m∞ holds and m

is not attained.

Proof Obviously, for u ∈ D1,2(RN )\{0}, there exist unique tu , su > 0 such that tuu ∈ N
suu ∈ N∞, moreover I (tuu) = maxt>0 I (tu) and I∞(suu) = maxs>0 I∞(su). Especially,
if u ∈ N and suu ∈ N∞, then we have su ∈ (0, 1]. Therefore, for u ∈ N ,

m∞ ≤ I∞(suu) = s2u
2

‖u‖2 − s
2·2∗

α
u

2 · 2∗
α

∫

RN

(
Iα ∗ |u|2∗

α
)|u|2∗

αdx

≤ s2u
2

‖u‖2 + s2u
2

∫

RN
V (x)u2dx − s

2·2∗
α

u

2 · 2∗
α

∫

RN

(
Iα ∗ |u|2∗

α
)|u|2∗

αdx

≤ I (u), (4.1)

which implies that m∞ ≤ m.
Next, we prove m ≤ m∞. In fact, we consider a sequence {un := tnwn} ⊂ N , where

wn(·) = w(· − zn) with w being a positive solution centered at zero to Eq. (1.6), {zn} ⊂ R
N

satisfying |zn | → +∞ as n → +∞ and tn := twn . It follows by the definition of wn that

wn⇀0 in D1,2(RN ); ‖wn‖ = ‖w‖ �= 0 (4.2)

and
∫

RN
(Iα ∗ |wn |2∗

α )|wn |2∗
αdx =

∫

RN
(Iα ∗ |w|2∗

α )|w|2∗
αdx, as n → +∞. (4.3)

Furthermore, by Lemma 2.13 [40], we know that
∫

RN
V (x)w2

ndx → 0 as n → +∞. (4.4)

Thus, in virtue of (4.2)–(4.4), we can prove easily that

I (un) = I (tnwn) = t2n
2

‖w‖2 + t2n
2
on(1)− t

2·2∗
α

n

2 · 2∗
α

∫

RN
(Iα ∗ |w|2∗

α )|w|2∗
αdx . (4.5)

Since wn ∈ N∞ and tnwn ∈ N , then

‖wn‖2 =
∫

RN
(Iα ∗ |wn |2∗

α )|wn |2∗
αdx (4.6)
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and

t2n‖wn‖2 + t2n

∫

RN
V (x)w2

ndx = t
2·2∗

α
n

∫

RN
(Iα ∗ |wn |2∗

α )|wn |2∗
αdx . (4.7)

Combining (4.6) and (4.7), we then have

‖w‖2 + on(1) = t
22∗
α−2

n

∫

RN

(
Iα ∗ |w|2∗

α
)|w|2∗

αdx . (4.8)

From (4.2), (4.3) and (4.8), then {tn} is bounded and tn → 1 as n → +∞. Therefore, we
have I (un)→ m∞ as n → +∞ which implies that m ≤ m∞. Thus m = m∞.

In the following, we prove that m cannot be attained. If not, we suppose that there exists
u0 ∈ N such that I (u0) = m and su0u0 ∈ N∞ with su0 ∈ (0, 1]. With a direct calculation,
we get

m∞ ≤ I∞(su0u0) = s2u0
2

‖u0‖2 − s
2·2∗

α
u0

2 · 2∗
α

∫

RN
(Iα ∗ |u0|2∗

α )|u0|2∗
αdx

≤ s2u0
2

‖u0‖2 + s2u0
2

∫

RN
V (x)u20dx − s

2·2∗
α

u0

2 · 2∗
α

∫

RN
(Iα ∗ |u0|2∗

α )|u0|2∗
αdx

≤ I (u0) ≤ m∞, (4.9)

which leads to ∫

RN
V (x)u20dx = 0 and su0 = 1. (4.10)

Thus, u0 ∈ N∞ and I∞(u0) = m∞. Recalling that u0 must be of form (1.7) and u0 > 0,
then ∫

RN
V (x)u20dx > 0,

which contradicts to (4.10). Thus, m is not achieved. ��
The following corollaries can be regarded as a direct consequence of Theorem 1.3 and

Proposition 4.1.

Corollary 4.2 Let {un} ⊂ D1,2(RN ) be a nonnegative Palais–Smale sequence satisfying the
assumptions of Theorem 1.3 with c ∈ (m, 2m), then up to a subsequence, {un} converges to
a nonnegative nontrivial solution ū of Eq. (1.10) strongly in D1,2(RN ).

Proof Obviously, un⇀ū inD1,2(RN ) and ū is nonnegative. Since c ∈ (m, 2m), we conclude
k ≤ 1 in (1.12). If ū �= 0 and k = 1, then c ≥ 2m by (1.14). If ū = 0 in D1,2(RN ) and
k = 1, then u1 is a nonnegative solution of Eq. (1.6). By using the property of super harmonic
function, we deduce that u1 is positive and c = m. This is a contradiction, since c ∈ (m, 2m).

��
Corollary 4.3 If {un} is a minimizing sequence for I on N , then there exist a sequence of
points {yn} ⊂ R

N , a sequence of positive numbers {δn} ⊂ R
+ and {wn} ⊂ D1,2(RN ) such

that
un(x) = wn(x)+ ψδn ,yn (x), (4.11)

where

ψδn ,yn (x) := cα

(
δn

δ2n + |x − yn |2
) N−2

2

and wn → 0 strongly in D1,2(RN ).
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Now, we prove the existence of positive solutions of Eq. (1.10) via classical Linking
Theorem. A direct calculation shows that

∫

RN
|∇ψδ,y |2dx =

∫

RN

(
Iα ∗ |ψδ,y |2∗

α
)|ψδ,y(x)|2∗

αdx = S
N+α
α+2
α . (4.12)

In order to build a suitable min–max sequence for our problem, we introduce a barycenter
type function and define G : D1,2(RN )→ R

N × R
+ by

G(u) =
(

1

Sα

) N+α
α+2
∫

RN

(
x

|x | , ζ(x)
)

|∇u|2dx := (β(u), ϑ(u)),

where ζ(x) is a cut-off function such that

ζ(x) =
{
0, if |x | < 1;
1, if |x | ≥ 1.

(4.13)

Moreover,

β(u) =
(

1

Sα

) N+α
α+2
∫

RN

x

|x | |∇u|2dx

and

ϑ(u) =
(

1

Sα

) N+α
α+2
∫

RN
ζ(x)|∇u|2dx .

Lemma 4.4 If |y| ≥ 1
2 , then

β(ψδ,y) = y

|y| + on(1) as δ → 0.

Proof A direct calculation shows that
∫

RN \Bε(y)
|∇ψδ,y |2dx ≤ CδN−2

∫

RN \Bε(y)
|x − y|2

(δ2 + |x − y|2)N dx

= CδN−2
∫ +∞

ε

ρ̃N+1

(δ2 + ρ̃2)N dρ̃ ≤ CδN−2
∫ +∞

ε

1

ρ̃N−1 dρ̃. (4.14)

Then, for each ε > 0, there exists δ0 := δ0(ε) such that for any δ ∈ (0, δ0],
∫

RN \Bε(y)
|∇ψδ,y |2dx < ε. (4.15)

Furthermore
∣∣∣β(ψδ,y)−

(
1

Sα

) N+α
α+2
∫

Bε(y)

x

|x | |∇ψδ,y |
2dx
∣∣∣ < ε. (4.16)

Let ε be small enough such that for |y| ≥ 1
2 , the following property holds

∣∣∣
x

|x | − y

|y|
∣∣∣ < ε for any x ∈ Bε(y).
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Then, by (4.15), we have

∣
∣
∣
y

|y| −
(

1

Sα

) N+α
α+2
∫

Bε(y)

x

|x | |∇ψδ,y |
2dx
∣
∣
∣

=
(

1

Sα

) N+α
α+2 ∣∣
∣
∫

Bε(y)

(
y

|y| − x

|x |
)

|∇ψδ,y |2dx +
∫

RN \Bε(y)
y

|y| |∇ψδ,y |
2dx
∣
∣
∣

≤ ε

S
N+α
α+2
α

∫

Bε(y)
|∇ψδ,y |2dx + ε ≤ 2ε. (4.17)

Therefore, it follows by (4.16) and (4.17) that we can easily deduce that
∣
∣
∣β(ψδ,y)− y

|y|
∣
∣
∣ ≤ 3ε

and then we complete the proof of lemma. ��
In the sequel, we denote by

M :=
{
u ∈ N : G(u) = (β(u), ϑ(u)) =

(
0,

1

2

)}

a subset of Nehari manifold N and define cM := inf
u∈M I (u).

Lemma 4.5 Let V (x) ≥ 0 and V (x) ∈ L
N
2 (RN ). Then cM > m.

Proof Obviously cM ≥ m. In order to show the identity cannot hold, we shall argue by
contradiction and then assume that there exists a sequence of {un} ⊂ M such that

lim
n→+∞ I (un) = m.

Moreover, for any n ∈ N,

β(un) = 0 and ϑ(un) = 1

2
. (4.18)

By Corollary 4.3, we deduce that there exist a sequence of points {yn} ⊂ R
N , a sequence of

positive numbers {δn} ⊂ R
N and a sequence of functions {wn} ⊂ D1,2(RN ) with wn → 0

in D1,2(RN ) such that un(x) = wn(x)+ ψδn ,yn . By the definition of G, we get

G(wn + ψδn ,yn ) =
(

1

Sα

) N+α
α+2
∫

RN

(
x

|x | , ζ(x)
)

|∇(wn + ψδn ,yn )|2dx

=
(

1

Sα

) N+α
α+2
∫

RN

(
x

|x | , ζ(x)
)

|∇wn |2dx

+ 2

S
N+α
α+2
α

∫

RN

(
x

|x | , ζ(x)
)
(∇wn∇ψδn ,yn )dx

+
(

1

Sα

) N+α
α+2
∫

RN

(
x

|x | , ζ(x)
)

|∇ψδn ,yn |2dx

=
(

1

Sα

) N+α
α+2
∫

RN

(
x

|x | , ζ(x)
)

|∇ψδn ,yn |2dx + on(1) = G(ψδn ,yn )+ on(1).
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Therefore, by (4.18), we deduce that

β(ψδn ,yn )→ 0 and ϑ(ψδn ,yn )→ 1

2
as n → +∞. (4.19)

There exists a subsequence (δn, yn) such that one of the following cases may happen

(1) δn → +∞ as n → ∞;
(2) δn → δ̄ �= 0 as n → ∞;
(3) δn → 0 and yn → ȳ, |ȳ| < 1

2 as n → ∞;
(4) δn → 0 as n → ∞ and |yn | ≥ 1

2 for n large.

Nowwe prove that none of the possibilities listed above can be true. Obviously, by Lemma
4.4 and (4.19), case (4) can not happen. If (1) holds, then

ϑ(ψδn ,yn ) =
(

1

Sα

) N+α
α+2
∫

RN
ζ(x)|∇ψδn ,yn |2dx

=
(

1

Sα

) N+α
α+2
∫

RN \B1(0)
|∇ψδn ,yn |2dx

= 1 −
(

1

Sα

) N+α
α+2
∫

B1(0)
|∇ψδn ,yn |2dx = 1 − on(1),

which contradicts to (4.19). If (2) happens, we first assert that |yn | → +∞. If not, up to a
subsequence, we notice that ψδn ,yn would converge strongly in D1,2(RN ), so un converges
strongly in D1,2(RN ), which is impossible by Proposition 4.1. Thus, for n → +∞, we have

ϑ(ψδn ,yn ) = ϑ(ψδ̄,yn )+ on(1)

=
(

1

Sα

) N+α
α+2
∫

RN
ζ(x)|∇ψδ̄,yn |2dx + on(1)

=
(

1

Sα

) N+α
α+2
∫

RN
ζ(x − yn)|∇ψδ̄,0|2dx + on(1)

= 1 −
(

1

Sα

) N+α
α+2
∫

B1(yn)
|∇ψδ̄,0|2dx + on(1) = 1 + on(1),

which is absurd in the sense of (4.19). If (3) is true, then for n large,

ϑ(ψδn ,yn ) =
(

1

Sα

) N+α
α+2
∫

RN \B1(0)
|∇ψδn ,yn |2dx + on(1)

≤
(

1

Sα

) N+α
α+2
∫

RN \B1(yn)
|∇ψδn ,0|2dx = on(1),

which is also impossible. Then the proof is completed. ��

In the following, we define a mapping θ : D1,2(RN )\{0} → N by

θ(u) = tuu,
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where tu is the unique positive number such that tuu ∈ N . Also we define the operator
T : R

N × (0,+∞)→ D1,2(RN ) by

T (y, δ) = ψδ,y(x).
Then we have the following lemma.

Lemma 4.6 Assume that V (x) ≥ 0 and V (x) ∈ L
N
2 (RN ). Then for any ε > 0, there exists

δ1 = δ1(ε) and δ2 = δ2(ε) (without loss of generality, we assume that δ1 ≤ δ2) such that
I (θ ◦ T (y, δ)) < m + ε

for any δ ∈ (0, δ1] ∪ [δ2,+∞) and y ∈ R
N .

Proof Since V (x) ∈ L
N
2 (RN ), then for any ε > 0, there exists r > 0 small enough such that

sup
y∈RN

(∫

Br (y)
|V (x)| N2 dx

) 2
N

< ε. (4.20)

A direct calculation shows that

lim
δ→0

∫

Br (y)
|ψδ,y |2∗

dx =
∫

RN
|ψ1,0|2∗

dx =
∫

RN
|ψδ,y |2∗

dx . (4.21)

Thus, there exists δ1 = δ1(ε) small enough, such that for any δ ∈ (0, δ1),
(∫

RN \Br (y)
|ψδ,y |2∗

dx

) N−2
N

< ε. (4.22)

From (4.20) and (4.22), we obtain
∫

RN
V (x)|ψδ,y |2dx =

∫

Br (y)
V (x)|ψδ,y |2dx +

∫

RN \Br (y)
V (x)|ψδ,y |2dx

≤
(∫

Br (y)
|V (x)| N2 dx

) 2
N
(∫

Br (y)
|ψδ,y |2∗

dx

) N−2
N

+
(∫

RN \Br (y)
|V (x)| N2 dx

) 2
N
(∫

RN \Br (y)
|ψδ,y |2∗

dx

) N−2
N

≤ Cε. (4.23)

Using V (x) ∈ L
N
2 (RN ) again, we assume that for any ε > 0, there exists R > 0 big enough

such that (∫

RN \BR(0)
|V (x)| N2 dx

) 2
N

< ε. (4.24)

Recalling that lim
δ→+∞ sup

x∈RN
|ψδ,y | = 0, then we obtain that

lim
δ→+∞

∫

BR(0)
|ψδ,y |2∗

dx = 0, (4.25)

which implies that there exists δ2 := δ2(ε) > 0, such that for any δ ≥ δ2,
(∫

BR(0)
|ψδ,y |2∗

dx

) N−2
N ≤ ε. (4.26)
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In virtue of (4.24) and (4.26), we can prove that that for any δ ≥ δ2,
∫

RN
V (x)|ψδ,y |2dx =

∫

BR(0)
V (x)|ψδ,y |2dx +

∫

RN \BR(0)
V (x)|ψδ,y |2dx ≤ Cε. (4.27)

Thus, combining (4.23) and (4.27) that we can conclude that
∫

RN
V (x)|ψδ,y |2dx < ε, (4.28)

for any y ∈ R
N and δ ∈ (0, δ1] ∪ [δ2,∞).

For any ψδ,y , there exists tψ := t(ψδ,y) ≥ 1 such that tψψδ,y ∈ N . With a similar
argument to the proof in (4.6)–(4.8), we prove that for uniformly y ∈ R

N , tψ → 1 as δ → 0
or δ → +∞. Thus, inspired by (4.28), for any δ ∈ (0, δ1] ∪ [δ2,+∞),

I (θ ◦ T (y, δ)) = t2ψ
2

‖ψδ,y‖2 + t2ψ
2

∫

RN
V (x)ψ2

δ,ydx − t
2·2∗

α

ψ

2 · 2∗
α

∫

RN
(Iα ∗ |ψδ,y |2∗

α )|ψδ,y |2∗
αdx

= I∞(tψψδ,y)+
t2ψ
2

∫

RN
V (x)ψ2

δ,ydx < I∞(ψδ,y)+ ε = m + ε.
��

Lemma 4.7 Assume that V (x) ≥ 0 and V (x) ∈ L
N
2 (RN ). Then for any fixed δ > 0,

lim|y|→+∞ I (θ ◦ T (y, δ)) = m.

Proof First, we claim that for any fixed δ > 0,

lim|y|→+∞

∫

RN
V (x)|ψδ,y |2dx = 0. (4.29)

Indeed, for a given ε > 0, we can choose some R > 0 large enough such that
∫

RN \BR(0)
|V (x)| N2 dx < ε

and ∫

RN \BR(y)
|ψδ,y |2∗

dx =
∫

RN \BR(0)
|ψδ,0|2∗

dx < ε.

Taking y with |y| > 2R, we see
∫

RN
V (x)|ψδ,y |2dx =

∫

RN \(BR(y)∪BR(0))
V (x)|ψδ,y |2dx

+
∫

BR(y)
V (x)|ψδ,y |2dx +

∫

BR(0)
V (x)|ψδ,y |2dx

≤
(∫

RN \BR(0)
|V (x)| N2 dx

) 2
N
(∫

RN \BR(y)
|ψδ,y |2∗

dx

) N−2
N

+
(∫

RN \BR(0)
|V (x)| N2 dx

) 2
N ‖ψδ,y‖2L2∗
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+ ‖V (x)‖
L

N
2

(∫

RN \BR(y)
|ψδ,y |2∗

dx

) N−2
N

≤ Cε. (4.30)

With a similar argument as the proof in (4.6)–(4.8) again, we can also prove that tψ → 1 as
|y| → +∞, where tψ satisfies tψψδ,y ∈ N . Thus, as |y| → +∞, by (4.30),

m ≤ I (θ ◦ T (y, δ))

= t2ψ
2

‖ψδ,y‖2 + t2ψ
2

∫

RN
V (x)|ψδ,y |2dx − t

2·2∗
α

ψ

2 · 2∗
α

∫

RN
(Iα ∗ |ψδ,y |2∗

α )|ψδ,y |2∗
αdx

= 1

2
‖ψδ,y‖2 + 1

2

∫

RN
V (x)|ψδ,y |2dx − 1

2 · 2∗
α

∫

RN
(Iα ∗ |ψδ,y |2∗

α )|ψδ,y |2∗
αdx + o(1)

= m + o(1). (4.31)

Thus lim|y|→+∞ I (θ ◦ T (y, δ)) = m. ��

From Lemma 4.5, we can deduce that there exists some σ > 0 such that m + σ < cM.
In the following, we give some estimates.

Lemma 4.8 There exists δ1 ∈ (0, 12 ) such that for any 0 < δ ≤ δ1, the following properties
hold.

(a) I (θ ◦ T (y, δ)) < m + σ, for any y ∈ R
N ;

(b)
∣∣β(θ ◦ T (y, δ))− y

|y|
∣∣ < 1

4 , for any y ∈ R
N with |y| ≥ 1

2 ;

(c) ϑ(θ ◦ T (y, δ)) < 1
2 , for any y ∈ R

N with |y| < 1
2 .

Proof (a) and (b) are easy to prove. In fact, (a) can be seen as a direct consequence of Lemma
4.6. In Lemma 4.6, we have proved that tψ → 1 as δ → 0, which together with Lemma 4.4
yields (b). Now we only need to prove (c). A direct calculation shows that

ϑ(θ ◦ T (y, δ)) = t2ψ

S
N+α
α+2
α

∫

RN
ζ(x)|∇ψδ,y |2dx = t2ψ

S
N+α
α+2
α

∫

RN \B1(0)
|∇ψδ,y |2dx

= t2ψ

S
N+α
α+2
α

∫

RN \B1(y)
|∇ψδ,0|2dx → 0, (4.32)

where in the last equality we have used the fact
∫
RN \B1(y) |∇ψδ,0|2dx → 0 for |y| < 1

2 as
δ → 0. ��
Lemma 4.9 There exist δ2 ∈ ( 12 ,+∞) such that for any δ ≥ δ2, the following properties
hold.

(a) I (θ ◦ T (y, δ)) < m + σ , for any y ∈ R
N ;

(b) ϑ(θ ◦ T (y, δ)) > 1
2 , for any y ∈ R

N .

Proof By Lemma 4.6, (a) is true. Since

lim
δ→+∞

∫

B1(0)
|∇ψδ,y |2dx = 0
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and tψ → 1 as δ → +∞, we obtain

ϑ(θ ◦ T (y, δ)) = t2ψ

⎛

⎝1 − 1

S
N+α
α+2
α

∫

B1(0)
|∇ψδ,y |2dx

⎞

⎠→ 1 as δ → +∞.

Hence (b) holds. ��
Lemma 4.10 There exists some R > 0 such that for any δ ∈ [δ1, δ2], the following properties
hold.

(a) I (θ ◦ T (y, δ)) < m + σ, for any y ∈ R
N with |y| ≥ R;

(b) 〈β(θ ◦ T (y, δ)), y〉 > 0, for any y ∈ R
N with |y| ≥ R.

Proof For any fixed δ, let |y| → +∞ and repeating the argument in the proof of (4.6)–(4.8)
again, we know tψ = t(ψδ,y) → 1, where tψ satisfies tψψδ,y ∈ N . Using Lemma 4.7 and
the compactness of [δ1, δ2], we deduce that there exists some R1 > 0 such that

I (θ ◦ T (y, δ)) < m + σ for any δ ∈ [δ1, δ2] and |y| ≥ R1.

Let (RN )+y = {x ∈ R
N : 〈x, y〉 > 0} and (RN )−y = R

N\(RN )+y . Since δ ∈ [δ1, δ2], we
assert that there exists R2 > 0 large enough and r ∈ (0, 14 ) such that the following properties
holds: for any y with |y| ≥ R2,

Br (ỹ) = {x ∈ R
N : |x − ỹ| < r} ⊂ (RN )+y

with |̃y − y| = 1
2 and for any x ∈ Br (ỹ),

|∇ψδ,y(x)|2 = K1δ
N−2 |x − y|2

(
δ2 + |x − y|2)N

≥ H1 > 0,

where K1 only depend on N and α, H1 is a positive constant. Moreover, for each x ∈ (RN )−y ,

|∇ψδ,y(x)|2 ≤ H2

|x − y|2N−2 , H2 ≡ const .

Thus, for any y satisfying |y| ≥ R2, we have

〈β(θ ◦ T (y, δ)), y〉 = t2ψ
Sα

∫

(RN )+y
|∇ψδ,y(x)|2 〈x, y〉

|x | dx + t2ψ
Sα

∫

(RN )−y
|∇ψδ,y(x)|2 〈x, y〉

|x | dx

≥ t2ψ
Sα

∫

Br (ỹ)
H1

〈x, y〉
|x | dx − t2ψ

Sα

∫

(RN )−y
H2

|y|
|x − y|2N−2 dx

≥ H3|y| − C
1

|y|N−3

∫

RN−1

1

1 + |z|2N−2 dz > 0,

where H3 is a positive constant. Taking R = max{R1, R2}, we then complete the proof. ��
In the sequel, we define a bounded domain D ⊂ R

N × R by

D := {(y, δ) ∈ R
N × R : |y| ≤ R, δ1 ≤ δ ≤ δ2},

where δ1, δ2 and R are given in Lemmas 4.8–4.10.
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Lemma 4.11 Define a mapping ϒ : D → R
N × R

+ by

ϒ(y, δ) = (β ◦ θ ◦ T (y, δ), ϑ ◦ θ ◦ T (y, δ)
)
.

Then

deg

(
ϒ, D,

(
0,

1

2

))
= 1.

Proof Consider the following homotopy

F (y, δ, s) = (1 − s)(y, δ)+ sϒ(y, δ).

Since deg
(
id, D,

(
0, 12 )

) = 1, then by the homotopy invariance of topological degree, we
can complete the proof. In order to use the homotopy invariance of the topological degree,
we must prove

F (y, δ, s) �=
(
0,

1

2

)
for any (y, δ) ∈ ∂D and s ∈ [0, 1]. (4.33)

For the readers’ convenience, we divide the proof into several cases and discuss them
respectively.
Case 1 If |y| < 1

2 and δ = δ1, by Lemma 4.8(c), we know

(1 − s)δ1 + sϑ ◦ θ ◦ T (y, δ1) <
1

2

for any s ∈ [0, 1].
Case 2 If 1

2 ≤ |y| ≤ R and δ = δ1, then it follows by Lemma 4.8(b) that
∣∣∣β(θ ◦ T (y, δ))− y

|y|
∣∣∣ <

1

4
.

Thus

|(1 − s)y + sβ(θ ◦ T (y, δ1))| ≥
∣∣∣(1 − s)y + s

y

|y|
∣∣∣−
∣∣∣sβ(θ ◦ T (y, δ))− s

y

|y|
∣∣∣

≥ s + (1 − s)|y| − s

4
≥ 1

4
�= 0.

Case 3 If |y| ≤ R and δ = δ2, from Lemma 4.9(b), we know that

(1 − s)δ2 + sϑ ◦ θ ◦ T (y, δ2) >
1

2

for any s ∈ [0, 1].
Case 4 If |y| = R and δ ∈ [δ1, δ2], by Lemma 4.10(b),

〈(1 − s)y + sβ ◦ θ ◦ T (y, δ), y〉 > 0

for s ∈ [0, 1]. ��
Proof of Theorem 1.2 Obviously, the first part of Theorem 1.2 follows from Proposition 4.1.
In order to apply the classical Linking Theorem (see [40]), we define

H = θ ◦ T (D)

and

M =
{
u ∈ N : G(u) = (β(u), ϑ(u)) =

(
0,

1

2

)}
.

We claim that M and ∂H is a link, that is
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(a) ∂H ∩ M = ∅;
(b) h(H) ∩ M �= ∅ for any h ∈  = {h ∈ C(H,N ) : h(∂H) = id}.

In fact, if u ∈ θ ◦ T (∂D), then it follows from Lemmas 4.8(a), 4.9(a) and 4.10(a) that

I (u) < m + σ < cM,

which implies u /∈ M and we prove (a).
Next, we prove (b). In fact, for any h ∈  , we define a continuous mapping η̃ : D →

R
N × R

+ by
η̃(y, δ) = (β ◦ h ◦ θ ◦ T (y, δ), ϑ ◦ h ◦ θ ◦ T (y, δ)).

If (y, δ) ∈ ∂D, then θ ◦ T (y, δ) ∈ ∂H, hence h ◦ θ ◦ T (y, δ) = θ ◦ T (y, δ). Therefore

η̃(y, δ) = (β ◦ θ ◦ T (y, δ), ϑ ◦ θ ◦ T (y, δ)) = ϒ(y, δ) on ∂D.

By the homotopy invariance of the topological degree and Lemma 4.11, we have

deg

(
η̃, D,

(
0,

1

2

))
= deg

(
ϒ, D,

(
0,

1

2

))
= 1,

which implies that there exists (y′, δ′) ∈ D such that h ◦ θ ◦T (y′, δ′) ∈ M. Hence (b) holds.
SinceN is a natural constraint for I , with classical minimal arguments we obtain a Palais–

Smale sequence for I at level d with

d := inf
h∈ max

u∈H I (h(u)).

From (b) and Lemma 4.5, we have

m < cM ≤ d.

Moreover, by definition of d and H, we get

d ≤ max
u∈H I (u) ≤ sup

(δ,y)∈D
I (tψψδ,y),

As tψψδ,y ∈ N , we know that

I (tψψδ,y) = t2ψ
2

‖ψδ,y‖2 + t2ψ
2

∫

RN
V (x)|ψδ,y |2dx − t

2·2∗
α

ψ

2 · 2∗
α

∫

RN
(Iα ∗ |ψδ,y |2∗

α )|ψδ,y |2∗
αdx

=
(
1

2
− 1

2 · 2∗
α

)
t
2·2∗

α

ψ

∫

RN
(Iα ∗ |ψδ,y |2∗

α )|ψδ,y |2∗
αdx . (4.34)

On the other hand,

t
2·2∗

α−2
ψ

∫

RN
(Iα ∗ |ψδ,y |2∗

α )|ψδ,y |2∗
αdx = ‖ψδ,y‖2 +

∫

RN
V (x)|ψδ,y |2dx

≤ ‖ψδ,y‖2 + ‖V (x)‖
L

N
2

· ‖ψδ,y‖2L2∗ . (4.35)

Recall that
∫

RN

(
Iα ∗ |ψδ,y |2∗

α
)|ψδ,y(x)|2∗

αdx = C(N , α)Aα‖ψδ,y‖22
∗
α

L2∗ = S
N+α
α+2
α .

By (4.35), we obtain that

t
2·2∗

α−2
ψ ≤ 1 + ‖V (x)‖

L
N
2

(
1

C(N , α)Aα

) N−2
α+2

S−1
α = 1 +

‖V (x)‖
L

N
2

S
, (4.36)
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which implies that t
2·2∗

α

ψ ≤
(
1 +

‖V (x)‖
L
N
2

S

) N+α
α+2

. Since ‖V (x)‖
L

N
2
< (2

α+2
N+α −1)S, we have

t
2·2∗

α

ψ ≤
(

1 +
‖V (x)‖

L
N
2

S

) N+α
α+2

< 2,

which combining together with (4.34) and the fact that

m∞ = m =
(
1

2
− 1

2 · 2∗
α

)∫

RN
(Iα ∗ |ψδ,y |2∗

α )|ψδ,y |2∗
αdx

yields m < d < 2m.
We claim that there exists a nonnegative (PS)d sequence of I with d ∈ (m, 2m). In fact,

we can modify the energy functional I into

Ĩ (u) = 1

2

∫

RN

(|∇u|2 + V (x)u2
)
dx − 1

2 · 2∗
α

∫

RN

(
Iα ∗ |u+|2∗

α
)|u+|2∗

αdx, u ∈ D1,2(RN ).

Suppose {un} is a (PS)d sequence of Ĩ with d ∈ (m, 2m), then {un} is bounded inD1,2(RN )

and

〈 Ĩ ′(un), u−
n 〉 = ‖u−

n ‖2 = on(1).

It follows that

Ĩ (u+
n )→ d ∈ (m, 2m), Ĩ ′(u+

n )→ 0.

Thus, {u+
n } is a nonnegative (PS)d sequence of Ĩ with d ∈ (m, 2m).

As a direct consequence of Corollary 4.2, up to a subsequence, wemay suppose that u+
n →

u strongly inD1,2(RN ) , and u is a nonnegative of (1.10). Since V (x) ∈ L
N
2 (RN )∩Cγ (RN )

is nonnegative for some γ ∈ (0, 1), by a similar argument as the proof of Proposition 2.4,
one can deduce that u ∈ C2,ι(RN ) for some 0 < ι < γ . Then, the positivity of u follows
from the strong maximum principle. Thus we complete the proof of the Theorem 1.2. ��
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