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Abstract
In this paper, under very general assumptions, we prove existence and regularity of distribu-
tional solutions to homogeneous Dirichlet problems of the form

⎧
⎪⎨

⎪⎩

−�1u = h(u) f in�,

u ≥ 0 in �,

u = 0 on ∂� .

Here�1 is the 1-Laplace operator,� is a bounded open subset ofRN withLipschitz boundary,
h(s) is a continuous function which may become singular at s = 0+, and f is a nonnegative
datum in LN ,∞(�)with suitable small norm. Uniqueness of solutions is also shown provided
h is decreasing and f > 0. As a preparatory tool for our method a general theory for the
same problem involving the p-Laplacian (with p > 1) as principal part is also established.
The main assumptions are further discussed in order to show their optimality.
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1 Introduction

Themain goal of this paper is to deal with existence, regularity (and uniqueness, if attainable)
of distributional solutions to problems involving the 1-laplacian as a principal part and a lower
order terms which can become singular on the set where the solution u vanishes. Formally
the problem looks like

⎧
⎪⎪⎨

⎪⎪⎩

−�1u := − div

(
Du

|Du|
)

= h(u) f in�,

u ≥ 0 in �,

u = 0 on ∂�,

(1.1)

where � is a bounded open subset of RN with Lipschitz boundary, 0 ≤ f ∈ LN ,∞(�), h(s)
is a nonnegative continuous function defined in [0,∞), bounded at infinity, possibly singular
at s = 0 (i.e. h(0) = ∞) without any monotonicity property.

The natural space for this kind of problems is BV (or its local version BVloc), the space
of functions of bounded variation, i.e. the space of L1 functions whose gradient is a Radon
measure with finite (or locally finite) total variation. In (1.1) Du

|Du| is the Radon-Nikodym
derivative of the measure Du with respect to its total variation |Du|.

Problems involving the 1-Laplace operator, which is known to be closely related to the
mean curvature operator [40], enter in a variety of practical issues as (e.g. in the autonomous
case h ≡ 1) in image restoration and in torsion problems [9,28,29,33,42]. The nonau-
tonomous/nonsingular case in relationwithmore theoretical subjects as eigenvalues problems
and critical Sobolev exponent has also been considered (see [22,30] and references therein).
We refer the interested reader to the monograph [6] for a more complete review on applica-
tions.

Concerning the case of a possibly singular nonlinearity h, diffusion problems as in (1.1)
have been studied, in the case of a p-Laplace leading term (p > 1), in connection with
the analysis of the flow of a non-Newtonian fluid as the pseudoplastic one; these kinds of
equations appear in particular in geophysical phenomena (e.g. glacial advance) as well as in
industrial applications as extrusion in polymers or metals. We refer to [23, Section 3] for a
detailed derivation of the model in the case p = 2.
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From themathematical point of view, in order to give sense to the left hand side term of the
equation in (1.1), Andreu, Ballester, Caselles and Mazón [4] proposed to use the Anzellotti
theory of pairings (z, Du) of L∞–divergence–measure vector fields z and the gradient of
a BV function u. In their definition the vector field z belongs to DM∞(�) (the space of
L∞ vector fields whose distributional divergence is a Radon measure with bounded total
variation), and is such that both ‖z‖∞ ≤ 1 and (z, Du) = |Du|; in this way the vector z is
intended to play the role of the ratio Du

|Du| .
Problem (1.1) has been studied by several authors when h ≡ 1 (see [16,30,34] and ref-

erences therein) under suitable smallness assumption on the datum f . The non-autonomous
case has also been treated; the eigenvalue problem is discussed in [30], the absorption case is
handled in [37], while the (sub-)critical exponent problem has been also addressed (see for
instance [22,36]). Finally, some early results can be found in [21] concerning the mild singu-
lar model case h(s) = s−γ , 0 < γ ≤ 1. As one of our main point also concerns the singular
case of a nonlinearity h(s) which is unbounded near the origin s = 0, it is expected that, if f
vanishes in a portion of� of positive Lebesgue measure, then also the region where u degen-
erates at zero plays a non-trivial role; in this case, in fact, the characteristic function χ{u>0}
may appear in the definition of solution of problem (1.1) (see Definition 6.1 in Sect. 6 below).

To be more transparent and to fix the ideas, we assume, at first, that f is a strictly positive
function in LN (�); most of the main issues are already present in this less general case
in which, although, some further properties for solutions to (1.1) can be proven easing the
overall the presentation. In this case, for instance, h(u) f ∈ L1(�) and uniqueness holds, in
a suitable class of functions, if h is decreasing.

Let us explain the meaning of solution in this particular non-degenerate case. If 0 < f ∈
LN (�), a function u ∈ BVloc(�) ∩ L∞(�) will be a distributional solution to problem
(1.1) if there exists z ∈ DM∞(�) with ||z||∞ ≤ 1 such that − div z = h(u) f in D ′(�),
(z, Du) = |Du| as measures in �, and one of the following conditions holds:

lim
ε→0

 
�∩B(x,ε)

u(y)dy = 0 or [z, ν](x) = −1 for H N−1-a.e. x ∈ ∂�. (1.2)

Condition (1.2) is a (very weak) way to give sense to the boundary condition u = 0 at ∂�

in this case where u is only in BVloc(�)∩ L∞(�), and where [z, ν] is the weak normal trace
of z defined in [7] (see Sect. 2 below).

In order to describe the core of our results, we will also assume that h : [0,∞) → [0,∞]
is a continuous function, finite outside the origin, such that h(0) �= 0,

∃ c1, γ, k0 > 0 such that h(s) ≤ c1
sγ

if s < k0,

and
lim
s→∞ h(s) := h(∞) < ∞ .

More general right hand sides (for (1.1)) F(x, u) are considered in Sect. 8.2 (see Theorem
8.6) in order to include more general growth as, for instance,

h(s) ∼ exp

(

exp

(
1

s

))

,

as well as the general non-autonomous case.
As far as the right hand side is then concerned in (1.1), in order to get existence, we require

a smallness condition on the datum that 0 < f ∈ LN (�) depending on the behavior of the
function h at infinity, i.e.
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|| f ||LN (�) <
1

S1h(∞)
, (1.3)

whereS1 is the best constant in the Sobolev inequality for functions inW
1,1
0 (�). In particular,

(1.3) encodes the fact that no smallness condition is assumed if h(∞) = 0. This shows that
the behavior of h at infinity can induce a first regularizing effect on the problem if compared
to the non-singular case (e.g. h ≡ 1). In fact, if h(∞) is a suitable positive constant then
the smallness Assumption (1.3) (or its general version for data in LN ,∞(�), see Sect. 7) is
necessary and sharp as it can be deduced by comparison with the results in [16] and [34]. A
second regularizing effect appears if h(0) = ∞; the presence of a singular term will imply
that u > 0 in � that is again in contrast with the non-singular case; we shall come back on
this fact in a while.

We also remark that the equality (z, Du) = |Du| in the definition of solutions of (1.1)
does not depend on h, which is in some sense natural if we think to the homogeneity of the
principal part. However, this requires a formal proof (in particular, to handle the jump part
of the pairing) which is based on a result in [17]. Similarly, we are able to prove the weak
boundary condition (1.2) independently of the function h.

As we alreadymentioned, this case of a strictly positive datum f enjoys particular features
most of them summarized in Theorem 3.4 below. In particular one shall see that h(u) f ∈
L1(�) that, together with the fact that uσ ∈ BV (�) (with σ = max(1, γ )), will imply
uniqueness of solutions, if we assume that h is decreasing (see Theorem 3.5). Observe that
uniqueness does not hold, in general, for merely nonnegative data (see [21]).

Let us briefly describe the techniquewe exploit in order to get existence.As noticed in [29],
one can naturally handle with (1.1) via approximation with problems having p-laplacians
principal part (with p > 1) which in our case can look like

⎧
⎪⎨

⎪⎩

−�pu p = h(u p) f in�,

u p ≥ 0 in �,

u p = 0 on ∂� .

(1.4)

Note that, at the best of our knowledge, even the existence of solutions u p for (1.4) is still
missed in the literature under this generality and this will require a preliminary study that
we shall present in Sect. 4 in the even more general case of a nonnegative f ∈ L(p∗)′(�). In
fact, existence of solutions u p of (1.4) has been proven in the model case, i.e. h(s) = s−γ ,
γ > 0, [12,18,21], where, if γ ≤ 1, u p is shown to have global finite energy in the sense

that u p ∈ W 1,p
0 (�), as well as in the case p = 2 (see [11,25,39]). On the other hand, if

γ > 1, solutions u p have in general only locally finite energy, that is u p ∈ W 1,p
loc (�), so that

the boundary datum needs to be assigned through a suitable weaker condition than the usual
trace sense (see [11,18,19,26,38,39] for further remarks on this fact) eventually producing
(1.2) in the limit as p → 1+. Recently, existence of solutions to (1.4) has been shown in case
of a general function h and a measure datum f [20].

Note that this approximation approach with respect to the parameter p requires a priori
estimates on the solutions u p of (1.4) that are independent of p, and that will be proven (see
Sect. 4.4) provided (1.3) holds. This will allow us to pass to the limit obtaining a solution
to (1.1). As we already mentioned, if h(0) = ∞ then u p −→ u a.e. on � as p → 1+,
and u > 0; this should be compared with the non-singular case in which, under Assumption
(1.3), u p −→ 0 instead (see for instance [16]).

In Sect. 6 we will show how our results extend to the case of a general nonnegative datum
f . Indeed, if f can vanish on a subset of � of positive measure, the situation becomes much
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more delicate and, as we said, it will involve the region {u > 0} in an essential way. Among
other technical points that will be discussed later, as in [21], we will be forced to ask, in the
definition of solutions to (1.4), that χ{u>0} ∈ BVloc(�) and that the equation

− (div z)χ∗{u>0} = h(u) f (1.5)

is satisfied in the sense of distributions, where χ{u>0} is the characteristic function of the
region {u > 0} and χ∗{u>0} is its precise representative (in the sense of the BV –function).
This fact will lead to some technical complications in the proof of existence of a solution.
Observe that the notion of solution we use here will essentially coincide with the previous if
f > 0 (see Remark 6.3 below).
We specify some further peculiarities of this case. First notice that requiring χ{u>0} to be

a locally BV –function is equivalent to the fact that the region {u > 0} is a set of locally finite
perimeter.

Also, onemay observe that Eq. (1.5) can also bewritten as follows (see Remark 6.2 below)

−div
(
zχ{u>0}

) + |Dχ{u>0}| = h(u) f ,

where the left hand side is a sum of an operator in divergence form and an additional term
|Dχ{u>0}|, which is a measure concentrated on the reduced boundary ∂∗{u > 0}. Moreover,
as f is assumed to be merely nonnegative, we are only able to prove that h(u) f ∈ L1

loc(�)

(instead of h(u) f ∈ L1(�)which holds true in the case of positive f ) and, as we mentioned,
no uniqueness of solutions holds (see [21]).

In Sect. 7 we handle with LN ,∞-data and here one needs to use the machinery of Lorentz
spaces that will be briefly summarized for the convenience of the reader. The extension given
in this section is not only technical as it can be shown to be optimal (see Remark 7.2 below).

Finally, in Sect. 8.1, we will also discuss the possibility to have finite energy solutions, i.e.
u ∈ BV (�). As we said, global energy estimates were only known in the mild model case
(i.e. γ ≤ 1). Although we get rid of this fact by working with suitable compositions of the
solutions, in the general framework of strong singularities the global BV regularity of the
solutions u is still an open question; Sect. 8.1 will be devoted to give some partial answers and
insights on this issue. We conclude by investigating the case where a more general right-hand
side of the form F(x, u) is considered (Sect. 8.2).

2 Notations and preliminaries

In the entire paper H N−1(E) denotes the (N − 1)-dimensional Hausdorff measure of a set
E while, for simplicity, |E | will stand for the classical N -dimensional Lebesgue measure.
Here � is an open bounded subset of RN (N ≥ 1) with Lipschitz boundary. We will denote
by M (�) the space of Radon measures with finite total variation over �.

We denote by

DM∞(�) := {z ∈ L∞(�;RN ) : div z ∈ M (�)},

and by DM∞
loc(�) the vector fields z ∈ L∞(�;RN ) such that div z ∈ M (ω), ∀ω ⊂⊂ �.

As usual

BV (�) := {u ∈ L1(�) : Du ∈ M (�,RN )},
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and its local counterpart, which is the space of functions u ∈ BV (ω) for all ω ⊂⊂ �, is
denoted by BVloc(�). We recall that for BV (�) a norm is given by

‖u‖BV (�) =
ˆ

�

|u| +
ˆ

�

|Du| ,

or by

‖u‖BV (�) =
ˆ

∂�

|u| dH N−1 +
ˆ

�

|Du| .

By Su we mean the set of x ∈ � such that x is not a Lebesgue point of u, by Ju the jump set
and by u∗ the precise representative of u. For more properties regarding BV spaces we refer
to [3], from which we mainly derive our notations. We also refer to [24,46].

The theory of L∞-divergence-measure vector fields is due to Anzellotti [7] and to Chen
and Frid [15]. First of all it can be shown that if z ∈ DM∞(�) then div z is absolutely
continuous with respect to H N−1.

We define the following distribution (z, Dv) : C1
c (�) → R as

〈(z, Dv), ϕ〉 := −
ˆ

�

v∗ϕ div z −
ˆ

�

vz · ∇ϕ ϕ ∈ C1
c (�). (2.1)

In Anzellotti’s theory we need some compatibility conditions, such as div z ∈ L1(�)

and v ∈ BV (�) ∩ L∞(�), or div z a Radon measure with finite total variation and v ∈
BV (�) ∩ L∞(�) ∩ C(�). Anzellotti’s definition of (z, Dv) can be extended to the case in
which div z is a Radon measure with finite total variation and v ∈ BV (�) ∩ L∞(�) (see
[35, Appendix A] and [13, Section 5]). Moreover ([21]), if v ∈ BVloc(�)∩ L1(�, div z) and
z ∈ DM∞

loc(�), the distribution defined in (2.1) is a Radon measure having local finite total
variation satisfying

|〈(z, Dv), ϕ〉| ≤ ‖ϕ‖L∞(ω)‖z‖∞,ω

ˆ
ω

|Dv| ,

for all open set ω ⊂⊂ � and for all ϕ ∈ C1
c (ω). Here, and throughout the paper, we use

the simplified notation ‖ · ‖q,ω to indicate the norm of the vector space Lq(ω,RN ); also
‖ · ‖q := ‖ · ‖q,�.

Moreover the measure |(z, Dv)| is absolutely continuous with respect to the measure |Dv|
and, if v ∈ BV (�), then (z, Dv) has finite total variation.

We have the following proposition proved in [21].

Proposition 2.1 Let z ∈ DM∞
loc(�) and let v ∈ BVloc(�)∩ L∞(�). Then zv ∈ DM∞

loc(�).
Moreover the following formula holds in the sense of measures

div (zv) = (div z)v∗ + (z, Dv).

We observe that, since for every v ∈ BVloc(�) the measure (z, Dv) is absolutely continuous
with respect to |Dv|, it holds

(z, Dv) = θ(z, Dv, x) |Dv|,
where θ(z, Dv, ·) denotes the Radon-Nikodym derivative of (z, Dv) with respect to |Dv|.
By Proposition 4.5 (iii) of [17], for every z ∈ DM∞

loc(�) and u ∈ BVloc(�), we have

θ(z, D
(u), x) = θ(z, Du, x), for |D
(u)|-a.e. x ∈ �,
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where 
 : R → R is a non-decreasing locally Lipschitz function. We remark that, if 
 is an
increasing function, then

θ(z, D
(u), x) = θ(z, Du, x), for |Du|-a.e. x ∈ �; (2.2)

this fact was already noticed in [27,31] under some additional assumptions. Formula (2.2)
follows by the Chain rule formula (see [3, Theorem 3.99]) observing that

Dd
(u) = 
′(̃u)Ddu,

and, as 
(u)± = 
(u±)

D j
(u) = (
(u+) − 
(u−)) νH N−1 Ju .

The outward normal unit vector ν(x) is defined forH N−1-almost every x ∈ ∂�. It follows
from Anzellotti’s theory that every z ∈ DM∞(�) has a weak trace on ∂� of the normal
component of z which is denoted by [z, ν]. Moreover, it satisfies

‖[z, ν]‖L∞(∂�) ≤ ‖z‖∞ . (2.3)

We explicitly point out that if z ∈ DM∞(�) and v ∈ BV (�) ∩ L∞(�), then

v[z, ν] = [vz, ν] (2.4)

holds (see [13, Lemma 5.6] or [5, Proposition 2]).
The following generalized Green type formula for merely local vector fields z also holds

true ([21]).

Proposition 2.2 Let z ∈ DM∞
loc(�) and set μ = div z. Let v ∈ BV (�) ∩ L∞(�) be such

that v∗ ∈ L1(�,μ). Then vz ∈ DM∞(�) and the following holds:
ˆ

�

v∗ dμ +
ˆ

�

(z, Dv) =
ˆ

∂�

[vz, ν] dH N−1 . (2.5)

Analogously to (2.3), it can be proved that, for z ∈ DM∞
loc(�) such that the product

vz ∈ DM∞(�) for some v ∈ BV (�) ∩ L∞(�),

|[vz, ν]| ≤ |v
∂�

| ‖z‖∞ H N−1-a.e. on ∂� .

We will finally use the symbol Sp to denote the best constant in the Sobolev inequality
(1 ≤ p < N ), that is

||v||L p∗ (�) ≤ Sp||v||
W 1,p

0 (�)
, ∀v ∈ W 1,p

0 (�),

where p∗ = Np
N−p . Recall that

lim
p→1+ Sp = S1 =

(

Nω
1
N
N

)−1

,

where ωN is the volume of the unit sphere of RN (see for instance [45]).
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2.1 Notations

In our arguments we will use several truncating functions. In particular, for a fixed k > 0,
we introduce Tk and Gk as the function defined by

Tk(s) = max(−k,min(s, k)),

and

Gk(s) = (|s| − k)+ sign(s).

Note in particular that Tk(s) + Gk(s) = s, for any s ∈ R.
If no otherwise specified, we denote by C several constants whose value may change

from line to line and, sometimes, on the same line. These values only depend on the data but
they do not depend on the indexes of the sequences. We underline the use of the standard
convention to do not relabel an extracted compact subsequence.

3 Main assumptions and core results

A primary aim of this paper is to deal with the following problem
{

−�1u = h(u) f in�,

u = 0 on ∂�,
(3.1)

where f ∈ LN (�) is positive and�1u = div
(

Du
|Du|

)
is the 1-Laplace operator. Aswe already

mentioned, the general case of a nonnegative f ∈ LN ,∞(�) will be studied in Sects. 6 and
7.

On the nonlinearity h : [0,∞) → [0,∞] we assume that it is continuous and finite
outside the origin, h(0) �= 0,

∃ c1, γ, k0 > 0 such that h(s) ≤ c1
sγ

if s ≤ k0, (h1)

and

lim
s→∞ h(s) := h(∞) < ∞ . (h2)

Let us note that the function h is not necessarily blowing up at the origin so that a bounded
continuous function is an admissible choice.

We start providing the definition of solution to problem (3.1).

Definition 3.1 Let 0 < f ∈ LN (�) then a function u ∈ BVloc(�) ∩ L∞(�) is a solution to
problem (3.1) if there exists z ∈ DM∞(�) with ||z||∞ ≤ 1 such that

h(u) f ∈ L1
loc(�), (3.2)

− div z = h(u) f in D ′(�), (3.3)

(z, Du) = |Du| as measures in �, (3.4)

and one of the following conditions holds:

lim
ε→0

 
�∩B(x,ε)

u(y)dy = 0 or [z, ν](x) = −1 for H N−1-a.e. x ∈ ∂�. (3.5)
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Remark 3.2 Notice that Definition 3.1 does not depend explicitly on the parameter γ in (h1),
this fact suggesting that an extension to more general nonlinearities is allowed (see Sect. 8.2
below). Furthermore, condition (3.5) is a way to give meaning to the homogeneous Dirichlet
boundary datum. It is well known that BV solutions to problems involving the 1-Laplace
operator do not necessarily assume the boundary datum pointwise. A standardweaker request
in this framework is that a solution u ∈ BV (�) satisfies

u(1 + [z, ν])(x) = 0 for H N−1-a.e. x ∈ ∂� , (3.6)

i.e., for H N−1-a.e. x ∈ ∂�, it holds that u(x) = 0 or [z, ν](x) = −1 (see for instance
[21,34]). It is not clear whether problem (3.1) admits, in general, finite energy solutions,
that is solutions that are BV up to the boundary of �. This fact leads to impose (3.5) which
is a weaker assumption than (3.6) for nonnegative functions (see for instance [3, Theorem
3.87]). A similar argument was already exploited in [39] when dealing with infinite energy
solutions to similar problems involving Laplacian type operators. We refer to Sect. 8.1 for
further instances of solutions belonging to the natural energy space BV (�) and how this fact
can be related to the smoothness of the domain �.

Here is our main existence result in the case of a positive datum f :

Theorem 3.3 Let 0 < f ∈ LN (�) such that || f ||LN (�) <
1

S1h(∞)
, where h satisfies (h1)

and (h2). Then there exists a solution u to problem (3.1) in the sense of Definition 3.1.

In the following result we collect some further qualitative properties enjoyed by the solution
we found in Theorem 3.3. Here and below, in order to unify the presentation, for γ > 0 we
set

σ := max(1, γ ) . (3.7)

Theorem 3.4 Let 0 < f ∈ LN (�) such that || f ||LN (�) <
1

S1h(∞)
, where h satisfies (h1)

and (h2). Then the solution u to problem (3.1) found in Theorem 3.3 is such that

uσ ∈ BV (�). (3.8)

Moreover div z ∈ L1(�) and it holds

−
ˆ

�

v div z =
ˆ

�

h(u) f v, ∀v ∈ BV (�) ∩ L∞(�). (3.9)

Finally if h(0) = ∞ then u > 0 a.e. in � while, if h ∈ L∞([0,∞)) and || f ||LN (�) <

(S1||h||L∞([0,∞)))
−1, then u ≡ 0 a.e. in �.

If h is decreasing, then the solutions obtained in the previous theorems are unique in the
sense specified by the following theorem.

Theorem 3.5 Let h be a decreasing function. Then, under the assumptions of Theorem 3.3,
there is only one solution u to problem (3.1) in the sense of Definition 3.1 such that uσ ∈
BV (�).

Remark 3.6 We stress that Theorem 3.3 is new also in the case of a bounded nonlinearity h.
A remark is in order concerning (3.8). First of all, if γ ≤ 1 then (3.8) says that solutions
always belong to the natural space of functions with finite BV norm, accordingly with the
case p > 1 where solutions with finite W 1,p

0 energy are always achieved when the datum f
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belongs to L(p∗)′(�) [11,12,18,25]. If γ > 1 then (3.8) is a sort of counterpart, as p tends to
1+, of the regularity for the solutions to the Dirichlet problem associated to −�pv = f v−γ .

In [11,18,26] it is shown that, although v has no finite energy, in general v
γ−1+p

p does, and
this also gives a (weak) sense to the boundary datum. Again, we refer to Sect. 8.1 for more
comments on this and on how the belonging of u to BV (�) can depend on both the degeneracy
of the datum f and the geometry of ∂�.

We finally emphasize the regularizing effect given by the, possibly singular, nonlinear
term h. If h(0) = ∞ then u > 0 a.e. in �; this is a striking difference with the bounded case;
as a consequence of a result in [16], in fact, if h(s) ≡ 1 and || f ||LN (�) < S1

−1, then u = 0.
The extension of this property to the case of a general bounded nonlinearity is given by the
last assertion of Theorem 3.4.

As expected, also the behavior at infinity of the nonlinearity h plays a role; in fact, if
h(∞) = 0 then no smallness assumptions need to be imposed on the data in contrast with
the linear right hand side case [16,28,30,34].

4 Existence of a solution for p > 1 and for a nonnegative f ∈ L(p
∗)′(Ä)

Here we set the theory in the case of a p-Laplace principal part for a fixed 1 < p < N . This
case represents the basis of the approximation scheme we will use to prove Theorem 3.3.
Existence of solutions (and uniqueness when expected) for this kind of problems has its own
interest and we will present it in full generality. Let us consider

{
−�pu p = h(u p) f in�,

u p = 0 on ∂�,
(4.1)

where f ∈ L(p∗)′(�) is a nonnegative function and h satisfies both (h1) and (h2). We precise
the notion of solution to problem (4.1) we adopt.

Definition 4.1 A nonnegative function u p ∈ W 1,p
loc (�) is a distributional solution to problem

(4.1) if

h(u p) f ∈ L1
loc(�), (4.2)

Gk(u p) ∈ W 1,p
0 (�) for all k > 0 , (4.3)

and ˆ
�

|∇u p|p−2∇u p · ∇ϕ =
ˆ

�

h(u p) f ϕ, (4.4)

for every ϕ ∈ C1
c (�).

Remark 4.2 Notice that condition (4.3) is the same used in [12] for p > 1 in the model case
h(s) = s−γ in order to give sense to the boundary datum and to ensure uniqueness under
suitable assumptions on both the datum and/or the domain. As a matter of fact, if h is non-
increasing, then a straightforward re-adaptation of the proof of Theorem 1.5 in [12] shows
that the same uniqueness property holds for problem (4.1). In particular, if � star-shaped,
one can show that uniqueness of distributional solutions in the sense of Definition 4.1 holds
if f ∈ L1(�), while some regularity on f is needed if γ > 1 and the domain is more general.
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As we already mentioned, an alternative way one can weakly intend the boundary datum
in problem (4.1) is by requesting that

u
σ−1+p

p
p ∈ W 1,p

0 (�) . (4.5)

Property (4.5) is the same given in [18], it is consistent with the case p = 2 [11], and, as we
said, it has its counterpart as p → 1+ (i.e. uσ ∈ BV (�)). Let us observe that, if f ∈ LN (�),
then the solutions we will construct in Theorem 4.3 below enjoy (4.5) (see (4.28) and Sect.
4.3 below) that, by a direct computation, can be shown to imply (4.3).

We finally want to stress some striking differences with the model case h(s) = s−γ ,
γ > 0. In this case, in fact, the behavior of h at infinity also plays a role and (4.5) can be
shown to hold for any nonnegative f ∈ L1(�) if γ ≥ 1. If γ < 1 then solutions inW 1,p

0 (�)

exist for a datum f ∈ L(
p∗
1−γ

)′
(�) (see [18]). In this sense, as we do not assume any behavior

for h at infinity, our summability assumption on the datum f can be considered to be optimal.
See also Theorem 4.7 below for further regularity results depending on the summability of
the datum f .

The following existence result holds.

Theorem 4.3 Let 0 ≤ f ∈ L(p∗)′(�) and let h satisfy (h1) and (h2). Then there exists a
distributional solution u p to problem (4.1).

4.1 A priori estimates

In order to prove Theorem 4.3 we need to establish some general a priori estimates that
will be the content of this section. We look for a priori estimates for a weak solution to the
following problem {

−�pv = h(v) f in�,

u = 0 on ∂�,
(4.6)

where 1 < p < N , h : [0,∞) → [0,∞) is bounded continuous function satisfying (h2),
and f is a nonnegative function in L(p∗)′(�). For a weak solution to problem (4.6) we mean
a function v ∈ W 1,p

0 (�) such thatˆ
�

|∇v|p−2∇v · ∇ϕ =
ˆ

�

h(v) f ϕ ∀ϕ ∈ W 1,p
0 (�). (4.7)

We recall that σ is defined by (3.7), and, for any k > 0, we set for simplicity

εk := sup
s∈[k,∞)

h(s) − h(∞).

Observe that εk ≥ 0 and

lim
k→∞ εk = 0 .

We have the following

Lemma 4.4 Let 0 ≤ f ∈ L(p∗)′(�) and let h be a bounded continuous function satisfying
(h2). Then every weak solution v to problem (4.6) satisfies

||Gk(v)||
W 1,p

0 (�)
≤ C(p,Sp, εk, || f ||L(p∗)′ (�)

) for all k > 0 , (4.8)
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and
||v||W 1,p(ω) ≤ C(p,Sp, h(∞), || f ||L(p∗)′ (�)

, ω) for all ω ⊂⊂ �. (4.9)

Proof We first look for (4.8). For a fixed k > 0, one takes Gk(v) as test function in (4.7),
and using the Hölder and the Sobolev inequality, one readily gets

ˆ
�

|∇Gk(v)|p =
ˆ

�

h(v) f Gk(v) ≤ (h(∞) + εk)|| f ||L(p∗)′ (�)

(ˆ
�

Gp∗
k (v)

) 1
p∗

≤ (h(∞) + εk)|| f ||L(p∗)′ (�)
Sp

(ˆ
�

|∇Gk(v)|p
) 1

p

,

that gives

||Gk(v)||
W 1,p

0 (�)
≤ [(h(∞) + εk)|| f ||L(p∗)′ (�)

Sp]
1

p−1 . (4.10)

Now, in order to obtain (4.9), we look for a local estimate on Tk(v). Consider ω ⊂⊂ �

and φ ∈ C1
c (�) as a cut-off function for ω, i. e. 0 ≤ φ ≤ 1, φ = 1 on ω and |∇φ| ≤ cω,

where cω is a constant that only depends on dist(ω, ∂�). We take Tk(v)φ p as test function
in (4.7), we have

ˆ
�

|∇Tk(v)|pφ p + p
ˆ

�

|∇v|p−2∇v · ∇φφ p−1Tk(v) =
ˆ

�

h(v) f Tk(v)φ p,

and so

ˆ
�

|∇Tk(v)|pφ p ≤ pk

∣
∣
∣
∣

ˆ
�

|∇Tk(v)|p−2∇Tk(v) · ∇φφ p−1
∣
∣
∣
∣

+ pk

∣
∣
∣
∣

ˆ
�

|∇Gk(v)|p−2∇Gk(v) · ∇φφ p−1
∣
∣
∣
∣ +

ˆ
�

h(v) f Tk(v)φ p.

(4.11)

By (4.7), choosing ϕ = φ p , we have

ˆ
�

h(v) f Tk(v)φ p ≤ k
ˆ

�

h(v) f φ p = pk
ˆ

�

|∇v|p−2∇v · ∇φφ p−1

≤ pk

∣
∣
∣
∣

ˆ
�

|∇Tk(v)|p−2∇Tk(v) · ∇φφ p−1
∣
∣
∣
∣

+ pk

∣
∣
∣
∣

ˆ
�

|∇Gk(v)|p−2∇Gk(v) · ∇φφ p−1
∣
∣
∣
∣ ,

(4.12)

and collecting (4.12) and (4.11) one deduces

ˆ
�

|∇Tk(v)|pφ p ≤ 2pk

∣
∣
∣
∣

ˆ
�

|∇Tk(v)|p−2∇Tk(v) · ∇φφ p−1
∣
∣
∣
∣

+ 2pk

∣
∣
∣
∣

ˆ
�

|∇Gk(v)|p−2∇Gk(v) · ∇φφ p−1
∣
∣
∣
∣ .
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By the Young inequality and by (4.10) the previous implies, for a positive η to be fixed later,
thatˆ

�

|∇Tk(v)|pφ p ≤ (p − 1)ηp′
ˆ

�

|∇Tk(v)|pφ p + (2k)p

ηp

ˆ
�

|∇φ|p

+ (p − 1)
ˆ

�

|∇Gk(v)|pφ p + (2k)p
ˆ

�

|∇φ|p

(4.10)≤ (p − 1)ηp′
ˆ

�

|∇Tk(v)|pφ p + (2k)p

ηp

ˆ
�

|∇φ|p

+ (p − 1)[(h(∞) + εk)|| f ||L(p∗)′ (�)
Sp]

p
p−1 + (2k)p

ˆ
�

|∇φ|p.

(4.13)

We fix η such that 1 − (p − 1)ηp′ = 1
2 , that is η =

(
1

2(p−1)

) 1
p′ , then (4.13) implies

ˆ
ω

|∇Tk(v)|p ≤ 2p+1k p[(2(p − 1))p−1 + 1]
ˆ

�

|∇φ|p

+ 2(p − 1)[(h(∞) + εk)|| f ||L(p∗)′ (�)
Sp]

p
p−1

≤ 2p+1k p[(2(p − 1))p−1 + 1]cpω|�|
+ 2(p − 1)[(h(∞) + εk)|| f ||L(p∗)′ (�)

Sp]
p

p−1 .

(4.14)

Now we fix k large enough in order to have εk ≤ 1 and we collect (4.10) and (4.14) yielding
(4.9). ��

4.2 Proof of Theorem 4.3

Proof of Theorem 4.3 If h(0) < ∞ then the existence of a solution belonging to W 1,p
0 (�)

follows by standard application of a fixed point argument, so that, without loosing generality,
we assume h(0) = ∞. Let us introduce the following scheme of approximation

{
−�pun = hn(un) f in�,

un = 0 on ∂�,
(4.15)

where hn(s) = Tn(h(s)), for s ∈ [0,∞), and n > h(∞). The existence of such un ∈
W 1,p

0 (�) follows again by standard Schauder fixed point theorem. Moreover, un is easily
seen to be nonnegative. We apply Lemma 4.4 to un , deducing

||un ||W 1,p(ω) ≤ Cω, ∀ω ⊂⊂ � (4.16)

which implies that, up to subsequences, un weakly converges in W 1,p(ω) and a.e. in � to a
function u p . Moreover, by weak lower semicontinuity in (4.8) (applied to un) one also gets
the boundary condition (4.3).

Nowwe prove (4.4). First of all, using (4.15) and (4.16) we observe that hn(un) f is locally
bounded in L1(�); in fact, for any ϕ ∈ C1

c (�) one obtains
ˆ

�

hn(un) f ϕ =
ˆ

�

|∇un |p−2∇un · ∇ϕ ≤ 1

p′

ˆ
suppϕ

|∇un |p + 1

p

ˆ
�

|∇ϕ|p ≤ C ,

and ϕ can be chosen to be a cut-off function for any compact subsetω of�.We can then apply
Theorem 2.1 of [10] in order to deduce that ∇un converges a.e. in � to ∇u p . In particular,
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|∇un |p−2∇un locally strongly converges to |∇u p|p−2∇u p in Lq(�,RN ), for any q < p′.
Moreover, by the Fatou lemma, it followsˆ

�

h(u p) f ϕ ≤ C, (4.17)

for any nonnegative ϕ ∈ C1
c (�), which implies (recall we are assuming h(0) = ∞)

{u p = 0} ⊂ { f = 0}, (4.18)

up to a set of zero Lebesgue measure.
Now we consider Vδ(un)ϕ, as a test for the weak formulation of (4.15) where

Vδ(s) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 s ≤ δ,
2δ − s

δ
δ < s < 2δ,

0 s ≥ 2δ,

(4.19)

and 0 ≤ ϕ ∈ C1
c (�). Observing that V ′

δ (s) ≤ 0 one deduces that
ˆ

�

hn(un) f Vδ(un)ϕ ≤
ˆ

�

|∇un |p−2∇un · ∇ϕVδ(un) .

We first pass to the limit with respect to n. Using the strong convergence of |∇un |p−2∇un
and the a.e. and ∗-weak convergence of Vδ(un) in L∞(�), we can pass to the limit on the
right hand side. By Fatou’s lemma on the left hand side we then deduceˆ

{u p≤δ}
h(u p) f ϕ ≤

ˆ
�

|∇u p|p−2∇u p · ∇ϕVδ(u p).

Now we take in the previous δ → 0+ obtaining, by ∗-weak convergence

lim
δ→0+

ˆ
{u p≤δ}

h(u p) f ϕ ≤
ˆ

{u p=0}
|∇u p|p−2∇u p · ∇ϕ = 0.

Therefore, ˆ
�

hn(un) f ϕ =
ˆ

{un>δ}
hn(un) f ϕ + ε(n, δ) ,

where ε(n, δ) is a quantity that vanishes as first n goes to ∞ and then δ goes to zero. We
observe that, without loss of generality, we can always assume that δ /∈ {η : |{u p = η}| > 0}
which is at most a countable set; this will imply, in particular, that χ{un>δ} converges a.e. in
� to χ{u p>δ} as n → ∞. Moreover, we both have

hn(un) f χ{un>δ}ϕ ≤ sup
s∈[δ,∞)

h(s) f ϕ ∈ L1(�),

and

h(u p) f χ{u p>δ}ϕ ≤ h(u p) f ϕ
(4.17)∈ L1(�) .

We can then apply the Lebesgue theorem in order to deduce that

lim
δ→0+ lim

n→∞

ˆ
�

hn(un) f ϕ =
ˆ

{u p>0}
h(u p) f ϕ

(4.18)=
ˆ

�

h(u p) f ϕ .
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On the left hand side of the weak formulation of (4.15) we pass to the limit using the weak
convergence and a.e. convergence of ∇un to ∇u p , finally obtaining

ˆ
�

|∇u p|p−2∇u p · ∇ϕ =
ˆ

�

h(u p) f ϕ.

for every nonnegative ϕ ∈ C1
c (�) from which easily (4.4) follows. ��

Remark 4.5 An important remark is that, a careful re-adaptation of the proof of Theorem 4.3,
can allow to slightly improve the set of admissible test function in (4.4). Precisely, following
the same steps, one can actually realize that (4.4) holds true for ϕ ∈ W 1,p(�) having compact
support in �. We will use this property later once we will pass to the limit as p → 1+.

Remark 4.6 We also highlight the fact that if h(k̃) = 0 for some k̃ > 0 then we can retrieve
some more informations on u p . Indeed Theorem 4.3 guarantees the existence of a distribu-
tional solution to problem {

−�pu p = h(u p) f in �,

u p = 0 on ∂�,

where

h(s) :=
{
h(s) if s ≤ k̃,

0 if s > k̃.

As far as it has been obtained, u p is the almost everywhere limit of the un solutions of (4.15)
with hn in place of hn . By considering Gk̃(un) as a test function in (4.15) one thus obtain

ˆ
�

|∇Gk̃(un)|p ≤
ˆ

�

hn(un) f Gk̃(un) = 0,

that implies
||un ||L∞(�) ≤ k̃,

and, so
||u p||L∞(�) ≤ k̃. (4.20)

Since u p satisfies ˆ
�

|∇u p|p−2∇u p · ∇ϕ =
ˆ

�

h(u p) f ϕ,

for every ϕ ∈ C1
c (�), using (4.20), one also has

ˆ
�

|∇u p|p−2∇u p · ∇ϕ =
ˆ

�

h(u p) f ϕ ,

namely u p solves {
−�pu p = h(u p) f in�,

u p = 0 on ∂� ,

as it also satisfies (4.3). A trivial observation is that, in this case, h needs not to be bounded
at infinity.
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4.3 More regular data f ∈ Lm(Ä)with (p∗)′ ≤ m < N

As we already observed, a natural question concerning solutions u p to problem (4.1) is
whether they enjoy property (4.5), as this is the case, for instance, in the model h(s) = s−γ

(even for merely integrable data). As far as our nonlinear term is concerned the behavior at
infinity of h plays a crucial role so that (4.5) is not expected in general for such a large class
of data. What is true in general, for f ∈ L(p∗)′(�), is that the solutions u p of (4.1) found in
Theorem 4.3 satisfy

T
σ−1+p

p
k (u p) ∈ W 1,p

0 (�) and Gk(u p) ∈ W 1,p
0 (�) for all k > 0. (4.21)

The first in (4.21) can be easily obtained by taking T σ
k (un) as a test function in (4.15) while

the second one has been already shown to follow from (4.8).
However, if the datum f is more regular something more can be said

Theorem 4.7 Let 0 ≤ f ∈ Lm(�) with m such that (p∗)′ ≤ m < N
p and let k > 0. Then

there exists C > 0 such that the solution u p to (4.1) found in Theorem 4.3 satisfies

∥
∥
∥
∥G

q−1+p
p

k (u p)

∥
∥
∥
∥
W 1,p

0 (�)

≤ C, (4.22)

for any q such that 1 ≤ q ≤ p∗(p − 1)

m′ p − p∗ . Moreover, if f ∈ Lm(�) with m = pN−N+Nσ
pN−N+pσ ,

then ∥
∥
∥
∥u

σ−1+p
p

p

∥
∥
∥
∥
W 1,p

0 (�)

≤ C . (4.23)

Finally, if f ∈ Lm(�) with m > N
p then u p ∈ L∞(�).

Proof For a fixed k > 0 let us define the following auxiliary function

�(t) :=
{
tσ if t ≤ k,

(t − k)q + kσ if t > k,

and take �(un) as test in (4.15) obtaining, using the Hölder inequality and the assumption
on q , that

(
p

σ − 1 + p

)p

σ

ˆ
�

∣
∣
∣
∣∇T

σ−1+p
p

k (un)

∣
∣
∣
∣

p

+
(

p

q − 1 + p

)p

q
ˆ

�

∣
∣
∣
∣∇G

q−1+p
p

k (un)

∣
∣
∣
∣

p

≤ max
s∈[0,k] h(s)sσ

ˆ
{un≤k}

f + sup
s∈[k,∞)

h(s)
ˆ

{un>k}
f Gq

k (un) + sup
s∈[k,∞)

h(s)kσ

ˆ
�

f

≤ C + sup
s∈[k,∞)

h(s)|| f ||Lm (�)|�| 1
m′ − qp

(q−1+p)p∗
(ˆ

�

G
(q−1+p)p∗

p
k (un)

) qp
(q−1+p)p∗

.

(4.24)
From (4.24), using the Sobolev inequality we deduce
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(
p

q − 1 + p

)p

qS −p
p

(ˆ
�

G
(q−1+p)p∗

p
k (un)

) p
p∗

≤
(

p

q − 1 + p

)p

q
ˆ

�

∣
∣
∣
∣∇G

q−1+p
p

k (un)

∣
∣
∣
∣

p

≤ C + sup
s∈[k,∞)

h(s)|| f ||Lm (�)|�| 1
m′ − qp

(q−1+p)p∗
(ˆ

�

G
(q−1+p)p∗

p
k (un)

) qp
(q−1+p)p∗

≤ C + ε sup
s∈[k,∞)

h(s)|| f ||Lm (�)|�| 1
m′ − qp

(q−1+p)p∗
(ˆ

�

G
(q−1+p)p∗

p
k (un)

) p
p∗

+ Cε sup
s∈[k,∞)

h(s)|| f ||Lm (�)|�| 1
m′ − qp

(q−1+p)p∗ ,

where in the last step we also used Young’s inequality. Up to suitably choose ε, this gives

that Gk(un) is bounded in L
(q−1+p)p∗

p (�). Hence by (4.24) one gets
ˆ

�

∣
∣
∣
∣∇T

σ−1+p
p

k (un)

∣
∣
∣
∣

p

+
ˆ

�

∣
∣
∣
∣∇G

q−1+p
p

k (un)

∣
∣
∣
∣

p

≤ C , (4.25)

that implies (4.22) by weak lower semicontinuity.
If f ∈ Lm(�) with m = pN−N+Nσ

pN−N+pσ , then q = σ and one obtains (4.23) by weak lower
semicontinuity in (4.25) and considering, for instance, k = 1 (recall T1(s) + G1(s) = s).

Now, let f ∈ Lm(�) with m > N
p . It suffices to observe that in (4.15) it is not restrictive

to choose n > sups∈[k0,∞) h(s), that is one can possibly truncate only near the singularity.
Hence, if we multiply (4.15) by Gk(un) one readily hasˆ

�

|∇Gk(un)|p ≤ sup
s∈[k0,∞)

h(s)
ˆ

�

f Gk(un) ,

and one can apply standard Stampacchia’s method in order to get the boundedness of u p . ��
Remark 4.8 First of all observe that, if γ ≤ 1 (i.e. σ = 1), then (4.23) holds for m = (p∗)′
and one has that the solutions are globallyW 1,p

0 (�) no matter of the behavior of h at infinity.

What actually holds for any γ > 0, is that q = p∗(p−1)
m′ p−p∗ = 1 if m = (p∗)′ and so (4.22)

is in continuity with the result of Theorem 4.3 (i.e. Gk(u p) ∈ W 1,p
0 (�)).

Also notice that q → ∞ as m → N
p , formally implying that every power of Gk(u p)

stands in W 1,p
0 (�). Observe that pN−N+Nσ

pN−N+pσ < N
p < N for any p > 1. In the following

section we will consider data in LN (�); hence, we shall be backed to look for (bounded, in

fact) solutions satisfying u
σ−1+p

p
p ∈ W 1,p

0 (�) (see (4.28) below).

4.4 Uniform estimates in the case f ∈ LN(Ä)

In this section we are going to prepare the proofs of Theorems 3.3, 3.4, and 3.5. As one would
like to let p → 1+ we will need some uniform estimates with respect to p. In order to do
that we introduce a family of test functions that behaves differently as u p ∼ 0 and u p ∼ ∞.
For fixed p > 1, we define the following auxiliary function

ψp(s) :=
⎧
⎨

⎩

sσ k
− (σ−1)(p−1)

p
0 if s ≤ k0,

s
σ−1+p

p if s > k0.
(4.26)
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Observe that

ψp(s) → sσ , as p → 1+.

We also define �p(s) := ´ s
0 ψ

′ 1p
p (t)dt . For the sake of exposition, here and below we will

tacitly understand that N > 1. Actually, in the case N = 1 many straightforward simplifi-
cations will appear in the arguments where, with a little abuse of notation, one can mostly
think of N

N−1 := ∞.
We have the following

Lemma 4.9 Let h satisfy (h1) and (h2), 0 ≤ f ∈ LN (�) such that || f ||LN (�) <
1

S1h(∞)
,

and let u p be the solution to (4.1) found in Theorem 4.3. Then there exists p0 > 1 such that
for any p ∈ (1, p0) one has

||u p||W 1,p(ω) ≤ C(S1, h(∞), || f ||LN (�), ω) for all ω ⊂⊂ �, (4.27)

and

||u
σ−1+p

p
p ||

W 1,p
0 (�)

≤ C(S1, sup
s∈[k0,∞)

h(s), || f ||LN (�), c1, |�|). (4.28)

Moreover, there exists k > 0 such that, for any k ≥ k

||Gk(u p)||
L

N
N−1 (�)

≤ p − 1

p
|�|C(S1, h(∞), || f ||LN (�), k) . (4.29)

Finally, ˆ
�

|∇�p(u p)|p ≤
ˆ

�

h(u p) f ψp(u p) . (4.30)

Proof We divide the proof in few steps.

Proof of (4.27). We consider the solutions un to (4.15). We apply (4.10) to un and we apply
the Hölder inequality to obtainˆ

�

|∇Gk(un)|p ≤ ((h(∞) + εk)|| f ||LN (�)Sp)
p

p−1 |�|.

Recalling that || f ||LN (�) < 1
S1h(∞)

, we fix a constant c such that h(∞)|| f ||LN (�)S1 < c <

1. By continuity, there exist p0 sufficiently near to 1+ and k large enough such that,

(h(∞) + εk)|| f ||LN (�)Sp < c < 1,

for any p ∈ (1, p0) and k ≥ k. In particular,ˆ
�

|∇Gk(un)|p ≤ c
p−1
p |�|. (4.31)

To prove (4.27) we reason as in the proof of (4.14) on Tk(un), and, again by Hölder’s
inequality, we obtainˆ

ω

|∇Tk(un)|p ≤ 4k
p
cω[(2(p − 1))p−1 + 1]|�|

+ 4(p − 1)[(h(∞) + εk)|| f ||LN (�)Sp]
p

p−1 |�|.
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Now observe that, thanks to the choice of p0 and k all terms at the right hand side of the
previous expression are bounded uniformly with respect to p ∈ (1, p0). This fact together
with (4.31), and using weak lower semicontinuity, shows that (4.27) holds.

Global estimate (4.28). In order to show (4.28) we take uσ
n as a test function in (4.7)

obtaining (for k1 > k0)
(

p

σ − 1 + p

)p

σ

ˆ
�

|∇u
σ−1+p

p
n |p =

ˆ
�

hn(un) f u
σ
n ≤ c1k

σ−γ
0

ˆ
{un≤k0}

f

+
(

max
s∈[k0,k1]

h(s)

)

kσ
1

ˆ
{k0<un<k1}

f

+ (h(∞) + εk1)

ˆ
{un≥k1}

f uσ
n . (4.32)

We estimate the last term in the right hand side of (4.32). Observing that σN
N−1 <

(σ−1+p)p∗
p ,

one can apply Hölder’s inequality and then Young’s inequality to get

(h(∞) + εk1 )

ˆ
{un≥k1}

f uσ
n ≤ (h(∞) + εk1 )|| f ||LN (�)

(ˆ
{un≥k1}

u
σN
N−1
n

) N−1
N

≤ (h(∞) + εk1 )|| f ||LN (�)

(ˆ
�

u
(σ−1+p)p∗

p
n

) pσ
(σ−1+p)p∗

|�| (p−1)(σ−1+N )
N (σ−1+p)

≤ (h(∞) + εk1 )|| f ||LN (�)

(ˆ
�

u
(σ−1+p)p∗

p
n

) p
p∗

+ (h(∞) + εk1 )|| f ||LN (�)|�| σ−1+N
N .

Concerning the left hand side of (4.32) we apply the Sobolev inequality and we have

(
p

σ − 1 + p

)p

σ

ˆ
�

|∇u
σ−1+p

p
n |p ≥

(
p

σ − 1 + p

)p
σ

S
p
p

(ˆ
�

u
(σ−1+p)p∗

p
n

) p
p∗

.

Collecting the previous two inequalities gathered with (4.32) we deduce

((
p

σ − 1 + p

)p
σ

S
p
p

− (h(∞) + εk1)|| f ||LN (�)

) (ˆ
�

u
(σ−1+p)p∗

p
n

) p
p∗

≤ C . (4.33)

Now, since || f ||LN (�) <
1

S1h(∞)
, for p sufficiently near to 1 and k1 sufficiently large, one

has that
((

p

σ − 1 + p

)p
σ

S
p
p

− (h(∞) + εk1)|| f ||LN (�)

)

> c > 0 ,

for some constant c not depending on both p < p0 and k1. Therefore, using (4.33) we deduce

||u
σ−1+p

p
n ||

W 1,p
0 (�)

≤ C(S1, sup
s∈[k0,∞)

h(s), || f ||LN (�), c1, |�|) , (4.34)

from which (4.28) follows by weak lower semicontinuity. ��
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Proof of estimate (4.29). To show (4.29) we take Gk(un) as a test function in (4.15) obtainingˆ
�

|∇Gk(un)|p ≤ (h(∞) + εk)

ˆ
�

f Gk(un).

Moreover, by the Sobolev, the Young and the Hölder inequalities, we have (recall p > 1)

1

S1

(ˆ
�

G
N

N−1
k (un)

) N−1
N ≤

ˆ
�

|∇Gk(un)| ≤ 1

p

ˆ
�

|∇Gk(un)|p + p − 1

p
|�|

≤ (h(∞) + εk)

ˆ
�

f Gk(un) + p − 1

p
|�|

≤ (h(∞) + εk)|| f ||LN (�)

(ˆ
�

G
N

N−1
k (un)

) N−1
N + p − 1

p
|�|,

that implies
(

1

S1
− (h(∞) + εk)|| f ||LN (�)

)

||Gk(un)||
L

N
N−1 (�)

≤ p − 1

p
|�|.

As before, recalling || f ||LN (�) < 1
S1h(∞)

, it is possible to pick k large enough so that
1
S1

− (h(∞) + εk)|| f ||LN (�) > c > 0, for any k ≥ k, where c only depends on S1, h(∞),
and || f ||LN (�). Then (4.29) follows by Fatou’s lemma. ��

Proof of (4.30). Observe that by (4.34) one readily gets, by compact embeddings, that u
σ−1+p

p
n

strongly converges to u
σ−1+p

p
p in L

N
N−1 (�). As already done, by possibly decreasing its value

we assume, without loss of generality, that k0 /∈ {η : |{u p = η}| > 0}. Recalling (4.26), we
consider ψp(un) as a test function for (4.15) getting

ˆ
�

|∇�p(un)|p =
ˆ

�

hn(un) f ψp(un) ≤ c1k
σ+p−1−γ p

p
0

ˆ
{un≤k0}

f

+ sup
s∈[k0,∞)

h(s)
ˆ

{un>k0}
f u

σ−1+p
p

n ≤ C .

In particular �p(un) is bounded inW
1,p
0 (�) with respect to n and we can use weak lower

semicontinuity of the norm in order to getˆ
�

|∇�p(u p)|p ≤ lim inf
n→∞

ˆ
�

hn(un) f ψp(un)

What is left is to identify the limit, as n goes to infinity, of the right hand side of the previous
expression.

We write

hn(un) f ψp(un) = hn(un) f ψp(un)χ{un≤k0} + hn(un) f u
σ−1+p

p
n χ{un>k0} ;

as

hn(un) f ψp(un)χ{un≤k0} ≤ c1k
σ+p−1−γ p

p
0 f ,

we can pass to the limit in the first term by dominated convergence. On the other hand,

as f u
σ−1+p

p
n strongly converges in L1(�) to f u

σ−1+p
p

p and hn(un)χ{un>k0} converges to
h(u p)χ{u p>k0} both a. e. and ∗-weak in L∞(�) we get
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lim
n→∞

ˆ
�

hn(un) f ψp(un) =
ˆ

�

h(u p) f ψp(u p) ,

and so (4.30). ��
Remark 4.10 Let us note that the proof of Theorem 4.3 keeps working even for a problems
as {

− div(a(x,∇u p)) = h(u p) f in�,

u p = 0 on ∂�,

where a(x, ξ) : � × R
N → R

N is a classical Leray-Lions operator satisfying the following
structure conditions

a(x, ξ) · ξ ≥ α|ξ |p, α > 0,

|a(x, ξ)| ≤ β|ξ |p−1, β > 0,

(a(x, ξ) − a(x, ξ
′
)) · (ξ − ξ

′
) > 0,

for every ξ �= ξ
′
in R

N and for almost every x in �.

5 The limit as p → 1+ for a positive f

In this section we prove our main results concerning the case p = 1, namely Theorems 3.3,
3.4 and 3.5. As before, throughout this section, h satisfies (h1) and (h2) and f ∈ LN (�) is
positive. The proofs of Theorems 3.3 and 3.4 will be split into those of various lemmata.

Preliminarily, let us recall that the solutions u p found in Theorem 4.3 satisfy (4.27). This
implies that u p is locally uniformly bounded in BV (�) with respect to p . Indeed for every
ω ⊂⊂ � ˆ

ω

|∇u p| ≤ 1

p

ˆ
ω

|∇u p|p + p − 1

p
|ω| ≤ C .

Also recalling (4.29), by compactness in BV , and a standard diagonal argument, we deduce
the existence of a function u ∈ BVloc(�) such that (up to not relabeled subsequences)

u p → u in Lq(�) with q < N
N−1 and a.e. in �,

∇u p → Du locally ∗ -weakly as measures ,

(5.1)

as p → 1+. First we have the following

Lemma 5.1 Let 0 < f ∈ LN (�) such that || f ||LN (�) <
1

S1h(∞)
with h satisfying both

(h1) and (h2). Then u, defined by (5.1), belongs to L∞(�). Moreover uσ ∈ BV (�).

Proof Using the Fatou lemma in (4.29) we have that there exists k such that for every k ≥ k

||Gk(u)||
L

N
N−1 (�)

= 0,

that is 0 ≤ u ≤ k a.e. in �. Moreover it follows from the Young inequality and from (4.28)
that ˆ

�

|∇u
σ−1+p

p
p | ≤ 1

p

ˆ
�

|∇u
σ−1+p

p
p |p + 1

p′ |�| ≤ C,
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for some constant C not depending on p. This implies that u
σ−1+p

p
p is bounded in BV (�).

Then there exists w ∈ BV (�) such that u
σ−1+p

p
p converges to w in Lq(�) for q < N

N−1 and

a.e. in �, and ∇u
σ−1+p

p
p converges Dw ∗-weakly as measures. As u p converges a.e. to u this

implies that w = uσ which concludes the proof. We stress that we have just shown that

u
σ−1+p

p
p → uσ in Lq(�), for every q <

N

N − 1
. (5.2)

��

The following Lemma shows the existence (and the identification) of the vector field z.

Lemma 5.2 Under the same assumptions of Lemma 5.1, there exists z ∈ DM∞
loc(�) with

||z||∞ ≤ 1 such that

h(u) f ∈ L1
loc(�), (5.3)

− div z = h(u) f in D ′(�). (5.4)

Moreover
(z, Du) = |Du| as measures in �. (5.5)

Proof We divide the proof into few steps.
Existence of the field z. Recalling (4.27) we have, for 1 ≤ q < p′ and for any ω ⊂⊂ �

ˆ
ω

∣
∣|∇u p|p−2∇u p

∣
∣q =

ˆ
ω

|∇u p|q(p−1) ≤
(ˆ

ω

|∇u p|p
) q

p′ |ω|1−
q
p′ ≤ C

q
p′

ω |�|1−
q
p′

and thus,

|||∇u p|p−2∇u p||q,ω ≤ C
1
p′

ω |�| 1q − 1
p′ . (5.6)

The previous implies that |∇u p|p−2∇u p is bounded in Lq(ω,RN ) with respect to p. Then
there exists zq ∈ Lq(ω,RN ) such that

|∇u p|p−2∇u p⇀zq , weakly in Lq(ω,RN ).

A standard diagonal argument shows that there exists a unique vector field z which is defined
on � independently of q , such that

|∇u p|p−2∇u p⇀z , weakly in Lq(�,RN ) , ∀q < ∞ . (5.7)

Moreover, it follows from the lower semicontinuity in (5.6) with respect to p that

||z||q,ω ≤ |�| 1q , ∀q < ∞
and thus if q → ∞ then z ∈ L∞(ω,RN ) and ||z||∞,ω ≤ 1. Since this estimate is independent
of ω, then ||z||∞ ≤ 1.

Distributional formulation. We prove that (5.4) holds. Note that by (5.7) one can pass
to limit with respect to p in the left hand side of the distributional formulation of (4.1).
Concerning the right hand side, we first notice that, if h(0) < ∞, then one passes to the limit
using the a.e. convergence of u p and the Lebesgue theorem. We then assume that h(0) = ∞.
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Let 0 ≤ ϕ ∈ C1
c (�), then applying the Young inequality in the distributional formulation

of (4.1) it yields
ˆ

�

h(u p) f ϕ ≤ 1

p′

ˆ
supp ϕ

|∇u p|p + 1

p

ˆ
�

|∇ϕ|p ≤ C ,

and then the Fatou lemma gives
ˆ

�

h(u) f ϕ ≤ lim inf
p→1+

ˆ
�

h(u p) f ϕ ≤ C , (5.8)

which implies (5.3) and that u > 0 a.e. in � since f > 0 a.e. in �. Now, recalling Remark
4.5, we are able to take Vδ(u p)ϕ as a test function in (4.1) where 0 ≤ ϕ ∈ C1

c (�) and Vδ is
defined as in (4.19), we haveˆ

�

|∇u p|pV ′
δ (u p)ϕ +

ˆ
�

|∇u p|p−2∇u p · ∇ϕVδ(u p) =
ˆ

�

h(u p) f Vδ(u p)ϕ,

which, since V ′
δ (s) ≤ 0, takes to

ˆ
{u p≤δ}

h(u p) f ϕ ≤
ˆ

�

|∇u p|p−2∇u p · ∇ϕVδ(u p).

Hence (recall (5.7)) we have

lim sup
p→1+

ˆ
{u p≤δ}

h(u p) f ϕ ≤
ˆ

�

z · ∇ϕVδ(u).

Then the Lebesgue theorem implies that

lim
δ→0+ lim sup

p→1+

ˆ
{u p≤δ}

h(u p) f ϕ ≤
ˆ

{u=0}
z · ∇ϕ = 0, (5.9)

since u > 0 a.e. in �. Observe now that, by a standard density argument, (5.9) can be shown
to hold for any ϕ ∈ C1

c (�).
In order to pass to the limit (with respect to p) in

ˆ
�

|∇u p|p−2∇u p · ∇ϕ =
ˆ

�

h(u p) f ϕ ,

we then let ˆ
�

h(u p) f ϕ =
ˆ

{u p≤δ}
h(u p) f ϕ +

ˆ
{u p>δ}

h(u p) f ϕ ,

and, using the same agreement on δ used in the proof of Theorem 4.3 (namely δ /∈ {η : |{u =
η}| > 0}), and recalling (5.8) we have, again by Lebesgue theorem that

lim
δ→0+ lim

p→1+

ˆ
{u p>δ}

h(u p) f ϕ =
ˆ

�

h(u) f ϕ ,

for any ϕ ∈ C1
c (�). This fact, together with (5.9) implies (5.4). Observe that this also

implies that z ∈ DM∞
loc(�).

A variational identity. In order to show (5.5), the first step consists in proving the following

−
ˆ

�

(uσ )∗ϕ div z =
ˆ

�

h(u) f uσ ϕ for every ϕ ∈ C1
c (�) . (5.10)
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To do that we re-adapt the idea in [21]; we test (5.4) with (ρε ∗ uσ )ϕ, where ρε is a standard
mollifier and ϕ ∈ C1

c (�). One has

−
ˆ

�

(ρε ∗ uσ )ϕ div z =
ˆ

�

h(u) f (ρε ∗ uσ )ϕ. (5.11)

Since u ∈ L∞(�) then we have (uσ )∗ ≤ ||uσ ||L∞(�) H
N−1-a.e. and so div z-a.e. (recall

that div z << H N−1). It is then standard (see for instance Propositions 3.64 (b) and 3.69 (b)
of [3]) that ρε ∗ uσ → (uσ )∗ H N−1- a.e. and then div z- a.e. Therefore, we can pass to the
limit in both sides of (5.11) by dominated convergence theorem also using (5.8) and the fact
that |ρε ∗ uσ | ≤ ||uσ ||L∞(�). Then (5.10) holds.

A first identification result. A second ingredient for (5.5) is the following identification
identity involving uσ :

|Duσ | = (z, Duσ ) as measures.

We use u
σ−1+p

p
p ϕ as a test function in (4.1) where 0 ≤ ϕ ∈ C1

c (�), and we get

(
σ − 1 + p

p

) (
p2

σ − 1 + p2

)p ˆ
�

ϕ|∇u
σ−1+p2

p2
p |p +

ˆ
�

u
σ−1+p

p
p |∇u p|p−2∇u p · ∇ϕ

=
ˆ

�

h(u p) f u
σ−1+p

p
p ϕ.

Thus, by Young’s inequality, we deduce

(
σ − 1 + p

p

) 1
p
(

p2

σ − 1 + p2

)ˆ
�

ϕ|∇u
σ−1+p2

p2
p | +

ˆ
�

u
σ−1+p

p
p |∇u p|p−2∇u p · ∇ϕ

≤
ˆ

�

h(u p) f u
σ−1+p

p
p ϕ + p − 1

p

ˆ
�

ϕ. (5.12)

By (5.2) we observe that u
σ−1+p

p
p converges to uσ in Lr (�) for r < N

N−1 and a.e. in � and
(see (5.7)) that |∇u p|p−2∇u p converges weakly to z in Lq(�,RN ) for any q < ∞; this is
sufficient to pass to the limit in the second term on the left hand side of the previous.

Concerning the right hand side of (5.12) we have, for δ > 0,

ˆ
�

h(u p) f u
σ−1+p

p
p ϕ =

ˆ
{u p≤δ}

h(u p) f u
σ−1+p

p
p ϕ +

ˆ
{u p>δ}

h(u p) f u
σ−1+p

p
p ϕ.

On one hand, we treat the first term on the right hand side of the previous as follows

lim
δ→0+ lim sup

p→1+

ˆ
{u p≤δ}

h(u p) f u
σ−1+p

p
p ϕ ≤ lim

δ→0+ lim sup
p→1+

δ
σ−1+p

p

ˆ
{u p≤δ}

h(u p) f ϕ = 0 .

For the second term, using the usual convention for the choice of δ, the a.e. convergence

and theweak convergence of h(u p)u
σ−1+p

p
p χ{u p>δ} to h(u)uσ χ{u>δ} in L

N
N−1 (�), with respect

to p, recalling that f ∈ LN (�), implies that

lim
p→1+

ˆ
{u p>δ}

h(u p) f u
σ−1+p

p
p ϕ =

ˆ
{u>δ}

h(u) f uσ ϕ.
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Then by the Lebesgue theorem, we can pass to the limit also as δ → 0+ since h(u) f uσ ϕ ∈
L1(�) (recall u is bounded). In particular observe that, for fixed 0 ≤ ϕ ∈ C1

c (�), all but the
first term in (5.12) are uniformly bounded with respect to p.

Therefore u
σ−1+p2

p2
p is bounded in BVloc(�) and it locally converges, up to subsequences, to

uσ a.e. in �, in Lr (�) with r < N
N−1 and ∇u

σ−1+p2

p2
p converges ∗-weakly locally as measures

to Duσ . Then by weak lower semicontinuity in the first term we obtain, recalling (5.10), thatˆ
�

ϕ|Duσ | +
ˆ

�

uσ z · ∇ϕ ≤
ˆ

�

h(u) f uσ ϕ = −
ˆ

�

(uσ )∗ϕ div z, ∀ϕ ∈ C1
c (�), ϕ ≥ 0.

Moreover it follows from Proposition 2.1 thatˆ
�

ϕ|Duσ | ≤ −
ˆ

�

uσ z · ∇ϕ −
ˆ

�

(uσ )∗ϕ div z =
ˆ

�

ϕ(z, Duσ ), ∀ϕ ∈ C1
c (�), ϕ ≥ 0 ,

then ˆ
�

ϕ|Duσ | =
ˆ

�

ϕ(z, Duσ ), ∀ϕ ∈ C1
c (�), ϕ ≥ 0 , (5.13)

the reverse inequality being trivial since ||z||∞ ≤ 1.

Proof completed. Herewe show that (5.13) implies (5.5). Let us choose in (2.2)
 : [0,∞) →
[0,∞) defined by 
(s) = sσ , which is a Lipschitz increasing function, since σ ≥ 1. Then

(z, Du)

|Du| = θ(z, Du, x) = θ(z, Duσ , x) = (z, Duσ )

|Duσ | for |Du|-a.e. x ∈ �,

namely (5.5). ��
In order to prove Theorem 3.3 we need to show that z ∈ DM∞(�). In fact, we have the

following stronger general fact:

Lemma 5.3 Let 0 ≤ g ∈ L1
loc(�) and let z ∈ DM∞

loc(�) with ||z||∞ ≤ 1 such that

− div z = g in D ′(�), (5.14)

then
g ∈ L1(�) . (5.15)

In particular, div z ∈ L1(�) and the following holds

−
ˆ

�

v div z =
ˆ

�

gv, ∀v ∈ BV (�) ∩ L∞(�). (5.16)

Proof Let 0 ≤ v ∈ W 1,1
0 (�) and let ϕn ∈ C1

c (�) be a sequence of nonnegative functions

converging in W 1,1
0 (�) to v. Let us take ρη ∗ (v ∧ ϕn) as test function in (5.14) where ρη

(η > 0) is a standard mollifier. We obtainˆ
�

z · ∇(ρη ∗ (v ∧ ϕn)) =
ˆ

�

gρη ∗ (v ∧ ϕn), (5.17)

and we are able to pass to the limit in the left hand side of the previous as η → 0 since
ρη∗(v∧ϕn) → v∧ϕn strongly inW

1,1
0 (�). For the right hand sidewe observe that, for η > 0

small enough, supp (ρη∗(v∧ϕn)) ⊆ ωn , whereωn ⊂⊂ �. Moreover ‖ρη∗(v∧ϕn)‖L∞(�) ≤
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‖v ∧ϕn‖L∞(�) and, as η → 0, ρη ∗ (v ∧ϕn) converges a.e. in� to v ∧ϕn . Thus ρη ∗ (v ∧ϕn)

converges ∗-weak in L∞(�) to v ∧ ϕn .
Then, since g ∈ L1(ωn), we have that

lim
η→0

ˆ
�

g(ρη ∗ (v ∧ ϕn)) =
ˆ

�

g(v ∧ ϕn). (5.18)

By (5.17) and (5.18) we deduce
ˆ

�

z · ∇(v ∧ ϕn) =
ˆ

�

g(v ∧ ϕn). (5.19)

Now, we need to pass to the limit the previous as n → ∞. Since v ∧ ϕn converges to v in
W 1,1

0 (�) then we have

lim
n→∞

ˆ
�

z · ∇(v ∧ ϕn) =
ˆ

�

z · ∇v.

For the right hand side of (5.19) we observe that g(v ∧ ϕn) converges a.e. in � to gv and
that 0 ≤ g(v ∧ ϕn) ≤ gv.

Then, in order to apply the Lebesgue theorem, it is sufficient to show that gv ∈ L1(�).
Indeed we have ˆ

�

gϕn =
ˆ

�

z · ∇ϕn ≤ ‖z‖L∞(�)

ˆ
�

|∇ϕn | ≤ C ,

where the last inequality follows from the fact that ϕn converges to v in W 1,1
0 (�). Then an

application of the Fatou lemma implies gv ∈ L1(�). Hence we have proved that
ˆ

�

z · ∇v =
ˆ

�

gv, ∀v ∈ W 1,1
0 (�), v ≥ 0. (5.20)

Nowwe take a nonnegative function ṽ ∈ W 1,1(�) and then it follows from [7, Lemma5.5] the

existence ofwn ∈ W 1,1(�)∩C(�) havingwn |∂� = ṽ|∂�,
ˆ

�

|∇wn | dx ≤
ˆ

∂�

ṽ dH N−1+
1

n
, and such that wn tends to 0 in �.

Clearly, we can take |v − wn | ∈ W 1,1
0 (�) as a test function in (5.20), obtaining

ˆ
�

g|ṽ − wn | =
ˆ

�

z · ∇|ṽ − wn | ≤ ‖z‖∞
ˆ

�

|∇ṽ| + ‖z‖∞
ˆ

�

|∇wn |

≤
ˆ

�

|∇ṽ| +
ˆ

∂�

ṽ dH N−1 + 1

n
.

Once again an application of the Fatou lemma implies
ˆ

�

gṽ ≤
ˆ

�

|∇ṽ| +
ˆ

∂�

ṽ dH N−1,

where, taking ṽ ≡ 1, one deduces that g belongs to L1(�). Since div z ∈ L1(�), one can
apply Anzellotti’s theory in order to prove (5.16). ��

The following lemma shows that the boundary datum is attained in the sense of Definition
3.1.
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Lemma 5.4 Under the same assumptions of Lemma 5.1, the vector field z found in Lemma
5.2 is such that one of the following holds:

lim
ε→0

 
�∩B(x,ε)

u(y)dy = 0 or [z, ν](x) = −1 for H N−1-a.e. x ∈ ∂�. (5.21)

Proof In order to prove (5.21) we observe that (4.30) together with the Young inequality and

the fact that u
σ−1+p

p
p has zero trace in W 1,p

0 (�), gives
ˆ

�

|∇�p(u p)| +
ˆ

∂�

u
σ−1+p

p
p dH N−1 ≤

ˆ
�

h(u p) f ψp(u p) + p − 1

p
|�| .

Now, we use weak lower semicontinuity on the left hand side, while, reasoning as in the proof
of Lemma 5.2 (splitting the integral the function in the two zones {u p ≤ k0} and {u p > k0}
and using the definition of ψp) it is not difficult to use Lebesgue theorem in order to get

ˆ
�

|Duσ | +
ˆ

∂�

uσ dH N−1 ≤
ˆ

�

h(u) f uσ = −
ˆ

�

(uσ )∗ div z ,

where in the last equality we used (5.10). By the Gauss–Green formula (2.5) we haveˆ
�

|Duσ | +
ˆ

∂�

uσ dH N−1 ≤
ˆ

�

(z, Duσ ) −
ˆ

∂�

[uσ z, ν]dH N−1.

Now we can apply Lemma 5.3 with g = h(u) f in order to deduce that z ∈ DM∞(�) and
then, since by (5.13) |Duσ | = (z, Duσ ), the previous implies

uσ (1 + [z, ν]) = 0 H N−1- a.e. on ∂�.

Therefore, either [z, ν](x) = −1 or uσ (x) = 0 for H N−1-a.e. x ∈ ∂�. In particular (see
Theorem 3.87, [3]), if uσ (x) = 0, then

lim
ε→0

 
�∩B(x,ε)

uσ (y)dy = 0 .

If σ > 1, using Hölder inequality one gets,

 
�∩B(x,ε)

u(y)dy ≤
( 

�∩B(x,ε)
uσ (y)dy

) 1
σ |� ∩ B(x, ε)| 1

σ ′

ε
N
σ ′

≤ C

( 
�∩B(x,ε)

uσ (y)dy

) 1
σ ε→0−→ 0 ,

that is (5.21) holds. ��
Proof of Theorem 3.3 The proof follows by gathering together Lemmata 5.1–5.3. ��
Proof of Theorem 3.4 By Lemma 5.1 we have that uσ ∈ BV (�). Moreover, if h(0) = ∞, it
was already observed that, as (5.8) is in force, then u > 0 a.e. in �. Moreover, one can apply
Lemma 5.3 with g = h(u) f in order to deduce that div z ∈ L1(�) and that (3.9) holds.

Now let h(0) < ∞, we want to show that u ≡ 0. We consider the solution 0 ≤ wp ∈
W 1,p

0 (�) ∩ L∞(�) to
{

−�pwp = ||h||L∞([0,∞)) f in�,

wp = 0 on ∂�.
(5.22)
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If ||h||L∞([0,∞))|| f ||LN (�) <
1

S1
then using [16, Theorem 4.1] we deduce that wp goes to

zero a.e. in � as p → 1+.
On the other hand, we recall that u is the a.e. limit in � of the solutions to

{
−�pu p = h(u p) f in�,

u p = 0 on ∂�,
(5.23)

where 0 ≤ u p ∈ W 1,p
0 (�)∩ L∞(�). We take (wp −u p)

− as a test function in the difference
between weak formulations (5.22) and (5.23)

−
ˆ

{wp<u p}
(|∇wp|p−2∇wp − |∇u p|p−2∇u p) · ∇(wp − u p)

=
ˆ

�

(||h||L∞([0,∞)) − h(u p)) f (wp − u p)
− ≥ 0,

which, by monotonicity, impliesˆ
{wp<u p}

(|∇wp|p−2∇wp − |∇u p|p−2∇u p) · ∇(wp − u p) = 0,

that is wp ≥ u p ≥ 0 a.e. in �. Therefore, taking p → 1+, one obtains u ≡ 0. ��
We conclude this section by proving our uniqueness result.

Proof of Theorem 3.5 Since h(u) f ∈ L1
loc(�) (see (3.2)) we can apply Lemma 5.3 deducing

−
ˆ

�

v div z =
ˆ

�

h(u) f v, ∀v ∈ BV (�) ∩ L∞(�).

Moreover we apply Proposition 2.2 and, recalling (2.4), we deduceˆ
�

(z, Dv) −
ˆ

∂�

v[z, ν] dH N−1 =
ˆ

�

h(u) f v, ∀v ∈ BV (�) ∩ L∞(�). (5.24)

Let u1 and u2 be solutions to problem (3.1) satisfying (3.8) and we denote by, respectively,
z1 and z2 the vector fields appearing in Definition 3.1. Now we take v = uσ

1 − uσ
2 in the

difference of weak formulations (5.24) solved by u1, u2. Thusˆ
�

(z1, Duσ
1 ) −

ˆ
�

(z2, Duσ
1 ) +

ˆ
�

(z2, Duσ
2 ) −

ˆ
�

(z1, Duσ
2 )

−
ˆ

∂�

(uσ
1 − uσ

2 )[z1, ν]) dH N−1

+
ˆ

∂�

(uσ
1 − uσ

2 )[z2, ν]) dH N−1 =
ˆ

�

(h(u1) − h(u2)) f (u
σ
1 − uσ

2 ).

Then we can reason as in the last step of the proof Lemma 5.2 in order to deduceˆ
�

(zi , Duσ
i ) =

ˆ
�

|Duσ
i | for i = 1, 2 .

Moreover observe that for a nonnegative function u ∈ L∞(�) such that uσ in BV (�) one
has that

lim
ε→0

 
�∩B(x,ε)

u(y)dy = 0
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implies

lim
ε→0

 
�∩B(x,ε)

uσ (y)dy = 0 .

In particular

uσ
i (1 + [zi , ν]) = 0 H N−1 − a.e. on ∂� for i = 1, 2

Then, it followsˆ
�

|Duσ
1 | −

ˆ
�

(z2, Duσ
1 ) +

ˆ
�

|Duσ
2 | −

ˆ
�

(z1, Duσ
2 ) +

ˆ
∂�

(uσ
1 + uσ

1 [z2, ν]) dH N−1

+
ˆ

∂�

(uσ
2 [z1, ν] + uσ

2 ) dH N−1 =
ˆ

�

(h(u1) − h(u2)) f (u
σ
1 − uσ

2 ).

Hence recalling that ||zi ||∞ ≤ 1 and that [zi , ν] ∈ [−1, 1] for i = 1, 2 then the left hand
side of the previous is nonnegative. This gives thatˆ

�

(h(u1) − h(u2)) f (u
σ
1 − uσ

2 ) ≥ 0,

which implies u1 = u2 a.e. in � since f > 0 a.e. in �. ��

6 Nonnegative data f

Here we extend existence Theorem 3.3 to the case of a nonnegative f in LN (�) in (3.1).
Here we focus on the purely singular case h(0) = ∞; if this is not the case (i.e. h(0) < ∞),
one can easily re-adapt (with many simplifications) the argument of the previous section in
order to obtain a solution to problem (3.1) which satisfies (3.2)-(3.5).

As suggested in [21], when h actually blows up at the origin then the notion of solution
should be suitably modified. In fact, roughly speaking, the approximating solutions u p could
converge to a limit function u that may have a non-trivial set {u = 0}. This fact, in the BV
context amounts to the fact that an additional term (namely a measure) appears in the limit
equation (see Remark 6.2); this additional term can be absorbed in the principal part of the
equation by formally multiplying it by χ∗{u>0}. Moreover, in this case the vector field z will
actually belong toDM∞

loc(�) and this leads to a different formulation for the boundary datum
that involves the power σ = max(1, γ ) of u. As a matter of fact, in the case f > 0, the two
definitions do essentially coincide (see Remark 6.3). We set the following

Definition 6.1 Let 0 ≤ f ∈ LN (�) then a function u ∈ BVloc(�)∩ L∞(�) having χ{u>0} ∈
BVloc(�) and uσ ∈ BV (�) is a solution to problem (3.1) if there exists z ∈ DM∞

loc(�) with
||z||∞ ≤ 1 such that

h(u) f ∈ L1
loc(�), (6.1)

− (div z)χ∗{u>0} = h(u) f in D ′(�), (6.2)

(z, Du) = |Du| as measures in �, (6.3)

uσ (x) + [uσ z, ν](x) = 0 for H N−1-a.e. x ∈ ∂�. (6.4)

Remark 6.2 It is worth noting that, reasoning as in [21], one can prove that (z, Dχ{u>0}) =
|Dχ{u>0}|. This means that, by the Anzellotti theory, one has

−(
div z

)
χ∗{u>0} = −div

(
zχ{u>0}

) + (z, Dχ{u>0}),
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and then the Eq. (6.2) reads as

−div
(
zχ{u>0}

) + |Dχ{u>0}| = h(u) f ,

that is, it reduces to a sum of an operator in divergence form and an additional term |Dχ{u>0}|,
which is a measure concentrated on the, non-trivial in this case, reduced boundary ∂∗{u > 0},
or equivalently on the reduced boundary ∂∗{u = 0}.
Remark 6.3 Let us stress that a solution in the sense of Definition 6.1 is also a solution in the
sense of Definition 3.1 in case of f > 0 a.e. in �. Indeed, since h(u) f is locally integrable
then (recall we are assuming h(0) = ∞) u > 0 a.e. in � and (6.2) reads as

− div z = h(u) f in D ′(�).

Then we can apply Lemma 5.3 in order to deduce that z ∈ DM∞(�). Finally we only need
to show that (3.5) holds. We observe that having uσ ∈ BV (�)∩ L∞(�) and z ∈ DM∞(�)

we can use (2.4) in order to deduce from (6.4) that

uσ (x)(1 + [z, ν](x)) = 0 for H N−1-a.e. x ∈ ∂� ,

that implies (3.5) reasoning as in the proof of Lemma 5.4.
On the other hand it is easy to see that a solution in the sense of Definition 3.1 also satisfies

Definition 6.1 provided uσ ∈ BV (�).
Let us also finally remark that uniqueness of solution in the sense of Definition 6.1 is not

expected in general as some one dimensional examples in the model case with γ ≤ 1 show
(see [21]).

We have the following counterpart of Theorem 3.3 for general nonnegative f .

Theorem 6.4 Let 0 ≤ f ∈ LN (�) such that || f ||LN (�) <
1

S1h(∞)
and let h satisfy (h1)

and (h2). Then there exists a solution u to problem (3.1) in the sense of Definition 6.1.

Proof The proof strictly follows the lines of the one of Theorem 3.3 so we only sketch it
by highlighting the main differences. One reasons by approximation with the distributional
solutions u p to (4.1) and use the estimates given in Lemma 4.9. The existence of both an a.e.
limit function u ∈ BVloc(�) ∩ L∞(�) and a vector field z with ||z||∞ ≤ 1 (∗-weak limit in
L∞(�,RN ) of |∇u p|p−2∇u p) then follows as before. Moreover uσ ∈ BV (�) and (6.3) is
in force. What are left are the proofs that χ{u>0} belongs to BVloc(�), that h(u) f ∈ L1

loc(�),
and that (6.2) holds.

It follows by the Fatou lemma applied to (4.4) thatˆ
�

h(u) f ϕ ≤
ˆ

�

z · ∇ϕ = −
ˆ

�

ϕ div z ∀ϕ ∈ C1
c (�), ϕ ≥ 0; (6.5)

in particular z ∈ DM∞
loc(�) and h(u) f ∈ L1

loc(�). Now we test (4.1) with Sδ(u p)ϕ (see
Remark 4.5), where Sδ(s) := 1 − Vδ(s), Vδ is defined in (4.19), and 0 ≤ ϕ ∈ C1

c (�),
obtainingˆ

�

|∇u p|pS′
δ(u p)ϕ +

ˆ
�

|∇u p|p−2∇u p · ∇ϕSδ(u p) =
ˆ

�

h(u p) f Sδ(u p)ϕ. (6.6)

Thus from (6.6), using Young’s inequality (recall p > 1), we haveˆ
�

|∇Sδ(u p)|ϕ +
ˆ

�

|∇u p|p−2∇u p · ∇ϕSδ(u p)
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≤ 1

p

ˆ
�

|∇u p|pS′
δ(u p)ϕ + p − 1

p

ˆ
�

S′
δ(u p)ϕ +

ˆ
�

|∇u p|p−2∇u p · ∇ϕSδ(u p)

≤ p − 1

p

ˆ
�

S′
δ(u p)ϕ +

ˆ
�

h(u p) f Sδ(u p)ϕ. (6.7)

We want to pass to the limit as p → 1+ first, and then we will let δ → 0+. First of all, using
that |∇Sδ(u p)| = |S′

δ(u p)∇u p| ≤ 1
δ
|∇u p| then it follows from (4.27) the uniform local

boundedness of Sδ(u p) in BVloc(�) with respect to p and we can pass to the limit in (6.7)
by weak lower semicontinuity in the first term on the left hand side. Also the second term
easily passes to the limit. On the right hand side, the first term vanishes (as S′

δ is bounded)
while for the second term we have

h(u p) f Sδ(u p)ϕ ≤ h(u p) f ϕχ{u p>δ} ≤ sup
s∈[δ,∞)

h(s) f ϕ

so that, by dominated convergence theorem, we can pass to the limit in this term as well
finally get ˆ

�

|DSδ(u)|ϕ +
ˆ

�

z · ∇ϕSδ(u) ≤
ˆ

�

h(u) f Sδ(u)ϕ.

Thanks to the fact that z ∈ DM∞
loc(�) and to (6.5), we have that all but the first term in the

previous are uniformly bounded with respect to δ. Hence Sδ(u) is bounded in BVloc(�) and
we are allowed to pass to the limit in δ (using once again weak lower semicontinuity in the
first term) and Lebesgue’s theorem for the remaining terms, gettingˆ

�

|Dχ{u>0}|ϕ +
ˆ

�

z · ∇ϕχ{u>0} ≤
ˆ

�

h(u) f χ{u>0}ϕ .

Observe, in particular, that
χ{u>0} ∈ BVloc(�).

Therefore, recalling Proposition 2.1,

−(div z)χ∗{u>0} = − div(zχ{u>0}) + (z, Dχ{u>0}),

and so

−
ˆ

�

ϕχ∗{u>0} div z ≤
ˆ

�

h(u) f χ{u>0}ϕ
{u=0}⊂{ f =0}=

ˆ
�

h(u) f ϕ. (6.8)

We prove the reverse inequality. In (6.5) we take ϕ = (χ{u>0} ∗ ρε)φ where 0 ≤ φ ∈ C1
c (�)

and ρε is a mollifier. Passing to the limit in ε (Lebesgue’s theorem on the left hand side and
Fatou’s lemma on the right hand side) we obtain

−
ˆ

�

φχ∗{u>0} div z ≥
ˆ

�

h(u) f χ{u>0}φ=
ˆ

�

h(u) f φ ∀φ ∈ C1
c (�), φ ≥ 0, (6.9)

then (6.8) and (6.9) imply that (6.2) holds. ��

7 The case f in LN,∞(Ä)

The main results proven in the previous section can be extended to the case of a slightly more
general nonnegative datum in the Lorentz space f ∈ LN ,∞(�), also called Marcinkiewicz
space, this extension being optimal in the sense specified below (see Remark 7.2). We refer,
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for instance, to the monograph [41] for a smooth introduction to the subject of Lorentz spaces
and their main properties. We only recall that an Hölder’s inequality is available in this case
and that the conjugate space associated to L p,q(�) for p > 1 and q ∈ [1,∞] is L p′,q ′

(�).
Also, a Sobolev embedding inequality for W 1,p

0 (�) holds, that is

‖v‖L p∗,p(�) ≤ S̃p‖∇v‖
W 1,p

0 (�)
, ∀v ∈ W 1,p

0 (�) . (7.1)

The involved constants are explicit and one has

S̃p = p�
(
1 + N

2

) 1
N

√
π(N − p)

p→1+
−→ S̃1 =

[

(N − 1)ω
1
N
N

]−1

,

where � is the usual Gamma function (see [2,14]).
We consider problem {

−�1u = h(u) f in�,

u = 0 on ∂�,
(7.2)

where f ∈ LN ,∞(�) is nonnegative and h, as before, is a continuous function satisfying
(h1) and (h2).

Definition 6.1 can be straightforwardly re-adapted to this case with many simplifications
if f > 0 (as in Definition 3.1). We summarize the results one can obtain in the following

Theorem 7.1 Let 0 ≤ f ∈ LN ,∞(�) such that || f ||LN ,∞(�) <
1

S̃1h(∞)
, where h satisfies

(h1) and (h2). Then there exists a (unique, if h is decreasing and f > 0 a.e. in �) solution
u to problem (7.2) in the sense of Definition 6.1.

Moreover, if h(0) = ∞ then u > 0 a.e. in �, and, if h ∈ L∞([0,∞)) and

|| f ||LN ,∞(�) <
1

S̃1||h||L∞([0,∞))

, (7.3)

then u ≡ 0 a.e. in �.

Remark 7.2 Observe that condition (7.3) is optimal in the sense that, if h ≡ 1, one can

construct a datum f with || f ||LN ,∞(�) = S̃1
−1

such that problem (7.2) relative to f admits
a non-trivial solution (ie. u �= 0) (see [16, Theorem 3.4, Remark 3.2]).

As far as the proofs of our existence, uniqueness and regularity results in the case f ∈
LN (�) are concerned, the proof ofTheorem7.1 is a standard re-adaptation once the analogous
of Lemma 4.9 is established. That is, if we consider

{
−�pun = hn(un) fn in�,

un = 0 on ∂�,
(7.4)

where f ∈ LN ,∞(�) is nonnegative and fn = Tn( f ), hn(s) = Tn(h(s)). Hence Theorem
7.1 is a consequence of the following

Lemma 7.3 Let un be a solution to (7.4). If || f ||LN ,∞(�) <
1

S̃1h(∞)
then there exists k > 0

such that un satisfies:

||Gk(un)||
L

N
N−1 ,1

(�)
≤ p − 1

p
|�|C(S̃1, h(∞), || f ||LN ,∞(�), k), for all k ≥ k, (7.5)
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||un ||W 1,p(ω) ≤ C(S̃1, h(∞), || f ||LN ,∞(�), ω, |�|), for all ω ⊂⊂ �, (7.6)

||u
σ−1+p

p
n ||

W 1,p
0 (�)

≤ C

(

S̃1, sup
s∈[k0,∞)

h(s), || f ||LN ,∞(�), c1, |�|
)

, (7.7)

Proof The proofs of both (7.5) and (7.6) strictly follow the ones who led to (4.27) and
(4.29) where, systematically, the Hölder inequality is replaced by the generalized Hölder
inequality in Lorentz spaces and (7.1) substitutes the usual Sobolev’s embedding inequality
in Lebesgue’s spaces. The only estimate that needs some further efforts is (7.7) and we focus
on it. As in (4.32) one fixes k1 > k0 and then multiplies (7.4) by uσ

n , obtaining
(

p

σ − 1 + p

)p

σ

ˆ
�

|∇u
σ−1+p

p
n |p =

ˆ
�

hn(un) f u
σ
n ≤ c1k

σ−γ
0

ˆ
{un≤k0}

f

+ max
s∈[k0,k1]

h(s) kσ
1

ˆ
{k0<un<k1}

f

+ (h(∞) + εk1)

ˆ
{un≥k1}

f uσ
n

≤ C

(

k0, max
s∈[k0,k1]

h(s), || f ||L1(�), c1

)

+ (h(∞) + εk1)|| f ||LN ,∞(�)||uσ
n ||

L
N

N−1 ,1
(�)

.

(7.8)

Now, let u∗(t) be the non-increasing rearrangement of u for t ∈ (0, |�|), and observe that
(uq)∗ = (u∗)q for q > 0. Using the Hölder inequality with exponent σ−1+p

σ
we have

||uσ
n ||

L
N

N−1 ,1
(�)

=
ˆ |�|

0
t−

1
N u∗

n(t)
σ dt ≤

(ˆ |�|

0
t−

σ−1+p
Nσ u∗

n(t)
σ−1+pdt

) σ
σ−1+p

|�| p−1
σ−1+p

=
(ˆ |�|

0

(

t−
σ(1−N )−1+p

Npσ u∗
n(t)

σ−1+p
p

)p dt

t

) σ
σ−1+p

|�| p−1
σ−1+p

=
(ˆ |�|

0

(

t
1
p∗ u∗

n(t)
σ−1+p

p

)p

t
(σ−1)(p−1)

Nσ
dt

t

) σ
σ−1+p

|�| p−1
σ−1+p

≤
(ˆ |�|

0

(

t
1
p∗ u∗

n(t)
σ−1+p

p

)p dt

t

) σ
σ−1+p

|�| (p−1)(σ−1+N )
N (σ−1+p)

= ||u
σ−1+p

p
n ||

pσ
σ−1+p

L p∗,p(�)
|�| (p−1)(σ−1+N )

N (σ−1+p)

≤ σ

σ − 1 + p
||u

σ−1+p
p

n ||p
L p∗,p(�)

+ p − 1

σ − 1 + p
|�| σ−1+N

N , (7.9)

where in the last step we used Young’s inequality. Concerning the left hand side of (7.8) we
have

(
p

σ − 1 + p

)p

σ

ˆ
�

|∇u
σ−1+p

p
n |p ≥

(
p

σ − 1 + p

)p
σ

S̃
p
p

||u
σ−1+p

p
n ||p

L p∗,p(�)
,

and gathering the previous two inequalities with (7.8) we deduce
((

p

σ − 1 + p

)p
σ

S̃
p
p

− (h(∞) + εk1)|| f ||LN ,∞(�)

σ

σ − 1 + p

)

||u
σ−1+p

p
n ||p

L p∗,p(�)
≤ C,

(7.10)
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where, since || f ||LN ,∞(�) <
1

S̃1h(∞)
, one can pick p near to 1 and k1 large enough such

that
((

p

σ − 1 + p

)p
σ

S̃
p
p

− (h(∞) + εk1)|| f ||LN ,∞(�)

σ

σ − 1 + p

)

> c > 0

for a constant c that does not depend on both p and k1. Using estimate (7.10) in (7.8) one
finally deduces (7.7). ��

8 Further extensions, remarks, and examples

8.1 Some global BV solutions

Aswehave seen the fact uσ ∈ BV (�) is crucial in order to prove the existence and uniqueness
of a solution to (3.1). Due to the possible degeneracy of the datum f and to the weak requests
one assumes on the nonlinearity h this step seems to be needed, in general, in order to
conclude.

Although, a natural question is whether the solution to (3.1) enjoys itself the further
property to have global finite energy in the natural space BV (�). To fix the ideas, if � is a
smooth domain, consider the problem

⎧
⎨

⎩

−�pu = f

uγ
in�,

u = 0 on ∂�,
(8.1)

where γ > 0 and f is an Hölder continuous function that is bounded away from zero on
�. If p = 2 and γ ≥ 1 it can be proven that solutions belong to the natural space H1

0 (�)

if and only if γ < 3 ([32], see also [39,44] for further refinements). Extensions to the case
p > 1 are also available [43] and the threshold becomes γ <

2p−1
p−1 , suggesting that, as

p → 1+, one should recover the global BV regularity of the solutions for any γ > 0 at least
for both a non-degenerate datum and a smooth domain. Recall that, as for the case p > 1
with sufficiently integrable data, if γ ≤ 1 (see [21]) then solutions to problem (8.1) always
have finite energy if p = 1 (compare with Theorem 3.4 above).

In order to better understand this phenomenon one can look at the proof of the result in
[32]. One immediately realizes that, at regular boundary points, the slope of the solutions
to (8.1) become larger and larger as γ grows eventually leading the solution to loose its C1

regularity (beyond γ = 1) and its H1 regularity (at γ = 3). Hence, due to the fact that the
boundary datum needs not to be attained in the classical sense, and to the particular nature of
BV (that allows jumps), it seems reasonable that, for any fixed γ > 0 solutions to (8.1) may
become globally BV as p reaches 1 (at least if the datum f does not degenerate at zero).

In this section we want to present some further evidences of this fact. Though a more
general right hand side can be considered, in order to simplify the exposition we consider
the simplest model {

−�1u = u−γ in�,

u = 0 on ∂� .
(8.2)

We will construct an example showing that, for a rich enough class of domains, solutions
to (8.2) belongs to BV (�), for any γ > 0. We first need the following
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Definition 8.1 We say that a bounded convex set E of class C1,1 is calibrable if there exists
a vector field ξ ∈ L∞(RN ,RN ) such that ‖ξ‖∞ ≤ 1, (ξ, DχE ) = |DχE | as measures, and

−divξ = λEχE in D ′(RN )

for some constant λE . In this case λE = Per(E)
|E | and [ξ, νE ] = −1, H N−1-a.e in ∂E (see

[1, Section 2.3] and [37]).

As a consequence of [1, Theorem 9] a bounded and convex set E is calibrable if and only
if the following condition holds:

(N − 1)‖HE‖L∞(∂E) ≤ λE = Per(E)

|E | ,

where HE denotes the (H N−1-a.e. defined) mean curvature of ∂E . In particular, if E =
BR(0), for some R > 0, then E is calibrable.

Example 1 If � is a calibrable set, let us prove that u =
( |�|
Per(�)

) 1
γ
is the unique solution to

(8.2) in the sense of Definition 3.1. It suffices to take the restriction to � of the vector field
in the definition of calibrability; i.e.: z := ξ

�
. In fact, due to the properties of ξ one has

− divz = Per(�)

|�| = u−γ and [ξ, ν�] = −1 . (8.3)

Moreover, using both (2.5) and (8.3), one finally gets

(z, Du)(�) =
ˆ

�

( |�|
Per(�)

) 1
γ Per(�)

|�| dx

+
ˆ

∂�

[ξ, ν�]
( |�|
Per(�)

) 1
γ

dH N−1 = 0 = |Du|(�).

Remark 8.2 Observe that the solutions of (8.2) given by Theorem 3.3 belong to BV (�) once
they are bounded away from zero on �; in fact, let u ≥ a > 0, then, due to property (3.8)
one has u = S(uγ ) ∈ BV (�), where S is the Lipschitz continuous function defined by

S(s) = max (a, s
1
γ ) .

Let us show a situation in which u ≥ a > 0 holds. Let � be a convex open set. In [37] it is
shown that −H�(x) is a (so called) large solution to �1v = v, i. e.

{
�1v = v in�,

v = ∞ on ∂�,
(8.4)

where H�(x) is the variational mean curvature of � (see [8] for details). Without entering
into technicalities, only recall that ‖H�‖L∞(RN ) < ∞ if and only if � is of class C1,1; in
particular, these solutions only assume the (large) datum ∞ at non-regular points of � (e.g.
at corners).

As through the change of variable u = v
− 1

γ problem (8.4) formally transforms into (8.2)
(using also the homogeneity of the operator) then one can expect that solutions to problem
(8.2) always belong to BV (�) if � is a convex bounded C1,1 domain and that, in general,
the Dirichlet homogeneous boundary datum is only assumed pointwise at non-smooth points
of �.
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8.2 More general growths

Here we show how the assumption on the control of h near zero can be removed allowing
more general growths not satisfying (h1). Consider the general problem

{
−�1u = F(x, u) in�,

u = 0 on ∂�,
(8.5)

where F(x, s) is a nonnegative Carathéodory function satisfying

F(x, s) ≤ h(s) f (x), ∀ (x, s) ∈ � × [0,∞) , (8.6)

with 0 ≤ f ∈ LN ,∞(�), and h is a continuous function in [0,∞) satisfying (h2).
First of all, without loss of generality, we can assume that h such that

h is decreasing, h ∈ C1((0,∞)), h−1 ∈ C1([0,∞)), h−1(0) = 0 , (8.7)

where h−1 stands for the reciprocal of h. Indeed, for any given h satisfying our assumptions
one can construct (see for instance [26, Remark 2.1, vii)]) a function h such that (8.7) holds
and

h(s) ≤ h(s), ∀s ≥ 0.

As for the previous sections we look for a solution of (8.5) through an approximation argu-
ment, letting p → 1+ in the solutions to

{
−�pu p = F(x, u p) in�,

u p = 0 on ∂�.
(8.8)

The notion of solution to (8.8) for p > 1 is the following one.

Definition 8.3 A nonnegative function u p ∈ W 1,p
loc (�) is a distributional solution to problem

(8.8) if

F(x, u p) ∈ L1
loc(�), (8.9)

Gk(u p) ∈ W 1,p
0 (�), for all k > 0, (8.10)

and ˆ
�

|∇u p|p−2∇u p · ∇ϕ =
ˆ

�

F(x, u)ϕ, (8.11)

for every ϕ ∈ C1
c (�).

We have the following result whose proof, using (8.6), easily follows line by line the proof
of Theorem 4.3. Only observe that, in this case, the approximating problems read as

{
−�pun = Fn(x, un) in �,

un = 0 on ∂�,
(8.12)

where Fn(x, s) = F(x, Tn(s)). Moreover we set

βp(s) =
ˆ s

0
((h−1(t))′)

1
p dt . (8.13)
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Theorem 8.4 Let F satisfy (8.6) where 0 ≤ f ∈ L(p∗)′(�) and let h satisfy (8.7) and (h2).
Then there exists a solution u p to problem (8.8) in the sense of Definition 8.3 such that

βp(u p) ∈ W 1,p
0 (�).

The following counterpart of (4.30) can be proven:
ˆ

�

|∇� p(u p)|p ≤
ˆ

�

F(x, u p)ψ p
(u p), (8.14)

where, for δ > 0,

ψ
p
(s) =

{
h−1(s)

βp(δ)

h−1(δ)
if s < δ,

βp(s) if s ≥ δ ,

and � p is the primitive of ψ
′ 1p
p

(s) (such that � p = 0).

Here is how the definition of solution to problem (8.5) can be suitably modified:

Definition 8.5 A function u ∈ BVloc(�) ∩ L∞(�) having χ{u>0} ∈ BVloc(�) and β1(u) ∈
BV (�) (β1 is defined in (8.13)) is a solution to problem (8.5) if there exists z ∈ DM∞

loc(�)

with ||z||∞ ≤ 1 such that

F(x, u) ∈ L1
loc(�), (8.15)

− (div z)χ∗{u>0} = F(x, u) in D ′(�), (8.16)

(z, Du) = |Du| as measures in �, (8.17)

β1(u(x)) + [β1(u)z, ν](x) = 0 for H N−1-a.e. x ∈ ∂�. (8.18)

One finally has the following

Theorem 8.6 Let 0 ≤ f ∈ LN ,∞(�) such that || f ||LN ,∞(�) <
1

S̃1h(∞)
and let h satisfy

(h2). Then there exists a solution u to problem (8.5) in the sense of Definition 8.5. Moreover
if F(x, 0) = ∞ then u > 0 a.e. in �. Otherwise if F(x, 0) < ∞ and if || f ||LN ,∞(�) <

(S̃1||h||L∞([0,∞)))
−1 then u ≡ 0 a.e. in �.

Proof The proof is a suitable modification of the one of Theorems 3.3, 6.4, and 7.1; we only
highlight the main differences. One starts with the solutions un of (8.12). As f ∈ LN ,∞(�)

with || f ||LN ,∞(�) <
1

S̃1h(∞)
, then, uniform estimates hold. In fact, using (8.6), both (7.5)

and (7.6) continue to hold, and, recalling (8.7), one can show that p0 exists such that for any
p ∈ (1, p0)

||βp(un)||W 1,p
0 (�)

≤ C

(

S̃1, sup
s∈[1,∞)

h(s), || f ||LN ,∞(�)

)

. (8.19)

This is done by considering the solutions to (8.12) and taking h−1(un) as test. By weak lower
semicontinuity the same holds for u p . One then deduces, reasoning as in the proof of Lemma
5.2, the existence of a vector field z ∈ DM∞

loc(�) with ||z||∞ ≤ 1 which is the ∗-weak limit
of |∇u p|p−2∇u p. The proof of (8.16) can be derived as for (6.2). Now recalling (8.19), we
have ˆ

�

|∇βp(u p)| ≤ 1

p

ˆ
�

|∇βp(u p)|p + 1

p′ |�| ≤ C,
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which implies that βp(u p) is bounded in BV (�) and then it strongly converges in Lq(�)

to its a.e. limit β1(u) ∈ BV (�). Moreover ∇βp(u p) converges ∗-weakly in the sense of
measures to Dβ1(u). Hence reasoning exactly as in the proof of (5.10) it yields

−
ˆ

�

β1(u)∗ϕ div z =
ˆ

�

F(x, u)β1(u)ϕ for every ϕ ∈ C1
c (�) . (8.20)

In order to prove (8.17), one lets 0 ≤ ϕ ∈ C1
c (�) and βp(u p)ϕ to test (8.8) obtaining

ˆ
�

ϕ|∇u p|pβ ′
p(u p) +

ˆ
�

βp(u p)|∇u p|p−2∇u p · ∇ϕ =
ˆ

�

F(x, u p)βp(u p)ϕ.

Thus, by Young’s inequality, one deduces
ˆ

�

ϕ|∇u pβ
′
p(u p)

1
p | +

ˆ
�

βp(u p)|∇u p|p−2∇u p · ∇ϕ ≤
ˆ

�

F(x, u p)βp(u p)ϕ

+ p − 1

p

ˆ
�

ϕ.

Reasoning as in the proof of Lemma 5.2 all but the first term are shown to pass to the limit
with respect to p. Then by lower semicontinuity we obtain, recalling (8.20),

ˆ
�

ϕ|Dβ1(u)| +
ˆ

�

β1(u)z · ∇ϕ ≤
ˆ

�

F(x, u)β1(u)ϕ

= −
ˆ

�

(β1(u))∗ϕ div z, ∀ϕ ∈ C1
c (�), ϕ ≥ 0 ,

and we can apply Proposition 2.1 to deduce
ˆ

�

ϕ|Dβ1(u)| ≤ −
ˆ

�

β1(u)z · ∇ϕ −
ˆ

�

β1(u)∗ϕ div z

=
ˆ

�

ϕ(z, Dβ1(u)), ∀ϕ ∈ C1
c (�), ϕ ≥ 0 ,

then ˆ
�

ϕ|Dβ1(u)| ≤
ˆ

�

ϕ(z, Dβ1(u)), ∀ϕ ∈ C1
c (�), ϕ ≥ 0 ,

that implies |Dβ1(u)| = (z, Dβ1(u)) as ||z||∞ ≤ 1. Now since β1(s) is locally Lipschitz
one obtains (8.17) by the same argument as in the last step of the proof of Lemma 5.2.

It is left to prove (8.18). It follows by using (8.14) and Young’s inequality that
ˆ

�

|∇� p(u p)| +
ˆ

∂�

βp(u p)dH
N−1 ≤

ˆ
�

F(x, u p)ψ p
(u p) + p − 1

p
|�|,

then by weak lower semicontinuity one can use Gauss-Green formula (2.5) and (8.20) to
have

ˆ
�

|Dβ1(u)| +
ˆ

∂�

β1(u)dH N−1 ≤
ˆ

�

(z, Dβ1(u)) −
ˆ

∂�

[β1(u)z, ν]dH N−1,

that, as |Dβ1(u)| = (z, Dβ1(u)), gives (8.18). ��
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