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Abstract
This paper focuses on the followingKeller–Segel–Navier–Stokes systemwith rotational flux:

⎧
⎪⎪⎨

⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nS(x, n, c)∇c), x ∈ �, t > 0,
ct + u · ∇c = �c − c + n, x ∈ �, t > 0,
ut + κ(u · ∇)u + ∇P = �u + n∇φ, x ∈ �, t > 0,
∇ · u = 0, x ∈ �, t > 0

(K SN F)

in a bounded domain � ⊂ R
3 with a smooth boundary, where κ ∈ R is a given constant,

φ ∈ W 1,∞(�), |S(x, n, c)| ≤ CS(1 + n)−α , and the parameter α ≥ 0. If α > 1
3 , then,

for all reasonable regular initial data, a corresponding initial-boundary value problem for
(K SN F) possesses a globally defined weak solution. This result improves upon the result
of Wang (Math Models Methods Appl Sci 27(14):2745–2780, 2017), in which the global
very weak solution for the system (K SN F) is obtained. In comparison with the result of the
corresponding fluid-free system, the optimal condition on the parameter α for global (weak)
existence is established. Our proofs rely on a variant of the natural gradient-like energy
functional.

Mathematics Subject Classification 35K55 · 35Q92 · 35Q35 · 92C17

1 Introduction

Chemotaxis, the biased movement of cells (or organisms) in response to chemical gradients,
plays an important role in coordinating cell migration in many biological phenomena (see
Hillen and Painter [8]). Let n denote the density of the cells and c present the concentration
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of the chemical signal. In the 1970s, Keller and Segel [12] proposed a mathematical system
for chemotaxis through a system of parabolic equations. The mathematical model reads as

{
nt = �n − ∇ · (nS(x, n, c)∇c), x ∈ �, t > 0,
ct = �c − c + n, x ∈ �, t > 0,

(1.1)

where S is a given chemotactic sensitivity function, which can either be a scalar function or,
more generally, a tensor-valued function (see, e.g., Xue and Othmer [42]). During the past
four decades, Keller–Segel models (1.1) and their variants have attracted extensive attention,
withthe main issue of investigation focusing on whether the solutions of the models are
bounded or blow up (see Winkler et al. [1], Hillen and Painter [8] and Horstmann [9]). For
instance, if S := S(n) is a scalar function satisfying S(s) ≤ C(1 + s)−α for all s ≥ 1,
α > 1− 2

N , and C > 0, then all solutions to the corresponding Neumann problem are global
and uniformly bounded (see Horstmann and Winkler [10]). However, if N ≥ 2, � (a ball)
⊂ RN , and S(s) > cs−α for some α < 1 − 2

N and c > 0, then the solution to problem (1.1)
may blow up (see Horstmann and Winkler [10]). Therefore,

α = 1 − 2

N
(1.2)

is the critical blow-up exponent, which is related to the presence of a so-called volume-
filling effect. For related works in this direction, we mention that a corresponding quasilinear
version, the logistic damping or the signal consumed by the cells, has been deeply investigated
by Cieślak and Stinner [4,5], Tao and Winkler [20,31,41] and Zheng et al. [44–46,50,51].

As in the classical Keller–Segel model where the chemoattractant is produced by bacteria,
the corresponding chemotaxis–fluid model then becomes the following Keller–Segel(–
Navier)–Stokes system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nS(x, n, c)∇c), x ∈ �, t > 0,
ct + u · ∇c = �c − c + n, x ∈ �, t > 0,
ut + κ(u · ∇)u + ∇P = �u + n∇φ, x ∈ �, t > 0,
∇ · u = 0, x ∈ �, t > 0,
(∇n − nS(x, n, c)) · ν = ∇c · ν = 0, u = 0, x ∈ ∂�, t > 0,
n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ �,

(1.3)

where n and c are defined as before and� ⊂ R
3 is a bounded domainwith a smooth boundary.

Here u, P, φ, and κ ∈ R denote, respectively, the velocity field, the associated pressure of the
fluid, the potential of the gravitational field, and the strength of nonlinear fluid convection.
S(x, n, c) is a chemotactic sensitivity tensor satisfying

S ∈ C2(�̄ × [0,∞)2;R3×3) (1.4)

and

|S(x, n, c)| ≤ CS(1 + n)−α for all (x, n, c) ∈ � × [0,∞)2 (1.5)

with some CS > 0 and α > 0. Problem (1.3) is proposed to describe the chemotaxis-fluid
interaction in cases when the evolution of the chemoattractant is essentially dominated by
production through cells (see Winkler et al. [1] and Hillen and Painter [8]).

Before delving into our mathematical analysis, we recall some important progress on
system (1.3) and its variants. The following chemotaxis-fluid model,which is closely related
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to the variation of (1.3), was proposed by Tuval et al. [24]:

⎧
⎪⎪⎨

⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nS(x, n, c)∇c), x ∈ �, t > 0,
ct + u · ∇c = �c − n f (c), x ∈ �, t > 0,
ut + κ(u · ∇)u + ∇P = �u + n∇φ, x ∈ �, t > 0,
∇ · u = 0, x ∈ �, t > 0,

(1.6)

where f (c) is the consumption rate of oxygen by the cells. In the past fewyears, bymaking use
of the energy-type functionals, system (1.6) and its variants have attracted extensive attention
(see, e.g., Chae et al. [3], Duan et al. [6], Liu and Lorz [13,15], Tao andWinkler [23,33,34,37],
Zhang and Zheng [43] and references therein). For example, Winkler [37] established the
global existence of a weak solution in a three-dimensional domain when S(x, n, c) ≡ 1 and
κ 	= 0. Recently, if S(x, n, c) := S(c), the long-term behavior of eventual smoothness of
the weak solution was investigated by Winkler [38], in which the weak solution became
smooth on some interval [T ,∞) and uniformly converged in the large-time limit. For more
literature related to this model, we can refer to Tao andWinkler [21,22,39] and the references
therein. For example,Winkler [39] proved that the chemotaxis–Stokes system (with nonlinear
diffusion) admits a global boundedweak solution under the assumptionm > 9

8 . Furthermore,
he also showed that the obtained solution approached the spatially homogeneous steady state
in the large-time limit.

If the chemotactic sensitivity S(x, n, c) is regarded as a tensor rather than a scalar one (see
Xue and Othmer [42]), (1.6) turns into a chemotaxis(–Navier)–Stokes system with rotational
flux. Owing to the presence of the tensor-valued sensitivity, the corresponding chemotaxis–
Stokes system loses some energy structure, which has played a key role in previous studies for
the scalar sensitivity case (see Cao [2] and Winkler [36]). Therefore, very few results appear
to be available on chemotaxis-Stokes systems with such tensor-valued sensitivities (see, e.g.,
Ishida [11], Wang et al. [26,28] and Winkler [36]). In fact, assuming that f (c) = c and that
(1.4) and (1.5) hold, Ishida [11] proved that (1.6) admits a boundedglobalweak solution in two
dimensions with nonlinear diffusion, whereas, in three dimensions,Winkler [36] showed that
the chemotaxis-Stokes system [κ = 0 in the first equation of (1.6)] with nonlinear diffusion
(where the coefficient of diffusion satisfies m > 7

6 ) possesses at least one bounded weak
solution that stabilizes to a spatially homogeneous equilibrium ( 1

|�|
∫

�
n0, 0, 0).

In contrast to the large number of existing results ofor (1.6), the mathematical analysis of
(1.3) with regard to global and bounded solutions is far from trivial. On the one hand, as its
subsystem, the Navier–Stokes system lacks a complete existence theory (see Wiegner [30]).
On the other hand, the previously mentioned properties for the Keller–Segel system can still
emerge (see Wang et al. [17,25,27–29] and Zheng [48,49]). In fact, in two dimensions, if
S = S(x, n, c) is a tensor-valued sensitivity fulfilling (1.4) and (1.5), Wang and Xiang [28]
proved that the Stokes version [κ = 0 in the first equation of (1.3)] of system (1.3) admits
a unique global classical solution that is bounded. Recently, Wang et al. [27] extended the
above result [28] to the Navier–Stokes version (κ 	= 0 in the first equation of (1.3)). In both
papers [27] and [28], the condition α > 0, corresponding to the condition (1.2) with n = 2,
is optimal for the existence of the solution. Furthermore, similar results are also valid for the
three-dimensional Stokes version [κ = 0 in the first equation of (1.3)] of system (1.3) with
α > 1

2 (see Wang and Xiang [29]). In the three dimensional case, Wang and Liu [14] showed
that the Keller–Segel–Navier–Stokes [κ 	= 0 in the first equation of (1.3)) system (1.3] admits
a global weak solution for tensor-valued sensitivity S(x, n, c) satisfying (1.4) and (1.5) with
α > 3

7 . Recently, because of the lack of enough regularity and compactness properties for the
first equation, by using the idea proposed byWinkler [35], Wang [25] presented the existence
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of global very weak solutions for the system (1.3) under the assumption that S satisfies (1.4)
and (1.5) with α > 1

3 , which, in light of the known results for the fluid-free systemmentioned
above, is an optimal restriction on α [see (1.2)]. However, the existence of global (stronger
than the result of [25]) weak solutions is still open. In this paper, we try to obtain enough
regularity and compactness properties (see Lemmas 3.4, 5.1, and 5.2), then show that system
(1.3) possesses a globally defined weak solution (see Definition 2.1), which improves the
result of [25].

Throughout this paper, we assume that

φ ∈ W 2,∞(�) (1.7)

and that the initial data (n0, c0, u0) fulfill
⎧
⎨

⎩

n0 ∈ Cκ (�̄) for certain κ > 0 with n0 ≥ 0 in �,

c0 ∈ W 1,∞(�) with c0 ≥ 0 in �̄,

u0 ∈ D(Aγ
r ) for some γ ∈ (3/4, 1) and any r ∈ (1,∞),

(1.8)

where Ar denotes the Stokes operator with domain D(Ar ) := W 2,r (�)∩W 1,r
0 (�)∩ Lr

σ (�)

and Lr
σ (�) := {ϕ ∈ Lr (�)|∇ · ϕ = 0} for r ∈ (1,∞) (similar to that in [19]).

Our main result assert the existence of the global weak solution for system (1.3).

Theorem 1.1 Let � ⊂ R
3 be a bounded domain with a smooth boundary. (1.7) and (1.8)

hold, and suppose that S satisfies (1.4) and (1.5) with some

α >
1

3
.

Then problem (1.3) possesses at least one global weak solution (n, c, u, P) in the sense of
Definition 2.1.

Remark 1.1 (i) From Theorem 1.1, we conclude that α > 1
3 is sufficient to guarantee the

existence of global (weak) solutions. Compared with the results (1.2), we know such a
restriction on α seems to be optimal.

(ii) Obviously, 3
7 > 1

3 , so Theorem 1.1 improves the results of Liu and Wang [14], which
showed the global weak existence of solutions in cases S(x, n, c) satisfying (1.4) and (1.5)
with α > 3

7 .
(iii) If S := S(n) = CS(1 + n)−α is a scalar function which satisfies that α > 1

3 , the
boundedness of solution to Keller–Segel–Stokes [κ = 0 in the first equation of (1.3)] system
(1.3) is obtained by Winkler (see [40]). Recalling the condition (1.2) for global existence in
the fluid-free setting, as implied by the previously mentioned studied (see Horstmann and
Winkler [10]), this result appears to be optimal with respect to α.

This paper is organized as followed. In Sect. 2, we give the definition of weak solutions
to (1.3), the regularized problems of (1.3), and some preliminary properties. Sections 3 and
4 will be devoted to an analysis of regularized problems of (1.3). Next, on the basis of the
compactness properties thereby implied, in Sects. 5 and 6, we can pass to the limit along
with an adequate sequence of numbers ε = ε j↘0 and thereby verify Theorem 1.1.

2 Preliminaries

In light of the strong nonlinear term (u · ∇)u, problem (1.3) has no classical solutions in
general, thus we consider its weak solutions.
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Definition 2.1 Let T > 0 and assume that (n0, c0, u0) fulfills (1.8). Then a triple of functions
(n, c, u) is called a weak solution of (1.3) if the following conditions are satisfied:

⎧
⎪⎨

⎪⎩

n ∈ L1
loc(�̄ × [0, T )),

c ∈ L1
loc([0, T );W 1,1(�)),

u ∈ L1
loc([0, T );W 1,1(�);R3),

(2.1)

where n ≥ 0 and c ≥ 0 in � × (0, T ) as well as ∇ · u = 0 in the distributional sense in
� × (0, T ). Moreover,

u ⊗ u ∈ L1
loc(�̄ × [0,∞);R3×3) and n belongs to L1

loc(�̄ × [0,∞)),

cu, nu, and nS(x, n, c)∇c belong to L1
loc(�̄ × [0,∞);R3) (2.2)

and

−
∫ T

0

∫

�

nϕt −
∫

�

n0ϕ(·, 0)

= −
∫ T

0

∫

�

∇n · ∇ϕ +
∫ T

0

∫

�

nS(x, n, c)∇c · ∇ϕ +
∫ T

0

∫

�

nu · ∇ϕ (2.3)

for any ϕ ∈ C∞
0 (�̄ × [0, T )) satisfying ∂ϕ

∂ν
= 0 on ∂� × (0, T ), as well as

−
∫ T

0

∫

�

cϕt −
∫

�

c0ϕ(·, 0)

= −
∫ T

0

∫

�

∇c · ∇ϕ −
∫ T

0

∫

�

cϕ +
∫ T

0

∫

�

nϕ +
∫ T

0

∫

�

cu · ∇ϕ (2.4)

for any ϕ ∈ C∞
0 (�̄ × [0, T )) and

−
∫ T

0

∫

�

uϕt −
∫

�

u0ϕ(·, 0) − κ

∫ T

0

∫

�

u ⊗ u · ∇ϕ

= −
∫ T

0

∫

�

∇u · ∇ϕ −
∫ T

0

∫

�

n∇φ · ϕ (2.5)

for any ϕ ∈ C∞
0 (�̄ × [0, T );R3) fulfilling ∇ϕ ≡ 0 in � × (0, T ).

If (n, c, u) : � × (0,∞) −→ R
5 is a weak solution of (1.3) in � × (0, T ) for all T > 0,

then (n, c, u) is called a global weak solution of (1.3).

To obtain the solution of system (1.3), we first consider the following approximate system
of (1.3):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nεt + uε · ∇nε = �nε − ∇ · (nεF ′
ε(nε)Sε(x, nε, cε)∇cε), x ∈ �, t > 0,

cεt + uε · ∇cε = �cε − cε + Fε(nε), x ∈ �, t > 0,
uεt + ∇Pε = �uε − κ(Yεuε · ∇)uε + nε∇φ, x ∈ �, t > 0,
∇ · uε = 0, x ∈ �, t > 0,
∇nε · ν = ∇cε · ν = 0, uε = 0, x ∈ ∂�, t > 0,
nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ �,

(2.6)

where

Fε(s) := 1

ε
ln(1 + εs) for all s ≥ 0 and ε > 0, (2.7)
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as well as

Sε(x, n, c) := ρε(x)S(x, n, c), x ∈ �̄, n ≥ 0, c ≥ 0 (2.8)

and

Yεw := (1 + εA)−1w for all w ∈ L2
σ (�)

is a standard Yosida approximation and A is the realization of the Stokes operator (see [19]).
Here, (ρε)ε∈(0,1) ∈ C∞

0 (�) is a family of standard cutoff functions satisfying 0 ≤ ρε ≤ 1 in
� and ρε↗1 in � as ε↘0.

The local solvability of (2.6) can be derived by a suitable extensibility criterion and a
slight modification of the well-established fixed-point arguments in Lemma 2.1 of [37] (see
also [36] and Lemma 2.1 of [16]), so here we omit the proof.

Lemma 2.1 Assume that ε ∈ (0, 1). Then there exist Tmax,ε ∈ (0,∞] and a classical solution
(nε, cε, uε, Pε) of (2.6) in � × (0, Tmax,ε) such that

⎧
⎪⎪⎨

⎪⎪⎩

nε ∈ C0(�̄ × [0, Tmax,ε)) ∩ C2,1(�̄ × (0, Tmax,ε)),

cε ∈ C0(�̄ × [0, Tmax,ε)) ∩ C2,1(�̄ × (0, Tmax,ε)),

uε ∈ C0(�̄ × [0, Tmax,ε);R3) ∩ C2,1(�̄ × (0, Tmax,ε);R3),

Pε ∈ C1,0(�̄ × (0, Tmax,ε)),

classically solving (2.6) in � × [0, Tmax,ε). Moreover, nε and cε are nonnegative in � ×
(0, Tmax,ε), and

‖nε(·, t)‖L∞(�) + ‖cε(·, t)‖W 1,∞(�) + ‖Aγ uε(·, t)‖L2(�) → ∞ as t → Tmax,ε,

where γ is given by (1.8).

Lemma 2.2 [32,47] Let (eτ�)τ≥0 be the Neumann heat semigroup in � and p > 3. Then
there exist positive constants c1 := c1(�), c2 := c2(�), and c3 := c3(�) such that for all
τ > 0 and any ϕ ∈ W 1,p(�),

‖∇eτ�ϕ‖L p(�) ≤ c1(�)‖∇ϕ‖L p(�),

and for all τ > 0 and each ϕ ∈ L∞(�)

‖∇eτ�ϕ‖L p(�) ≤ c2(1 + τ− 1
2 )‖ϕ‖L∞(�),

as well as for all τ > 0 and all ϕ ∈ C1(�̄;R3) fulfilling ϕ · ν = 0 on ∂�

‖eτ�∇ · ϕ‖L∞(�) ≤ c3(1 + τ
− 1

2− 3
2p )‖ϕ‖L p(�).

3 Some a priori estimates for the regularized problem (2.6) that is
independent of "

In this section, we are going to establish an iteration step to develop the main ingredients of
our result. The iteration depends on a series of a priori estimates. To proceed, first, we recall
some properties of Fε and F ′

ε, which play an important role in demonstrating Theorem 1.1.

Lemma 3.1 Assume Fε is given by (2.7). Then

0 ≤ F ′
ε(s) = 1

1 + εs
≤ 1 for all s ≥ 0 and ε > 0 (3.1)
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as well as

lim
ε→0+ Fε(s) = s, lim

ε→0+ F ′
ε(s) = 1 for all s ≥ 0 (3.2)

and

0 ≤ Fε(s) ≤ s for all s ≥ 0. (3.3)

Proof Recalling (2.7), by tedious and simple calculations, we can derive (3.1)–(3.3). ��
The proof of this lemma is very similar to that of Lemmas 2.2 and 2.6 of [23] (see also

Lemma 3.2 of [25]), so we omit it here.

Lemma 3.2 There exists λ > 0 independent of ε such that the solution of (2.6) satisfies
∫

�

nε +
∫

�

cε ≤ λ for all t ∈ (0, Tmax,ε). (3.4)

Lemma 3.3 Let α > 1
3 . Then there exists C > 0 independent of ε such that the solution of

(2.6) satisfies
∫

�

n2αε +
∫

�

c2ε +
∫

�

|uε|2 ≤ C for all t ∈ (0, Tmax,ε). (3.5)

Moreover, for T ∈ (0, Tmax,ε), one can find a constant C > 0 independent of ε such that
∫ T

0

∫

�

[
n2α−2

ε |∇nε|2 + |∇cε|2 + |∇uε|2
] ≤ C . (3.6)

Proof The proof consists of two cases.
Case 2α 	= 1: We first obtain from ∇ · uε = 0 in � × (0, Tmax,ε) and straightforward

calculations that

sign(2α − 1)
1

2α

d

dt
‖nε‖2αL2α(�)

+sign(2α − 1)(2α − 1)
∫

�

n2α−2
ε |∇nε|2

= −
∫

�

sign(2α − 1)n2α−1
ε ∇ · (nεF

′
ε(nε)Sε(x, nε, cε) · ∇cε)

≤ sign(2α − 1)(2α − 1)
∫

�

n2α−2
ε nεF

′
ε(nε)|Sε(x, nε, cε)||∇nε||∇cε| (3.7)

for all t ∈ (0, Tmax,ε). Therefore, from (3.1), in light of (1.5) and (2.7), we can estimate the
right-hand side of (3.7) as follows:

sign(2α − 1)(2α − 1)
∫

�

n2α−2
ε nεF

′
ε(nε)|Sε(x, nε, cε)||∇nε||∇cε|

≤ sign(2α − 1)(2α − 1)
∫

�

n2α−2
ε nεCS(1 + nε)

−α|∇nε||∇cε|

≤ sign(2α − 1)
2α − 1

2

∫

�

n2α−2
ε |∇nε|2

+ |2α − 1|
2

C2
S

∫

�

n2α−2
ε n2ε(1 + nε)

−2α|∇cε|2

≤ sign(2α − 1)
2α − 1

2

∫

�

n2α−2
ε |∇nε|2

+ |2α − 1|
2

C2
S

∫

�

|∇cε|2 for all t ∈ (0, Tmax,ε) (3.8)
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by using Young’s inequality, where in the last inequality we have used the fact that
n2α−2

ε n2ε(1 + nε)
−2α ≤ 1 for all ε ≥ 0 and (x, t) ∈ � × (0, Tmax,ε). Inserting (3.8) into

(3.7), we conclude that

sign(2α − 1)
1

2α

d

dt
‖nε‖2αL2α(�)

+ sign(2α − 1)
2α − 1

2

∫

�

n2α−2
ε |∇nε|2

≤ |2α − 1|
2

C2
S

∫

�

|∇cε|2 for all t ∈ (0, Tmax,ε). (3.9)

To track the time evolution of cε, taking cε as the test function for the second equation of
(2.6) and using ∇ · uε = 0 and (3.3) together with Hölder’s inequality yields

1

2

d

dt
‖cε‖2L2(�)

+
∫

�

|∇cε|2 +
∫

�

|cε|2 =
∫

�

Fε(nε)cε

≤
∫

�

nεcε ≤ ‖nε‖
L

6
5 (�)

‖cε‖L6(�) for all t ∈ (0, Tmax,ε). (3.10)

By applying Sobolev embedding W 1,2(�)↪→L6(�) in the three-dimensional setting, in
view of (3.4), there exist positive constants C1 and C2 such that

‖cε‖2L6(�)
≤ C1‖∇cε‖2L2(�)

+ C1‖cε‖2L1(�)

≤ C1‖∇cε‖2L2(�)
+ C2 for all t ∈ (0, Tmax,ε). (3.11)

Thus, by means of Young’s inequality and (3.11), we proceed to estimate

1

2

d

dt
‖cε‖2L2(�)

+
∫

�

|∇cε|2 +
∫

�

|cε|2 ≤ 1

2C1
‖cε‖2L6(�)

+ C1

2
‖nε‖2

L
6
5 (�)

≤ 1

2
‖∇cε‖2L2(�)

+ C1

2
‖nε‖2

L
6
5 (�)

+ C3 for all t ∈ (0, Tmax,ε) (3.12)

and some positive constant C3 independent of ε. Therefore,

1

2

d

dt
‖cε‖2L2(�)

+ 1

2

∫

�

|∇cε|2 +
∫

�

|cε|2 ≤ C1

2
‖nε‖2

L
6
5 (�)

+ C3 for all t ∈ (0, Tmax,ε).

(3.13)

To estimate ‖nε‖
L

6
5 (�)

for all t ∈ (0, Tmax,ε), we should notice that α > 1
3 ensures that

2
6α−1 < 2, so that, in light of (3.4), the Gagliardo–Nirenberg inequality and Young’s inequal-
ity allow us to estimate that

‖nε‖2
L

6
5 (�)

= ‖nα
ε ‖

2
α

L
6
5α (�)

≤ C4

(

‖∇nα
ε ‖

2
6α−1

L2(�)
‖nα

ε ‖
2
α
− 2

6α−1

L
1
α (�)

+ ‖nα
ε ‖

2
α

L
1
α (�)

)

≤ 1

4

1

C1α2C2
S

‖∇nα
ε ‖2L2(�)

+ C5 for all t ∈ (0, Tmax,ε) (3.14)

with somepositive constantsC4 andC5 independent of ε. This togetherwith (3.13) contributes
to

1

2

d

dt
‖cε‖2L2(�)

+ 1

2

∫

�

|∇cε|2 +
∫

�

|cε|2

≤ 1

8

1

α2C2
S

‖∇nα
ε ‖2L2(�)

+ C6 for all t ∈ (0, Tmax,ε) (3.15)
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and some positive constant C6. Taking an evident linear combination of the inequalities
provided by (3.9) and (3.15), one can obtain

sign(2α − 1)
1

2α

d

dt
‖nε‖2αL2α(�)

+ |2α − 1|C2
S
d

dt
‖cε‖2L2(�)

+ |2α − 1|
2

C2
S

∫

�

|∇cε|2 + 2|2α − 1|C2
S

∫

�

|cε|2

+
(

sign(2α − 1)
2α − 1

2
− 1

4
|2α − 1|

) ∫

�

n2α−2
ε |∇nε|2

≤ C7 for all t ∈ (0, Tmax,ε) (3.16)

and some positive constant C7. Since sign(2α − 1)
2α − 1

2
= |2α − 1|

2
, (3.16) implies that

sign(2α − 1)
1

2α

d

dt
‖nε‖2αL2α(�)

+ |2α − 1|C2
S
d

dt
‖cε‖2L2(�)

+ |2α − 1|
2

C2
S

∫

�

|∇cε|2 + 2|2α − 1|C2
S

∫

�

|cε|2

+ |2α − 1|
4

∫

�

n2α−2
ε |∇nε|2

≤ C7 for all t ∈ (0, Tmax,ε). (3.17)

If 2α > 1, then sign(2α − 1) = 1 > 0, thus, integrating (3.17) over time, we can obtain
∫

�

n2αε +
∫

�

c2ε ≤ C8 for all t ∈ (0, Tmax,ε) (3.18)

and
∫ T

0

∫

�

[
n2α−2

ε |∇nε|2 + |∇cε|2
] ≤ C8(T + 1) for all T ∈ (0, Tmax,ε) (3.19)

and some positive constant C8. If 2α < 1, then sign(2α − 1) = −1 < 0; hence, in view of
(3.4), integrating (3.17) over time and employing Hölder’s inequality, we also conclude that
there exists a positive constant C9 such that

∫

�

n2αε +
∫

�

c2ε ≤ C9 for all t ∈ (0, Tmax,ε) (3.20)

and
∫ T

0

∫

�

[
n2α−2

ε |∇nε|2 + |∇cε|2
] ≤ C9(T + 1) for all T ∈ (0, Tmax,ε). (3.21)

Case 2α = 1: Using the first equation of (2.6) and (2.7), integrating by parts, and applying
(1.5) and (3.1), we obtain

d
dt

∫

�
nε ln nε =

∫

�

nεt ln nε +
∫

�

nεt

=
∫

�

�nε ln nε −
∫

�

ln nε∇ · (nεF
′
ε(nε)Sε(x, nε, cε) · ∇cε)

≤ − ∫

�
|∇nε |2
nε

+ ∫

�
CS(1 + nε)

−α nε

nε
|∇nε||∇cε| for all t ∈ (0, Tmax,ε),

which combined with Young’s inequality and 2α = 1 implies that

d

dt

∫

�

nε ln nε + 1

2

∫

�

|∇nε|2
nε

≤ 1

2
C2
S

∫

�

|∇cε|2 for all t ∈ (0, Tmax,ε).
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However, since 2α = 1 yields α > 1
3 , by employing almost exactly the same arguments as in

the proof of (3.10)–(3.16) (with the minor necessary changes being left as an easy exercise
to the reader), we conclude an estimate of

∫

�

nε ln nε +
∫

�

c2ε ≤ C10 for all t ∈ (0, Tmax,ε) (3.22)

and
∫ T

0

∫

�

[ |∇nε|2
nε

+ |∇cε|2
]

≤ C10(T + 1) for all T ∈ (0, Tmax,ε). (3.23)

Now,multiplying the third equation of (2.6) byuε, integrating byparts, and using∇·uε = 0
give

1

2

d

dt

∫

�

|uε|2 +
∫

�

|∇uε|2 =
∫

�

nεuε · ∇φ for all t ∈ (0, Tmax,ε). (3.24)

Here we use Hölder’s inequality, Young’s inequality, (1.7), and the continuity of the embed-
ding W 1,2(�) ↪→ L6(�) to find C11 and C12 > 0 such that

∫

�

nεuε · ∇φ ≤ ‖∇φ‖L∞(�)‖nε‖
L

6
5 (�)

‖uε‖L6(�)

≤ C11‖∇φ‖L∞(�)‖nε‖
L

6
5 (�)

‖∇uε‖L2(�)

≤ 1

2
‖∇uε‖2L2(�)

+ C12‖nε‖2
L

6
5 (�)

for all t ∈ (0, Tmax,ε). (3.25)

Next, in view of (3.4) and α > 1
3 , (3.14) and Young’s inequality along with the Gagliardo–

Nirenberg inequality yields
∫

�

nεuε · ∇φ ≤ 1

2
‖∇uε‖2L2(�)

+ C8‖∇nα
ε ‖

2
6α−1

L2(�)
‖nα

ε ‖
2
α
− 2

6α−1

L
1
α (�)

≤ 1

2
‖∇uε‖2L2(�)

+ ‖∇nα
ε ‖2L2(�)

+ C13 for all t ∈ (0, Tmax,ε)

(3.26)

and some positive constant C13.Now, inserting (3.25) and (3.26) into (3.24) and using (3.21)
and (3.23), one has

∫

�

|uε|2 ≤ C14 for all t ∈ (0, Tmax,ε) (3.27)

and
∫ T

0

∫

�

|∇uε|2 ≤ C14(T + 1) for all T ∈ (0, Tmax,ε) (3.28)

and some positive constant C14. Finally, collecting (3.20)–(3.21), (3.22)–(3.23), and (3.27)–
(3.28), we can get (3.5) and (3.6). ��

With the help of Lemma 3.3, based on the Gagliardo–Nirenberg inequality and an applica-
tion of well-known arguments from parabolic regularity theory, we can derive the following
lemmas:
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Lemma 3.4 Let α > 1
3 . Then there exists C > 0 independent of ε such that, for each

T ∈ (0, Tmax,ε), the solution of (2.6) satisfies

∫ T

0

∫

�

[

|∇nε| 3α+1
2 + n

6α+2
3

ε

]

≤ C(T + 1) if
1

3
< α ≤ 1

2
, (3.29)

∫ T

0

∫

�

[

|∇nε| 10α
3+2α + n

10α
3

ε

]

≤ C(T + 1) if
1

2
< α < 1, (3.30)

as well as
∫ T

0

∫

�

[

|∇nε|2 + n
10
3

ε

]

≤ C(T + 1) if α ≥ 1 (3.31)

and
∫ T

0

{∫

�

[c
10
3

ε + |uε| 103 ] + ‖uε‖2L6(�)

}

≤ C(T + 1). (3.32)

Proof Case 1
3 < α ≤ 1

2 : From (3.4), (3.5), and (3.6), in light of the Gagliardo–Nirenberg
inequality, for some C1 and C2 > 0 that are independent of ε, one may verify that

∫ T

0

∫

�

n
6α+2
3

ε =
∫ T

0
‖nα

ε ‖
6α+2
3α

L
6α+2
3α (�)

≤ C1

∫ T

0

(

‖∇nα
ε ‖2L2(�)

‖nα
ε ‖

2
3α

L
1
α (�)

+ ‖nα
ε ‖

6α+2
3α

L
1
α (�)

)

≤ C2(T + 1) for all T > 0. (3.33)

Therefore, employing Hölder’s inequality (with two exponents 4
3α+1 and

4
3−3α ), we conclude

that there exists a positive constant C3 such that

∫ T

0

∫

�

|∇nε| 3α+1
2 ≤

[∫ T

0

∫

�

n2α−2
ε |∇nε|2

] 3α+1
4

[∫ T

0

∫

�

n
6α+2
3

ε

] 3−3α
4

≤ C3(T + 1) for all T > 0. (3.34)

Case 1
2 < α < 1: Again by (3.4), (3.5), and (3.6) and the Gagliardo–Nirenberg inequality

and Hölder’s inequality (with two exponents 3+2α
5α and 3+2α

3−3α ), we derive that there exist
positive constants C4, C5, and C6 such that

∫ T

0

∫

�

n
10α
3

ε =
∫ T

0
‖nα

ε ‖
10
3

L
10
3 (�)

≤ C4

∫ T

0

(

‖∇nα
ε ‖2L2(�)

‖nα
ε ‖

4
3
L2(�)

+ ‖nα
ε ‖

10α
3

L2(�)

)

≤ C5(T + 1) for all T > 0 (3.35)

and

∫ T

0

∫

�

|∇nε| 10α
3+2α ≤

[∫ T

0

∫

�

n2α−2
ε |∇nε|2

] 5α
3+2α

[∫ T

0

∫

�

n
10α
3

ε

] 3−3α
3+2α

≤ C6(T + 1) for all T > 0. (3.36)
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Caseα ≥ 1:Multiplying the first equation in (2.6) by nε , in view of (2.7) and using∇·uε = 0,
we derive

1

2

d

dt
‖nε‖2L2(�)

+
∫

�

|∇nε|2 = −
∫

�

nε∇ · (nεF
′
ε(nε)Sε(x, nε, cε) · ∇cε)

≤
∫

�

nεF
′
ε(nε)|Sε(x, nε, cε)||∇nε||∇cε| for all t ∈ (0, Tmax,ε). (3.37)

Recalling (1.5) and (2.7) and using α ≥ 1, via Young’s inequality, we derive
∫

�

nεF
′
ε(nε)|Sε(x, nε, cε)||∇nε||∇cε| ≤ CS

∫

�

|∇nε||∇cε|

≤ 1

2

∫

�

|∇nε|2 + C2
S

2

∫

�

|∇cε|2 for all t ∈ (0, Tmax,ε). (3.38)

Here we have used the fact that

nεF
′
ε(nε)|Sε(x, nε, cε)| ≤ CSnε(1 + nε)

−1 ≤ CS

by using (1.5). Therefore, collecting (3.37) and (3.38) and using (3.6), we conclude that
∫

�

n2ε ≤ C7 for all t ∈ (0, Tmax,ε) (3.39)

and
∫ T

0

∫

�

|∇nε|2 ≤ C7(T + 1). (3.40)

Hence, from (3.39)–(3.40) and (3.5)–(3.6), in light of the Gagliardo–Nirenberg inequality,
we derive that there exist positive constants C8, C9, C10, C11, C12, C13, C14, C15, C16 and
C17 such that

∫ T

0

∫

�

n
10
3

ε ≤ C8

∫ T

0

(

‖∇nε‖2L2(�)
‖nε‖

4
3
L2(�)

+ ‖nε‖
10
3
L2(�)

)

≤ C9(T + 1) for all T > 0, (3.41)
∫ T

0

∫

�

c
10
3

ε ≤ C10

∫ T

0

(

‖∇cε‖2L2(�)
‖cε‖

4
3
L2(�)

+ ‖cε‖
10
3
L2(�)

)

≤ C11(T + 1) for all T > 0 (3.42)

as well as
∫ T

0

∫

�

|uε| 103 ≤ C14

∫ T

0

(

‖∇uε‖2L2(�)
‖uε‖

4
3
L2(�)

+ ‖uε‖
10
3
L2(�)

)

≤ C15(T + 1) for all T > 0 (3.43)

and
∫ T

0
‖uε‖2L6(�)

≤ C16

∫ T

0
‖∇uε‖2L2(�)

≤ C17(T + 1) for all T > 0, (3.44)

where the last inequality we have used the embedding W 1,2
0,σ (�)↪→L6(�) and the Poincaré

inequality. Finally, combining (3.33)–(3.36) with (3.40)–(3.44), we can obtain the results. ��
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Lemma 3.5 Let 1
3 < α ≤ 8

21 . Then there exist γ = 2α+ 2
3

α+1 ∈ (1, 2) and C > 0 independent
of ε such that, for each T ∈ (0, Tmax,ε), the solution of (2.6) satisfies

∫ T

0
‖nε‖

2γ
2−γ

L
6γ
6−γ (�)

≤ C(T + 1). (3.45)

Proof To this end, we first prove that for all p ∈ (1, 6α), then there exists a positive constant
C1 independent of ε such that, for each T ∈ (0, Tmax,ε), the solution of (2.6) satisfies

∫ T

0
‖nε‖

2p(α− 1
6 )

p−1
L p(�) ≤ C1(T + 1). (3.46)

In fact, by (3.4) and (3.6), we derive that for some positive constants C2 and C3 independent
of ε such that

∫ T

0
‖nε‖

2p(α− 1
6 )

p−1
L p(�) =

∫ T

0
‖nα

ε ‖
2p
p−1 · 6α−1

6α

L
p
α (�)

≤ C2

∫ T

0

(

‖∇nα
ε ‖2L2(�)

‖nα
ε ‖

2p
p−1 · 6α−1

6α −2

L
1
α (�)

+ ‖nα
ε ‖

2p
p−1 · 6α−1

6α

L
1
α (�)

)

≤ C3(T + 1) for all T > 0.

Therefore, (3.46) holds. Next, by α ∈ ( 13 ,
8
21 ], we may choose γ = 2α+ 2

3
α+1 such that

1 < γ < min

{
6α

α + 1
, 2

}

(3.47)

as well as

p := 6γ

6 − γ
∈ (1, 6α) (3.48)

and

2p(α − 1
6 )

p − 1
= 12γ (α − 1

6 )

7γ − 6
>

2γ

2 − γ
. (3.49)

Collecting (3.46)–(3.49), one can derive (3.45) by using the Young inequality. ��

4 Global solvability of the regularized problem (2.6)

The main task of this section is to prove the global solvability of the regularized problem
(2.6). To this end, first, we need to establish some ε-dependent estimates for nε , cε, and uε.

4.1 A priori estimates for the regularized problem (2.6) that depend on "

In this subsection, we obtain some regularity properties for nε, cε, and uε in the following
form on the basis of Lemma 3.3.

Lemma 4.1 Let α > 1
3 . Then there exists C = C(ε) > 0 depending on ε such that the

solution of (2.6) satisfies
∫

�

n2α+2
ε +

∫

�

|∇uε|2 ≤ C for all t ∈ (0, Tmax,ε). (4.1)
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In addition, for each T ∈ (0, Tmax,ε] with T < ∞, one can find a constant C > 0 depending
on ε such that

∫ T

0

∫

�

[
n2αε |∇nε|2 + |�uε|2

] ≤ C . (4.2)

Proof In view of (2.7), we derive

F ′
ε(nε) ≤ 1

εnε

,

so that, by multiplying the first equation in (2.6) by n1+2α
ε , using ∇ · uε = 0, and applying

the same argument as in the proof of (3.7)–(3.20), one can obtain that there exist positive
constants C1 and C2 depending on ε such that

∫

�

n2α+2
ε ≤ C1 for all t ∈ (0, Tmax,ε) (4.3)

and
∫ T

0

∫

�

n2αε |∇nε|2 ≤ C2 for all T ∈ (0, Tmax,ε] with T < ∞.

Now, from D(1 + εA) := W 2,2(�) ∩ W 1,2
0,σ (�) ↪→ L∞(�) and (3.5), it follows that, for

some C3 > 0 and C4 > 0,

‖Yεuε‖L∞(�) = ‖(I + εA)−1uε‖L∞(�)

≤ C3‖uε(·, t)‖L2(�) ≤ C4 for all t ∈ (0, Tmax,ε). (4.4)

Next, testing the projected Stokes equation uεt + Auε = P[−κ(Yεuε · ∇)uε + nε∇φ] by
Auε, we derive

1

2

d

dt
‖A 1

2 uε‖2L2(�)
+

∫

�
|Auε|2 =

∫

�
AuεP(−κ(Yεuε · ∇)uε) +

∫

�
P(nε∇φ)Auε

≤ 1

2

∫

�
|Auε|2 + κ2

∫

�
|(Yεuε · ∇)uε|2 + ‖∇φ‖2L∞(�)

∫

�
n2ε for all t ∈ (0, Tmax,ε).

(4.5)

However, in light of the Gagliardo–Nirenberg inequality, Young’s inequality, and (4.4),
there exists a positive constant C5 such that

κ2
∫

�

|(Yεuε · ∇)uε|2 ≤ κ2‖Yεuε‖2L∞(�)

∫

�

|∇uε|2

≤ κ2‖Yεuε‖2L∞(�)

∫

�

|∇uε|2

≤ C5

∫

�

|∇uε|2 for all t ∈ (0, Tmax,ε). (4.6)

Here we have used the well-known fact that ‖A(·)‖L2(�) defines a norm equivalent to ‖ ·
‖W 2,2(�) on D(A) (see Theorem 2.1.1 of [19]). Now, recall that ‖A 1

2 uε‖2L2(�)
= ‖∇uε‖2L2(�)

.

Substituting (4.6) into (4.5) yields
1

2

d

dt
‖∇uε‖2L2(�)

+
∫

�

|�uε|2 ≤ C6

∫

�

|∇uε|2 + ‖∇φ‖2L∞(�)

∫

�

n2ε for all t ∈ (0, Tmax,ε).

(4.7)

123



An optimal result for global existence in a three-dimensional… Page 15 of 27 109

Since α > 1
3 yields 2α + 2 > 8

3 > 2, by collecting (4.3) and (4.7) and performing some
basic calculations, we can get the results. ��
Lemma 4.2 Under the assumptions of Theorem1.1, one can find that there existsC = C(ε) >

0 depending on ε such that
∫

�

|∇cε(·, t)|2 ≤ C for all t ∈ (0, Tmax,ε) (4.8)

and
∫ T

0

∫

�

|�cε|2 ≤ C for all T ∈ (0, Tmax,ε] with T < ∞. (4.9)

Proof First, testing the second equation in (2.6) against−�cε, employingYoung’s inequality,
and using (3.3) yields

1

2

d

dt
‖∇cε‖2L2(�)

=
∫

�

−�cε(�cε − cε + Fε(nε) − uε · ∇cε)

= −
∫

�

|�cε|2 −
∫

�

|∇cε|2 −
∫

�

Fε(nε)�cε −
∫

�

(uε · ∇cε)�cε

≤ −1

4

∫

�

|�cε|2 −
∫

�

|∇cε|2 +
∫

�

n2ε +
∫

�

|uε · ∇cε||�cε| (4.10)

for all t ∈ (0, Tmax,ε). Next, one needs to estimate the last term on the right-hand side of
(4.10). Indeed, in view of Sobolev’s embedding theorem (W 1,2(�) ↪→ L6(�)) and applying
(4.1) and (3.5), we derive from Hölder’s inequality, the Gagliardo–Nirenberg inequality, and
Young’s inequality that there exist positive constants C1, C2, C3, and C4 such that

∫

�

|uε · ∇cε||�cε| ≤ ‖uε‖L6(�)‖∇cε‖L3(�)‖�cε‖L2(�)

≤ C1‖∇cε‖L3(�)‖�cε‖L2(�)

≤ C2(‖�cε‖
3
4
L2(�)

‖cε‖
1
4
L2(�)

+ ‖cε‖2L2(�)
)‖�cε‖L2(�)

≤ C3(‖�cε‖
7
4
L2(�)

+ ‖�cε‖L2(�))

≤ 1

4
‖�cε‖2L2(�)

+ C4 for all t ∈ (0, Tmax,ε). (4.11)

Inserting (4.11) into (4.10) and using (4.1), one obtains (4.8) and (4.9). This completes the
proof of Lemma 4.2. ��
Lemma 4.3 Let α > 1

3 . Assume that the hypothesis of Theorem 1.1 holds. Then there exists
a positive constant C = C(ε) depending on ε such that, for any 3 < q < 6, the solution of
(2.6) from Lemma 2.1 satisfies

‖Aγ uε(·, t)‖L2(�) ≤ C for all t ∈ (0, Tmax,ε) (4.12)

as well as

‖uε(·, t)‖L∞(�) ≤ C for all t ∈ (0, Tmax,ε) (4.13)

and

‖∇cε(·, t)‖Lq (�) ≤ C for all t ∈ (0, Tmax,ε), (4.14)

where γ is the same as in (1.8).

123



109 Page 16 of 27 Y. Ke, J. Zheng

Proof Let hε(x, t) = P[nε∇φ − κ(Yεuε · ∇)uε]. Because α > 1
3 , then , along with (4.1),

(1.7), and (4.4), there exist positive constants q0 > 3
2 and C1 such that

‖nε(·, t)‖Lq0 (�) ≤ C1 for all t ∈ (0, Tmax,ε) (4.15)

and

‖hε(·, t)‖Lq0 (�) ≤ C1 for all t ∈ (0, Tmax,ε). (4.16)

Hence, because q0 > 3
2 , we pick an arbitrary γ ∈ ( 34 , 1) and, then, −γ − 3

2 (
1
q0

− 1
2 ) > −1.

Therefore, in view of the smoothing properties of the Stokes semigroup [7], we derive that,
for some λ, C2 > 0, and C3 > 0,

‖Aγ uε(·, t)‖L2(�) ≤ ‖Aγ e−t Au0‖L2(�) +
∫ t

0
‖Aγ e−(t−τ)Ahε(·, τ )dτ‖L2(�)dτ

≤ ‖Aγ u0‖L2(�)+C2

∫ t

0
(t − τ)

−γ− 3
2 ( 1

q0
− 1

2 )
e−λ(t−τ)‖hε(·, τ )‖Lq0 (�)dτ

≤ C3 for all t ∈ (0, Tmax,ε). (4.17)

Observe that γ > 3
4 , D(Aγ ) is continuously embedded into L∞(�). Therefore, we derive

that there exists a positive constant C4 such that

‖uε(·, t)‖L∞(�) ≤ C4 for all t ∈ (0, Tmax,ε) (4.18)

from (4.17). However, from (4.8), with the help of Sobolev’s imbedding theorem, it follows
that, for any fixed q̃ ∈ (3, 6),

‖cε(·, t)‖Lq̃ (�) ≤ C5 for all t ∈ (0, Tmax,ε). (4.19)

Now, involving the variation-of-constants formula for cε and applying ∇ · uε = 0 in x ∈
�, t > 0, we have

cε(t) = et(�−1)c0 +
∫ t

0
e(t−s)(�−1)(Fε(nε(s)) + ∇ · (uε(s)cε(s))ds, t ∈ (0, Tmax,ε),

(4.20)

so that, for any 3 < q < min{ 3q0
(3−q0)+ , q̃}, we have

‖∇cε(·, t)‖Lq (�) ≤ ‖∇et(�−1)c0‖Lq (�) +
∫ t

0
‖∇e(t−s)(�−1)Fε(nε(s))‖Lq (�)ds

+
∫ t

0
‖∇e(t−s)(�−1)∇ · (uε(s)cε(s))‖Lq (�)ds. (4.21)

To address the right-hand side of (4.21), in view of (1.8), we first use Lemma 2.2 to get

‖∇et(�−1)c0‖Lq (�) ≤ C6 for all t ∈ (0, Tmax,ε). (4.22)

Since (4.15) and (4.19) yields

− 1

2
− 3

2

(
1

q0
− 1

q

)

> −1,
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together with this and (3.3), by using Lemma 2.2 again, the second term of the right-hand
side is estimated as

∫ t

0
‖∇e(t−s)(�−1)Fε(nε(s))‖Lq (�)ds

≤ C7

∫ t

0
[1 + (t − s)

− 1
2− 3

2 ( 1
q0

− 1
q )]e−(t−s)‖nε(s)‖Lq0 (�)ds

≤ C8 for all t ∈ (0, Tmax,ε).

(4.23)

Finally, we will address the third term on the right-hand side of (4.21). To this end, we
choose 0 < ι < 1

2 satisfying 1
2 + 3

2 (
1
q̃ − 1

q ) < ι and κ̃ ∈ (0, 1
2 − ι). In view of Hölder’s

inequality, we derive from Lemma 2.2, (4.19), and (4.18) that there exist constants C9, C10,
C11, and C12 such that

∫ t

0
‖∇e(t−s)(�−1)∇ · (uε(s)cε(s))‖Lq̃ (�)ds

≤ C9

∫ t

0
‖(−� + 1)ιe(t−s)(�−1)∇ · (uε(s)cε(s))‖Lq (�)ds

≤ C10

∫ t

0
(t − s)−ι− 1

2−κ̃e−λ(t−s)‖uε(s)cε(s)‖Lq̃ (�)ds

≤ C11

∫ t

0
(t − s)−ι− 1

2−κ̃e−λ(t−s)‖uε(s)‖L∞(�)‖cε(s)‖Lq̃ (�)ds

≤ C12 for all t ∈ (0, Tmax,ε). (4.24)

Here we have used the fact that
∫ t

0
(t − s)−ι− 1

2−κ̃e−λ(t−s)ds ≤
∫ ∞

0
σ−ι− 1

2−κ̃e−λσ dσ < +∞.

Finally, collecting (4.21)–(4.24), we can obtain that there exists a positive constant C13 such
that
∫

�

|∇cε(t)|q ≤ C13 for all t ∈ (0, Tmax,ε) and some q ∈
(

3,min

{
3q0

(3 − q0)+
, q̃

})

.

(4.25)

The proof of Lemma 4.3 is complete. ��
Then we can establish global existence in the approximate problem (2.6) by using Lemmas
4.1 and 4.2 .

Lemma 4.4 Let α > 1
3 . Then, for all ε ∈ (0, 1), the solution of (2.6) is global in time.

Proof Assume that Tmax,ε is finite for some ε ∈ (0, 1). Fix T ∈ (0, Tmax,ε), and let M(T ) :=
supt∈(0,T ) ‖nε(·, t)‖L∞(�) and h̃ε := F ′

ε(nε)Sε(x, nε, cε)∇cε + uε. Then, by Lemma 4.3,
(1.5), and (3.1), there exists C1 > 0 such that

‖h̃ε(·, t)‖Lq (�) ≤ C1 for all t ∈ (0, Tmax,ε) and some 3 < q < 6. (4.26)

Hence, because ∇ · uε = 0, we can derive

nε(t) = e(t−t0)�nε(·, t0) −
∫ t

t0
e(t−s)�∇ · (nε(·, s)h̃ε(·, s))ds, t ∈ (t0, T ) (4.27)
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by means of an associate variation-of-constants formula for n, where t0 := (t − 1)+. If
t ∈ (0, 1], by virtue of the maximum principle, we can derive

‖e(t−t0)�nε(·, t0)‖L∞(�) ≤ ‖n0‖L∞(�), (4.28)

while if t > 1 then, with the help of the L p–Lq estimates for the Neumann heat semigroup
and Lemma 3.2, we conclude that

‖e(t−t0)�nε(·, t0)‖L∞(�) ≤ C2(t − t0)
− 3

2 ‖nε(·, t0)‖L1(�) ≤ C3. (4.29)

Finally, we fix an arbitrary p ∈ (3, q) and then oncemore invoke known smoothing properties
of the Stokes semigroup (see Page 201 of [7]) and Hölder’s inequality to find C4 > 0 such
that

∫ t

t0
‖e(t−s)�∇ · (nε(·, s)h̃ε(·, s)‖L∞(�)ds

≤ C4

∫ t

t0
(t − s)−

1
2− 3

2p ‖nε(·, s)h̃ε(·, s)‖L p(�)ds

≤ C4

∫ t

t0
(t − s)−

1
2− 3

2p ‖nε(·, s)‖
L

pq
q−p (�)

‖h̃ε(·, s)‖Lq (�)ds

≤ C4

∫ t

t0
(t − s)−

1
2− 3

2p ‖uε(·, s)‖bL∞(�)‖uε(·, s)‖|1−b
L1(�)

‖h̃ε(·, s)‖Lq (�)ds

≤ C5M
b(T ) for all t ∈ (0, T ), (4.30)

where b := pq−q+p
pq ∈ (0, 1) and

C5 := C4C
2−b
1

∫ 1

0
σ

− 1
2− 3

2p dσ.

Since p > 3, we conclude that− 1
2 − 3

2p > −1. In combination with (4.27)–(4.30) and using
the definition of M(T ), we obtain C6 > 0 such that

M(T ) ≤ C6 + C6M
b(T ) for all T ∈ (0, Tmax,ε). (4.31)

Hence, in view of b < 1, with some basic calculation, since T ∈ (0, Tmax,ε) was arbitrary,
we can obtain there exists a positive constant C7 such that

‖nε(·, t)‖L∞(�) ≤ C7 for all t ∈ (0, Tmax,ε). (4.32)

To prove the boundedness of ‖∇cε(·, t)‖L∞(�), we rewrite the variation-of-constants formula
for cε in the form

cε(·, t) = et(�−1)c0 +
∫ t

0
e(t−s)(�−1)[Fε(nε)(s) − uε(s) · ∇cε(s)]ds for all t ∈ (0, Tmax,ε).

Now, we choose θ ∈ ( 12 + 3
2q , 1), where 3 < q < 6 [see (4.25)], then the domain of

the fractional power D((−� + 1)θ ) ↪→ W 1,∞(�) (see [10]). Hence, in view of L p–Lq

estimates associated with the heat semigroup, (4.13), (4.14), and (3.3), we derive that there
exist positive constants λ, C8, C9, C10, and C11 such that
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‖cε(·, t)‖W 1,∞(�) ≤ C8‖(−� + 1)θcε(·, t)‖Lq (�)

≤ C9t
−θe−λt‖c0‖Lq (�) + C9

∫ t

0
(t − s)−θe−λ(t−s)‖(Fε(nε) − uε · ∇cε)(s)‖Lq (�)ds

≤ C10 + C10

∫ t

0
(t − s)−θe−λ(t−s)[‖nε(s)‖Lq (�) + ‖uε(s)‖L∞(�)‖∇cε(s)‖Lq (�)]ds

≤ C11 for all t ∈ (0, Tmax,ε). (4.33)

Here we have used Hölder’s inequality as well as
∫ t

0
(t − s)−θe−λ(t−s) ≤

∫ ∞

0
σ−θe−λσ dσ < +∞.

In view of (4.12), (4.33), and (4.32), we apply Lemma 2.1 to reach a contradiction. ��

5 Regularity properties of time derivatives

In preparation of an Aubin–Lions type compactness argument, we will rely on an additional
regularity estimate for nεF ′

ε(nε)Sε(x, nε, cε)∇cε , uε · ∇cε , nεuε, and cεuε.

Lemma 5.1 Let α > 1
3 , and assume that (1.7) and (1.8) hold. Then one can find C > 0

independent of ε such that, for all T ∈ (0,∞),
∫ T

0

∫

�

[

|nεF
′
ε(nε)Sε(x, nε, cε)∇cε| 3α+1

2 + |nεuε|
2α+ 2

3
α+1

]

≤ C(T + 1), if
1

3
< α ≤ 8

21
,

(5.1)
∫ T

0

∫

�

[

|nεF
′
ε(nε)Sε(x, nε, cε)∇cε| 3α+1

2 + |nεuε|
10(3α+1)
9(α+2)

]

≤ C(T + 1), if
8

21
< α ≤ 1

2
,

(5.2)
∫ T

0

∫

�

[
|nεF

′
ε(nε)Sε(x, nε, cε)∇cε| 10α

3+2α + |nεuε|
10α

3(α+1)

]
≤ C(T + 1), if

1

2
< α < 1

(5.3)

as well as
∫ T

0

∫

�

[
|nεF

′
ε(nε)Sε(x, nε, cε)∇cε|2 + |nεuε| 53

]
≤ C(T + 1), if α ≥ 1 (5.4)

and
∫ T

0

∫

�

[
|uε · ∇cε| 54 + |cεuε| 53

]
≤ C(T + 1). (5.5)

Proof First, by (1.5), (3.1), and (2.8), we derive

nεF
′
ε(nε)Sε(x, nε, cε) ≤ CSn

(1−α)+
ε

with (1 − α)+ = max{0, 1 − α}. Case 8
21 < α ≤ 1

2 : It is not difficult to verify that

2

3α + 1
= 1

2
+ 3

6α + 2
(1 − α)
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and

9(α + 2)

10(3α + 1)
= 3

10
+ 3

6α + 2
,

so that, recalling (3.29), (3.44), and Hölder’s inequality, we can obtain (5.2). While if 1
3 <

α ≤ 8
21 , in light of (3.6), (3.29), (3.32), (3.45), an employment of the Hölder and Young

inequalities to shows that

∫ T

0

∫

�

[
|nεF

′
ε(nε)Sε(x, nε, cε)∇cε| 3α+1

2 + |nεuε|γ
]

≤ C1

[∫ T

0

∫

�

n
6α+2
3

ε

] 3−3α
4

[∫ T

0

∫

�

|∇cε|2
] 3α+1

4

+C1

∫ T

0
‖nε‖γ

L
6γ
6−γ (�)

‖uε‖γ

L6(�)
≤ C2(T + 1),

where γ = 2α+ 2
3

α+1 is given by Lemma 3.5.
Other cases can be proved very similarly. Therefore, we omit their proofs. ��

To prepare our subsequent compactness properties of (nε, cε, uε) by means of the Aubin–
Lions lemma (see Simon [18]), we use Lemmas 3.2–3.4 to obtain the following regularity
property with respect to the time variable.

Lemma 5.2 Let α > 1
3 , and assume that (1.7) and (1.8) hold. Then there exists C > 0

independent of ε such that

∫ T

0
‖∂t nε(·, t)‖(W 2,4(�))∗dt ≤ C(T + 1) for all T ∈ (0,∞) (5.6)

as well as

∫ T

0
‖∂t cε(·, t)‖

5
4
(W 1,5(�))∗dt ≤ C(T + 1) for all T ∈ (0,∞) (5.7)

and

∫ T

0
‖∂t uε(·, t)‖

5
4

(W 1,5
0,σ (�))∗

dt ≤ C(T + 1) for all T ∈ (0,∞). (5.8)

Proof Firstly, testing the first equation of (2.6) by certain ϕ ∈ C∞(�̄), we have

∣
∣
∣
∣

∫

�

(nε,t )ϕ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

[
�nε − ∇ · (nεF

′
ε(nε)Sε(x, nε, cε)∇cε) − uε · ∇nε

]
ϕ

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

[−∇nε · ∇ϕ + nεF
′
ε(nε)Sε(x, nε, cε)∇cε · ∇ϕ + nεuε · ∇ϕ

]
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

�

[|∇nε| + |nεF
′
ε(nε)Sε(x, nε, cε)∇cε| + |nεuε|

]
∣
∣
∣
∣ ‖ϕ‖W 1,∞(�)

for all t > 0.
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Observe that the embedding W 2,4(�) ↪→ W 1,∞(�), so that, in view of α > 1
3 , Lem-

mas 3.4 and 5.1, we deduce from the Young inequality that for some C1 and C2 such that
∫ T

0
‖∂t nε(·, t)‖(W 2,4(�))∗dt

≤ C1

{∫ T

0

∫

�

|∇nε|r1 +
∫ T

0

∫

�

|nεF
′
ε(nε)Sε(x, nε, cε)∇cε|r1+

∫ T

0

∫

�

|nεuε|r2+T

}

≤ C2(T + 1) for all T > 0,

(5.9)

where

r1 =

⎧
⎪⎨

⎪⎩

3α+1
2 if 1

3 < α ≤ 1
2 ,

10α
3+2α if 1

2 < α < 1,

2 if α ≥ 1

and

r2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2α+ 2
3

α+1 if 1
3 < α ≤ 8

21 ,

10(3α+1)
9(α+2) if 8

21 < α ≤ 1
2 ,

10α
3(α+1) if 1

2 < α < 1,
5
3 if α ≥ 1,

Likewise, given any ϕ ∈ C∞(�̄), we may test the second equation in (2.6) against ϕ to
conclude that
∣
∣
∣
∣

∫

�

∂t cε(·, t)ϕ
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

[�cε − cε + nε − uε · ∇cε] · ϕ

∣
∣
∣
∣

=
∣
∣
∣
∣−

∫

�

∇cε · ∇ϕ −
∫

�

cεϕ +
∫

�

nεϕ +
∫

�

cεuε · ∇ϕ

∣
∣
∣
∣

≤
{

‖∇cε‖
L

5
4 (�)

+ ‖cε‖
L

5
4 (�)

+ ‖nε‖
L

5
4 (�)

+ ‖cεuε‖
L

5
4 (�)

}

‖ϕ‖W 1,5(�)

for all t > 0. Thus, from Lemmas 3.4 and 5.1 again, in light of α > 1
3 , we invoke the Young

inequality again and obtain that there exist positive constant C3 and C4 such that
∫ T

0
‖∂t cε(·, t)‖

5
4
(W 1,5(�))∗dt

≤ C3

(∫ T

0

∫

�

|∇cε|2 +
∫ T

0

∫

�

nr3ε +
∫ T

0

∫

�

c
10
3

ε +
∫ T

0

∫

�

|uε| 103 + T

)

≤ C4(T + 1) for all T > 0

with

r3 =

⎧
⎪⎨

⎪⎩

6α+2
3 if 1

3 < α ≤ 1
2 ,

10α
3 if 1

2 < α < 1,
10
3 if α ≥ 1.

(5.10)

Finally, for any given ϕ ∈ C∞
0,σ (�;R3), we infer from the third equation in (2.6) that

∣
∣
∣
∣

∫

�

∂t uε(·, t)ϕ
∣
∣
∣
∣ =

∣
∣
∣
∣−

∫

�

∇uε · ∇ϕ − κ

∫

�

(Yεuε ⊗ uε) · ∇ϕ +
∫

�

nε∇φ · ϕ

∣
∣
∣
∣ for all t > 0.
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Now, by virtue of (3.6), Lemmas 3.4 and 5.1 , we also get that there exist positive constants
C5,C6 and C7 such that

∫ T

0
‖∂t uε(·, t)‖

5
4

(W 1,5
0,σ (�))∗

dt

≤ C5

(∫ T

0

∫

�

|∇uε| 54 +
∫ T

0

∫

�

|Yεuε ⊗ uε| 54 +
∫ T

0

∫

�

n
5
4
ε

)

≤ C6

(∫ T

0

∫

�

|∇uε|2 +
∫ T

0

∫

�

|Yεuε|2 +
∫ T

0

∫

�

|uε| 103 +
∫ T

0

∫

�

nr3ε + T

)

≤ C7(T + 1) for all T > 0,

which implies (5.8). Here r3 is the same as (5.10). ��

6 Passing to the limit: Proof of Theorem 1.1

Based on the above lemmas and by extracting suitable subsequences in a standard way, we
can prove Theorem 1.1.

Lemma 6.1 Let (1.4), (1.5), (1.7) and (1.8) hold, and suppose that α > 1
3 . There exists

(ε j ) j∈N ⊂ (0, 1) such that ε j↘0 as j→∞ and such that as ε = ε j↘0 we have

nε → n a.e. in � × (0,∞) and in Lr
loc(�̄ × [0,∞)) with r =

⎧
⎪⎨

⎪⎩

3α+1
2 if 1

3 < α ≤ 1
2 ,

10α
3+2α if 1

2 < α < 1,

2 if α ≥ 1,

(6.1)

∇nε⇀∇n in Lr
loc(�̄ × [0,∞)) with r =

⎧
⎪⎨

⎪⎩

3α+1
2 if 1

3 < α ≤ 1
2 ,

10α
3+2α if 1

2 < α < 1,

2 if α ≥ 1,

(6.2)

cε → c in L2
loc(�̄ × [0,∞)) and a.e. in � × (0,∞), (6.3)

∇cε → ∇c a.e. in � × (0,∞), (6.4)

uε → u in L2
loc(�̄ × [0,∞)) and a.e. in � × (0,∞) (6.5)

as well as

∇cε⇀∇c in L2
loc(�̄ × [0,∞)) (6.6)

and

∇uε⇀∇u in L2
loc(�̄ × [0,∞)) (6.7)

and

uε⇀u in L
10
3
loc(�̄ × [0,∞)) (6.8)

with some triple (n, c, u) that is a global weak solution of (1.3) in the sense of Definition 2.1.

Proof First, from Lemma 3.4 and (5.6), we derive that there exists a positive constant C0

such that

‖nε‖Lrloc([0,∞);W 1,r (�)) ≤ C0(T + 1) and ‖∂t nε‖L1
loc([0,∞);(W 2,4(�))∗) ≤ C0(T + 1),

(6.9)
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where r is given by (6.1). Hence, from (6.9) and the Aubin–Lions lemma (see, e.g., [18]),
we conclude that

(nε)ε∈(0,1) is strongly precompact in Lr
loc(�̄ × [0,∞)), (6.10)

so that, there exists a sequence (ε j ) j∈N ⊂ (0, 1) such that ε = ε j↘0 as j→∞ and

nε → n a.e. in � × (0,∞) and in Lr
loc(�̄ × [0,∞)) as ε = ε j↘0, (6.11)

where r is the same as (6.1). Now, in view of Lemmas 3.3, 3.4, 5.1, and 5.2, employing the
same arguments as in the proof of (6.9)–(6.11), we can derive (6.1)–(6.3) and (6.5)–(6.8)
holds. Next, let gε(x, t) := −cε + Fε(nε)−uε ·∇cε. With this notation, the second equation
of (2.6) can be rewritten in component form as

cεt − �cε = gε. (6.12)

Case 1
3 < α ≤ 1

2 : Observe that

5

4
<

4

3
< min

{
6α + 2

3
,
10

3

}

for
1

3
< α ≤ 1

2
.

Thus, recalling (3.29), (3.32), and (5.5) and applyingHölder’s inequality,we conclude that, for

any ε ∈ (0, 1), gε is bounded in L
5
4 (� × (0, T )), and we may invoke the standard parabolic

regularity theory to (6.12) and infer that (cε)ε∈(0,1) is bounded in L
5
4 ((0, T );W 2, 54 (�)).

Hence, by virtue of (5.7) and the Aubin–Lions lemma, we derive the relative compactness

of (cε)ε∈(0,1) in L
5
4 ((0, T );W 1, 54 (�)). We can pick an appropriate subsequence that is still

written as (ε j ) j∈N such that ∇cε j → z1 in L
5
4 (� × (0, T )) for all T ∈ (0,∞) and some

z1 ∈ L
5
4 (�× (0, T )) as j → ∞. Therefore, by (5.7), we can also derive that∇cε j → z1 a.e.

in �× (0,∞) as j → ∞. In view of (6.6) and Egorov’s theorem, we conclude that z1 = ∇c
and hence (6.4) holds. Next, we pay attention to the case 1

2 < α < 1: By straightforward
calculations, and using relation 1

2 < α < 1, one has

5

4
<

5

3
< min

{
10α

3
,
10

3

}

.

Consequently, based on (3.30), (3.32), and (5.5), it follows from Hölder’s inequality that

cεt − �cε = gε is bounded in L
5
4 (� × (0, T )) for any ε ∈ (0, 1). (6.13)

Employing almost exactly the same arguments as in the proof of the case 1
3 < α ≤ 1

2 , and
taking advantage of (6.13), we conclude the estimate (6.6). The proof of case α ≥ 1 is similar
to that of case 1

3 < α ≤ 1
2 , so we omit it.

In the following proof, we shall prove that (n, c, u) is a weak solution of problem (1.3) in
Definition 2.1. In fact, by α > 1

3 , we conclude that

r > 1,

where r is given by (6.1). Therefore, with the help of (6.1)–(6.3) and (6.5)–(6.7), we can
derive (2.1). Now, by the nonnegativity of nε and cε, we obtain n ≥ 0 and c ≥ 0. Next, from
(6.7) and ∇ · uε = 0, we conclude that ∇ · u = 0 a.e. in � × (0,∞). However, in view of
(5.2), (5.3), and (5.4), we conclude that

nεF
′
ε(nε)Sε(x, nε, cε)∇cε⇀z2 in Lr (� × (0, T )) as ε = ε j↘0 for each T ∈ (0,∞),

(6.14)
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where r is given by (6.1). However, it follows from (1.4), (2.8), (3.2), (6.1), (6.3), and (6.4)
that

nεF
′
ε(nε)Sε(x, nε, cε)∇cε → nS(x, n, c)∇c a.e. in � × (0,∞) as ε = ε j↘0. (6.15)

Again by Egorov’s theorem, we gain z2 = nS(x, n, c)∇c, and therefore (6.14) can be rewrit-
ten as

nεF
′
ε(nε)Sε(x, nε, cε)∇cε⇀nS(x, n, c)∇c in Lr (� × (0, T )) as ε

= ε j↘0 for each T ∈ (0,∞), (6.16)

which together with r > 1 implies the integrability of nS(x, n, c)∇c in (2.2) as well. It is
not difficult to check that

2α + 2
3

α + 1
> 1 if

1

3
< α ≤ 8

21
,
10(3α + 1)

9(α + 2)
> 1 if

8

21

< α ≤ 1

2
and

10α

3(α + 1)
> 1 if

1

2
< α < 1.

Thereupon, recalling (5.2), (5.3), and (5.4), we infer that, for each T ∈ (0,∞),

nεuε⇀z3 in Lr̃ (� × (0, T )) with r̃ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2α+ 2
3

α+1 if 1
3 < α ≤ 8

21 ,
10(3α+1)
9(α+2) if 8

21 < α ≤ 1
2 ,

10α
3(α+1) if 1

2 < α < 1,
5
3 if α ≥ 1.

as ε = ε j↘0,

(6.17)

(6.17) together with (6.1) and (6.5) implies

nεuε → nu a.e. in � × (0,∞) as ε = ε j↘0. (6.18)

(6.17) along with (6.18) and Egorov’s theorem guarantees that z3 = nu, whereupon we
derive from (6.17) that

nεuε⇀nu in Lr̃ (� × (0, T )) with r̃ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2α+ 2
3

α+1 if 1
3 < α ≤ 8

21 ,
10(3α+1)
9(α+2) if 8

21 < α ≤ 1
2 ,

10α
3(α+1) if 1

2 < α < 1,
5
3 if α ≥ 1

as ε = ε j↘0,

(6.19)

for each T ∈ (0,∞).
As a straightforward consequence of (6.3) and (6.5), it holds that

cεuε → cu in L1
loc(�̄ × (0,∞)) as ε = ε j↘0. (6.20)

Thus, the integrability of nu and cu in (2.2) is verified by (6.3) and (6.5).
Next, by (6.5) and the fact that ‖Yεϕ‖L2(�) ≤ ‖ϕ‖L2(�)(ϕ ∈ L2

σ (�)) and Yεϕ→ϕ in
L2(�) as ε↘0,we can get that there exists a positive constantC1 such that, for any ε ∈ (0, 1),

‖Yεuε(·, t) − u(·, t)‖L2(�) ≤ ‖Yε[uε(·, t) − u(·, t)]‖L2(�) + ‖Yεu(·, t) − u(·, t)‖L2(�)

≤ ‖uε(·, t) − u(·, t)‖L2(�) + ‖Yεu(·, t) − u(·, t)‖L2(�)

→ 0 as ε = ε j↘0
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and

‖Yεuε(·, t) − u(·, t)‖2L2(�)
≤ (‖Yεuε(·, t)|‖L2(�) + ‖u(·, t)|‖L2(�)

)2

≤ (‖uε(·, t)|‖L2(�) + ‖u(·, t)|‖L2(�)

)2

≤ C1 for all t ∈ (0,∞)/N with some null set N ⊂ (0,∞),

so that, by the dominated convergence theorem, we also find that

∫ T

0
‖Yεuε(·, t) − u(·, t)‖2L2(�)

dt → 0 as ε = ε j↘0 for all T > 0.

Therefore,

Yεuε → u in L2
loc([0,∞); L2(�)). (6.21)

Now, combining (6.5) with (6.21), we derive

Yεuε ⊗ uε → u ⊗ u in L1
loc(�̄ × [0,∞)) as ε = ε j↘0. (6.22)

Therefore, the integrability of nS(x, n, c)∇c, nu, cu, and u ⊗ u in (2.2) is verified by (6.16),
(6.19), (6.20) and (6.22). Finally, for any fixed T ∈ (0,∞), applying (6.1), one can get

∫ T

0
‖Fε(nε(·, t)) − n(·, t)‖rLr (�) dt

≤
∫ T

0
‖Fε(nε(·, t)) − Fε(n(·, t))‖rLr (�) dt +

∫ T

0
‖Fε(n(·, t)) − n(·, t)‖rLr (�) dt

≤ ‖F ′
ε‖L∞(�×(0,∞))

∫ T

0
‖nε(·, t) − n(·, t)‖rLr (�) dt +

∫ T

0
‖Fε(n(·, t)) − n(·, t)‖rLr (�) dt,

(6.23)

where r is the same as in (6.1). Besides that, we also deduce from (3.3) and r > 1 that

‖Fε(n(·, t)) − n(·, t)‖rLr (�×(0,T )) ≤ 2r‖n(·, t)‖
for each t ∈ (0, T ), which together with (6.1) shows the integrability of ‖Fε(n(·, t))
−n(·, t)‖rLr (�) on (0, T ). Thereupon, by virtue of (3.2), we infer from the dominated con-
vergence theorem that

∫ T

0
‖Fε(n) − n‖rLr (�) dt → 0 as ε = ε j↘0 (6.24)

for each T ∈ (0,∞). Inserting (6.24) into (6.23) and using (6.1) and (3.1), we can see clearly
that

Fε(n) → n in Lr
loc(�̄ × [0,∞)) as ε = ε j↘0. (6.25)

Finally, according to (6.1)–(6.3), (6.5)–(6.7), (6.16), (6.19), (6.20), (6.21), (6.22), and (6.25),
we may pass to the limit in the respective weak formulations associated with the regularized
system (2.6) and obtain the integral identities (2.3)–(2.5). ��
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