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Abstract
We study harmonic maps from Riemannian manifolds into arbitrary non-positively curved
and CAT(− 1) metric spaces. First we discuss the domain variation formula with special
emphasis on the error terms. Expanding higher order terms of this and other formulas in
terms of curvature, we prove an analogue of the Eells–Sampson Bochner formula in this
more general setting. In particular, we show that harmonic maps from spaces of non-negative
Ricci curvature into non-positively curved spaces have subharmonic energy density. When
the domain is compact the energy density is constant, and if the domain has a point of positive
Ricci curvature every harmonic map into an NPC space must be constant.

Mathematics Subject Classification 58E20 · 53C24

1 Introduction

In 1964 Eels and Sampson [5] introduced a Bochner identity for harmonic maps between
smooth Riemannian manifolds. One of the consequences is that for a harmonic map from a
space with a non-negative Ricci tensor to a space of non-positive sectional curvatures, the
map is totally geodesic, with constant energy density, and if the domain has any point with
positive Ricci curvature, then the map is constant.

The study of harmonic maps has applications in the setting of geometric rigidity. The
geometric formulation asks if everymap is homotopic to a totally geodesicmap. The Bochner
formula and other vanishing theorems allow one to deduce a positive answer under further
geometric assumptions. In the event that one is looking at equivariant harmonic maps, this
sort of rigidity statement implies rigidity statements for the representations of fundamental
groups.

Gromov and Schoen [6] initiated the study of harmonic maps into singular spaces, in
particular Riemannian simplicial complexes. In [1] Chen introduced harmonic maps with
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simplicial complexes as domains as well. In [8–11] the study of harmonic maps is extended
to maps into non-positively curved (NPC) metric spaces.

An NPC space X is a geodesic length space (any two points can be connected by a curve
whose length realizes their distance) with a comparison principle. For any geodesic triangle
ABC in X , one can build a Euclidean triangle Ā B̄C̄ ⊂ R

2 with the same side lengths. The
NPC criterion is that for any point D on the geodesic BC and the corresponding point D̄
on C̄ D̄ cutting the segment into the same proportions, the distince d(A, D) in X is no more
than the distance

∣
∣ Ā − D̄

∣
∣ in R

2. These spaces generalize simply connected manifolds of
non-positive sectional curvature.

A CAT(− 1) space is simply an NPC space with a stronger comparison principle. Instead
of constructing comparison triangles in R

2, construct them in H
2, and the CAT(− 1) space

has the same comparison inequality.
The introduction of singular spaces into the theory of harmonicmaps has allowed for more

statements in geometric rigidity. For example, [6] studied harmonic maps into Euclidean
buildings to assert the p-adic superrigidity of lattices in groups of rank 1. In Daskalopoulos,
Mese, andVdovina [4] prove the superrigidity of hyperbolic buildings, and in [3]Daskalopou-
los andMese prove similar regularity for maps into more general simplicial complexes. In [2]
Daskalopoulos and Mese prove rigidity statements for harmonic maps from 2-dimensional
complexes to general NPC spaces.

In [1]Chen used, used techniques developed in [6] to attack the problemof theBochner for-
mula for harmonicmaps frommanifolds of non-negative sectional curvature to non-positively
curved simplicial complexes.We expand thesemethods to derive a Bochner formula formaps
into general NPC spaces involving the Ricci curvatures of the domain, and as a result con-
clude:

Theorem 1 For a harmonic map u : M → X from a Riemannian manifold M to an NPC
metric space X, |∇u|2 satisfies the weak differential inequality

1

2
� |∇u|2 ≥ 〈Ric, π〉.

Here π is the pull-back metric tensor as defined in [10], Section 2.3, and 〈Ric, π〉 denotes
the inner product on symmetric two-tensors, with equation 〈A, B〉 = gi j gk�Aik B j�. If in
addition X is CAT(− 1), then

1

2
� |∇u|2 ≥ 〈Ric, π〉 + |∇u|4 − |π |2 .

Here |−−|2 denotes the norm on symmetric two-tensors, |A|2 = 〈A, A〉 = gi j gk�Aik A j�.

A similar result was obtained in [13], where Mese studies the Bochner formula on flat
domains and concludes � |∇u|2 ≥ −2κ |∇u|4 for maps into CAT(κ) spaces. In [13] Mese
also investigates conformal harmonic maps, deriving a curvature bound for the pull back
metric in dimension 2. We will derive an energy bound for conformal harmonic maps from
hyperbolic surfaces into CAT(− 1) spaces, much as in [14].

Corollary 2 If u : � → X is a conformal harmonic map from a closed hyperbolic surface �

into a CAT(− 1) space X, then |∇u|2 ≤ 2.

In [11], Corollary 1.5.3 it is deduced that harmonic maps from flat tori to NPC spaces are
totally geodesic. As a byproduct of the methods of this paper, we reproduce this result:
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Corollary 3 If M is a flat, compact Riemannian manifold and X is an NPC metric space, and
u : M → X is a harmonic map, then u is totally geodesic. That is, constant speed geodesics
on M are sent by u to constant speed geodesics in X.

After first discussing some useful analytic results in Sect. 2, our next order of business
is to discuss a domain variation formula in Sect. 3. We derive the domain variation formula
of [6], equation (2.3) via integration by parts, finding one term to have a sign different from
what was printed there.

The term of interest derives from the geometry of the domain. In [6], this and another term
were labeled as remainder and shown to have small enough order in terms of other quantities
so as not to affect any further results. The sign of these terms is, however, essential to our
work.

Also in Sect. 3 we derive the target variation formula as well as reproving the Lipschitz
continuity of harmonic maps.

In Sect. 4 we expand these remainder terms as well as others to ultimately prove a mean
value inequality that will lead to the Bochner identity above.

2 Background and preliminary results

Throughout this paper, M denotes a Riemannian manifold of dimension n with Levi-Civita
connection ∇ and Riemannian curvature tensor

R(X , Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X ,Y ]Z .

For a local frame {ei } of tangent vectors, define the symbols of the curvature tensor by

R(ei , e j )ek = Ri jk
�e�

and

Ri jk� = 〈R(ei , e j )ek, e�〉 = Ri jk
mgm�.

The symbols of the Ricci curvature now become

Ri j = Ric(ei , e j ) = gk�Rki j� = Rki j
k .

Finally, the scalar curvature is the trace of the Ricci:

S = gi j Ri j = gi j gk�Rki j�.

Wewill work throughout this paper in normal coordinates around x0 ∈ M , identified with
0 ∈ Tx0M . We deonte by Rx0 (alternatively R0) and Ricx0 (alternatively Ric0) the Riemann
and Ricci tensors evaluated at the point 0 = x0. We will denote by dμ and d� respectively
the Riemannian volume and surface measures, and by dx and dS the Euclidean measures in
these coordinates. We will also use the convention that ωn is the volume of the unit ball in
Euclidean Rn . Under all of our conventions, the methods in [7] show:

Proposition 4 On a Riemannian manifold M take normal coordinates {xi } about a point
x0 ∈ M. Identifying x0 with 0 ∈ Tx0M, the metric may be written locally near x0 as

gi j = δi j − 1

3
Rki j�(0)x

k x� + O(|x |3).
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And, taking determinants, the volume density can be expanded as

√
g = 1 − 1

6
Ri j (0)x

i x j + O(|x |3).
Here the curvature symbols Rki j� and Ri j are symbols of the curvature tensor at 0 = x0. Both
of the O(|x |3) terms depend on the geometry of M, and in particular are smooth functions
of x.

We will also require the following:

Proposition 5 Let Q and Q̃ be quadratic forms on Euclidean space R
n. Write Q(x) =

Qi j xi x j and Q̃(x) = Q̃i j x i x j for symmetric matrices Qi j and Q̃i j . Then

1. ˆ
∂Bσ

Q(x)dS = ωntr(Q)σ n+1

2. ˆ
Bσ

Q(x)dx = ωn

n + 2
tr(Q)σ n+2

3. ˆ
∂Bσ

Q(x)Q̃(x)dS = ωn

n + 2

(

2〈Q, Q̃〉 + tr(Q)tr(Q̃)
)

σ n+3.

Here the notation 〈Q, Q̃〉 denotes the inner product on symmetric matrices, which is given
by the trace of the product of the matrices 〈Q, Q̃〉 = Qi j Q̃ ji .

Proof For 1, see ˆ
∂Bσ

Q(x)dS =
ˆ

∂Bσ

Qi j x
i x j .

For i �= j , this integral vanishes since the integrand is an odd function of xi . Soˆ
∂Bσ

Q(x)dS = Qii

ˆ
∂Bσ

(xi )2dS

= 1

n
tr(Q)

ˆ
∂Bσ

σ 2dS

= ωntr(Q)σ n+1.

2 follows from integrating 1. For 3 computeˆ
∂Bσ

Q(x)Q̃(x)dS =
ˆ

∂Bσ

Qi j x
i x j Q̃k�x

kx�.

Define a vector field V = σQi j xi x j Q̃k�xke� and note that on ∂Bσ the unit outward
normal is ν = 1

σ
xmem . Now the divergence theorem yields the result. �

Two special cases of part 2 are as follows: If we take the Euclidean metric g
∣
∣
x0

in Tx0M ,
and let Q(x) = Ricx0(x, x), then Qi j = Ri j (0) are the symbols of the Ricci tensor, whose
trace tr(Ric) = S is the scalar curvature, soˆ

Bσ (0)
Ricx0(x, x)dx = ωn

n + 2
S(x0)σ

n+2. (1)
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If we fix a vector v ∈ Tx0M and take Q(x) = 〈Rx0(x, v)v, x〉, then Qi j = vkv�Rik� j (x0)
and tr(Q) = vkv�Rik�i (x0) = vkv�Rk�(x0) = Ricx0(v, v), so

ˆ
Bσ (0)

〈Rx0(v, x)x, v〉dx = ωn

n + 2
Ricx0(v, v)σ n+2. (2)

We also now have the tools to phrase a more precise asymptotic version of the Bishop-
Gromov comparison theorem:

Proposition 6 Let M be a Riemannian manifold of dimension n. Then for x0 ∈ M with scalar
curvature S(x0) at the point x0, and for σ small,

|∂Bσ (x0)| =
(
n

σ
− 1

3(n + 2)
S(x0)σ + O(σ 2)

)

|Bσ (x0)| .

Proof The ball of radius σ in normal coordinates coincides with the Euclidean ball of the
same radius, and we have the Taylor expansion of the volume density from Proposition 4:

√
g = 1 − 1

6
Ri j (0)x

i x j + O(|x |3).

Integrate to find the volume of the ball, using part 2 from Proposition 5:

|Bσ | =
ˆ
Bσ

√
gdx

=
ˆ
Bσ

(

1 − 1

6
Ri j x

i x j + O(|x |3)
)

dx

= ωnσ
n − ωn

6(n + 2)
S(0)σ n+2 + O(σ n+3)

1

|Bσ | = 1

ωnσ n

(

1 + 1

6(n + 2)
S(0)σ 2 + O(σ 3)

)

.

Now the area of the sphere can be found by differentiating the above, or by integrating
the volume density on the sphere:

|∂Bσ | = nωnσ
n−1 − ωn

6
S(0)σ n+1 + O(σ n+2)

|∂Bσ |
|Bσ | =

(
n

σ
− 1

6
S(0)σ + O(σ 2)

)(

1 + 1

6(n + 2)
S(0)σ 2 + O(σ 3)

)

= n

σ
− 1

3(n + 2)
S(0)σ + O(σ 2).

�

Throughout much of the paper, we will be expanding non-smooth terms, and we will need
to understand how small the error terms are. The following definition captures the features
of the error terms we will accumulate that are essential to showing they are small enough.

Definition 7 A term o(σ k) denotes a function on M depending on the parameter σ with the

property that for σ less than some σ0,
∥
∥
∥
o(σ k )

σ k

∥
∥
∥
L∞ is finite and bounded independent of σ (i.e.

an o(σ k) is O(σ k)), and for almost every x ∈ M , o(σ k )

σ k → 0 as σ → 0.
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Remark 8 By the dominated convergence theorem, a term that is o(σ k) has, for any compact
K ⊆ M ,

∥
∥
∥
∥

o(σ k)

σ k

∥
∥
∥
∥
L1(K )

→ 0.

Note also that a smooth O(σ k) term is, in particular, o(σ k−1).

We will need to do some arithmetic with o(σ k) terms, as well as integrate such a function
over a range of σ .

Lemma 9 For a function o(σ k), the functionˆ σ

0
o(τ k)dτ

defined by integrating o(σ k) pointwise on M is o(σ k+1). Additionally,

• o(σ k)o(σ �) = o(σ k+�)

• eo(σ
k ) = 1 + o(σ k)

• 1
1+o(σ k )

= 1 + o(σ k).

Proof We will prove the integral statement. The other three follow similarly, the latter two

with Taylor expansions. For σ sufficiently small we have
∣
∣
∣
o(σ k )

σ k

∣
∣
∣ ≤ C independent of σ .

Hence
∣
∣
∣
∣

1

σ k+1

ˆ σ

0
o(τ k)(x)dτ

∣
∣
∣
∣
≤ 1

σ k+1

ˆ σ

0
Cτ kdτ

= C

k + 1
.

And for ε > 0 and almost any x ∈ M , we can find σ0 > 0 so that σ < σ0 implies
1
σ k o(σ

k)(x) < ε. So for σ < σ0 we compute

1

σ k+1

ˆ σ

0
o(τ k)(x)dτ <

1

σ k+1

ˆ σ

0
ετ kdτ

= ε

k + 1
.

Since 1
σ k+1

´ σ

0 o(τ k)dτ is bounded in L∞ independent of σ and tends to 0 almost every-

where,
´ σ

0 o(τ k)dτ = o(σ k+1). �
The way in which most of the o(σ k) error terms will arise is by pulling non-smooth

functions out of integrals. The following propositioni allows us to do this.

Proposition 10 For bounded functions f and φ on a domain � ⊂ M, integrating in normal
coordinates around x0 ∈ � we have for σ < d(x0, ∂�)ˆ

Bσ (x0)
f (x)φ(x)dx = φ(x0)

ˆ
Bσ (x0)

f (x)dx + o(σ n) sup
Bσ (x0)

| f | .

Proof First observe
∣
∣
∣
∣

ˆ
Bσ (x0)

f (x)φ(x)dx −
ˆ
Bσ (x0)

f (x)φ(x0)dx

∣
∣
∣
∣
≤ sup

Bσ (x0)
| f |

ˆ
Bσ (x0)

|φ(x) − φ(x0)| dx .
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Define φσ (x0) = ´
Bσ (x0)

|φ(x) − φ(x0)| dx . At a Lebesgue point x0 for φ, we have
1
σ n φσ (x0) → 0. This is the almost everywhere convergence condition.

Since φ ∈ L∞, there is some K > 0 with |φ| ≤ K , so φσ ≤ 2Kωnσ
n . This gives the L∞

bound. Hence φσ = o(σ n), so we can writeˆ
Bσ

f (x)φ(x)dx =
ˆ
Bσ

f (x)φ(0)dx + o(σ n) sup
Bσ

| f | .

�
We conclude this section by summarizing the notation and results from [10] that we use

extensively throughout. Let u : M → X be a Lipschitz map from a Riemannian manifold
M into an NPC space X . The following definitions can still be made if u is not Lipschitz,
but more care has to be taken, e.g. limits are weak limits in the sense of linear functionals,
but as harmonic maps turn out to be Lipschitz continuous this assumption is enough for this
discussion.

For a vector field Z onM , let φx denote the flow by Z starting at the point x , i.e. φx (0) = x
and φ̇x (t) = Z |φx (t). Where the following limit exists, define the directional energy density
|u∗Z |2 by (cf. [10], sections 1.7–1.9)

|u∗Z |2 (x) = lim
ε→0

d2(u(φx (ε)), u(x))

ε

2

.

The energy density of the map u at a point x is an average of directional energies (cf. [10],
1.10v):

|∇u|2 (x) = 1

ωn

ˆ
Sn−1

|u∗v|2 (x)dS(v).

The energy of a map is defined as the integral of its energy density, so

E(u) =
ˆ
M

|∇u|2 dμ.

Amap is called harmonic if it is minimizing for the energy functional. That is, u is harmonic
if for any continuous variation ut with u0 = u, E(ut ) ≥ E(u) for all t .

The NPC hypothesis on the target space has implications for harmonic maps. First of all,
it leads to the Lipschitz regularity (cf. [6] Theorem 2.3, [10] Theorem 2.4.6). In addition,
the convexity of the distance function implies that any map that is critical for the energy
functional is in fact minimizing.

Moreover, the NPC hypothesis implies that the function |u∗−| (x), acting as a seminorm
on the tangent space TxM , is induced by an inner product. The so-called pull-back tensor π

is defined by ([10] 2.3ii)

π(Z ,W ) = 1

4
|u∗(Z + W )|2 − 1

4
|u∗(Z − W )|2 .

The properties of π are detailed in [10], Theorem 2.3.2. Namely, π is continuous, symmetric,
bilinear, non-negative, and tensorial. Moreover, if we write πi j = π(ei , e j ) for a local frame
{ei }, then for vectors Z = Zi ei and W = W je j we have

π(Z ,W ) = πi j Z
iW j .

If ψ is a C1,1 map, then the pull-back tensor π ′ of the map u ◦ ψ satisfies

π ′
i j = πk�∂iψ

k∂ jψ
�.
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Finally, the energy density is the trace of the tensor π with respect to the metric g:

|∇u|2 = gi jπi j .

3 Domain and target variation formulas and lipschitz continuity

We will now derive the formula from [6], equation (2.3), taking special care with terms
involving derivatives of metric information, as these will be essential to the rest of our work.

Proposition 11 For a Riemannian manifold M, an NPC metric space X, and a harmonic
map u : M → X, we have for almost every x0 ∈ M (writing Bσ for Bσ (x0)),

(2 − n)

ˆ
Bσ

|∇u|2 dμ + σ

ˆ
∂Bσ

[

|∇u|2 − 2

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
]

d�

=
ˆ
Bσ

[

xk
∂gi j

∂xk
∂u

∂xi
· ∂u

∂x j

√
g + |∇u|2 xk ∂

√
g

∂xk

]

dx . (3)

Remark 12 Note that this formula corrects a sign error appearing in [6], equation (2.3). The
change to one term on the right hand side of the above formula, while essential to the present
work, does not affect the remainder of the arguments in [6] as they only require these terms
to be O(σ 2)

´
Bσ

|∇u|2 dμ, a fact unaffected by the sign change.

Proof These computations will be done in normal coordinates around x0 = 0. Consider a
family of maps ut : M → X as follows: Let η be a smooth test function supported near 0,
and let Ft (x) = (1 + tη(x))x . Define ut (x) = u ◦ Ft (x).

Theorem 2.3.2, equation (2.3v) of [10] describes how to relate the pull-back tensor of ut
with that of u by the formula

(πut )i j (x) = ∂Fα
t

∂xi
(x)

∂Fβ
t

∂x j
(x)(πu)αβ(Ft (x)).

This formula generalizes the chain rule for smooth functions. Now we consider the energy
of the map ut :

E(ut ) =
ˆ

|∇ut |2 dμ

=
ˆ

gi j (x)(πut )i j (x)dμ

=
ˆ

gi j (x)(πu)αβ(Ft (x))

[

(1 + tη(x))δα
i + t xα ∂η

∂xi
(x)

]

×
[

(1 + tη(x))δβ
j + t xβ ∂η

∂x j
(x)

]

dμ

=
ˆ

gi j (x)

[

(1 + 2tη(x))(πu)i j (Ft (x)) + 2t xk
∂η

∂xi
(x)(πu) jk(Ft (x))

]

dμ + O(t2)

= O(t2) +
ˆ

gi j (F−1
t (x))

[

(1 + 2tη(F−1
t (x)))(πu)i j (x)

+ 2t(F−1
t )k(x)

∂η

∂xi
(F−1

t (x))(πu) jk(x)

]
∣
∣det(dF−1

t (x))
∣
∣

√

g(F−1
t (x))dx .
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This last line comes from the change of variables formula, which is valid even in the
presence of the L1 tensor π . First compute

∂Fi
t

∂x j
= (1 + tη(x))δij + t

∂η

∂x j
xi

det(dFt ) = 1 + ntη(x) + t xk
∂η

∂xk
+ O(t2)

det(dF−1
t ) = 1 − ntη − t xk

∂η

∂xk
+ O(t2).

We will need the following computation, for smooth functions f :

∂

∂t
f ◦ F−1

t (x) = ∂ f

∂xk
(F−1

t (x))
∂(F−1

t )k

∂t
(x).

Since Ft (x) = (1 + tη(x))x , there is some function ρ so that F−1
t (x) = ρ(t, x)x . Then

x = Ft (F
−1
t (x)) = (1 + tη(ρ(t, x)x))ρ(t, x)x = x . Hence (1 + tη(ρ(t, x)x))ρ(t, x) = 1

and so taking ∂
∂t we have

0 = η(ρ(t, x)x)ρ(t, x) + (1 + tη(ρ(t, x)x))
∂ρ

∂t
.

At t = 0, ρ(0, x) = 1 since F0 is the identity, so ∂ρ
∂t

∣
∣
t=0 = −η(x). Now (F−1

t )k(x) =
ρ(t, x)xk , so we have the following formula for smooth functions f (which we will apply
for f = √

g and f = gi j ):

∂

∂t

∣
∣
t=0 f ◦ F−1

t (x) = −η(x)xk
∂ f

∂xk
(x).

Nowwe can take the derivative of E(ut ) at t = 0 and pass the derivative under the integral,
writing π for πu . Since u is harmonic, the derivative is 0:

0 = d

dt

∣
∣
t=0E(ut )

= −
ˆ

ηxk
∂gi j

∂xk
πi j dμ +

ˆ
gi j

[

2ηπi j + 2xk
∂η

∂xi
π jk

]

dμ

−
ˆ

gi jπi j

(

nη + xk
∂η

∂xk

)

dμ −
ˆ

gi jπi jηx
k ∂

√
g

∂xk
dx .

In other words,

(2 − n)

ˆ
η |∇u|2 dμ +

ˆ [

2gi j xk
∂η

∂xi
π jk − xk

∂η

∂xk
|∇u|2

]

dμ

=
ˆ

η

[

πi j x
k ∂gi j

∂xk
√
g + |∇u|2 xk ∂

√
g

∂xk

]

dx .

Let now η approach the characteristic function of a ball Bσ about 0. The partial derivatives
∂η

∂xk
approach − xk

|x | times a δ-distribution on the sphere ∂Bσ . So the above formula becomes

(2 − n)

ˆ
Bσ

|∇u|2 dμ +
ˆ

∂Bσ

[
xkxk

|x | |∇u|2 − 2gi j
xk xi

|x | π jk

]

d�

=
ˆ
Bσ

[

πi j x
k ∂gi j

∂xk
√
g + |∇u|2 xk ∂

√
g

∂xk

]

dx .
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Now note in the second integral on the left that xkxk = |x |2 = σ 2. Equation (2.8)
of [7] says xi gi j = x j , so gi j xi xkπ jk = x j xkπ jk . And x j xkπ jk = π(x j∂ j , xk∂k) =
π

(

r ∂
∂r , r

∂
∂r

) = r2
∣
∣ ∂u
∂r

∣
∣
2
. Hence

(2 − n)

ˆ
Bσ

|∇u|2 dμ + σ

ˆ
∂Bσ

[

|∇u|2 − 2

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
]

d�

=
ˆ
Bσ

[

πi j x
k ∂gi j

∂xk
√
g + |∇u|2 xk ∂

√
g

∂xk

]

dx .

�
For the rest of our work, we will need a more precise expansion of the terms on the right

hand side of this formula.

Lemma 13 Let M be a Riemannian manifold, X an NPC metric space, and u : M → X a
harmonic map. For almost every x0 ∈ M,

(2 − n)

ˆ
Bσ (x0)

|∇u|2 dμ + σ

ˆ
∂Bσ (x0)

[

|∇u|2 − 2

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
]

d�

= ωn
(

2〈Ric, π〉(x0) − S(x0) |∇u|2 (x0)
)

3(n + 2)
σ n+2 + o(σ n+2).

Here S(x0) denotes the scalar curvature of M at x0. The quantity 〈Ric, π〉, when computed
at the center of normal coordinates, is given by the formula πi j Ri j . If |∇u|2 (x0) �= 0, then

(2 − n)

ˆ
Bσ (x0)

|∇u|2 dμ + σ

ˆ
∂Bσ (x0)

[

|∇u|2 − 2

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
]

d�

=
(

1

3(n + 2)

(
2〈Ric, π〉(x0)

|∇u|2 (x0)
− S(x0)

)

σ 2 + o(σ 2)

)ˆ
Bσ (x0)

|∇u|2 dμ.

Proof This result follows from taking a closer look at the terms on the right hand side in (3).
We will first expand the terms that come from the domain, those that do not involve the tensor
π . Fix x0 ∈ M , a Lebesgue point for all the πi j and |∇u|2, and identify it with 0 ∈ Tx0M via
exponential coordinates. Recall the Taylor expansion for the metric and the volume density
from Proposition 4 and compute:

xk
∂

∂xk
gi j = 2

3
〈R0(∂i , x)x, ∂ j 〉 + O(|x |3)

xk
∂
√
g

∂xk
= −1

3
Ric0(x, x) + O(|x |3).

Combining all the O(|x |3) terms and recalling that
∣
∣πi j

∣
∣ ≤ |∇u|2, we may now rewrite

the right hand side of (3) as

2

3

ˆ
Bσ

πi j 〈R0(∂i , x)x, ∂ j 〉dx − 1

3

ˆ
Bσ

|∇u|2 Ric0(x, x)dx + O(σ 3)

ˆ
Bσ

|∇u|2 dx .

Since |∇u|2 is in L∞
loc (because u is locally Lipschitz), it is in L∞(�) for some � ⊂ M

compact, and all the quadratic curvature terms are smooth and O(|x |2), so Proposition 10
lets us write the above as

2

3
πi j (0)

ˆ
Bσ

〈R0(∂i , x)x, ∂ j 〉dx − 1

3
|∇u|2 (0)

ˆ
Bσ

Ric0(x, x)dx + o(σ n+2).
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Note that
´
Bσ

|∇u|2 dμ is O(σ n), and so O(σ 3)
´
Bσ

|∇u|2 dx is O(σ n+3), which is in par-

ticular o(σ n+2), so it has been absorbed into that term.
Now choose an orthonormal change of basis to diagonalize π(0), so that πi j (0) = λiδi j .

Now the right hand side of (3) can be further rewritten

2

3
λi

ˆ
Bσ

〈R0(∂i , x)x, ∂i 〉dx − 1

3
|∇u|2 (0)

ˆ
Bσ

Ric0(x, x)dx + o(σ n+2).

Equations (1) and (2) after Proposition 5 let us integrate these curvature terms. The above
becomes

ωn

3(n + 2)

(

2〈Ric, π〉(0) − S(0) |∇u|2 (0)
)

σ n+2 + o(σ n+2).

Hence (3) can be written

(2 − n)

ˆ
Bσ (x0)

|∇u|2 dμ + σ

ˆ
∂Bσ (x0)

[

|∇u|2 − 2

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
]

d�

= ωn

3(n + 2)
σ n+2

(

2
〈Ric, π〉(x0)
|∇u|2 (x0)

− S(x0)

)

|∇u|2 (x0) + o(σ n+2).

Since x0 is a Lebesgue point for |∇u|2, we have
ˆ
Bσ (x0)

|∇u|2 dμ = |∇u|2 (x0)Vol(Bσ ) + o(σ n)

= |∇u|2 (x0)ωnσ
n + o(σ n).

The o(σ n) error term in the first line is integrable, and small, by the same reasoning as in
Proposition 10. So as long as |∇u|2 (x0) �= 0, we can write

(ˆ
Bσ (x0)

|∇u|2 dμ

)−1

= 1

ωnσ n |∇u|2 (x0)
(1 + o(1)).

So around points with |∇u|2 �= 0 (3) can be further written

(2 − n)

ˆ
Bσ (x0)

|∇u|2 dμ + σ

ˆ
∂Bσ (x0)

[

|∇u|2 − 2

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
]

d�

=
(

1

3(n + 2)

(
2〈Ric, π〉(x0)

|∇u|2 (x0)
− S(x0)

)

σ 2 + o(σ 2)

)ˆ
Bσ (x0)

|∇u|2 dμ.

�
The following proposition comes from variation of the map u on the target, rather than

on the domain. In [6], Proposition 2.2, this is proved using the chain rule for maps into
Riemannian simplicial complexes. In our more general setting, we do not have tools quite as
strong as the chain rule, so we resort to the triangle comparison principle.

Proposition 14 For a harmonic map u : M → X into an NPC space X and for any Q ∈ X
we have in the weak sense

1

2
�d2(u, Q) ≥ |∇u|2 .
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Proof Fix Q ∈ X and a non-negative test function η, and consider the map ut (x) = (1 −
tη(x))u(x)+ tη(x)Q. That is, ut (x) lies a fraction tη(x) of the way along the geodesic from
u(x) to Q. We will compare the energy of ut with that of u in order to prove the Proposition,
and we will use the triangle comparison principle to estimate the energy of ut .

Pick a point x ∈ M at which both the tensor π and ∇d2(u, Q) are defined, and pick
a tangent direction v ∈ TxM with |v| = 1. Let x + sv denote the image of sv under the
exponential map expx . That is, s �→ x + sv parametrizes the geodesic starting at x with
initial direction v.

Fix ε > 0 small. For the points Q, u(x), and u(x+εv) in X , let the points 0, γ (0), and γ (ε)

in R
2 be a comparison triangle. That is, |γ (0)| = d(u(x), Q), |γ (ε)| = d(u(x + εv), Q),

and |γ (ε) − γ (0)| = d(u(x + εv), u(x)). Define γ on [0, ε] by the formula

γ (sε) = (1 − s)γ (0) + sγ (ε).

Note that

γ̇ (0) = lim
ε→0

γ (sε) − γ (0)

sε
= γ (ε) − γ (0)

ε
.

Thus the magnitude |γ̇ (0)|2 approximates the directional energy |u∗v|2(x). Now define

γt (s) = (1 − tη(x + sv))γ (s).

Now we can compute the derivative of γt using the product rule, where for simplicity a
dot indicates a derivative in s (and not in t):

γ̇t (s) = (1 − tη(x + sv))γ̇ (s) − tv · ∇η(x + sv)γ (s).

And we can compute the magnitude of this derivative:

|γ̇t (s)|2 = (1 − tη(y))2 |γ̇ (s)|2 − 2t(v · ∇η(y))γ (s) · γ̇ (s) + O(t2)

= (1 − 2tη(y)) |γ̇ (s)|2 − t(v · ∇η(y))(∂s |γ |2 (s)) + O(t2).

We have

|γ̇ (0)|2 = |γ (ε) − γ (0)|2
ε2

= d2(u(x + εv), u(x))

ε2
.

We also estimate

∂s |γ |2 (0) = lim
s→0

|γ (s)|2 − |γ (0)|2
s

= |γ (ε)|2 − |γ (0)|2
ε

+ o(1).

Here o(1) indicates a quantity that tends to 0 with ε. Now we have

|γ̇t (0)|2 = (1 − 2tη(x))
d2(u(x + εv), u(x))

ε2

− t(v · ∇η(x))

(
d2(u(x + εv), Q) − d2(u(x), Q)

ε
+ o(1)

)

+ O(t2).

By the triangle comparison principle, we have

d2(ut (x + εv), ut (x))

ε2
≤ |γt (ε) − γt (0)|2

ε2
= |γ̇t (0)|2 + o(1).

Taking ε → 0 yields an estimate on the directional energy of ut :

|(ut )∗v|2 (x) ≤ (1 − 2tη(x)) |u∗v|2 (x) − t(v · ∇η(x))(v · ∇d2(u, Q)(x)) + O(t2).
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Averaging over the sphere of unit vectors at x , we get

|∇ut |2 (x) ≤ (1 − 2tη(x)) |∇u|2 (x) − t(∇η · ∇d2(u, Q))(x) + O(t2).

Finally, integrate over the domain, and recall that u is minimizing:

E(u) ≤ E(ut ) ≤ E(u) − 2t
ˆ

η |∇u|2 + t
ˆ

(�η)d2(u, Q) + O(t2).

Cancelling the E(u), dividing by t , and sending t → 0 yields
ˆ

(�η)d2(u, Q) ≥ 2
ˆ

η |∇u|2 .

�
In particular, letting η approach the characteristic function of the ball Bσ (0), we see

ˆ
Bσ

|∇u|2 dμ ≤
ˆ
Bσ

�d2(u, Q)dμ =
ˆ

∂Bσ

∂

∂r
d2(u, Q)d�.

We would like now to derive a stronger result if the target has a stronger curvature bound.

Proposition 15 For a harmonic map u : M → X into a CAT(− 1) space X and for any
Q ∈ X we have

1

2
�d2(u, Q) ≥ |∇u|2 +

(
d(u, Q) cosh d(u, Q)

sinh d(u, Q)
− 1

)
(|∇u|2 − |∇d(u, Q)|2) .

Proof The strategy for this proof is identical to that of Proposition 14. But now for the points
Q, u(x), and u(x + εv), we have comparison points inH2. We will choose polar coordinates
in H

2, identifying H2 with R
2 but with the metric ds2 = dr2 + sinh2(r)dθ2.

Take comparison points 0, γ (0), and γ (ε) in H
2 for the points Q, u(x), and u(x + εv)

in X . Define γ on [0, ε] to be the hyperbolic geodesic connecting γ (0) and γ (ε). As before,
define ut (y) to be the point a fraction tη(y) of the way along the geodesic joining u(y) to
Q, and define

γt (s) = (1 − tη(x + sv))γ (s).

Just as before, the (one-sided) derivative of γt at 0 is

γ̇t (0) = (1 − tη(x))γ̇ (0) − t(v · ∇η(x))γ (0).

The vector γ̇t (0) is in the tangent space at the point γt (0), so we must use the hyperbolic
metric at γt (0) to calculate its magnitude. Note that we are using the underlying linear
structure of our coodinate system to treat points as vectors and vice-versa, in particular
identifying all of the tangent spaces.

In the polar coordinates (r , θ) on H
2, we write γ (s) = (γ r (s), γ θ (s)). In each of the

tangent spaces toH2 we have a radial vector ∂r and a tangential vector ∂θ . The way we have
identified all of the tangent spaces is by treating the underlying manifold asR2. So the radial
vectors ∂r |γ (0) and ∂r |γt (0) are identified, but the tangential vectors ∂θ |γ (0) and ∂θ |γt (0) differ
by a scaling. Along a ray emanating from the origin the vectors 1

r ∂θ are all identified, so

∂θ |γ (0) is identified with γ r (0)
γ r
t (0) ∂θ |γt (0) = 1

1−tη(x) ∂θ |γt (0).

123



121 Page 14 of 28 B. Freidin

The vector γ (0), when treated as a vector tangent to γ (0) or γt (0), is already pointing in
the radial direction. In fact it can be written as γ r (0)∂r . Also we have

γ̇ (0) = γ̇ r (0)∂r |γ (0) + γ̇ θ (0)∂θ |γ (0).

Since the metric changes from point to point, we will use subscripts to indicate where
norms are being evaluated. Note that |γ (0)|0 = |γ (0)|γ (0) = |γ (0)|γt (0) = γ r (0) denotes
the distance from the center of the normal coordinate system. We may now rewrite γ̇t (0) in
terms of ∂r and ∂θ at γt (0):

γ̇t (0) =
[

(1 − tη(x))γ̇ r (0) − t(v · ∇η(x))γ r (0)
]

∂r |γt (0) + (1 − tη(x))γ̇ θ (0)∂θ |γ (0)

=
[

(1 − tη(x))γ̇ r (0) − t(v · ∇η(x))γ r (0)
]

∂r |γt (0) + γ̇ θ (0)∂θ |γt (0).
The norm of this vector based at γt (0) is

|γ̇t (0)|2γt (0) =
[

(1 − tη(x))γ̇ r (0) − t(v · ∇η(x))γ r (0)
]2 + sinh2

(

(1 − tη(x))γ r (0)
)(

γ̇ θ (0)
)2

.

To compute
(

γ̇ θ (0)
)2, we argue as follows. The vector γ̇ (0) when viewed as a tangent

vector at γ (0) has norm

|γ̇ (0)|2γ (0) = (

γ̇ r (0)
)2 + sinh2

(

γ r (0)
)(

γ̇ θ (0)
)2

.

Hence

(

γ̇ θ (0)
)2 = 1

sinh2
(

γ r (0)
)

(

|γ̇ (0)|2γ (0) − (

γ̇ r (0)
)2

)

.

Substituting, we have

|γ̇t (0)|2γt (0) =
[

(1 − tη(x))γ̇ r (0) − t(v · ∇η(x))γ r (0)
]2

+ sinh2
(

(1 − tη(x))γ r (0)
)

sinh2(γ r (0))

(

|γ̇ (0)|2γ (0) − (

γ̇ r (0)
)2

)

By a Taylor expansion of the sinh function we have

sinh(z) =
∞
∑

n=0

z2n+1

(2n + 1)!

sinh((1 − tη)z) =
∞
∑

n=0

(1 − tη)2n+1z2n+1

(2n + 1)!

=
∞
∑

n=0

(1 − (2n + 1)tη)z2n+1

(2n + 1)! + O(t2)

= sinh(z) − tηz cosh(z) + O(t2)

sinh2((1 − tη)z) = sinh2(z) − 2tηz sinh(z) cosh(z) + O(t2)

sinh2
(

(1 − tη(x))γ r (0)
)

sinh2
(

γ r (0)
) = 1 − 2tη(x)

γ r (0) cosh γ r (0)

sinh γ r (0)
+ O(t2).

So now we have
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|γ̇t (0)|2γt (0) = (1 − 2tη(x))
(

γ̇ r (0)
)2 − 2tγ r (0)γ̇ r (0)(v · ∇η(x))

+
(

1 − 2tη(x)
γ r (0) cosh γ r (0)

sinh γ r (0)

) (

|γ̇ (0)|2γ (0) − (

γ̇ r (0)
)2

)

+ O(t2)

= (1 − 2tη(x)) |γ̇ (0)|2γ (0) − 2tγ r (0)γ̇ r (0)(v · ∇η(x))

− 2tη(x)

(
γ r cosh γ r

sinh γ r
− 1

) (

|γ̇ (0)|2γ (0) − (

γ̇ r (0)
)2

)

+ O(t2).

The remainder of the argument follows exactly as in Proposition 14, recalling that γ r (0) =
d(u(x), Q), γ r (ε) = d(u(x + εv), Q), and thus 2γ r (0)γ̇ r (0) = v · ∇d2(u, Q)(x)+ o(1). �

We have already used (in Lemma 13) and will continue to use extensively the fact that
a harmonic map is locally Lipschitz continuous. This was shown in [6], Theorem 2.3 for
maps into simplicial complexes and in [10], Theorem 2.4.6 for maps into NPC spaces. It also
follows from our work if one takes only the weaker statements without assuming continuity,
so we include the proof here for completeness.

Proposition 16 Let u : M → X be a harmonic map from a Riemannian manifold M into
and NPC metric space X. Then u is locally Lipschitz continuous, with Lipschitz constant
depending on the energy of u and the injectivity radius of M.

Proof First, we have Eq. (3) but not the result of Lemma 13. Following that, we will have
only statement of [6], equation (2.5), which we expand near 0, rather than the full force of
Proposition 20:

σ
´
Bσ

|∇u|2 dμ´
∂Bσ

d2(u, Q)d�
≥ e−c1σ 2 = 1 + O(σ 2).

And finally, in the proof of Proposition 22 we would see

d

dσ
log

( 
Bσ

|∇u|2 dμ

)

≥ O(σ ).

Since the function d2(u, Q) is subharmonic for any Q ∈ X , the mean value inequality
from [12] says

sup
Br/2(x0)

d2(u, Q) ≤ C(1 + O(r))
 
Br (x0)

d2(u, Q)dμ.

Here the constant C depends on the dimension of M , while the O(r) term depends on the
Ricci curvatures. If M has non-negative Ricci curvatures, we may take O(r) = 0.

Now for x ∈ M , r smaller than the injectivity radius at x , and any Q ∈ X we have

sup
Br/2(x)

d2(u, Q) ≤ C(1 + O(r))
 
Br (x)

d2(u, Q)dμ

= C + O(r)

|Br (x)|
ˆ r

0

ˆ
∂Bs (x)

d2(u, Q)d�ds

≤ C + O(r)

|Br (x)|
ˆ r

0
(1 + O(s))s

ˆ
Bs (x)

|∇u|2 dμds

≤ O(r2)
 
Br (x)

|∇u|2 dμ.
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Fix x0 ∈ M and σ smaller than its injectivity radius. For x1, x2 ∈ Bσ/8(x0) we have
d(x1, x2) < σ/4. Take Q to be the midpoint of u(x1) and u(x2). Note that

d2(u(x1), u(x2)) ≤ 2d2(u(x1), Q) + 2d2(u(x2), Q).

Applying the above inequality around xi for i = 1, 2 with radius r = 2d(x1, x2), we have

d2(u(xi ), Q) ≤ O(r2)
 
Br (xi )

|∇u|2 dμ.

Integrating the inequality from Proposition 22 gives
 
Bσ/2(xi )

|∇u|2 dμ ≥ (1 + O(σ 2))

 
Br (xi )

|∇u|2 dμ.

Hence

d2(u(xi ), Q) ≤ O(r2)(1 + O(σ 2))

 
Bσ/2(xi )

|∇u|2 dμ

≤ O(r2)(1 + O(σ 2))
∣
∣Bσ/2(xi )

∣
∣

ˆ
Bσ/2(x0)

|∇u|2 dμ.

This O(r2) term we can say is less than some Cr2 = C
4 d

2(x1, x2). Putting everything
together yields, for some constant C(σ ) depending on σ ,

d2(u(x1), u(x2))

d2(x1, x2)
≤ C(σ )

ˆ
Bσ (x0)

|∇u|2 dμ.

As this holds for any x1, x2 ∈ Bσ/8(x0), this gives a local Lipschitz bound, and it can be seen
how the bound depends on the energy of u as well as the injectivity radius (i.e. distance to
the boundary). �

4 A Bochner formula

This section of the paper will first give an asymptotic expansion of the usual monotonicity
formula for harmonic maps before deriving the mean value property that will lead to our
main theorem.

For most of this section, we will be working around a single fixed point x0 ∈ M , and
computing in normal coordinates around x0. So until we reach Proposition 22, fix x0 to be a
Lebesgue point for π and such that |∇u|2 (x0) �= 0. In a neighborhood of x0, identify points
x ∈ M with vectors in Tx0M via the exponential map, in particular identifying x0 with 0.
Also for simplicity of notation, we will use Bσ to denote Bσ (x0) = Bσ (0).

Now define

E(σ ) =
ˆ
Bσ

|∇u|2 dμ.

And for a point Q ∈ X define

I (σ ) =
ˆ

∂Bσ

d2(u, Q)dμ.
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We would like to choose the point Q ∈ X that minimizes the integral I (σ ), at least
asymptotically as σ → 0. Since harmonicmaps are locally Lipschitz continuous (c.f. [6,10]),
we will always take Q = u(x0).

We will use frequently expansions of E(σ ) and I (σ ). For E(σ ), we will take advantage
of x0 being a Lebesgue point for |∇u|2 to say

E(σ ) = |∇u|2 (0)Vol(Bσ ) + o(σ n) = ωn |∇u|2 (0)σ n + o(σ n).

For I (σ ), we first work only at a single point x to derive a pointwise expression for d2(u, Q)

before arriving at an expansion of I (σ ).

Lemma 17 For a harmonic map u : M → X and almost every x0 ∈ M,

d2(u(x), u(0)) = πi j (0)x
i x j + e(x).

Here e(x) depends on the basepoint 0 aswell as x near 0, but e(x)|x |2 can be bounded independent
of both x and 0. Integrating e(x)

|x |2 along concentric spheres the quantity tends to 0 at almost

every basepoint:

I (σ ) = ωn |∇u|2 (0)σ n+1 + o(σ n+1).

Proof We recall a description of the directional derivatives from [10], Lemma 1.9.4 for almost
every direction Z :

|u∗Z |2 (0) = lim
ε→0

d2(u(εZ), u(0))

ε2
.

We also recall that the pull back tensor π satisfies

|u∗Z |2 (0) = πi j (0)Z
i Z j .

Hence the quantity

d2(u(εZ), u(0))

ε2
− πi j (0)Z

i Z j

tends to 0 as ε → 0 for almost every direction Z . Say |Z | = 1, and letting x = εZ we define

e(x) = d2(u(x), u(0)) − πi j (0)x
i x j .

Since u is locally Lipschitz, we can say e(x)
|x |2 is bounded independent of |x | and the

basepoint 0. Integrating over a sphere of radius σ we see

I (σ ) = ωn |∇u|2 (0)σ n+1 +
ˆ

∂Bσ

e(x)d�.

The quantity 1
σ n+1

´
∂Bσ

e(x)d� measures the difference between the σ -approximate
energy density at 0 and the actual energy density. This difference tends towards 0 at almost
every point 0 ∈ M . Together with the boundedness property, this shows

I (σ ) = ωn |∇u|2 (0)σ n+1 + o(σ n+1).

�
For CAT(− 1) targets wewill also need to understand∇d(u, Q). Sincewe expect the same

result whether X is CAT(− 1) or just NPC, and the computations are easier if we compare
to Euclidean space, we will only really use the weaker assumption that X is NPC.
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Lemma 18 For a harmonic map u : M → X and almost every x0 ∈ M,ˆ
Bσ

d2(u, Q) |∇d(u, Q)|2 dμ = ωn

n + 2
|π |2 (0)σ n+2 + o(σ n+2).

Here |π |2 at the center of normal coordinates is given by the formula πi jπi j .

Proof For a point x ∈ Bσ and a unit vector v ∈ Tx0M , consider the points u(0) = Q, u(x),
u(x + εv), and u((1− ε)(x + εv)). Construct a subembedding inR2, i.e. four points 0, ũ(x),
ũ(x +εv), and ũ((1−ε)(x +εv)) such that d(u(x +εv), Q) ≤ |ũ(x + εv)|, d(u(1−ε)(x +
εv), u(x)) ≤ |ũ((1 − ε)(x + εv)) − ũ(x)| and all other corresponding distances are equal.

Now extend ũ to be an affine map that interpolates the points ũ(x), ũ(x + εv) and ũ((1−
ε)(x + εv)). It will be given by

ũ(t x + sεv) = t ũ(x) + s(ũ(x + εv) − ũ(x))

+ t − 1

ε
((1 − ε)ũ(x + εv) − ũ((1 − ε)(x + εv)).

Now we compute

v · ∇d2(u, Q)(x) = lim
s→0

d2(u(x + sεv), Q) − d2(u(x), Q)

sε

≤ lim
s→0

|ũ(x + sεv)|2 − |ũ(x)|2
sε

= 2ũ(x) · ũ(x + εv) − ũ(x)

ε

= 2(x · ∇ũ(x)) · (v · ∇ũ(x))

= 1

1 − ε

(

|x · ∇ũ(x)|2 + (1 − ε)2 |v · ∇ũ(x)|2

− |((1 − ε)v − x) · ∇ũ(x)|2
)

.

The first term is simply |x · ∇ũ(x)|2 = |ũ(x)|2 = d2(u(x), Q) = πi j (x)xi x j +e(x). The

second term is (1 − ε)2 |v · ∇ũ(x)|2 = (1 − ε)2
( |ũ(x+εv)−ũ(x)|2

ε2
+ o(1)

)

= |u∗v|2 (x) +
o(1). The last term is |ũ((1−ε)(x+εv))−ũ(x)|2

ε2
+ o(1) ≥ |u∗((1 − ε)v − x)|2 (x) + o(1) =

|u∗(v − x)|2 (x) + o(1). Putting this all together and sending ε → 0, recall Lemma 17 and
see

v · ∇d2(u, Q)(x) ≤ d2(u(x), Q) + |u∗v|2 (x) − |u∗(v − x)|2 (x)

= 2πi j (x)x
iv j + e(x).

Considering taking a partial derivative in the opposite direction, −v, we would have

(−v) · ∇d2(u, Q)(x) ≤ −2πi j (x)x
iv j + e(x).

Hence we have an equality! The sign of the e(x) term does not matter, as it is sufficiently
small, so it will become a little-oh term upon integration. Now we use Proposition 5

∣
∣∇d2(u, Q)

∣
∣
2
(x) = 1

ωn

ˆ
∂B1

(v · ∇d2(u, Q))2(x)dS(v)

= 1

ωn

ˆ
∂B1

4πi j (x)πk�(x)x
iv j xkv�dS(v) + e(x)
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= 4πik(x)π jk(x)x
i x j + e(x)ˆ

Bσ

∣
∣∇d2(u, Q)

∣
∣
2
dμ = 4

ˆ
Bσ

πik(x)π jk(x)x
i x j (1 + O(σ 2))dx + o(σ n+2)

= 4
ˆ
Bσ

πik(0)π jk(0)x
i x j dx + o(σ n+2)

= 4
ωn

n + 2
|π |2 (0)σ n+2 + o(σ n+2).

�
Now we will derive an inequality relating E , I , and

∣
∣ ∂u
∂r

∣
∣
2
:

Lemma 19 Let u : M → X be a harmonic map into a metric space X. If X is NPC, then

E(σ ) ≤
(

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

) 1
2

.

If X is CAT(− 1), then

E(σ ) ≤
[

1 + |π |2 (0) − |∇u|4 (0)

3(n + 2) |∇u|2 (0)
σ 2 + o(σ 2)

](

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

) 1
2

.

Proof First the triangle inequality gives
∣
∣
∣
∣

∂

∂r
d(u, Q)

∣
∣
∣
∣
≤

∣
∣
∣
∣

du

dr

∣
∣
∣
∣
. (4)

If X is NPC, apply the divergence theorem and the Cauchy–Schwarz inequality to Propo-
sition 14:

E(σ ) ≤ 1

2

ˆ
Bσ

�d2(u, Q)dμ

= 1

2

ˆ
∂Bσ

∂

∂r
d2(u, Q)d�

=
ˆ

∂Bσ

d(u, Q)
∂

∂r
d(u, Q)d�

≤
(

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

) 1
2

.

If X is CAT(− 1), apply the divergence theorem and Cauchy–Schwarz to Proposition 15:

1

2
�d2(u, Q) = d(u, Q)�d(u, Q) + |∇d(u, Q)|2

≥ d(u, Q) cosh d(u, Q)

sinh d(u, Q)
|∇u|2 −

(
d(u, Q) cosh d(u, Q)

sinh d(u, Q)
− 1

)

|∇d(u, Q)|2

|∇u|2 ≤ tanh d(u, Q)�d(u, Q) + |∇d(u, Q)|2

E(σ ) =
ˆ
Bσ

|∇u|2

≤
ˆ
Bσ

tanh d(u, Q)�d(u, Q) +
ˆ
Bσ

|∇d(u, Q)|2
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=
ˆ

∂Bσ

tanh d(u, Q)
∂

∂r
d(u, Q) +

ˆ
Bσ

tanh2 d(u, Q) |∇d(u, Q)|2

≤
(ˆ

∂Bσ

tanh2 d(u, Q)

) 1
2
(ˆ

∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
) 1

2

+
ˆ
Bσ

d2(u, Q) |∇d(u, Q)|2 +O(σ n+4).

Now, let’s compare
´
∂Bσ

tanh2 d(u, Q)with I (σ ). We have tanh2(z) = z2− 2
3 z

4+O(z6),
so

1

I (σ )

ˆ
∂Bσ

tanh2 d(u, Q) = 1 − 2

3I (σ )

ˆ
∂Bσ

d4(u, Q) + O(σ 4)

= 1 − 2(2 |π |2 (0) + |∇u|4 (0))

3(n + 2) |∇u|2 (0)
σ 2 + o(σ 2).

From Lemma 18 we haveˆ
Bσ

d2(u, Q) |∇d(u, Q)|2 = ωn

n + 2
|π |2 (0)σ n+2 + o(σ n+2)

=
[

|π |2 (0)

(n + 2) |∇u|2 (0)
σ 2 + o(σ 2)

]

E(σ ).

Moving this term to the other side and combining all the ingredients,
[

1 − |π |2 (0)

(n + 2) |∇u|2 (0)
σ 2 + o(σ 2)

]

E(σ ) ≤
[

1 − 2 |π |2 (0) + |∇u|4 (0)

3(n + 2) |∇u|2 (0)
σ 2

+o(σ 2)

] (

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
) 1

2

.

And hence

E(σ ) ≤
[

1 + |π |2 (0) − |∇u|4 (0)

3(n + 2) |∇u|2 (0)
σ 2 + o(σ 2)

](

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
) 1

2

.

�
It was shown in [6], equation (2.5) that for a suitable constant c1 ≥ 0, the function

ec1σ
2 σ E(σ )

I (σ )

is non-decreasing in σ . They used the monotnicity of this function to define the order of u at
x0 as

ord(x0) = lim
σ→0

ec1σ
2 · σ E(σ )

I (σ )
.

At points where |∇u|2 �= 0, [6] showed that u has order 1. This can also be seen via our
expansions of E and I from the beginning of this section. We can now see how the ratio
σ E(σ )
I (σ )

behaves asymptotically near σ = 0:

Proposition 20 Let u : M → X be a harmonic map into NPC space. Then

σ E(σ )

I (σ )
≥ 1 + 2〈Ric, π〉(0)

3(n + 2) |∇u|2 (0)
σ 2 + o(σ 2).
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If X is CAT(− 1), then

σ E(σ )

I (σ )
≥ 1 + 2〈Ric, π〉(0) + |∇u|4 (0) − |π |2 (0)

3(n + 2) |∇u|2 (0)
σ 2 + o(σ 2).

Proof First note that

lim
σ→0

σ E(σ )

I (σ )
= lim

σ→0
e−c1σ 2

ec1σ
2 σ E(σ )

I (σ )

= lim
σ→0

e−c1σ 2
lim
σ→0

ec1σ
2 σ E(σ )

I (σ )

= 1 · ord(x0).

For an L∞ function f on M , compute

d

dσ

ˆ
∂Bσ

f d� =
ˆ

∂Bσ

∂

∂r
( f

√
g)dS + n − 1

σ

ˆ
Bσ

f
√
gdS

=
ˆ

∂Bσ

∂ f

∂r
d� − 1

3

ˆ
∂Bσ

f (x)
Ric0(x, x)

|x | dS

+ n − 1

σ

ˆ
∂Bσ

f d� + O(σ 2)

ˆ
∂Bσ

f dS.

Applying this to f (x) = d2(u(x), Q) = d2(u(x), u(0)), we compute a logarithmic deriva-
tive:

I ′(σ )

I (σ )
= 1

I (σ )

ˆ
∂Bσ

∂

∂r
d2(u, Q)d� + n − 1

σ
+ O(σ 2)

− 1

3σ I (σ )

ˆ
∂Bσ

d2(u, Q)Ric0(x, x)dS.

Using Lemma 17 to rewrite d2(u, Q) and then part 3 from Proposition 5, computeˆ
∂Bσ

d2(u, Q)Ric0(x, x)dS =
ˆ

∂Bσ

(πi j (0)x
i x j + e(x))Rk�(0)x

kx�dS

= ωn

n + 2

(

2〈Ric, π〉(0) + S(0) |∇u|2 (0)
)

σ n+3 + o(σ n+3).

Combining, see

I ′(σ )

I (σ )
= 1

I (σ )

ˆ
∂Bσ

∂

∂r
d2(u, Q)d� + n − 1

σ

− 1

3(n + 2)

(
2〈Ric, π〉(0)

|∇u|2 (0)
+ S(0)

)

σ + o(σ ).

Now compute the logarithmic derivative of E(σ ):

E ′(σ )

E(σ )
= (E(σ ))−1

ˆ
∂Bσ

|∇u|2 d�

= n − 2

σ
+ 2

E(σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

+ 1

3(n + 2)

(
2〈Ric, π〉(0)

|∇u|2 (0)
− S(0)

)

σ + o(σ ).
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This last line comes from Lemma 13. Now combine these:

d

dσ
log

(
σ E(σ )

I (σ )

)

= 1

σ
+ E ′(σ )

E(σ )
− I ′(σ )

I (σ )

= −(I (σ ))−1
ˆ

∂Bσ

∂

∂r
(d2(u, Q))d�

+ 2(E(σ ))−1
ˆ

∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

+ 1

3(n + 2)
· 4〈Ric, π〉(0)

|∇u|2 (0)
σ + o(σ ).

From Lemma 19 we have, for some constant C depending on the curvature bound for X ,

E(σ ) ≤ (

1 + Cσ 2 + o(σ 2)
)

(

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

) 1
2

2

E(σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d� ≥ 2
(

1 − Cσ 2 + o(σ 2)
)

(

1

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

) 1
2

.

And from Cauchy–Schwarz, we get

1

I (σ )

ˆ
∂Bσ

∂

∂r
(d2(u, Q))d� ≤ 2

(

1

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

) 1
2

.

Note also that 1
I (σ )

´
∂Bσ

∣
∣ ∂u
∂r

∣
∣
2
d� = σ−2 + o(σ−2), and so conclude

d

dσ
log

(
σ E(σ )

I (σ )

)

≥
(

4〈Ric, π〉(0)
3(n + 2) |∇u|2 (0)

− 2C

)

σ + o(σ ).

Integrating over σ , recall Lemma 9 and see

log

(
σ E(σ )

I (σ )

)

− log(ord(0)) ≥
(

2〈Ric, π〉(0)
3(n + 2) |∇u|2 (0)

− C

)

σ 2 + o(σ 2).

Recall ord(x0) = 1 and et = 1 + t + O(t2). Taking exponentials now shows

σ E(σ )

I (σ )
≥ 1 +

(
2〈Ric, π〉(0)

3(n + 2) |∇u|2 (0)
− C

)

σ 2 + o(σ 2).

The value of C for NPC or CAT(− 1) targets that comes from Lemma 19 yields the desired
results. �

As a consequence of the order growth we have the following useful lemma:

Lemma 21 Let u : M → X be a harmonic map. If X is NPC, we have

σ

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d� ≥
(

1 + 2〈Ric, π〉(0)
3(n + 2) |∇u|2 (0)

σ 2 + o(σ 2)

)

E(σ ).

If X is CAT(− 1) then we have

σ

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d� ≥
(

1 + 2〈Ric, π〉(0) + 3 |∇u|4 (0) − 3 |π |2 (0)

3(n + 2) |∇u|2 (0)
σ 2 + o(σ 2)

)

E(σ ).
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Proof There are constantsC (coming from Lemma 19) andC ′ (coming from Proposition 20)
that depend on the curvature bound of X such that

E(σ ) ≤ (1 + Cσ 2 + o(σ 2))

(

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

) 1
2

σ E(σ )

I (σ )
≥ 1 + C ′σ 2 + o(σ 2).

Combining these, see

σ

(

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

) 1
2

≥ (1 − Cσ 2 + o(σ 2))σ E(σ )

≥ (1 + (C ′ − C)σ 2 + o(σ 2))I (σ )

σ

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d� ≥ (1 + (C ′ − C)σ 2 + o(σ 2))

(

I (σ )

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d�

) 1
2

≥ (1 + (C ′ − 2C)σ 2 + o(σ 2))E(σ ).

Supplying the appropriate constants yields the desired results. �

Now we are prepared to prove the mean value inequality that will lead to our main result.

Proposition 22 Let u : M → X be a harmonic map, and let x0 ∈ M be almost any point. If
X is NPC then 

Bσ (x0)
|∇u|2 dμ ≥ |∇u|2 (x0) + 〈Ric, π〉(x0)

n + 2
σ 2 + o(σ 2).

If X is CAT(− 1) then
 
Bσ (x0)

|∇u|2 dμ ≥ |∇u|2 (x0) + 〈Ric, π〉(x0) + |∇u|4 (x0) − |π |2 (x0)

n + 2
σ 2 + o(σ 2).

Proof If |∇u|2 (x0) = 0, then the inequality holds trivially. Let x0 ∈ M with |∇u|2 (x0) �= 0
be a point where the previous propositions and lemmas apply and identify x0 with 0 ∈ Tx0M .
Compute, setting for simplicity Vσ = Vol(Bσ (x0)):

d

dσ

 
Bσ

|∇u|2 dμ = 1

V 2
σ

(

Vσ

ˆ
∂Bσ

|∇u|2 d� − V ′
σ E(σ )

)

= 1

Vσ

[ˆ
∂Bσ

|∇u|2 d� − n

σ
E(σ )

+
(

1

3(n + 2)
S(0)σ + O(σ 2)

)

E(σ )
]

= 1

Vσ

[

2
ˆ

∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d� − 2

σ
E(σ )

+
(

1

3(n + 2)
· 2〈Ric, π〉(0)

|∇u|2 (0)
σ + o(σ )

)

E(σ )

]
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= 2

σVσ

[

σ

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d� − E(σ )

+
( 〈Ric, π〉(0)
3(n + 2) |∇u|2 (0)

σ 2 + o(σ 2)

)

E(σ )

]

.

The comparison of Vσ and V ′
σ comes from Proposition 6. Recall Lemma 21 with a constant

A depending on the curvature of X , and apply it as follows:

σ

ˆ
∂Bσ

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

d� ≥ (1 + Aσ 2 + o(σ 2))E(σ )

d

dσ

 
Bσ

|∇u|2 dμ ≥ 2

σVσ

(( 〈Ric, π〉(0)
3(n + 2) |∇u|2 (0)

+ A

)

σ 2 + o(σ 2)

)

E(σ )

d

dσ
log

 
Bσ

|∇u|2 dμ ≥
(

2〈Ric, π〉(0)
3(n + 2) |∇u|2 (0)

+ 2A

)

σ + o(σ ).

Integrating with respect to σ , recall that we are working at a Lebesgue point for |∇u|2
and see

 
Bσ

|∇u|2 dμ ≥ |∇u|2 (0) exp

(( 〈Ric, π〉(0)
(n + 2) |∇u|2 (0)

+ A

)

σ 2 + o(σ 2)

)

= |∇u|2 (0)

(

1 +
( 〈Ric, π〉(0)

(n + 2) |∇u|2 (0)
+ A

)

σ 2 + o(σ 2)

)

.

Substituting the appropriate value for A from Lemma 21 yields the desired result. �

And now we’d like to turn the mean value inequality into a differential inequality.

Proposition 23 Let f and ϕ be L∞ functions on a relatively compact Riemannian domain
� of dimension n and suppose f satisfies the integral inequality

 
Bσ (x0)

f dμ ≥ f (x0) + ϕ(x0)σ
2 + o(σ 2).

Here
ffl
Bσ (x0

f dμ denotes the average value of f over the ball Bσ (x0). Also recall that

o(σ 2) denotes a function bounded by a constant times σ 2 and such that o(σ 2)

σ 2 → 0 almost
everywhere. Then f satisfies the weak differential inequality

1

2
� f ≥ (n + 2)ϕ.

Proof First we will need a computation about smooth functions. For a smooth function h on
�, take normal coordinates about x0 ∈ �, and the Taylor expansion of h about x0 in these
coordinates is

h(x) = h(0) + ∂i h(0)xi + 1

2
∂i∂ j h(0)xi x j + O(|x |2).

Now compute the average of h on Bσ (x0), recalling that the volume density in normal
coordinates is

√
g = 1+O(|x |2) and that the Riemannian volume of Bσ isωnσ

n+O(σ n+2):
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Bσ

hdμ = h(0) + ∂i h(0)
 
Bσ

xi dμ + 1

2
∂i∂ j h(0)

 
Bσ

xi x j dμ + O(σ 3)

= h(0) + ∂i h(0)
 
Bσ

xi dx + 1

2
∂i∂ j h(0)

 
Bσ

xi x j dx + O(σ 3).

Integrating nowwith respect to a Euclidean metric,
ffl
Bσ

xi dx = 0, and Proposition 5 implies

 
Bσ

1

2
∂i∂ j h(0)xi x j dx = 1

2(n + 2)
σ 2∂i∂i h(0).

And in normal coordinates, ∂i∂i h(0) = �h(0), so
 
Bσ (x0)

hdμ = h(x0) + 1

2(n + 2)
σ 2�h(x0) + O(σ 3).

This O(σ 3) term depends on the geometry of � as well as higher order information about
the function h. Note that this formula, when combined with the hypothesis, immediately
yields the result for the smooth function h.

For f ∈ L1, we will integrate against a smooth test function η. It will be useful to be able
to move an average value operator from one function onto the other. In order to do so, we
must first compare volumes of balls centered at different points:

|Bσ (p)| = ωnσ
n
(

1 − S(p)

6(n + 2)
σ 2 + O(σ 3)

)

1

|Bσ (x)| − 1

|Bσ (y)| = 1

ωnσ n

(
S(x) − S(y)

6(n + 2)
σ 2 + O(σ 3)

)

= O(d(x, y)σ 2−n).

For σ < 1
2d(supp(η), ∂�) we can make sense of the following:

ˆ
η(x)

( 
Bσ (x)

f (y)dμ(y)

)

dμ(x) =
ˆ
d(x,y)<σ

1

|Bσ (x)|η(x) f (y)dμ(y)dμ(x)

=
ˆ

f (y)

(
1

|Bσ (y)| + O(σ 3−n)

) ˆ
Bσ (y)

η(x)dμ(x)dμ(y)

=
ˆ

f (y)

( 
Bσ (y)

η(x)dμ(x) + O(σ 3)η(y)

)

dμ(y).

Now since η is smooth it satisfies
 
Bσ (x)

ηdμ = η(x) + 1

2(n + 2)
�η(x)σ 2 + O(σ 3).

Now we are in a position to integrate �η against f :
ˆ

f �ηdμ = 2(n + 2)

σ 2

ˆ
f (x)

( 
Bσ (x)

ηdμ − η(x) + O(σ 3)

)

dμ(x)

= 2(n + 2)

σ 2

ˆ
η(y)

( 
Bσ (y)

f dμ + O(σ 3) f (y) − f (y)

)

dμ(y) + O(σ )

≥ 2(n + 2)
ˆ

η(y)(ϕ(y) + o(1))dμ(y) + O(σ ).
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Taking σ → 0 yields the desired weak inequalityˆ
f �ηdμ ≥

ˆ
2(n + 2)ϕηdμ.

�
Proof of Theorem 1 From Proposition 22 we have 

Bσ (x)
|∇u|2 dμ ≥ ϕ(x).

Here the function ϕ depends on the Ricci curvatures of M and the curvature bound for X .
Applying Proposition 23, we get our result. �
Remark 24 Compare to the Bochner formula of [5]:

1

2
� |∇u|2 = |∇du|2 + 〈RicM (∇u),∇u〉 − 〈RX (∇u,∇u)∇u,∇u〉.

The terms 〈Ric, π〉 that have appeared are exactly analogous to the 〈Ric(∇u),∇u〉 that
appears in the classical formula. In addition, when the target is a manifold of curvature −1,
the sectional curvature term 〈RX (∇u,∇u)∇u,∇u〉 simplifies to gi j gk�(πi jπk� −πikπ j�) =
|∇u|4 − |π |2.
Corollary 25 Let u : M → X be a harmonicmap froma compactmanifold M of non-negative
Ricci curvatures into an NPC space X. Then |∇u|2 is constant. If the Ricci curvatures of M
are positive somewhere, then u is a constant map. If X is CAT(− 1) and u is not a constant
map, then the rank of π is almost everywhere equal to one.

Proof Theorem 1 implies that over M we have

� |∇u|2 ≥ 0.

Since M is compact, ˆ
M

� |∇u|2 dμ = 0.

Hence we must have � |∇u|2 = 0 almost everywhere, so |∇u|2 is constant.
If in addition the Ricci curvatures of M are positive at a single point of M , there is an

open set � where the Ricci curvatures are strictly positive. Theorem 1 now says that over �

there is m > 0 so that

1

2
� |∇u|2 ≥ m |∇u|2 .

Since � |∇u|2 = 0, we must have |∇u|2 ≡ 0 on �. Since |∇u|2 is constant, it must be 0 on
all of M . That is, u is a constant map.

If X is CAT(− 1) then the vanishing of |∇u|4−|π |2 implies thatπ has at most one positive
eigenvalue. Since π is positive semi-definite, if it is not zero then it has rank one. �
Proof of Corollary 2 Let� be a closed hyperbolic surface.Amap u : � → X being conformal
means that the pull-back tensor satisfies π = λg for a non-negative function λ, so that
|∇u|2 = 2λ. If u is harmonic and X is CAT(− 1) then Theorem 1 says

�λ ≥ −2λ + 4λ2 − 2λ2 = 2λ(λ − 1).
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At a point where λ is maximized, �λ ≤ 0. At such a point,

λ ≤ 1.

�
In the case that X is CAT(− 1) and so π has rank one, we expect that the map u should

map into a geodesic on X . We will approach this problem in a later paper, as it will require
several new tools. In the meantime, for a harmonic map from a flat torus into an NPC space,
we can analyze all the inequalities we used in order to show the map is totally geodesic.
Since the energy density is constant, if it is not identically 0 then every point has order 1. The
following arguments (essentially those presented in [6] Lemma 3.2) show that such a map
must be totally geodesic:

Proof Corollary 3 If M is compact and flat, then in normal coordinates around any point, the
metric is constant. Thus the formula (3) is simply

(2 − n)

ˆ
Bσ (x)

|∇u|2 dx + σ

ˆ
Bσ (x)

[

|∇u|2 − 2

∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2
]

dS = 0.

The further lemmas and propositions then follow with no error terms. In particular, since
|∇u|2 is constant by Theorem 1, we have

0 = d

dσ

 
Bσ

|∇u|2 dμ ≥ 0.

Hence all of the inequalities used must be equalities. The Cauchy–Schwarz inequality gives
a constant (depending on σ ) so that on ∂Bσ we have

∂

∂r
d(u, Q) = cσ d(u, Q).

Equation (4) gives almost everywhere
(

∂

∂r
d(u, Q)

)2

=
∣
∣
∣
∣

∂u

∂r

∣
∣
∣
∣

2

.

And from
´
∂Bσ

d2(u, Q)dS = σ 2
´
∂Bσ

∣
∣ ∂u
∂r

∣
∣
2
dS we have cσ = 1

σ
. Now we see

∣
∣
∣
∣
u∗

(
∂

∂r

)∣
∣
∣
∣
= ∂

∂r
d(u, Q) = 1

σ
d(u, Q).

First note that for x near 0 we calculate

d(u(x), u(0)) =
ˆ x

0

∂

∂r
d(u, Q)dt =

ˆ x

0

∣
∣
∣
∣
u∗

(
∂

∂r

)∣
∣
∣
∣
dt .

And this last integral calculates the length of the image of the geodesic from 0 to x . Hence
the image of this geodesic segment is a geodesic in X . Now from

∂

∂r
d(u(x), u(0)) = 1

|x |d(u(x), u(0))

conclude that the image of the unit speed geodesic from 0 to x is a constant speed geodesic
in X . Since harmonic maps into NPC spaces are locally Lipschitz continuous (c.f. [6,10]),
the speed of the image geodesics in X depends only on the direction of the geodesics in M .
Hence u is totally geodesic. �
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Classically, the Bochner formula proves that any map from a space of non-negative Ricci
curvature to a space of non-positive curvature is totally geodesic. The methods of this paper
are not quite strong enough to detect this when the domain is not flat. The sectional curvatures
of the domain influence many of the o(σ k) error terms. In order to show the map is totally
geodesic, we need all of our inequalities to be equalities, but these error terms interfere. We
nonetheless phrase this as a conjecture.

Conjecture 26 Any harmonic map from a Riemannian manifold of non-negative Ricci cur-
vatures to an NPC metric space is totally geodesic.
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