
Calc. Var. (2019) 58:93
https://doi.org/10.1007/s00526-019-1541-0 Calculus of Variations

Some remarks on nodal geometry in the smooth setting

Bogdan Georgiev1 ·Mayukh Mukherjee2

Received: 15 July 2017 / Accepted: 29 March 2019 / Published online: 8 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We consider a Laplace eigenfunction ϕλ on a smooth closed Riemannian manifold, that
is, satisfying −�ϕλ = λϕλ. We introduce several observations about the geometry of its
vanishing (nodal) set and corresponding nodal domains. First, we give asymptotic upper
and lower bounds on the volume of a tubular neighbourhood around the nodal set of ϕλ.
This extends previous work of Jakobson and Mangoubi in case (M, g) is real-analytic. A
significant ingredient in our discussion are some recent techniques due to Logunov (cf. Ann
Math (2) 187(1):241–262, 2018). Second, we exhibit some remarks related to the asymptotic
geometry of nodal domains. In particular, we observe an analogue of a result of Cheng in
higher dimensions regarding the interior opening angle of a nodal domain at a singular point.
Further, for nodal domains �λ on which ϕλ satisfies exponentially small L∞ bounds, we
give some quantitative estimates for radii of inscribed balls.

Mathematics Subject Classification Primary 58J50; Secondary 35P15, 35P20, 35R0, 53B20

1 Introduction

In this note we consider a closed n-dimensional Riemannian manifold M with smooth metric
g, and the Laplacian (or the Laplace-Beltrami operator) −� on M .1 For an eigenvalue λ of
−� and a corresponding eigenfunction ϕλ satisfying

− �ϕλ = λϕλ, (1)

we recall that a nodal domain �λ is a connected component of the complement of the nodal
set Nϕλ := {x ∈ M : ϕλ(x) = 0}. We will denote Nϕλ by Nϕ via a slight abuse of notation.

1 We use the analyst’s sign convention, namely, −� is positive semidefinite.
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Before we formulate our main questions, let us briefly remark on notation: throughout the
paper, |S| denotes the volume of the set S. The letters c,C etc. are used to denote constants
dependent on (M, g) and independent of λ. The values of such c,C etc. can vary from
line to line. Lastly, the expression X � Y means X ≤ CY for some positive constant C ,
with an analogous meaning for �, and when X and Y are comparable up to constants (i.e.,
X � Y � X ), we write X ∼ Y .

1.1 Tubular neighbourhoods

Let Tϕ,δ := {x ∈ M : dist(x, Nϕ) < δ}, which is the δ-tubular neighbourhood of the nodal
set Nϕ . We are interested in deriving upper and lower bounds on the volume of Tϕ,δ in terms
of λ and δ in the setting of a smooth manifold. Before investigating the question further, let
us begin with a brief overview and motivation.

We first recall the problem of estimating the size of the (n − 1)-Hausdorff measure of the
nodal set—the question was raised by Yau (Problem #74, [Yau82]) who conjectured that

C1
√

λ ≤ Hn−1(Nϕλ) ≤ C2
√

λ, (2)

where C1,C2 are constants that depend on (M, g).
In a celebrated paper (cf. [9]), Donnelly and Fefferman were able to confirm Yau’s con-

jecture when (M, g) is real-analytic. Roughly speaking, their techniques relied on analytic
continuation and delicate estimates concerning growth of polynomials.

Later on, in the smooth case, the question of Yau was extensively investigated further:
to name a few, we refer to the works by Sogge-Zelditch, Colding-Minicozzi, Mangoubi,
Hezari-Sogge, Hezari-Riviere, etc (cf. [7,20,21,31,36,37]) in terms of the lower bound, and
Hardt-Simon, Dong, Lin, etc (cf. [8,19,24]) in terms of the upper bound; for related work, see
[1], and we also refer to [39] for a far-reaching survey. As an outcome, non-sharp estimates
were obtained. The corresponding methods of study were quite broad in nature, varying from
local elliptic PDE estimates on balls of size ∼ 1/

√
λ (also referred to as “wavelength” balls)

to global techniques studying the wave equation.
Recently, in [25,26], Logunov made a significant breakthrough which delivered the lower

bound in Yau’s conjecture for closed smooth manifolds (M, g) as well as a polynomial upper
bound in terms of λ. In a nutshell, his methods utilized delicate combinatorial estimates
based on doubling numbers of harmonic functions—as pointed out in [25]-[26], some of
these techniques were also developed in collaboration with Malinnikova (cf. [27] as well).

Now, with the perspective of Yau’s conjecture, one can ask about further “stability” prop-
erties of the nodal set—for example, how is the volume of the tubular neighbourhood Tϕ,δ of
radius δ around the nodal set behaving in terms of λ and δ? According to Jakobson-Mangoubi
(see Acknowledgments, [22]), it seems that initially such a question was posed by M. Sodin.

In the real analytic setting, the question about the volume of a tubular neighbourhood Tϕ,δ

was studied by Jakobson and Mangoubi (cf. [22]). They were able to obtain the following
sharp bounds:

Theorem 1.1 [22] Let M be a real analytic closed Riemannian manifold. Then we have
√

λδ � |Tϕ,δ| �
√

λδ, (3)

where δ � 1√
λ
.

As remarked by Jakobson and Mangoubi, such bounds describe a certain regularity prop-
erty of the nodal set—the upper bound suggests that the nodal set does not have “too many
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needles or very narrow branches”; the lower bound hints that the nodal set “does not curve
too much”.

Concerning the proof, Theorem 1.1 extends the techniques of Donnelly and Fefferman
from [9] by adding an extra parameter δ to the proofs of [9], and verifying that the key
arguments still hold.

With that said, it seems natural to ask the question of obtaining similar bounds on the
tubular neighbourhood in the smooth case as well—in this setting one can no longer fully
exploit the analytic continuation and polynomial approximation techniques in the spirit of
Donnelly and Fefferman.

Our first result states that in the smooth setting we have the following:

Theorem 1.2 Let (M, g) be a smooth closed Riemannian manifold and let ε > 0 be a
given sufficiently small number. Then there exist constants r0 = r0(M, g) > 0 and C1 =
C1(ε, M, g) > 0 such that

|Tϕ,δ| ≥ C1λ
1/2−εδ, (4)

where δ ∈ (0, r0√
λ
) is arbitrary.

On the other hand, there exist positive real numbers κ = κ(M, g) and C2 = C2(M, g),
such that

|Tϕ,δ| ≤ C2λ
κδ, (5)

where again δ can be any number in the interval (0, r0√
λ
).

Unfortunately, as one sees in the course of the proof of (4), the constant C1 goes to 0 as ε

approaches 0.
Our methods for proving Theorem 1.2 involve a combination of the tools of [9–22], along

with some new insights provided by [25,26] and [27]. Particularly, in view of the lower bound
in Yau’s conjecture and of the results in [22], it seems that the bound (4) is still not optimal.
Of course, the upper bound in (5) is just polynomial, and, as would be clear from the proof,
improvement of the upper bound would be affected by the corresponding improvement of
the upper bound in Yau’s conjecture.

1.2 Some remarks on the asymptotic geometry of nodal domains

As mentioned in the Abstract, in this subsection, we state several remarks regarding some
aspects of the asymptotic nodal geometry.

1.2.1 Interior cone conditions

In dimension n = 2, a famous result of Cheng [6] says the following (see also [38] for a
proof using Brownian motion):

Theorem 1.3 For a compact Riemannian surface M, the nodal set Nϕ satisfies an interior
cone condition with opening angle α � 1√

λ
.

Furthermore, in dimension 2, the nodal lines form an equiangular system at a singular
point of the nodal set.

Setting dim M ≥ 3, we discuss the question whether at the singular points of the nodal set
Nϕ , the nodal set can have arbitrarily small opening angles, or even “cusp”-like situations, or
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the nodal set has to self-intersect “sufficiently transversally”. We observe that in dimensions
n ≥ 3 the nodal sets satisfies an appropriate “interior cone condition”, and give an estimate
on the opening angle of such a cone in terms of the eigenvalue λ.

Now, in order to properly state or interpret such a result, one needs to define the concept
of “opening angle” in dimensions n ≥ 3. We start by defining precisely the notion of tangent
directions in our setting.

Definition 1.4 Let �λ be a nodal domain and x ∈ ∂�λ, which means that ϕλ(x) = 0.
Consider a sequence xn ∈ Nϕ such that xn → x . Let us assume that in normal coordinates
around x , xn = exp (rnvn), where rn are non-negative real numbers, and vn ∈ S(TxM), the
unit sphere in TxM . Then, we define the space of tangent directions at x , denoted by Sx Nϕ

as

Sx Nϕ = {v ∈ S(TxM) : v = lim vn, where xn ∈ Nϕ, xn → x}. (6)

Observe that there are more well-studied variants of the above definition, for example, as
due to Clarke or Bouligand (for more details, see [35]). With that in place, we now give the
following definition of “opening angle”.

Definition 1.5 We say that the nodal set Nϕ satisfies an interior cone condition with opening
angle α at x ∈ Nϕ , if any connected component of S(TxM)\Sx Nϕ has an inscribed ball of
radius � α.

Now we have the following:

Theorem 1.6 When dim M = 3, the nodal set Nϕ satisfies an interior cone condition with
angle � 1√

λ
. When dim M = 4, Nϕ satisfies an interior cone condition with angle � 1

λ7/8
.

Lastly, when dim M ≥ 5, Nϕ satisfies an interior cone condition with angle � 1
λ
.

1.2.2 Inscribed balls in a nodal domain

Let us briefly overview some results related to the width of nodal domains.
Given a nodal domain �λ, the inradius inrad(�λ) is the radius of the largest geodesic ball

one can fully inscribe in �λ. Like the nodal set, it is also another natural object intrinsically
tied to the nodal geometry of eigenfunctions, and it is natural to speculate about optimal
inradius bounds. From considerations involving domain monotonicity, one can readily see
that inrad(�λ) � 1√

λ
. As regards lower bounds, it was proved in [28], based on ideas in

[34], that any closed Riemannian surface satisfies inrad(�λ) � 1√
λ
. Moreover, Mangoubi

showed (using complex analytic techniques) that such a ball can be centered at any point of
maximum of the eigenfunction ϕλ inside �λ.

In higher dimensions, nodal domains, particularly with regard to their inradius estimates,
appear to be sensitive objects. A heuristic explanation is the following (also see [17]). In
dimensions n ≥ 3, a curve has zero capacity, whichmeans that there is virtually no difference
in the first Dirichlet eigenvalue of a domain � and �\�, where � ⊂ � is a reasonably
well-behaved curve. But deletion of a curve (or even a single point) can affect the inradius
drastically. Still, in dimension n ≥ 3, Mangoubi was able to show [29] that every nodal
domain �λ satisfies inrad(�λ) � 1

λ
n−1
4 + 1

2n
. His arguments relied on certain “asymmetry”

results that we briefly discuss below in Sect. 4.3.3. Further, in [13], we were able to recover
the same bounds, but with the additional information that any such ball of radius ∼ 1

λ
n−1
4 + 1

2n

can be centered at a point of maximum of ϕλ inside �λ. This was derived as a Corollary
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of a quantitative improvement of a Lieb-type result regarding the “almost inscribedness”
of a wavelength radius ball B(x0,

r0√
λ
) inside �λ (for a formal statement, see Theorem 4.5

below). Moreover, as regards the inner radius of nodal domains in dimensions at least 3, it
seems that the lower bound is still not sharp. It is believed that the inner radius should be
much more closer to the wavelength scale. We also comment that the extra information about
the location of the almost inscribed wavelength ball can have potential applications in shape
optimization problems, for example, see [14].

Now, having this discussion in mind, we also recall the following observation:

Claim 1.7 If for a point x0 ∈ M we know that |ϕλ(x0)| ≥ β‖ϕλ‖L∞(M), where β is a constant
independent of λ, then there exists a ball of radius ∼ 1/

√
λ centered at x0 where ϕλ does not

change sign.

In other words, there exists a fully inscribed ball of wavelength size centered at x0. This claim
follows directly from elliptic bounds on the gradient |∇ϕλ|.

We address the question to seek quantitative generalizations of this fact under more
relaxed lower bounds on |ϕλ(x0)|. Theorem 1.8 below may be seen as one such quanti-
tative generalization. Due to Donnelly-Fefferman ( [9]), on any wavelength radius geodesic
ball B(x, 1√

λ
) in a closed Riemannian manifold M with smooth metric, we have that

supB(x, 1√
λ
) |ϕλ| � e−C

√
λ‖ϕλ‖L∞(M). Moreover, it is also true that the exponential bounds

given by [9] are rarely saturated (one of the rare counterexamples areGaussian beams of high-
est weight spherical harmonics), and in most practical examples, much better bounds hold.
Motivated by this, we investigate bounds on the size of inscribed balls which are centered at
points x0 for which |ϕλ(x0)| is at most “exponentially” small.

We have the following observation:

Theorem 1.8 Let M be a closed Riemannian manifold of dimension n ≥ 3 with smooth
metric. Further, let x0 ∈ �λ be such that ϕλ(x0) = ‖ϕ‖L∞(�λ). Suppose that

ϕλ(x0) ≥ 2−1/η‖ϕλ‖L∞(M), (7)

where η > 0 is smaller than a fixed constant η0 (η may be dependent on λ). Then there exists
an inscribed ball B(x0, ρ) ⊆ �λ of radius

ρ � max

(
ηβ(n)

√
λ

,
1

λα(n)

)
, (8)

where β(n) = (n−1)(n−2)
2n , α(n) = n−1

4 + 1
2n . Furthermore, such a ball can be centered

around any such max point x0.

In particular, Theorem 1.8 implies the following remark (cf. Claim 1.7):

Corollary 1.9 If for x0 as above, one has that |ϕλ(x0)| � e−λμ‖ϕλ‖L∞(M), where μ :=
2nν/((n−1)(n−2)), ν > 0 , then there exists a ball of radius∼ 1

λ1/2+ν centered at x0 where
ϕλ does not change sign.

The proof of Theorem 1.8 is based on a combination ofMangoubi’s result on rapid growth
in narrow domains (reproduced below as Theorem 4.4), and Theorem 1.3 of [13] (reproduced
below as Theorem 4.5).
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2 Auxiliary results about the frequency function and doubling
exponents

We start by recalling some general preliminaries.
First, we explain the following principle, following [9,33] and Section 2 of [29]: on a small

scale comparable to the wavelength 1/
√

λ, Laplace eigenfunctions behave qualitatively like
harmonic functions. To see this, fix an atlas on M for which all transition maps are bounded
in C1 norm, and let gi j denote the coefficients of the metric g in local coordinates. In each
chart, we have

‖gi j‖C1 ≤ K1, g = det gi j ≤ K2, (9)

and the ellipticity bound

gi jξiξ j ≥ K3|ξ |2. (10)

In local coordinates, the eigenequation (1) reads:

− 1√
g
∂i (g

i j√g∂ jϕλ) = λϕλ. (11)

Since the above is satisfied pointwise, we can look in small balls Br = B(0, r), where

r =
√

ε0√
λ
, and ε0 is a small positive number to be chosen later (but independent of λ).

Rescaling (11) to a unit ball B1, we get

− ∂i (g
i j
r

√
gr∂ jϕλ,r ) = ε0

√
grϕλ,r on B1, (12)

where ϕλ,r (x) := ϕλ(r x) is the scaled function obtained from ϕλ. Observe that we still have
similar bounds as (9), (10) on the rescaled metric coefficients, as r < 1.

If we let ai j = gi jr
√
gr , q = √

gr , we are in the following setting: let B1 denote the unit
ball in R

n , and let ϕ satisfy

Lϕ = 0 (13)

on B1, where L is a second order elliptic operator with smooth coefficients. L is of the form

Lu = L1u − ε0qu,

where

L1u = −∂i (a
i j∂ j u),

and we have the following properties:

(a) ai j is symmetric and satisfies the ellipticity bounds

κ1|ξ |2 ≤ ai jξiξ j ≤ κ2|ξ |2.
(b) ai j , q are bounded by ‖ai j‖C1(B1)

≤ K , 0 ≤ q ≤ K . The main idea of the above
principle is that, ε0 can be chosen small enough so that L is close to the Euclidean
Laplacian (after a linear change of coordinates) and ϕ displays behaviour similar to
harmonic functions.

Next, we recall and collect a few relevant facts about doubling exponents and different
notions of frequency functions—these include scaling and monotonicity results.
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For ϕ satisfying (13) in B1, define for r < 1 the following r -growth exponent:

βr (ϕ) = log
supB1 |ϕ|
supBr |ϕ| , (14)

A fundamental result of [9] says the following:

Theorem 2.1 There exist constants C = C(M, g) > 0 and r0(M, g) > 0 such that for every
point p in M and every 0 < r < r0 the following growth exponent holds:

sup
B(p,r)

|ϕλ| ≤
( r

r ′
)C√

λ

sup
B(p,r ′)

|ϕλ|, 0 < r ′ < r . (15)

In particular, for a scaled eigenfunction ϕ as defined above, we have

βr (ϕ)

log(1/r)
�

√
λ. (16)

Closely related to the idea of doubling exponent is the concept of frequency function,
which we now recall (see [11,12]). For u satisfying L1u = 0 in B1, define for a ∈ B1,
r ∈ (0, 1] and B(a, r) ⊂ B1,

D(a, r) =
∫
B(a,r)

|∇u|2dV ,

H(a, r) =
∫

∂B(a,r)
u2dS.

Then, define the generalized frequency of ϕ by

Ñ (a, r) = r D(a, r)

H(a, r)
. (17)

We note that [25,26] use a variant of Ñ (a, r), defined as follows:

N (a, r) = r H
′
(a, r)

2H(a, r)
. (18)

To pass between βr (ϕ), Ñ (a, r) and N (a, r), we record the following facts: from equation
(3.1.22) of [18], we have that

H
′
(a, r) =

(
n − 1

r
+ O(1)

)
H(a, r) + 2D(a, r), (19)

where O(1) is a function of geodesic polar coordinates (r , θ) bounded in absolute value
by a constant C independent of r . More precisely, in [18] a certain normalizing factor μ is
introduced in the integrand in the definitions of H(a, r) and D(a, r). As it turns out by the
construction, C1 ≤ μ ≤ C2 where C1,C2 depend on the ellipticity constants of the PDE,
the dimension n and a bound on the coefficients (cf. 3.1.11, [18]).

This gives us that when Ñ (a, r) is large, we have,

N (a, r) ∼ Ñ (a, r). (20)

Also, it is clear from the proof of Remark 3.1.4 of [18] that

Ñ (a, r) � βr (ϕ). (21)
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We also remark that the frequency N (a, r) is almost-monotonic in the following sense:
for any ε > 0, there exists R > 0 such that if r1 < r2 < R, then

N (a, r1) ≤ N (a, r2)(1 + ε). (22)

This follows from (19) above and standard properties of Ñ (a, r) derived in [18].
As regards growth exponents β, of particular importance to us is the so-called doubling

exponent of ϕλ at a point, which corresponds to the case r ′ = 1
2r in Theorem 2.1, and is

defined as

N (x, r) = log
supB(x,2r) |ϕλ|
supB(x,r) |ϕλ| . (23)

Now, consider an eigenfunction ϕλ on M . We convert ϕλ into a harmonic function in the
following standard way. Let us consider the Riemannian product manifold M̄ := M ×R—a
cylinder overM , equippedwith the standard product metric ḡ. By a direct check, the function

u(x, t) := e
√

λtϕλ(x) (24)

is harmonic.
Hence, by Theorem 2.1, the harmonic function u in (24) has a doubling exponent which

is also bounded by C
√

λ in balls whose radius is no greater than r1 = r1(M, g) > 0.
It is well-known that doubling conditions imply upper bounds on the frequency (cf.

Lemma 6, [2]):

Lemma 2.2 For each point p = (x, t) ∈ M̄ the harmonic function u(p) satisfies the following
frequency bound:

Ñ (p, r) ≤ C
√

λ, (25)

where r is any number in the interval (0, r2), r2 = r2(M, g) and C > 0 is a fixed constant
depending only on M, g.

For a proof of Lemma 2.2 we refer to Lemma 6, [2].

3 Tubular neighbourhood of nodal set: Theorem 1.2

3.1 Idea of proof

Wefirst focus on the proof of the lower bound. Since the proof is somewhat long and technical,
we begin by giving a brief sketch of the overall idea of the proof.

It is well-known by a Harnack inequality argument (see [4] for example), that the nodal
set of ϕλ is wavelength dense in M , which means that one can find ∼ λn/2 many disjoint
balls Bi

r√
λ

:= B(xi ,
r√
λ
) ⊂ M such that ϕλ(xi ) = 0. Now, to obtain a lower bound on |Tϕ,δ|

we wish to estimate |Tϕ,δ ∩ B(xi ,
r√
λ
)| from below. The strategy is to consider separately

those balls Bi
r√
λ

on which ϕλ has controlled doubling exponent, which we deal with using

the tools of [9,22], and those on which ϕλ has high doubling exponent, for which we bring
in the tools of [25,26]. In other words we distinguish two options:
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(1) First, for a ball B(x, ρ) of controlled doubling exponent (whereρ ∼ 1√
λ
, andϕλ(x) = 0),

we show that

|Tϕ,δ ∩ B(x, ρ)|
ρn−1δ

≥ c. (26)

To verify this, we essentially follow the argument of [22] from the real-analytic case.
The main observation is the fact that the volumes of positivity and negativity of ϕλ inside
such B(x, ρ) are comparable. A further application of the Brunn-Minkowski inequality
then yields (26).

(2) Now, to continue the idea of the proof, for a ball B(x, ρ) of high doubling exponent N
(where ρ ∼ 1√

λ
, and ϕλ(x) = 0), we prove that

|Tϕ,δ ∩ B(x, ρ)|
ρn−1δ

≥ 1

N ε
, where N �

√
λ. (27)

To prove this, we use the following sort of iteration procedure. Using the methods of
Logunov, [25,26], one first sees that in such a ball B(x, ρ) of large doubling exponent one
can find a large collection of smaller disjoint balls {B j } j , whose centers are again zeros of ϕλ.
We then focus on estimating |Tϕ,δ ∩ B j | and again distinguish the same two options—either
the doubling exponent of B j is small, which brings us back to the previous case (1) where
we have appropriate estimates on the tube, or the doubling exponent of B j is large. Now, in
case the doubling exponent of B j is large, we similarly discover another large subcollection
of even smaller disjoint balls inside B j , whose centers are zeros of ϕλ and so forth.

We repeat this iteration either until the current small ball has a controlled doubling expo-
nent, or until the current small ball is of radius comparable to the width δ of the tube Tϕ,δ . In
both situations we have a lower estimate on the volume of the tube which brings us to (27).

Once this is done, (4) follows by adding (26) and (27) over∼ λn/2 balls Bi
r√
λ

, asmentioned

above.

Remark 3.1 We make a quick digression here and recall that in the real analytic setting, it is
known that one can find∼ λn/2 many balls of wavelength (comparable) radius, as mentioned
above, such that all of them have controlled doubling exponent—in other words, the first case
above is the only one that needs to be considered. However, in the smooth setting, it is still a
matter of investigation how large a proportion of the wavelength balls possesses controlled

doubling exponent. For example, it is shown in [7], that one can arrange that λ
n+1
4 such balls

possess controlled growth. More explicitly, the following question seems to be of interest
and may also have substantial applications in the study of nodal geometry: given a closed
smooth manifold M , how many disjoint balls B(xiλ,

r√
λ
) of controlled doubling exponent

can one find inside M such that ϕλ(xiλ) = 0, where r is a suitably chosen constant depending
only on the geometry of (M, g)?.

The idea of proof of the upper bound (5) is quite simple. We take a cube Q inside M
of side-length 1, say, and we chop it up into subcubes Qk of side-length δ. Observe that
due to Logunov’s resolution of the Nadirashvili conjecture [25], for each subcube Qk which
intersects the nodal set (which we call nodal subcubes following [22]), we have a local lower
bound of the kindHn−1(Nϕ ∩ Qk) � δn−1. Summing this up, we get an upper bound on the
number of nodal subcubes, and in turn, an upper bound on the volume of all nodal subcubes in
terms ofHn−1(Nϕ). Now, since Tϕ,δ is contained inside the union of all such nodal subcubes,
combined with the upper bound on Hn−1(Nϕ) due to [26], we have (5).
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3.2 Proof of Theorem 1.2

Proof of (4) Weuse the notation above andwork in the productmanifold M̄ with the harmonic
function u(x, t) = e

√
λtϕλ(x). For the purpose of the proof of (4), we will assume that M is

n − 1 dimensional. All this is strictly for notational convenience and ease of presentation, as
we will now work with the tubular neighbourhood of u, which then becomes n dimensional.
Considering the tubular neighbourhood of u instead of ϕλ does not create any problems
because the nodal set of u is a product, i.e.

{u = 0} = {ϕλ = 0} × R. (28)

As the tubular neighbourhoods we are considering are of at most wavelength radius and
at the this scale the Riemannian metric is almost the Euclidean one, we have

Tu, δ
2

⊆ Tϕ,δ × R. (29)

Hence, to obtain a lower bound for |Tϕ,δ| it suffices to bound |Tu, δ
2
| below. To this end, we

consider a strip S := M × [0, R0] where R0 > 0 is sufficiently large.
Wewill obtain lower bound on |Bi

r√
λ

(pi )∩Tu, δ
2
|, whichwill give the analogous statements

for (26) and (27) for the function u. Asmentioned before, depending on the doubling exponent

of u in the ball Bi
r√
λ

(pi ) we distinguish two cases, and we will prove that
|T

u, δ
2
∩B(x,ρ)|

ρn−1δ
≥ c

in the case of controlled doubling exponent, and
|T

u, δ
2
∩B(x,ρ)|

ρn−1δ
≥ 1

N ε , where N �
√

λ in the
case of high doubling exponent.

Case I : Controlled doubling exponent
In the regime of controlled doubling exponent, in which case it is well known that the

nodal geometry is well-behaved, we essentially follow the proof in [22]. Let B := B(p, ρ)

be a ball such that u(p) = 0 and u has bounded doubling exponent on B(p, ρ), that is,
supB(p,2ρ) |u|
supB(p,ρ) |u| ≤ C (ultimately we will set ρ ∼ 1√

λ
). Then, by symmetry results (see (54)

below), we have that C1 <
|B+|
|B−| < C2, where B+ = {u > 0} ∩ B, B− = {u < 0} ∩ B.

Let δ := c̃ρ, where c̃ is a small constant to be selected later. Denoting by B+
δ the δ-

neighbourhood of B+, and similarly for B−, and 2B := B(p, 2ρ), we have that since
Tu,δ ⊃ B+

δ ∩ B−
δ ,

|Tu,δ ∩ 2B| ≥ |B+
δ | + |B−

δ | − |B(p, ρ + δ)|. (30)

By the Brunn-Minkowski inequality, we see that |B+
δ | ≥ |B+|+nω

1/n
n δ|B+|1−1/n , where

ωn is the volume of the n-dimensional unit ball. Setting |B+| = α|B|, |B−| = (1 − α)|B|,
we have

|Tu,δ ∩ 2B| ≥ ωn
(
ρn − (ρ + δ)n + nρn−1δ(α1−1/n + (1 − α)1−1/n)

)
. (31)

By asymmetry, α is bounded away from 0 and 1, meaning that α1−1/n + (1− α)1−1/n >

1 + C . Now, taking c̃ small enough, the right hand side of (31) is actually � ρn−1δ, giving
us

Lemma 3.2 Let the tubular distance δ and the radius of the ball ρ be in proportion δ
ρ

≤ c̃
where c̃ > 0 is a small fixed number. Assume that the doubling index of u over the ball Bρ

is small. Then

|Tu,δ ∩ 2B| � ρn−1δ. (32)
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Case II: Large doubling exponent
Now, let us consider a ball B(p, ρ) with radius ρ comparable to the wavelength, and let

B
′ = B(p, ρ

2 ). Let us assume that initially we take ρ such that δ
ρ

≤ c̃.

Suppose
sup

B
′ |u|

sup 1
2 B

′ |u| is large. By (20) and (21), the frequency function N (p, ρ
2 ) is also large.

Recall also the almost monotonicity of the frequency function N (x, r), given by (22), which
will be implicit in our calculations below.

We will make use of the following fact:

Theorem 3.3 Consider a harmonic function u on B(p, 2ρ). If N (p, ρ) is sufficiently large,
then there is a number N with

N (p, ρ)/10 < N < 2N

(
p,

3

2
ρ

)
. (33)

such that the followingholds: Suppose that ε ∈ (0, 1) is fixed. Then there exists a constantC =
C(ε) > 0 and at least [N ε]n−12C log N/ log log N disjoint balls B(xi ,

ρ

N ε log6 N
) ⊂ B(p, 2ρ)

such that u(xi ) = 0. Here [.] denotes the integer part of a given number.

Theorem 3.3 is mentioned as a remark at the end of Section 6 of [25]—for completeness
and convenience, we give full details of the proof of Theorem 3.3 in this paper, but we relegate
them to the Appendix below.

We will now use Theorem 3.3 in an iteration procedure. The first step of the iteration
proceeds as follows.

Let us denote by ζ1 the radius of the small balls prescribed by Theorem 3.3, i.e.

ζ1 := ρ

N ε log6 N
. (34)

Further, let B1 denote the collection of these small balls inside B(p, 2ρ). Let F1 :=
infB∈B1

|Tu,δ∩B|
ζ n−1
1 δ

and let us assume that it is attained on the ball B1 ∈ B1.

We then have that

|Tu,δ ∩ B(p, 2ρ)| ≥
∑
Bi∈B1

|Tu,δ ∩ Bi | ≥ [N ε]n−12C log N/ log log N F1ζ
n−1
1 δ ≥

≥ [N ε]n−12C log N/ log log N ρn−1δ

(2N ε log6N )n−1
F1,

which implies that

|Tu,δ ∩ B(p, 2ρ)|
ρn−1δ

≥ 2C log N/ log log N F1 ≥ F1, (35)

by reducing the constantC , if necessary, and assuming that N is large enough. Recalling that

by assumption F1 = |Tu,δ∩B1|
ζ n−1
1 δ

, we obtain

|Tu,δ ∩ B(p, 2ρ)|
ρn−1δ

≥ 2C log N/ log log N |Tu,δ ∩ B1|
ζ n−1
1 δ

. (36)

This concludes the first step of the iteration.
Now, the second step of the iteration process proceeds as follows. We inspect three sub-

cases.
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• First, suppose that δ and ζ1 are comparable in the sense that

8δ

ζ1
> c̃, (37)

where c̃ is the constant from Lemma 3.2. As there is a ball of radius δ centered at x1 (the
center of B1) that is contained in the tubular neighbourhood, we obtain

|Tu,δ ∩ B1|
ζ n−1
1 δ

≥ C(c̃ζ1)n

ζ n−1
1 δ

≥ Cc̃n
ζ1

δ
. (38)

Furthermore, initially we assumed that δ
ρ

≤ c̃, hence

|Tu,δ ∩ B1|
ζ n−1
1 δ

≥ C1c̃
n−1 ζ1

ρ
= C1c̃

n−1 1

N ε log6 N
≥ C2

1

N ε1
, (39)

where ε1 > 0 is slightly larger than ε. In combination with the frequency bound of
Lemma 2.2 and the fact that N is comparable to the frequency by (33) we get

|Tu,δ ∩ B(p, 2ρ)|
ρn−1δ

≥ |Tu,δ ∩ B1|
ζ n−1
1 δ

≥ C3

λε1/2
. (40)

The iteration process finishes.
• Now suppose that the tubular radius is quite smaller in comparison to the radius of the

ball, i.e.

8δ

ζ1
≤ c̃. (41)

Suppose further that the doubling exponent of u in 1
8 B

1 is small. We can revert back to
Case I and Lemma 3.2 by which we deduce that

|Tu,δ ∩ B(p, 2ρ)|
ρn−1δ

≥ |Tu,δ ∩ B1|
ζ n−1
1 δ

≥ |Tu,δ ∩ 1
8 B

1|
ζ n−1
1 δ

≥ C, (42)

whence the iteration process stops.
• Finally, let us suppose that

8δ

ζ1
≤ c̃, (43)

and further that the doubling exponent of u in B1 is sufficiently large.We can now replace
the initial starting ball B(p, 2ρ) by B1 and then repeat the first step of the iteration process
for 1

8 B
1. As above, we see that there has to be a ball B̃1 of radius ζ̃1 ∈ ( 14ζ1,

1
2 ζ1) upon

which the frequency is comparable to a sufficiently large number N1.
Now, we apply Theorem 3.3 and within B1 discover at least [N ε

1 ]n−12C log N1/ log log N1

balls of radius

ζ2 := ζ1

N ε
1 log

6 N1
, (44)

such that ϕλ vanishes at the center of these balls.
As before, we denote the collection of these balls by B2 and put F2 := infB∈B2

|Tu,δ∩B|
ζ n−1
1 δ

.
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Analogously we also obtain

F1 = |Tu,δ ∩ B1|
ζ n−1
1 δ

≥ 2C log N1/ log log N1F2 ≥ F2. (45)

Again, we reach the three sub-cases. If either of the two first sub-cases holds, then we
bound F2 in the same way as F1 - this yields a bound on |Tu,δ∩Bρ |

ρn−1δ
. If the third sub-case

holds, then we repeat the construction and eventually get F3, F4, . . . .

Notice that the iteration procedure eventually stops. Indeed, it can only proceed if the
third sub-case is constantly iterated. However, at each iteration the radius of the considered
balls drops sufficiently fast and this ensures that either of the first two sub-cases is eventually
reached.

This finally gives us

|Tu,δ ∩ B(p, 2ρ)|
ρn−1δ

≥ F1 ≥ F2 ≥ · · · ≥ C3

λε1/2
. (46)

At last, we are done with the iteration, and this also brings us to the end of the discussion
about Case I and Case II. To summarize what we have established, the most “unfavourable”
situation is that scenario in Case II, where we at every level of the iteration we encounter
balls of high doubling exponent, and we have to carry out the iteration all the way till the
radius of the smaller balls (whose existence at every stage is guaranteed by Theorem 3.3)
drops below δ. The lower bound for |Tu,δ∩B(p,2ρ)|

ρn−1δ
in such a “worst” scenario is given by (46).

We are now ready to finish the proof. Letting ρ = r
2
√

λ
and by summing (46) over the

∼ λn/2 many wavelength balls Bi
r√
λ

(as mentioned at the beginning of this Section), we have

that

|Tu,δ| ≥ C3

λε1/2
ρn−1δλn/2 � λ1/2−ε1/2δ. (47)

Using the relationship between the nodal sets of ϕλ and u, this yields (4). ��
Now we turn to the proof of the upper bound.

Proof of (5) We start by giving a formal statement of the main result of [26]:

Theorem 3.4 Let (M, g) be a compact smooth Riemannianmanifold without boundary. Then
there exists a number κ , depending only on n = dim M and C = C(M, g) such that

Hn−1(Nϕ) ≤ Cλκ . (48)

As remarked before, we assume that M has sufficiently large injectivity radius. Consider
a finite covering Qk of M by cubes of side length 1, say. Consider a subdivision of each cube
Qk into subcubes Qk,ν of side length δ, where δ ≤ 1

3 . Call a small subcube Qk,ν a nodal
cube if Nϕ ∩ Qk,ν �= ∅. Also, denote by Q∗

k,ν the union of Qk,ν with its 3n − 1 neighbouring
subcubes. Then, it is clear that

Tϕ,δ ⊂
⋃
Nod

Q∗
k,ν , (49)

where Nod denotes the set of all nodal subcubes Qk,ν .
By Theorem 1.2 of [25], we have that

Hn−1(Nϕ ∩ Q∗
k,ν) � δn−1. (50)
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Summing up (50), we get that

3nHn−1(Nϕ) ≥
∑
Nod

Hn−1(Nϕ ∩ Q∗
k,ν)

� #(nodal Qk,ν)δ
n−1,

which means that the number of nodal subcubes is � Hn−1(Nϕ)/δn−1. Using (49), this
means that

|Tϕ,δ| � Hn−1(Nϕ)δ.

Finally, we invoke Theorem 3.4 to finish our proof. ��

4 Some remarks on the asymptotic geometry of nodal domains:
Theorems 1.6 and 1.8

4.1 Internal cone condition

4.1.1 Preliminaries

We will use Bers scaling of eigenfunctions near zeros (see [3]). We quote the version as
appeared in [39], Section 3.11.

Theorem 4.1 (Bers)Assume thatϕλ vanishes to order k at x0. Letϕλ(x) = ϕk(x)+ϕk+1(x)+
..... denote the Taylor expansion of ϕλ into homogeneous terms in normal coordinates x
centered at x0. Then ϕκ(x) is a Euclidean harmonic homogeneous polynomial of degree k.

We also use the following inradius estimate for real analytic metrics (see [15]).

Theorem 4.2 Let (M, g) be a real-analytic closed manifold of dimension at least 3. If �λ is
a nodal domain corresponding to the eigenfunction ϕλ, then there exist constants λ0, c1 and
c2 which depend only on (M, g), such that

c1
λ

≤ inrad (�λ) ≤ c2√
λ

, λ ≥ λ0. (51)

Since the statement of Theorem 4.2 is asymptotic in nature, we need to justify that if
λ < λ0, a nodal domain corresponding to λ will still satisfy inrad (�λ) ≥ c3

λ
for some

constant c3. This follows from the inradius estimates of Mangoubi in [29], which hold for all
frequencies. Consequently, we can assume that every nodal domain � on Sn corresponding
to the spherical harmonic ϕk(x), as in Theorem 4.1, has inradius � 1

λ
.

4.2 Proof of Theorem 1.6

We observe that Theorem 4.2 applies to spherical harmonics, and in particular the function
exp∗(ϕk), restricted to S(Tx0M), where ϕk(x) is the homogeneous harmonic polynomial
given by Theorem 4.1. Also, a nodal domain for any spherical harmonic on S2 (respectively,
S3) corresponding to eigenvalue λ has inradius ∼ 1√

λ
(respectively, � 1

λ7/8
).

With that in place, it suffices to prove that

Sx0Nϕ ⊆ Sx0Nϕk . (52)
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Proof By definition, v ∈ Sx0Nϕ if there exists a sequence xn ∈ Nϕ such that xn → x0,
xn = exp(rnvn), where rn are positive real numbers and vn ∈ S(Tx0M), and vn → v.

This gives us,

0 = ϕλ(xn) = ϕλ(rnexp vn)

= rknϕk(exp vn) +
∑
m>k

rmn ϕm(exp vn)

= ϕk(exp vn) +
∑
m>k

rm−k
n ϕm(exp vn)

→ ϕk(exp v), as n → ∞.

Observing that ϕk(x) is homogeneous, this proves (52). ��

4.3 Inscribed balls in a nodal domain

4.3.1 Preliminaries

We start again by collecting some auxiliary results that we need for the proof of Theorem
1.8. These include

(1) A maximum principle for solutions of elliptic PDE,
(2) Comparison estimates on the volumes of positivity/negativity of eigenfunctions (i.e. local

asymmetry of sign),
(3) Growth of solutions of elliptic PDE in narrow domains,
(4) Existence of almost inscribed balls.

4.3.2 Local elliptic maximum principle

We quote the following local maximum principle, which appears as Theorem 9.20 in [16].

Theorem 4.3 Suppose Lu ≤ 0 on B1. Then

sup
B(y,r1)

u ≤ C(r1/r2, p)

(
1

Vol(B(y, r2))

∫
B(y,r2)

(u+(x))pdx

)1/p

, (53)

for all p > 0, whenever 0 < r1 < r2 and B(y, r2) ⊆ B1.

4.3.3 Local asymmetry of nodal domains

Our proof also uses the concept of local asymmetry of nodal domains, which roughly means
the following. Consider amanifoldM with smoothmetric. If the nodal set of an eigenfunction
ϕλ enters sufficiently deeply into a geodesic ball B, then the volume ratio between the
positivity and negativity set of ϕλ in B is controlled in terms of λ. More formally, we have
the following result from [29]:

|{ϕλ > 0} ∩ B|
|B| � 1

〈β1/2(ϕ)〉n−1 , (54)
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where 〈βr 〉 = max{βr , 3}. In particular, when combined with the growth bound of Donnelly-
Fefferman, this yields that

|{ϕλ > 0} ∩ B|
|B| � 1

λ
n−1
2

.

This particular question about comparing the volumes of positivity and negativity seems to
originate from [5,10], and then work of Nazarov, Polterovich and Sodin (cf. [34]), where
they also conjecture that the present bound is far from being optimal. Moreover, it is believed
that the sets of positivity and negativity should have volumes which are comparable up to a
factor of 1/λε for small ε > 0.

4.3.4 Rapid growth in narrow domains

Heuristically, thismeans that ifϕ solves (13), and has a deep and narrowpositivity component,
then ϕ grows rapidly in the said component. In our paper, we use an iterated version of this
principle, which appears as Theorem 3.2 in [30]. Let ϕλ satisfy (13) on the rescaled ball B1,
as at the beginning of Sect. 2.

Theorem 4.4 Let 0 < r ′ < 1/2. Let� be a connected component of {ϕ > 0}which intersects
Br ′ . Let η > 0 be small. If |� ∩ Br |/|Br | ≤ ηn−1 for all r ′ < r < 1, then

sup� ϕ

sup�∩Br ′ ϕ
≥

(
1

r ′

)C
′
/η

,

where C
′
is a constant depending only on the metric (M, g).

4.3.5 Almost inscribing wavelength ball

Wefinally recall some results discussing “almost” inscribed balls inside a given domain.More
precisely, we start by recalling a celebrated theorem of Lieb (see [23]), which considers the
case of a domain � ⊂ R

n and states that there exists a point x ∈ �, and a ball B :=
B(x, r√

λ1(�)
) of radius r√

λ1(�)
, (here r > 0 is sufficiently small) which is “almost” inscribed

in �, that is

|B ∩ �|
|B| ≥ 1 − ε. (55)

Here λ1(�) is the first Dirichlet eigenvalue of �. Moreover, ε approaches 0 as r → 0.
A further related result was obtained in the paper [32] (see, in particular, Theorem 1.1 and

Subsection 5.1 of [32]).
In [13], a refinement of the above statement of Lieb was obtained stating that x ∈ � can

be taken as any point where the first Dirichlet eigenfunction of � (assumed to be positive
without loss of generality) reaches a maximum.

Specifying these statements to nodal domains, we have:

Theorem 4.5 Let dim M ≥ 3, ε0 > 0 be fixed and x0 ∈ �λ be such that |ϕλ(x0)| =
max�λ |ϕλ|. There exists r0 = r0(ε0), such that

|Br0 ∩ �λ|
|Br0 |

≥ 1 − ε0, (56)

where Br0 denotes B
(
x0,

r0√
λ

)
.
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It is also important for our discussion below to have a relation between ε0 and r0. Referring
to Corollary 1.4 in [13], we have that they are related by

r0 = Cε
n−2
2n

0 , (57)

where C is a constant depending only on (M, g).

4.3.6 Idea of proof of Theorem 1.8

Before going into the details of the proof, let us first outline the main ideas. Let us define
B := B(x0,

r0√
λ
) where x0 is a point of maximum as stated in Theorem 1.8 and r0 > 0 is a

sufficiently small number. Also recall that ϕλ(x0) is assumed to be bounded below in terms
of η.

Now, roughly speaking, we will see that if r0 is sufficiently small in terms of η, then ϕλ

does not vanish in 1
4 B, a concentric ball of quarter radius. This will imply the claim of the

Theorem.
To this end, we argue by contradiction (i.e. we assume that ϕλ vanishes in 1

4 B) and follow
the three steps below:

(1) First, Theorem 4.5 above tells us that we can “almost” inscribe a ball B = B(x0,
r0√
λ
)

inside �λ, up to the error of certain “spikes” of total volume ε0|B| entering the ball,
where ε0 and ρ are related by (57). In particular, if we assume w.l.o.g. that ϕλ is positive
on �λ, then the volume |{ϕλ < 0} ∩ B| is relatively small and does not exceed ε0|B|.

(2) The second step consists in showing that the sup norms of ϕ− and ϕ+ in the spikes are
comparable. More formally, observe that on each connected component of 1

4 B\�λ (i.e.,
on each spike in 1

4 B), ϕλ can be positive or negative a priori. However, by a relatively
simple argument involving the mean value property of harmonic functions and standard
elliptic maximum principles, we show that on 1

4 B\�λ, supϕ−
λ � supϕ+

λ .
(3) For the third step, we begin by noting that if we can show that the doubling exponent of

ϕλ in 1
8 B is bounded above by a constant, then the asymmetry estimate (54) will give us

that the set {ϕλ < 0} ∩ 1
4 B has a large volume, which contradicts Step (1) above. This

will be a contradiction to our assumption that ϕλ vanishes somewhere in 1
4 B, and thus

we finally conclude that 1
4 B is fully inscribed inside �λ.

Now, the bounded doubling exponent will be ensured, if ϕλ(x0) controls (up to a constant)
all the values of ϕλ inside 1

4 B. Using the input from Step (2) above as well as the a priori
assumption on ϕλ(x0), it suffices to ensure that ϕ+ is suitably bounded. This is where we
bring in the rapid growth in narrow domains result (Theorem 4.4).

4.3.7 Proof of Theorem 1.8

Proof Step 1: An almost inscribed ball
As before, let x0 denote the max point of ϕλ in the nodal domain �λ. Let us assume the

sup-norm bound (7) and let us set B := B(x0,
r0√
λ
) be a ball centered at x0 and of radius

r0√
λ
, where r0 > 0 is sufficiently small and determined below. Further, let us denote the

non-inscribed “error-set” by X := B\�λ.
We start by making the following choice of parameters: we select 0 < ε0 ≤ (ηC

′
)n−1

with a corresponding r0 := Cε
n−2
2n

0 (prescribed by (57)), where C
′
is the constant coming
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from Theorem 4.4; moreover we assume that 0 < η ≤ η0 for some fixed small positive
number η0, so that by Theorem 4.5, the relative volume of the “error” set X is sufficiently
small, i.e.

|X ∩ 1
4 B|

| 14 B| � 4n |X ∩ B|
|B| ≤ 4nε0 =: C2, (58)

where C2 > 0 is appropriately chosen below.
We claim that in fact ϕλ does not vanish in 1

4 B, the concentric ball of a quarter radius.
To prove this, we will argue by contradiction—that is, let us suppose that ϕλ vanishes

somewhere in 1
4 B.

Step 2: Comparability of ϕ+
λ and ϕ−

λ By assuming the contrary, let x be a point in X ∩ 1
4 B

lying on the boundary of a spike, that is, ϕλ(x) = 0. Consider a ball B
′
around x with radius

r0
2
√

λ
. Since ϕλ(x) = 0, we have that (up to constants depending on (M, g)),

1

|B ′ |
∫
B′ ϕ−

λ ∼ 1

|B ′ |
∫
B′ ϕ+

λ . (59)

This follows from mean value properties of harmonic functions; for a detailed proof, see
Lemma 5 of [7].

Now, let B
′′
be a ball slightly smaller than and fully contained in B

′
. Using the local

maximum principle (53), we have that (up to constants depending on (M, g)),

sup
B′′

ϕ−
λ � 1

|B ′ |
∫
B′ ϕ−

λ � 1

|B ′ |
∫
B′ ϕ+

λ ≤ sup
B′

ϕ+
λ . (60)

This shows that in order to bound ϕ−
λ , it suffices to bound ϕ+

λ . This finishes Step (2).
Step 3: Controlled doubling exponent and conclusion
Our aim is to be able to bound sup 1

4 B
ϕ+

λ in terms of ϕλ(x0), as that would give us control

of the doubling exponent of ϕλ on 1
8 B. In other words, we wish to establish that

sup
1
4 B

ϕ+
λ ≤ Cϕλ(x0), (61)

where C is a constant independent of λ.
If X ∩ 1

2 B∩{ϕ > 0} = ∅, then (61) follows immediately by definition. Otherwise, calling

X
′ := X ∩ 1

2 B, let �
′
λ represent another nodal domain on which ϕλ is positive and which

intersects X
′
. In other words, �

′
λ ∩ 1

2 B gives us a spike entering 1
2 B which ϕλ is positive,

and our aim is to obtain bounds on this spike.
Observe that (58) implies that the volume of the spike �

′
λ ∩ 1

2 B is small compared to 1
2 B,

and this allows us to invoke Theorem 4.4. We see that

21/ηϕλ(x0) � ‖ϕλ‖L∞(M) (by hypothesis (7))

≥ sup
�

′
λ

ϕλ ≥ 21/η sup
�

′
λ∩ 1

2 B

ϕλ ≥ 21/η sup
�

′
λ∩ 1

4 B

ϕλ (by applying Theorem 4.4).

Now (61) follows, which implies that the growth is controlled in the ball 1
8 B, that is,

β1/8(ϕλ) =
sup 1

4 B
|ϕλ|

sup 1
8 B

|ϕλ| ≤ c1, (62)

where c1 depends on (M, g) and not on ε0 or λ (in particular, not on r0, η).
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Now, we bring in the asymmetry estimate (54), which, together with (62), tells us that

|{ϕλ < 0} ∩ 1
4 B|

| 14 B| ≥ c2, (63)

where c2 is a constant depending only on c1 and (M, g). But selecting the constant C2 to be
smaller than c2 we see that (63) contradicts (58). Hence, we obtain a contradiction with the
fact that the function ϕλ vanishes inside 1

4 B.
Finally, this proves that with the initial choice of parameters, there is an inscribed ball of

radius r0
4
√

λ
inside �λ. By construction, we had that r0 ∼ η

(n−1)(n−2)
2n = ηβ(n).

Combined with the inner radius estimates in [29], this proves the claim of
Theorem 1.8. ��

5 Appendix: Number of zeros over balls with large doubling exponent

We address the proof of Theorem 3.3. We will essentially just follow and adjust Section 6,
[25]—there Theorem 3.3 was stated as a remark. For mere completeness, we will recall all
the relevant statements.

Let us briefly give an overview of how the proof proceeds.
First, we consider a harmonic function in a ball and gather a few estimates on the way u

grows near a point of maximum. The discussion here involves classical harmonic function
estimates as well as scaling of the frequency function N (p, r) (cf. Sect. 2) and the doubling
numbers.

Second, let us consider a cube Q and divide it into small equal subcubes. We recall a
combinatorial result (Theorem5.2, [25])which, roughly speaking, gives quantitative estimate
on the number of small bad subcubes (i.e., subcubes with large doubling exponent) of a given
cube Q.

Third, we utilize the results in the first two steps to prove Theorem 3.3.
A few words regarding notation: given a point O ∈ M , we take a small enough coordinate

chart (U , ψ) around O such that the Riemannian metric g on the chart is comparable to the
Euclidean metric in the following sense: given ν > 0, there is a sufficiently small R0 =
R0(ν, M, g, O) such that (1 − ν)dg(x, y) < dEuc(ψ(x), ψ(y)) < (1 + ν)dg(x, y) for any
two distinct points x, y ∈ Bg(O, R0). Under this metric comparability, we will drop the
subscript “g” henceforth, and will describe “cubes” and “boxes” and their partitions, and
such combinatorial ideas directly on the manifold M .

5.1 Growth of harmonic functions near a point of maximum

Let us start by recalling the following observation (Lemma 3.2, [25]). Let B(p, 2r) ⊂
B(O, R0) where the frequency function satisfies N (p, r

2 ) > 10. Then there exists num-
bers s ∈ [r , 3

2 ) and N ≥ 5 so that

N ≤ N (p, t) ≤ 2eN , (64)

where the parameter t is any number within the interval I given by

I :=
(
s

(
1 − 1

1000 log2 N

)
, s(1 + 1

1000 log2 N
)

)
. (65)
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In words, we find and work in a small spherical layer where the frequency is comparable
to N .

Recalling the function H(p, t) = ∫
∂B(p,t) u

2dS, it follows from the definition of the
frequency function that

H(x, r2)

H(x, r1)
= exp

(
2

∫ r2

r1

N (x, r)

r
dr

)
. (66)

Combining this with the control over N in the interval I , we obtain(
t2
t1

)2N

≤ H(p, t2)

H(p, t1)
≤

(
t2
t1

)4eN

, (67)

where t1 < t2 and t1, t2 ∈ I .
Now, let us consider a point of maximum x ∈ ∂B(p, s), such that

sup
y∈B̄(p,s)

|u(y)| = |u(x)| =: K . (68)

We now look at concentric spheres of radii s− := s(1 − δ) and s+ := s(1 + δ) where δ

is a small number in the interval [ 1
106 log100 N

, 1
106 log2 N

]. We can estimate supB(p,s+) |u| and
supB(p,s−) |u| in terms of K :

Lemma 5.1 (Lemma 4.1, [25]) There exist c,C > 0 depending on M, g, n, O, R0, such that

sup
B(p,s−)

|u| ≤ CK2−cδN , (69)

sup
B(p,s+)

|u| ≤ CK2CδN . (70)

Proof (Sketch of Proof) The proof uses the above scaling for H(p, t) and classical estimates
for harmonic functions. For a detailed discussion we refer to [25]. ��

Let us recall the classical doubling number N (x, r) (cf. Sect. 2), which was defined as

2N (x,r) = supB(x,2r) |u|
supB(x,r) |u| . (71)

Let us recall the following result (cf. Appendix, [26]):

Lemma 5.2 Let ε > 0 be fixed. There exist numbers R0 > 0,C > 0 such that for r1, r2 with
2r1 ≤ r2 and B(x, r2) ⊂ B(O, R0), we have the following estimate(

r2
r1

)N (x,r1)(1−ε)−C

≤ supB(x,r2) |u|
supB(x,r1) |u| ≤

(
r2
r1

)N (x,r2)(1+ε)+C

. (72)

In particular,

N (x, r1)(1 − ε) − C ≤ N (x, r2)(1 + ε) + C . (73)

As a straightforward corollary of the above discussion we obtain

Lemma 5.3 There is a constant C = C(M, g, n) > 0 such that

sup
B(x,δs)

|u| ≤ K2CδN+C . (74)
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Moreover, for any x̃ with d(x, x̃) ≤ δs
4 , we have

N (x̃,
δs

4
) ≤ CδN + C, (75)

sup
B(x̃, δs

10N )

|u| ≥ K2−CδN log N−C . (76)

For a proof we refer to Lemma 4.2, [25].

5.2 An estimate on the number of bad cubes

Let Q be a given cube. We define the doubling index N (Q) of the cube Q by

N (Q) := sup
x∈Q,r≤diam(Q)

log
supB(x,10nr) |u|
supB(x,r) |u| . (77)

Clearly, N (Q) is monotonic in the sense that if a cube Q1 is contained in the cube
Q2, then N (Q1) ≤ N (Q2). Furthermore, if a cube Q is covered by a collection of cubes
{Qi } with diam(Qi ) ≥ diam(Q), then there exists a cube Qi from the collection, such that
N (Qi ) ≥ N (Q).

The main result in this subsection is

Theorem 5.4 (Theorem 5.3, [25]) There exist constants c1, c2,C > 0 and a positive integer
B0, depending only on the dimension n, and positive numbers N0 = N0(M, g, n, O), R =
R(M, g, n, O) such that for any cube Q ⊂ B(O, R) the following holds:

If we partition Q into Bn equal subcubes, where B > B0, then the number of subcubeswith
doubling exponent greater than max(N (Q)2−c1 log B/ log log B , N0) is less than CBn−1−c2 .

The last theorem uses and refines a previous result (Theorem 5.1, [26]) where roughly
speaking the dynamic relation between the size of the small cubes and their doubling index
is not estimated with that precision. The discussion proceeds through an iteration argument.

5.3 Proof of Theorem 3.3

Step 1—the set-up We consider the same setting as in Sect. 5.1: we have a ball B(p, 2r) ⊂
B(O, R0), numbers s ∈ [r , 3

2r ], N ≥ 5, such that

N ≤ N (p, t) ≤ 2eN , (78)

for any t ∈ I where I is the interval defined above.
We also consider a point of maximum x ∈ ∂B(p, s), sup∂B(p,s) |u| = |u(x)| =: K and

a point x̃ ∈ ∂B(p, s(1 − δ)), such that d(x, x̃) = δs. Here we have introduced the small
number δ := 1

108n2 log2 N
(we follow the notation in [25], but to avoid confusion, we note that

the δ chosen here is much smaller compared to the δ used in Sect. 5.1). By construction, we
have that d(x, x̃) ∼ r

log2 N
up to constants depending only on dimension.

Let us denote by T a (rectangular) box, such that x and x̃ are centers of the opposite faces
of T—one side of T is d(x, x̃) and the other n−1 sides are equal to d(x,x̃)

[log N ]4 , where [.] denotes
the integer part of a given number.

Now, let ε ∈ (0, 1) be given. By cutting along the long side of T , we subdivide T into
equal subboxes (referred to as “tunnels”) Ti , i = 1, . . . , [N ε]n−1, so that each Ti has one
side of length d(x, x̃) and the other n − 1 sides of length d(x,x̃)

[N ε ][log N ]4 .
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Further, by cutting perpendicularly to the long side, we divide Ti into equal cubes
qi,t , t = 1, . . . , [N ε][log N ]4 all of which have side-length of d(x,x̃)

[N ε ][log N ]4 and whose centers
are denoted by xi,t . We also arrange the parameter t so that d(qi,t , x) ≥ d(qi,t+1, x).

We will assume that N is sufficiently large, i.e. bounded below by N0(n, M, g) > 0.

Step 2—growth along a tunnelWewish to relate how large u is at the first and last cubes—qi,1
and qi,[N ε ][log N ]4 . To this end we will use the lemmata from Sect. 5.1.

First, let us observe that qi,1 ⊂ B(p, s(1− δ
4 )). Indeed, for sufficiently large N we have

d(p, qi,1) ≤ d(p, x̃) + d(x̃, qi,1) ≤ s(1 − δ) + Cδs
√
n

[log N ]4 ≤ s

(
1 − δ

2

)
. (79)

The estimate (69) yields

sup
qi,1

|u| ≤ sup
B(p,s(1− δ

4 ))

|u| ≤ K2
−c1

N
log2 N

+C1
. (80)

On the other hand, let us denote the last index along the tunnel by τ , i.e. τ := [N ε][log N ]4.
As the cube qi,τ is of size comparable to 1

[N ε ][log6 N ] and N is assumed to be large enough,

we can find an inscribed geodesic ball Bi,τ ⊂ 1
2qi,τ , centered at xi,τ and of radius s

N .
Now, by definition d(xi,τ , x) ≤ Cs

[log N ]6 . Hence, the inequality (76) implies (taking x̃ there
to be xi,τ )

sup
qi,τ

|u| ≥ sup
Bi,τ

|u| ≥ K2
−C3

N
log5 N

−C3
. (81)

Putting the last two estimates together, we obtain

Lemma 5.5 There exist positive constants c,C such that

sup
1
2 qi,[Nε ][log N ]4

|u| ≥ sup
1
2 qi,1

|u|2cN/ log2 N−C . (82)

Step 3—bound on the number of good tunnels Next, we show that there are sufficiently
many tunnels, such that the doubling exponents of the contained cubes are controlled (cf.
Claim 6.2, [25]). More precisely,

Lemma 5.6 There exist constants c = c(ε) > 0, N0 > 0 such that at least half of the tunnels
Ti are “good” in the sense that they have the following property:

For each cube qi,t ∈ Ti , t ∈ 1, . . . , [N ε][log N ]4 we have

N (qi,t ) ≤ max

(
N

2c log N/ log log N , N0

)
. (83)

Proof We assume that N is sufficiently big. We focus on the cubes that fail to satisfy this
condition, i.e. we consider the “bad” cubes qi,t for which

N (qi,t ) > N2−c log N/ log log N . (84)

The constant c = c(ε) stems from Theorem 5.4 and is addressed below. As the number of
all tunnels is [N ε]n−1, by the pigeonhole principle, the claim of the lemma will follow if one
shows that the number of bad cubes does not exceed 1

2 [N ε]n−1.
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To this end, we apply Theorem 5.4 in the following way.We divide T into equal Euclidean
cubes Qt , t = 1, . . . , [log N ]4 of side-length d(x,x̃)

[log N ]4 . We need to control N (Qt ) via N . To
do this, observe that

d(x, y) ≤ 4d(x, x̃) ≤ s

107 log2 N
, (85)

that is y is not far from the maximum point. Hence, we can apply (75) and obtain

supB(y, s
107 log2 N

) |u|
supB(y, 12

s
107 log2 N

) |u| ≤ 2
C N

log2 N
+C

. (86)

The definition and monotonicity of N (Qt ) as well as the assumption that N > N0 imply
that

N (Qt ) ≤ N , t = 1, . . . , [log N ]4. (87)

Now, the application of Theorem 5.4 with B = [N ε] gives that the number
of bad cubes contained in Qt (i.e., cubes whose doubling exponent is greater than
max

(
N (Qt )2−c1 log(N ε )/ log log(N ε ), N0

)
) is less than C[N ε]n−1−c2 . Note that we can absorb

the ε term in the constant c1 and deduce that the bad cubes have a doubling exponent greater
than max

(
N (Qt )2−c(ε) log N/ log log N , N0

)
.

Summing over all cubes Qt we obtain that the number of all bad cubes in T is no more
than

C[N ε]n−1−c2 [log N ]4 ≤ 1

2
[N ε]n−1. (88)

��
Step 4—zeros along a good tunnel Finally, we will count zeros of u along a good tunnel.

Roughly, the harmonic function u has tame growth along a good tunnel. If u does not change
sign, one could use the Harnack inequality to bound the growth of u in a suitable way.
Summing up the growth over all cubes along a tunnel and using the estimate in Step 2 we
obtain (cf. Claim 6.3, [25]):

Lemma 5.7 There exists a constant c2 = c2(ε) > 0 such that if N is sufficiently large and
Ti is a good tunnel, then there are at least 2c2 log N/ log log N closed cubes q̄i,t that contain a
zero of u.

Proof As the tunnel is good, Lemma 5.6 gives that for every t = 1, . . . , [N ε][log N ]4 − 1
we have

log
sup 1

2 qi,t+1
|u|

sup 1
2 qi,t

|u| ≤ log
sup4qi,t |u|
sup 1

2 qi,t
|u| ≤ N

2c1 log N/ log log N . (89)

We split the index set {1, . . . , [N ε][log N ]4 −1} into two disjoint subsets S1, S2: an index
t is in S1 provided u does not change sign in q̄i,t ∪ q̄i,t+1. The advantage in S1 is that one
can use the Harnack inequality. For t ∈ S1 we have

log
sup 1

2 qi,t+1
|u|

sup 1
2 qi,t

|u| ≤ C1. (90)
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Using Lemma 5.5 and summing-up we obtain

c
N

log2 N
− C ≤ log

sup 1
2 qi,[Nε ][log N ]4

|u|
sup 1

2 qi,1
|u| =

∑
S1

log
sup 1

2 qi,t+1
|u|

sup 1
2 qi,t

|u| +
∑
S2

log
sup 1

2 qi,t+1
|u|

sup 1
2 qi,t

|u|
(91)

≤ C1|S1| + N

2c1 log N/ log log N |S2| ≤ C1[N ε] log4 N + N

2c1 log N/ log log N |S2|
(92)

≤ c

2

N

log2 N
− C + N

2c1 log N/ log log N |S2|. (93)

This shows that

|S2| ≥ 2
c1
2 log N/ log log N . (94)

��

We have already seen that there are at least 1
2 [N ε]n−1 good tunnels, which, by

summing-up, means that the number of small cubes, where u changes sign is at least
1
2 [N ε]n−12c2 log N/ log log N .

Finally, in each cube q̄i,t let us fix a zero xi,t ∈ q̄i,t , u(xi,t ) = 0 and note that

diam(q̄i,t ) ∼ r

N ε log6 N
. (95)

Each ball B(xi,t ,
r

N ε log6 N
) intersects at most κ = κ(n) other balls of this kind. By taking

a maximal disjoint collection of such balls and reducing the constant c2 to c3 = c3(ε) we
conclude the proof of Theorem 3.3.
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