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Abstract
We prove that in Euclidean space Rn+1 any compact immersed nonnegatively curved hyper-
surface M with free boundary on the sphere Sn is an embedded convex topological disk.
In particular, when the mth mean curvature of M is constant, for any 1 ≤ m ≤ n, M is a
spherical cap or an equatorial disk.

Mathematics Subject Classification Primary 53A07 · 58E35; Secondary 52A20 · 49Q10

1 Introduction

A fundamental result in submanifold geometry is the convexity of closed hypersurfaces
with nonnegative (sectional) curvature immersed in Euclidean space Rn+1. Hadamard [21]
observed this phenomenon for n = 2 and positive curvature in 1897. Chern and Lashof [7]
extended Hadamard’s theorem to nonnegative curvature, and Sacksteder [37] proved the full
result in all dimensions, by reducing it to a nonsmooth analogue due to van Heijenoort [42].
Similar phenomena have also been established in the sphere Sn+1 and the hyperbolic space
Hn+1, by do Carmo and Warner [12], and Currier [8] respectively. We add a result to this
genre for surfaces with boundary:

Theorem 1.1 Any compact C∞ immersed nonnegatively curved hypersurface M in Rn+1

with free boundary ∂M on Sn is an embedded convex topological disk.
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Free boundary here means that M is orthogonal to Sn along ∂M—a condition which
arises naturally in variational problems, e.g., see [4,5]. Furthermore, by convex we mean
that the surface lies on the boundary of a convex body (see Sect. 2.1 for basic definitions).
Surfaces with free boundary have received much attention recently, especially since Fraser
and Schoen [14] studied Steklov eigenvalues of minimal submanifolds in the ball Bn+1.
These works often point to a strong similarity between closed hypersurfaces of Sn+1 and
hypersurfaces with free boundary in Bn+1. The above theorem is another instance of this
phenomenon, and also yields the following characterization for umbilical hypersurfaces,
which mirrors results of Hartman [22] and Cheng and Yau [9]:

Corollary 1.2 Let M be as in Theorem 1.1. Suppose that the mth mean curvature of M is
constant for some 1 ≤ m ≤ n. Then M is either a spherical cap or an equatorial disk.

The proof of Theorem 1.1 employs the classical results mentioned above together with
a host of more recent techniques [1,15,16,18]. First we show that every component � of
∂M is convex in Sn (Sects. 3, 4, 5). Next we glue a convex disk along each � to extend M
to a closed C1 hypersurface M , which is C∞ and nonnegatively curved almost everywhere
(Sect. 6). Finally we prove the convexity of M by adapting a proof of Sacksteder’s theorem
(in the compact case) due to do Carmo and Lima [11] (Sect. 7). Proofs of the last two steps are
the same in all dimensions; however, the first step involves muchmore work for n = 2 (Sects.
4, 5), which forms the bulk of this paper. Corollary 1.2 follows quickly from Theorem 1.1
via Alexandrov’s reflection technique and the generalized Delaunay theorem for rotational
surfaces (Sect. 8). The following notes show that the conditions of Theorem 1.1 are sharp.

Note 1.3 The free boundary condition in Theorem 1.1 is essential. Consider for instance the
surface � ⊂ R3 given by z = x3(1 + y2) and |y| < 1/2, which appears in Sacksteder
[37]. This surface is nonnegatively curved, but fails to be convex in any neighborhood of the
origin. Let λ� denote homothetic copies of � for λ > 2, and Mλ be the component of λ�

contained in S2. As λ → ∞, Mλ becomes arbitrarily close to being orthogonal to S2, while
it remains nonconvex.

Note 1.4 Theorem 1.1 may not hold if Sn is replaced by another convex surface. For instance
let C be the cylinder x2 + y2 = 1 inR3, T be the torus obtained by revolving the circle given
by (x − 1)2 + z2 = 1/4 and y = 0 around the z-axis, and M be the portion of T outside
C . Then M is a nonnegatively curved surface with free boundary on C , which is not simply
connected. We may regard T as the image of a multiple covering by another torus, in which
case M will also fail to be embedded. Finally let T ′ be the portion of T contained in the
region {x ≤ 0} ∪ {y ≤ 0} of R3, fill in the boundary components of T ′ with disks, and let
M ′ be the portion of the resulting surface which lies outside C . Smoothing the corners of M ′
yields a nonnegatively curved surface with free boundary on C which is not convex.

Note 1.5 The free boundary condition in Theorem 1.1 cannot be generalized to a constant
angle (or capillary) condition along ∂M . Indeed let T be the torus of revolution in Note 1.4,
S be the sphere of radius

√
5/2 centered at o, and M be the portion of T outside S. Then

M is a nonnegatively curved surface which meets S at a constant angle along its boundary,
but is not simply connected. As discussed in Note 1.4, one may also construct nonconvex
versions of this example.

Note 1.6 The compactness requirement in Theorem 1.1 may not be weakened to metric
completeness (in the sense of Cauchy): take any smooth closed curve γ : S1 → S2, which is
not convex, and let M be generated by λγ (t) for λ ≥ 1.
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2 Preliminaries: local convexity

A chief difficulty in working with nonnegative (as opposed to strictly positive) curvature is
the absence of local convexity.We deal with this issue by slicing the surface with hyperplanes
that separate its interior points from its boundary, and thus generate convex caps, as we review
in this section. More extensive background may be found in [1,19].

2.1 Basic terminology

Throughout this work, Rn+1 denotes (n + 1)-dimensional Euclidean space with standard
metric 〈·, ·〉 and origin o. Furthermore Sn , Bn+1 denote respectively the unit sphere, and the
(closed) unit ball in Rn+1. Unless stated otherwise, we will assume that M is a compact
connected (n ≥ 2)-dimensional manifold, with (nonempty) boundary ∂M . We say that M
is a (topological) disk if it is homeomorphic to Bn . An equatorial disk is the intersection of
Bn+1 with a hyperplane through o. We always assume that M is topologically immersed in
Rn+1, i.e., there exists a continuous locally one-to-one map f : M → Rn+1. We say that M
is Ck if f is Ck , and a subset of M is embedded if f is one-to-one on that set. To reduce
notational clutter, we will suppress f , and identify M locally with its image under f . As far
as the proof of Theorem 1.1 is concerned, we may assume without loss of generality that M
is orientable, after replacing it by its double cover if necessary. So we will assume that M is
orientable. A convex body K ⊂ Rn+1 is a compact convex set with interior points. We say
that M is locally convex at a point p if there exists an open neighborhoodU of p in M which
lies on the boundary of a convex body K ⊂ Rn+1. We say that M is locally convex if it is
locally convex everywhere, and M is convex if it lies embedded on the boundary of a convex
set with interior points inRn+1. If M is C2 and has nonnegative (sectional) curvature, we say
that it is infinitesimally convex. Note that every C2 locally convex hypersurface is necessarily
infinitesimally convex, but the converse in general is not true.

2.2 Convex caps

A convex cap C in Rn+1 is a convex disk whose boundary lies on a hyperplane H , while
the rest of it does not. We say that C is spherical if it lies on a round sphere. In [42]
van Heijenoort employed convex caps to show that a complete locally convex hypersurface
immersed inRn+1 is convex provided that it is locally strictly convex at one point p; see also
[27]. The latter condition means that there passes a hyperplane through p which intersects
an open neighborhood of p in M only at p. In particular note that local strict convexity does
not necessarily imply that the curvature is positive (e.g. consider the surface z = x4 + y4

in R3). Sacksteder [37] showed that a complete nonnegatively curved Cn+1 hypersurface M
immersed in Rn+1 is locally convex provided that it has a point of positive curvature, which
yields the convexity of M via van Heijenoort’s theorem. The following observation is a quick
consequence of these results via a projective transformation:

Lemma 2.1 Let H be a hyperplane, H+ be one of the closed half spaces of H, and M+ be
a component of M in int(H+). Suppose that M+ is disjoint from ∂M. Furthermore suppose
that either M is locally convex, or else is Cn+1 and infinitesimally convex. Then the closure
of M+ is a convex cap.

Proof First we show that M+ contains a strictly convex point which has positive curvature
when M is C2. Let ∂M+ denote the topological boundary of M+ as a subset of M , and
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M+ := M+ ∪ ∂M+ denote its closure. M+ is compact since M is compact. Let q be a
farthest point of M+ from H . Since M ∩ H is compact and q /∈ H , there exists a sphere S
which contains M ∩ H but not q . Let q ′ be a farthest point of M+ from the center o of S.
Then q ′ ∈ M+. Let S′ be the sphere of radius ‖oq ′‖ centered at o. Then M+ lies inside S′
and intersects it at q ′. Hence q ′ is the desired point.

Now identify H with the hyperplane xn+1 = 0 and suppose after a rescaling that M+ lies
in the slab 0 < xn+1 < 1. Consider the projective transformation

(x1, . . . , xn, xn+1)
P�−→

(
x1

xn+1
, . . . ,

xn
xn+1

,
1

xn+1

)
. (1)

If M is C2 with nonnegative curvature, then P(M+)will be a complete nonnegatively curved
hypersurface with a point of positive curvature, since projective transformations preserve
sign of curvature. So P(M+) must be convex by Sacksteder’s theorem [37], which implies
that M+ must have been convex (projective transformations preserve convexity because they
preserve line segments). If M is a topological hypersurface which is locally convex, then
P(M+) will be a complete locally convex hypersurface with a strictly convex point. Thus
convexity of P(M+), and subsequently that ofM+ follow from the theoremof vanHeijenoort
[42]. So we conclude that M+ lies on convex set K with interior points which lie on one side
of H . Since M is compact, we may assume that K is compact as well.

Since M+ is locally embedded and M+ is embedded, it follows that M+ is embedded.
Since M+ is compact, it is closed in ∂K . So if K ∩H has no interior points, then M+ = ∂K ,
which is a contradiction because ∂M �= ∅ by assumption. So K ∩H must have interior points
in H . Then the closure of ∂K ∩ int(H+), which coincides with M+, is a convex cap. ��

2.3 Clippings

If M is locally convex, then through each of its points p there passes a locally supporting
hyperplane, i.e., a hyperplane H such that a neighborhood U of p in M lies on one side of
H , where by a side we mean one of the closed half-spaces of Rn+1 determined by H . We
say that M is one-sided provided that the side of H , say H+, where U lies may be chosen
to depend continuously on p (i.e., for every convergent sequence Hm → H∞ of supporting
hyperplanes of M , we have H+

m → H+∞). Then N will be called the inward normal of M , and
we say that M is locally convex with respect to N . We need to recall the following important
fact which is implicit in [1]:

Lemma 2.2 [1] Suppose that M is locally convex, one-sided, and ∂M lies in the interior of
a convex body K . Then there exists a one-sided locally convex immersed hypersurface M̃
homeomorphic to M such that M̃ coincides with M in K , while the rest of M̃ lies on ∂K.

Proof For any natural number k there exists a convex polyhedron Pk such that K ⊂ Pk and
the distance between Pk and K is less than 1/k. For each face of Pk , via Lemma 2.1, clip
off the convex caps of M determined by the hyperplane of that face and replace them by flat
disks. This yields a sequence of locally convex hypersurfaces Mk which coincide with M in
K by [1, Prop. 4.4]. The local radii of convexity of Mk , as defined in [1, Sect. 6], remain
uniformly bounded by [1, Prop. 6.3 and 6.4]. Consequently this sequence converges to the
desired surface M̃ by [1, Thm. 7.1]. ��
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2.4 Characterizations

Here are a pair of useful criteria for checking local convexity, which will be needed below:

Lemma 2.3 Let M be C1, N be a continuous normal vector field on M, and TpM+ be the side
of TpM where N (p) points. Suppose that every interior point of M has an open neighborhood
U in M which lies in TpM+. Then the interior of M is locally convex.

Proof Let B be a ball centered at p, and Mp be the component of M inside B which contains
p. Assuming B is sufficiently small,Mp is a diskwhichmeets ∂B precisely along its boundary
∂Mp . By the Jordan-Brouwer theorem, ∂Mp separates ∂B into a pair of hypersurfaces ∂B±
bounded by ∂Mp . These generate closed embedded hypersurfacesMp∪∂B± ofRn+1, which
bound compact regions K± respectively. Let K+ be the region into which N (p) points. Then
the interior of K+ forms a connected open set which is “weakly supported locally” [41, Def.
4.8] at each point of its boundary ∂K+ = Mp ∪ ∂B+. This means that through each point
of ∂K+ there passes a hyperplanes with respect to which a neighborhood of that point in K
lies on one side. Thus, by a theorem of Tietze [40], see [41, Thm. 4.10], K+ is convex. So
Mp is convex. ��
Lemma 2.4 Let M be C2, and N be a continuous normal vector field on M. Suppose that the
second fundamental form of M is everywhere positive semidefinite with respect to N. Then
the interior of M is locally convex.

Proof Locally M may be represented by graphs of functions over convex sets in the tangent
hyperplanes of M . These functions will have positive semi-definite Hessians and hence will
be convex [38, Thm. 1.5.13]. ��

2.5 Regularity

For the rest of this work, unless stated otherwise, we will assume that M is as in the statement
of Theorem 1.1.We need M to be at least Cn+1 in order to apply theorems of Sacksteder [37],
and do Carmo and Warner [12] which analyze the set of flat points of a surface. In particular
see [37, Lem. 6] which requires Sard’s theorem [13, Thm. 3.4.3], and the subsequent remark
[37, p. 615]. Otherwise, C2 regularity would suffice in various lemmas below which do not
use these theorems.

3 Convexity of @M: part I

Aswementioned above, the first step in proving Theorem1.1 is to show that every component
� of ∂M is convex in Sn , i.e., it is embedded and bounds a convex set X ⊂ Sn . We recall
that X ⊂ Sn is said to be convex if and only if the cone generated by rays emanating from o
and passing through points of X forms a convex set in Rn+1. For n ≥ 3, which we consider
first, convexity of � follows quickly from the free boundary condition, which completely
determines the second fundamental form II of ∂M in M ; specifically, we recall the following
observation, which is essentially proved in [36, Lem. 2]. This fact does not depend on the
curvature of M .
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Lemma 3.1 [36] Let ν be the outward conormal vector along ∂M, p ∈ ∂M, and II be the
second fundamental form of ∂M in M at p with respect to −ν. Then ν(p) = ±p, and

II(·, ·) = 〈p, ν(p)〉〈·, ·〉 = ±〈·, ·〉
accordingly, where 〈·, ·〉 is the Euclidean metric. In particular, when n = 2, the geodesic
curvature of ∂M in M with respect to −ν is given by

k(p) = 〈p, ν(p)〉 = ±1.

Now let R� , RM denote the Riemannian curvature tensors of � and M respectively, and
{ei } be an orthonormal basis for � at a point p. Then by Gauss’ equation, and Lemma 3.1,
we may compute that at p, for i �= j ,

R�
i j i j = RM

i ji j + IIi i II j j − IIi j II j i = RM
i ji j + 1 − 0 ≥ 1,

where subscripts indicate the coefficients of these tensors with respect to {ei }. So the sectional
curvatures of � are bounded below by 1. Thus, by the theorem of do Carmo andWarner [12],
� is convex in Sn when n ≥ 3.

It remains then to consider the case where n = 2, which will be significantly more
involved, because a locally convex closed curve in S2 need not be globally convex, or even
embedded. The arguments below will depend on whether M lies outside or inside S2 near
�, and will be presented in the next two sections respectively. Note that ν(p) = p whenever
M meets Sn from the inside, and ν(p) = −p whenever M meets Sn from the outside.

4 Convexity of @M: part II

Throughout this section we will assume that n = 2, and M lies outside S2 near a component
� of ∂M . In order to establish the convexity of � in this case, we will have to show that M
is locally convex. To start, letU be a tubular neighborhood of � in M . AssumingU is small,
U\� will lie outside of S2. Let M� be the closure of the component of M outside of S2 which
contains U\�. We claim that M� is locally convex and one-sided, as defined in Sect. 2. To
this end first we show:

Lemma 4.1 There exists a unique continuous unit normal vector field N on M� with respect
to which the interior of M� is locally convex.

Proof By Lemma 2.1, each point p ∈ int(M�) lies in the interior of a convex cap Cp . Let
N (p) be the unit normal vector of M at p which points to the side of TpM where Cp lies.
To see that N (p) is well defined, i.e., it does not depend on the choice of a cap, let C ′

p be
another convex cap which contains p in its interior. Suppose, towards a contradiction, that
Cp and C ′

p lie on opposite sides to TpM . Then Cp ∩ C ′
p must lie in TpM . In particular

neither cap can lie completely inside the other, for else it would have to be flat, which is not
possible. It follows then that ∂Cp ∩ ∂C ′

p must contain at least a pair of points. Let L be the
line passing through these points. Furthermore, let H , H ′ be the planes on which ∂Cp , ∂C ′

p
lie respectively. Then H , H ′ both must contain L . On the other hand, H , H ′ cannot coincide
with TpM . Thus H ∩ TpM = L = H ′ ∩ TpM . Consequently, ∂Cp ∩ ∂C ′

p forms a line
segment in L . This again would imply that one cap lies inside the other, which is impossible
as we pointed out earlier. So N (p) is well-defined, as claimed. Next note that N is continuous
on int(M�), because it is continuous on each Cp . Finally, we may extend N continuously to
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the boundary of M� , since as wementioned in Sect. 2.1, we may assume that M is orientable.
More explicitly, there exists a continuous unit normal vector field ν on M� . After replacing
ν with −ν, we may assume that N = ν on int(M�), since int(M�) is connected. Then we
set N = ν on ∂M� which completes the proof. ��

Next we consider the local convexity of M� along �. To this end we need to study the
behavior of � in S2. For the rest of this section, unless indicated otherwise, N will be the
vector field given by the last lemma.

Lemma 4.2 The geodesic curvature of � in S2 is nonnegative with respect to N.

Proof For every p ∈ �, N (p) is normal to � and tangent to S2. Thus it follows that the
geodesic curvature of � at p is given by k(p) = IIp(T , T ), where IIp is the second funda-
mental form of M at p with respect to N , and T is a unit tangent vector of � at p. Take a
sequence of points pi in U\� converging to p, and let Ti ∈ Tpi M be a sequence of unit
tangent vectors converging to T . Then IIpi (Ti , Ti ) converges to IIp(T , T ), since M is C2.
By Lemma 4.1, IIpi (Ti , Ti ) is nonnegative. So IIp(T , T ) is nonnegative, which yields that
k ≥ 0 on � as desired. ��

To establish the convexity of� it only remains to check that it is simple. Indeed any simple
spherical curve whose geodesic curvature is nonnegative with respect to a continuous normal
vector field must be convex [18, Lem. 2.2].

In the next lemma we need to apply the Gauss–Bonnet theorem to a nonsmooth surface.
For this purpose we choose the theorem in the book of Alexandrov and Zalgaller [3, p. 192]
whichmirrors the traditional version of theGauss–Bonnet theorem, and applies toAlexandrov
surfaces, i.e., 2-dimensional manifolds with a metric whose curvature is bounded in the sense
of Alexandrov. With the induced metric, all C2 surfaces immersed in R3 are examples of
these objects, as are all locally convex surfaces, whose curvature in the sense of Alexandrov
is nonnegative.

Lemma 4.3 M is homeomorphic to a disk.

Proof Let �1, �2, . . . denote those components of ∂M near which M lies outside S2. For
each i let Ui be a tubular neighborhood of �i in M . Let S be the sphere of radius 1 + ε

centered at o, and for each i set �′
i := Ui ∩ S. Choosing ε sufficiently small, we may suppose

that S meets every Ui transversally so that �′
i is a smooth closed curve. For all i , let Ai be

the annular region bounded by �i and �′
i .

By Lemma 2.1, the parts of M which lie outside S2 are locally convex. Thus we may
project these parts into S via Lemma 2.2. More specifically, by perturbing a sphere of radius
1 + ε/2 between S2 and S, we obtain a closed surface C which meets M transversely, by
the transversality theorem [23]. Then portions MC of M which lie outside C are manifolds
whose boundaries lie strictly inside S. So we may apply Lemma 2.2 to MC with respect to
the convex body K bounded by S. This results in an immersed surface M̃ homeomorphic to
M which coincides with M inside S.

Let M̃ ′ be the closure of the surface obtained from M̃ be cutting off the annular regions Ai .
Then M̃ ′ is homeomorphic to M , and lies in S near each �′

i . Let N
′ be the inward conormal

vector of ∂ M̃ ′ in M̃ ′ along �′
i . Note that for each p ∈ �′

i , N
′(p) points to the side of TpM ,

say TpM+, where the inward normal N (p) of M points, because by Lemma 2.2 M̃ is one
sided and coincides with M inside S. Indeed N is the inward normal of M̃ on Ai , and so
there exists an open neighborhood U of p in M̃ which lies in TpM+. In particular U ∩ M̃ ′,
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which is an open neighborhood of p in M̃ ′, lies in TpM+. This shows that as ε → 0, N ′
converges to N . Thus the integral of the geodesic curvature of �′

i in M̃ ′ with respect to N ′
converges to the integral of the geodesic curvature of �i in S2 with respect to N , which is
nonnegative by Lemma 4.2.

Furthermore, along those boundary components of M̃ ′ where M̃ ′ meets S2 from the inside,
the geodesic curvature is positive by Lemma 3.1. Thus, for ε sufficiently small, the integral of
geodesic curvature of ∂ M̃ ′ in M̃ ′ will be positive or else arbitrarily close to zero. In addition
note that every point of M̃ ′ ⊂ M̃ is either C2 and nonnegatively curved or else is locally
convex, in which case its curvature is still nonnegative everywhere in the sense of Alexandrov
[3]. In addition, since parts of M̃ ′ coincide with S, its total curvature is positive and remains
bigger than some positive constant as ε → 0. Thus, by the Gauss–Bonnet theorem for
Alexandrov surfaces [3, p. 192], M̃ ′ is a disk. So M is a disk. ��

Note that the last lemma implies in particular that ∂M is connected and so � = ∂M . For
the rest of this section we will use ∂M and � interchangeably. We now can show:

Lemma 4.4 M is locally convex along ∂M with respect to N.

Proof By Lemma 4.3, ∂M = �. So, by Lemma 4.1, there exists an open neighborhood U
of ∂M in M such that U\∂M is locally convex with respect to N . We claim that for every
p ∈ ∂M , M lies locally on the side of TpM , say (TpM)+, where N (p) points. This would
complete the proof as follows. Extend U to a larger surface Ũ , by attaching to each point
p of ∂M a portion of the segment op, say of length 1/2. Then Ũ satisfies the hypothesis
of Lemma 2.3, assuming that the claim holds. Note that Ũ is C1 because it has flat tangent
cones at each point which vary continuously, see [15, Lem. 3.1]. Thus Ũ is locally convex,
as desired. It remains then to establish the claim.

By Lemma 4.2, there exists a simple segment of ∂M , say �0, which contains p in its
interior and lies in (TpM)+. Let C be the surface generated by rays which originate from o
and pass through all points of �0. ThenC lies in (TpM)+. So to establish the claim it suffices
to show that, near p, M lies on the side of C where N points.

Note that, by the free boundary condition, TpM passes through o and so G := TpM ∩ S2

is a great circle. We may assume that �0 is a graph over a segment G0 of G, i.e., every great
circle orthogonal to G0 intersects �0 at most once and every point of �0 lies on such a circle;
see the right diagram in Fig. 1. Let q ∈ G0, and q ′ be the corresponding point in �0, i.e, the
intersection with �0 of the great circle which is orthogonal to G0 at q .

Let (Tq ′S2)+ be the side of Tq ′S2 which does not contain S2. By Lemma 2.1, q ′ lies on
the boundary of a convex cap Xq in (Tq ′S2)+, with boundary on Tq ′S2. Note that the ray oq ′
of C does not intersect the interior of the convex hull Kq of Xq , because Xq is tangent to
Tq ′M , and hence lies on one side of Tq ′M , while oq ′ lies in Tq ′M . Now let Hq be the plane
which passes through o, q , and q ′ and is orthogonal to TpM . Since Hq is transverse to �0

and ∂Xq is tangent to �0 at q ′, we may suppose that Hq intersects Xq transversally. So Kq

has interior points in Hq and thus Hq ∩ Kq is a convex body in Hq . Consequently Xq ∩ Hq

is a convex cap which lies on the boundary of Kq ∩ Hq . In particular, since oq ′ does not
intersect the interior of Kq , Xq ∩ Hq lies on one side of oq ′ in Hq .

Note that the curves Xq ∩ Hq fibrate an open neighborhoodU of p in M . Indeed we may
takeU to be the union of the interior of �0 with the interior of all caps Xq for q in the interior
of G0. Thus, since Xq ∩ Hq lies on one side of oq ′ = C ∩ Hq , it follows that U lies on one
side of C , as desired. Finally, we check that this is the side of C where N points. To see this
recall that, by Lemma 4.1, N is the inward normal in the interior of M near ∂M . In particular,
N is the inward normal on the interior of each cap Xq . By continuity it follows that N is the
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o q

q′

p q

q′

TpM ∩ Hq G

Hq ∩ S2

Γ0

G0

Xq ∩ Hq

C ∩ Hq

Tq′S2 ∩ Hq

Fig. 1 Diagram for the proof of Lemma 4.4

inward normal on all of Xq . Thus Xq lies in the side of Tq ′M where N (q ′) points, which
yields that U lies on the side of C where N points, and completes the proof. ��

The principal step [37, Thm. 1] in the proof of Sacksteder’s theorem is that each component
of the set of flat points of a complete nonnegatively curved hypersurface is a convex planar
set; see also [1, Lem. 3.1] and [20, p. 460]. Here we need an analogue of this fact for surfaces
with boundary, which constitutes the key observation in this section:

Lemma 4.5 Let p ∈ ∂M, and X be the component of TpM ∩ M which contains p. Then X
is fibrated by line segments which meet ∂M orthogonally. In particular M\X is connected.

Proof We will use the same setting and notation as in the proof of Lemma 4.4, and refer the
reader to Fig. 2, which adds new details to Fig. 1. In particular, an important tool will be the
fibration Xq ∩ Hq of the neighborhood of �0 in M .

Let H be a plane different from TpM which passes through o, and such that the line
H ∩ TpM is orthogonal to op. Let H+ be the side of H where p lies, H− be the opposite
side, and θ be the angle of the wedge H+ ∩ (TpM)+. By Lemma 4.2 we can make sure �0

is long enough so that each end point of �0 lies either in the interior of (TpM)+ or in the
interior of H−. Then, choosing θ sufficiently small, we may assume that both end points of
�0 lie in the interior of H−. Let M+ be the closure of the component of M which lies in the
interior of H+ and contains p. We claim that if θ is sufficiently small, then M+ is locally
convex.

To establish the claim first note that M+ is locally convex along ∂M by Lemma 4.4.
Thus it suffices to check the points of M+ which lie in the interior of M . To this end let
q ′′ be the end point of Xq ∩ Hq , other than q ′, and q ′′ be the projection of q ′′ into S2.

θ

q

q′

q′′

q′′

p q

q′

q′′

TpM ∩ Hq

H ∩ Hq

G

H ∩ S2

Hq ∩ S2

Γ0

Fig. 2 First diagram for the proof of Lemma 4.5
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o

Y p

Ypx′
x

x′′

p

TpM ∩ H

TpM ∩ H+

Fig. 3 Second diagram for the proof of Lemma 4.5

Furthermore let d be the smallest geodesic distance between q ′′ and q in S2 for all q ∈ G0,
d := infq∈G0 distS2(q, q̄ ′′). Note that d > 0, because the planes Tq ′S2 which determine the
convex cap Xq , are transversal to M along ∂Xq . So ∂Xq depends continuously on q , as Tq ′S2

depends continuously on q . Furthermore, Hq depends continuously on q as well. Hence q ′′
depends continuously on q , since it is one of the two points where Hq and ∂Xq meet. So
distS2(q, q̄ ′′) depends continuously onq . Finally, note thatq ′′ �= q ′ which yields thatq ′′ �= q ′.
Consequently q ′′ �= q , since q ′ lies in the geodesic segment qq ′′. So distS2(q, q̄ ′′) > 0, which
yields that d > 0 due to compactness of G0. Now setting θ < d yields the desired angle, for
then M+ ∩ int(M) is covered by the interior of convex caps.

Having established the local convexity of M+, we now let M+ be the extension of M+
which is obtained by connecting points of M+ ∩ ∂M to o. Then M+ is a locally convex
surface whose boundary lies in H , and therefore is a convex cap by Lemma 2.1. Let Yp be
the component of X containing p which lies in H+, and Y p be the extension of Yp obtained
by connecting all points of Yp ∩ ∂M to o; see Fig. 3. Then Y p = M+ ∩ TpM . Thus Y p is
a convex set. In particular, for any point x ∈ Yp , the segment ox is contained in Y p . Let x ′
be the intersection of ox with ∂M , and extend ox until it intersects the boundary of Yp at
another point, say x ′′. Then the segment x ′x ′′ lies in Yp , and thus we obtain a fibration of Yp

by line segments orthogonal to ∂M .
Note that the above construction may be carried out for any point r of X ∩ ∂M to yield

a fibrated set Yr ⊂ X for each r . Thus, to complete the proof, it suffices to show that the
sets Yr cover X . To this end we need to check that Y := ∪r∈X∩∂MYr is open and closed in
X . To establish the closedness, let xi ∈ Y be a sequence of points converging to a point x
of X . Then x ′

i converge to x ′. By assumption, the segments xi x ′
i ⊂ Yx ′

i
⊂ X . Thus, as X

is closed, xx ′ lies in X . Consequently x ∈ xx ′ ⊂ Yx ′ ⊂ Y . So Y is indeed closed in X . It
remains to check then that Y is open in X . To see this let x ∈ Y . Then x ∈ Yx ′ . Let V be
an open neighborhood of x in X . We may assume that V is connected and is so small as
to be contained in the half-plane in TpM determined by the line orthogonal to ox , which
passes through o. Recall that Yx ′ is by definition the connected component of X , containing
x ′, which lies in that half-plane. It follows then that V ⊂ Yx ′ ⊂ Y , since V ∪Yx ′ is connected
and lies in the half-plane. So Y is open in X , and we are done. ��

Now we are ready to prove the main result of this section:

Lemma 4.6 M is locally convex.

Proof By Lemma 4.4, M is locally convex along ∂M . So it remains to check that the interior
of M is locally convex as well. To this end, by Lemma 2.4, it suffices to show that the second
fundamental form of M is positive semidefinite with respect to a continuous normal vector
field. We claim that the desired vector field is given by N once it is extended to all of M .
By Lemma 4.4, the second fundamental form of M with respect to N will then be positive
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p

p′

q r

C

Fig. 4 Diagram for the proof of Lemma 4.7

semidefinite in a connected neighborhood U of ∂M . Following Sacksteder [37], we let M0

be the set of flat points of M , and M1 := M\M0. Note that each component of M1 admits
a unique choice of inward normal. Hence it suffices to show that each component of M1

intersects U , or thatU ∪ M1 is connected. Equivalently we need to show that no component
of M0 separates a component of M1 from U . By [37, Thm. 1], if a component X of M0 lies
in the interior of M , then it is a convex planar set. So M\X is connected. On the other hand,
if X intersects ∂M , then again M\X is connected by Lemma 4.5. Thus no component of M0

separates M , which completes the proof. ��
To establish the embeddedness, or simplicity, of � we need only one more observation

concerning general properties of spherical curves. The following lemma applies to all curves
in S2 whose geodesic curvature is nonnegative with respect to a continuous normal vector
field.

Lemma 4.7 If � is not simple, then either it traces a great circle multiple times, or else it
contains a subloop which lies in an open hemisphere.

Proof If the curvature of � is identically zero, then it traces a great circle and there is nothing
to prove. Suppose then that � has a point p of nonzero curvature. Let C be the great circle
passing through p and tangent to � at p. Then a neighborhood of p in � lies inside C , i.e.,
in the hemisphere H bounded by C where N (p) points, and intersects C only at p. If �

intersects C at no point other than p, we may slightly shift C to make it disjoint from �.
Then � will lie in an open hemisphere and we are done. So we may assume that � intersects
C at some point other than p. Orient � and C so that their orientations coincide at p, see
Fig. 4. Let q be the first point in � after p where � intersects C . We may assume that p �= q ,
and the interior of pq is simple for otherwise we are done (in the first case we obtain a loop
intersecting C at only one point, and in the second case we obtain a loop contained entirely
in the interior of H ). Then, by [18, Lem. 3.1], q must lie in the interior of the (oriented)
segment p′ p of C , where p′ := −p. Similarly let r be the first point, as we traverse � from
p against its orientation, that lies on C . Again we may assume that rp is simple and r �= p.
Then [18, Lem. 3.1] implies that r must lie in the interior of the segment pp′. Hence the
segments pq and rp must intersect in the interior of H . This yields a loop which lies inside
C and intersects C only at p. So it must lie in an open hemisphere. ��

Now we can show that � is simple. First connect all points of � to o by straight line
segments. This extends M to a closed surface M . It follows from Lemma 4.6 that M\{o} is
locally convex. Suppose that � is not simple. Then by Lemma 4.7 either (i) � is a multiple
covering of a great circle or (ii) � has a subloop which lies in an open hemisphere.
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If � multiply covers a great circle, then as in the proof of Lemma 4.3, we may apply
Lemma 2.2 toM\{o}, andwith respect to K = B3, to obtain a compact locally convex surface
M̃ homeomorphic to M , which is bounded by � and coincides with S2 in a neighborhood
of �. Then the total geodesic curvature of ∂ M̃ is zero, and so Gauss–Bonnet theorem for
Alexandrov surfaces implies that the total curvature of M̃ must be 2π . On the other hand,
the Gauss map of M̃ sends ∂ M̃ to a multiple covering of a great circle in S2, which implies
that the total curvature should be bigger than 2π and we obtain the desired contradiction.

So we may assume that � has a subloop, say �0, which lies in an open hemisphere. Then
there exists a plane H which separates �0 from o. Let X be the component of M which
contains �0 and lies on the side of H not containing o. Then X is convex and is therefore
embedded by Lemma 2.1. This is a contradiction because X contains a double point by
construction. Hence � is indeed simple. As we had mentioned earlier, this together with
Lemma 4.2 completes the proof of the convexity of �, due to the characterization for convex
spherical curves in [18, Lem. 2.2].

Note 4.8 Trying to establish the convexity of ∂M in this section, we had to prove that M
is locally convex. These two facts now yield the convexity of M . Indeed connecting points
of ∂M to o by line segments yields a closed locally convex surface M . By van Heijenoort’s
theorem, M is convex. Thus M is convex. Further recall that M is a disk by Lemma 4.3. So
we have proved Theorem 1.1 in the case where n = 2 and M lies outside S2 near one of its
boundary components.

5 Convexity of @M: part III

To complete the proof of the convexity of the components of ∂M it remains to consider the
case where n = 2 and M lies inside S2 near a component � of ∂M , which we assume is the
case throughout this section. If M meets any one of its boundary components from outside
S2, then by Lemma 4.3 that is the only boundary component it has and convexity of ∂M
follows from the last section. So we may further assume that M meets S2 from the inside
along all of its boundary components. Recall that, by Lemma 3.1, the geodesic curvature
k ≡ 1 on ∂M . Thus, by the Gauss–Bonnet Theorem, we have

2πχ(M) =
∫

∂M
k +

∫
M
K = Length[∂M] +

∫
M
K ≥ Length[∂M] > 0.

So the Euler characteristic χ(M) > 0, which means M is a topological disk. In particular
∂M is connected, and so � is the only boundary component of M . Thus

Length[�] +
∫
M
K = 2π. (2)

The rest of the argument will be divided into two parts: (i) K �≡ 0, and (ii) K ≡ 0:

5.1 (K �≡ 0)

If K is not identically zero, then Length[�] < 2π by (2). Furthermore, by Crofton’s formula,

Length[�] = 1

4

∫
p∈S2

#(p⊥ ∩ �)dσ,

123



Nonnegatively curved hypersurfaces with free boundary on… Page 13 of 20 94

where p⊥ denotes the oriented great circle centered at p. It follows that � misses some great
circle in S2, and therefore lies in an open hemisphere. In particular � has a well-defined
convex hull in S2 (given by the intersection of all closed hemispheres which contain �).
Let �′ be the boundary of that convex hull, and let M ′ be the convex surface obtained by
connecting o to points of �′ with straight line segments. Since M ′ is orthogonal to Sn along
�′, again Lemma 3.1 yields that the geodesic curvature k′ of �′ in M ′ is identically one.
Thus

∫
�′ k′ = Length[�′]. Then by the Gauss–Bonnet theorem for Alexandrov surfaces [3,

p. 192] (recall the discussion prior to Lemma 4.3),

Length[�′] +
∫
M ′

K ′ = 2π. (3)

But Length[�′] ≤ Length[�]. Further we claim that
∫
M ′ K ′ ≤ ∫

M K . Then comparing (2)
and (3) would yield that Length[�′] = Length[�], which may happen only if �′ = �. Hence
� will be convex as desired. So it remains only to check that

∫
M ′ K ′ ≤ ∫

M K . To this end
first we show that

Lemma 5.1 Every support plane of M ′ passing through o is parallel to a tangent plane of
M.

Proof Let u be the outward to a support plane of M ′ at o, i.e., 〈u, p〉 ≤ 0 for all p ∈ M ′. Let
Ht be the plane orthogonal to u which passes through the point tu, and t0 be the infimum of
t ∈ R such that Ht ∩ M = ∅. Then H0 := Ht0 intersects M at a point p, while M lies in the
side of H0, say H0

+, which is opposite to where u points. If p is in the interior of M , then
H0 = TpM and we are done. Suppose then that p ∈ �. So t0 ≤ 0. Then, since � ⊂ H0

+,
we have

〈p, u〉 ≤ 0.

On the other hand, if ν denotes the inward conormal of M along ∂M , then we also have
〈ν(p), u〉 = d

dτ

∣∣
τ=0+〈p + τν(p), u〉 ≤ 0, since M ⊂ H0

+. But ν(p) = −p since by

assumption M lies inside S2 near �. Thus

〈p, u〉 = 〈−ν(p), u〉 ≥ 0.

Sowe conclude that 〈p, u〉 = 0, whichmeans that H0 is orthogonal to S2. Since H0 is tangent
to � at p, it follows that H0 = TpM as desired. ��

Let N be a normal vector field for M , and N ′ be the outward unit normal map of M ′ (N ′
is multivalued at o). Since M ′ is convex,∫

M ′
K ′ = σ(N ′(M ′)),

where σ is the area measure in S2. Further, since �′ lies in an open hemisphere, N ′(M ′)
lies in an open hemisphere as well; because every vector in N ′(M ′) is the outward normal
to a plane which passes through o and supports M ′. Thus, if π : S2 → RP2 is the standard
projection,

σ(N ′(M ′)) = σ(π(N ′(M ′))),

where σ denotes the areameasure inRP2. By Lemma 5.1, for every u′ ∈ N ′(M ′), there exists
u ∈ N (M) such that u′ = ±u, or π(u) = π(u′). So π(N ′(M ′)) is covered by π(N (M)). In
particular

σ(π(N ′(M ′))) ≤ σ(π(N (M))).
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Finally note that, for any set X ⊂ S2, σ(π(X)) ≤ σ(X). Thus

σ(π(N (M))) ≤ σ(N (M)) ≤
∫
M
det(dN ) =

∫
M
K .

The last four displayed expressions yield that
∫
M ′ K ′ ≤ ∫

M K as desired. So we conclude
that � is convex when K �≡ 0.

5.2 (K ≡ 0)

If K vanishes identically, then by (2),

Length[∂M] = 2π.

Next we need the following lemma concerning the structure of an immersed disk with zero
Gauss curvature inR3, which is due to Hartman andNirenberg [24, Thm. A]; see alsoMassey
[32] or do Carmo [10, Sect. 5.8].

Lemma 5.2 [24] Let D be a C2 disk of zero Gauss curvature immersed in R3. Then every
point of D either lies on a line segment in D with end points on the boundary of D, or lies
on a planar domain in D whose boundary consists of line segments with end points on ∂D
or arcs of ∂D.

By Lemma 5.2 and the free boundary condition, all tangent planes of M must go through
o. It follows that M itself must go through o, otherwise the tangent plane of a point on M
with shortest distance to o can not contain o. Consequently, with the help of Lemma 5.2,
o lies in the convex hull of ∂M . Then Crofton’s formula implies that Length[∂M] ≥ 2π
with equality if and only if ∂M is a great circle. The equality indeed holds as we pointed out
above. So ∂M is a great circle. In particular � = ∂M is convex.

6 ExtendingM to a closed hypersurfaceM

Having established the convexity of each boundary component � of M , we will now extend
M to a closed C1 hypersurface M which is C2 except along some closed set A of measure
zero. Furthermore we will show that the image of the Gauss map of M restricted to A has
measure zero as well. This involves gluing along each � a suitable convex disk, which we
construct with the aid of the following three lemmas. A convex cone is a closed convex proper
subset C of Rn+1 such that for every x ∈ C , λx ∈ C for λ ≥ 0. In particular o ∈ C . We
say that M ⊂ Rn+1 is a convex conical hypersurface if it bounds a convex cone which has
interior points.

Lemma 6.1 Let M ⊂ Rn+1 be a convex conical hypersurface which is C1 in the complement
of o. Suppose that M is not strictly convex at o. Then M is a hyperplane.

Proof Since M is not strictly convex at o, it must contain a line L passing through o. Let
H be a support hyperplane of M at o. Then H is tangent to M ∩ Sn at the points L ∩ Sn .
Consequently H is the unique support hyperplane of M at o. So if C is the cone bounded by
M , then the “dual cone” C◦ of C , generated by all outward normals to support hyperplanes
of C at o, consists of a single ray. Consequently the dual of the dual cone, C◦◦ is a half-
space. But C◦◦ = C , e.g., see [38, p. 35]. Thus C is a half-space, which yields that M is a
hyperplane. ��
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M

˜MH
˜K

Kδ

Fig. 5 Diagram for the proof of Lemma 6.2

Lemma 6.2 Let M ⊂ Rn+1 be a convex conical hypersurface which is Ck≥2 in the comple-
ment of o. Suppose that M is strictly convex at o. Then for any ball B centered at o there
exists a C1 convex hypersurface M̃ which coincides with M outside B and is Ck except along
a pair of closed Ck−1 hypersurfaces �i , i = 1, 2. Furthermore, the images of �i under the
Gauss map of M̃ have measure zero.

Proof After a homothety, we may assume that B is the unit ball Bn+1. Further let us assume,
after a rotation, that (0, . . . , 0,−1) lies in the interior of the convex region bounded by M ,
and M intersects the xn+1 = 0 hyperplane only at o. Let H be the plane xn+1 = c0 < 0 such
that the component of M\H which contains the origin lies in Bn+1, and K be the convex set
which lies below H and inside M . Next, let K̃ be the union of all balls of radius δ contained
inside K ; see Fig. 5. We claim that if δ is sufficiently small, then M̃ := ∂ K̃ is the desired
surface.

First we check that K̃ is convex. Let pi ∈ K̃ , i = 1, 2. Then there are balls Bi ⊂ K of
radius δ which contain pi . The convex hull, conv(B1 ∪ B2), of B1 and B2 lies in K , since K
is convex. Note that conv(B1 ∪ B2) consists of all balls of radius δ centered at the segment
connecting centers of Bi . So conv(B1 ∪ B2) ⊂ K̃ , which completes the argument since
p1 p2 ⊂ conv(B1 ∪ B2).

Second we check that ∂ K̃ is C1. Through every point of ∂ K̃ there passes a ball contained
in K̃ . Consequently the support hyperplane through every point of ∂ K̃ is unique. It follows
that ∂ K̃ is C1 [38, Thm. 1.5.15].

Third we check that M̃ coincides with M outside Bn+1. To see this let M ′ denote the
portion of M outside the interior of a ball of radius |c0|/2 centered at o, and N be the inward
normal of M ′. Since M ′ is C2, by the tubular neighborhood theorem, we may choose δ so
small that the mapping p �→ p + δN (p) is one-to-one on any given compact subset of M ′,
such as its boundary ∂M ′. Then, since N is constant along each ray of M ′, it follows that
p �→ p + δN (p) is one to one on M ′. Hence through each point of M ′ there passes a ball
of radius δ which lies inside M . Further we can make sure that δ is smaller than the distance
between H and M ∩ Sn . Then all δ-balls which intersect M outside Bn+1 are inside M and
below H , and so they are contained in K . So M̃ coincides with M outside Bn+1.

Fourth, we check the regularity of M̃ . To this end note that the set Kδ ⊂ K which consists
of the centers of all δ-balls inside K is itself a convex set. Choosing δ sufficiently small, we
may assume that there exists a δ-ball inside K which is tangent to H and disjoint from M .
Then X := ∂ K̃ ∩ H is a convex body in H , comprised of the intersections of δ-balls in K
with H . Accordingly, if we let Hδ be the hyperplane parallel to and below H at the distance
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δ from H , then Xδ := ∂Kδ ∩ Hδ is a convex body in Hδ . So � := ∂Xδ is a hypersurface in
∂Kδ . Note that � is the intersection of Hδ with the parallel hypersurface M ′

δ of M ′. Hence
� is Ck , since M ′ is Ck , which implies that M ′

δ is Ck . Indeed, at small distances, parallel
hypersurfaces of Ck hypersurfaces are Ck [16, Lem. 3.1.8].

Now� determines two different hypersurfaces in M̃ . One hypersurface, say�1 is obtained
by moving � upward by a distance of δ along the normals to Hδ . The other hypersurface,
say �2, is obtained by expanding � along the outward normals to M ′

δ . Then �1 and �2 are
both Ck−1 hypersurfaces of M̃ . Further these two hypersurfaces determine three regions in
M̃ : one, bounded by �1, is just a flat disk in X ; another, bounded by �2, lies in M , while
the third is an annular region, say A, bounded by �1 and �2. The first region is C∞, since
it lies in H , while the second region is Ck since it lies in M . It remains then to establish the
regularity of the third region A.

By construction, A lies on the boundary of the set of all δ-balls centered at�. Equivalently,
A lies on a tubular hypersurface of � at the distance δ. Since � is Ck , it follows that its tubular
hypersurface is Ck as well, since the distance function of a Ck submanifold is Ck [16, Sect.
2.4]. Hence A is Ck as desired.

Finally we check that Ñ (�i ) has measure zero, where Ñ is the Gauss map of M̃ . First note
that Ñ (�1) is a singleton, since M̃ is tangent to the hyperplane H along �1. Furthermore, M̃
is tangent to M along �2. Thus Ñ (�2) = N (�2) ⊂ N (M\{o}) where N is the Gauss map
of M\{o}. But N (M\{o}) has measure zero since M is a convex cone. Indeed N (M\{o}) =
∂N (M), and N (M) is a convex subset of Sn . So ∂N (M) has measure zero, which in turn
yields that Ñ (�2) has measure zero, and completes the proof. ��
Lemma 6.3 Let M ⊂ Bn+1 be a compact convex hypersurface with free boundary on Sn,
and suppose that o /∈ M. Then the inversion of M through Sn is again a compact convex
hypersurface with free boundary on Sn.

Proof For every point x ∈ Rn+1, let x ′ := x/‖x‖2 denote its inversion through Sn . Since M
is convex, through each point p ∈ M there passes a support hyperplane H . Let H+ be the
side of H where M lies and H− be the opposite side. We claim that o ∈ H− for all p ∈ M .
Indeed, suppose towards a contradiction that o ∈ int(H+). Then, since ∂M also lies in H+,
H+ contains the coneC formed by connecting o to points of ∂M . ButC contains M , since M
is convex and C is tangent to M along ∂M , which ensures that every tangent hyperplane of
C is a tangent hyperplane of M , and therefore is a support hyperplane of M . Thus H cannot
be disjoint from C , and therefore is a support plane of C . In particular H contains o, which
is the desired contradiction. So we conclude that o ∈ H−. Now for every p ∈ M , either (i)
o ∈ H , or (ii) o ∈ int(H−). In case (i), H ′ = H and (H+)′ = H+. Consequently H is a
support hyperplane of M ′ at p′. In case (ii), H ′ is a sphere passing through o, and (H+)′ is
the ball bounded by H ′. Thus Tp′ H ′ is a supporting hyperplane of M ′ at p′. So M ′ is convex
since through each point of it there passes a support hyperplane. Further, M ′ is orthogonal
to Sn along ∂M ′ since inversion is a conformal map. ��

Now for each component � of ∂M we construct a convex disk D� as follows. Let C� be
the conical disk generated by connecting all points of � to o. By Lemma 6.1, C� is either a
flat disk or else is strictly convex at o. In the latter case, let C̃� be the smoothing of C� near
o given by Lemma 6.2, and (C̃�)′ be the inversion of C̃� given by Lemma 6.3.

First suppose that M lies outside Sn near �. If � is not a great sphere, i.e., the intersection
of Sn with a hyperplane through o, set D� := C̃�; otherwise, set D� := C� . Next suppose
that M lies inside Sn near �. If � is not a great sphere, set D� := (C̃�)′; otherwise, we
proceed as follows. Let H be the hyperplane of �, S be a sphere of radius 2 centered at o, and
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A be the annular region in H bounded by � and �′ := S ∩ H . Take one of the hemispheres
of S bounded by �′, glue it to A, and smoothen the joint to obtain the desired disk D� (the
smoothing here is trivial, since we have a surface of revolution).

Now gluing each of the disks D� along the corresponding component � of ∂M yields
the desired closed surface M . In particular M is C1, because it has flat tangent cones at each
point which vary continuously alongM , see [15, Lem. 3.1]. Furthermore,M is C2 everywhere
except possibly along each �, and a pair of closed hypersurfaces �1, �2 in the interior of D�

when � is not a great sphere. By Lemma 6.2, N (�i ) has measure zero, where N is the Gauss
map of M . Finally note that N (�) has measure zero as well, since M is tangent to a convex
cone along �, and as we argued at the end of the proof of Lemma 6.2, the Gauss image of
the lateral portion of a convex cone has measure zero.

7 Convexity ofM

To finish the proof of Theorem 1.1we need one last observation, which is essentially due to do
Carmo and Lima [11]. We mainly check that the stated C∞ regularity in their arguments may
be relaxed by a somewhat finer use of Morse theory. This yields the following generalization
of Sacksteder’s theorem in the compact case (which originally had required Cn+1 regularity).

Proposition 7.1 Let M be an immersed closed C1 hypersurface in Rn+1. Suppose that M is
C2 and nonnegatively curved on M\A, where A is a closed subset of measure zero. Moreover,
suppose that the image of A under the Gauss map of M has measure zero. Then M is convex.

The proof follows from the next four lemmas. For every u ∈ Sn , let hu : M → R be the
height function hu(·) := 〈·, u〉. Note that hu is C1 on M , and is C2 on M\A. The next lemma
follows from Chern and Lashof [6, Thm. 3] as indicated in [17, Lem 3.2]. Alternatively,
one may apply a result of Kuiper [29, Thm. 4] which applies to topologically immersed
hypersurfaces, together with Reeb’s theorem [33, Thm. 4.1]. A critical point of hu is a point
where its gradient vanishes.

Lemma 7.2 [29] M is convex if hu has only two critical points for almost every u ∈ Sn.

Proof LetC(hu) be the set of critical points of hu . Then p ∈ C(hu) if and only if N (p) = ±u,
where N is the Gauss map of M . If #C(hu) = 2 for almost all u ∈ Sn , then, by the area
formula [13, Thm. 3.2.3]

2 vol(Sn) =
∫
Sn

#C(hu) du =
∫
Sn

#N−1(±u) du = 2
∫
M

| det(dNp)| dp = 2
∫
M

|K |,

where K is the Gauss–Kronecker curvature of M . By assumption, N is differentiable almost
everywhere, and so the integrals above are well defined. Thus

∫
M |K | = vol(Sn), or M has

“minimal total absolute curvature”, which yields that M is convex by Chern and Lashof [6,
Thm. 3]. ��

We say that a critical point p of hu is nondegenerate provided that p ∈ M\A and the
eigenvalues of the Hessian of hu at p are all nonzero. The following fact is stated for C∞
hypersurfaces in [11, Lem. 2]. Here we apply the Morse inequalities to extend that result to
the C1 case:
Lemma 7.3 [11,30] If, for some u ∈ Sn, all critical points of hu are nondegenerate local
extrema, then hu has only two critical points.
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Proof It is clear from the proof of Morse inequalities [33, Sect. 5] that they apply to any C1
function which is sufficiently smooth near its critical points, so that Morse’s Lemma holds
[33, Lem. 2.2]. Kuiper [30] proved that Morse’s lemma holds for functions which are C2 near
an isolated critical point; see also Ostrowski [34]. Thus Morse inequalities do indeed apply
to hu . Let Cλ be the number of critical points of hu of index λ, and βλ be the Betti numbers
of M . By assumption Cλ = 0 for 0 < λ < n. So by [33, Cor. 5.4] C0 = β0 and Cn = βn .
By Poincaré duality, β0 = 1 = βn , which completes the proof. ��

We say that u ∈ Sn is a regular value of the Gauss map N provided that N−1(u) ⊂ M\A,
and dNp is nondegenerate for every p ∈ N−1(u).

Lemma 7.4 If ±u are regular values of N , then all critical points of hu are nondegenerate
local extrema.

Proof Let p be a critical point of hu . Then N (p) = ±u. Thus K (p) = det(dNp) �= 0, for
p ∈ M\A. Hence the principal curvatures ki ofM do not vanish at p. Further ki (p)k j (p) ≥ 0,
since these are the sectional curvatures of M for i �= j . Thus ki (p) all have the same sign. It
remains only to recall the well-known fact that ki (p) are the eigenvalues of the Hessian of
hu at p, after we replace N with −N if necessary. ��

To complete the proof of Proposition 7.1 it only remains to observe that

Lemma 7.5 For almost every u ∈ Sn, ±u are regular values of N .

Proof Note that±u are regular values of N , if u is a regular value of±N . By Sard’s theorem,
the sets ±C of critical values of ±N on M\A have measure zero, since N is C1 on M\A.
Furthermore±N (A) have measure zero by assumption. So X := ±N (A)∪±C has measure
zero and every u in Sn\X is a regular value of ±N . ��

8 Constantmth mean curvature

Here we prove Corollary 1.2. In 1958, Alexandrov [2] showed that any embedded closed
hypersurfacewith constantmean curvature inRn+1 is a round sphere, via his celebrated reflec-
tionmethod. In fact he established amore general result for certainWeingarten hypersurfaces,
e.g., see [22, Prop. 1.1]. An immersed orientable hypersurface M in Rn+1 is Weingarten if
W (k1(p), . . . , kn(p)) is constant for some functional W of its principal curvatures ki . In
particular M has constant mth mean curvature, for 1 ≤ m ≤ n, when W is the symmetric
elementary polynomial

σm(k1, . . . , kn) =
∑

i1<···<im

ki1 . . . kim .

Thus m = 1, 2, and n correspond respectively to the mean, scalar, and Gauss–Kronecker
curvatures of M . Hartman [22] showed that a complete nonnegatively curved hypersurfaces
with constant mth mean curvature is the product of a sphere and a Euclidean space. See also
Rosenberg [35] for another proof, and Cheng and Yau [9] for more on the case m = 2. On
the other hand, for surfaces with boundary several fundamental problems in this area remain
open. It is not known, for instance, if a compact embedded CMC surface in R3 with circular
boundary is umbilical (i.e., a spherical cap or a flat disk) [31].
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Proof of Corollary 1.2 By Theorem 1.1, M is an embedded convex disk. Suppose first that
∂M is a great sphere, i.e., it lies in a hyperplane H passing through the origin. If M lies in H
as well then we are done. Otherwise we may apply Alexandrov’s reflection technique with
respect to the hyperplanes orthogonal to H to conclude that M is “axially symmetric” or
“rotational”, as has been shown by Wente [43, Thm. 1.1], see also Koiso [28]. In particular
note that the relevant (elliptic) maximum principles cited in [43, p. 391–392] all apply to
surfaces with constant mth mean curvature. We also recall that axial symmetry means that,
after a rigid motion, M is invariant with respect to the standard action of the orthogonal group
O(n) on Rn × {0} ⊂ Rn+1, which fixes the xn+1-axis.

Next we assume that ∂M lies in an open hemisphere. Then the reflection method may
be adapted to this setting via rotating hyperplanes which pass through the origin. More
precisely, suppose that ∂M lies in the interior of the upper hemisphere of Sn . Then support
hyperplanes H of M along ∂M intersect the hyperplane of the first n-coordinates along
(n− 1)-dimensional subspaces L := H ∩ (Rn ×{0}). Instead of moving H parallel to itself,
we rotate it around L , which is a well-known variation on Alexandrov’s original technique,
e.g., see [31, p. 75]. Once again it follows, as in [43], that M is symmetric with respect to a
line passing through the origin, which after a rotation we may assume to be the xn+1-axis.

Now it follows from the generalization of Delaunay’s theorem by Hsiang [25,26], see also
Sterling [39], that M is a spherical cap or an equatorial disk. Indeed, other than spheres and
minimal hypersurfaces, all rotational hypersurfaces of constant mth mean curvature in Rn+1

must be part of a periodic hypersurface. Since M intersects its axis of symmetry, it cannot be
extended to a rotational periodic hypersurface. Hence it must be either spherical or minimal.
Due to the free boundary condition, and the maximum principle, M may be minimal only
when ∂M is a great sphere, in which case M is an equatorial disk. Otherwise M will be a
spherical cap which completes the proof. ��
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