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Abstract
We investigate a non-homogeneous semilinear heat equationwhich involves degenerate coef-
ficients. More precisely, in order to give a rather complete theory, we focus on two types of
weights w(x) = |x1|a or w(x) = |x |b where a, b > 0 in a suitable range. We prove the
existence of a Fujita exponent and describe the dichotomy existence/non-existence of global
in time solutions. The coefficients under consideration admit either a singularity at the origin
or a line of singularities. In this latter case, the problem is related to the fractional Laplacian,
through the Caffarelli–Silvestre extension and is a first attempt to develop a parabolic theory
in this setting.
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1 Introduction

We consider the problem{
∂t u − div(w(x)∇u) = u p, x ∈ R

N , t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ R

N ,
(1.1)

where the coefficient w is either w(x) = |x1|a with a ∈ [0, 1), or w(x) = |x |b with
b ∈ [0, N ). Here one has N ≥ 1, ∂t := ∂/∂t and p > 1.

The aim of the present work is to develop a global-in-time existence theory of mild
solutions for the problem (1.1). We prove that there is a critical exponent for the global
existence of positive solutions of problem (1.1), the so-called Fujita exponent.

We give first the definition of a solution to (1.1).
Let � = �(x, y, t) be the fundamental solution of

∂tv − div(w(x)∇v) = 0, x ∈ R
N , t > 0,

with a pole at (y, 0). Under the condition eitherw(x) = |x1|a with a ∈ [0, 1), orw(x) = |x |b
with b ∈ [0, 1), this fundamental solution � satisfies the mass conservation property, the
semigroup one and suitable Gaussian estimates [see (K1)–(K3) in Sect. 2]. Using �, we
define the solution of (1.1) as follows.

Definition 1.1 Let u0 be a nonnegative measurable function inRN . Let T ∈ (0,∞] and u be
a nonnegative measurable function in RN × (0, T ) such that u ∈ L∞(0, T : L∞(RN )). Then
we call u a solution of (1.1) in R

N × (0, T ) if u satisfies

u(x, t) =
∫
RN

�(x, y, t)u0(y) dy +
∫ t

0

∫
RN

�(x, y, t − s)u(y, s)p dy ds < ∞ (1.2)

for almost all x ∈ R
N and t ∈ (0, T ). In particular, we call u a global-in-time solution of

(1.1) if u is a solution of (1.1) in R
N × (0,∞).

The previous definition is the well-known class of mild solutions and is natural to tackle
parabolic problems. Amain point of the previous definition is that it involves the fundamental
solution of the operator under consideration. It is important to notice that in our context, due
to the non-homogeneity of the operator, the fundamental solution is not translation-invariant.
Furthermore, there is no explicit expression of it, though bounds are known. This makes the
theory harder.

Remark 1.1 (i) For the case of the semilinear heat equation, namely (1.1) with either a = 0
or b = 0, if u0 ∈ L∞(RN ), then there exists a local-in-time solution u of (1.1) in
R

N × (0, T ) for some T > 0 satisfying (1.2). See e.g. [22,40].
(ii) In order to prove the regularity of the solution satisfying (1.2), even for the case of the

semilinear heat equation, we need suitable bounds for the derivatives and the translation-
invariant property of the fundamental solution. (See e.g. [15,25].)However, unfortunately,
it seems that they have been still left open. (See also Remark 1.3 (iii).) On the other
hand, under our definition, in order to prove the existence/nonexistence of global-in-time
solutions of (1.1), we only need properties (K1)–(K3) and decay estimates, which are
given in Lemma 2.2.

We discuss now the features of the weight w(x). In both cases under consideration, the
weights belong to the class A2 of Muckenhoupt functions [33]. This class of functions is
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very important in harmonic analysis for the boundedness of Maximal Functions. From the
PDE point of view, elliptic equations and potential theory involving these weights have been
studied in [10–12]. See also [7,23] for the parabolic counterpart. In the present work, we do
not consider general weights since it is very complicated in this case to give precise results
as our aim is. We will consider two types of weights. The first one is |x1|a which is A2 if and
only if a ∈ (− 1, 1) and exhibits singularities along the line x1 = 0. The other weight under
consideration is |x |b which is A2 for b ∈ (− N , N ) and exhibits a singularity at the origin
x = 0.
Motivation
We now explain what motivated this work, in order to put it in perspective. Our original
project was to develop a blow-up theory in the spirit of Giga and Kohn (see [18]) for the
nonlocal parabolic equation

∂t u + (−�)su = u p, x ∈ R
N , t > 0, u(x, 0) = u0(x) ≥ 0, x ∈ R

N (1.3)

As far as the Fujita problem for the previous equation is concerned, the theory is nowmore or
less well-understood. Among others, Sugitani [38] showed the Fujita exponent for this prob-
lem (see also [25]). In the problem (1.3), the operator is non-local, but we can construct the
fundamental solution by using theFourier transformasF−1(e−t |ξ |s ). In particular, for the case
s = 1/2, we have the explicit representation ofF−1(e−t |ξ |1/2), which is given by the Poisson
kernel. (See e.g. [2,3,5,27,39] and, for some regularity estimates for the derivatives of the heat
kernel associated to the fractional Laplacian on RN can be found in [4].) For this case, even
if we don’t have the explicit representation of the kernel, applying the Hörmander–Mikhlin
type multiplier theorem (see [37]), we can obtain point-wise estimates for the fundamental
solution and its derivative with respect to x and t . (See e.g. [27, Lemma 2.1]).

The blow-up theory, however, is much more involved. Indeed, several attempts on the
Eq. (1.3) to prove a monotonicity formula have failed and the very first beginning of Giga–
Kohn theory is at the moment out of reach. On the other hand, if one considers the modified
nonlocal equation

(∂t − �)su = u p, x ∈ R
N , t ∈ R, (1.4)

then one can prove a monotonicity formula (see [1]). We postpone to future work the Fujita
dichotomy for this problem.

Considering the problem (1.3) from another point of view, invoking Caffarelli–Silvestre
extension [6], one gets a degenerate/singular elliptic equation in the half-space with a non-
linear dynamical boundary condition. To analyze this problem, one needs to compare this
problem with the degenerate/singular parabolic equation with nonlinear boundary condition
in the half space. From this point of view, before treating this half space problem, we consider
the similar problem in the whole space. This is one of our motivations. Another one relies
on expanding the theory of degenerate semilinear parabolic equations, which is at an early
stage, particularly as far as blow-up theory is concerned. The case of degenerate weights
along a line as w(x) = |x1|a is particularly relevant.

We now describe our results. We first introduce some notations. For any x ∈ R
N and

R > 0, we put BR(x) := {y ∈ R
N : |x − y| < R}. For any 1 ≤ r ≤ ∞, we denote by ‖ · ‖r

the usual norm of Lr := Lr (RN ). For any measurable function f in R
N ,

μ f (λ) := |{x : | f (x)| > λ}| , λ ≥ 0, (1.5)

is the distribution function of f , and we define the non-increasing rearrangement of f by

f ∗(s) := inf{λ > 0: μ f (λ) ≤ s}. (1.6)
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The spherical rearrangement of f is defined by

f �(x) := f ∗(cN |x |N ),

where cN is the volume of the unit ball in RN .
Then, for any 1 ≤ r ≤ ∞ and 1 ≤ σ ≤ ∞, we define theLorentz space Lr ,σ := Lr ,σ (RN )

by

Lr ,σ := { f : f is measurable inRN , ‖ f ‖r ,σ < ∞},
where

‖ f ‖r ,σ :=

⎧⎪⎪⎨
⎪⎪⎩

(∫ ∞

0

[
s
1
r f ∗(s)

]σ ds

s

) 1
σ

if 1 ≤ σ < ∞,

sup
s>0

s
1
r f ∗(s) if σ = ∞.

(1.7)

The Lorentz Lr ,σ is a Banach space and the following holds (see e.g. [19,43]):

• Let 1 < r < ∞. Then f ∈ Lr ,∞ if and only if

0 ≤ f �(x) ≤ C1|x |−N/r , x ∈ R
N , (1.8)

for some constant C1;
• For 1 < r < ∞, it follows

‖ f ‖r ,σ =

⎧⎪⎪⎨
⎪⎪⎩
r

1
σ

(∫ ∞

0

[
sμ f (s)

1
r

]σ ds

s

) 1
σ

if 1 ≤ σ < ∞,

sup
s>0

sμ f (s)
1
r if σ = ∞.

(1.9)

• Lr ,r = Lr if 1 < r ≤ ∞ and Lr ,σ1 ⊂ Lr ,σ1 if 1 ≤ r ≤ ∞ and 1 ≤ σ1 ≤ σ2 ≤ ∞;
• Let 1 ≤ r0 ≤ r ≤ r1 ≤ ∞ be such that

1

r
= 1 − θ

r0
+ θ

r1
for θ ∈ [0, 1].

Then it holds that

‖ f ‖r ,∞ ≤ ‖ f ‖1−θ
r0,∞‖ f ‖θ

r1,∞, f ∈ Lr0,∞ ∩ Lr1∞; (1.10)

• Let 1 ≤ r1 ≤ ∞ and r2 be the Hölder conjugate number of r1, namely 1/r1 + 1/r2 = 1.
Then it holds that

‖ f g‖1 ≤ ‖ f ‖r1,1‖g‖r2,∞, f ∈ Lr1,1, g ∈ Lr2,∞; (1.11)

Now we state the main results of this paper but several explanations are in order. In most
of the parabolic problem dealing with homogeneous equations, a crucial role is played by the
fundamental solution. It happens that one can deduce several strong results as soon as one has
an explicit form of the fundamental solution, allowing to get estimates for the function and its
derivatives (see e.g. [25–27,38]). In our problems, even if the coefficients are rather simple,
such an explicit form is unavailable. On the other hand, bounds on the solution are known
(see e.g. [8,20,21]). In order to apply known bounds one has to impose additional properties
on the weights under consideration. More precisely, the weights have to belong to the A1+ 2

N

class additionally to being A2 and w−N/2 has to satisfy a reverse doubling condition. We
refer the reader to Sect. 2 for a discussion of these fact. In what follows, we put

p∗(α) := 1 + 2 − α

N
for α ∈ {a, b} .

123



Critical exponent for the global existence of solutions to a… Page 5 of 25 62

Furthermore, we assume either

(A) w(x) = |x1|a with a ∈ [0, 1) if N = 1, 2 and a ∈ [0, 2/N ) if N ≥ 3,

or

(B) w(x) = |x |b with b ∈ [0, 1).
The first theorem is concerned with the nonexistence of global-in-time solutions of (1.1).

Theorem 1.1 Assume either (A) or (B). Let α be such that α = a for the case (A) and α = b
for the case (B). Assume 1 < p ≤ p∗(α). Then problem (1.1) has no nontrivial global-in-time
solutions.

In second theorem we give a sufficient condition for the existence of nontrivial global-in-
time solutions of (1.1).

Theorem 1.2 Assume either (A) or (B). Let α be such that α = a for the case (A) and α = b
for the case (B). Assume p > p∗(α). Put

r∗ := N

2 − α
(p − 1) > 1. (1.12)

Then the following holds:
(i) There exists a positive constant δ such that, for any u0 ∈ L∞ ∩ Lr∗,∞ with

‖u0‖r∗,∞ < δ, (1.13)

a unique global-in-time solution u of (1.1) exists and it satisfies

sup
t>0

(1 + t)
N

2−α

(
1
r∗ − 1

q

)
‖u(t)‖q,∞ < ∞, r∗ ≤ q ≤ ∞. (1.14)

(ii) Let 1 ≤ r ≤ r∗. Then there exists a positive constant δ such that, for any u0 ∈ L∞ ∩ Lr

with

‖u0‖
r
r∗
r ‖ϕ‖1−

r
r∗∞ < δ, (1.15)

a unique global-in-time solution u of (1.1) exists and it satisfies

sup
t>0

(1 + t)
N

2−α

(
1
r − 1

q

)
‖u(t)‖q < ∞, r ≤ q ≤ ∞. (1.16)

Remark 1.2 As far as the regularity of the mild solutions constructed in this paper is
concerned, Chiarenza and Serapioni [7] considered degenerate parabolic equations with A2-
weights. However, their starting point are weak solutions. To upgrade our mild solutions
to weak solutions one needs gradient bounds on the fundamental solution �, which are not
available.

As a direct consequence of Theorem 1.2, we have:

Corollary 1.1 Let α ∈ {a, b}. Assume p > p∗(α). Then there exists a positive constant δ

such that, if

|u0(x)| ≤ δ

1 + |x |(2−α)/(p−1)
, x ∈ R

N , (1.17)

then a unique global-in-time solution u of (1.1) exists and it satisfies (1.14).
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Remark 1.3 (i) For the case α = 0, it is well known that the decay rate for initial data,
which is given by (1.17), at spatial infinity is optimal to obtain the global existence of
solutions for (1.1) (see e.g. [30]). If u0(x) satisfies (1.17), then it follows from (1.8)
that u0 ∈ Lr∗,∞. On the other hand, if u0(x) = O(|x |−(2−α)/(p−1)) as |x | → ∞, then
u0 /∈ Lr∗ . This is a clear advantage in using Lr ,∞ spaces instead of the classical Lr

spaces.
(ii) Beginning with the classical paper by Fujita [16], critical exponents for the global exis-

tence of solutions (not only positive ones but also sign-changing ones)were established
formany classes of evolution problems. It seems almost impossible tomake complete list
of this topics. Soweonly refer a part of them for instance [9,17,24,25,28,31,32,34,41,42]
and references therein. (See also [36], which includes a nice survey for the semilinear
parabolic equation.) By Theorems 1.1 and 1.2 we see that p∗(α) is the Fujita exponent
for problem (1.1). In fact, if α = 0, then p∗(0) = 1+2/N , which is the Fujita exponent
for (1.1) with w(x) ≡ 1.

(iii) If we have suitable bounds for the derivatives of the fundamental solution, then, applying
the arguments in [25], we can obtain the asymptotic behavior of solutions for (1.1).
However, unfortunately, it seems that they have been still left open.

(iv) By Theorem 1.2, for suitable small initial data, the solution exists globally in time and
it is bounded. On the other hand, in general, it seems difficult to prove the boundedness
of solutions even if the solution exists globally in time. In fact, for the case α = 0, if
p < pS := (N + 2)/(N − 2) and u0 belongs to a weighted H1 space, then global-
in-time solutions are bounded (see e.g. [29]), and if p is critical or supercritical in the
sense of Joseph-Lundgren, then there exists a continuous function u0 such that solution
u is global and limt→∞ ‖u(t)‖∞ = ∞ (see [35, Theorem 1.3]).

A digression on another problem with weighted degenerate diffusion.
We would like to mention here another problem related to ours, but substantially different at
the linear level. Consider the degenerate equation

ut − Lwu = u p (1.18)

where Lw = w−1div(w∇) is a self-adjoint operator on L2(w) and w is an A2 weight. In this
case, Cruz-Uribe and Rios proved the following Gaussian bounds (see Corrigendum of [8])
for the fundamental solution

|�(x, y, t)| ≤ C1√
wt (x)

√
wt (y)

e−C2
|x−y|2

t (1.19)

wherewt (x) = ∫
B√

t (x)
w(z) dz. Notice that such a bound is possible because the operator Lw

is self-adjoint in L2(w). This is not the case of the operator in (1.1). Seeing the homogeneous
space (RN , w(x) dx) as Ahlfors-regular, i.e. there exists s > 0 such that w(BR(x)) =∫
BR(x) w(z) dz ∼ Rs uniformly in x , one can run the same estimates as in the present paper

and exhibit a Fujita exponent.

2 Preliminaries

A crucial tool in our arguments is based on the use of the fundamental solution of the operator
∂t −div(w(x)∇·). As alreadymentioned due to the inhomogeneity of the operator, an explicit
formula is not known but bounds are available (see below). In order to check these bounds,
following [20], one has to check that the coefficient w(x) is a A1+ 2

N
weight in the sense of
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Muckenhoupt class and that the function w−N/2 satisfies a doubling and reverse doubling
condition of order μ with μ > 1/2. Here we say that the function w−N/2 satisfies doubling
and a reverse doubling conditions if there exist positive constants C1 and C2 such that

∫
BsR(x)

w(y)−
N
2 dy ≤ C1s

μN
∫
BR(x)

w(y)−
N
2 dy

and ∫
BsR(x)

w(y)−
N
2 dy ≥ C2s

μN
∫
BR(x)

w(y)−
N
2 dy

for all x ∈ R
N , s ≥ 1 and R > 0, respectively.

It is a direct computation to check that under condition (A) or (B) depending on the case,
the weight w(x) is an A1+ 2

N
weight in the sense of Muckenhoupt class. Furthermore, the

functionw−N/2 satisfies a doubling condition and reverse doubling condition of orderμwith
μ > 1/2.

Under condition either (A) or (B), the fundamental solution � = �(x, y, t) has the
following properties (see [20]):

(K1)
∫
RN

�(x, y, t) dx =
∫
RN

�(x, y, t) dy = 1 for x, y ∈ R
N and t > 0;

(K2) �(x, y, t) =
∫
RN

�(x, ξ, t − s) �(ξ, y, s) dξ for x, y ∈ R
N and t > s > 0;

(K3) Put

c0 := sup
Q

(
1

|Q|
∫
Q

w(x) dx

)(
1

|Q|
∫
Q

w(x)−1 dx

)
< ∞,

where the supremum is taken over all cubes Q in R
N . Then there exist positive con-

stants c∗ and C∗ depending only on N and c0 such that

c−1∗

(
1

[h−1
x (t)]N + 1

[h−1
y (t)]N

)
e
−c∗

(
hx (|x−y|)

t

) 1
1−α

≤ �(x, y, t)

≤ C−1∗

(
1

[h−1
x (t)]N + 1

[h−1
y (t)]N

)
e
−C∗

(
hx (|x−y|)

t

) 1
1−α

for x, y ∈ R
N and t > 0, where α ∈ {a, b}. Here

hx (r) =
(∫

Br (x)
w(y)−

N
2 dy

) 2
N

(2.1)

and h−1
x denotes the inverse function of hx .

See [20]. (See also [8,21].) By (A), (B) and (2.1) we state a lemma on upper and lower
estimates of hx (r). In what follows, by the letters C and C ′ we denote generic positive
constants (independent of x and t) and they may have different values also within the same
line.

Lemma 2.1 The following hold.
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(i) Let w(x) = |x1|a and assume condition (A). There exist positive constants C and C ′
depending only on N and a such that

hx (r) ≤ Cr2−a (2.2)

and

hx (r) ≥ C ′
⎧⎨
⎩
r2|x1|−a if 0 < r ≤ |x1|,

r2−a if r ≥ |x1|,
(2.3)

for all x ∈ R
N and r > 0.

(ii) Let w(x) = |x |b and assume condition (B). There exist positive constants C and C ′
depending only on N and b such that

hx (r) ≤ Cr2−b (2.4)

and

hx (r) ≥ C ′
⎧⎨
⎩
r2|x |−b if 0 < r ≤ |x |,

r2−b if r ≥ |x |,
(2.5)

for all x ∈ R
N and r > 0, where C2 is a constant given in (W2).

Proof We first prove assertion (i).
Note that since the constant c0 in (K3) depends only on N and a, the constants appearing

in (K3) depend only on N and a.
Since w(y)−N/2 is monotonically decreasing function with respect to the distance from

the origin, by (2.1) we have

hx (r) =
(∫

Br (x)
|y1|− aN

2 dy

) 2
N ≤

(∫
Br (0)

|y1|− aN
2 dy

) 2
N

=
[∫ r

−r
|y1|− aN

2

(∫
|y′ |N−1<

√
r2−y21

dy′
)
dy1

] 2
N

=
(
2ωN−1

∫ r

0
y
− aN

2
1 (r2 − y21 )

N−1
2 dy1

) 2
N

=
(

ωN−1 · r N− aN
2

∫ 1

0
ζ− aN

4 − 1
2 (1 − ζ )

N−1
2 dζ

) 2
N

=
[
ωN−1B

(
−aN

4
+ 1

2
,
N + 1

2

)] 2
N

r2−a

for all x ∈ R
N and r > 0, where y = (y1, y′) ∈ R

N , | · |N−1 denotes the usual Euclidean
norm in R

N−1, ωN−1 denotes the volume of the unit ball in R
N−1 and B(·, ·) denotes the

beta function. Note that − aN/4 + 1/2 > 0 since a < 2/N .
This implies (2.2). On the other hand, since w(y) depends only on y1 variable, for any

x = (x1, x ′) ∈ R × R
N−1, we can choose a point x∗ = (x1, 0) such that
∫
Br (x)

w(y)−
N
2 dy =

∫
Br (x∗)

w(y)−
N
2 dy, r > 0. (2.6)

Furthermore, for any r > 0, we see that

|y1| ≤ |x1| + r , y ∈ Br (x∗). (2.7)
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Since a ≥ 0, by (2.6) and (2.7), for any x ∈ R
N and r > 0, we have

∫
Br (x)

w(y)−
N
2 dy =

∫
Br (x∗)

|y1|− aN
2 dy

≥ (|x1| + r)−
aN
2

∫
Br (x∗)

dy = ωNr
N (|x1| + r)−

aN
2 .

This together with (2.1) yields (2.3). Thus assertion (i) holds.
Next we prove assertion (ii). Since w(y)−N/2 is monotonically decreasing function with

respect to the distance from the origin, by (2.1) we have

hx (r) =
(∫

Br (x)
|y|− bN

2 dy

) 2
N ≤

(∫
Br (0)

|y|− bN
2 dy

) 2
N

=
(∫ r

0
ρN− bN

2 −1 dρ ·
∫
SN−1

dω

) 2
N =

(
ωN

1 − b
2

) 2
N

r2−b

for all x ∈ R
N and r > 0. This implies (2.4). On the other hand, for any r > 0, we see that

|y| ≤ |x | + r , y ∈ Br (x). (2.8)

Since b ≥ 0, by (2.6) and (2.8), for any x ∈ R
N and r > 0, we have

∫
Br (x)

w(y)−
N
2 dy =

∫
Br (x)

|y|− bN
2 dy

≥ (|x | + r)−
bN
2

∫
Br (x)

dy = ωNr
N (|x | + r)−

bN
2 .

This together with (2.1) yields (2.5). Thus assertion (ii) holds, and Lemma 2.1 follows. ��

For any x ∈ R
N , since w(x) ≥ 0, by (2.1) we can easily obtain that

d

dr
hx (r) > 0 (2.9)

for all r > 0. Then, in the case (A), by (2.2) and (2.9) we have

h−1
x (Cr2−a) ≥ r

for all x ∈ R
N and r > 0, and we see that

h−1
x (t) ≥ Ct

1
2−a (2.10)

for all x ∈ R
N and t > 0. Similarly, by (2.3) we see that

h−1
x (t) ≤ C

⎧⎪⎨
⎪⎩

|x1| a2 t 12 if 0 < t ≤ |x1|2−a,

t
1

2−a if t ≥ |x1|2−a,
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for all x ∈ R
N and t > 0. This together with Lemma 2.1, (K3) and (2.10) implies that

d−1
(
min

{
|x1|− aN

2 , t−
aN
2

1
2−a

}
+ min

{
|y1|− aN

2 , t−
aN
2

1
2−a

})
t−

N
2 e

−d

(
|x−y|2−a

t

) 1
1−a

≤ �(x, y, t) ≤ D−1t−
N

2−a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e
−D

(
|x−y|2
t |x1 |a

) 1
1−a

if |x − y| ≤ |x1|,

e
−D

(
|x−y|2−a

t

) 1
1−a

if |x − y| > |x1|,

(2.11)

for x, y ∈ R
N and t > 0. Here D and d are positive constant depending only on N and a.

Similarly to (2.11), in the case (B), we see that

d−1
(
min

{
|x |− bN

2 , t−
bN
2

1
2−b

}
+ min

{
|y|− bN

2 , t−
bN
2

1
2−b

})
t−

N
2 e

−d

(
|x−y|2−b

t

) 1
1−b

≤ �(x, y, t) ≤ D−1t−
N

2−b

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e
−D

(
|x−y|2
t |x |b

) 1
1−b

if |x − y| ≤ |x |,

e
−D

(
|x−y|2−b

t

) 1
1−b

if |x − y| > |x |,

(2.12)

for x, y ∈ R
N and t > 0. Here D and d are positive constant depending only on N and b.

By (2.11) and (2.12) we obtain

�(x, y, t) ≤ D−1t−
N

2−α

for x, y ∈ R
N and t > 0. This together with (K1) implies that

‖�(·, y, t)‖r ≤ Ct−
N

2−α
(1− 1

r ), ‖�(x, ·, t)‖r ≤ Ct
− N

2−α

(
1− 1

r

)
, (2.13)

for any 1 ≤ r ≤ ∞, where we can take the constant C so that it depends only on N and
α ∈ {a, b}. Furthermore, we have the following.

Remark 2.1 It has to be noticed that the previous computations, and in particular Lemma 2.1
are the cornerstone of our results since they provide the desired estimates to run the exis-
tence/nonexistence proof.

Lemma 2.2 Assume either (A) or (B). Let α be such that α = a for the case (A) and α = b
for the case (B). Then, for any 1 ≤ r < ∞, there exists a positive constant C depending only
on α, r and N such that

‖�(x, ·, t)‖r ,1 ≤ Ct
− N

2−α

(
1− 1

r

)
, (2.14)

for x ∈ R
N and t > 0.

Proof By (2.11) and (2.12), if we can prove (2.14) for the case (A), then, replacing |x1| and
a with |x | and b, respectively, we can obtain (2.14) for the case (B). So it suffices to prove
(2.14) for the case (A).

Assume (A). For any x ∈ R
N and t > 0, put

f (y) := D−1t−
N

2−a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e
−D

(
|x−y|2
t |x1 |a

) 1
1−a

if |x − y| ≤ |x1|,

e
−D

(
|x−y|2−a

t

) 1
1−a

if |x − y| > |x1|,
(2.15)
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for y ∈ R
N , where D is the constant given in (2.11). Let λ > 0. If

D−1t−
N

2−a e
−D

(
|x1 |2−a

t

) 1
1−a

≤ λ ≤ D−1t−
N

2−a ,

then, by (1.5) we obtain

μ f (λ) =
∣∣∣∣{y: | f (y)| > λ}

∣∣∣∣ = (t |x1|a) N
2

[
− 1

D
log

(
Dλt

N
2−a

)] (1−a)N
2

, (2.16)

and if

λ < D−1t−
N

2−a e
−D

(
|x1 |2−a

t

) 1
1−a

,

then, by (1.5) and (2.15) we have

μ f (λ) =
∣∣∣∣{y: | f (y)| > λ}

∣∣∣∣ = t
N

2−a

[
− 1

D
log

(
Dλt

N
2−a

)] (1−a)N
2−a

. (2.17)

By (1.6), (2.16) and (2.17) we see that

f ∗(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D−1t−
N

2−a e
−D

(
s(t |x1|a)−

N
2

) 2
(1−a)N

if s ≥ |x1|N ,

D−1t−
N

2−a e
−D

(
st

− N
2−a

) 2−a
(1−a)N

if s < |x1|N .

(2.18)

Then, by (1.7) and (2.18) we have

‖ f ‖r ,1 =
∫ ∞

0
s
1
r −1 f ∗(s) ds

= D−1t−
N

2−a

∫ |x1|N

0
s
1
r −1e

−D

(
st

− N
2−a

) 2−a
(1−a)N

ds

+ D−1t−
N

2−a

∫ ∞

|x1|N
s
1
r −1e

−D

(
s(t |x1|a)−

N
2

) 2
(1−a)N

ds

≤ D−1t
− N

2−a

(
1− 1

r

) ∫ ∞

0
ζ

1
r −1e−Dζ

2−a
(1−a)N

dζ

+ D−1t−
N

2−a (t |x1|a) N
2r

∫ ∞

(t−1|x1|2−a)N/2
ζ

1
r −1e−Dζ

2
(1−a)N

dζ

≤ Ct
− N

2−a

(
1− 1

r

)
+ D−1t−

N
2−a (t |x1|a) N

2r e
− D

2

(
|x1 |2−a

t

) 1
1−a ∫ ∞

0
ζ

1
r −1e− D

2 ζ
2

(1−a)N
dζ

≤ Ct
− N

2−a

(
1− 1

r

)
+ Ct−

N
2−a (t |x1|a) N

2r e
− D

2

(
|x1 |2−a

t

) 1
1−a

(2.19)
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for any 1 ≤ r < ∞, where C depends only on a, r and N . Since s
N
2r

a
2−a e− D

2 s
1

1−a ≤ C for
all s ≥ 0, we see that

t−
N

2−a (t |x1|a) N
2r e

− D
2

(
|x1 |2−a

t

) 1
1−a

≤ t
− N

2−a + N
2r

(
1+ a

2−a

) ( |x1|2−a

t

) N
2r

a
2−a

e
− D

2

(
|x1 |2−a

t

) 1
1−a

≤ Ct−
N

2−a (1− 1
r ).

This together with (2.19) implies that

‖ f ‖r ,1 ≤ Ct−
N

2−a (1− 1
r ), r ∈ [1,∞). (2.20)

By (2.11) and (2.15) we see that �(x, y, t) ≤ f (y) for x, y ∈ R
N and t > 0, and it follows

from (2.20) that

‖�(x, ·, t)‖r ,1 ≤ ‖ f ‖r ,1 ≤ Ct−
N

2−a (1− 1
r ), r ∈ [1,∞),

for x ∈ R
N and t > 0. Thus the proof of Lemma 2.2 is complete. ��

For any measurable function ϕ, we put

[S(t)ϕ](x) :=
∫
RN

�(x, y, t)ϕ(y) dy (2.21)

for all x ∈ R
N and t > 0.

We will prove Lq–Lr estimate and Lq,∞–Lr ,∞ estimate for S(t)ϕ. Since the fundamental
solution � is not translation-invariant, we can not apply the usual Young inequality and weak
Young inequality to get these estimates. We can, however, prove the following estimates with
a slight modification of the proof of Lq–Lr and Lq,∞–Lr ,∞ estimates for the solution of the
heat equation.

(G1) For any ϕ ∈ Lq and 1 ≤ q ≤ r ≤ ∞, it holds that

‖S(t)ϕ‖r ≤ c1t
− N

2−a ( 1q − 1
r )‖ϕ‖q , t > 0.

Here c1 can be taken so that it depends only on N and α ∈ {a, b}.
(G2) For any ϕ ∈ Lq,∞ with 1 < q ≤ ∞ and q ≤ r ≤ ∞, it holds that

‖S(t)ϕ‖r ,∞ ≤ c2t
− N

2−a ( 1q − 1
r )‖ϕ‖q,∞, t > 0.

Here c2 can be taken so that it depends only on q , N and α ∈ {a, b}. In particular, the
constant c2 is bounded in q ∈ (1+ ε,∞) for any fixed ε > 0 and c2 → ∞ as q → 1.

Proof of (G1) Fix t > 0. Then, by the Hölder inequality and (2.13) we have

‖S(t)ϕ‖∞ ≤ Ct−
N

2−α
· 1q ‖ϕ‖q

for any 1 ≤ q ≤ ∞, where C depends only on N and α. Furthermore, by (K1) we apply the
Jensen inequality and the Fubini theorem to obtain

‖S(t)ϕ‖qq =
∫
RN

(∫
RN

�(x, y, t)ϕ(y) dy

)q

dx ≤
∫
RN

(∫
RN

�(x, y, t)ϕ(y)q dy

)
dx

=
∫
RN

ϕ(y)q
(∫

RN
�(x, y, t) dx

)
dy = ‖ϕ‖qq .
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These imply that

‖S(t)ϕ‖r ≤ ‖S(t)ϕ‖
r−q
r∞ ‖S(t)ϕ‖

q
r
q ≤ C

r−q
r t−

N
2−α

·( 1q − 1
r )‖ϕ‖q .

The constant C
r−q
r is bounded by the constant depending only on N and α for all 1 ≤ q ≤

r ≤ ∞, so we can prove property (G1). ��
Before proving property (G2), we prepare the following lemma.

Lemma 2.3 Let 1 < r ≤ ∞. Assume ϕ ∈ Lr ,∞. Then there exists a positive constant Cr

depending only on r such that

‖S(t)ϕ‖r ,∞ ≤ Cr‖ϕ‖r ,∞, t > 0. (2.22)

The constant Cr is bounded in 1 + ε < r < ∞ for any fixed ε > 0 and Cr → ∞ as r → 1.

Proof The proof of this lemma is almost same as in the proof of [19, Theorem 1.2.13], which
gives the Young inequality for weak type spaces. For the completeness of this paper, we give
it here.

In case of r = ∞, since L∞,∞ = L∞, (2.22) holds true with the constant Cr = 1. We
consider the case where 1 < r < ∞. Let M be a positive real number to be chosen later. Put
M− := {x : |ϕ| ≤ M} and M+ := {x : |ϕ| > M}. Then we can define

ϕ1 := ϕχM− , ϕ2 := ϕχM+ ,

where χE is the characteristic function of E . By the fundamental properties of μ f (λ) we
have

μϕ1(λ) =
{
0 if λ ≥ M,

μϕ(λ) − μϕ(M) if λ < M,
μϕ2(λ) =

{
μϕ(λ) if λ ≥ M,

μϕ(M) if λ < M,
(2.23)

and since {x : S(t)ϕ > λ} ⊂ {x : S(t)ϕ1 > λ/2} ∪ {x : S(t)ϕ2 > λ/2} for λ > 0, we have

μS(t)ϕ(λ) ≤ μS(t)ϕ1(λ/2) + μS(t)ϕ2(λ/2) (2.24)

for all t > 0. Then, by (1.9) and (2.23) we obtain

‖ϕ2‖1 =
∫ ∞

0
μϕ2(λ) dλ

=
∫ M

0
μϕ(M) dλ +

∫ ∞

M
μϕ(λ) dλ

≤ Mμϕ(M) +
∫ ∞

M
λ−r‖ϕ‖rr ,∞ dλ

≤ M1−r‖ϕ‖rr ,∞ + 1

r − 1
M1−r‖ϕ‖rr ,∞ = r

r − 1
M1−r‖ϕ‖rr ,∞.

This together with (K1) implies that

‖S(t)ϕ2‖1 ≤ ‖ϕ2‖1 ≤ r

r − 1
M1−r‖ϕ‖rr ,∞ (2.25)

for all t > 0. On the other hand, applying the Hölder inequality with (K1), we see that

|[S(t)ϕ1](x)| ≤ ‖�(x, ·, t)‖L1‖ϕ1‖∞ ≤ M (2.26)

for all x ∈ R
N and t > 0.
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Let ν > 0 and fix it. Taking the constant M as M = ν/2, by (2.26) we have

μS(t)ϕ1(ν/2) = 0, t > 0.

Then, applying the Chebyshev inequality with (2.24) and (2.25)

μS(t)ϕ(ν) ≤ μS(t)ϕ2(ν/2) ≤ 2

ν
‖S(t)ϕ2‖1 ≤ 2r r

r − 1
ν−r‖ϕ‖rr ,∞

for all t > 0. Since the above inequality holds for all ν > 0, by (1.9) we obtain (2.22) with

Cr = 2(r/(r−1))
1
r , and the constantCr is bounded as r → ∞. Thus the proof of Lemma 2.3

is complete. ��

Proof of (G2) For any 1 < q ≤ ∞, it follows from (1.11) and (2.14) that

‖S(t)ϕ‖∞ ≤ sup
x∈RN

‖�(x, ·, t)ϕ‖1 ≤ ‖�(x, ·, t)‖ q
q−1 ,1‖ϕ‖q,∞ ≤ Ct−

N
2−α

· 1q ‖ϕ‖q,∞ (2.27)

for all t > 0, where C depends only on α, q and N . Therefore, combining (1.10), (2.22) and
(2.27), we have

‖S(t)ϕ‖r ,∞ ≤ ‖S(t)ϕ‖1−θ
q,∞‖S(t)ϕ‖θ∞ ≤ C1−θ

r Cθ t−
N

2−α
· θ
q ‖ϕ‖q,∞

where θ ∈ [0, 1] satisfies 1/r = (1 − θ)/q . Since θ/q = 1/q − 1/r , we obtain property
(G2). ��

Furthermore, by (2.11) and (2.12) we have the following lemmas.

Lemma 2.4 Assume same conditions as in Lemma 2.2. Let ϕ ∈ L∞ be a non-trivial measur-
able function such that ϕ ≥ 0 in RN . Then there exists a positive constant C depending only
on α and N such that

[S(t)ϕ](x) ≥ C−1t−
N

2−α

∫
|y|≤t

1
2−α

ϕ(y) dy

for |x | ≤ t
1

2−α and t > 0.

Proof Since it follows from α < 1 that

|x − y|2−α ≤ 21−α(|x |2−α + |y|2−α),

by (2.11) and (2.12) we can find positive constant C depending only on α and N such that

�(x, y, t) ≥ Ct−
N

2−α

for |x |, |y| ≤ t
1

2−α and t > 0.
Then, by (2.21) we have

[S(t)ϕ](x) ≥
∫

|y|≤t
1

2−α

�(x, y, t)ϕ(y) dy ≥ Ct−
N

2−α

∫
|y|≤t

1
2−α

ϕ(y) dy

for all |x | ≤ t
1

2−α and t > 0.
Then Lemma 2.4 follows from (2.21). ��
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3 Proof of Theorem 1.1

In what follows, we assume either (A) or (B). Furthermore, let α be such that α = a for the
case (A) and α = b for the case (B).

In this section we prove Theorem 1.1, which means that problem (1.1) has no nontrivial
global solutions in the case 1 < p ≤ p∗(α). The proof of Theorem 1.1 is based on the
arguments of [41, Theorem 5] and [42, Theorem 1] (see also [14, Theorem 1.1]).

We first prove the following lemma.

Lemma 3.1 Let u be a solution of (1.1) in RN × (0, T ) with 0 < T ≤ ∞. Then there exists
a constant C∗ depending only on p such that

t
1

p−1 ‖S(t)u0‖∞ ≤ C∗ (3.1)

for any t ∈ [0, T ).

Proof This lemma follows from the proof of [41, Theorem 5]. For completeness of this paper,
we will add the proof of it.

Since it follows from (2.11) and (2.12) that the fundamental solution � is positive for
x, y ∈ R

N and t > 0, by (1.2) and (2.21) we have

[S(t)u0](x) ≤ u(x, t) < ∞ (3.2)

for almost all x ∈ R
N all t ∈ (0, T ). This together with (1.2) again implies

u(x, t) ≥
∫ t

0

∫
RN

�(x, y, t − s) ([S(s)u0](y))p dy ds (3.3)

for almost all x ∈ R
N and all t ∈ (0, T ). Then, applying the Jensen inequality with the aid

of (K1) and (K2) to (3.3), we obtain

u(x, t) ≥
∫ t

0

(∫
RN

�(x, y, t − s)[S(s)u0](y) dy
)p

ds

=
∫ t

0

(∫
RN

�(x, y, t − s)
∫
RN

�(y, z, s)u0(z) dz dy

)p

ds

=
∫ t

0

[ ∫
RN

(∫
RN

�(x, y, t − s)�(y, z, s) dy

)
u0(z) dz

]p
ds

=
∫ t

0

(∫
RN

�(x, z, t)u0(z) dz

)p

ds = t([S(t)u0](x))p

(3.4)

for almost all x ∈ R
N and all t ∈ (0, T ). We repeat the above argument with (3.2) replaced

by (3.4), and have

u(x, t) ≥
∫ t

0

∫
RN

�(x, y, t − s)

(
s([S(s)u0](y))p

)p

dy ds

≥
∫ t

0
s p
(∫

RN
�(x, y, t − s)[S(s)u0](y)dy

)p2

ds = 1

p + 1
t p+1([S(t)u0](x))p2

for almost all x ∈ R
N and all t ∈ (0, T ). Repeating the above argument, for any k = 2, 3, . . . ,

it holds that

u(x, t) ≥ Akt
pk−1
p−1 ([S(t)u0](x))pk (3.5)
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for almost all x ∈ R
N and all t ∈ (0, T ), where

Ak :=
(

1

p + 1

)pk−2 (
1

(p + 1)p + 1

)pk−3

· · ·
(

1

(1 + p + · · · + pk−2)p + 1

)

=
k−1∏
j=1

(
p − 1

p j+1 − 1

)pk− j−1

.

Therefore, by (3.5) we have

t
1

p−1 (1− 1
pk

)[S(t)u0](x) ≤ u(x, t)p
−k

⎛
⎝k−1∏

j=1

(
p − 1

p j+1 − 1

)pk− j−1
⎞
⎠

−p−k

(3.6)

for almost all x ∈ R
N and all t ∈ (0, T ). On the other hand, we have

log

⎛
⎝ ∞∏

j=1

(
p j+1 − 1

p − 1

)p− j−1
⎞
⎠ =

∞∑
j=1

p− j−1 log

(
p j+1 − 1

p − 1

)

≤
∞∑
j=1

p− j−1 log
(
( j + 1)p j

)
< ∞.

(3.7)

Then, by (3.6) and (3.7) we can find a constant C∗ depending only on p such that

t
1

p−1 [S(t)u0](x) ≤ C∗ < ∞
for almost all x ∈ R

N and all t ∈ (0, T ). This implies (3.1), and Lemma 3.1 follows. ��
We prove Theorem 1.1 by using Lemma 3.1.

Proof of Theorem 1.1 Theproof is by contradiction. Letu be a global-in-time solution of (1.1).
Since u(·, 1) is a positive measurable function in R

N , we can find a non-trivial measurable
function U1 ∈ L∞ such that suppU1 ⊂ B1(0) and 0 ≤ U1(x) ≤ u(x, 1) for almost all
x ∈ R

N . Then it follows from Lemma 2.4 that

[S(t)U1](x) ≥ CMt−
N

2−α , M :=
∫
B1(0)

U1(x) dx, (3.8)

for all |x | ≤ t
1

2−α and t ≥ 1. Furthermore, by (1.2), (2.21) and (K2) we see that

u(x, t + 1) ≥ [S(t)u(1)](x) ≥ [S(t)U1](x) (3.9)

for almost all x ∈ R
N and all t > 0.

We first consider the case 1 < p < p∗(α). By (3.8) and (3.9) we have

[S(t)u(1)](x) ≥ CMt−
N

2−α (3.10)

for all |x | ≤ t
1

2−α and t ≥ T . It follows from 1 < p < p∗(α) with (3.10) that

t
1

p−1 ‖S(t)u(1)‖∞ → ∞ as t → ∞,

which contradicts (3.1). This means that problem (1.1) possesses no global-in-time positive
solutions.
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Next we consider the case p = p∗(α). Since t + 1 − s ≤ t and s ≤ t + 1 − s for
1 ≤ s ≤ t/2 and it follows from (2.11) that∫

|x |≤t
1

2−α

�(x, y, t) dx ≥ C
∫

|x |≤t
1

2−α

t−
N
2 · α

2−α · t− N
2 dx ≥ C

for all |y| ≤ t
1

2−α , by (1.2), (2.11), (2.12), (3.8) and (3.9) we have∫
|x |≤t

1
2−α

u(x, t + 1) dx

≥
∫

|x |≤t
1

2−α

∫ t
2

1

∫
|y|≤(t+1−s)

1
2−α

�(x, y, t + 1 − s)u(y, s)p dy ds dx

≥
∫ t

2

1

∫
|y|≤(t+1−s)

1
2−α

(∫
|x |≤(t+1−s)

1
2−α

�(x, y, t + 1 − s) dx

)
u(y, s)pdy ds

≥ C
∫ t

2

1

∫
|y|≤(t+1−s)

1
2−α

u(y, s)p−1 · u(y, s) dy ds

≥ CMp
∫ t

2

1

(
s− N

2−α

)p−1
(∫

|y|≤s
1

2−α

s− N
2−α dy

)
ds

≥ CMp
∫ t

2

1
s− N

2−α
(p−1) ds ≥ CMp log t, t > 3.

(3.11)

Let m be a sufficiently large positive constant. By (3.11) we can find T > 0 such that the
function U2 defined by U2 := u(·, T ) ∈ L∞ satisfies∫

|x |≤T
1

2−α

U2(x) dx ≥ m.

Similarly to (3.8) and (3.9), we have

u(x, t + T ) ≥ [S(t)U2](x) ≥ Cmt−
N

2−α

for almost all x ∈ R
N and all t > 0. This implies that

t
N

2−α ‖S(t)U2‖∞ ≥ Cm, t > 1. (3.12)

Let v be a solution of (1.1) with initial data U2. Then, since u is a global-in-time solution of
(1.1), v is also a global-in-time solution of (1.1). Therefore we can apply Lemma 3.1 to the
solution v, and obtain (3.1) replacing u0 with U2. By the arbitrariness of m, this contradicts
(3.12) and we see that problem (1.1) possesses no global-in-time positive solutions for the
case p = p∗(α). Therefore the proof of Theorem 1.1 is complete. ��

4 Proof of Theorem 1.2

In this section we prove Theorem 1.2. We first prove the uniqueness of solutions of (1.1).
(See also [13, Lemma 3.1].)

Lemma 4.1 Let i = 1, 2, τ > 0, and ui be a solution of (1.1) inRN ×(0, τ )with u0 = u0,i ∈
L∞. Then, for any σ ∈ (0, τ ), there exists a constant C such that

sup
0<t≤σ

‖u1(t) − u2(t)‖∞ ≤ C‖u0,1 − u0,2‖∞. (4.1)
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Here the constant C depends on ‖u1‖L∞(0,σ : L∞) and ‖u2‖L∞(0,σ : L∞).

Remark 4.1 Let τ > 0 and u be a solution of (1.1) in R
N × (0, τ ]. If ‖u‖L∞(0,τ : L∞) is

bounded, then we can take a constant in (4.1) uniformly with respect to σ . Therefore, if u
is a global-in-time bounded solution of (1.1), then, applying this lemma, we see that u is a
unique solution of (1.1).

Proof Let σ ∈ (0, τ ). Put v = u1 − u2. Then we have

‖v‖L∞(0,σ : L∞) ≤ ‖u1‖L∞(0,σ : L∞) + ‖u2‖L∞(0,σ : L∞) < ∞.

This together with (1.2) and (K2) yields

|v(x, t̃)| ≤ ‖v(t)‖∞ +
∫ t̃

t

∫
RN

�(x, y, t̃ − s)|u1(y, s)p − u2(y, s)
p| dy ds

≤ ‖v(t)‖∞ + C1

∫ t̃

t

∫
RN

�(x, y, t̃ − s)|v(y, s)| dy ds
≤ ‖v(t)‖∞ + C1 sup

t<τ≤t̃
‖v(τ)‖∞(t̃ − t)

for almost all x ∈ R
N and all 0 ≤ t < t̃ ≤ σ , where C1 is a positive constant depending

only on p, ‖u1‖L∞(0,σ : L∞) and ‖u2‖L∞(0,σ : L∞). This implies that

sup
t<τ≤t̃

‖v(t)‖∞ ≤ ‖v(t)‖∞ + C1 sup
t<τ≤t̃

‖v(τ)‖∞(t̃ − t)

for all 0 ≤ t < t̃ ≤ σ .
Let ε be a sufficiently small positive constant such that C1ε ≤ 1/2 and ε < σ . Then, by

(3.2) we have

sup
t<τ≤t+ε

‖v(τ)‖∞ ≤ 2‖v(t)‖∞

for all t ∈ [0, σ − ε]. Therefore there exists a constant C2 such that

sup
0<τ≤σ

‖v(t)‖∞ ≤ C2‖v(0)‖∞,

and we have inequality (3.1). Thus the proof of Lemma 4.1 is complete. ��
Nextweprove local existence of solutions of (1.2). For any nonnegative functionu0 ∈ L∞,

we define {un} inductively by

u1(x, t) :=
∫
RN

�(x, y, t)u0(y) dy,

un+1(x, t) := u1(x, t) +
∫ t

0

∫
RN

�(x, y, t − s)un(y, s)
p dy ds, n = 1, 2, . . . , (4.2)

for almost all x ∈ R
N and all t > 0. Then we can prove inductively that

0 ≤ un(x, t) ≤ un+1(x, t) (4.3)

for almost all x ∈ R
N , t > 0 and all n ∈ N. In fact, we clearly obtain u2 ≥ u1 since � and u1

are nonnegative functions, and if there exists a number k ∈ N such that uk(x, t) ≤ uk+1(x, t)
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for almost all x ∈ R
N and all t > 0, then

uk+2(x, t) = u1(x, t) +
∫ t

0

∫
RN

�(x, y, t − s)uk+1(y, s)
p dy ds

≥ u1(x, t) +
∫ t

0

∫
RN

�(x, y, t − s)uk(y, s)
p dy ds = uk+1(x, t)

for x ∈ R
N and t > 0. This implies that (4.3) holds true for all n ∈ N. Therefore we see that

the limit function
u∗(x, t) := lim

n→∞ un(x, t) ∈ [0,∞] (4.4)

can be defined for almost all x ∈ R
N and all t > 0. Furthermore, by properties (G1) and

(G2) we can put a constant c∗∗ = max{c1, c2} such that
sup

0<t<∞
‖u1(t)‖∞ ≤ c∗∗‖u0‖∞,

sup
0<t<∞

t
N

2−a ( 1
r∗ − 1

q )‖u1(t)‖q,∞ ≤ c∗∗‖u0‖r∗,∞,
(4.5)

for any q ∈ [r∗,∞] if u0 ∈ Lr∗,∞ ∩ L∞, where c1 and c2 are constants given in (G1) and
(G2), respectively. Then we have the following lemma, which implies the local existence of
solutions of (1.1). (See also [13, Lemma 3.2] and [25, Lemma 3.1].)

Lemma 4.2 Let u0 ∈ L∞. Then there exists a positive constant T such that the problem (1.1)
possesses a unique solution u of (1.1) in R

N × (0, T ) satisfying

sup
0<t<T

‖u(t)‖∞ ≤ 2c∗∗‖u0‖∞. (4.6)

Here c∗∗ is the constant given in (4.5).

Proof Let T be a sufficiently small positive constant to be chosen later. By induction we
prove that

sup
0<t<T

‖un(t)‖∞ ≤ 2c∗∗‖u0‖∞ (4.7)

for all n = 1, 2, . . . . By (4.5) we have (4.7) for n = 1. Assume that (4.7) holds for some
n = n∗ ∈ {1, 2, . . . }, that is,

sup
0<t<T

‖un∗(t)‖∞ ≤ 2c∗∗‖u0‖∞.

Then, by (4.2) and (G1) we have

‖un∗+1(t)‖∞ ≤ ‖u1(t)‖∞ +
∫ t

0
‖S(t − s)un∗(s)

p‖∞ ds

≤ c∗∗‖u0|∞ + C1

∫ t

0
‖un∗(s)‖p∞ ds

≤ c∗∗‖u0‖∞ + C1T (2c∗∗‖u0‖∞)p

(4.8)

for all t ∈ (0, T ), where C1 is a constant independent of n∗ and T . Let T be a sufficiently
small constant such that

C1T 2
p(c∗∗‖u0‖∞)p−1 ≤ 1.
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Then, by (4.8) we have (4.7) for n = n∗ + 1. Therefore (4.7) holds for all n = 1, 2, . . . . By
(4.3), (4.4) and (4.7) we see that the limit function u∗ satisfies (1.2) and

sup
0<t<T

‖u∗(t)‖∞ ≤ 2c∗∗‖u0‖∞.

This together with Lemma 4.1 implies that the function u = u∗ is a solution of (1.1) in
R

N × (0, T ). Thus Lemma 4.2 follows. ��

Now we are ready to prove Theorem 1.2.

Proof of the assertion (i) of Theorem 1.2 Assume (1.12). Let δ be a sufficiently small positive
constant. Assume (1.13). By induction we prove

‖un(t)‖r∗,∞ ≤ 2c∗∗δ,

‖un(t)‖∞ ≤ 2c∗∗δt−
N

(2−α)r∗ ,
(4.9)

for all t > 0. By (4.5) we have (4.9) for n = 1. Assume that (4.9) holds for some n = n∗ ∈
{1, 2, . . . }, that is,

‖un∗(t)‖r∗,∞ ≤ 2c∗∗δ,

‖un∗(t)‖∞ ≤ 2c∗∗δt−
N

(2−α)r∗ ,
(4.10)

for all t > 0. These together with (1.10) imply that

‖un∗(t)‖q,∞ ≤ ‖un∗(t)‖
r∗
q
r∗,∞‖un∗(t)‖

1− r∗
q∞ ≤ 2c∗∗δt−

N
2−α

( 1
r∗ − 1

q ) (4.11)

for all t > 0 and r∗ < q < ∞. Since r∗ = N (p − 1)/(2 − α), by (4.10) we have

‖un∗(t)
p‖∞ = ‖un∗(t)‖p∞ ≤

(
2c∗∗δt−

N
(2−α)r∗

)p = (2c∗∗δ)pt−
N

(2−α)r∗ −1 (4.12)

for all t > 0. Similarly, for any η > 1 with η ≤ r∗ < ηp, by (4.11) we obtain

‖un∗(t)
p‖η,∞ = ‖un∗(t)‖p

ηp,∞ ≤
(
2c∗∗δt−

N
2−α

( 1
r∗ − 1

ηp )
)p ≤ Cδ pt

N
(2−a)η

− N
(2−α)r∗ −1 (4.13)

for all t > 0. Therefore, by (G1), (G2), (4.12) and (4.13) we have
∥∥∥∥
∫ t

t/2
S(t − s)un∗(s)

p ds

∥∥∥∥
∞

≤
∫ t

t/2
‖S(t − s)un∗(s)

p‖∞ ds

≤
∫ t

t/2
‖un∗(s)

p‖∞ ds

≤ Cδ p
∫ t

t/2
s− N

(2−α)r∗ −1 ds ≤ Cδ pt−
N

(2−α)r∗

(4.14)

and ∥∥∥∥
∫ t

t/2
S(t − s)un∗(s)

p ds

∥∥∥∥
r∗,∞

≤
∫ t

t/2
‖S(t − s)un∗(s)

p‖r∗,∞ ds

≤
∫ t

t/2
‖un∗(s)

p‖r∗,∞ ds ≤ Cδ p
∫ t

t/2
s−1 ds ≤ Cδ p

(4.15)
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for all t > 0. On the other hand, by (G2), (4.12) and (4.13) with η < r∗ we have
∥∥∥∥
∫ t/2

0
S(t − s)un∗(s)

p ds

∥∥∥∥∞

≤
∫ t/2

0
‖S(t − s)un∗(s)

p‖∞ ds ≤ C
∫ t/2

0
(t − s)−

N
(2−α)η ‖un∗(s)

p‖η,∞ds

≤ Cδ pt−
N

(2−α)η

∫ t/2

0
s

N
(2−α)η

− N
(2−α)r∗ −1 ds ≤ Cδ pt−

N
(2−α)r∗

(4.16)

and ∥∥∥∥
∫ t/2

0
S(t − s)un∗(s)

p ds

∥∥∥∥
r∗,∞

≤
∫ t/2

0
‖S(t − s)un∗(s)

p‖r∗,∞ ds ≤ C
∫ t/2

0
(t − s)−

N
2−α

( 1
η
− 1

r∗ )‖un∗(s)
p‖η,∞ ds

≤ Cδ pt−
N

2−α
( 1

η
− 1

r∗ )

∫ t/2

0
s

N
(2−α)η

− N
(2−α)r∗ −1 ds ≤ Cδ p

(4.17)
for all t > 0. Then, taking a sufficiently small δ if necessary, by (4.5) and (4.14), (4.15),
(4.16) and (4.17) we see that

t
N

(2−α)r∗ ‖un∗+1(t)‖∞
‖un∗+1(t)‖r∗,∞

}
≤ c∗∗δ + C1δ

p ≤ 2c∗∗δ

for all t > 0, where C1 is a constant independent of n∗ and δ. Hence we obtain (4.9) for
n = n∗ + 1. Thus (4.9) holds for all n = 1, 2, . . . . Therefore, applying a similar argument as
in the proof of Lemma 4.2, by (4.9) we see that there exists a unique global-in-time solution
u of (1.1) such that

‖u(t)‖r∗,∞ ≤ 2c∗∗δ, ‖u(t)‖∞ ≤ 2c∗∗δt−
N

(2−α)r∗ ,

for all t > 0. This together with (4.6) implies that

‖u(t)‖∞ ≤ C(1 + t)−
N

(2−α)r∗

for all t > 0. Furthermore, we apply the interpolation inequality (1.10) to obtain

‖u(t)‖q,∞ ≤ C(1 + t)−
N

2−α
( 1
r∗ − 1

q )
, r∗ ≤ q ≤ ∞,

for all t > 0. Thus we have (1.14), and the proof of the assertion of Theorem 1.2 is complete.
��

Proof of the assertion (ii) of Theorem 1.2 Assume (1.12). Let δ be a sufficiently small constant
and assume (1.15). Then, by the assertion (i) of Theorem 1.2 we see that there exists a unique
global-in-time solution u of (1.1) satisfying (1.14).

We prove the existence of a global-in-time solution of (1.1) satisfying (1.16). For r = r∗,
it follows from a similar argument as in the proof of the assertion (i) of Theorem 1.2. So we
assume 1 ≤ r < r∗. Put

u0,λ(x) := λβu0(λx), un,λ(x, t) := λβun(λx, λ
2−α t),
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where β = N/r∗ and λ is a positive constant such that

‖u0,λ‖r = ‖u0,λ‖∞.

Since

‖u0,λ‖
r
r∗
r ‖u0,λ‖1−

r
r∗∞ = ‖u0‖

r
r∗
r ‖u0‖1−

r
r∗∞ ,

it follows from (1.15) that
‖u0,λ‖r = ‖u0,λ‖∞ < δ. (4.18)

Furthermore, un,λ satisfies

un,λ(t) = S(t − τ)un,λ(τ ) +
∫ t

τ

S(t − s)un−1,λ(s)
p ds, (4.19)

for all t > τ ≥ 0. On the other hand, by (G1), (4.5) and (4.18) we can find a constant C∗∗
independent of δ, q and r , such that

‖S(t)u0,λ‖q ≤ C∗∗δ(1 + t)−
N

2−α
( 1r − 1

q )
, t > 0, (4.20)

for any q ∈ [r ,∞].
By induction we prove that

‖un,λ(t)‖q ≤ 2C∗∗δ, 0 < t ≤ 2, (4.21)

for any q ∈ [r ,∞] and n = 1, 2, . . . . By (4.20) we have (4.21) for n = 1. Assume that
(4.21) holds for some n = n∗, that is,

‖un∗,λ(t)‖q ≤ 2C∗∗δ, 0 < t ≤ 2, (4.22)

for any q ∈ [r ,∞]. Then, by (4.22), for any q ∈ [r ,∞], we have
‖un∗,λ(t)

p‖q = ‖un∗,λ(t)‖p
pq ≤ (2C∗∗δ)p (4.23)

for all 0 < t ≤ 2. Taking a sufficiently small δ if necessary, by (G1), (4.19), (4.20) and (4.23)
we obtain

‖un∗+1,λ(t)‖q ≤ ‖S(t)u0,λ‖q +
∫ t

0
‖S(t − s)un∗,λ(s)

p‖q ds

≤ ‖S(t)u0,λ‖q + C1

∫ t

0
‖un∗,λ(s)

p‖q ds
≤ C∗∗δ + C2δ

p ≤ 2C∗∗δ, 0 < t ≤ 2,

(4.24)

for any q ∈ [r ,∞], where C1 and C2 are constants independent of n∗ and δ. Thus we have
(4.21) for n = n∗ + 1, and (4.21) holds for all n = 1, 2, . . . .

Let C
′
∗ be a constant to be chosen later such that C

′
∗ ≥ 2C∗∗. By induction we prove that

‖un,λ(t)‖q ≤ C
′
∗δt

− N
2−α

( 1r − 1
q )

, t > 1/2, (4.25)

for any q ∈ [r ,∞] and n = 1, 2, . . . . By (4.20) we have (4.25) for n = 1. Assume that
(4.23) holds for some n = n∗. Then, similarly to (4.24), since r∗ = N

2−α
(p − 1) > r , taking
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a sufficiently small δ if necessary, by (G1), (4.19) and (4.21) we have

‖un∗+1,λ(t)‖q ≤ C3(t − 1/2)−
N

2−α
( 1r − 1

q )‖un∗+1,λ(1/2)‖r
+C3

∫ t/2

1/2
(t − s)−

N
2−α

( 1r − 1
q )‖un∗,λ(s)

p‖r ds

+C3

∫ t

t/2
‖un∗,λ(s)

p‖q ds

≤ C4C∗∗δt−
N

2−α
( 1r − 1

q ) + C4(C
′
∗δ)pt

− N
2−α

( 1r − 1
q )

∫ t/2

1/2
s− r∗

r ds

+C4(C
′
∗δ)p

∫ t

t/2
s− N

2−α
(
p
r − 1

q ) ds

≤ C5C∗∗δt−
N

2−α
( 1r − 1

q ) + C5(C
′
∗δ)pt

− N
2−α

( 1r − 1
q )

for all t > 1, where C3, C4 and C5 are constants independent of n∗ and δ. Let C
′
∗ ≥ 2C5C∗∗.

Then, taking a sufficiently small δ if necessary, we have

‖un∗+1,λ(t)‖q ≤ C
′
∗δt

− N
2−α

( 1r − 1
q )

, t > 1.

This together with (4.22) implies (4.25) with n = n∗ + 1. Thus (4.25) holds for all n =
1, 2, . . . .

By (4.22) and (4.25) we can find a constant C such that

‖un,λ(t)‖q ≤ Cδ(1 + t)−
N

2−α
( 1r − 1

q )
, t > 0,

for all q ∈ [r ,∞] and n = 1, 2, . . . . This implies that

‖un(t)‖q ≤ C(1 + t)−
N

2−α
( 1r − 1

q )
, t > 0,

for any q ∈ [r ,∞] and n = 1, 2, . . . . Then, by the same argument as in the proof of the
assertion (i) of Theorem 1.2, we see that there exists a solution u of (1.1) satisfying (1.16).
Thus the assertion (ii) of Theorem 1.2 follows, and the proof of Theorem 1.2 is complete. ��

Proof of Corollary 1.1 Since r∗ = N (p − 1)/(2 − α), by (1.17) we can find a constant C1

independent of δ such that

‖ϕ‖r∗,∞ ≤ C1δ.

Therefore, by the assertion (i) of Theorem 1.2 we see that, if δ is sufficiently small, then a
global-in-time solution of (1.1) exists and it satisfies (1.14) for α = a and for α = b. Thus
Corollary 1.1 follows. ��
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28. Ishige, K., Kawakami, T., Sierżȩga, M.: Supersolutions for a class of nonlinear parabolic systems. J.

Differ. Equ. 260, 6084–6107 (2016)
29. Kawanago,T.:Asymptotic behavior of solutions of a semilinear heat equationwith subcritical nonlinearity.

Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 1–15 (1996)

123



Critical exponent for the global existence of solutions to a… Page 25 of 25 62

30. Lee, T.Y., Ni, W.M.: Global existence, large time behavior and life span of solutions of a semilinear
parabolic Cauchy problem. Trans. Am. Math. Soc. 333, 365–378 (1992)

31. Levine, H.A.: The role of critical exponents in blow-up theorems. SIAM Rev. 32, 262–288 (1990)
32. Mizoguchi, N., Yanagida, E.: Critical exponents for the blow-up of solutions with sign changes in a

semilinear parabolic equation. Math. Ann. 307, 663–675 (1997)
33. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc.

165, 207–226 (1972)
34. Pinsky, R.G.: Existence and nonexistence of global solutions for ut = �u + a(x)u p in R

d . J. Differ.
Equ. 133, 152–177 (1997)
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