
Calc. Var. (2019) 58:61
https://doi.org/10.1007/s00526-019-1515-2 Calculus of Variations

Symmetry and approximate symmetry of a nonlinear elliptic
problem over a ring

Alaa Akram Haj Ali1 · Dongsheng Li2 · Peiyong Wang1

Received: 22 January 2019 / Accepted: 25 February 2019 / Published online: 19 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
A singularly perturbed free boundary problem arising from a real problem associated with
a Radiographic Integrated Test Stand concerns a solution of the equation �u = f (u) in a
domain� subject to constant boundary data, where the function f in general is notmonotone.
When the domain � is a perfect ring, we incorporate a new idea of radial correction into
the classical moving plane method to prove the radial symmetry of a solution. When the
domain is slightly shifted from a ring, we establish the stability of the solution by showing
the approximate radial symmetry of the free boundary and the solution. For this purpose, we
complete the proof via an evolutionary point of view, as an elliptic comparison principle is
false, nevertheless a parabolic one holds.

Mathematics Subject Classification 35J25 · 35K20 · 35J60 · 35J61 · 35K10 · 35K55 · 35J15 ·
35K58

1 Introduction

Let � be the domain between two concentric spheres |x | = 1 and |x | = R for some large
radius R. Assume u ∈ C2(�̄) is a solution of the boundary value problem

⎧
⎨

⎩

�u = f (u) in � = BR\B̄1,

u = 1 on |x | = 1,
u = −1 on |x | = R.

(1.1)
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The function f : R+ → R is aC1 function satisfying f (s) ≤ 0.We study the radial symmetry
of a solution of this boundary value problem. This problem is a singularly perturbed problem
of the following free boundary problem arising from industry (cf. [14]) the study of which
will be the content of another paper:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�u = f (u) in {u > 0}
�u = 0 in {u ≤ 0}
u+

ν = u−
ν along F := ∂ {u > 0}

u = 1 on |x | ≤ 1
u = −1 on |x | = R

(1.2)

where f (s) < 0 for s > 0. If one allows f (s) = 0 when s ≤ 0 and uses a smooth function to
approximate this new function f , then one ends up with the problem (1.1). We also consider
the problem (1.1) when the bigger sphere shifts its center a little from the origin

⎧
⎨

⎩

�u = f (u) in � = BR(Z)\B̄1,

u = 1 on |x | = 1,
u = −1 on |x − Z | = R,

(1.3)

where |Z | = δ is small. The boundary of the positive set F := ∂ {u > 0} in each problem is
the free boundary of a solution u.

The goal of this paper is to prove the radial symmetry of a solution of the boundary value
problem (1.1), and the approximate radial symmetry of the free boundary of a solution of
problem (1.3), under a not-too-negative condition on f ′. With regard to the first task, our
situation is different from known results in that there is no uniqueness of a solution for the
Dirichlet problem, which can easily be seen. For example, suppose λ is an eigenvalue of
(−�) with an eigenfunction w on the region � = BR\B̄r . That is

{
�w = −λw in �

w = 0 on ∂Br ∪ ∂BR

If u is a solution of the Dirichlet problem
⎧
⎨

⎩

�u = −λu in �

u = 1 on ∂Br
u = −1 on ∂BR,

so is u+w. This does not happen for the primary eigenvalue but occurs for other eigenvalues
according to the classical Courant’s nodal set theorem. Existing results of symmetry or
approximate symmetry of a solution over a ring-like domain depends on the assumption that
the right-hand-side f is non-decreasing. The reader may refer to [10], [11] and the references
therein. One consequence of the non-uniqueness of a solution to the Dirichlet problem is the
absence of a comparison principle for the equation, which is remedied in the standardmoving
plane method by the radial monotonicity of a solution. However, absence of the monotonicity
of the right-hand-side f in the current situation puts the radial monotonicity of a solution
over a ring in question. The standard moving plane method does not work until this issue is
resolved. In this sense, our method as well as results are new in the study of radial symmetry
of a solution and may be applied in a broader scope in studying symmetry problems.

The second task of securing approximate radial symmetry when the domain is shifted
somewhat from a ring has practical meaning in that it causes technical disaster and shutdown
of the system if the free boundary touches the interior sphere in a Radiographic Integrated
Test Stand or RITS ( [14]), and this is possible as in practice the interior and exterior spheres
can never be perfectly concentric especially when RITS is in operation. In order to prove
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the approximate symmetry of a solution when the domain is shifted from a ring, we are, in
a sense, forced to employ a technique of using evolutionary limits to bound the solution.
The reason is the lack of an elliptic comparison principle and the uniqueness of a solution
as stated above, and meanwhile we come to realize the validity of a parabolic comparison
principle. We have not seen such an approach in the literature except the joint work [5] of one
of the authors with Luis A.Caffarelli, in which the authors use a similar evolutionary view
to examine the stability of a solution of an elliptic free boundary problem. Construction of
the evolutionary limits depends on an existence theorem of a solution for the corresponding
parabolic initial-boundary-value problem and locally uniform convergence of the evolution.
In proving the existence theorem for an evolution, we are helped with an iteration rather than
the widely used Perron’s method, since the solution produced from that method may not be
regular enough. This evolutionary approach to a problem in a steady state seems promising
to us in application in the study of other PDE or free boundary problems.

The main results of this paper are the following two theorems regarding to problem (1.1)
and (1.3).

Theorem 1.1 Let R > 1 and� = BR\B̄1 be the domain of a ring or shell. Suppose f : R+ →
R is a C1 function such that f (s) ≤ 0 and infR+ f ′(s) > − 4(n+2)

R2 .

Then a solution u ∈ C2(BR\B1) of (1.1) is radially symmetric in the sense u(x) = u(y)
if x, y ∈ � with |x | = |y|.

The definition of a stable solution in the statement of the second theorem is given in
Definition 3.1.

Theorem 1.2 Suppose R > 1, and f : R+ → R is a C1 function such that f (s) ≤ 0 and
infR+ f ′(s) > − 2(n+2)

R2 . Let u ∈ C2(BR(Z)\B1) be a stable solutions of (1.3) with free
boundary F , where |Z | = δ.

Then there exists a constant δ0 > 0 such that for every constant δ in 0 < δ ≤ δ0, there is

a solution u0 ∈ C2(BR\B̄1) of (1.1) with free boundary F0 so that

|u(x) − u0(x)| ≤ Cδ in (BR(Z) ∩ BR) \B1, and

dist(F,F0) < C |Z | = Cδ

for a constant C = C(n, R, inf f ′) which is independent of δ. The latter estimate, in other
words, states that the free boundary F is in the shell between two concentric spheres of
thickness 2Cδ, as Theorem 1.1 implies F0 is a sphere. In particular, the free boundary F
keeps a positive distance from the boundary of the domain ∂�.

In accordance with the goals, the rest of the paper is naturally divided into two parts.
The next is devoted to the proof of the radial symmetry of a solution over a ring by way
of the moving plane method. The third part presents the approximate symmetry when the
domain is a shifted ring, in which well-posedness of the parallel evolution, convergence of
the evolution, and bounds by the evolutionary limit solutions are established.

2 Symmetry over a ring

In this section, one considers the following boundary value problem.
⎧
⎨

⎩

�u = f (u) in 1 ≤ |x | ≤ R
u = 1 on |x | = 1
u = 0 on |x | = R

(2.1)

123



61 Page 4 of 25 A. A. Haj Ali et al.

One assumes R is large, u ∈ C2(BR\B1), and f : R+ → R is a C1 function such that
f (s) ≤ 0 and infR+ f ′(s) > − 2(n+2)

R2 . Let � = BR\B̄1 be the domain of a ring or shell. We
note the non-essential difference in the boundary value of a solution between the problems
1.1 and 2.1.

The goal of this section is to prove Theorem 1.1 which is equivalent to the following
theorem.

Theorem 2.1 Let R > 1 and� = BR\B̄1 be the domain of a ring or shell. Suppose f : R+ →
R is a C1 function such that f (s) ≤ 0 and infR+ f ′(s) > − 2(n+2)

R2 .

Then a solution u ∈ C2(BR\B1) of (2.1) is radially symmetric in the sense u(x) = u(y)
if x, y ∈ � with |x | = |y|.
Remark 2.2 The standard moving-plane argument, e. g. [7], stops in the middle sphere of the
ring and hence cannot reach the radial symmetry. Moreover, as indicated in the Introduction,
it is unknown if u enjoys radial monotonicity. So a direct application of the moving-plane
method does not work.

We want to caution the reader that in general u is not necessarily radially monotone. It
could happen that u assumes its maximumon a sphere in the ring�while still staying radially
symmetric. This issue helps one to understand why we need to play the trick of adding a
dominating radially symmetric function to enforce a radial symmetry on the resulting sum
function, which we will describe now.

Firstly, one constructs an auxiliary dominating radially symmetric function. For any num-
ber A > 0, an alternating sequence {ak}∞k=0 is defined recursively by

a0 > 0, ak+1 = − Aak
2(n + 2k)(k + 1)

.

One defines an analytic function φ on R by a power series

φ(s) =
∞∑

k=0

aks
2k,

which is obviously uniformly convergent on any bounded subset of R. A direct computation
shows that

φ′′(s) + n − 1

s
φ′(s) = −Aφ(s) (s ∈ R),

which implies
�φ(|x |) = −Aφ(|x |) (x ∈ R

n\ {0}).
In addition,

φ′(s) =
∞∑

j=1

2(2 j − 1)a2 j−1

(

1 − As2

2(n + 4 j − 2)(2 j − 1)

)

s4 j−3

< 0 if s <

√
2(n + 2)

A

Moreover, if one requires

− inf
R+

f ′(s) < A <
2(n + 2)

R2 ,
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then for s ≤ R it holds

φ′(s) ≤ 2a1

(

1 − As2

2(n + 2)

)

≤ − Aa0
n

(

1 − AR2

2(n + 2)

)

We will apply the well-known moving plane method which plays the key role in [15] and
[7] to the function

ũ(x) = u(x) + Cφ(|x |) (2.2)

in � for positive constants A and C . We pick the value of C so that

C ≥ n

Aa0
(
1 − AR2

2(n+2)

) sup
�

|∇u(x)| .

Then ũr (x) ≤ 0 for all x ∈ �, i. e. ũ is radially decreasing.
For any domain D in consideration, ν(x0) denotes the outer unit normal to ∂D at a point

x0 ∈ ∂D.
In order to prove u is radially symmetric in �, it suffices to prove ũ is radially symmetric

in the ring �, which is equivalent to that ũ is symmetric in every hyperplane through the
origin. Without loss of generality, one takes the direction ν = e1 and starts to prove ũ is
symmetric in the hyperplane x1 = 0.

For the sake of completeness of this work, we include here the version of Hopf’s lemma
and Strong Maximum Principle that we will use in the proof.

Theorem 2.3 Hopf’s Lemma
Suppose u ∈ C2(�) ∩ C1(�̄) is a solution of the differential inequality

�u(x) + c(x)u(x) ≥ 0

in �, where c ∈ C(�). Assume further u(x) < 0 in �, x0 ∈ ∂� such that u(x0) = 0, and
there is a ball B ⊂ � that touches ∂� at x0.

Then

uν(x0) > 0

for the unit outer normal ν at x0 to ∂�.

For a proof of the Hopf’s lemma, the reader may refer to [6] for the case c(x) ≤ 0 and [7]
for the case c(x) > 0.

Theorem 2.4 Strong Maximum Principle
Suppose � is connected and u ∈ C2(�) is a solution of the differential inequality

�u(x) + c(x)u(x) ≥ 0

in �, where c ∈ C(�), and u(x) ≤ 0 in �.
If u(x0) = 0 at a point x0 in �, then u(x) ≡ 0 in �.

For any λ ≥ 0, let Tλ be the hyperplane x1 = λ, xλ = (2λ − x1, x2, . . . , xn) be
the mirror image of x = (x1, x2, . . . , xn) in Tλ, 	(λ) = � ∩ {x : x1 > λ}, 
(λ) ={
x ∈ 	(λ) : xλ ∈ �

}
, 	′(λ) the reflection of 	(λ) in Tλ, and 
′(λ) = 	′(λ) ∩ � the

reflection of 
(λ) in Tλ. Figure 1 provides some snapshots of the domain 
(λ), shaded in
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blue, during the motion of the hyperplane at different values of λ when the outer radius of
the ring R = 2.

If one notices that u is super-harmonic in� and attains itsminimumon the sphere |x | = R,
it is obvious the following lemma is true.

Lemma 2.5 Suppose x0 ∈ ∂BR with ν1(x0) > 0.
Then there exists δ > 0 such that

ux1 < 0 and hence ũx1 < 0

in � ∩ {x : |x − x0| < δ}.
The next lemma allows one to move the hyperplane Tλ for λ > 0 in the negative x1-axis

direction.

Lemma 2.6 Fix some λ in 0 ≤ λ < R. Assume

ũx1(x) ≤ 0 in 	(λ) and ũ(x) ≤ ũ(xλ) in 
(λ),

but ũ(x) ≡ ũ(xλ) in 
(λ).
Then ũ(x) < ũ(xλ) in 
(λ) and ũx1(x) < 0 on � ∩ Tλ.

Proof On 
′(λ), one defines the functions

v(x) = u(xλ), ṽ(x) = ũ(xλ) = u(xλ) + Cφ(|xλ|),
and h(x) = Cφ(|xλ|) − Cφ(|x |) ≤ 0.

Define w(x) = ṽ(x) − ũ(x) on 
′(λ). Then w(x) ≤ 0 in 
′(λ) and w satisfies

�w + c(x)w = −
∫ 1

0
f ′((1 − t)u + tv) dt h + �h

for

c(x) = −
∫ 1

0
f ′((1 − t)u + tv) dt

which is a continuous function on �, due to the equality

�(v − u + h) = f (v) − f (u) + �h

=
∫ 1

0
f ′((1 − t)u + tv) dt (v − u) + �h.

As a consequence,
�w + c(x)w ≥ − inf

R

f ′(s) h + �h

≥ Ah + �h

= 0

as
�h(x) = �

(
Cφ(|xλ|)) − �(Cφ(|x |)) = −ACφ(|xλ|) + ACφ(|x |)

= −Ah(x).

Notice that w(x) = 0 on Tλ ∩ �̄ and w(x) ≤ 0 elsewhere on ∂
′(λ). Then the Strong
Maximum Principle implies w < 0 in 
′(λ), and the Hopf’s Lemma implies wx1(x) > 0 on
Tλ ∩ �. These mean

ṽ(x) < ũ(x) in 
′(λ), or equivalently ũ(x) < ũ(xλ) in 
(λ)
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and ũx1(x) < 0 on � ∩ Tλ, since wx1(x) = −ũx1(x
λ) − ũx1(x) = −2ũx1(x) on Tλ ∩ �. ��

The main Theorem (2.1) follows from the following theorem by considering all possible
directions along which a hyperplane is moved.

Theorem 2.7 For any λ in 0 < λ < R, it holds that

ũx1(x) < 0 in 	(λ) and ũ(x) < ũ(xλ) in 
(λ). (2.3)

In particular, ũx1(x) < 0 in � ∩ {x1 > 0}.
Consequently, ũ(x) is symmetric with respect to the hyperplane x1 = 0.

Proof We define the set A as

A = {
λ ∈ (0, R) : ũx1(x) < 0 in 	(λ) and ũ(x) < ũ(xλ) in 
(λ)

}
.

Firstly, one notices that Lemma 2.5 implies there exists some λ close to R in 0 < λ < R
which is in A.

Let μ = inf A. Since (2.3) holds for all λ > μ, we have by continuity that

ũx1(x) < 0 in 	(μ) and ũ(x) ≤ ũ(xλ) in 
(μ).

We claim that μ = 0.
Suppose μ > 0. For any x0 ∈ (∂BR ∩ {x1 > μ}) such that xμ

0 ∈ �, it holds that −1 +
φ(R) = min�̄ ũ = ũ(x0) < ũ(xμ

0 ). So ũ(x) ≡ ũ(xλ) in 
(μ). Lemma 2.6 then implies

ũ(x) < ũ(xμ) in 
(μ) and ũx1(x) < 0 on � ∩ Tμ.

That is, (2.3) holds for λ = μ.
At every point x0 ∈ ∂� ∩ Tμ, Lemma 2.5 states there is a ε > 0 such that

ũx1 < 0 in � ∩ {|x − x0| < ε} ,

as Tμ is not perpendicular to ∂�. Here one notices that the situation when |x0| = 1 is parallel
to that in Lemma 2.5 and a similar conclusion holds. Since ∂� ∩ Tμ is compact, there is an
ε > 0 such that

ũx1 < 0 in � ∩ {x1 > μ − ε} ∩ Nε(∂� ∩ Tμ),

where Nε(S) denotes the ε-neighborhood of a set S ∈ R
n . On the other hand, since ũx1 < 0

on � ∩ Tμ, one gets by continuity of ũx1 that

ũx1 < 0 in � ∩ {x1 > μ − ε} \Nε(∂� ∩ Tμ)

so long as the value of ε is taken smaller if necessary. In all, for this ε > 0,

ũx1 < 0 in � ∩ {x1 > μ − ε} . (2.4)

As μ = inf A, ∃ {
λ j

}
such that 0 < λ j < μ and

∃x j ∈ 
(λ j ) such that ũ(x j ) ≥ ũ(xλ j

j ) for every j .

Without loss of generality, we assume x j → x̃ for some x̃ ∈ 
(μ). Clearly xλ j

j → x̃μ and
hence ũ(x̃) ≥ ũ(x̃μ). Since (2.3) holds for λ = μ, we must have x̃ ∈ ∂
(μ). There are four
possibilities, |x̃ | = 1, |x̃ | = R, x̃ ∈ Tμ ∩ �, and x ∈ (

∂
(μ)\Tμ

) ∩ �. One first notes that
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it is impossible that |x̃ | = 1 but x̃ /∈ Tμ, since otherwise
∣
∣
(
x j

)μ∣
∣ < 1 holds for sufficiently

large j due toμ > 0. If |x̃ | = R, then x̃μ ∈ � or |x̃μ| = 1, and since ũ is radially decreasing,

ũ(x̃) = min
�̄

ũ < ũ(x̃μ), which is a contradiction.

Similarly, we get a contradiction when x̃ ∈ (
∂
(μ)\Tμ

) ∩ �, since, in this case, |x̃μ| = 1
and the fact ũ is radially decreasing imply

ũ(x̃) < max
�̄

ũ = ũ(x̃μ).

Therefore x̃ ∈ Tμ ∩�̄ and x̃μ = x̃ . On the other hand, for large j , the segment [x j , xλ j

j ] ⊂ �

and therefore ∃y j ∈ [x j , xλ j

j ] such that ux1(y j ) ≥ 0 according to the Mean Value Theorem.
Since y j → x̃ , we get ux1(x̃) ≥ 0 which is in contradiction to (2.4).

Thusμ = 0 and (2.3) holds for all λ in 0 < λ < R. By continuity, it holds that ũx1(x) ≤ 0
and ũ(x) ≤ ũ(x0) in 	(0), where x0 is the reflection of x in the hyperplane x1 = 0.

If one moves the hyperplane along the positive x1-axis direction from the other side of
the ring �, the above argument shows that ũ(x) ≥ ũ(x0) and hence ũ and therefore u are
symmetric about the hyperplane x1 = 0. ��

The main Theorem 2.1 of this section follows readily from the preceding theorem.

3 Stability of the free boundary

This section is devoted to the proof of Theorem 1.2. Let � = BR(Z)\B̄1 be a slight defor-
mation of the ring BR\B̄1 with |Z | = δ > 0 being sufficiently small. Now one considers the
following boundary value problem.

⎧
⎨

⎩

�u = f (u) in �

u = 1 on |x | = 1
u = −1 on |x − Z | = R

(3.1)

One assumes R > 1, u ∈ C2(�), and f : R → R is a C3 function such that f (s) ≤ 0,
f (s) = 0 if s ≤ 0, and infR+ f ′(s) > − 2(n+2)

R2 . We consider only the stability of the free
boundaries of what we call stable solutions in a strong sense defined below.

Definition 3.1 A solution u of (3.1) is stable if for any ε > 0, there exist functions v1 and
v2 in C2(�̄) that satisfy

u − ε ≤ v1 ≤ u ≤ v2 ≤ u + ε on �̄, (3.2)

−�v1 + f (v1) < −ε and − �v2 + f (v2) > ε in �, simultaneously. (3.3)

Remark 3.2 When the domain is a ring and f (s) ≡ 0, it is easy to construct the sub- and
super-solutions v1 and v2. One may readily perturb the domain to a ring-like one such as �

and construct corresponding sub- and super-solutions over � that satisfy the requirements in
the above definition. The reader is referred to the following proof for detailed computation.

In other words, a stable solution u is a uniform supremum of strict subsolutions and a
uniform infimum of strict supersolutions. Compared to the concentric case when Z = 0, the
center of the exterior sphere drifts away from the origin a bit. Our goal in this section is to
prove in this situation the free boundary of u drifts away from its original position also by a
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bit. In mathematical terms, we are to prove the stability of the free boundary. We will also
give an estimate of the drift of the free boundary. However, for this seemingly clear fact,
we need to prove it through a delicate evolution with quite a few technicalities. The reason
we go through this quite troublesome process lies in the observation there is no comparison
principle and hence no uniqueness for the elliptic problem when the nonlinear term f (u)

is negative. Nevertheless, there is a comparison principle for the corresponding evolution.
Meanwhile, the reader may have realized that the practical reason why we study this problem
on approximate radial symmetry has already been mentioned in the introduction.

We first state the parabolic comparison principle which is needed in the coming proof.
Consider the initial-boundary value problem

{
Hw := wt − �w + α(x, w) = 0 in � × (0,∞)

w(x, t) = σ(x, t) on ∂� × (0,∞), w(x, 0) = v0(x) for x ∈ �̄
(3.4)

where α is a C1 function that satisfies the condition 0 ≤ α(x, w) ≤ Cw, and � is a bounded
domain with smooth boundary. This problem includes two important cases that we will apply
the comparison principle to, the case when α = f (w) and the other when α = f ′(w)z where
z is one of the first order derivatives of w.

Theorem 3.3 Suppose two functions w1 and w2 satisfy Hw1 ≤ 0 ≤ Hw2 in the viscosity
sense as continuous functions or in the weak sense as H1-functions in �×R

+ and w1 ≤ w2

on the parabolic boundary ∂p(� × R
+). Then w1 ≤ w2 in � × R

+. Here R+ = (0,∞).

Proof The proof is done with the introduction of the new functions

w̃ j (x, t) = e−λt
(

w j (x, t) − δ

T − t

)

, j = 1, 2,

for any fixed small T > 0 and some large constant λ, cf.Theorem 3.1 [5] and Lemma 6.3
[13]. ��

Now let BR1 be the largest ball inscribed in BR(Z)with the origin as its center and BR2 be
the smallest ball circumscribing BR(Z)with the origin as its center. Also, letR = BR\B̄1 be
a concentric ring,�1 = BR1 \ B̄1 and�2 = BR2 \ B̄1. Figure 2 illustrates the two-dimensional
sections of these spheres and the domain � as shaded in gray.

Let u be a stable solution of the free boundary problem (3.1). Fix a small number ε = K δ

for a relative large universal constant K > 0 in (3.2) and (3.3). Let v1 and v2 be as in the
definition of the stable solution u in �. It is not difficult to see that, in accordance with the
definition of v1 and v2, v1 < u < v2 on ∂�.

In the following, we will construct a function v01 (resp. v00 and v02) a strict subsolution
(resp. strict supersolutions) of our problem on the perfect ring �1 (resp.R and �2) such that

u − Cδ ≤ v01 ≤ u in �1, and, u ≤ v02 ≤ u + Cδ in �

v01 ≤ v00 in �1 and, v00 ≤ v02 in R (3.5)

for a constant C .
Then we will use v01 (resp.v00 and v02) as initial data of the parabolic version of our

problem on �1 × (0,∞) (resp. R × (0,∞) and �2 × (0,∞)) to construct solutions of the
respective evolution.

Finally, we prove convergence of the evolution with each initial data to a steady state
which gives desired solutions u1, u0, and u2 of the elliptic problems on �1,R, and �2. The
solutions u1 and u2 will give the lower and upper bounds for the solution u of (1.3), while
u0 will be a radially symmetric approximation of u. In particular, the free boundary of u0 is
an approximation of that of u.
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Fig. 2 The spheres B1, BR1 , BR(Z), BR , and BR2 for δ = 0.5 and R = 4

3.1 Construction of a solution of our problem on the perfect ringÄ1

3.1.1 Construction of a strict subharmonic function inÄ satisfying the boundary
conditions associated with our problem

One takes φ0 : R → R defined by

φ0(x) = Aeλ|x | + B (1 ≤ |x | ≤ R)

where the constants λ < 0, A > 0 and B satisfy the conditions
{
Aeλ + B = 1
AeλR + B = −1

Then for a suitable value of λ < 0, it holds that

−�φ0 + f (φ0) ≤ −�φ0 = −A

(

λ2 + λ
n − 1

|x |
)

eλ|x | = − 2eλ|x |

eλ − eλR

(

λ2 + λ
n − 1

|x |
)

≤ − 2eλR

eλ − eλR

(

λ2 + λ
n − 1

|x |
)

= −μ < −2ε

in R for a constant μ > 0, φ0 = −1 on ∂BR , and φ0 = 1 on ∂B1, if we take δ0 such that
0 < δ0 = K−1ε < 1

2K μ.
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61 Page 12 of 25 A. A. Haj Ali et al.

Let φ̃ denote the translation of φ0 to the ring BR(Z)\B̄1(Z). That is φ̃ satisfies

−�φ̃ + f (φ̃) < −μ

in BR(Z)\B̄1(Z) for the constant μ > 2ε, φ̃ = −1 on ∂BR(Z), and φ̃ = 1 on ∂B1(Z).
Now, for each x in � = BR(Z)\B̄1, define x̃ = τ(x) in BR(Z)\B̄1(Z) in the following

way. Write e = x
|x | . If

x = (1 − λ)e + λq (0 ≤ λ ≤ 1)

where q is the point of intersection of the ray from the origin in the direction of e with the
sphere ∂BR(Z), then

x̃ = τ(x) = (1 − λ)(Z + e) + λp = Z + (1 − λ)e + λRe,

where p is the point of intersection of the ray from the point Z in the direction of e with
the sphere ∂BR(Z). Clearly, the mapping x �→ x̃ is a one-to-one function from � onto
BR(Z)\B̄1(Z). Suppose q = te. Then from |q − Z | = R one can get

t = σ(x) :=
√

δ2μ2 + (
R2 − δ2

) − δμ,

where μ = e · e1 = x1/|x |, and consequently

λ = |x | − 1

t − 1
.

Hence

x̃ = τ(x) = −δe1 +
(
t − |x |
t − 1

+ |x | − 1

t − 1
R

)

e.

Finally we define the function φ : � → R by

φ(x) = φ̃(x̃).

We claim that φ satisfies the conditions

−�φ + f (φ) < −ε

in �, φ = −1 on ∂BR(Z), and φ = 1 on ∂B1. In fact, the boundary conditions are obvious.
As for the differential inequality, one first writes τ = (τ 1, τ 2, . . . , τ n). Then

φxi = φ̃x̃k τ
k
xi

and
φxi x j = φ̃x̃k x̃l τ

k
xi τ

l
x j + φ̃x̃k τ

k
xi x j .

Here and in the following the summation convention is adopted. Consequently

φxi xi = φ̃x̃k x̃l τ
k
xi τ

l
xi + φ̃x̃k τ

k
xi xi

and hence
−�φ = − < D2φ̃τxi , τxi > −φ̃x̃k�τ k .

Decompose τ as
τ(x) = x + ψ(x), where ψ(x) = τ(x) − x .

Then

ψ(x) = x̃ − x = −δe1 + |x | − 1

t − 1
(R − t) e.
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For any fixed x ∈ �, it is clear that

R − t = σ(0) − σ(δ) = −σ ′(ζ )δ

for some ζ ∈ (0, δ), and hence
|R − t | ≤ 2δ

as

|σ ′(ζ )| =
∣
∣
∣
∣
∣

δμ2 − δ
√

δ2μ2 + (R2 − δ2)
− μ

∣
∣
∣
∣
∣
≤ 2

for sufficiently small δ. Moreover, one readily gets

μxi = δ1i

|x | − x1xi

|x |3
and

txi = σxi =
(

δμ
√

δ2μ2 + (R2 − δ2)
− 1

)

δμxi ,

from which one also gets

μxi xi = −2δ1i
x i

|x |3 − x1

|x |3 + 3
x1(xi )2

|x |5
and

txi xi = R2 − δ2

(
δ2μ2 + (R2 − δ2)

)2 δ2μ2
xi +

(
δμ

√
δ2μ2 + (R2 − δ2)

− 1

)

δμxi xi .

Clearly,

∣
∣μxi

∣
∣ ≤ C

|x | ≤ C in �,

and hence
∣
∣txi

∣
∣ ≤ Cδ in �.

Now
ψxi = βxi (R − t) e − βtxi e + β (R − t) exi , (3.6)

where β = (|x | − 1) / (t − 1). Evidently β ∈ [0, 1] is bounded, and
∣
∣βxi

∣
∣ =

∣
∣
∣
∣
∣

xi|x | (t − 1) − (|x | − 1)txi
(t − 1)2

∣
∣
∣
∣
∣
≤ 1

t − 1
+ |x | − 1

(t − 1)2
Cδ ≤ C

in �. In addition, that

exi = 1

|x |ei − xi
|x |2 e

implies |exi | ≤ C in |x | ≥ 1. Then one deduces from (3.6) that
∣
∣ψxi

∣
∣ ≤ Cδ in �.

Next, one readily gets

ψxi xi = βxi xi (R − t) e − βtxi xi e + β (R − t) exi xi − 2
(
βxi txi e + βtxi exi − βxi (R − t) exi

)

(3.7)
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61 Page 14 of 25 A. A. Haj Ali et al.

It is clear from the formula of μxi xi that it is bounded on �, which helps to imply from the
formula of txi xi that

∣
∣txi xi

∣
∣ ≤ Cδ on �. Meanwhile, one may compute the formula of βxi xi :

βxi xi =
(

1

|x | − x2i
|x |3

)
1

t − 1
− xi

|x |
txi

(t − 1)2
− xi

|x |
1

(t − 1)2
+ 2

(|x | − 1)

(t − 1)3
t2xi −

|x | − 1

(t − 1)2
txi xi .

This formula shows that
∣
∣βxi xi

∣
∣ ≤ C in � on account of the estimates on txi and txi xi .

Similarly, one gets the formula of exi xi

exi xi = − 2xi
|x |3 ei − 1

|x |2 e + 2
x2i
|x |4 e

and deduce fromwhich that
∣
∣exi xi

∣
∣ ≤ C in�. Then the formula (3.7) readily implies

∣
∣ψxi xi

∣
∣ ≤

Cδ on account of the estimates on R− t , β, e, βxi , txi , exi , βxi xi , txi xi and exi xi , which in turn
implies

∣
∣�ψk

∣
∣ ≤ Cδ for each k = 1, . . . , n. Computation based on the definition of φ̃ that

φ̃(x) = Aeλ|x+δe1| + B

and the formulas that determine the values of A, B and λ helps one to conclude that φ̃xk and
φ̃xk xl are bounded on BR(Z)\B1(Z). Combining all the preceding estimates, one concludes
that

−�φ + f (φ) = −�φ̃ + f (φ̃)−2
∑

i

< D2φ̃ei , ψxi > −
∑

i

< D2φ̃ψxi , ψxi > −φ̃xk�ψk

< −μ − 2
∑

i

< D2φ̃ei , ψxi > −
∑

i

< D2φ̃ψxi , ψxi > −φ̃xk�ψk

< −μ + Cδ

< −1

2
μ, if we take K > 2C

< −ε

for all δ ≤ δ0. So the claim is proved.

3.1.2 Construction of a strict subsolution of1u = f (u) onÄ satisfying the boundary
conditions associated with our problem and the condition u − " ≤ v1 ≤ u onÄ

First replace the subsolution v1 by ω1 := v1 − C1δ, where C1 > 4R
R−δ0

sup |∇u|. The new
function ω1 satisfies the following conditions:

⎧
⎨

⎩

u − (ε + C1δ) ≤ ω1 ≤ u − C1δ in �

−�ω1 + f (ω1) < −(ε − C0C1δ) < 0 in �

ω1 < −1 on ∂BR(Z), and ω1 < 1 on ∂B1

for C0 = − infR f ′(s) > 0, if K is sufficiently large.
If one checks carefully our proof in the preceding subsection, it is proved that−�φ̃ < −μ

and −�φ < −ε. Then on ∂�, u = φ, and in �

�(u − φ) = f (u) − �φ ≤ f (u) − ε ≤ 0.

Then the Minimum Principle for super-harmonic functions implies that u ≥ φ on �̄.
We are in a position to replace the sub-solution ω1 by ṽ1 := max {ω1, φ} which is also a

sub-solution of the problem. Moreover, ṽ1 takes constant values on the exterior and interior
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spheres respectively. Without any possible confusion, we simply write v1 for ṽ1 in the fol-
lowing. Since v1 differs from φ on a precompact set, we may mollify it near the boundary of
the set. The mollified function v1 verifies v1 ∈ C2(�̄),

⎧
⎨

⎩

u − (ε + 2C1δ) ≤ v1 ≤ u − C1
2 δ in �

−�v1 + f (v1) < −(ε − 2C0C1δ) < 0 in �

v1 = −1 on ∂BR(Z), and v1 = 1 on ∂B1

provided K is sufficiently large.

3.1.3 Construction of a function v01 strict subsolution of1u = f (u) onÄ1 satisfying
the boundary conditions associated with our problem and the condition
u − " ≤ v01 ≤ u onÄ1

We are ready to define a function v0 := v01 ∈ C2(�1) that satisfies
⎧
⎨

⎩

u − Cδ < v0 ≤ u in �1

−�v0 + f (v0) < 0 in �1

v0 = −1 on ∂BR1 and v0 = 1 on ∂B1

(3.8)

as the initial data for the evolution based on the strict sub-solutionv1, where we use and will
use in the following v0 for v01 to avoid the use of disturbing double subscripts.

For x ∈ �1, if one can write it as

x = (1 − λ)e + λq,

where e = x/|x | and q = R1e is the point of intersection of the ray from the origin in the
direction of e with the sphere ∂BR1 , then one defines

x∗ = (1 − λ)e + λp,

where p is the point of intersection of the ray from the origin in the direction of e with the
sphere ∂BR(Z). Clearly, the mapping x �→ x∗ is a bijection from BR1\B1 onto BR(Z)\B1.
Write p = te for t > 0. The condition |p + δe1| = R implies that

t = σ(x) :=
√

δ2μ2 + (R2 − δ2) − δμ.

Also, we know λ = |x |−1
R1−1 . So

x∗ = ϕ(x) :=
(
R1 − |x |
R1 − 1

+ |x | − 1

R1 − 1
t

)

e.

Set in �1

ψ(x) = ϕ(x) − x = x∗ − x = |x | − 1

R1 − 1
(t − R1) e.

We introduce the notation

β(x) = |x | − 1

R1 − 1
.

Then
ψ(x) = β(x) (σ (x) − R1) e.

Now one can define
v0(x) = v1(x

∗) (x ∈ �1)
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we claim that v0 satisfies the conditions (3.8).
The regularity and boundary conditions are evident.
To see that u − Cδ < v0 ≤ u in �1, we write

v0(x) − u(x) = v1(x
∗) − u(x) = (

v1(x
∗) − u(x∗)

) − (
u(x) − u(x∗)

)
),

which implies

v0(x) − u(x) ≤ −C1

2
δ + sup |∇u||x − x∗| ≤ −C1

2
δ + 2δR

R1
sup |∇u| < 0 (3.9)

and
v0(x) − u(x) ≥ −ε − 4C1δ = − (K − 4C1) δ. (3.10)

Here we note that the global gradient estimate of u implies sup |∇u| is controlled by n, R,
and f .

Finally, we verify the differential inequality.
Obviously β and e are bounded. The term

σ(x) − R1

=
√

δ2μ2 + (
R2 − δ2

) − δμ − R1

=
√

δ2μ2 + (
R2 − δ2

) − δμ − (R − δ)

=: τ(δ)

for any fixed x ∈ �1. As τ(0) = 0 and

∣
∣τ ′(δ)

∣
∣ =

∣
∣
∣
∣
∣
∣

μ2δ − 2δ
√

δ2μ2 + (
R2 − δ2

) − μ + 1

∣
∣
∣
∣
∣
∣
≤ C,

one concludes
|σ − R| ≤ Cδ.

One easily gets

ψxi = βxi (σ − R1) e + βσxi e + β (σ − R1) exi

and

ψxi xi = βxi xi (σ − R1) e + βσxi xi e + β (σ − R1) exi xi
+2

(
βxi σxi e + βxi (σ − R1) exi + βσxi exi

)
. (3.11)

Set μ(x) = e · e1 = x1
|x | . Then

μxi = δ1i

|x | − x1xi

|x |3
and

σxi = δ2μμxi√

δ2μ2 + (
R2 − δ2

) − δμxi =
⎛

⎝
δμ

√

δ2μ2 + (
R2 − δ2

) − 1

⎞

⎠ δμxi .

123



Symmetry and approximate symmetry of a nonlinear elliptic… Page 17 of 25 61

Also

βxi = − 1

R1 − 1

xi

|x |
and exi = 1

|x |e
i − xi

|x |2 e.

As
∣
∣μxi

∣
∣ ≤ C in �1, it holds

∣
∣σxi

∣
∣ ≤ Cδ in �1. Also one observes

∣
∣βxi

∣
∣ ≤ C and

∣
∣exi

∣
∣ ≤ C

in �1. Consequently, it holds
∣
∣ψxi (x)

∣
∣ ≤ Cδ (x ∈ �1).

Further computation shows that

βxi xi = − 1

(R1 − 1)|x | + x2i
(R1 − 1)|x |3

and

exi xi = − 2xi

|x |3 ei − 1

|x |3 x + 3x2i
|x |5 x,

which imply that ∣
∣βxi xi

∣
∣ ,

∣
∣exi xi

∣
∣ ≤ C

in �1. By computing

μxi xi = −2
δ1i x i

|x |3 − x1

|x |3 + 3
x1(xi )2

|x |5 ,

and

σxi xi =
⎛

⎝
δμ

√

δ2μ2 + (
R2 − δ2

) − 1

⎞

⎠ δμxi xi + R2 − δ2

(√

δ2μ2 + (
R2 − δ2

))3
δ2μ2

xi ,

one concludes
∣
∣μxi xi

∣
∣ ≤ C in �1 and hence

∣
∣σxi xi (x)

∣
∣ ≤ Cδ (x ∈ �1).

The above estimates and the formula (3.11) of ψxi xi imply that
∣
∣ψxi xi (x)

∣
∣ ≤ Cδ (x ∈ �1)

Since
v0,xi = v1,x∗

k
ϕk
xi

and
v0,xi xi =

∑

k,l

v1,x∗
k x

∗
l
ϕk
xi ϕ

l
xi +

∑

k

v1,x∗
k
ϕk
xi xi ,

one gets
−�v0 = − < D2v1ϕxi , ϕxi > −

∑

k

v1,x∗
k
�ϕk .

As ϕxi = ei + ψxi , one further gets from the above formula

−�v0 = −�v1 − 2 < D2v1ei , ψxi > − < D2v1ψxi , ψxi > −
∑

k

v1,x∗
k
�ψk .
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So

−�v0 + f (v0) = −�v1 + f (v1) − 2 < D2v1ei , ψxi > − < D2v1ψxi , ψxi

> −
∑

k

v1,x∗
k
�ψk

< − (ε − 2C0C1δ) + Cδ + Cδ

< −Cδ, for a new constant C if K is sufficiently large.

< 0

(3.12)

for all δ ≤ δ0, on account of the estimates on ei , ψxi and ψxi xi .
The inequalities in (3.9), (3.10) and (3.12) yield to the desired result (3.8).

3.1.4 Construction ofw1(x, t) a solution of the parabolic version of our problem on
Ä1 × (0,∞)

Using v0 as the initial data,we are going to solve the following initial-boundary-value problem
⎧
⎨

⎩

wt − �w + f (w) = 0 in �1 × (0,∞)

w(x, t) = −1 on ∂BR1 × (0,∞), w(x, t) = 1 on ∂B1 × (0,∞)

w(x, 0) = v0(x) for x ∈ �1

(3.13)

For convenience, one sets D1 := �1 × (0,∞) and let ∂pD1 be its parabolic boundary.

Lemma 3.4 There is a solution w1 of the evolution (3.13).

Proof We prove an existence theorem for the following initial-boundary-value problem
rewritten from (3.13). {

wt − �w + f (w) = 0 in D1

w(x, t) = v0(x) on ∂pD1,
(3.14)

where v0 ∈ C(∂pD1) is described as before. As f is not proper in the sense it is not a
nondecreasing function, one may introduce a function v(x, t) = e−λtw(x, t) in D1 for a
large constant λ >>

2(n+2)
R2 . The function w is a solution of (3.14) if and only if the new

function v is a solution of the initial-boundary-value problem
⎧
⎨

⎩

vt − �v + g(t, v) = 0 in D1

v(x, t) = −e−λt on ∂BR1 × (0,∞), v(x, t) = e−λt on ∂B1 × (0,∞)

v(x, 0) = v0(x) on �̄1,

where g(t, v) = λv + e−λt f (eλtv) is a C3 function that is proper, namely g is increasing in
v. In addition, g(t, 0) = 0 for any t . For simplicity of notation, one may set σ(t) be the lateral
boundary data of v. Writing w for v in the above problem, we are to prove the existence of
a solution of the initial-boundary-value problem

⎧
⎨

⎩

wt − �w + g(t, w) = 0 in D1

w(x, t) = σ(t) on
(
∂BR1 ∪ ∂B1

) × (0,∞)

w(x, 0) = v0(x) on �̄1,

(3.15)

The solution of this problem should be well-known. However, as we have not found a proof
of the exact problem in the literature, we outline a proof for the reader’s convenience. Our
proof is different from the usual Perron’s method used to attack the existence problem for an
elliptic or parabolic equation. Rather, we employed an iterative process to finish the game.
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One first picks a function w0 ∈ C2(D̄1) and proceeds to solve the initial-boundary-value
problem ⎧

⎨

⎩

w1
t − �w1 + g(t, w0) = 0 in D1

w1(x, t) = σ(t) on (∂�1) × (0,∞)

w1(x, 0) = v0(x) on �̄1,

(3.16)

for the unknown function w1. This problem can be solved first on the cylinder D2T :=
�1 × (0, 2T ] for a small T :

⎧
⎨

⎩

w1
t − �w1 + g(t, w0) = 0 in D2T

w1(x, t) = σ(t) on (∂�1) × (0, 2T ]
w1(x, 0) = v0(x) on �̄1,

One then proceeds solving the problem on the cylinder �1 ×[T , 3T ] with the proper initial-
boundary data. The parabolic comparison principle then implies the solutions obtained on
the cylinders D2T and �1 × (T , 3T ] coincide on the overlapping part of the two cylinders.
And one moves on to the cylinders �1 × (2T , 4T ], � × (3T , 5T ], etc. In the end, one finds
a unique solution w ∈ C2(D1) of (3.16) which is C2 up to the vertical boundary. In order
to show w is C1 down to the bottom �1 × {t = 0}, one just differentiates the equation with
respect to t to find that v := wt verifies the conditions

⎧
⎨

⎩

vt − �v + gt (t, w0) + gw(t, w0)w0
t = 0 in D1

v(x, t) = σ ′(t) on ∂�1 × (0,∞)

v(x, 0) = �v0(x) − g(0, w0(x, 0)) on �̄1,

from which the classical regularity theory of linear equations shows v is continuous down to
the bottom.Next, employing the same scheme, onemayproceed to solve for each k = 1, 2, . . .
the initial-boundary-value problem

⎧
⎨

⎩

wk+1
t − �wk+1 + g(t, wk) = 0 in D1

wk+1(x, t) = σ(t) on (∂�1) × (0,∞)

wk+1(x, 0) = v0(x) on �̄1.

The functions wk are C2 up to the lateral sides, and wt is continuous down to the bottom.
Let vk = wk+1 − wk . Then vk solves the initial-boundary-value problem

{
vkt − �vk + g(t, wk) − g(t, wk−1) = 0 in D1

vk = 0 on ∂pD1,

or equivalently, {
vkt − �vk + g̃(t, x)vk−1 = 0 in D1

vk = 0 on ∂pD1,
(3.17)

where g̃(t, x) = ∫ 1
0 gw(t, (1 − μ)wk−1 + μwk) dμ.

From here, one easily gets
∫

�1

1

2

(
vk(x, T )

)2 +
∫ T

0

∫

�1

∣
∣
∣∇vk

∣
∣
∣
2 = −

∫ T

0

∫

�1

g̃(t, x)vkvk−1, (3.18)

which implies

1

2

∫

�1

(
vk(x, T )

)2
dx ≤

(∫ T

0

∫

�1

1

2

(
vk

)2
dx dt

∫ T

0

∫

�1

2g̃2
(
vk−1

)2
dx dt

)1/2
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The latter inequality leads to the estimates
∫ T

0

∫

�1

1

2

(
vk

)2 ≤ CT 2
∫ T

0

∫

�1

1

2

(
vk−1

)2
,

and hence ∫ T

0

∫

�1

1

2

(
vk

)2 ≤ λ

∫ T

0

∫

�1

1

2

(
vk−1

)2

for some λ ∈ [0, 1) if T is small enough. The inequality (3.18) also gives
∫ T

0

∫

�1

∣
∣
∣∇vk

∣
∣
∣
2 ≤ −

∫ T

0

∫

�1

g̃(t, x)vkvk−1

≤
(∫ T

0

∫

�1

1

2

(
vk

)2
∫ T

0

∫

�1

g̃2
(
vk−1

)2
)1/2

≤ λ

∫ T

0

∫

�1

1

2

(
vk−1

)2
,

if one takes the value of T smaller and a new value of λ ∈ [0, 1) if necessary. So {
wk

}
is a

Cauchy sequence with respect to the norm

‖wk‖2 =
(∫ T

0

∫

�1

(
wk

)2 +
∣
∣
∣∇wk

∣
∣
∣
2
)1/2

.

The equation (3.17) then implies the boundedness of wt in the operator norm ‖wt‖. As
a consequence, a subsequence of

{
wk

}
, which we will also denote by

{
wk

}
, converges

to a certain w∞ in the norm ‖ · ‖2, and the time derivatives
{
wk
t

}
converges weakly to

w∞
t . Hence w∞ is a weak solution of (3.15) on �̄1 × [0, T ]. Repeating this process on

the time intervals [ T2 , 3T
2 ], [T , 2T ], [ 3T2 , 5T

2 ],…, and employing the parabolic comparison
principle, one can find a solution of (3.15) inD1. The classical regularity theory then implies
w∞ ∈ C2(D1)∩C(D̄1) ([12], [4], etc). In fact, w∞ is C2 up to the vertical lateral boundary.
Moreover, as we did before, one can see v := w∞

t solves the linear problem
⎧
⎨

⎩

vt − �v + gt (t, w∞) + gw(t, w∞)v = 0 in D1

v(x, t) = σ ′(t) on ∂�1 × (0,∞)

v(x, 0) = �v0(x) − g(0, w∞(x, 0)) on �̄1,

Thenw∞
t = v is continuous down to the bottom.We setw1 = eλtw∞, and this is the solution

we started to obtain. The proof is complete. ��

3.1.5 Convergence of the evolution to a steady state

We prove the convergence of the evolution (3.13) to a steady state.

Lemma 3.5

lim
t→∞ w1(x, t) = u1(x)

locally uniformly on �̄1 for some function u1. As a consequence, u1 solves the boundary
value problem ⎧

⎨

⎩

�u = f (u) in 1 ≤ |x | ≤ R1

u = 1 on |x | = 1
u = −1 on |x | = R1
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and satisfies
u(x) − Cδ ≤ u1(x) ≤ u(x) in �1.

Proof Set z(x, t) = w1,t (x, t) on D̄1. Then z solves the linear initial-boundary-value problem
⎧
⎨

⎩

zt − �z + f ′(w1)z = 0 in D1

z(x, t) = 0 on ∂�1 × (0,∞)

z(x, 0) = �v0(x) − f (v0) on �̄1,

Notice that z ≥ 0 on ∂pD1. As v(x, t) ≡ 0 is a sub-solution of the above problem with zero
initial-boundary data, the parabolic comparison principle implies z ≥ 0 on D̄1. Since u is a
solution of the evolutionary equation

ut − �u + f (u) = 0

inD1 and u ≥ w1 on ∂pD1, we concludew1(x, t) ≤ u(x) for all x ∈ �̄1 and t ≥ 0. Therefore

lim
t→+∞ w1(x, t) = u1(x) ≤ u(x)

monotonically for some function u1 on �̄1. According to either Theorem 3 in [1] or Theorem
1 in [2], it holds that

‖∇w1‖L∞(�′×(0,∞)) ≤ C
(
‖v0‖L∞(�̄), �

′) .

for any subdomain �′ ⊂⊂ �1. Therefore w1(x, t) converges to u1 as t → +∞ locally
uniformly on �̄1. The proof is complete, if one further notices the boundary value ofw1(x, t)
is independent of t , and the monotonicity of w1 in t along with the fact the initial data v0
satisfies the inequality

u(x) − Cδ ≤ v0(x) ≤ u(x)

in �1. ��
Lemma 3.6 u1 ∈ C2(�̄1).

Proof In the preceding proof, we pointed out thatw1 ∈ C2(�̄1×(0,∞)). As a consequence,
u1 is Lipschitz continuous up to the boundary ∂�1. The classical theory of the Possion’s
equation (e. g. [9]) implies u1 is C2 up to the boundary. ��

3.2 Construction of a solution of our problem on the perfect ringsR andÄ2
respectively

Following the same steps we can construct u0 and u2 solutions of our problem onR and �2

respectively. we outline the construction of the initial data v00 and v02.

1. Construct a strict superharmonic function in � satisfying the boundary conditions asso-
ciated with our problem

2. Construct a strict supersolution v2 of�u = f (u) on� satisfying the boundary conditions
associated with our problem and the condition v2 − Cδ ≤ u ≤ v2 on �

3. Construct a strict supersolution v02 of �u = f (u) on �2 satisfying the boundary condi-
tions associated with our problem and the condition v02 − Cδ ≤ u ≤ v02 on �2

4. Extend v02 to R such that v02 ≡ −1 on R \ �1. The construction of v00 is similar.
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The remaining of the argument concerning the existence of a solution of the parabolic
problems and the convergence of the evolution, as well as the proof of the above steps, are
similar to the ones in the previous subsection. For this reason, we omit the details and just
state the results in the following lemmas to avoid making this paper unnecessarily long.

Lemma 3.7 LetD2 = �2×(0,∞). There exists a solutionw2 ∈ C2(�̄2×(0,∞))∩C(�̄2×
[0,∞)) of the initial-boundary-value problem

{
wt − �w + f (w) = 0 in D2

w(x, t) = v02(x) on ∂pD2,
(3.19)

where v0,2 ∈ C2(�̄2) satisfies
⎧
⎨

⎩

u ≤ v02 ≤ u + Cδ in�2

−�v02 + f (v02) > ε > 0 in �2

v0,2 = −1 on ∂BR2 and v02 = 1 on ∂B1

(3.20)

Lemma 3.8

lim
t→∞ w2(x, t) = u2(x)

locally uniformly and monotonically on �̄1. As a consequence, u2 solves the boundary value
problem ⎧

⎨

⎩

�u = f (u) in 1 ≤ |x | ≤ R2

u = 1 on |x | = 1
u = −1 on |x | = R2

and satisfies
u(x) ≤ u2(x) ≤ u(x) + Cδ in �.

Lemma 3.9 u2 ∈ C2(�̄2).

Similarly we have:

Lemma 3.10 Let D = R × (0,∞). There exists a solution w ∈ C2(R̄ × (0,∞)) ∩ C(R̄ ×
[0,∞)) of the initial-boundary-value problem

{
wt − �w + f (w) = 0 in D
w(x, t) = v00(x) on ∂pD,

where v00 ∈ C2(�̄2) satisfies
⎧
⎨

⎩

v01 ≤ v00 ≤ v02 in R
−�v00 + f (v00) > ε > 0 in R
v00 = −1 on ∂R and v00 = 1 on ∂B1

Lemma 3.11

lim
t→∞ w(x, t) = u0(x)

locally uniformly and monotonically on �̄1. As a consequence, u0 solves the boundary value
problem ⎧

⎨

⎩

�u = f (u) in 1 ≤ |x | ≤ R
u = 1 on |x | = 1
u = −1 on |x | = R

and satisfies
u1(x) ≤ u0(x) in �1, and u0(x) ≤ u2(x) in R.
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Lemma 3.12 u0 ∈ C2(R̄).

Applying the result of radial symmetry in the preceding section, we conclude that

Theorem 3.13 The solutions ui , i = 0, 1, 2, are radially symmetric functions on R and �i ,
i = 1, 2, respectively. In particular, the free boundaries, Fi = ∂ {ui > 0}, i = 0, 1, 2, are
spheres with the center at the origin.

3.3 Comparison and stability

The following lemma states the non-degeneracy of u2 in the positive domain.

Lemma 3.14 Let d(x) be the distance from x to F2. Then

u2(x) ≥ Cd(x) in {u2 > 0} .

Proof One notices that u2 is super-harmonic in the positive domain {u2 > 0} and the fact F2

is a sphere with the origin as its center. Recalling the boundary estimates for a nonnegative
harmonic function (e. g. [3], Lemma 6 and proof), one gets the estimate for u2 in the positive
domain by comparing u2 to the harmonic function in {u2 > 0} with the same boundary data
as u2. ��

It is a simple fact that even if two functions are uniformly very close to each other, their
boundaries of zero sets, i. e. the “free boundaries”, in generalmay be far away from each other.
Nevertheless, the non-degeneracy of u2 just established helps us to prove in our problem the
following lemma that states the free boundary F1 is indeed close to the other free boundary
F2.

Lemma 3.15

dist(F1,F2) := sup
x∈F1

dist(x,F2) ≤ Cδ.

Proof It is known from the previous results, Lemmas 3.5 and 3.8, that u1 ≤ u2 ≤ u1 + Cδ

on BR1\B̄1. The non-degeneracy of u2 proved in the preceding lemma implies that

u2(x) ≥ Cd(x)

holds on F1.
On F1,

u1(x) + Cδ = Cδ ≥ u2(x) ≥ Cd(x),

which implies d(x) ≤ Cδ for a new constant C > 0. That is

dist(F1,F2) ≤ Cδ

��
We summarize the part of results of the Lemmas 3.5, 3.11 and 3.8 on the order of the

solutions u1, u0, u and u2 on respective domains in the following theorem.

Theorem 3.16 Let ui , i = 0, 1, 2, be as constructed in Lemmas 3.11, 3.5 and 3.8.
Then u1 ≤ u in �1, u ≤ u2 in �, u1 ≤ u0 in �1, and u0 ≤ u2 in R.
In particular, we have

|u(x) − u0(x)| < Cδ (x ∈ � ∩ R)
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and the inclusion of the positive sets as stated below.

{u1 > 0} ⊆ {u > 0} ⊆ {u2 > 0} and

{u1 > 0} ⊆ {u0 > 0} ⊆ {u2 > 0} .

Proof The first conclusion is evident from the lemmas mentioned. We need only to point out
that

|u(x) − u0(x)| < Cδ (x ∈ � ∩ R)

follows from the estimates in the Lemmas 3.5 and 3.8 and the first conclusion of this theorem.
The inclusion of the sets is clear from the first conclusion. ��

And in the end by applyingLemma3.15,we have the desired approximate radial symmetry
of u.

Theorem 3.17 Let u be as in Theorem 1.2, ui (i = 1, 2) be as Lemmas 3.5 and 3.8, and F ,
Fi (i = 1, 2) be their respective free boundaries.

Then

dist(F,F0) ≤ dist(F1,F2) < C |Z | = Cδ.

Proof This theorem follows immediately from the inclusion of sets in the preceding theorem
and Lemma 3.15. ��

The proof of Theorem 1.2 is complete.
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