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Abstract

In this paper we establish stability of the Ricci de Turck flow near Ricci-flat metrics with
isolated conical singularities. More precisely, we construct a Ricci de Turck flow which starts
sufficiently close to a Ricci-flat metric with isolated conical singularities and converges
to a singular Ricci-flat metric under an assumption of integrability, linear and tangential
stability. We provide a characterization of conical singularities satisfying tangential stability
and discuss examples where the integrability condition is satisfied.
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1 Introduction and statement of the main results

Geometric flows, among them most notably the Ricci flow, provide a powerful tool to attack
classification problems in differential geometry and construct Riemannian metrics with pre-
scribed curvature conditions. The interest in this research area only grew since the Ricci flow
was used decisively in the Perelman’s proof of Thurston’s geometrization and the Poincare
conjectures.

The present work is a continuation of a research program on the Ricci flow in the setting
of singular spaces. The two-dimensional Ricci flow reduces to a scalar equation and has been
studied on surfaces with conical singularities by Mazzeo et al. [27] and Yin [41]. The Ricci
flow in two dimensions is equivalent to the Yamabe flow, which has been studied in general
dimension on spaces with edge singularities by Bahuaud and the second named author in [1]
and [2].

In the setting of Kidhler manifolds, Kidhler—Ricci flow reduces to a scalar Monge Ampere
equation and has been studied in case of edge singularities in connection to the recent reso-
lution of the Calabi—Yau conjecture on Fano manifolds by Donaldson [9] and Tian [37], see
also Jeffres et al. [15]. Kédhler—Ricci flow in case of isolated conical singularities is geomet-
rically, though not analytically, more intricate than edge singularities and has been addressed
by Chen and Wang [6], Wang [40], as well as Liu and Zhang [25].

We should point out that in the singular setting, Ricci flow loses its uniqueness and need
not preserve the given singularity structure. In fact, Giesen and Topping [11,12] constructed
a solution to the Ricci flow on surfaces with singularities, which becomes instantaneously
complete. Alternatively, Simon [35] constructed Ricci flow in dimension two and three that
smoothens out the singularity.

In the present discussion, which can be viewed as a continuation of the recent work by the
second named author in [38], we consider Ricci de Turck flow preserving isolated conical
singularities and establish a stability result near Ricci-flat metrics. The crucial difficulty in
our setting is in addition to the singularity of the underlying space the tensorial nature of the
flow, in contrast to the two-dimensional or the Kéhler setting.

We now proceed as follows. We first recall geometric aspects of isolated conical singu-
larities and define Holder spaces adapted to the singular geometry and mapping properties
of the heat kernel as in [38]. We then conclude the introduction with statement of the main
results.

1.1 Isolated conical singularities

Definition 1.1 Consider a compact smooth manifold M with boundary dM = F and open
interior denoted by M. Let C(F) be a tubular neighborhood of the boundary, with open
interior C(F) = (0, 1), x F, where x is a defining function of the boundary. Consider a
smooth Riemannian metric gr on the boundary F. An incomplete Riemannian metric g on
M with an isolated conical singularity is then defined to be smooth away from the boundary
and

g | C(F) =dx> +x’gr +h,

where the higher order term £ is smooth on €(F) with the asymptotics |2 (x)|z = O(x) as
x — 0forg = dx? +x2gp.
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We call (M, g) acompact space with an isolated conical singularity, or a conical manifold.
The definition naturally extends to conical manifolds with finitely many isolated conical
singularities. Since the analytic arguments are local in nature, we may assume without loss
of generality that M has a single conical singularity only.

In the present discussion we study Ricci-flat spaces (M, g) with isolated conical singu-
larities. There are various examples for such spaces. Consider a Ricci-flat smooth compact
manifold X, e.g. a Calabi—Yau manifold or flat torus, with a discrete group G acting by
isometries, which is not necessarily acting strictly discontinuous and admits finitely many
fixed points. The interior of its quotient X /G defines a compact manifold, an orbifold, with
isolated conical singularities. There exist also examples of compact Ricci-flat manifolds with
non-orbifold isolated conical singularities, constructed by Hein and Sun [14].

1.2 Geometry of conical manifolds

In this subsection we recall elements of b-calculus by Melrose [29,30]. We choose local
coordinates (x, z) on the conical neighborhood C(F), where x is the defining function of
the boundary, n = dim F and (z) = (z1, ..., 2,) are local coordinates on F. We consider
the Lie algebra of b-vector fields 1, which by definition are smooth on the closure M and
tangent to the boundary 0 M = F. In local coordinates (x, z), b-vector fields V}, are locally

generated by
d a a
x—, 0 =(—,....— )},
ax 71 0z

with coefficients being smooth on M. The b-vector fields form a spanning set of section
for the b-tangent bundle T M, i.e. V, = C®(M, T M). The b-cotangent bundle *T*M is
generated locally by the following one-forms

d
{i,dZ1,...,dzn}. (1.1)
X

These differential forms are singular in the usual sense, but smooth as sections of the b-
cotangent bundle bT* M. Weextendx : C(F) — [0, 1] smoothly to M, nowhere vanishing on
M, and define the incomplete b-tangent space “* T M by the requirement xC*® (M, "*T M) :=
C%°(M,>T M). The dual incomplete b-cotangent bundle “?T*M is related to its complete
counterpart by

C®M,™T*M) = xC®(M, T*M), (1.2)
with the spanning sections given locally over C(F) by
{dx, xdzy, ..., xdz,}. (1.3)

With respect to the notation we just introduced, the conical metric g in Definition 1.1 is a
smooth section of the vector bundle of the symmetric 2-tensors of the incomplete b-cotangent
bundle ‘*T*M, ie. g € C®(Sym?(°T*M)).

1.3 Statement of the main results

Our main result establishes long time existence and convergence of the Ricci de Turck flow
for sufficiently small perturbations of Ricci-flat metrics with isolated conical singularities,
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assuming tangential stability and some integrability conditions. More precisely we consider a
compact Ricci-flat manifold (M, ho) with an isolated conical singularity and go a sufficiently
small perturbation of /¢, not necessarily Ricci-flat. We study the Ricci de Turck flow with
ho as the reference metric, and g¢ as the initial metric

9;8(1) = —2Ric(g(1)) + Lwng(®), g(0) = go, (1.4)

where W(¢) is the de Turck vector field defined in terms of the Christoffel symbols for the
metrics g(¢) and hg

WOk =g (Tl (2) = T (ho)) (1.5)
Our main result is as follows.

Theorem 1.2 Consider a compact Ricci-flat manifold (M, ho) with isolated conical singu-
larities. Assume that (M, hg) satisfies the following three additional assumptions

(1) (M, hy) is tangentially stable in the sense of Definition 2.1,
(2) (M, ho) is linearly stable in the sense of Definition 2.3,
(3) (M, ho) is integrable in the sense of Definition 8.1.

Ifhg is not strictly tangentially stable, we assume in addition that the singularities are orbifold
singularities. Then for sufficiently small perturbations go of ho, there exists a Ricci-de-Turck
flow, with a change of reference metric at discrete times, starting at gy and converging to a
Ricci-flat metric h* with isolated conical singularities at infinite time.

We point out that linear stability and integrability are also imposed in the classical case to
get stability of the Ricci flow. The additional feature of isolated conical singularities is the
assumption of tangential stability and the fact that we change the reference metric at discrete
times in order to converge to a Ricci-flat metric.

A crucial part of our paper is devoted to a detailed discussion of the tangential stability
and integrability assumptions. For the former assumption we prove the following general
characterization.

Theorem 1.3 Let (F, gr), n > 3 be a compact Einstein manifold with constant (n — 1). We
write A for its Einstein operator, and denote the Laplace Beltrami operator by A. Then
(F, gr) is tangentially stable if and only if Spec(Ag|rT) > 0 and Spec(A)\ {0} N (n, 2(n +
1)) = @. Similarly, (F, gr) is strictly tangentially stable if and only if Spec(Ag|rT) > 0
and Spec(AM\ {0} N [n,2(n + 1)] = @.

We explain that any spherical space form is tangentially stable. However, the spaces S"
and RP" are not strictly tangentially stable. This property may also hold for other spherical
space forms. We also provide a detailed list of tangentially stable Einstein manifolds that are
symmetric spaces.

Theorem 1.4 Let (F", gr), n > 2 be a closed Einstein manifold with constant (n — 1), which

is a symmetric space of compact type. If it is a simple Lie group G, it is strictly tangentially
stable if G is one of the following spaces:

Spin(p) (p = 6,p #7), Ee. E7, Eg, Fi. (1.6)
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If the cross section is a rank-1 symmetric space of compact type G/K, (M, g) is strictly
tangentially stable if G is one of the following real Grasmannians

SO(2g + 1) x SO2p) SO(5) x SO(3)
SO@p) SO2p +2)
SO(p) x SO(p) (pz4), SO(r +2) x SO(p) (p=4), (1.7)
S0(2p)

S0 —g) xS0 P 220,

or one of the following spaces:

SU2p)/SO(p) (n = 6), Ee/[Sp()/ (£1}].  Ee/SU(2)-SU(6).
E7/[SU8)/ {£1}], E;/S0O(12) - SU(2), Eg/SO(16), . (1.8)
Es/E7 - SU(2), F4/Sp(3) - SU(2)

We also study examples of compact manifolds with isolated conical singularities where
the integrability condition is satisfied. This includes flat spaces with orbifold singularities as
well as Kdhler manifolds. More precisely we establish the following result.

Theorem 1.5 Let (M, ho) be a Ricci-flat Kahler manifold where the cross section is either
strictly tangentially stable or a space form. Then hy is linearly stable and integrable.

This paper is organized as follows. After a discussion of the Lichnerowicz Laplacian and
its Friedrichs extension in Sect. 2, we proceed with a detailed characterization of tangentially
stable Einstein manifolds in Sect. 3. In Sect. 5 we review the mapping properties of the heat
operator as established in [38]. In Sect. 6 we establish exponential large time estimates for
the heat operator norms. Section 8 is devoted to analysis of the integrability condition and
classes of manifolds where this condition is satisfied. We conclude the paper with a proof of
our main result in Sect. 11.

2 The Lichnerowicz Laplacian on conical manifolds

Let (M, h) be a compact Ricci-flat space with an isolated conical singularity. Let S :=
Sym?(®T* M) be the bundle of symmetric 2-tensors. The Lichnerowicz Laplacian Ay :
Co°(M, S) — C§°(M, S) is a differential operator of second order, defined as

Arw= Ao — 2R, (Rw)ij = Rijo. 2.1)

Here, the rough Laplacian A = V*V is defined with the sign convention such that its
eigenvalues are non-negative and the Riemannian curvature tensor is used with the sign
convention such that Rh = h. We choose local coordinates (x, z) over the singular neighbor-
hood C(F) = (0, 1), x F. In the previous paper [38] we have introduced a decomposition
of compactly supported smooth sections C5°(C(F), Sym?(*PT*M) | C(F))

CS(C(F), S | C(F)) — C§°((0, 1), C(F) x QU(F) x Sym*(T*F)),

2.2)
w = (a)(aJh aX)’ w(am ')v Cl)(', )) s

where Q!(F) denotes differential 1-forms on F. Under such a decomposition, the Lich-
nerowicz Laplace operator Ay associated to the singular Riemannian metric g attains the
following form over C(F)
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2 nao 0O
2T Ta. T2
0x X 0x X
where [y, is a differential operator on C*°(F) x QUF) x Symz(T*F ) and the higher order

term O € x~! V% is a second order differential operator with one order higher asymptotic
behaviour at x = 0.

Ap=— +0, (2.3)

Definition 2.1 Let (F”, gr) be a closed Einstein manifold! with Einstein constant (n —
1). Then (F", gF) is called (strictly) tangentially stable if the tangential operator of the
Lichnerowicz Laplacian on its cone restricted to tracefree tensors is non-negative (resp.
strictly positive).

Let L2(M, S) be the completion of Cg°(M, S) with respect to the natural L?-norm induced
by the metric 4. The inner product on L (M, S) induced by / is denoted by (-, ), 2. We define
the maximal closed extension of Ay in L2(M , §) with domain

D(ALmax) = {w e L>(M,S) | AL € L*(M, S)}, (2.4)

where A w is defined distributionally in terms of the distribution T acting on test functions
¢ € Ci°(M, S) by T(¢) := (w, ALp) 2. We require that the distribution 7' in fact arises
from some 1 € L>(M, S) by T(¢) = (1, )2 and we set Ay w :=n € L*(M, S).

We may also define the minimal closed extension of Az in L?(M, §) as the domain of the
graph closure of A acting on C§°(M, S). More precisely, the minimal domain is defined by

D(ALmin) = {® € D(AL max) | H@n)nen C C3°(M, S) :
on =2 w, AL won — A w in L2(M, S)).
Let (1, ;) be the set of eigenvalues and corresponding eigentensors of the tangential
operator [y . By the assumption of tangential stability, A > 0, and we may define

n—1\>
v(A) ==/ A+ — - 2.5)
Standard arguments, see e.g. [28, Lemma 2.2] or [17], cf. the exposition in [39], show that
for each @ € D(A L max) there exist constants cf, v(A) € [0, 1), depending only on w, such
that @ admits a partial asymptotic expansion as x — 0

(n—1) (n—1)
w= Z (czr(a)))c_T +o (@x 2 log(x)) -,
v(2)=0
(n—1) (n—1)
+ Z (c;{(a))x”()‘)_T + c;(w)x_”(’\)_T> - w;, (2.6)
v()e(0,1)
+ @, @ € D(AL min)-
All self-adjoint extensions for Ay can be classified by boundary conditions on the coefficients
in the asymptotic expansion of solutions in the maximal domain, see e.g. Kirsten, Loya

and Park [17, Proposition 3.3]. In particular we define a self-adjoint extension of A; on
C (M, S) C L*(M, S) with domain

D(AL) :={w € D(ALmax) | ¢; (@) =0forv(d) € [0, 1)}. 2.7

B3 (M, g) is a Ricci-flat space with an isolated conical singularity, then the cross section (F, gr) of the cone
is automatically Einstein with Einstein constant (n — 1).
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Proposition 2.2 Assume that (M, g) is tangentially stable and that the Lichnerowicz Lapla-
cian Ap with domain C§°(M, S) is bounded from below by a constant?* C € R. Then the
domain of the Friedrichs self-adjoint extension Ag of the Lichnerowicz Laplacian is given
by D(AL) and Ag is bounded from below by C.

Proof Existence of the Friedrichs extension Ag with the same lower bound as the symmetric
densely defined Ay is due to Friedrichs and Stone, see Riesz and Nagy [33, Theorem on
p. 330]. The fact that the domain of Ag is given by D(A) follows by localizing near the
conical singularity and using the characterization of the Friedrichs domain in [5, Lemma 3.1
(D] as well as e.g. [39, Corollary 2.14]. m]

Definition 2.3 We say that (M, g) is linearly stable if the the Lichnerowicz Laplacian Ay,
with domain C§°(M, S) is non-negative.

Later on, we drop the upper index F from notation and denote the Friedrichs self-adjoint
extension by A; again. Moreover, let us point out that the arguments, constructions and
definitions extend to compact spaces with finitely many isolated conical singularities.

3 Tangential stability of conical manifolds

In this section, we aim to characterize (strict) tangential stability in terms of eigenvalues of
geometric operators on the cross-section of a cone. In the theorem below, Ag denotes the
Einstein operator on symmetric two-tensors over F, which is given by Ap = V*V — 2R,
where A = V*V is the rough Laplacian on F and R is defined as in (2.1) in terms of the
curvature operator of (F, gr). We write A for the Laplace Beltrami operator on F'. Moreover,
TT denotes the space of symmetric two-tensors which are trace-free and divergence-free at
each point.

Theorem 3.1 Let (F, gr), n > 3 be a compact Einstein manifold with constant n — 1. Then
(F, gFr) is tangentially stable if and only if Spec(Ag|r1) > 0 and Spec(A)\ {0} N (n, 2(n +
1)) = @. Similarly, (M, g) is strictly tangentially stable if and only if Spec(Ag|rT) > 0
and Spec(M\ {0} N [n,2(n + 1)] = @.

Proof In order to analyse the tangential operator of the Lichnerwicz Laplacian, we use the
decomposition of symmetric two-tensors on a Ricci-flat cone that was established in [21].
For the rest of this section, we use the notation in [21, Sect. 2] and and the calculations in
Sect. 3.1 of the same paper where we remove all terms containing radial-derivatives in order
to obtain expressions for the tangential operator. More precisely, we write

{hi}-basis of LX(TT), Agph; =«kihi, Vii:= (r’h;),
{w; }-basis of coclosed sections L2(T*F), Aw; = pjw;,
Vai o= (r’8*wi) ® (dr O roy),
{vi}-basis of L>(F), Av; = Av;,
Vii = (r2(nV?u; + Avig)) @ (dr © rVv;)
® (v; (rzg —ndr ® dr)).

(3.1)

2 The case of C =0 is commonly referred to as linear stability in the literature.

@ Springer



74 Page 8 of 40 K. Kroncke, B. Vertman

Here () denotes the L?-span of a sequence of tensors and w O @ ‘= 0 Q @ + @ @ w is
the symmetric tensor product. Moreover, A in Aw; denotes the connection Laplacian, while
A in Av; denotes the Laplace Beltrami operator. The spaces Vi ;, V3, Vs ;, with LZ(O, 1)
coefficients, span all trace-free sections L%(Sy | F)over F, and are invariant under the action
of the Lichnerowicz Laplacian. At first, if h= r2h; € Vi,

Oph, )2 = killh| 2,

such that [J;, is positive (non-negative) on V ; for all i if and only if all eigenvalues k; of the
Einstein operator on 7 T-tensors are positive (non-negative).

Leth = hy + hy = @r’8*w; + Ydr O rw; € Va; with ¢, ¥ € R. In this case, we have the
scalar products

2
Ophy k) = %(ui — (-1

(Opha, ha) 2 = 220 + 2n +6)],
Ophy, ho) 2 = =2 — (n — D)Yg.

Taking r28*w; and dr © rw; as a basis, [ respects the subspace and acts as 2 x 2-matrix

(;(m—m—mz —2<m—<n—1)))
—2ui—(m—1) 2ui+Qn+6) )

We obtain

1
[4(i — (n = D)oyr| =12 ﬁ(ﬂi —(n=1))g-v2+e-2¢

=b

=a

<d+b* = #(ui —(n—1)> +4Q2 + )y,

2+¢€
and therefore,
-~ 2 1 1 2
@Lh, )2 = (i — (n— 1)) 3 24 + ¥ 2u + (2n +6) — 8 — 4e]

1 1 ~ 5 ~ 5
= 2[5 - m] Marlly2 + (i +n+3 =4 =3elllh2ll;2
> C(ui) Iz,
with C(u;) > 0 because p; > 0 for all i since n > 2. We also used that
~ 1 ~
Ilge = 5 = 0= 1) 1o, llh2lig2 = 21w 2.
Therefore, [}, is always strictly positive on the spaces V3 ;. It remains to consider the case

h= ﬁl + ﬁz + ﬁ3 = (prz(nvzvi + Avig) + ¥dr ©rVu; + Xvi(rzg —ndr @dr) € Vy,
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with ¢, ¥, X € R which is the most delicate one. We have the scalar products

(@hi, )2 = n(n — D (i —n) (A —2(n — 1)¢?,
(Opha, hy) 2 = 24 (A — (n = D) + 2n + 6)A 192,
(Oph3, h3) ;2 = [n{(n + DA; — 2(n 4 1)} + 2n%(n + 3)1x2,
Ophy, ho) 2 = =40 — DA (ki — n)Ye,

(Orhy. h3)p2 =40+ DAY X,

(Ophy, h3)2 =0,

and the norms . 5
1A1I2s = n(n — DAy — n)g?,

21132 = 2¢%A;,
173112, = (n + Dn.

Consider (L — €1). It acts as a matrix A = (a;;)1<n<3, Whose coefficients are given by

ajp =nn — DA —nm)[A; —2(n — 1) — €],

ap =2xiA —(n—1)—€e+n+3],

a3 =n{(n+ Dr; —2(n — 1) —em + 1) +2n(n + 3)},
app = ay; = —4(n — DA (A — n),

ax = a3z =4+ D,

ajz = daz) = 0.

In order to prove positivity (resp.) nonnegativity of this matrix, we consider its principal
minors A33 (which is the lower right entry), A3 ( the lower right 2 x 2-matrix) and A ( the
whole matrix). At first,

Az =n{(n+ Dr; —2(n — 1) —e(n + 1) + 2n(n + 3)}
=n{(n+ Dri +2n>+6n—2n+2—en — ¢}
=n{n+ DA +2n° + (G —en+Q2—€)} >0

for any € < 2. Observe that in the case A; = 0, le =0and fzz = 0, so that Vy; = span{fzg}
and hence, (J; —e€[) acts as A3z > 0 fore < 2. Therefore, we may from now on assume that
A; > 0, which means that actually A; > n (due eigenvalue estimates for Einstein manifolds,
see e.g. [31]) with A; = n only for S". By considering the matrix

20k +4—€] 4+ D
4n+1) n{n+Dr+2n2+ @ —en+2—e) )’
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from which one recovers A3 by multiplying the first column by A;, we see that

det Ars

- =2A+d—eln-|m+Dr+20°+CB—n+ 2 —€) | — 16 + 1)*x;
i

=p(n)
=2[A + (4 — O[> + n)ri +np(n)] — 16(n* + 2n + DA;
=222(n% 4 n) 4 2xinp(n) + (8 — 2€)(n® + n)A; — 16(n* 4 2n + A
+ @ —2e)np(n)
=2(n? + n)r} + 2np(n) + (8 — 2€)(n* +n) — 16(n* 4+ 2n + D]
+ @ —2e)np(n)
=2n(n + 1) A} + 2np(n) + (n + {8 — 2e)n — 16(n + 1)}1x;
—
+ (8 —2¢e)np(n).
—

The X;-coefficient satisfies

2np(n) + (n + D{(8 — 2€)n — 16n — 16} = 4n> — 4en”® — 20n — 4en — 16
=4+ 1)(n* —n—4) —den(n+1)
=4(n+ D> — (1 +e)n — 4]
>0

for n > 3 and € sufficiently small. Therefore, we obtain det A3 > 0 in these cases. For
n = 2 we compute explicitly

A det Aoy = 1227 + [12(—(1 4+ €) - 2)]ai + (16 — 26 +2 —€) - (8 — 2¢) - 2
= 1222 — 24(1 + €)1 + 16 - 18 4+ O(e).

Note that 12x? — 24x + 16 - 18 has no zeros, so that for € sufficiently small the expression
is always positive. Before we compute the full determinant of A, we remark that in the case
Ai = n, the tensor ﬁl is vanishing so that in this case, the matrix A describing Uy on V4 ;
reduces to the matrix A3 which just has been considered. Therefore, there is nothing more
to prove in this case and we may assume A = A; > 0 from now on.

To compute the full determinant of A, we first consider the matrix

nA—2n—-1)—¢€¢] —-2n—1)(A—n) 0
—4 A—(m—1)—e+n+3 4r

=A+4—¢€ ’
0 2(n + 1) n{A+2(n+1) —¢€}
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from which we recover A by mutiplying the three columns by (n — 1)A(L—n) and 2A, (n+1),
respectively. We get

“ldetA=n[r—2n—1) —€ll(h+4—€) -n(h+20n+1)—¢)

=8+ DI+4{-200— DA —n)-n(A+2(n+1) —€)}

= —4n*) + den* + 81’1 — 8en® + n?x> — 3en2? — 8n?2?
+ 32n?h 4 12n% % — €¥n® + 8e*n? — 12en?

= 1’n? + A*[—3en® — 8n?]
+ )»[—4114 + 813 + 3202 + 12n2] +4den® — 8en® — €*n?
+ 8¢%n? — 12en?

= 1’n? — 8n?A% + A[—4n* + 8n® + 1201 + O(e)

= an?[A% — 8 — 4n® + 8n + 12] + O(e)

=an?(A —2n —2)(A +2n — 6) + O(e).

We get positivity of det(A) if and only if A > 2n + 2 for all positive eigenvalues L. Moreover,

det(A) = 0 for e > 0 if A = 2n + 2. Due to positivity of the determinants of the other
principal minors in this case, A is positive semidefinite if e = 0 and A = 2n 4 2. O

Example 3.1 Any spherical space form is tangentially stable: We have Ag|rr > 0 in this
case due to an unpublished result by Bourguignon (see e.g. [4, Corollary 12.72]). Moreover,
Spec(A)\ {0} N (n,2(n 4+ 1)) = @ holds for the sphere and this property also descents to
any of its quotients. The spaces S" and RIP" are not strictly tangentially stable as 2(n + 1) is
contained in their spectrum. This property may also hold for other spherical space forms.

Theorem 3.2 Let (F", gr), n > 2 be a closed Einstein manifold with constant n — 1, which
is a symmetric space of compact type. If it is a simple Lie group G, it is strictly tangentially
stable if G is one of the following spaces:

Spin(p) (p = 6,p #7), Bs, E;, Eg, F4. (3.2)
On the other hand, it is tangentially unstable, if G is one of the following spaces:
SU(p+1) (p=3), Spin(5), Spin(7), Sp(p) (p =3), Ga. (3.3)

If the manifold (F, gr) is a rank-1 symmetric space G/K of compact type, it is strictly
tangentially stable if it is one of the following real Grasmannians

SO(2q +2p + 1) o205, _so®)
SO(2g + 1) x SO22p) SO(5) x SO(3)
S0@p) S0(2p +2)
50 x50 P = 504 12 xsop LY G4
S0CP) (p—2=q=3),

SO@2p —¢q) x SO(g)
or one of the following spaces:

SU@2p)/SO(p) (p = 6), Ee/[Sp(4)/{£I}],  Ee¢/SU(2)-SU(6),
E7/[SU®8)/{£I}], E;/SO(12) - SU(2), Eg/SO(16), )
Eg/E7 - SU(2), F4/Sp(3) - SU(2).
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Table 1 Tangential stability of simple Lie groups

Type G dim(G) A stability tang. stability
Ap SU(p+1,p=2 p2—1 2(1;(£1+)%) unstable unstable
B, Spin(5) 10 % unstable unstable
Spin(7) 21 4 s. stable unstable
Spin2p +1),n > 4 2p(p+ 1) 2;—51 s. stable s. stable
Cp Sp(p),p =3 pR2p+1) ZPPT"']] unstable unstable
D, Spin(2p), p = 3 PCp+1) pr%f s. stable s. stable
Eg Eg 156 296 s. stable s. stable
E; E; 266 % s. stable s. stable
Eg Eg 496 4 s. stable s. stable
Fy Fy 52 % s. stable s. stable
Gy Gy 14 2 stable unstable

On the other hand it is unstable if G /K is CPP, HIP?, p > 2, one of the (real, complex and
quaternionic) Grasmannians

SOR2p +2) SO(5)
3000 xS0 P23 503 x50’
(2p) x SO(2) SO(3) x SO(2)
S0Cp +3) Ulg + p)

S02p+ ) x502 P=? U xup 4=P=2 (3.6)

Sp(g + p)
it A SR A 2),
Sp(g) x Sp(p) 7zp22)

or one of the following spaces:

SUQR2p)/SO(p) 5= p=3), SUZp)/Sp(p) (p =3), Sp(p)/U(p) (p =3),
SO@2p)/U(p) (p = 5), Eg/SO(10) - SO(2), E¢/F4, (3.7)
E7/Eg - SO(2), F4/Spin(9), G>/SO(4).

Remark 3.3 This theorem shows that the sphere is the only example in this class which is
tangentially stable but not strictly tangentially stable.

Proof We analyse the Tables 2 and 3 in [22]. In Table 2, we have to check, which of the Lie
groups G are (strictly) stable (which means Ag|rr > 0, resp. Ag|rr > 0) and for which
all non-zero eigenvalues X of the Laplacian satisfy the condition A > 2(dim(G) + 1) (resp.
>) or equivalently,

dim(G) +1
dim(G) — 1
(resp. >). Here, A is the eigenvalue A normalized by the Einstein constant dim(G) — 1. By
checking these conditions, we obtain Table 1.
In the case of irreducible rank-1 symmetric spaces of compact type, an analogous argu-

mentation yields Table 2.
]
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Table 2 Tangential stability of symmetric spaces of non-group type

Type G/K dim(G/K) A stability tang. stab.
Al SU(p)/SO(p).5> p =3 (1) (p+2) 2<P*;)2("+2) stable unstable
SU(p)/SO(p), p =6 (p—l)2(p+2) 2(p—;)z(p+2) stable s. stable
All SU4)/Sp(2) = S5 5 3 s. stable stable
SU@p)/Sp(p), p = 3 22— p—1 Ql’*l}# unstable  unstable
ATl % = CP? 2p 2 stable unstable
%, q>=p=>2 2pq 2 stable unstable
Bl % 6 2 unstable unstable
%, p=>2 4p+2 2 stable unstable
%@OG) 12 % s. stable s. stable
%‘ggap), p=3 6p gZ—jﬁ’ s. stable s. stable
%, pg=2  2n@m+1) fmidnid s. stable s. stable
Bl %g;)“ =S, p>1 2p 2]2,5 . s.stable  stable
CI Sp(p)/U(p), p =3 p(p+1) 2 unstable unstable
cn % =s* 4 % s. stable stable
% =HPP, p>2 4p 2(;7;21 ) unstable unstable
%, gq>p=>2 4pq i(f;ff unstable unstable
DI % 15 % s. stable s. stable
%, p=>3 4p 2 stable unstable
%, p=4 p2 nz_”] s. stable s. stable
%, p=>4 p(p+2) 2’%2 s. stable s. stable
%, 2p—q)q % s. stable s. stable
p—2>q=3
DII %ﬁjﬁ; = §2p+1 p=>3 2p+1 2’5—;1 s. stable stable
D III SO@2p)/U(p),p =5 p(p—1) 2 stable unstable
EI Ee/[Sp(4)/ {£1}] 42 % s. stable s. stable
EIl Eg/SU(2) - SU(6) 40 3 s. stable s. stable
EIII Eg/SO(10) - SO(2) 32 2 stable unstable
EIV Eg/F4 26 g unstable unstable
EV E;7/[SU®)/{£I}] 70 Q s. stable s. stable
E VI E7/SO(12) - SU(2) 64 % s. stable s. stable
E VII E7/E¢ - SO(2) 54 2 stable unstable
E VIII Eg/SO(16) 128 % s. stable s. stable
EIX Eg/E7 - SU(2) 112 18 s. stable s. stable
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Table 2 continued

Type G/K dim(G/K) A stability tang. stab.
FI F4/Sp(3) - SU(2) 28 %6 s. stable s. stable
FII F,/Spin(9) 16 3 unstable unstable
G G>/SO(4) 8 % s. stable unstable

4 Holder spaces on conical manifolds

This section is basically a recap of the corresponding definitions in [38] in the case of
isolated conical singularities. We introduce Holder spaces adapted to the singular geometry
and mapping properties of the corresponding heat operator. We consider a manifold (M, g)
with isolated conical singularities and assume for notational simplicity that we have just one
conical end. All constructions extend easily to the case of multiple conical ends.

Definition 4.1 The Holder space C3(M x [0, T]), « € [0, 1), consists of functions u(p, t)
that are continuous on M x [0, T'] with finite «-th H6lder norm

lu(p, 1) —u(p', 1) ) -
dy(p. p)* + 1t = 1’|
where the distance function dy;(p, p’) between any two points p, p’ € M is defined with

respect to the conical metric g, and in terms of the local coordinates (x, z) in the singular
neighborhood C(F) given equivalently by

lulle == llulloo + SUP< oo, 4.1

D=

dy((x,2), (", 2) = (Ix = x'P 4+ (x + 1))z = Z'%)
The supremum is taken over all (p, p’, 1) € M? x [0, T]3.

We now extend the notion of Holder spaces to sections of the vector bundle S =
Sym?(*PT* M) of symmetric 2-tensors.

Definition 4.2 Denote the fibrewise inner product on S induced by the Riemannian metric
g, again by g. The Holder space CZ (M x [0, T'], S) consists of all sections w of S which are
continuous on M x [0, T'], such that for any local orthonormal frame {s;} of §, the scalar
functions g(w, 5;) are Ct(M x [0, T]).

The «-th Holder norm of w is defined using a partition of unity {¢;} ;e subordinate to
a cover of local trivializations of S, with a local orthonormal frame {s;} over supp(¢;) for
each j € J. We put

lo | =" "l @, 5j0)lla- (4.2)

jeJ k

Norms corresponding to different choices of ({¢}, {sx}) are equivalent and we may drop
the upper index (¢, s) from notation. We now turn to weighted and higher order Holder

3 Finiteness of the Hélder norm llullq in particular implies that u is continuous on the closure M up to the

edge singularity, and the supremum may be taken over (p, p’, 1) € Mz x [0, T]. Moreover, as explained in
[38] we can assume without loss of generality that the tuples (p, p’) are always taken from within the same
coordinate patch of a given atlas.
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spaces. We extend the boundary defining function x : C(F) — (0, 1) smoothly to a non-
vanishing function on M. The weighted Holder spaces of higher order are now defined as
follows.

Definition 4.3 (1) The weighted Holder space for y € Ris
XV CE(M x[0,T],S) :={x"w|welL(Mx[0,T],S)},

with Holder norm ||x? lay = llwlla.
(2) The hybrid weighted Holder space for y € Ris
Cf‘éyy(M x [0,T],8) :=xVCI(M x[0,T],5) N xy+“Ci%(M x [0, T],S)
with Holder norm || @ ||;’y =[xV olle +1xT7 0 |loo.
(3) The weighted higher order Holder spaces, which specify regularity of solutions under

application of the Levi Civita covariant derivative V of g on symmetric 2-tensors and
time differentiation are defined for any y € R and k € N by*?

Cl¥(M x [0, T1.8)y = {w € CL, | {V5, o ®3)") w e C%, forany j +2¢ < k),

ie,y ie,y
Cike’a(M x [0, T, S)f, = {u e Cj {V{,b o (x28) Y u € x¥ C% forany j + 20 <k},
where j,! € Ny, the upper index b in the second space indicates the fact that despite
the weight y, the solutions u € Cil;’a(M x [0, T], S)f, are only bounded, i.e. u € C.

The corresponding Holder norms are defined using local bases {X;} of V and Dy :=
{Vx, 00 Vx, o (29 | j +2¢ <k} by

k
lolktay =Y. > 1X@j),, +lell,,. onCe*(M x[0,T1,5),,
jeJ XeDy

ltlesay =Y > 1X@j0)llay + lulla. onCE*(M x [0, 71, $)5.
jeJ XeDy

(4) Incase of y = 0 we just omit the lower weight index and write e.g. Cike’a (M x1[0,T],S)
and C% (M x [0, T1, S)°.
The subspaces of time-independent functions are denoted by

CoY(M, S), CCE¥(M x [0, T, S)y,

(4.3)
Cl(M, ), c (M x [0, T, S5
The Holder norms for different choices of local bases {X1, ..., X,,} of V};, and different
choices of Riemannian metrics g with isolated conical singularities, are equivalent due to
compactness of M and F'. Note also that | X;|, = O(x) sothatw € Cfé,,y implies |8th/ wlg =
O(x¥+*=i=2ly for j I € Ny. Such spaces are very natural in the conical setting as elliptic
regularity and Fredholm theory of elliptic operaters defined on these spaces is avaiable.
The vector bundle S decomposes into a direct sum of sub-bundles

S =5 &3, 4.4)

4 Differentiation is a priori understood in the distributional sense.

5 We require regularity of w under differentiation by x29; instead of just 9, since in the discussion below,
0r  |;—0 need not be continuous up to x = 0.
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where the sub-bundle Sy = Sym(zJ (*°T*M) is the space of trace-free (with respect to the fixed
metric g) symmetric 2-tensors, and S is the space of pure trace (with respect to the fixed
metric g) symmetric 2-tensors. The sub bundle S is trivial real vector bundle over M of rank
1.

Definition 4.3 extends ad verbatim to sections of Sy and S;. Since the sub-bundle S is
a trivial rank one real vector bundle, its sections correspond to scalar functions. In this case
we may omit S; from the notation and simply write e.g. C]};’a (M x [0, T])]}j.
Remark 4.4 The higher order weighted Holder spaces in Definition 4.3 differ slightly from
the corresponding spaces in [38] by the choice of admissible derivatives. While in [38] we
allow differentiation by any b-vector field V € V;, here we employ only derivatives of the
form Vy,V € V.

Below we will simplify notation by introducing the following spaces.

Definition 4.5 Let (M, g) be a compact conical manifold and assume that the conical cross
section (F, gr) is strictly tangentially stable. Then we define

FHEXM % [0, T, 8) := CL“(M x [0, T, So), ® Cl*(M x [0, T1, S5
If (F, gF) is tangentially stable but not strictly tangentially stable, we set instead
FEXM x [0, T1, 8) := C* (M x [0, T, S)].
The subspaces of time-independent functions are denoted by

HE* (M, S) € HE“(M x [0, T1, S). (4.5)

5 Mapping properties of the heat operator

We proceed in the previously set notation on a compact manifold (M, g) with isolated conical
singularities. Consider the heat equation for the Friedrichs self-adjoint extension Ay, of the
Lichnerowicz Laplacian

0 +A)u=0, u)=uyeDAL). 5.1

Under the assumption of strict tangential stability, the second named author constructed in
[38] a fundamental solution Hj, to the heat equation and established the mapping properties
for k € Ny and y > O sufficiently small, cf. [38, Theorems 3.1 and 3.3]

Hp : 355, (M x [0, T1,8) — HEZ“(M x [0, T1, ). (5.2)
Remark 5.1 The Holder spaces employed in [38] in fact allow differentiation in space by
any b-vector field, whereas here we have restricted the admissible differentiation in space to
be given by the covariant derivative. In case of strict tangential stability, this restriction is
unnecessary, and was introduced here only to treat strict and non-strict tangential stability
cases along each other.

If strict tangential stability fails and only tangential stability holds, (5.2) does not hold
anymore. However we may prove the following statement.
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Theorem 5.2 Let (M, g) be a compact conical manifold and assume that the conical cross
section (F, gr) is tangentially stable, but not strictly tangentially stable. In this case we
assume additionally that the isolated conical singularity is an orbifold singularity, i.e.
(C(F) = (0,1) x F,dx*+ ngF) is a flat (not just Ricci-flat) cone. Then for y,o > 0
sufficiently small, the fundamental solution Hy admits the following mapping property

Hp o x 727 C%(M x [0, T1, $)? — 352 (M x [0, T1, S). (5.3)

Proof If C(F) is flat, then ker (J;, consists of elements that are parallel along F and hence
vanish under application of Vj . This corresponds precisely to the scalar case, where Ay
reduces to the Laplace Beltrami operator and [ is the Laplace Beltrami operator of (F, gr).
In that case, ker [, consists of constant functions that vanish under the application of 9,.
Hence mapping properties in the case of the flat conical singularity can be obtained along
the lines of the estimates for the scalar Laplace Beltrami operator in [38, Theorem 3.3]. O

In the next result we identify the fundamental solution H; with the heat operator of the
Friedrichs extension A7, and deduce discreteness of its spectrum. We assume here that the
Lichnerowicz Laplace operator A with domain CSO(M , S) is bounded from below.

Theorem 5.3 Let (M, g) be a compact conical manifold. Assume that the Lichnerowicz
Laplace operator A with domain C§°(M, S) is bounded from below. Assume moreover
that the conical cross section (F, gr) is tangentially stable, and if it is not strictly tangen-
tially stable we assume in addition that C(F) is an orbifold singularity. Then the following
is true.

(1) The Friedrichs self-adjoint extension Ay is bounded from below and the fundamental
solution Hy equals the heat operator e™' AL,
(2) The Friedrichs self-adjoint extension Ap is discrete.

Proof By Proposition 2.2, the Friedrichs self-adjoint extension Ay, is bounded from below
and the heat operator e "2~ exists by spectral calculus. In order to identify e ~*AL with Hf
it suffices to prove that for any fixed r > 0, Hy () maps LZ(M, S) to D(Ap). This is due to
the fact that by definition the heat kernel e *2 is the unique solution operator to the heat
equation (5.1), which maps L>(M, S) to D(AL).

Let (X, ;) be the set of eigenvalues and corresponding eigentensors of the tangential
operator [ . By the assumption of tangential stability, A > 0, and we consider exactly as in
Sect. 2

n—1\>
v(A) = )»—i—( 3 ) (5.4)

Consider M x M with local coordinates (x, z) on the first copy of M near the singularity.
By construction of Hy, in [38], the Schwartz kernel® of the fundamental solution H;, defines
for a fixed time ¢ > 0 a polyhomogeneous function on M x M with the asymptotics asx — 0
(we order the eigenvalues (1) of L]z, in the ascending order)

oo
Hp(t,x,z,-) ~ Z Zx”(’\)_wﬂwk(z)a;\j(t, ). (5.5)

L j=0

6 We denote the Schwartz kernel and the fundamental solution by the same letter.
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The coefficients a;,; (¢, -) € C*° (M) admit for each fixed # > 0 the same asymptotic expan-
sion as above. More precisely, we have asx — 0

oo
(n—1)
arj(t.x,2) ~ Y 3 x" P e, ()b (). (5.6)
A k=0

where the coefficients by jx (¢) are real numbers. Consequently, the coefficients a;,; (¢, -) are
in fact elements of LZ(M, S) for any fixed r > 0. Hence we find for any u € L*(M, S) as
x—0

(HL 0w (x,2) ~ 3 32D~ ey ) (a1, u) . (5.7)

L2
A j=0

Since the asymptotic expansion (5.7) is stable under application of b-vector fields, Hr (¢)
maps L*(M, S) into D(A L.max)- We conclude in view of the explicit structure of the domain
D(AL) in (2.7) that indeed

Vi>0: Hp@):L*(M,S) — D(AL). (5.8)

This proves the first statement. For the second property, note that due to the asymptotic
expansion above, the Schwartz kernel of Hy (¢) is square-integrable on M x M and hence
Hj (¢) is Hilbert—Schmidt for any fixed # > 0. Due to the semi-group property of the heat
operator, Hy (t) = Hp(t/2) o Hr(¢/2) and hence Hp (t) is trace-class for any fixed ¢ > 0.
This proves discreteness and the second statement. O

We conclude the section with a proposition about ker Ay .

Proposition 5.4 Let (M, g) be a compact conical manifold. Assume that the Lichnerowicz
Laplace operator A, with domain C5° (M, S) is bounded from below. Assume moreover that
the conical cross section (F, gr) is tangentially stable. Then for y, a > 0 sufficiently small
such that (5.3) holds, and any k € Ny

ker A C HPU(M, S).

Proof First of all, for fixed t > 0 we employ the asymptotics of the heat kernel Hy () in (5.5)
to see that Hy () maps L*(M, S) to CX (M, S) for some o > 0. Since Hp (¢)[ ker Ap = 1d,
we conclude that ker Ay C CL(M, S).

Using again Hy (¢)[| ker A; = Id and the mapping properties (5.2) and (5.3), we conclude
that ker Ay C fo,’“(M, S) C 3{)2,’“ (M x [0, T], S). Note that for y > 0 sufficiently small
and any k € Ny the following inclusions hold by construction

Hhe c 3y, a7 e, S)P. (5.9)

Hence we may apply Hy (t)[ker A;, = Id and the mapping properties (5.2), (5.3) again,
to conclude that ker A;, C }Ci’“ (M, S). Iterating the argument, we prove the statement

ker Ap C U{J/‘/’O‘(M, S) for any k € Ny. O

Remark 5.5 Note that g lies in the kernel of Ay and nevertheless is only bounded with
respect to itself, without additional weights. This seems to contradict to the statement that
ker Ay is a subset of a weighted Holder space ﬂ{f/’“ (M x [0, T],S). However, there is no
contradiction, once we realize that under the decomposition S = Sp @ S; of symmetric
2-tensors, g = 1-g € C°°(M, S1) and hence is trivially an element of IHI}‘,'“(M x [0, T], S)
forany k € Ngp and y > 0.
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6 Large time estimates of the heat kernel

Let (M, g) be a linearly stable compact conical manifold. Recall that by Definition 2.3 linear
stability is non-negativity of the Lichnerowicz Laplace operator Az, with domain C§°(M, S).
Assume moreover that the conical cross section (F, gr) is tangentially stable, and if it is not
strictly tangentially stable we assume in addition that C(F) is an orbifold singularity. From
now on we continue under this setting unless stated otherwise.

In this section we are concerned with uniform norm bounds for the heat operator Hy as
time goes to infinity. Since by Theorem 5.3 the Friedrichs extension Ay is discrete with
non-negative spectrum, we expect norms of the heat operator restricted to the orthogonal
complement of ker Ay to decrease exponentially for large times. We prove the following
theorem.

Theorem 6.1 Denote the restriction of Hy to the orthogonal complement ker Ai‘ by H I%
Denote the first non-zero eigenvalue of the Friedrichs extension Ap by &1 > 0. Fix local
generators {X;}; of Vy and consider any D € {ld, X;, o-- -0 X;,|€ € N}. Then for anyty > 0
there exists a uniform constant C(to) > 0 such that for t > ty and the pointwise norms’ of
the heat kernel Hy (t) taking values in S X S, and its derivatives

IDHE (1), )l < C(tg) - €71, (6.1)
where D is applied to the first space variable of Hp (t).

Proof Denote the set of eigenvalues and eigentensors of the Friedrichs extension A; by
{1, w, }. By discreteness of the spectrum, the heat kernel can be written in terms of eigenvalues
and eigentensors for any (p, ¢) € M x M by

HL()(p,g) =Y e " wu(p) ® 0, (q),
u=0

HE0((p ) =Y e ™ wu(p) ® wu(q).
“=A

(6.2)

Consider any D € {Id, X;, o --- o X;,|€ € N}. The notation (D o D>)H, indicates that the
operator D applied once in the first spatial variable of H; and once in the second spatial
variable. By the product asymptotics of Hy, in (5.5) and in (5.6), for a fixed 7o > O the point-
wise trace tr, Hy (fo)(p, p) admits an asymptotic expansion for p approaching the conical
singularity, i.e. for p = (x,z) asx — 0

oo
trp H (to, (x,2)) ~ Y Y x"PTOO=0=DHH g, (e ()b ji ). (6.3)
M j k=0

This expansion is stable under application of b-vector fields and hence for Ao > 0 being the

smallest eigenvalue of the tangential operator [y, we conclude

tr,(Dy o Da)Hy (19, (x, 2)) = O (x2"*0=(1=1)

6.4
=0(1), as x—0. 64

7 The inner product on the symmetric 2-tensors S is defined with respect to g.
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Hence, tr,,(Dy o D2)H (g, p) is bounded uniformly in p € M. By Proposition 5.4, same
holds for H If‘ and hence there exists C’(tp) > 0 such that

C'(to) = trp(D1 o DY H (t0)(p. p) = Y e ™D wu(p)|*
[

=M Y e EID W (p))? =i e - K (1o, p).
J=S

(6.5)

Note that K (¢, p) is monotonously decreasing as ¢t — oo by construction. Consequently, for
any t > to and any p € M, we conclude

K(t, p) < C'(tg)e"™ =: Cl(to). (6.6)
Hence we can estimate for any t > tg and p € M
tr,(D1 o D)Hi-(1)(p, p) = e "™ - K (1, p) < C(to)e ™. (6.7)

The statement is now a consequence of the following estimate

IDHFO . )l = Y. e M IDwu(p)ll - 0@

K=
e 2 e ! 2 i
<Y 5 IPou@IP + 3 ——lou@]? < Cle™™.
U=Ay U=

m}

Corollary 6.2 Denote the restriction of Hy, to the orthogonal complement ker Ai by H Ll
Denote the first non-zero eigenvalue of the Friedrichs extension Ap by Ay > 0. Consider
the Banach spaces U{I;’a (M x [0, T1, S), defined in Definition 4.5. Then the heat operators®
define bounded maps

Hi (1) : H* (M, S) — HE* (M., ),

(6.8)
Hi- (1) : H%(M, S) Nker Af — HE* (M, S),

bounded uniformly int € (0, T] for any fixed T > 0. Moreover, the operator norm of the
latter map is bounded by C e~ for some constant C > 0 and all times t > 0.

Proof The central results in [38, Theorems 3.1 and 3.3] establish mapping properties (5.2)
and (5.3) for H; with convolution in time, where time integration leads to two additional
orders in the front face asymptotics for the various estimates, cf. the microlocal heat kernel
construction in [38, Sect. 2]. However, if we apply Hy, to 3{2‘;‘" (M, S), the additional weights
and higher Holder regularity offsets the missing time integration and the arguments in [38]
carry over ad verbatim to the action of H;, without convolution in time. Thus the maps (6.8)
are indeed bounded, locally uniformly in # > 0.

Theorem 6.1 implies directly that the operator norm of H LJ- (#) is bounded by C(#g) e~
for t > 1o > 0 and some constant C(f) > 0, depending on 7. By above, the operator norm
of H Ll (t) is bounded uniformly for ¢ € (0, 7]. This implies an exponential estimate for all
t > 0 with an appropriate constant C > 0. O

thl

8 without convolution in time
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The mapping properties of the heat kernel have been crucial for establishing shorttime exis-
tence for Ricci de Turck flow in the singular setting under the assumption of tangential
stability [38, Theorem 4.1]. In the orbifold case, shorttime existence of the Ricci de Turck
flow follows from a slight modification of standard parabolic theory [13]. Due to uniqueness
in the above setting, these different approaches yield the same solution. In particular, smooth
inital data produces a smooth solution.

The Ricci de Turck flow constructed in [38] preserves the conical singularity. However,
there are also different approaches where Ricci flows have been constructed to smooth out the
singularity [7,34]. However, the settings in these papers are very different from ours. There,
noncompact pure cones are considered as initial metrics whereas in our setting, we start from
compact but not nessecarily pure conical metrics. On the other hand, our assumptions on
the cross section are more restrictive. Our cross section metric has to be Einstein with the
right normalization of the Einstein constant. In [7,34], arbitrary Riemannian metrics with
nonnegative resp. positive curvature operator are allowed. By combining these assumptions,
we would just get quotients of the sphere and the complex projective space as possible cross
sections.

7 Weighted Sobolev spaces

We proceed in the previously set notation of a compact manifold (M™, g) with an isolated
conical singularity with a conical neighborhood C(F) = (0, 1) x F over a smooth compact
Riemannian manifold (F", gr) with n = (m — 1) and a conical metric g. As before, g |
C(F) = dx* & x*gr up to higher order terms. In this subsection we define Sobolev and
Holder spaces on M with values in the vector bundle E associated to 7'M, and study their
embedding and multiplication properties. The vector bundle E can be e.g. the vector bundle
S of symmetric 2-tensors, or simply 7M.

Definition 7.1 Consider s € Ng and § € R. Let x : M — (0, 1] be a smooth nowhere
vanishing function which coincides with the radial function over the conical neighborhood
C(F) C M. Let V denote the Levi Civita connection on E, induced by g, and choose local
bases {X1, ..., X;,} of V;,. We consider the space L?>(M, E) of square-integrable sections
of E with respect to the volume form of g and the pointwise inner product || - || on fibres of
E induced by g.

(1) We define the Sobolev space Hj (M, E) as the closure of compactly supported smooth
sections Cg°(M, E) under

s

m
k—8—" Tk
el =D D 172V ul .

k=0 j=I

Note that L2(M, E) = Hgm (M, E) by construction.
2
(2) We define the Banach space C; (M, E) as the closure of C§°(M, E) under

s m

e = 22 sup || (+29% ) @)l
k=0 j=19M
The norms for different choices of local bases { X1, . .., X,,} of V and different choices of

Riemannian metrics g with isolated conical singularities, are equivalent due to compactness
of M and F.
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By interpolation and duality, we may define the Sobolev spaces Hj (M, E) for any s € R.
The advantage of these spaces in contrast to the spaces in Sect. 4 is that they satisfy Sobolev
embedding properties very similar to the classical results. As asserted by Pacini [32, Corollary
6.8, Remark 6.9] we find the following embedding a multiplicative properties.

Theorem 7.2 The spaces in Definition 7.1 admit the following properties.

(1) For B 5 8 we have C3(M, E) C Hg(M, E).

(2) For N > m/2and < 8 we have Hy'*N (M, E) C Cy(M, E).
(3) Consider s > m/2. Then the multiplication operation is continuous

«1 Hj (M, E) x H},(M,E) — H} .5 (M, E).

Consider a second order elliptic differential operator A acting on u € C3°(M, E) such
that for u with compact support in C(F')

1
Au = (—8f—§3x+FD>u+Ou, (7.1)

where O is a higher order term, i.e. a second order combination of b-vector fields V,, weighted
with x ~! and functions that are smooth up to x = 0. We can now prove the following auxiliary
theorem.

Theorem 7.3 Consider an elliptic second order differential operator A acting on u €
Cg°(M, E) with the regular-singular expression (7.1) near the conical singularity. Assume
that Au = 0 admits no solutions in L*(M, E). Then for a generic 6 € (—1, 1], excluding
the exceptional weights

—1\2
A=+ x+<" ) | % € SpecO V. (72)
the following mapping is an isomorphism
. g2 0
A:H2y, (M E)—> H y (M, E). (7.3)

Proof Classical cone calculus, cf. Mazzeo [26, Theorem 4.4] asserts that the mapping (7.3) is
a Fredholm mapping for § ¢ A. Hence, perturbing the weight § > 0, we can always assume
that (7.3) is Fredholm.

By assumption, any solution to Au = 0 is u ¢ L>(M,E). In particular, since

HE%+1+S(M’ E) C L*(M, E), the mapping (7.3) has trivial kernel. It remains to prove

triviality of the cokernel. Consider the adjoint to (7.3), defined with respect to the L*>(M, E)
pairing, given by the Laplacian A acting as

A HE%H_S(M, E) - H__%_I_B(M, E). (7.4)

Triviality of the cokernel for (7.3) is equivalent to triviality of the kernel for (7.4). However,

since HEﬂH_S (M, E) C L3(M, E), the kernel of (7.4) is trivial. Hence (7.3) is indeed an
2

isomorphism. o
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8 The space of Ricci-flat metrics with conical singularities

Let M be a compact manifold with boundary M = F as before. We write M for the space
of Riemannian metrics on the open interior M. Consider a fixed Ricci-flat background metric
ho on M with isolated conical singularities in the sense of Definition 1.1. We assume that /¢
is tangentially stable and consider for any k > 2 and y > 0 the weighted Holder space

H o= HL (M x [0, T, 5), (8.1)

defined in Definition 4.5. We assume that the corresponding Lichnerowicz Laplacian Ay j,
with domain C§°(M, S) is bounded from below and write Ay j, for the its Friedrichs self-
adjoint extension again. Same notation holds if /¢ is replaced by another Ricci-flat metric / on
M with a non-negative Lichnerowicz Laplacian A, ,. We can now introduce an integrability
condition as follows.

Definition 8.1 We say that h is integrable if for some y > 0 there exists a smooth finite-
dimensional manifold & C J such that

(1) Tpy T =ker Ap py C H,
(2) all Riemannian metrics & € F are Ricci-flat.

Remark 8.2 Due to the structure of HH, any metric 2 € F C H is automatically a metric on
M with an isolated conical singularity. Even more, all metrics & € J in fact admit the same
Einstein cross section. Indeed, at first, it follows from the definition of the space H that the
leading order terms of the metrics 4 € J{ are pure trace elements with respect to s and hence
metrics on the cross-section are conformal for all 2 € F. But as these metrics are Einstein as
well, they must be the same, see e.g. [23, Theorem 1*].

We proceed with some properties of integrable conical manifolds.

Lemma 8.3 Let (M, g), be a compact manifold with a conical singularity. Then the space of
parallel vector fields on M is trivial.

Proof Let us first consider the case of orbifolds. If X was a parallel vector field on M it would
lift in a close neighbourhood of the singularity to a parallel vector field X on a small ball B
which is invariant under the action of a discrete group G that fixes the origin 0 € B. As X is
parallel, it can be extended continuously to the origin where it is invariant under the action
of G on Ty B via the tangent map. But as we have an orbifold singularity, this action cannot
have invariant subspaces and so X and hence also X must vanish.

In the case where (M, g) has a non-orbifold conical singuarity, and hence is not flat, we
recall a theorem by Gallot [10] asserting that a Riemannian cone has irreducible holonomy.
Thus, the Riemannian (non-orbifold) cone cannot admit a parallel vector field, and in partic-
ular the connection Laplacian on vector fields on any domain V of the cone with Neumann
boundary conditions, has a trivial kernel. We want to conclude that (M, g) has no parallel
vector fields as well.

If (M, g) admits a parallel vector field, the smallest Neumann eigenvalue for the connection
Laplacian on vector fields would be zero for any domain U C M. However, if we take U
very close to the singularity, (U, g) is almost isometric to a small domain V on a non-flat
Riemannian cone. Since the eigenvalues of the connection Laplacian acting on vector fields
on V, with Neumann boundary conditions, are positive by the above, they must also be
positive on U as they depend continuously on the metric. O
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Proposition 8.4 Let (M, hg) be a Ricci-flat metric with a conical singularity and suppose, it
is integrable with a smooth finite-dimensional manifold ¥ C 3 of Ricci-flat metrics. Then,
there exists an open neighbourhood W C I such that for every h € UNT, there exists an
injection i, : Ty I — ker(Ar p).

Proof We first consider the case of non-orbifold conical singularities. We will show that the
injection is constructed by adding Lie derivatives. First of all, we note that forany/ € N,/ > 2

ker(ALp,) N [Lxho | X e H. ) pn(M, TM)] = {0}. (8.2)

This holds for the following reason: Suppose that X € H' my242 (M, TM) is such that
Lxho € ker(Ap py). Then, 0 = A;(Lxho) = Laxho, see e.g. [24, pp. 28-29] for the
latter equality. Here A denotes the connection Laplace on vector fields. Thus A X is a Killing
vector field and, since &g is Ricci-flat, AX is parallel. Therefore, A X vanishes due to Lemma
8.3. This in turn implies that VX = 0, where we use integration by parts since AX €
Hgm/z(M, TM) = L*(M,TM). Thus, X is a parallel vector field and vanishes due to
Lemma 8.3.
Because ker(Ay ,) = Th, I and (8.2) holds, continuity implies

T FN{exh | X € HL,, (M. T = (0) (8.3)

for h € F close enough to /g in H. Consider now k € Tj, F. Because F consists of Ricci-flat
metrics, we find

1
0=73 Ak + Ly 1vuh (8.4)

because the right hand side is thg linearization of the Ricci tensor at 4 in the direction of k,
see e. g. [4, p. 63]. Now, write k = k + Lxh for some vector field X. Then, we compute
using (8.4)

AL’hlg = Appk+ Laxh = _2[’divk— %Vtrkh + Laxh. (8.5)

Because k € H we conclude divk — %Vtrk € Hljlia (M, TM) C Hi;f/z (M, TM) for some
[ > 2 and a small constant ¢ > 0.

‘We now apply Theorem 7.3 to the connection Laplacian A, where in this case the tangential
operator [ is the connection Laplacian acting on sections of the pullback bundle of 7 M on
the cross section F. In particular, [J > 0 and hence for the exceptional weights A we find

m—2 m-—2
Am<_7’T) = . (8.6)

Therefore, by Lemma 8.3 and Theorem 7.3, where we fix the weight § = 1 which is non-
exceptional 6 ¢ A for m > 5, the operator

N -2
A:HL, o (M, TM) — H 2 (M, T M)
is an isomorphism in dimension m > 5. Therefore, for m > 5, there exists a unique
X € Hl_m/2+2(M, T M) solving the equation AX = 2divk — Vitrk and thus implying

ke ker(Ar ) by the formula (8.5). Consequently, the map iy, : k — k + Lxh maps
T, F to ker(Ar p) and it is injective due to (8.3).

The case of lower dimension m < 4 is separate, since in these dimensions all Ricci-flat
conical singularities are orbifold singularities. Indeed, the cross section F of a Ricci-flat cone
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in dimension m < 4 is an positive Einstein manifold of dimension at most 3 and hence a
quotient of the sphere. The argument on orbifolds is verbatim as above, but without weights.
]

In the notation below, we also employ the classical Sobolev spaces.
Definition 8.5 Let (M™, g) be a compact Riemannian manifold of dimension m with an
isolated conical singularity. Let E be a vector bundle over M associated to 7 M, endowed

with the Levi-Civita connection of g. The Sobolev space H®(M, E) is defined as the closure
of compactly supported smooth sections C5°(M, E) under

N
s =Y 0 1V 00 Vi, )l

k=0 {i1,,ix}
where we have chosen a local basis {X1, ..., X;;} of Vp.
The Sobolev norms for different choices of local bases {X1, ..., X;,} of V;, and different

choices of Riemannian metrics g with isolated conical singularities, are equivalent due to
compactness of M and F.

Moreover, in contrast to the Sobolev spaces in Definition 7.1, the Sobolev spaces in Def-
inition 8.5 are not weighted. In case of s = 0 they are related by L*(M,E)=H"(M,E) =
Hgm /2(M , E). In case of E being a trivial rank one vector bundle, we omit E from the
notation and simply write H*(M).

Lemma 8.6 (Hardy inequality for manifolds with conical singularities) Let (M™, g), m > 2
be a compact manifold with a conical singularity’ and let p € C®(M), 0 < p < 1 be a
function such that p(q) = d(p, q) for all q in a small neighbourhood of the singularity p.
Then there exists a constant C > 0 such that

/u%”d%scwﬁMm
M

forallu € H'(M). Here, dVy denotes the volume element of the metric g.

Proof 1t suffices to show the inequality for u € C*°(M) compactly supported as the general
case follows from an approximation argument. Let R > 0 be so small that p(q) = d(p, q)
for all ¢ € Bor(p) and such that Bor(p) is diffeomorphic to (0, 2R) x F. Let furthermore
n1 € C°°(M) be a cutoff function such that 51 = 1 on Bg(p), n1 = 0 on M\Bar(p),
Vil <2/Ron M andletpy = 1 — n; € C*°(M). Then,

/'#devg=/m mruprdVy+/' (12 - u)*p > dV,
M Bar(p) M\Bg(p)

+2/ mnp - up 2 dV
Byr(p)\Br(p)

<[ newto v Clullyg,
Bar(p)

9 We do not assume that the conical metric g is Ricci-flat.
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By using polar coordinates on By g (p) and the standard Hardy inequality for functions on R,
we get (with n = dim(F')) for the first term

2R
/ (- u)p 2 dV, = / f (1 - w)*x""*dx dVy,
Byr(p) FJo ’

4 2R )
= m/F/o (0x (1 - u))*x"dx dVg,

4
s — IV(n - w)l* dV,
(=12 Jpyp) ¢
8
<—— (VmIPu? + 0)*Vul?) dV,
(n =17 Jyr(p)
< Cu R lull g -
which finishes the proof of the lemma. O

Remark 8.7 By the Kato inequality |V |A| |2 < |Vh|?, the above inequality also holds for any
compactly supported tensor field.

Theorem 8.8 Let (M, hy) be a compact linearly stable Ricci-flat manifold with an isolated
conical singularity. Recall that linear stability in the sense of Definition 2.3 means that the
Lichnerowicz Laplacian Aj, = Ap p, is non-negative. Suppose in addition that the tangential
operator acting on the cross section (F, gr) satisfies the bound

n=-01% 1
O, >C>——2 -
L=C> 1 +4,

where n is the dimension of F. Then there exist constants €1, €3 > 0 such that

(ALk, k)2 > €1 [V, + €2 [IkII7

forall k € ker(Ap)T N K, where ker(A )+ refers to the L* orthogonal complement of the
kernel for the Friedrichs extension Ay .

We divide the proof of this theorem into two parts, starting with the following auxiliary
lemma.

Lemma 8.9 Let (M, hg) be a compact Ricci-flat manifold with an isolated conical singularity
and suppose that hg is linearly stable, i.e. its Lichnerowicz Laplacian A; = V*V — 2R is
non-negative. Suppose in addition that there exists € > 0 such that A = (1 —€)V*V —2R

(with R defined as in (2.1)) satisfies

o (ALK K) 2
T
kest k12,

Then the assertion of Theorem 8.8 holds.

Proof Let N = ker(A;)+ N K and
(ALK )2

Ark, k
::inf#>0, D:_1nf72>—oo
keN [IkI12, keI IkI1%,
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Leté € [0, 1] and AGL"S =1 —€-8)V*V-2R=(1-8AL + 8AS . Then we have

Ak, k Ak, k ASk, k
inf LLRR2 g g BLE B gy, (B10 D

=(1-8)-C+6-D.
keN k2, heN kI, keN kI,

If we assume § < %andsetel=e-5and62=(1—6)-C+8-D>0,weget

(ALk, k)2 — € [VEIZ, = (MK, b2 = e K113

which finishes the proof of the lemma. O

Proposition 8.10 Let (M, hg) be a compact Ricci-flat manifold with an isolated conical
singularity. Suppose that the tangential operator acting on the cross section (F, gr) satisfies
the bound

n=0% 1
O, >C>———+—,
L=5t= i g
where n is the dimension of F. Then, there exists an € > 0 such that
. f (Azks k)Lz
ker k|12,
Proof Let U be an open neighbourhood of the cone diffeomorphic to (0, §) x F with small
8 > 0 and choose polar coordinates on U such that hg|y can be written as dx? + ngp(x)
where g (x) is a family of metrics converging to gr as x — 0. Choose U = (0, §) x F so
small that
n—0D% 1
=17 1
4 4
for some constant C and all x € (0, §), where D;i is the tangential operator of gr(x).
Consider ® : Cg°(U, S) — C°(U, S), w — x"/? @, which extends to an isometry ® :
L*(U,S; g) — L*(U, S; dx* + g7(x)). Then one can show the relation

0p=>C>—

1 (n—l)2 1
1 _ 2 X, €
@oAiod) =—(1—¢)d +7<D +7_,>’

where D’i’é is the tangential part of A¢ at the metric g7 (x). Provided that € > 0 is chosen
small enough, we still have the bound

, n—0* 1
Therefore we get for any k € HH
(ASk. k)2 = (1—€) | VK|, — 2(Rk, k) 2
= (1= ) IVl 20y — 2RE ) 20010
+ (1= ) IVl 7a gy — 2(RE, K) 217
2
) 2
n—1 1
+A‘L[u—@wwﬂ+x4<ﬁﬁf+ger—Z)&Q]d%ﬂ”m
2
Z =2 sup IR Kl 2
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which finishes the proof of the proposition. O
Note that Theorem 8.8 is a consequence of Lemma 8.9 and Proposition 8.10.

Theorem 8.11 Let (M, ho) be a Ricci-flat manifold with a conical singularity that is inte-

grable with a smooth finite-dimensional manifold & C H of Ricci-flat metrics, and suppose,

the cross-section of the cone is either a spherical space form or strictly tangentially stable.

If in addition, (M, hq) is linearly stable, then

(1) Foranyh € J the corresponding Lichnerowicz Laplacian Ay, with domain C°(M, S)
is non-negative'® and spectrum of its Friedrichs self-adjoint extension Spec A £.n\{0}
admits a lower bound Ay > O uniformly (!)inh € &,

(2) We have a smooth vector bundle over F

ker := I_l ker Ap . (8.7)
hed
Proof In Lemma 8.4, we have seen that for & close enough to h in K, there exists an
injection iy, : T ¥ — ker(Ap ) and this injection depends smoothly on / by construction.
Therefore, in order to prove the statement, it suffices to show the existence of an € > 0 such
that Az, > € > 0 on (i (T}, F))L if & is close enough to hg.

At first, we want to remark that all the appearing norms are equivalent for metrics in a
H-neighbourhood. Therefore, we may supress the dependence of the norms in the appearing
metrics. Let U be a small enough H{-neighbourhood of hg, 2 € UNTF and let A5 be a curve
in UNJF joining ho and & = hy. In the case of a conical singularity with strict tangentially
stable cross section, we obtain a uniform constant C > 0 such that |Ry, |5, < C - p~2 by the
definition of J{. Here, |Rj, | is the norm of the Riemann tensor of /1, measured with respect
to hy and p € C*(M) is as in Lemma 8.6 the defining function of the singularity. In the
case of an orbifold singularity, we get the same estimate, but the curvature is bounded at the
singularity. Now by variational formulas of connection and curvature (see e.g. [20, Lemma
A.4)), integration by parts and Lemma 8.6 (b’ = dsh;)

d
T ALk B2, =/ (V2W sk + VI %« Vk+h' % V) sk + Rxh skxkdV
s M
:/(Vh/*Vk*k—i—h/*Vk*Vk—i—R*h/*k*k)dV
M
< cf IV |~ k|| VK| + [B'|| VK> + |1 |[k]*p~2) dV
M

< Csup(|h'| + pI V') </ ko2 dV + ||Vk||2Lz>
M
= C 1o Mkl

for any symmetric 2-tensor k € 5 C H'(M, S), where we employ the notation of Defini-
tion 8.5. Therefore by integration in s,

[(AL.ik, k)LZ(h) - (AL,hok, k)LZ(h0)| < Clh—hollx ||k||?.11 .
Now letk € ker(AL,hO)L N H =: Nj, By Theorem 8.8, we find
ALk k) 2y = (ALoks K 2010y = C 1B = hollscang) k13 )

, € . (8.8)
= (60 -C ”h - hO”i}C(ho)) ||k||H1(h0) = E ||k||L2(h()) )

10 By Theorem 5.3 its Friedrichs self-adjoint extension is discrete and non-negative.
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for [|h — hollgcng) < %0 It remains to show an analogous estimate for k € in(ThHLENH =
Ny, which is uniform in 2 € UNF. For this purpose, let {e|(h),...es(h)} be an L2(h)-
orthonormal basis of i, (7,F) C ker(Ar ), chosen in such a way that the inequalities
llei (h) — ei(ho)llac < C ||h — holl9¢ hold for all i € {1,...,d}. This is possible due to
Proposition 8.4. Let ®;, : Nj, — N, be the orthogonal projection, given by

d
Dk k=Y (ke (h) 2 e (h).

i=1

Since @5, = Id, it is clear by continuity that

(1 =€) kllL2(ngy < NPa) N 2y < (1 + €1) 1Kl L2

for some €; > 0, provided that the neighbourhood U is chosen small enough. Therefore, @,
is injective map. To obtain surjectivity of @, consider the map

Wy 0 Npy X i(Tpg F) > H=N, ®i(Ty J)

d d
(k, > k. e (ho)) 12 ng e (h0)> > <d>h (k). Y (k. ei(h) 2 (h)) .

i=1 i=1

Since W, = Idg( and the space of surjective operators is open in the operator norm topology,
W, and hence also @y, is surjective for & sufficiently close to ho. Hence @, is an isomorphism
forh e UN K.

Moreover, we have by definition of @, and the estimate (8.8) that

€0
ALn®nk), () L2y = (ALik, )2y = - 19RO T2,
for all k € Nj, with an €( independent of /. This yields the desired estimate. |

Remark 8.12 The second statement of Theorem 8.11 still holds if the assumption of linear
stability is relaxed to existence of a lower bound for Ay, ;. The first statement then changes
to a uniform lower bound A; > 0 for the absolute values of the non-zero eigenvalues of Ay, 5,
forh e J.

9 The integrability condition in the flat case

Proposition 9.1 Let (M, hg) be a flat manifold with an orbifold singularity. Then it is linearly
stable and integrable.

Proof Linear stability of a flat manifold is clear, since in that case Ay = V*V. In particular,
k € ker(Ar) = ker(V*V) implies Vk = 0. It therefore just remains to show that 1 = k + hg
is a flat metric with orbifold singularities (for k small enough), i.e. F = ker(Ay). At first,
there are coordinates around each smooth point with respect to which (h¢);; = §;; so that
also the functions &;; are constant in that chart as & — h is parallel. Thus, £ is also flat. As
ho has orbifold singularities, it is around each singular point isometric to (B¢/ ", §) where
I' C O(m = n + 1) is a finite subgroup acting strictly discontinuously on S". If k is a small
parallel tensor on this space, § + k lifts to a flat ["-invariant metric on B, which in turn implies
that (B¢/ T, § + k) is flat and admits an orbifold singularity at 0. This finishes the proof of
the proposition. O
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10 The integrability condition in the Kahler case

To show integrability in the Kéhler case, we now adopt the usual strategy of the compact case.
Integrability was recently also shown by Alix Deruelle and the first author [8] for noncompact
Kihler Ricci-flat manifolds which are asymptotically locally Euclidean (ALE). In Sect. 2.3 in
this paper, proofs of [3,18,36] and in [4] have been adapted to the ALE case. Here, we do the
steps in the same order: First, we show that any infinitesimal complex deformation actually
integrates to a family of complex structures (Theorem 10.3) for which we need an adaption of
the 89-Lemma for manifolds with isolated conical singularities (Lemma 10.2). Having this
family of complex structures, implicit function arguments are used then to construct a family
of Kéhler metrics associated to this family of complex structures (Proposition 10.4) and
eventually a family of Ricci-flat Kihler metrics by adding 89 of suitable potential functions
(Theorem 10.7).

In all these steps, suitable function spaces have to be used in order to apply elliptic
regularity. For the case of a strictly tangentially stable manifold which conical singularity,
we use weighted Sobolev spaces whereas in the case of orbifolds, we can work with standard
Sobolev spaces. In the latter case, we can lift every appearing object close to the orbifold
singularity by a finite covering to an object on a manifold where we can use local elliptic
regularity.

Let (M, ho, Jo) be a Ricci-flat Kidhler manifold with a conical singularity. The tangent
bundle "*T M as well as the exterior bundle A* (ib "M ) admit a bi-grading with respect to
the complex structure Jy

CTM =T Mo T M, AM = A (PTM) = ) AL M, (10.1)
(P.q)
Let k € C®°(M, Sp) and kg, k4 its hermitian and anti-hermitian part, respectively. The

hermitian and anti-hermitian 1part are preserved by A7 . We can define I € C®°(M, "’ T*M ®
T M) and k € C(M, A};' M) by

ho(X, 1Y) =—ka(X, JoY), kK(X,Y)=kg(JoX,Y). (10.2)

It is easily seen that [ is a symmetric endomorphism satistying /Jy + Jo/ = 0 and thus

can be viewed as I € C*®(M, A%IM ® TJIO’OM). We have the relations I(Ap(ka)) =
Ac(I(kp))andk (Ap(ky)) = Ag(k(kg)), where A¢c = 9*3+00* and A  are the complex
Laplacian and the Hodge Laplacian acting on C*° (M, Ag;)l MT JIO’OM YandC®(M, A 501 M),
respectively. For details see [19] and [4, Chap. 12]. As a consequence, we get exactly as in

[19]:

Theorem 10.1 (Koiso) If (M, hy, Jo) is a Ricci-flat Kihler manifold with conical singulari-
ties, it is linearly stable.

The next two results hold for any Kihler manifold (M, k, J) with an isolated conical
singularity which is either an orbifold or where the cross section of the cone is strictly
tangentially stable. Since in these results the complex structure J is fixed, we omit the lower
index in the bi-grading decompositions in (10.1). Let [ > % + 1, where m = dim(M). We
start with a version of the 39-Lemma adapted to manifolds with conical singularities.

Lemma 10.2 (33-Lemma for manifolds with isolated conical singularities) Let (M™, h, J)
be a Kdhler manifold with a conical singularity and § > —7 be a non-exceptional for the
Hodge-Dolbeault operator. Let o € Hal (M, AP 9 M). Suppose that
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e « = df for some B € H(gﬂ(M, AP=L9MY and 3o = 0 or

o o = 3p for some B € HSZLI(M, AP~V M) and da = 0.

Then there exists a form y € Héi%(M, AP~Y4=1 MY such that « = 89y. Moreover, we can

choose y 1o satisfy the estimate ||y || yiv2 < C - |la|| . for some C > 0.
§+2 8

If (M, g, J) is a Kdhler manifold with orbifold singularities, an analogous assertion holds
for forms in unweighted Sobolev spaces.

Proof For the orbifold case, the proof is exactly as in [3, Lemma 5.50].

For the other case, we argue as follows: Letd = d ord = dand A = Ay = Aj be the
Hodge-Dolbeault operator acting on A*M. Lete > 0 be small and §' € [—m /2, —m /2 +€)
be a non-exceptional weight for A. Consider A as an operator A : Héffz (M, A*M) —
Hé,(M, A*M). Because of the assumption on &', it is Fredholm and we have the L2-
orthogonal decomposition

HE(M, A*M) = ker(A) © A(Hy% (M, A*M)).

We define the Green’s operator G : H(é‘/(M, A*M) — Hé,fz(M, A*M) to be zero on ker(A)
and to be the inverse of A on ker(A)~+. We also have

d(H (M, A*M)) @ d*(Hy! (M, A*M)) = ACHGT (M, A*M).

and G is self-adjoint and commutes with d and d*. One now shows that y = —G3*3*Ga
does the job in both cases. The estimate on y follows from construction. Now if § > —%
HF2 satisfying the above condition. However, as in [16, p.

842
185], we can conclude that the equation @ = 99y already implies that y € H é:[% O

with § > &, we still get y €

An infinitesimal complex deformation is an endomorphism / : TM — T M that anti-
commutes with J and satisfies 3/ = 0 and 8*1 = 0. By the relation /J + JI = 0, I can be
viewed as a section of A% M @ T1O0M.

Theorem 10.3 Let (M™, h, J) be a Kdhler manifold with a non-orbifold conical singularity
and vanishing first Chern class. Let 5 > 0 be non-exceptional for the Hodge-Dolbeault
operator and I € H({ (M, A%'M @ T'OM) be an infinitesimal complex deformation. Then
there exists a smooth family of complex structures J (t) with J(0) = J such that J(t) — J €
H\(M, T*M ® TM) and J'(0) = I.

If (M, h, J) is a Kdhler manifold with orbifold singularities, an analogous assertion holds
for unweighted Sobolev spaces.

Proof The proof follows along the lines of Tian’s proof by the power series approach [36]:
We write J (1) = J(1—I(t))(1+1(1))~", where the family 7 (t) € H*(M, A" M @T"M)
has to solve the equation

(1) + %[l(t), 1] =0,

where [ ., .] denotes the Frolicher-Nijenhuis bracket. If we write /(¢) as a formal power
series I (1) = Zkzl I 1%, the coefficients have to solve the equation

N-1

_ 1
By + 5 ];[Ik, In-k]1=0,
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inductively for all N > 2. Because the first Chern class vanishes, A™-9M is trivial. Therefore,
we have a natural identification of the bundles A M@T'-OM = A"~!:! M by using the holo-
morphic volume form and we now think of the I} as being (m — 1, 1)-forms. Initially, we have
chosen I1 € H({‘ (M, A%'M @ T'OM), given by I = 21,J. By the multiplication property
of weighted Sobolev spaces and by the assumption § > 0, [I1, I{] € H;‘:I] (M, A"L2pp),
Using 91, = 0 and 8*1; = 0, one can now show that [/, I;] = 0 and [I;, I,] is 3-exact.
The 33-lemma now implies the existence of a { € H, g‘_:_r]l (M, A"=21 M) such that
- 1
0y = —5 . 4l

and so, I = oY € H;‘(M, A"=L1M) does the job. Inductively, we get a solution of the
equation

_ 1N—l
09y = 5 ];[Ik, In—],

by the 33-lemma since the right hand side is d-closed and d-exact (which in turn is true
because 1l = 0 for I <k < N — 1). Now we can choose Iy = 3y € HX (M, A"~ M),
Convergence of this series for small ¢ is shown by standard elliptic estimates, c.f. also [8,
Theorem 1.14]. In the orbifold case, the steps are the same but we don’t need weighted spaces.

]

In the following we mean by (8) that the exceptional weight § only appears in the case of
a conical singularity which is not an orbifold. In the orbifold case, we work with ordinary
Sobolev spaces.

The proof of Theorem 10.3 provides an analytic immersion

® : Hisy(M, A*'M & T"OM) Nker(A) DU — Hi5, (M, T*M ® T M)

by mapping I € U to J(1) where J(¢) is defined by the power series construction in the
above proof. By making U small enough, we can ensure that this power series converges for
t = 1 so that the definition of ® makes sense. The image of this map is a smooth manifold of
complex structures which we denote by :7(]55) and whose tangent map at J is just the injection.

Proposition 10.4 Let (M, ho, Jo) and J(la) be as above and let 6 > 0 be a non-exceptional
weight for the Hodge-Dolbeault operator. Then there exists a H(la)— neighbourhood U of Jo
and a smooth map @ : j(la) nU — Ml(a) which associates to each J € J(IB) NU sufficiently

close to Jy a metric h(J) which is H(la)-close to ho and Kidihler with respect to J. Moreover,
we can choose the map © such that

1
do;, () (X,Y) = E(ko(IX, JoY) + ko(JoX, IY)).

Proof We adopt the strategy of Kodaira and Spencer [18, Sect. 6]. Let J; be a family of
complex structures in .7(18). Then we can define a map l'[,1 ’1, given by 1'[,l ’la)(X ,Y) =

%(a)(X, Y) + w(J; X, J;Y)), which is the canonical map which projects 2-forms to J;-

hermitian 2-forms. We use it to define ._],-hermitian forms w; by l'[t] "]wo(X ,Y) =
%(a)o (X,Y)+wo(J: X, J;Y)). Here, Let 9, 9; the associated Dolbeault operators and 9;", 9,
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their formal adjoints with respect to the metric g;(X, Y) := w;(X, J;Y). We simplify nota-
tion in (10.1) by setting A7 M := Ap " M. We define a forth-order, self-adjoint and elliptic

linear differential operator E; : (5)(M Ap M) — Ha 4)(M A;D’qM) by

It is straightforward to see that that any o € ker;2(E;) is bounded. Thus, integration by
parts shows that ;@ = 0, ;& = 0 and 9;9a = 0, i.e. do = 0 and 33« = 0 hold
simultaneously. In the non-orbifold case, this follows form the fact that m > 5 in this case.
As in [18, Proposition 7] (except that we use the appropriate weighted spaces), one now
shows that

ker(d) N H! o (M, AP M)

1,q—1 s
- a,a,(H(l;iz)(M, A7THTTIM)) @ kerp2 (Eq) N Higy (M, A M)

is an Lz(g,) orthogonal decomposition and that dim ker; > (E;) = dim ker %3 (E;) is constant

for small 7. Here, 8’ € [—m/2, —m /2 + €) is chosen non-exceptional and € > 0 is small.
Thus there is a smooth family of L?(g,)-orthogonal projections g, : L>(M, AP M) —
ker;2(E;). Now we define

d)t = HE,wt + atétu, = HE,H,LICO() + 3t5tut,

where u; € H(l(S +2)(M ) is a smooth family of functions such that ug = 0 which will be

defined later. By construction, @, := Ilg, w; is closed and H(é -closed to wg. Therefore, @; is
also closed and differentiating at r = 0 yields

@ = Mg, + Mg w0 + dodoupy = wp + Mg, w0 + dodottg-

Because do, = 0, we have dc?)é) = 0 and since Jé is an infinitesimal complex deformation,
dw(, = 0 which implies that

M, wo € ker(Eo)* Nker(d) N Hiy, (M, Ay' M) = 0,0, (H5) ) (M)).
Letnow v € H(l;iz) (M) so that 3ydgv = H’Eowo. Then, define u; € H(lgﬁz) (M) by

Uy == 1tv.

By this choice, @, = w|, and the assertion for d® , (Jj) = % follows immediately. Finally,
fz,(X ,Y) = (X, J;Y) is a Riemannian metric for ¢ small enough and it is Kéhler with
respect to J;. Moreover, as in the proof of [16, Proposition 8.4.4], the fact that I'I};O wp € H(’fs)

implies that u; € H(5+2)(M). Thus ﬁ, is also H(Z(S)—close to hg. O

Remark 10.5 Let J; is a smooth family of complex structures in J(IB) NU and hy = P(J;).
Then the construction in the proof above shows that I = J and k = hy, are related by

k(JX,Y) = —%(h(X, 1Y)+ h(IX,Y)).

Lemma 10.6 Let (M, h) be a Ricci-flat manifold with a conical singularity and k € ker(Ap)N
span(h)*. Then, tr(k) = 0 and div(k) = 0.
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Proof First, recall that Ay preserves the splitting S = Sy @ S; and acts as the Laplacian
on sections of ', which consists of the pure trace symmetric two-tensors. Therefore, if k €
ker(Ap), its pure trace part has to be a multiple of the metric so that k € ker(Ar)N span(h)l
implies tr (k) = 0.

A straightforward calculations show that divo A;, = A odiv, where A is the connection
Laplacian of vector fields. Therefore, divh € ker(A) = {0} as M does not admit parallel
vector fields due to Lemma 8.3. m]

Theorem 10.7 Let (M, hg, Jo) be a Ricci-flat Kéiihler manifold where the cross section is
either strictly tangentially stable or a space form. Then for any k € ker(Ap), there exists
a smooth family of metrics h(t) € I with h(0) = hg and hy, = k, satisfying Ricpy = 0.
Each metric h(t) is Kdhler with respect to some complex structure J(t). In particular, hg is
integrable.

Proof We proceed similarly as in [4, Chapter 12]. Assume we are given a complex structure
J close to Jyp. Assume we have a (1, 1)-form w (the bi-grading (1, 1) is with respect to
J) which is H 15 -close to wg. Here, § € (0, y) is a non-exceptional weight of the Hodge-
Dolbeault operator and y is the weight for 3, see (8.1). Then we seek a Ricci-flat metric in the
cohomology class [w] € Hlj’l (M). By the 39-lemma, there exists a function f,, € H(ls) (M),

such that iaéfw is the Ricci form of w. If v € [w]and v — w € HI(M, AIJ’IM), then there

isau e Hyh (M) with [, u " = 0 such that @ =  + i - 99u. Ricci-flatness of & is

equivalent to the equation

=:93Cal(w, u).

- - i90u)"
93 £, = 93 log (LT 109"
wl’l

Let .7(18) be as above and A ; the Dolbeaut Laplacian of J and the metric 4 (J). Then all the

(L%a))-cohomologies H]J”](a)(M) = kerLé) (AN L%a)(M, A]J’1 M) are isomorphic for J €

Jls, if we Jls) is small enough: We have H%) (M) = 1705 (M) @ HYy |5 (M) & H 75 (M).
The left hand side is independent of J and the metric g(J) provided by Proposition 10.4. The
spaces on the right hand side are kernels of J-dependant elliptic operators whose dimension
depends upper-semicontinuously on J. However the sum of the dimensions is constant and
so the dimensions must be constant as well.

Thus, there is a natural projection pr; : ker(A j,) — ker(A ) which is an isomorphism.
Let Hflo’ (s)(M) be the space of H(ls)-functions whose integral with respect to kg vanishes.
We now want to apply the implicit function theorem to the map

.ol L1 1+2 Y82l
G: T X J'CJO,(S)(M) X Hho,(5+2)(M) — 88(Hh0y(8)(M))

(J,k,u) > 33Cal(w(J) + pry(k), u) — 09 fu )+ prs )

where w(J)(X,Y) := h(J)(JX,Y) and h(J) is the metric constructed in Proposition 10.4.
We have G (Jp, 0, 0) = 0 and the differential restricted to the third component is just given
by JOA : H}ll;%ﬂz) M) — 85(H}€0’(5)(M)) [4, p. 328], which is an isomorphism since we
restrict to functions with vanishing integral. To see this, we argue as follows: The injectivitiy

follows from the fact that A is injective on Hé:f6+2)(M). Now let v € H,ﬁoq(s)(M) and
w=290 € H(l(;_zz)(Al’lM) and there exists w € H(ZS)(A“M) such that A = w where here,
A is the Hodge-Dolbeaut Laplacian. If we apply the d3-Lemma, we get u € H}ll;ris +2) (M)

such that 89y = @ and finally concluding 80 Au = ddv. Therefore we find a map W defined
on a small neighbourhood of (Jy, 0) such that G(J, x, ¥(J, k)) = 0.
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Let now k € ker(Ag p,) N span(ho)J- and let k = ky + k4 its decomposition into a
Jo-hermitian and a Jp-antihermitian part. We want to show that & is tangent to a family of
Ricci-flat metrics. By the definition of J and by elliptic regularity, k € H, (l 5 (M, S) for every

| € N and for some non-exceptional § > 0. We can define I € H(l(s)(M, A% M @ TOM)
and k € H(ZS)(M, Aljé)l)(M) as in (10.2). Because Ac/ = 0, 9 = 0 and 9*1 = 0. In
addition k € H}(‘)l (M). Let J(t) = ©O(t - I) be the family of complex structures tangent to

I provided by Theorem 10.3 and & (¢) = ®(J (1)) be the associated family of Kahler forms
constructed in Proposition 10.2. The map ¥ constructed above defines a family of forms
o) = o)+ prjn(t-k)+ 190V (&(1), 1 - k) and an associated family of Ricci-flat metrics
E(t)(X, Y) =w()(X, J(¢)Y). This construction provides a smooth map

E : ker(AL) Nspan(ho) " = ker(AL) N Hfs D W — K,

whose tangent map is the identity. Therefore, its image forms a smooth finite-dimensional
manifold of Ricci-flat metrics which are H(Ifs)—close to ho. Moreover, by Sobolev embed-
ding for weighted spaces, these metrics are also H-close to /o but with a possible different
parameter y. To extend E to a map

z: ker(Ar) D W — K,
we just let elements in span(g) act by multiplication with a constant. By construction,
im(8) = F

is a finite-dimensional manifold of Ricci-flat metrics close to /g such that 7j,,F = ker(Ay).
This finishes the proof of the theorem. O

11 Long time existence and convergence of the Ricci de Turck flow

Consider a compact manifold (M, ho) with an isolated conical singularity that satisfies the
following three assumptions

(1) (M, ho) is tangentially stable in the sense of Definition 2.1,

(2) (M, ho) is linearly stable in the sense of Definition 2.3,

(3) (M, hp) is integrable in the sense of Definition 8.1.

By definition, ker is a smooth vector bundle over ¥ NV, where V C J is a sufficiently
small open neighborhood and each fibre is equipped with an inner product induced by
L2(Sym2(T*M ), h). Hence there exists a local orthonormal frame {ey, ..., ¢;}, which can
be assumed to be global by taking V sufficiently small. Here, d denotes the rank of the vector
bundle ker. We define the projection

I, : (ker AL,hO)J‘ NH — (ker AL,h)J‘ NH,

d
(11.1)
g g— Y (g eih)-ei(h),

i=1

where the inner product (g, e; (h)) is taken with respect to L2(Sym2(T*M ), h). We now
employ this projection to define

@ (FNY) x ((ker At m{) — ho+ K,
(h, g) = h + Ti(g).

(11.2)
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The differential of ® at (hg, 0) acts as identity between the following spaces (recall 7;,, F =
ker Ay p, by integrability of A¢)

d® gy 0 Tho T ((ker ALp)t N 9{) S H =T T ((ker ALp) 0 J{) ,

Therefore, by the implicit function theorem on Banach manifolds, there exist sufficiently
small neighborhoods V', V", V" C 7, such that

@ (FNV) x ((ker AL,h)imv”) — ho+ V" (11.3)
is a diffeomorphism. In particular, we may define
M:(hg+V") — FNV, TI:=projod L. (11.4)

By construction (g — I1(g)) € (ker A L,n(g))l. In order to simplify notation, consider the
small open neighborhood U = Bg(ho) C ho+ V' of hg € F, so that the projection IT acts as
IT: U — F,such that forany g € U, (g —I1(g)) € (ker AL,n(g))L. By the implicit function
theorem, IT is smooth and maps to a small open neighborhood of A¢ in J. In particular, by
differentiability of IT, there exists a uniform constant ¢ > 0 such that!!

Vgel, heUNnT :|TI(g) —h| <cllg — hl. (11.5)

We now turn to the estimates in Corollary 6.2 and their (uniform) dependence on h €
FNU. By Theorem 8.11, the first non-zero eigenvalue of Ay j is uniformly bounded from
below by o > 0 for h € FNU. The constant ¢ > 0 in Corollary 6.2 can similarly be chosen
locally uniformly constant in # € 3N U, and hence for any fixed #p > O and # > 1

VheUNTF: e 2Lh| <c, |e 20k | (ker App)t| < ce ™. (11.6)
We can now establish the following proposition.

Proposition 11.1 For any N € N, there exists € > 0 sufficiently small and T = T (e, N)
(depending also on a and C from above) such that for any g € Uwithh = TI(g) €e UNTF
and ||g — h|| < €, the Ricci-de-Turck flow starting at g, with the background metric h, exists
for time T > 0 and

€
lg(T) —hll < N (11.7)

Proof Consider the Ricci-de-Turck-flow g(¢) starting at g, with the background metric .
Then, as worked out by the second named author in [38], g(#) — A is a fixed point of
D= "Bl % Qg (w) + A g — h,

where * indicates convolution in time, and x> 0> (w) is a bounded quadratic combination of
o,V wand V V' w for some V, V' € V;,. Consider

Zur =0 e H ="M x[0.T1.9) | ] < u).
For any w € Z,, 7, the quadratic expression Q5 () may be estimated as
1Q2()]| <, [Q2(w) — Q2@ < 2éullw—a |, (11.8)
for some ¢ > 0. By (11.6) we conclude, assuming ||g — h|| < €, that

@ (@) <t-c-& pu+ce e,

3 (11.9)
[ @ () — P (@) <t-c ¢ 2ullo—ao ||

T we employ the norms of the Banach space I, unless stated otherwise.
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The constants ¢, ¢, @ > 0 can be chosen uniformly for all metrics » € UNF. Given N € N
and the constants ¢, ¢ > 0, we set for any u > 0

1 . 1 %
T .= —-min{ —; 1, €:=—.
4ucce cN 2¢

The choice of T and € yields the estimates

- 2 " . 1
Teeu?> <=, ce<Z, 2Tce-p<—.
cc,u_4 c_2 CCM_Z
Consequently, ®; is a contracting self-map on Z,, 7 and hence by Banach fixed point theorem
admits a fixed point (g(-) — h) € Z,, 7 for any u > 0. Now choose i1 > 0 sufficiently small
such that

ol o 1
ce =cexp| — —— < —.
dpec - min(qy, 1) 2N

Note also that by construction

1 1 1
Teeu? = —— min] — 14 céu? =" min] —, 1} < H = €
decp cN 4 cN 4cN 2N

Hence we may estimate the norm of the fixed point at time 7'
1g(T) = hil = |®7(g(1) —h)|| < T -cé- pi* +ce *Te
<€ n € €
“2N 2N N’
O

Our idea for the proof of long time existence and convergence is now to restart the Ricci
de Turck flow at g(7") with I1g(T) as the background metric. Thus, along the flow we change
the de Turck vector field and the corresponding diffeomorphism at each step.

Corollary 11.2 Consider the open neighborhood U = Bgr(ho) C H of hy € F. Consider
(N, €) as in Proposition 11.1, such that additionally, € < § and

N .
1V R
&« <C+ ) <= (11.10)

N o, N 2

Then for any go € U with hg = T1(go) € UNTF and ||go — holl < €, there exists a Ricci de
Turck flow, starting at go, with a change of reference metric at discrete times, converging to
g* € FNU at infinite time.

Proof We consider the Ricci de Turck flow in Proposition 11.1. By (11.7)

€
T)-T11 < —. 11.11
llg(T) goll = N ( )
By (11.5) and the assumption ||go — hg|| < € we conclude
€c
ITIg(T) — Igoll < cllg(T) — Mgoll < N (11.12)
Consequently, combining (11.11) and (11.12) we conclude
e(c+1)
ITIg(T) — g (M|l = ITg(T) — Tgoll + lg(T) — Igoll = — (11.13)
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9o g(3T) ---

Z|m

T(go)

ﬂ(g(T)] ec(c+1)

€c
N N2

Fig. 1 Iterative sequence of Ricci de Turck flows

We can now restart the Ricci de Turck flow at g(7") with T1g(7) as the background metric
and proceed iteratively. As long as g(kT), I1g(kT) € U, for k € N, we conclude iteratively
[cf. (11.11), (11.12) and (11.13)]

1 k
ls &) — g = <L
k
lg((k + DT) —TgkT)| < G(JCV%) (11.14)
1 k
IMg(tk + DT) — HgkT)|| < Ecgskitl)

This leads to the following diagram, where the numbers above arrows indicate the corre-
sponding distances of metrics, measured in the J norm (Fig. 1).
Since for each k € N by assumption (11.10)

k—1 ;
ec (c+1)/ R
IMg®T) = holl = <=+ Y —— = 5
j=0
lg(kT) — holl < llg(kT) — TIg(kT)|| + [TIg(kT) — hol| (L15)
_ c+1\F N R _ N L
=< \"N 2 =€t =

g(kT), Tg(kT) € U = Bg(hg) and we can apply Proposition 11.1 in each step, flowing
for another time period [kT, (k + 1)T]. This proves long-time existence. The sequence
(Mg (kT))ren is Cauchy, since for any k, £ > ng

o0

ITIg(kT) — Mg(€T)|| < % Z

J=no

1)/
%—w, (11.16)

as ng — o¢. Since JF is a manifold, the limit g* € FNU exists. We conclude that the
sequence (g(kT))ren converges to g*, which proves the statement. ]
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