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Abstract

We show a global existence for the Cauchy problem with large initial data for the p-harmonic
flow between two smooth, compact Riemannian manifolds. We devise new monotonicity type
formulas of alocal scaled energy and establish a partial regularity for the solution. The partial
regularity obtained is almost optimal, comparing with that of the corresponding stationary
case. The p-harmonic flow obtained also converges to a p-harmonic map along a certain
time sequence tending to infinity.

Mathematics Subject Classification Primary: 35B45 - 35B65; Secondary: 35D30 - 35K59 -
35K65

1 Introduction

Let M and N be smooth compact Riemannian manifolds of dimension m and n with metric
g and h, respectively. We assume that, by Nash’s embedding theorem, A/ is isometrically
embedded into R! (! > n). For a smooth map u from M to N' C R/, we consider the

p-energy

1
E(u) :=/ —|Du|? dM, p>2. (1.1)
M P

Here the unknown map u = (u'), i = 1,...,[, is a vector-valued function, defined on M
with values into N/ C IR. In a local coordinate x = (x¢), ¢ = 1,...,m, on M, the usual

notation is used : g = (gaﬁ), (go,,g)_l = (g"‘ﬂ), lg| = | det (gaﬁ) |, and dM = /|gl|dx is a
volume element with m-dimensional Lebesgue measure dx,and Dy, = 9/0xy, 00 = 1, ..., m,
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Du = (Dqu') is the gradient of a map u, and |Du|* = Y gl 8% Dou - Dgu with an
Euclidean inner product - in IR’

The p-harmonic map is a critical point of the p-energy and satisfies the Euler—Lagrange
equation

_ - p—2
{ Apu = |DulP~*A(u)(Du, Du) (12)
uenN
where the p-Laplace operator is denoted by
m
Apu = —— > Do (1Dul"=2/Iglg" Dyu) (1.3)
vigl 52,

and the second fundamental form A(u)(Du, Du) of N' C R! is a vector field along the
map u € N with values into the orthogonal complement of the tangent space of N at u (if
necessary, the manifold A is assumed to be orientable).

An approach to look for p-harmonic maps is to exploit the gradient flow associated with the
p-energy, called the p-harmonic flow, which are described by the evolutionary p-Laplacian
system

(1.4)

du — Apu = |Du|P~> A(u)(Du, Du)
ueN

where u = u(t, x) is defined on Mo = (0, 00) x M with values onto R!, 3,u = (3,u’)
is a partial derivative on time. In this paper we study a global existence and regularity of a
solution to the Cauchy problem for the p-harmonic flow (1.4).

Let R = T,LN @ (T,N)* be the orthogonal decomposition of R’ with respect to the
tangent space 7, \ ateachu € A. The corresponding orthonormal basis is (e1 (&), . . . , €, (1))
of the tangent space 7, N and (e, (u), . .., e;(u)) of its orthogonal complement (7;\')*.
Then we find an equivalent representation for the p-harmonic flow

du — Apu L TLN > du — Apu =|Du|">A(u)(Du, Du). (1.5)
In fact, there exists some vector-valued function A = ()J (u)), j=n+1,...,1,such that

!
e — Apu LN = du—Apu= Y M (wel (u)
j=n+1

and, simply multiplying each of the orthonormal basis ¢ (1), j = n+1, ..., [, by the second
equation above, we have

m
2 w) = DulP~* Y~ /1g1g* Dpu - (Dot - Dyej(w)),
o,p=1

where d;u, Du € T,N because the map u = u(z, x) moves on N, and thus, the usual
Euclidean innner product in R’ is taken, so that d,u - ej(u) =0and Du - e;(u) = 0, for
all j =n+1,...,1 Here the last summation term in the equation above is nothing but the
second fundamental form of A along the map u. Furthermore, the Euclidean inner product
in R of ,u with the p-harmonic flow Eq. (1.4) leads the energy identity

| |
1> — ——D (|Du|p_2 l21g% D u~au)+a—|1)u|1’=o,
' Vgl © pr 'p
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integrated in M yielding, through integration by parts,

d E =—|9 2 1.6
o () = —|10u®)|5. (1.6)

Thus, the p-energy E (u(t)) is decreasing along the solution u(¢) of the p-harmonic flow and,
in fact, the solution {u(t)} C C®°(M, N),0 <t < o0, is the trajectory of negative direction
gradient vector field of the p-energy

dfu(t) —VE(u(t))
dt "

= Apu(t) + |Du)|P 7> A@w@) (Du(t), Du()),

by the Euler-Lagrange equation (1.2), where V E (u(¢)) is the Gateaux derivative of E (-) at
u(t) € C°(M,N). Therefore, a global in time solution to (1.4) for any initial data may
converge to critical points of the p-energy, the p-harmonic maps, as time tends to co. This
heat flow method was originally realized by J. Eells and J. H. Sampson for the harmonic flow
in the case p = 2 under the condition that the sectional curvature of target manifold A is
non-positive, in their pioneering work [15,23]. This fundamental result in the harmonic flow
case p = 2 was also extends to hold similarly for the p-harmonic flow.

Theorem 1 [16,31] Suppose that the sectional curvature of the target manifold N is non-
positive, Sect(N") < 0. Then, for any smooth initial map from M to N, there exists a unique
global in time weak solution of the Cauchy problem on M for p-harmonic flow (1.4). The
solution u and its gradient are Holder continuous in time-space. The solution and its gradient
uniformly converge to a weak solution and its gradient, respectively, of the p-harmonic map,
as time tends to oo, respectively, which are Holder continuous.

We call the weak solution which is locally continuous on time-space together with its
gradient the regular solution. The curvature restriction on the target manifold in general is
necessary for the global existence of regular solution of the p-harmonic flow. In fact, without
any curvature restriction on the target manifold, we have some example of a blowing up
solution at a finite time (see [5] in the case p = m = 3). But, a global in time weak solution
may be exist.

Theorem2 [24] Let p = m > 2 and the initial data be in the set of Sobolev maps
wlp (M, N) between two smooth, compact Riemannian manifolds M and N'. Then, there
exists a global in time weak solution of Cauchy problem on M for the m-harmonic flow. The
solution and its gradient are Hélder continuous on time-space, except for at most finitely
many time slices.

In the case p = m = 2, the global in time existence as above is also shown for the initial-
boundary value problem of the two-dimensional harmonic flow. Moreover, the solution is
smooth except for at most finitely many points [3,38]. In the case p = m, a nice Sobolev type
inequality on time-space, referred as Ladyzhenskaya or Nash inequality, can be available and
is crucial for regularity estimate in this case.

In the higher dimensional case m > 3, M. Struwe et al. established the following fun-
damental result for global existence and regularity of the harmonic flow in the case p = 2
in [8,9,39]

Theorem 3 [8,9,39] Let p = 2. Let initial and boundary data ug be smooth map from M
into N. Then, there exists a global in time weak solution u of the harmonic flow (1.4). The
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solution u satisfies the energy inequality: letting My, = (0, 00) X M,

10l pg, )+ 5P E () < Euo). (17
<r<o0o

There exists a relatively closed subset ¥ C (0, 0o] x M such that the solution u is smooth in
the complement of ¥, Mo\ X, X is of at most finite m-dimensional Hausdorff measure with
respect to the usual parabolic metric in Mo, and furthermore, for any time ty > 0 and some
positive Cy = C(M, N, to, E(up)), H"2({tg} x ) < Cy; As time suitably tends to oo, the
solution converges to a weakly harmonic map us weakly in Sobolev space W' 2(M, R}).
There exists a closed set Yoo C M such that u is smooth on M\ Lo, Lo is 0f at most finite
(m — 2)-dimensional Hausdorff measure: For some positive Cy = C'(M, N, 1o, E(up)),
H"2(2x0) < C),

There also exist blowing up solutions at a finite time (see [4,7,11,22]).

If the target manifold is the standard unit sphere, the global in time existence of weak
solution to the p-harmonic flow is also shown by use of the special structure of the target
standard unit sphere [6,25,27,32].

In differential geometry, the regularity has been studied under a smallness of image of a
solution, instead of curvature condition [ 18], and the everywhere regularity of a small solution
of harmonic flow is shown in [19,20,37]. Such regularity of a small solution of p-harmonic
flow remained open (refer to [28]).

Theorem 3 implies the global in time existence of weak solution of the harmonic flow in
the case p = 2, which is partial regular in the sense of regularity outside exceptional closed
set. It has remained open whether or not the corresponding result holds for the p-harmonic
flow, since the important result, Theorem 2, was obtained for the case p = m.

A compactness for regular p-harmonic flows with uniform boundedness of p-energy has
been recently proved by the author in [33,34] (see [39, Theorem 6.1; its proof, pp. 494—497]
for the harmonic flow). The compactness result will be the key ingredient for the global in
time existence of p-harmonic flow (refer to [9] for the harmonic flow case).

Theorem 4 (A compactness of regular p-harmonic flows with uniformly bounded p-energy)
Let p > 2. Suppose that a family {uy} of regular p-harmonic flows on RZ, = (0, oo) x R
satisfies the p-energy boundedness with uniform positive constant C

P Bkl gy + S5 1 DDl ey < € (1.8)
<t

<00

and converges to a limit map u in the sense

ug —> u weakly % in L™ (o, T; WHP(R™, ]Rl)), (1.9)
Duy —> Du weakly in L? (IRg"o, R"), (1.10)
duy —> du weakly in L2 (IRg"o, IR’). (1.11)

Then, the limit map u is a global weak solution on RRY. of the p-harmonic flow such that
u € N almost everywhere in R%., and the p-energy boundedness is valid, replacing uy by u
in (1.8). Moreover; the limit map u is partial regular in the sense : There exists a relatively
closed set ¥ in RZ, such that u and its gradient Du are locally in time-space continuous
in the complement RZ\ X, and the size of % is also estimated by the Hausdorff measure :
For any positive number yy, 2 < yo < p, the set ¥ is of at most locally zero m-dimensional
Hausdorff measure with respect to the time-space metric |t|"/7° + |x|, and, furthermore, for
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any positive time T < 00, the (m — yp)-dimensional Hausdorff measure of {t} x T with
respect to the usual Euclidean metric is locally zero.

In this paper we show the global existence and regularity of a weak solution of the Cauchy
problem for the p-harmonic flow (1.4) with an initial data ug

{ du — div (|Du|”2Du) = | Du|"~> A(u)(Du, Du) in Moo (112)

u(0) = uop on M

and a convergence of the solution of p-harmonic flow to a p-harmonic map along a time
sequence tending to infinity. The Sobolev space on M is usually defined as

Definition 1
whp (M, ]RZ) = {v eL? (M, ]Rl) ‘ 3 a weak derivative Dv € LP (M, IR"”) } :
Wh? (M, N) = {v ewh? (./\/l IRZ> | v € N almost everywhere in M } ;
Il rany = 10120 e + IDVILr M) (1.13)

Definition2 Letug € W7 (M, N). A map u is called a global weak solution of the Cauchy
problem (1.12) if and only if u is a measurable vector-valued function defined on M, =
(0, 00) x M with values into IR/, satisfying the following four conditions :

(D1) u € L0, oo; WhP(M, RY)), d;u € L2( Moo, RY);

(D2) u € N almost everywhere in Mo;

(D3) u satisfies (1.4) in the sense of distributions, that is, for any smooth map ¢ €
C§° (Moo, RY),

/ {(0u - ¢+ |DulP">Du - D — |Du|P"*¢ - A(u)(Du, Du)}dz = 0;
Moo

(D4) u attains the initial data continuously in the Sobolev space
lu(r) — uo'lel’(M,]Rl) — 0 ast— 0.

Theorem 5 (A global existence and regularity for the p-harmonic flow) Let p > 2. Let
ug € WHP (M, N). Then, there exists a global weak solution u of (1.12), satisfying the
energy inequality

19wl 0,y + JSup E(®) < Euo). (1.14)
<1<00

Moreover; the solution u is partial regular in the following sense : There exists a relatively
closed set ¥ in My = (0, 00) x M such that u and its gradient Du are locally in time-
space continuous in the complement Mx\XZ, and the size of X is also estimated by the
Hausdorff measure : For any positive number yy, 2 < yo < p, the set X is of at most zero
m-dimensional Hausdorff measure with respect to the time-space metric |t|'/70 + |x|, and,
Sfurthermore, for any positive time T < 0o, the (m — yp)-dimensional Hausdorff measure of
{t} x X with respect to the usual Euclidean metric is zero. As time suitably tends to oo, the
solution converges to a weakly p-harmonic map us weakly in Wb P (M, R"). There exists a
closed set Yoo C M such that uso and its gradient Duo are locally continuous on M\ Zeo;
For any positive number vy, 2 < yo < p, Xo is of at most zero (m — yy)-dimensional
Hausdorff measure.
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Remark Measuring by use of the time-space metric |¢|'/? + |x| on Moo, the (m + p — 10)-
dimensional Hausdorff size of X is zero. The scale order in the estimate of singular set X is
almost optimal, since the exponent y; can be as close to p as possible.

The contents of the paper are as follows :

1. Introduction
2. Penalty approximation
3. Small energy regularity estimate
3.1 Preliminaries; 3.2 Local energy regularity estimate
4. Passing to the limit
5. Monotonicity estimate of a local scaled energy
6. Appendix

In Sect. 2, we introduce the so-called penalty approximation for the p-harmonic flow. In
Sect. 3, some preliminary estimates for the penalty approximating solutions are derived, those
proofs are given in “Appendix”, and then, the small energy regularity estimate is shown to
hold uniformly for the penalty approximating solutions, and is applied for their convergence
to a weak solution of the p-harmonic flow in Sect. 4, based on the compactness result,
Theorem 4. The monotonicity estimate, Lemmata 12 and 13, is demonstrated in Sect. 5.

2 Penalty approximation

In this section we set the approximation scheme for the p-harmonic flow. We will approx-
imate the p-harmonic flow by the solutions of the gradient flow for the so-called penalized
functional, introduced in [9] for the harmonic flow case p = 2 (also refer to [29,40]).

Since the manifold A" is smooth and compact, there exists a tubular neighborhood O,
with width 2857 of A in R/ such that any point u € s - has a unique nearest point
a () € N satisfying dist (u, war()) = dist (u, N) for the Euclidean distance dist (-, -),
where the projection s : Oas,, — N is smooth, since the manifold A is smooth. The
distance function dist(«#, N) is Lipschitz continuous on u € Oz N

Let x be a smooth, non-decreasing real-valued function defined on [0, co) such that
x(s) = s fors < Ba)? and x(s) = 2(8p)2 for s > 4(8,)2. Then, the function
x (dist?(u, N)) is smooth on u € R’. Its gradient at u € Oys, is computed as

Dyx ((dist*(u, N)) = 2’ (dist? (u, N)) dist(u, N)Dy dist(u, N);
D, dist(u, A) = TN
lu — 7 ()]

parallel to the vector field u — s (1) and orthogonal to 7y, (u yAN. We also have that, for any
u € N and any tangent vector T € T, N,

vt D, D, dist(u, /\/)’ <CcW)T

(see [2, Theorem 3.1, pp. 704-705], [1, Theorem 2.1]).
For positive parameters 1 < K /" oo and 1 > € \( 0, we consider the Cauchy problem
in Mo with initial data u for the gradient flow, called the penalized equation,

(2.1)

du—Ap cu+CoK x’ ( dist?(u, /\f)) dist(u, N)D,, dist(u, N) =0
u(0) = ug
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associated with the penalized functional, defined by
K
Fk,e(u) == Ec(u) + Co 3/ x (dist(u, N)) dM, 22)
M

where the positive constant Cy will be stipulated later, depending only on p, M and N/
(see Lemma 9 and its proof in “Appendix B”). The partial differential operator A, . and
its corresponding energy, called the regularized p-Laplace operator and the regularized p-
energy, respectively, are defined as

1 & < o\ 252
Ay cui= —— Dy | (e +1Dul?) = /Iglg*® D u);
= 3 o (e 1w ,

o, B=1

1 P
E.(u) ::/ — (e +Dul?)? dMm (2.3)
M P
We now state the global existence for (2.1). For the proof see “Appendix A”.

Lemma 6 (Existence for the penalty approximation) Let p > 2 and let ug € WHP (M, N).
For each positive numbers K and €, there exists a weak solution u = ug ¢ of the Cauchy
problem for the penalized equation (2.1) such that u = ug . satisfies the energy inequality
18wl ) + 5o Fi.e(u) < Ee(uo) 2.4)

<r<o0

and, that u, Du, d,u and D*u are locally (Holder) continuous on time and space (with some
Holder exponent) in M, and u satisfies the penalized equation everywhere in M.

3 Small energy regularity estimate
3.1 Preliminaries

In this section we show some regularity estimates for solutions u = ug . of the penalized
equations (2.1). Those proofs are given in “Appendix”.

Lemma?7 (Energy inequality) Let ug € W p(M, N) and u = ug ¢ be a regular solution
of (2.1). Then, it holds that

19¢ullE2 ) + SUP Fr,e() < Ee(uo). 3.1)
O<t<oo
A solution of the penalized equation is uniformly bounded, that is used in the regularity
estimate.

Lemma8 (Boundedness) Let u = ug ¢ be a regular solution of (2.1). Then it holds that
sup . |u| < H, where the positive number H is so large that B(H) D Oas,,(N) in R..

We will put the setting for local estimates for the penalized Eq. (2.1). For this purpose we
recall some standard geometrical settings. Let Ryq > 0 be a lower bound for the injective
radius of the exponential map on M. Thus, for any positive number R < Raq and any
point xg € M, the geodesic ball B(R, xo) C M of radius R around xo is well-defined
and diffeomorphic to the Euclidean ball B(R, 0) C R, under the linear homeomorphism
Ty, M = R™, through the exponential map
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exp,, - : R™ D B(R, 0) > x — exp,, x € B(R, xo) C M.
For any ¢ € (0, 00), the map
u (z, expy, ) :R"DB(R,0)3x —>u (t, expy, x) eR! (3.2)

is well-defined. Hereafter let xo € M be arbitrarily taken and fixed. We abbreviate as
B(R ) = B(Raq, 0). Wedenote u (1, exp,, x) by u(t, x) forany (1, x) € (B(Rpm)) oo :=
(0, 00) x B(R ) and, furthermore, by translation, regard u as a map defined on (B(RAm)) oo
with values into IR!.

Let us denote the penalized energy density for a map u by

L
2

ek, () = ;(e +[Dul?)? + x(distz(u, N)). (3.3)

We need the so-called Bochner type estimate for the penalized energy density. See
“Appendix C” for the proof. Here the constant Cy in (2.1) is appropriately chosen.

Lemma9 (Bochner type estimate) Let p > 2 and u = ug,  be a regular solution to (2.1).
For brevity, put e(u) = ek (u). Then, it holds in (BR ,,)co that

de(u) — ﬁD ((e+ \Du?)' T \/@A"ﬂDﬂe(u)>

+C1 (e +1Dul) T D2l + ¢ 27 K Dy (disi(u /\/))'2
<G (1 +e(u)%) e(u)z(“%), (3.4)

where

g”‘Vgﬂ“Dyu -Dyu
€+ |Du|?

AP = go”S +(p—-2) |D2u| = g% gy“DaDyu-DﬂDuu,
the summation convention over repeated indices is used and the positive constants C; (i =
1,2, 3) depend on p, M and N.

Let Ao be a positive number, R be a positive number such that R < min{l, Ry¢/2, T / )‘0}
and (1o, xo) in the parabolic like envelope P := {(t, x) : T —R™ <t < T, |x[* <1
— (T — R™)}. In the following we use time-space local cylinder. For r, > 0,
Q (t, r) (19, x0) = (to — 7, to) x B(r, xo), where B(r, x¢) is an open ball in Bg,, with
center xo and radius r. For brevity, we putu = ug ¢, e(u) = ek, (1) in (3.3) and abbreviate
the time-space Lebesgue measure dt d M as dz.

Lemma 10 (Gradient boundedness on a small region) For some (ty, x9) € P, let py :=
((t() — (T — RM))1 /%0 — |xo|) /4. Suppose that, for oo > 0, r9 >0, C;y > 0and L > 0,

<2 TG0 = 0 o sup cw)? <C1. (35

O (L27P(ro)?, ro) (10, x0)

Let g > 2 be a positive number. Then there exists a positive number C depending only on ¢,
p, M and N, but, independent of L, such that
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sup e(u)C?
Q(L?>7P(r0/2)%, ro/2) (10, x0)

- CL>P
~ o (L*P(r0)2 ro)]

2
(e(u))* 7 C9dz + C LP;
Q(L2=P(ro)2, o) (t0, x0)

Ct, x) = ((r — (T — RP))H0 — |x|> . (3.6)

+

The detail of proof is presented in “Appendix D” (refer to [10,12]).

3.2 Local regularity estimates

The partial regularity is based on the so-called small energy regularity estimate (refer to [39,
Theorems 5.1, 5.3, 5.4; their proofs, pp. 491-494]). The small energy regularity estimate
for the p-harmonic flow in the case p > 2 has been recently established in [33,34]. Our
main task here is to demonstrate that the small energy regularity estimate holds uniformly
for solutions of the penalized equations.

Theorem 11 (Small energy regularity) Let p > 2. Let By and aq be positive numbers satis-
fying the conditions
6[7 —4 B() -2
< By < p;
p+2 p—2
Let u = ug ¢ be a regular solution of (2.1) on (B(Rpm))r = (0, T) x B(Rpz, 0) for a
positive T < oo, satisfying the energy bound

<apg <1. 3.7

19¢ullf2 iy + SUP Fr,e(w) < Ci (3.8)
O<t<T

for a positive number C| depending only on M, p and N. Then, there exists a small positive
numeber Ry < 1, depending only on M, N, p, By, ag and C, and the following holds true
: Let yy be any positive number satisfying

2 <y <p.

If; for some small positive R < min{R ¢, Ry, TI/BO},

lim supryo*m/ ek, c(u(t, x))dM <1, 3.9)
N0 {t=T—RB0}xB(r,0)
then, there holds

sup ek, c(u(t, x)) < Co R™%P, (3.10)
(T—(R/4)P0, T)xB(R/4,0)

where the positive constant Cy depends only on vy, By, aog, p, M, N and C.

The novelty here is a new monotonicity type estimate of a localized scaled energy, which
may be of its own interest. Let us define our localized scaled energy in the following way:
Let T > 0 be given, and (#p, xo) in the parabolic like envelope

{(r, x) € (0,00) x B(Rpg) : min{(RA0)P, 1) > 1 —T > |x|B°}; By > 2.
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54 Page 10 of 66 M. Misawa

The localized scaled energy is defined by

1
EL(r)=—

f ek <t %)) Ba(to, x0: 1, %) CO (¢, ) dM:
AP Jl=10£A2-Pr2)x B(R A0

1 K
e = (e + 1Dul) ¥ + Co o x(dist(u, N) (3.11)

and A = A(r) is a function of a scale radius r, defined as

(3.12)

forany r, 0 < r < Raq/2, where we note that
6p —4
p+2

The forward or backward in time Barenblatt like function, denoted by B_ and 5_, respec-
tively, are defined by

— (p—-27°>0.

p >

P p—2
1 _ p—1
Ba(iy. x0: 1. x) = - ( b= xol ) L Ft < F0. (1Y)
(Fro £ 1) 2(Fto £ 1% .
The localized function C is defined and used as
Ct, x) = ((r —T)\/Bo _ |x|> L g > 2. (3.14)
+

We call E (r) and E_(r) the forward and backward localized scaled p-energy, respectively.
Our monotonicity type estimate of a scaled energy is the following. The proof is postponed
by Sect. 5

Lemma 12 (Monotonicity estimate for the backward localized scaled p-energy) Let p > 2
and q > 2. For any regular solution u to (2.1) the following estimate holds for all positive
numbersr, p, 1% = A(r)*Pr? < p™ = A(p)*Pp? < min{l, (Rp)™. (1o — T)/2},
E_() < E_(p)+ C (p" —r)
t()—rBO
_ — [&
+C / 1?2 () (eK,g(u(t))) 0”[‘00(3(007!)1/307)(0)) dt, (3.15)
to—pPo

where By as in (3.12), and the positive exponents 6y > 2 and i depend only on By, p and

N, M, p and By, respectively, and the positive constant C depends only on the same ones
as i andq.

Lemma 13 (Monotonicity estimate for the forward localized scaled p-energy) Let p > 2
and q > 2. For any regular solution u to (2.1) the following estimate holds for all positive
numbers r, p, r5 = A(r)2Pr? < pBo = A(p)2 P p% < min{l, T — 1y + (Rp)50)

Ev(p) < E+() + C (o — ")
to+p50
+C / 1C97% (1) (EK~6(M(t)))9°||Loo(3((t—ro)‘/30,xo)) dt, (3.16)

to+rBo
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where By as in (3.12), and the positive constants 6y > 2, ;v and C have the same dependence
as those in Lemma 12.

From now on we show the validity of Theorem 11.

First of all we make parallel translation’ = ¢ — T, x’ = x of the Eq. (1.4) and its solutions
uon (0, T) x B(Raq) to those on (=7, 0) x B(R ) with the same notation. The Eq. (1.4)
is invariant under parallel transformation.

Under this setting the statement of Theorem 11 is rewritten as

Lemma 14 There exists a positive number Ry < 1, depending only on By, p, M and N,
such that the following is valid : If

lim supry"*m/‘ ek, (u(t, x))dM <1, (3.17)
N0 {t=—RB0}xB(r, 0)
is satisfied for some small positive R < Ry with
By —2
0 = M, (3.18)
p—2

then, it holds that, for a positive constant C, depending only on p, M, N and By,

sup ek, c(u) < Cp RT9P, (3.19)
(~(R/4)B0,0)x B(R/4, 0)

The proof of Lemma 14 consists of several steps, which are separately explained with those
proofs. Our strategy of proof is based on a now classical argument similar to [9,39], originally
introduced by Schoen for the partial regularity of harmonic maps [36]. Here we carefully
make local estimates under an intrinsic scaling to the evolutionary p-Laplace operator.

Hereafter in this section we put, for brevity,

u=ug . e =eg Uu).

Let positive numbers Ao > 2 and ap < 1 be determined later. According to Ao and ag, we
choose a positive number € such that

Xo—2
O<e<2lag— , (3.20)
p—2
where we should choose ag as
Ao —2 Ao —2
ap — >0 ap > . (3.21)
p—2 p—2
Fort, —R* <t <0, we define a function f(¢) as
Ao
1 a0 I
Fo =1 sup sup (T + R¥)% — le) (e(u(z, x))7 ;
—RM <7<t oL
xeB((H»R"U)W ,0)
Ao —2
A =2 (1 _ 07) _ <, (3.22)
ap(p —2) ap

where we notice by (3.20) that

Ao —2 Ao —2
A0:2(1—07>—i>0(:>6<2<a0— 0 )
ap(p —2) ap p—2
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Now we also define a function g(¢) as

Ao

g(t) = ( sup ((l + R“)% - IXI) 0 (eu(r, X)));) ;

xeB((t+R*0)/*0,0)
—RM <t <0. (3.23)

It is readily seen that, for any ¢, —RM < <0,

(f@)™ = sup sup (t + R*)70 — |x|) " (e, )P
—Rlosts xeB((rJrR"Ao)%,o)
> sup ((r + RNy — |x|> " e, )P = (g@) ;
xeB((1+£0)",0)
0< () < £(). (3.24)

Lets, —R* <t <0,be arbitrarily taken and fixed. Then we can choose some time-space
points (fy, xo) such that fy € (—R™, ] and xo € B((to + R*)'/*0, 0), and

ap
(f(t)T = ((to-l- RM)o — Ixol) (e(uto, x0))?

<=

= 4% (p0)™ (e(u(to, x0))) (3.25)

where we put

1
o = (to + R™) % — |xo|
0 : 1 .

(3.26)

Here, if 1o = —R™ or |xg| = (fo + R*)Y/*0_then f(r) = 0 and g(r) = 0.

Refined gradient boundedness on a small region By Lemma 10, we make the gradient
bounded by a local scaled energy on a small region. We divide our consideration into two
cases.

1
Case 1. First we treat the case that (09)* (e(u(ty, x0)))? < 1.
Then we have that
€1 a
(to + R*)% — |xq

. (e(ulty, x0))7? < 1

ag
= ((lo + Rko)% — |x0|> (e(u(to, xo)))% < 4%
& f(r) < 4r@io, (3.27)
By (3.24) and (3.27) we have

g(t) < f(r) < 4@t (3.28)
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1
Case 2. Next we study the case that () (e(u(tp, x0)))? > 1.
Then we have

1

r o= <11> ’ < po < 1. (3.29)
(e(u(to, x0)))”

Let L be
=2
L:=(r)?2r. (3.30)
It holds that
L7 (r))* < (po)™, (3.31)
because

L7 (r)? = (rn)™ < (po)™ <= r1 < po.

Under (3.31) we have

1
1 sup (e(u)? < Cy :=2%, (3.32)
Q(L*>P(r1)2, r1) (10, x0)
For the validity of (3.32), we observe from (3.22) and (3.25) that
1 1
sup (e(u))? < 2% (e(u(to, x0)))?. (3.33)
(t0—(p0)*0, 10) x B(po. x0)

Then we find that, for L in (3.30),

1 1
r sup (em))r < (r)® sup (e(u))?
Q(L> P (r1)2, 1) (t0, x0) Q (L2 P (r)?, r1)(t0, X0)
1 1
< sup (e(u)?
(e(u(ty, x0)))? (to—(p0)*0, t0)xB(po. xo)
< 2% (3.34)

where we choose ag as
0<ag<l. (3.35)

Here we show the validity of (3.33), through (3.22) and (3.25). For any 7, 9 — (po)™ <
T < t9, we find that

<=

Qo0  sup  (e(u(r, )T < sup  ((x + RV — ) (e(u(r, )7,

x€B(po. X0) x€B(po. x0)
(3.36)
because it holds that for any 7, 7y — (po)™ < 17 <19, and any x € B(po, x0)
(to + R — (;Oo)k")l//\o > (to + R’\‘))I/A0 —po
(z+ )™ — x| = (10 — (p0)™ + R*)""™ — (Ixo| + po)
> (10 + R*)"* — x| — 200 = 200, (3.37)
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where we note the definition pg in (3.26) and use the simple algebraic inequality for any
positive number a and b

a0 4 b1/ > (a4 b)/%0

From (3.36) we obtain that

1
(2po)® sup (e(u)?
(to—(p0)*0, 10) x B(po. x0)

ot <Sup {4 RV — )" e, x)))ll’})

to—(p)*0 <t <tg \X€B(po, x0)

IA

sup ( sup [(@+ R~ 12)" o, x))ﬂ)

—R* <t<t \xeB((r+R)!/%0,0)

((to + R*)%0 — 12 (e(ulto, x0)))7 = (4p0)™ (e(u(to, x0)))7 .

<=

where we use that for any t, 1o — (p)™ <1 <19
B(po, x0) C B ((r + R*)'/*, 0),
because by (3.37), for any 7, to — (00)* < T < 1,

(r + R*)"™ = (19 + R™ = (00))"™ = |xol + po.

Thus, (3.33) is actually verified.
Under the choice of parameters Ao > 2 and ag in (3.21) and (3.35), we should have
Ao —2 Ao —2
0 <ap <1« 0
p—2 P
< M <p (3.39)

<1 (3.38)

and, (3.32) which verifies the condition (3.5) with letting ro = r1/2. Thus, we can apply
Lemma 10 and take the L°°-estimate of gradient (3.6), yielding

L™Pe(u(ty, x0))C?(to, x0)
<L7P sup e(u)C?
Q(L>=P (r1/4)2, r1/4) (10, x0)
C L2r+2

<
~ o (L r /22 r1/2)]
Q(L2P(r1/2)2, r1/2)(t0, x0)

)> 7 Cldz+C, (3.40)

where C > 0 depends only on ag, p, M and V.
2_
Multiplying the both sides of (3.40) by (L™ Pe(u(to, x0)))? ' we have

(L~Pe(uto. x0)))7 C%(to. x0)
- CL?
=10 (L7 (/2% 11 /2)|

ew)Cldz+C, (3.41)
Q(L>7 (r1/2)%, r1/2)(t0, x0)

where by 1 in (3.29), L in (3.30) and (3.33) we compute as
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2_ —2)(ag—120=2
(LPeuio, xo)) 7" = () (0-85). p-p2 (o2,

2 1 _
sup () ™7 < (29 (e(ulty, x0)) 7 )" = 290D (p) 0 (P=2);
o(L2r(ri/22 11 /2)

(L™ Pe(uto, xo)))%’1 L~rt? sup () ™7 < 2002,
o(L2r(ri/22,11/2)
Furthermore, we divide our estimations into two cases, depending on the size of ry.
The positive number ¢ > 2 is selected later. Recall that the positive number € is as in
(3.20). Then g /e > 1.
Case2-1:0<r < (,00)% ;. Case 2-2: (,00)% <ry < po-
Case2-10 <r; < (po)%.

Lemma 15 Suppose that

0<ri < (po)<. (3.42)
Then there exists t(’) € [to — (rpho /4, to] such that
Bl-g)5) L Con
L2(1-20=) - € ry) P
e(u(to, x0)))” Wp=2) W) < / e(u)Cl(t)ydM + C,
( ) |B (r1/2)]

{t=15)x B(r1/2, x0)
Ct, x) = (t+ R —|x]) ;g >1, (3.43)
where the positive constant C depends only on ag, m, p and N
Proof We will estimate both sides of (3.41).
By po in (3.42), r1 in (3.29) and L in (3.30), the left hand side of (3.41) is computed as
2 2
C4(tg, x0) (L™Pe(u(to, x0)))? = 47 (r))¢ (L™ Pe(u(ty, x0)))”
1 _ 2072 \_ e
= 49 (e(u(to, x0)))” (2(1 ao(P*2>) ao),
where by (3.42),
Cl(to, x0) = (4 po)? = 47 (r1)* (3.44)

and the parameters aq and € satisfy (3.38) and (3.20).
In the right hand side of (3.41), we take the supremum on time to have, by L and r; in
(3.30),

p(ho—2)
C(r)) 2 w)c?d
e(u
0 (L2777 (r /2%, r1/2)| Z
Q(L2 P (r1/2)2, r1/2)(to, x0)
])(AOEZ)
=

<c  wp / e(u(s) ¢ dM

to—L2=P(r1/2)2 <s <ty [B(r1/2)] B(r1 )2, x0)

co) T
ry) -

= Be T / e(u(s))C1dM, (3.45)

{s=t}xB(r1/2, x0)
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where by continuity of the gradient of solution, we choose some #) such that

to— L*7P(r1/2)* <1y < 1o &= to — (r)*/4 < 1 < 1o, (3.46)
at which the supremum of the second line is attained. O

Case 2-2 (po)% <ry < po.
Lemma 16 Suppose that
(P0)* <71 < po. (3.47)

Then there exists t(’) € [to — (pg)1 /e /4, to] such that

(etutro, xon)? L))

qp(By—2)

C (po) -3

- Clpo) <2
= B ((e0)?//2)]
{t=1(}x B((p0)7/€ /2, x0)

e(u(t))CtdM+C, (3.48)

where the positive constant C depends only on ag, p, M and N

Proof First we take a look at the inequality (3.43) in Case 2-1. For r1, 0 < r; < (po)g it
holds that

oy L pig-2)
(etutto, xo)? CU-a) %) < % / e(u(t)) C1 dM + C
{r=t)}x B(r1/2, x0)
€y P52
<= (”1)2<ﬁ_“0)+€ < U(;l(iW / e(u(®)C?dM + C, (3.49)

[t:té}xB(r1/2, x0)

where we use the definition of r; in (3.29). In particular, (3.49) is valid for r; = (po)% and
the corresponding t(’) as in (3.45) and (3.46)

to— (po) ™€ /4 <1 <19 ;
A — qp(rg—2)

. 2(%—a0)+e C (po) €D .
((PO) ) = m / e(u()C?dmM + C.
{r=t}x B((p0)4/€/2, x0)

(3.50)

Thus, for rq, (po)g < ry < po, we simply have
- ‘11’((}\();)2)
A2 e(p—
() _ Clop)
|B ((p0)7/</2)] ‘
{t=t{}x B((p0)*0/B0/2, x¢)

ew®)CldM+C,

because of (3.20) and (3.38) again. ]

Now we derive an ordinary differential inequality for g(r), —R* <t < 0.
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Lemma 17 Let Ao, Bo, ap and € be positive parameters satisfying the conditions

6p —4

< Ao = By < p; 3.51
PR 0 o<p (3.51)
Ao —2 Ao —2

<ap<1; O0<e<2|ay— . (3.52)
p—2 p—2

Then the differential inequality holds for any positive R < 1 and any t, —R* <t <0

t
¢ < g0+ C / ()R dr, (3.53)
_R*
where the initial data g is
=)
g0 i= 49040 4 ¢ R0 - ¢ Ra0A0 fim sup L / e(u(t)) dM
oo 1B(o)]

{r=—R*0}xB(p, x0)

(3.54)

and the positive constant C depends only on Ao, p, M and N.

Proof Simply saying, our desired inequality (3.53) in Lemma 17 is obtained from combining
the gradient L°°-estimate on a small region in Lemmata 15 and 16, and the monotonicity
estimate of local scaled energy in Lemmata 12 and 13. Here we observe the admissible range
of two parameters By in Lemmata 12 and 13, and A¢ in Lemmata 15 and 16, to choose as
Lo = Bo. By (3.12) and (3.39) we have

6p —4
p+2

<By<p;, 2<X<p

and thus, we can choose B and g as in (3.51), because

6p —4
p+2

The choice of ag in (3.38) and € in (3.20) are as in (3.52).

By use of the monotonicity estimate in Lemmata 12 and 13. we estimate the local in
space scaled integral of gradient in the right hand side of (3.43) in Lemma 15 and (3.48) in
Lemma 16

Backward monotonicity estimate, Lemma 12 First we apply the backward monotonicity
estimate, Lemma 12, for the local scaled energy in the right hand side of (3.43) in Lemma 15
and (3.48) in Lemma 16.

Let us choose the time-component f# of the pole of Barenblatt function B_ in (5.3) as
follows: For each

<p<:>(p—2)2>0.

to — (r1)* /4 <t} < tpin Lemma 15,
or

A
to — (po)qTO/4 <t} < tpin Lemma 16, with r| replaced by (,00)%, (3.55)
let 79 be as 11

1= 1+ (r) % = 1§+ (A1) P (). (3.56)
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Then, the local scaled integral in the right hand side of (3.43) and (3.48) is estimated as

( )P(B();Z)
=
m / e(u(t)) () dM
{1=1}x B(r1/2, x0)
c
- ey / e(u(t)) B- (t1, xo; 1) C()1dM,  (3.57)

{t=t] 7(r1)30}><B(r1 N xo)
because by (3.56) we have, for ¢ := 1,

t=1— (AP (1) =1 —1 =A@ P = )P x € B(ri/2, xo0)

p—1
P

= )" (1-2777) " =BG, x0i 1, ),

Let o’ be a positive number, chosen as

t + RM
(0o = % (3.58)

and then, the backward monotonicity estimate in Lemma 12 yields the upper-boundedness
for (3.57) by

ﬁ / e(u(t)) B (t1, xo; t) C(t)? dM
{r=n1—(")%0}xB (o', x0)
+C (()" =)
n—@rko
+C [ 1@ WD e O (3.59)
11— (p") B0
Forward monotonicity estimate, Lemma 13 Next, we use the forward monotonicty estmate

in Lemma 13 for estimating the first scaled energy in (3.59).
By use of C, the first term of (3.59) is evaluated by the forward scaled energy

C o e

(A(p))? / e(u(r)) By (—R 00 t) CHT™r2dM, (3.60)
{l=f1*PBO}><B(p,x0)

since by (3.58) we find that, for t := 1, — (A(p’))2—p (p/)z,

t) + R*

n—t=(p)" =————=1- (=R");
_m t R* 73&0 _m
(1 —1) B0 = <71 +2 ) = (t — (—R™)) P
and the function C can be evaluated above as
_ Aoy1/20 _ — *0y1/20 _ |x]

x| =AW
5(1_((I+R*0)1/'\0) >+’

@ Springer



Global existence and partial regularity for the p-harmonic... Page 190f66 54

= <1 _ ( x| )ﬂl)T
(t + RM)1/% N

<
ol —

because
A0 =Bo;, —— > 1;
p—1
(t+ R < R <1; supp(C(t) = B ((t + R*)/*, 0),
and thus, for 7 :== 1 — (A(p"))>~P(p)2,

B_ (11, x0; 1) C()7 < By (—R™, 0; 1) !,
Also the third term of (3.59) is bounded above by
11 —(r1)%o
c / 102 @M oo (g (et &70)1/50. 0y AT (3.61)
11—(p")Bo
because by the support of C the region of L°° norm on space is actually
B((ti — )%, x0) N B((r + R*)/%, 0) € B((x + R*)!/B0, 0).

Then, by the forward monotonicity estimate in Lemma 13 (3.60) is bounded by

lim\s‘(l)lp ﬁ / e(u(t)) By (—R™, 0; 1) CHT 7 dM
: {t=p307R)‘0}><B(p,0)

(p/)BoiR)LO
N ) 0
+C(Y+C 1?7272 (@@ oo s ((r-4 r70) /50, 0y) AT
—R™
(3.62)
where again, we note that by (3.58)
ty — R™
(PP = R = 2 =1 — (o).
The first scaled energy term above is estimated above as
P(Bo=2)
. p
C lim sup / e(u(t))dm|. (3.63)
PO |B(p)]

{r=p*0—R*0}x B(p)(0)

Now we combine the estimations above, (3.43), (3.48), (3.57), (3.59), (3.60), (3.61), (3.62)
and (3.63) to have

(e(u(to, xo)))%(z(l‘%)—%)

p(Bg—2)
: p
< C limsup e(u(tr))dm
PN |B(p)l

{r=pP0~R*0}xB(p)(0)
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+C (P =) +C ()"
11=(r)%o
_3p=5
+C / 1C@)?™ 772 (e@@N® | oo (p((e4-r20)1/80, 0y AT2  (3.64)

—_R*

where the power exponent in the left hand side is positive by (3.52), and the second one in
the right hand side is bounded as

C ((pH" = r") +C ()" < CR", (3.65)
where we recall 71 in (3.56) and o’ in (3.58)
n=1+ A7) (AT D) =D —RM <15 <0; Ao =By

2o\ 1/Bo
=1 <RY; p'= (#) < (R)/* =R,

Differential inequality We gather (3.64) and (3.65) and then, multiply the resulting inequal-

ap Ao

1/
ity by <(to + R’\O) ' |x0|> to have

L ao S\ Ao
(((to + RAO) - |x0|> e(u(to, XO))”)
)
Ao 1: p P2
< C R™“% lim sup / e(u(t))dm
oNO [B(p)l

{t=pBo—R*0}xB(p, 0)
+C R (1 + R")

t
apAo q—% 0o
+CR IC(x)" »=2 (e(u(z))) ||L°°(B((r+Rko)1/f\0, 0)) dtr, (3.66)

—R™

where we note by (3.51) that By = XAg.

Moreover, we will modify some terms in (3.66) for our demand. By (3.24) the left hand
side of (3.66) is estimated below by g(¢).

In the third term in the right hand side of (3.66) the integrand is bounded by

n aopt
I ((r + R¥)% — . |) (@@ ll oo (e 1 R0y 1710, 0)- (3.67)

since g > 2 can be chosen to be large, comparing with ag p6p and depending only on p and
By, in fact,
3p—5 -5

3
Zaop90<ZCIZP90+p7,
-2 p—2

0O<ay<1; g-—

where 6y depends only on p and By.
Finally, collecting (3.28) in Case 1, and (3.66) (3.67) in Case 2, we arrive at our desired
estimation (3.53).
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Here we observe that the principal integral quantity in (3.66) is rewritten as

p(Bo—2)
. p
lim sup / e(u(t))dm
oo |1B(o)]
{t=p™0—RM}x B(p, x0)
P(By—2)
. p
= lim sup / e(u(t))dM. (3.68)
oo |B(o)]

{t=—RM}xB(p, x0)

In fact, by time-space continuity of Du, we have the estimation for sufficiently small positive
p

p(By=2)
p P2 / ho N N p(Bp—2)
e(u(p™ —R"™)) —e((—R))| dM <Cp r2
o [ letwt - R e (- R
B(p, xo0)
which converges to 0, by taking the lim sup on p tending to O in the both side. O

We are now in position to show the validity of Lemma 14. We solve the differential
inequality (3.53) and (3.54), yielding the uniform gradient bound (3.19).

Proof of Lemma 14. The differential inequality (3.53) and (3.54) can be easily solved as

1
g <go/(1-CB-D (R +1) (g )", —R*<1<0, (369
with the exponent
P
= —_— 1,
B A

which is satisfied by 6p > 1 and choice in (3.52).
We simply obtain from (3.69)

1
g(t) <2FTgy, —RM™ <t <0, (3.70)
under the choice of R such that
A B—1 1 1)/ 1 A
l—C(ﬁ—l)RO—H(o)_ZZ_{:)(f) ———— > R0 +1,
(R +1) (8 %) 206-1D
which is satisfied by

p—1

71 ’ 71 ’Alo >R<<—0 C R)‘O+t<R)‘0 (3.71)
< < 5 .
C ZC(/B — 1) - g0 ’ -

and so, let Ry be the positive number in the left hand side of the first inequality in (3.71). O

4 Passing to the limit

In this section we present the proof of Theorem 5, based on Theorem 11. As before we
abbreviate the time-space Lebesgue measure dtd M as dz.

Let {ex} and {K} be sequences such that ¢, N\ 0 and K /" oo ask — oo. Let ug, ¢,
k=1,2,..., be asequence of solutions of the Cauchy problem with initial data u( for the

@ Springer



54 Page 22 of 66 M. Misawa

penalized equations (2.1) with approximating numbers € = ¢; and K = K, obtained in
Lemma 6. Hereafter we put uy = ug, ¢, ex(ux) = ek, ¢ (Uk,, ¢ ), for brevity.

By the energy inequality (2.4), there exist a subsequence of {u}, also denoted by the same
notation, and the limit map u such that, as k — oo,

up —> u weakly % in L® (o, 00: WP (M, ]Rl)), 4.1)
oiux —> d;u  weakly in L? (/\/loo, ]RI) , 4.2)
Duy —> Du  weakly in LY (/\/loo, IR'”I) , (4.3)
x(dis(ur, N)) —> 0 strongly in L2, (/\/loo, JR’) , (4.4)
up —> u strongly in L{IOC (Moo, ]Rl) foranyg,1 <g < &, 4.5)
(m—p)+

where the strong convergence in (4.5) follows from (4.1) and (4.2) (see [6, Lemma 1.4, p.
28]). Thus, furthermore, for a subsequence {uy} denoted by the same notation,

up —> u, dist(ug, N) —> 0 almost everywhere in M. 4.6)

The use of convergence (4.3) and (4.2) in the energy inequality (3.1) for uy also yields (1.14)
for the limit map u.
We demonstrate that the limit map u is a partial regular weak solution of the p-harmonic
flow, as in the statement of Theorem 5. The proof is divided to several steps and proceeded.
Let us define the regular set of the limit map u as

Reg(u) := {zo0 = (to, x0) € Mo | u is regular in a neighborhood of zp}

and thus, the singular set as the complement of Reg(u), X := Sing(u) = M\ Reg(u). By
definition, Reg(u) is a relatively open set of M, and Sing(u) is relatively closed in M.
Let Rg be a sufficient small positive number, determined in Theorem 11. For 7,0 < 7 < oo,
and R, 0 < R < min{Ry, t/B0}, we put two subsets in M as

S(t, R) := [x() e M : lim sup(lim sup 0" / er(up(t, x)) d/\/l) > 1];
k—o00 N0
{t=t—RB0}x B(r, x0)
oo X
T B = [xo e M : limsupr?0™ f er(ug(t, X)) dM > 1/2}.
—1iz 0
[=Tk=l ™ {t=r—RB0O}x B(r, xo)
4.7)
Then, let us define as
S(7) := ﬂ S(t,R) ; S§:= ® S(v), 4.8)

0<t<00
0<R<min{Rg, t'/B0}

where ® means the direct product of sets on positive time T < oco.

O<t<o0

Regularity of the limit map We will prove that ¥ = Sing(u) C S. For this purpose, we now
show the regularity of limit map u in the complement of S. Let (¢p, xo) be in the complement
of S. Thus, there exist a positive R < min{Ry, (ty) 1/Bo} and an infinite family {uy } of regular
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solutions such that

lim sup 70~ / ex(up(t, x))dx < 1.

r\0
{t=tg—RBO}x B(r, x0)

Then we can apply Theorem 11 for each u; above to obtain

sup er(uy) < C R™P0, 4.9)
(to—(R/4)50,19) x B(R/4, x0)

where the positive constant C depends only on By, p, M and NV.
Put Q0 = (to — (R/S)BO, to> x B(R/8, xo). From (4.9), there exists a subsequence of
{ur}, denoted by the same notation, such that, as k — oo,

Duy — Du weakly * in L (Q); sup|Du| < C R™PY, (4.10)
0

Now we will show the uniform continuity of {u;} in Q. For this purpose we will derive
alocal L? estimate of derivative of the penalty term. For any smooth function ¢ of compact
support in Q, we multiply the Bochner type estimate (3.4) in Lemma 9 by ¢ /[g| and
integrate by parts in Q to have, letting K = Ky, u = uy and e(u) = e (ug),

C 222 2 C |K 2
[ (S IS )+
0 2
2 2(1—l)
+C3¢2 (1 + e(u)l’) ew)’\'" 7)) az, 4.11)

=Dy x(dist*(u, N)

2 |2

2 (2p 2 2
< / (¢|at¢|e<u>+|D¢| (—e(u>+—e<u>v)
0 Cq Cy

where we use the Cauchy inequality in the first inequality.

Let (#o, xo) C Q be any point and » < R/8 be any positive number, and Q(r) =
(to — r4, to) x B(r, xo) with g > 1. In (4.11) we choose a smooth function ¢ such that
0<¢p=<1,¢=1in Q(), ¢ = O0outside Q(2r),and |D¢| < C/r and |0;¢| < C/r4. Thus,
from (4.9) and (4.11) we obtain

2
) dz

<C (rm 4+ pmta—2 +rm+q) <Crm (4.12)

-2
/ a (e +1DuP) ™ |D%u| + @ ED,,X(distz(u, N)
o \ 2 212

We also need the Poincaré inequality of parabolic type : Let u = uy. There exists a positive
constant C, depending only on M and p, such that, for any Q(r) C Q,

_ = 2 2 2 —m+q—2 2\1/2)2(p—1)
||Lt uQ(’)”LZ(Q(r)) <C (l’ ”Du”LZ(Q(r)) +r ”(6 + IDM' ) ”LP*I(Q(r))

+r2 127 K Dy (dist e, M) 2 ) (4.13)

where i g is the integral mean of u in Q(r). For the proof refer to [28].
Substituting (4.9) and (4.12) into (4.13), we have, for any (7, x0) C Q, any positive
r < R/8,and Q(r) = (1o — r?, t9) x B(r, xo),

e = G012 gy < C (F"HIT2 4 P32 4 20 (“.14)
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and thus, choosing ¢ > 1 in (4.14), we obtain from Campanato’s isomorphism theorem that
{ux} is uniformly Holder continuous in Q with exponent minf{l, ¢ — 1, %} on the metric
|£]'/9 4 |x|, uniformly on uy.. Thus, we see that {u; } is equicontinuous, and uniformly bounded
in Q by Lemma 8. Therefore, by Arzela-Ascoli theorem we find for a subsequence of {uy},
denoted by the same notation, and the limit map u that, as k — oo,

ury —> u uniformly in Q (4.15)

and that the limit map u is uniformly continuous in Q. From (4.9) and (4.15), we see that, as
k — oo,

x (dis?(ug, N)) < C/Ky —> 0 uniformlyin Q = ueN inQ  (4.16)

Now we will show that the limit map u satisfies the p-harmonic flow equation in Q. From
(4.9)and (4.11) we also see that | (K/2) Dyx (dist®(w, N)|,._,, } is boundedin L2(0, R)

and then, there exists a vector-valued function v € LZ(Q, R/ ) such that, as k — o0,

u=uj

(Kk/2) Dux(dist?(u, N))|, _, —> v weaklyin L2(Q). (4.17)

u=uy

Let Pns (u(Q)) be a neighborhood of u(Q) in NV. Let 7(v) be any smooth tangent vector
field of A on Par(u(Q)), T(v) € TN for any v € Ppr(u(Q)). By (4.15), we can choose a
sufficiently large ko such that, forany k > ko, ux € Os,,in Q and wpr (ug) € Py (M(Q)) cN
and t(mar(uy)) € 7 N(“k)N in Q, where Os,, is a tubular neighborhood in R! of A with
width 8r, and 7 is the nearest point projection to N from the tubular neighborhood of .
Thus, we have that

Dy x (dist*(u, N))| T(mar(ug)) = 2y dist(u, N) Dy dist(u, Ny, - (a7 (i)

=0 inQ,

U=uy

because Dy dist(u, N)|,—y, () is orthogonal to Ty, (u.(z))V for any z € Q, and then,

f % Dux (dis @, N))|,_, -t @) dz =0. (4.18)
Q

By (4.15) and (4.17), we can take the limit as k — oo in (4.18) to have, for any smooth
tangent vector field t(v) of AV on ’PN(M(Q)) CWN,ask — o0,

/ — Dux d1§t (u, N))‘u:uk st(ma(ug))dz —> / v-1t(u)dz
(¢

:>/v-t(u)dz:0
9]
— v(z2) LTyyN foranyz € Q (4.19)

and thus, v(z) is a normal vector field along u(z) for any z € Q. In the weak form of (2.1),
for any smooth map ¢ with compact support in Q,

K
/Q(a,uk & + (ex + | Dug| ) “ﬂDﬂuk Do + — Du)((dlst (u, N))|u:“k -¢> dz =0,
we pass to the limit as k — oo to find that the limit map u satisfies

/ (3u - ¢+ |Dul”2¢*’ Dgu - Do +v - ) dz =0, (4.20)
0
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where we use the convergence in the first line of (4.19) and, the strong convergence of
gradients {Duy}, obtained from (2.1) with the convergence (4.1), (4.2) and (4.17) (see [6,
Theorem 2.1 and its proof, pp. 31-33]). Therefore, we obtain that

Ou — Apu+v =0 almost everywhere in Q as L2(Q) — map. 4.21)
‘We now observe that
(@) = —[Du()P g% (x) Dpu(2) - (Datt(2) - Dy @)z
almost every z = (¢, x) € Q. (4.22)

Let z = (7, X) € Q be arbitrarily taken and fixed. Let y (v) be a smooth unit normal vector
field of A" in u(Q) C A such that y(v) € (LA, |y(v)| = 1 for any v € u(Q) and
y(u(z)) = v(2)/|v(z)|. We take the composite map y (u) of y(-) and the limit map u, and
use a test function +/|g[y («) n for any smooth real-valued function n with compact support
in Q to have

/Q (9w -y yn + | Dul?2g* Dgu - (Dgy u)n + y w)Dgn) + v -y () n) dz = 0;

/ (|Du|”72g“ﬂDﬂu -Dgy(u) +v- y(u)) ndz =0
o

= v-yl) = —|Du|p_2g°"3D,3u - Dgy(u) almost everywhere in Q,

where in the second line, we use that d,;u, Dyu € TN, =1,...,m,and y (u) € (TyN)*
in Q. The last line yields, at z = Z,
@) = —Du@)|P g @) Dpu(@) - (Dpu(@) - Duy W)l ymyz) )-

Thus, (4.22) actually holds true.
Furthermore, there exists a positive constant C depending only on bounds of curvature of
N and (g*#) such that

|[v| < C |Du|? almost everywhere in Q. (4.23)
In fact, from (4.22) we obtain

)| <C m%) |Dyy (v)| |Du(z)|? for almost every z € Q.
VEU

By (4.23) and (4.10) we have that

du — Apu =—v € L(Q) almost everywhere in Q
= Du is locally Holder continuous in Q, (4.24)

where for the last statement of gradient continuity, we refer to [12, Theorem 1.1, p. 245; Sect.
4, p. 291; Sect. 1-(ii), pp. 217-218] (also see [26]).

As a consequence, we have that (fp, xp) is a regular point and thus, ¥ C S. Furthermore,
from (4.21) and (4.22) it follows that the limit map u satisfies the p-harmonic flow Eq. (1.4)
almost everywhere in Q.

Size estimate of the singular set We recall again that ¥ = Sing(u) C S. Let us estimate the
size of S.

From the definition of limit supremum on k and (4.7), we see that, forevery 7,0 < 7 < oo,
and R, 0 < R < min{Ry, TI/BO},

S(t, R) C7(z, R). (4.25)
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Here we have the estimation of size (see [17, Theorem 2.2; its proof, pp. 101-103], [21] for
the proof) : It holds that, for every 7,0 < 7 < oo, and R, 0 < R < min{Ry, 1:1/30},

H" (T (r, R) =0
and so, by (4.25),
H" T (S(z, R)) =0; H"7(S(r)) =0.
Thus, for any positive T < oo,
(1} x X C S(1); Hm_”o({f} x %) =0.

Then, the m-dimensional Hausdorff measure of S N M, with respect to the time-space
metric |¢|/70 + |x| is locally zero : For any positive T < oo, letting M7 = (0, T) x M,

T
H (s Mr) = /H’"’VO (S(r))dr =0.
0

Weak solution of the p-harmonic flow Now we set the two sequences of real-numbers as
follows : Let Ag be a positive number. Let € be any small positive number and Ry < 1 be a
sufficient small positive number, which are sent to zero, later. For positive constants M > 1
and 6 < 1, we define two geometrical progressions as

Aj=AoM': R =Ry, 1=0,1,2,.... (4.26)

Itis seen that A; /" oo and R; \( 0 as/ — oo.
Let K be any time-space domain, K = (0, T) x B(Raq, xo) for T > 0 and a geodesic
ball B(Rq, xo) in M. We set a family of sets S,/ =0, 1,2, ..., as

So={z e M 1 1Du@] = 20} (Y (K $):
S = {zeMoo Ay < |Du(z)| §Al}ﬂ(1(ﬂ8>, [=1,2,..., (427

where S is as in (4.8).

By the size of S shown as before and the compactness of K (] S, we can choose a covering
of K (S in the following way : There exist sequences of positive numbers {r;;} and time-
space points {z;;},/ =0,1,2,...;i = 1,2, ..., I(l) with finite integer / (/) depending on
each [, such that, foreach/ =0,1, 2, ...,

P(rii)(zi) = i — ()™, 1 + (r1)") x B, i) (xi4),
zi = Wi, x11), ri <R, i=12,...1(), (4.28)
are a family of time-space cylinders and a covering of S; in the sense that

P;i :== P(r1i)(z;;) : disjoint each other ;
I1() 1(l)

Pli=PGEn@). | JPiDS: Y 6" <e (4.29)
i=1

i=1

where € is firstly taken as small positive number.
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Furthermore, by the compactness of K (1) S, we can take a covering of K (S from { P/},
obtained above, which consists of finitely many time-space cylinders PZ’ »1=0,1,2,..., L
with finite integer L;i = 1, 2, ..., I(l), and has the properties

Py := P(r1i)(zy;) @ disjointeachother, [ =0,1,2,...,L;i=1,2,...,1();

L 1) L I()
UUPri kS YD 6Gn)" <e (4.30)
1=0i=1 =0 i=1

Let n be a smooth function on My, suchthatO <n < 1,n=1in P(1)(0) := (—1, 1) x
B(1)(0) and the support of n is contained in P(2)(0) := ( — 2n, ZVO) x B(2)(0), and
|0;n]+|Dn| < C with a positive number C depending only onm and yp. Forl =0, 1,2, .. ;
i=1,2,...,1(), we denote by n;; the scaled function

mite %) = n(( =00/ Gr™, = x)/5r;)
and then, the support of n;; C P/} := P(107r;;)(211).

Let£:=1{0,1,2,...,L},Z(l) :=={1,2,..., I(])}. Let ¢ be any smooth map defined on
Mo with values into IR’ with compact support in K. From (4.21) we obtain

0= [ (u—A : inf  (1—n;)d
/( i — Apu+v) ¢>16L}13€Z(1)( nii)dz
K
= [ (du- DulP2g*¥ Dgu - D . inf  (1—n;))d
/(,u 6+ DUl g Dy Dup+v-9)_int (1= i) dz
K
—/|Du|P*2g“ﬂDﬁu- sup (¢ Danyi)dz. 4.31)
e lel;ieZ(l)

We note that the number of overlaps of {PZ’;} .l e L;ieI()),isat most finite and thus,
there exists a subfamily {Q;;} of {Pl’ ;} such that

|Dnyi(z)l = sup  |Dnyi(z) for Qi; :=13P/i >z
leL,ieZ(l)

for any z € U Uiez) (supp (Pn1:) () P/; () S1). Thus, the last error term in (4.31) is
estimated above by

f|Du|P—1|¢| sup  |Dnyildz = / DulP~'lp| sup  |Dniildz
leL;ieZ(l) , lel;ieZ(l)
K Urez Uiezay (Pi N S1)
= / |Du|”~" || D1y dz
Urez Uiezay (Q1:i N S1)
L 1)
<suplgl YD | Coun)”! / |DulP~! dz
K —
=0 i=I 01i NS
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of which the last integral is bounded by
i) 10wl (AP~ = )T | P (apPT!
< C (AP (rgyym ot
< C (AN R ()™,

with a positive constant C depending only on m, where we use that yp > 1 and that, by (4.27)
and (4.28), foreach/ =0,1,2, ...,

|Dul <Ay inS; r; <R, i=12,...,1(0.

Thus, it holds that

L 1)
/|Du|l"1|¢| sup  |Dngildz < Csuplgl D (AP~ R Y ()"
K 1=0
K

lelsieZ(l) i=1

<Ced (AP R (4.32)
=0

where we use (4.29) and the positive constant C’ depends only on m, yp and supg |¢|. For
summation on /, we choose the ratios M > 1 and 6 < 1 in (4.26) as

0<0<1; M=06"" forsomea > 0 chosen later (4.33)
and compute
(AP RYPT! = (M)~ (Roy0 ! g atrm D=
and thus,

o0 o0
Z(Al)p_l (Rl))/o—l (AO)P—I (RU)VO_I Z pl(=alp=D+r—1)
=0 =0

(R~ " (Ag)P~!

IA

= 1 g=a—Drn=T' (4.34)
provided that
—a(p—D4+p—-1>0<= 0<a< J;)—_l; yo > 1.
Finally, we see from (4.29) and definition of n;; that
inf (1 —mn;;) > 1 almost everywhere in K as Ry \( 0 (4.35)

lel;iel

and thus, we can take the limit as Ry N\ O in (4.32) and (4.34), and use the Lebesgue
convergence theorem with (4.35) in the second line of (4.31) to find that the limit map u
satisfies the p-harmonic flow equation in the weak sense. O

Convergence to the p-harmonic map at a time-infinity We will present the convergence
of u to a p-harmonic map as time tends to infinity. By (1.14) we choose a sequence of time
{1}, 71 /" 00, and a limit map u, such that, as/ — oo,

u(t) — s  weakly in W7 (M, R (4.36)
Du(t)) — Dus, weakly in L” (M, R™) (4.37)
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du(t) — 0 strongly in L*(M, R), (4.38)
where from (1.14) we obtain that, for some time-sequence {#}, ; /' co asl — oo,
2 2
||8tu(tl)||L2(M) = ”alu”LZ((t]_l, 1) x M) — 0.

Then, from the convergence (4.1), (4.2) and (4.3), there exists a subsequence of {uy(tx)},
satisfying the same convergence as in (4.36), (4.37) and (4.38) with u (1) replaced by u (%),
ask /' oo.

Let us define the regular set of u, as

Reg(uso) := {x0 € M : u is regular in a neghborhood of xo} (4.39)

and the singular set Sing(uso) as the complement of Reg(uoo), oo 1= Sing(us) = M\
Reg(uso). By definition, Reg (i) is relatively open in M and Sing(u ) is relatively closed
in M.

Letus put, for0 < R < Ry,

Soo(R) := {xg € M : limsup { lim sup r”"*’"/ e (up(t, x))dM | >1¢;
k—o0 N0 {t=1x—RP0}x B(r, xo)
Swoi= [ Sw(R). (4.40)
0<R<Ry

Then, similarly as in Size estimate of the singular set before, we have that, for any positive
R < Ry,

HI(SalR) =05 HP(S2c) = 0. (441

We will show that ¥, C Suo- Let xg be in the complement of S, and then, there exist a
positive R < Ry, a subsequence of {uy(tx)}, denoted by the same notation as before, such
that

lim sup r’0=" / er(ug(t, x))dM < 1.
N0
{t=1t—RB0}x B(r, x0)

Then, by Theorem 11, we have

sup ex(uy) < C R7P%, (4.42)
(te—(R/4)P0, 71)x B(R/4, x0)

where the positive constant C depends only on p, M and NV. Based on (4.42), we can proceed
the same limit process as in (4.11)—(4.24) to find that u, is regular in B(R/8, x¢) and thus,
x0 € Reg(uoo) = M\ E. Therefore, the complement of Sy, is contained in that of ¥,
Reg(uso), and thus, X, C So. By use of the size estimate of Sy, in (4.41), we can adopt
the similar argument as in (4.26)—(4.35), where time-space regions used are replaced by the
corresponding space regions, and thus, find that u, is a weak solution of the p-harmonic
map. O

5 Monotonicity estimate of a local scaled energy
We now prove the monotonicity type estimate.

We make parallel translation on time of the Eq. (2.1) and its solutions u on (T, c0) X
B(R ) to those on (0, co) x B(R ) with the same notation.
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Hereafter we assume that the metric g = (gaﬁ) is the identity matrix. In the general case
with ( galg), the lower order terms containing the derivatives of g4 only appear and controlled
well as in the following estimations.

Let (t9, xo) in the parabolic like envelope {(t, x) : min{l, (Ryp0)%) > 1> |x|B°] ,
Bo > 2.

First we prove the backward monotonicity estimate, Lemma 12. Our localized scaled
penalized energy is defined as

1
E(r)=— /
AP Jii=tg—A2-7 r2)x B(R )

I ;K
) = ok clw) = (e + |Dul)* + Co 5 x( dist*(u, N:

e(u(t, x)) B(tg, xo; t,x)C(t, x)dx; 5.1

Lo 6p—4 ~ 1/B
A=Ar)=r*r; p>By>——; 0<r <minf{l, Rrq, (o) /"°} (5.2)
p+2
with weight
p—1
LN\ =2
1 - AN
Y +
(to—1)% (tg — 1) Bo N
e, x) = (rl/BO - |x|) L og>2. (5.3)
+

Hereafter, for brevity, we use the notation as above.

Lemma 18 Let p > 2 and q > 2. For any regular solution u to (2.1) the following estimate
is valid for any positive number r < p < min{l, R, (19/2)"/ 50}

E(r) < E(p) + C (p" — ")
t()frBO
+C / 1972 @ @N™ | (B tg—1) 150, xgy) A1+ (5.4)
19—pB0
where
Bo=2
A=Ar)=rZ7; (AP Pri=rB

and the positive exponents 6y > 2 and wu depend only on By, p and N, m, p and By,
respectively, and the positive constant C depends only on the same ones as | and q.

The proof is proceeded similarly as in [33, Lemmta 5 and 6]. Here we will study how to
control well the approximating term, the derivative of penalty term.

Proof of Lemma 18. As before, let

and let r be any positive number in the range 0 < r < min {1, R, (to/Z)I/BO}. First we
make a scaling transformation intrinsic to the evolutionary p-Laplace operator

_ u(ty + A2 P2 xo +ry)

t=10+A"Prts; x=xo+ry; v(s, y)
Ar

(5.5)
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and, under the scaling transformation
t=1 — AP s s = 1.

Then the scaled solution v is a solution of the scaled equation on {s = —1} x {y € R™ :
xo+ry € B(Rm)}

p—2

K /AP
dsv — div ((A_ze +|Dv|?) 2 Dv) =G /

Dyx (dis?(Arv, N)) (5.6

and we put the notation
e=A2 K=ATK;

f = f@) =~ (E+ Do)

; g=gW) = gx(distz(Arv, N));

]

N

(p f)l_%DU> ; e=e() = f()+ Cogv).

Apv = div
The scaled penalized energy is rewritten as

E(r) = / e(u(s, y)) B(s, y)C(s, y)dy;

{s=—1}xR™
p=1

P p—2
1 r
B, ») = — 1( 'y'l) P Co ) = (o rBo B~ jxo+ry])
(—s)%0 (—s)%0 N "

(5.7)

where the integral in (5.7) is well-defined by supp(C) and supp(53) and we simply compute
as
DUs. y) = + Dyult, ¥); 6(0) = — &(u)
v(s, y = u(t, x); e(v _Apeu

By—2 p—2  Bp—2

A=r27r & AB r % =1; B(s, y)dy =B, xo; t, x) dx.

Our main task in monotonicity estimate is to derive appropriate values of parameter such
that

By~ P4 (5.8)
> > . .
p 0 2
Step 1 : differentiation of E(r) on r. We compute differentiation of E(r) on r.
d d d
L E() = ) q z 2L oa
P (r) / dre(v)BC dy + / e(v)BdrC dy
{s=—1}xR™ {s=—1)xR™
_2 d d
= / (pf)1 PDv-—Dv—i—Co—v-Dug(v) BCldy
dr dr
{s=—1}xR™
vo [ (fen T epciew) Betay
r(p=2) ’
{s=—1}xR™
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d
+ / e(v)B—C%dy
dr

{s=—1}xIR™
=:1+11+11, 5.9)
since
de(v) 1—2 (€(B—2) d Cop(B—2) dv
— > ~ +Dv-—D _ C -D
o =D (S oy P )+ gy 80+ Coy Dug(o).

Estimations of Il and I11. The term 11 is nonnegative.
The term 7117 is estimated by Young’s inequality as

dc
111 =¢q / e(v)yBCI™! oy
r

{s=—1}xIR™
C _ —1
> — - / e(v)C1™" Bdy
{s=—1}xR™
= Cr%
e (e(v)) 7 C1Bdy — . de,
{s=—1}xIR™ {s=—1}xIR™

(5.10)

where C(s, y) := ((to +rBo)l/Bo _ |xo 41 y|) is a Lipschitz function and the derivative
+

of C on r is computed as

d d
(s, | = |5 (o +rPos) VB0 — g + ry))
dr dr +

rBo—lg Xo+ry

By \1/Bo
to+r"s — .
(o S ) ot Y

= X{lxo+ryl<(to+rBos)!/Bo)

and thus, on the support {y € R : |y| < 1} of B(—1, y)

d

-1
2 = 2oyl ity By T

s=—1

because of the conditions
r 1
0<1p<1; t7<1<:>r305—0.

The 1st term of (5.10) is scaled back and bounded below by

c
~ T A | @O T W~ uppisan)

By

t=to—r
{s=—1}xR™

where we use A2~P 2 = yBo,

f de:/ (1—|y|ﬁ)?dy<oo
{s=—1}xIR™ R +

and the notation

e(u) := fu)+ Cogu) = i (e + |Du|2)§ + Co gx (dist? (u, N)).
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Each term of I is separately estimated in the following.
Estimation of 1. By integration by parts, we have

_2 d
I = / (— div((p /) "7 DVBCY) + Co Dvg(v)BC’f) . d—vdy
r
{s=—1}xIR"
1 A _2
== (1 + rA ) / {div((p n' iDuchﬂ).ch — Cov - Dyg(v) BCY
p
{s=—1}xR™

+(pH D (v ch/z) ch/z} dy
1
4= (= div((p ) "7 DYBCT) + Co Dug) BCY)-
.
{s=—1}xR™
((@=p)yr ATVAN +2)sdv+y- Dv) dy

=L+ 15+ I3, (5.11)

where the generator of dilation is computed as

% =1 (- —I—rA_lA’)v—i— ((2—p)rA_1A’+2)sasv—|—y -Dv). (5.12)
,

Estimation of 1.

—_

1 A 2
= (1 + rA ) f {(div((pf)‘ b DvBCY?) — CoDUg(v)BCq/2)~

{s=—1}xR™
~(ve1? — ) — Co - Dyg(v) BCY?) dy
=11 + Iz,

where v is a weighted integral mean as in (5.14) below, and

! 1+ A
—— r— | v
r A

=0,

div ((p "7 Do BC1?) dy

s=—1
{s=—1}xR™

because of Gauss’s divergence theorem and the compactness of support of 5 and C.
Each term /71 and I, is separately estimated in the following.
Estimation of I1. 111 is computed as

1 A _
hi= - <1 +r X) / ((v ci/?) — v) ((Apv — Co Dyg(v)) BCI*+
{s=—1}xIR™

2 2
+(p £) "7 Dv-DBCI* + (p £)' "7 Dv- DCI? B) dy

= % <1+r%/> / (et —v)-

{s=—1}xIR™
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1
) o
p(p )7y Du (1= [y[7T) 7 car?
+

{ovBer?+ -
(p=2) Iyl

1-2 2
+(pH " PDv- DY B}dy

=: I + hi2 + s (5.13)

Now we will estimate each of three terms in (5.13).
For estimation of /11 we use the Poincaré type inequality with weight of Barenblatt like

function [35, Theorem 5.3.4, p. 134]. Let v be a weighted integral mean
) :/ (vc?*)Bdy/ Bdy. (5.14)
{s=—1}xIR™ {s=—1}xR™"

Lemma 19 (Poincaré inequality)

2 2
/ ’(vc‘f/z)—a‘ Bdy<C / ’D(qu/z)‘ Bdy.
(s=—1}xR™

(5.15)

{s=—1}xRR™
I111 of (5.13). I11; is estimated by Cauchy’s inequality for small ¢ > 0 as

1 2
/ oo BT dy - >— / ((ch/z)—a‘ Bdy,
{s=—1}xR™

{s=—1}xIR™
(5.16)

[
1 = —=—
2r

where by definition of A, 1 +r A~ A’ = (p — Bo)(p — 2)~!. The 1st time-derivative term
is absorbed into that of (5.24) below, later. By the Poincaré inequality (5.15) and Young’s

inequality with § > 0, the 2nd term is bounded below by

2 _1
¢ / [pwer™)| Bay = - < / (o )20 Bt ay
r

2cr
{s=—1}xR™

{s=—1}xR™
C
BCdy

R (e
C
- C172Bdy, 5.17
A2 / y (5.17)
{s=—1}xIR™
where the last term is obtained from the derivative of C on y, scaling back, a boundedness of
the map u with a bound H depending only on A/ in Lemma 8
X0 +ry
’DyC(l‘, .X)| = X{|x0+ry\§(to+r30s)1/30} ‘_ |X0 + ry| }"

" X{xo+ryl<(to+rBos)/Boys

IA

|“|2 2 )
A2r2r =A"H". (5.18)

lv|*|DC|* <
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I112 of (5.13). By Cauchy’s inequality,

C 1-1
Iz —— / (pf)

I
| L
c1/2y — 1_1‘ ly|7T <] — |y|4p1) a2 gy

{s=—1}xIR™
>_C / ’(qu/z)—ﬁ‘zde
] {s=—1}xIR™
C -2 2 =
- / (P )17 (1= 17T) 7 (5.19)
{s=—1}xR™

where the 1st one is the same as the 2nd term in (5.16) and bounded below for § > 0 as in
(5.17) and, the 2nd one of (5.19), together with the 1st one of (5.17), is estimated below by

Cr2+1)

2(1-1
TTAZ-D) lc@)? (p fu@))) ( p)IILoo(supp(B(t)))‘t_m_rBO, (5.20)

where we make a scaling back and compute as

3—
2
[ (1= i)y < o

]Rnl

1113 of (5.13). By the boundedness (5.18) of derivative of C and Cauchy’s inequality,
q(p — Bo) -4

I = —5—— f ()7

2(p—2)r
{s=—1}xR™

_I;>—1<:>3>2.

vel/? 5‘ c?>~1|pc| Bdy

2-2 . 5 2 = 2
>-C (pf) 7 Ci2Bdy - C ]ch —v’ Bdy,
{s=—1}xIR™ {s=—1}xIR™
of which the 1st term is estimated, similarly as in (5.20), below by

Cri+1

_ 2(1-1
~ =30 IC()4 2(p fu())) ( p)||L00(Supp(B(t)))’t:t0rBO (5.21)

and the 2nd term is bounded below as in (5.17).
Estimation of I1;. By Cauchy’s inequality with § > 0, we estimate as

r o / D,gBCdy| <r 9] / |D,g| BC?dy

{s=—1}xR™ {s=—1}xR™
C o (rmy, N
< (“uonj\ o ) / |Dyg| BCY dy
r
{s=—1}xR™
<! Bd +L |Dygl? BCld
= YT A2 ,3%0 v8 Y,
{s=—1}xIR™ {s=—1}xR™

where we use a boundedness of u with H > 0 depending only on N\ in Lemma 8 to have

|ul H _ H
lv(s)| = <—; v =< / lv(s)|Bdy/ / Bdy < —

Ar =~ Ar Ar
{s=—1}xR™ {s=—1}xR™
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Estimation of I,. As before by Cauchy’s inequality

q(p — Bo) / -1 21 2
L > 22720 v lv|cd?> Y pe|ci? Bd
22 Ty, (pf) 7 vl |DC| y
{s=—1}xR™
c 1 c
> = / o) erpay - £ f Ci2Bdy, (5.22)
r rA2
(s=—1}xR™ (s=—1}xR™

of which the 1st term is estimated below by (5.20).
Estimation of 1. I3 is treated as

I = / (@=pr A" A +2) sdv+y-Dv)-
{s=—1}xR™

. (( — Apv+CoDyg(v)) BC? — (p f)"%Dv -(DBC? + DC? B)) dy

_! f (@=pyrA™" AN +2) sdv+y-Dv)-
;

{s=—1)xR™
1
P\ =2
-[—aszc‘er(pf) 7 y-Duv e
(p—=2)ylrT
2
—(pf) " Dv- DC B} dy.  (5.23)

Moreover each term of (5.23) is arranged as

1 / (=) (@=p)r A7V A" +2) |3v)* BCY dy

r

{s=—1}xR™

1
- - / (y - Dv) - v BCYdy

r

{s=—1}xIR™
p 1-2 2

+ / { pf) ?ly-Dvl

r(p—2) (pf)

{s=—1}xR™

F(@=praTt N +2) (p )T 6Dy -6 asw} CIx

_p=2 L\ =2
Iyl (1= 17T) 7 dy

- / (((2 l’)rlk 11\/ ‘|‘2) S’()Sﬂ—'— V'DU) (pf) pDU'})(qugd))
r
{_\—_71}><]R

=: I3 + Isp + I33 + 34 + I3s. (5.24)

Now each term in (5.24) is separately estimated.
131 of (5.24). Iz1 > 0 by the positivity of the coefficient. In fact, by definition of A and
s =—

(=) (Q=p)r ATV A +2) = By > 0 == A = B072/C=P) gy 0.
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I3 of (5.24). By Cauchy’s inequality for small ¢ > 0,

c 1

I > — v>BCldy — —

2z / [05v] Y
{s=—1}xIR"

The time-derivative term is absorbed into /31. By Young’s inequality the 2nd term is estimated

/ ly|? |Dv|*> BCY dy.

{s=—1}xR™

below for § > 0 by

c _ c
/ |Dv)? P~V BCd dy — - / BCidy,  (5.25)

PR R
{s=—1}xR™ {s=—1}xR™

of which the 1st term is bounded below by (5.20).
I33 of (5.24). Clearly, I33 > 0.

134 of (5.24).
By Cauchy’s inequality for small ¢ > 0,

By L 2\
e i L o I (RN K
r(p—2) +

{s=—1}xR™
> —2i / 10, 0]2 BCY dy
r
{s=—1}xIR™
c 2(1-1) 2 N -=2
~3er / (P f) (1=5) 4 (1 - Iylpfl)i * v dy, (5.26)
(s=—1}xIR™

where in the 1st inequality (2 — p) r A~!' A’ +2 = By as before. The 1st term of (5.26) is

absorbed into /31. The 2nd term of (5.26) is estimated below by (5.20).
I35 of (5.24). By Young’s inequality and the estimation (5.18) of derivative of C,

1 _1
Is = —% |19;v> 7 Bdy — % / (pf)2<1 p)cq—Zde
C
{s=—1}xIR™ {s=—1}xIR™
_1 2(g=D(p—1)
e ()20 T Bay - ¢ [ B s
{s=—1}xIR™

{s=—1}xR™
where the 1st term can be absorbed into /3; and the 2nd and 3rd terms are bounded below

by

Cr+1) _ 2(1-1
_W ”C(t)q 2 (p f(l,l(t))) ( ! )”Loo(supp (B(f))) ‘tzro—rBo s (5.28)

because 2(g — 1)(p — 1)/p > q — 2 4<=q > 2.
Resulting estimation. Combining all of the estimations above we have

d
SEG) =I+11+I111
dr
R C
>J-C (r +55 +r_1+5) T 3vAl f |Dvg(v)|ZBCq dy
{s=—1}xIR™
e P (5.29)
— elu o0 N
r A2(p=D) L (supp (51)) 1=to—rbBo
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with A = r(Bo=2/C=P) according to (5.20), (5.21) and (5.28), and
B
- / (=) 13,012 BCt dy
2r
{s=—1}xIR™
5 1
bl [ iy oo T (1= 17T ey,
r(p—2) +

{s=—1}xR™
The term J is clearly nonnegative. From (5.29) integrated on the interval (r, p) we derive
E(p) — E(r)

4 P C
-1
Z—C/ ( +p2—|—r 1+6> dr—/ ) / |Dvg(v)|2Bquydr
' ' {s=—1}xR™

| Y 2(p—1)
—C /r‘ 7]‘ A2(p—1) ||C(t)q e(u(t)) p ||L°°(Sllpp(B(t))) ‘t dr.

=tp—AZ"P r2

=:C (U + Uy + Us3). (5.30)

Step 2 : a uniform bound. We will make a bound of each term U;, i = 1, 2, 3, in the right
hand side of (5.30).

U1 of (5.30). The 1st integrals on r in the 2nd line of (5.30) are computed as

P _ P
/ e g P72 (pﬁ _rﬁ); / s g 1 (o - ).
f 5 : 5

(5.31)
U3 of (5.30). —Us3 is computed as

0
/ pol (—Bo AZP r)_1 X
f

1 5 5 L

X A2 oA IC()?™ e(u(t)) ||L°°(Supp(8(r))) (=Bo A>Pr) dt
10—(A(r)>~P r?

By / (to )
10— (A(p)>P p2

2p—1)(Bg—2)  8(By—2)

TRy TR «

XICHT2 )Tl supp sy At (5:32)
where by definition of A

A =rBom2ICD) ey (A(r))* P 2 =P
and, in the last term we make a changing of variable

t=1g— A*Pr? = 1g—1=AN>"Pr? = B0,
dt

dr

Here the exponent of power of (9 — ¢) in (5.32) is estimated as

2(p —D(Bo—2) 4p—-1D

=—ByA> Pr < dt = —ByA* P rdr.
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6p—4 6p—4 4p-1)

<— By > ; > “— —22>O;
07 T r2 pr2 P (=2
2(p — 1)(By — 2 §(By — 2 B -2
14 (p — D(Bo )_ (Bo )ZO 0<8<2(p—1)— o(p )
Bo(p —2) Bo(p —2) By —2

and then,

to— (AP pP <t <to— (AP r? = rP <tg—1 < pP,

2(p=D(By—2) _ §(Byp—2) B (_]+ 2(p=1)(By—2) _ 8(By—2) )
Bp-2 Brd < p? Bo(p—2  Bor-2) < |

—1+

(to —1)

and thus, the right hand side of (5.32) is bounded above by

I()*VBO
1 g2 2p-1)
a [ 1eOT e ™ i supp i .
1o—pB0

U, of (5.30). U, is given by the approximation term, the derivative of penalty term in
(2.1) and our task is to control U, well in the appropriate way. U, is evaluated by use of the
Bochner type estimate for the penalty term

dug — div((p )77 Dg) + CyIDygl < € (Ar)* & (5.33)

with positive constants C{, and C depending only on p, M and \V. The derivation of (5.33) is
done similarly as in “Appendix C”, under the scaling settings (5.5) and (5.6), by using (6.8)
below.

Letr beasr <7 < p and chosen later. In the following we will replace r by 7, r <r < p,
and proceed to the similar estimations as for U,.

Multiplying a test function B C? in (5.33) and then, integrating the resulting inequality on

yin{s = —1} x R™ and on r in a interval (7, p), the estimation for U, is done as
/ ¢ / ¢ ’ 1 2 q
~(@-3)=(%-3) | om Dol BC dydr
{s=—1}xR™
p 1 .
< — _— dsgBCldyd
= /}; 3+ A2 / 58 yar
{s=—1}xR™
P 1 1 -2
—-— — » (B'C? 4 Bg*ci?|DCl?
[ mmm [ % (w7 e sieine)
{s=—1}xR™

+C (Ar)?e*BCY) dydr
=: Uz + U, (5.34)

where by Cauchy’s inequality with a small ¢ > 0, the integrand term in the 3rd line is obtained
from

-2 )| — -5 q q
(pf) "Dg'D(BC )‘—(Pf) ”IDvg|(|D3|C + B|DC |)-

2(p=1)

1
|Dygl?* BC? + 2 (PN (Bt Bqg*Ci72|DCP);

=

N o

w

—P

2 —
B o= yl7T (1= 1y177) 7
+
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Each term in the right hand side of (5.34) is separately treated in the following.
Usy in (5.34) The 3rd and 4th lines in the right hand side of (5.34) , Upy, is scaled back
and

L 1 _ -1
Un = € [ ICO e+ 1Du)P)" ™ +

+C)? r*e(u(r))? Il oo (suppB())) By dr x

t=ty—r
x f (B'C? 4 B|DCP? + B) dy, (5.35)
{s=—1}xR™
where in the 2nd line we compute as
(Ar)? A2 =12

and, the integral on y in the 3rd line is bounded by a constant as before, since

3
c+|DC| <2 /(B+B’)dy <00, 7’; > —1=3>2.
R™ o
The integral on r in the 1st and 2nd lines is transformed into that on time by changing a
variable t = 19 — A(r)2Pr? =ty — rBo

1o—iPo
1 _4_8+(P+2)(Bo—2) o 20p—1) B
C f (to—r>30( >||C(t)q 2e@) "7 +e@®)?) Lo suppBay dt
io—pP0
to— B0
q-2(5 = 2
<C ICT(e(u(®)” 7+ eu(t))”)ll Lo suppB(r)) d1
io—p%o

where the power exponents of scale radius are computed as

r2§1<:0<r§p§l;

AP=2 -] 4y DD
Ao ap R
—4—8+(p+2)(B§_2)20 0<8§_4+(P+2)(B§—2)
pP— 2
2)(By — 2 6p —4
<:—4+M>O<:>Bo> P .
p—2 p+2

Usp in (5.34) —U, is computed as

Pl
—U21=[7 / as(gC?) Bdydr

P3t5 A2
{s=—1}xR™
P 1 q
- g m gasC de dr
{s=—1}xR™
=: U + Uon2 (5.36)

Each term in (5.36) is separately estimated in the following.
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Uspz in (5.36) Usy» is estimated by using

1 1 r
B L B .
0;C = X{xo+r y| B0 <(10-+r%0 5)} B (to +rP05)B b0 < B

B <i1/2, s=-1;

A L _
to—r% >1/2, (1o —rB)B T < (t9/2)%0  <r'7H;

q

4 - q—1
3o 7T Ty 18I C

q —1
c1 cl
r35A2|g8S |§BO 72§~2|g| =<

and thus, by scaling back and a changing of variable t = fg — A(r)> Pr? =19 — r50,

() = gx ((dise(u(t, 0 + 1o = '/ Foy), X))

q p 1 q—1
|U2]2| < TB()/; m /g(u(t))C (I)de dr
R™ 1=t9—r50
_:B
g to—r"0 BL(—2—8+([7+2)(320_2)) gl
—_ — p— -
= Bo / (tg — 1) %0 lle(u(t))C (t)”LOO(supp(B(l))) dt x
to—pBo
x/ Bdy
10— 50
=C / 1770 2NN o (i) - (537)
19—p50

p—1

r 1,,
where B = B(s, y)|;—_| = <1 — |y|PT )’ * and the exponents are computed as
+

2)(By — 2 2)(By — 2
_2_8+(p+)(0 )ZO O<8§—2+(p+)(0 )
p—2 p—2
2)(By — 2 4
<:_2+w>0<:>80>7p
p—2 p+2
6p —4 6p —4 4p
<— By > ; > <~ p>2.
0 p+2 p+2 p+2 P

Us11 in (5.36) Uz is transformed into an integral on time by scaling back.

Pl
U211=[ ) / d(gC?) Bdydr
r

{s=—1}xR™
’ 1 2 2 k ~
=/ 348 A2 / AP e —h(t, y, 1) Bdydr, (5.38)
noR {s=—1}>R™ 2 r=to+A2Prls

where we put
_ 1 p

~ K 1
h(t, y, r) = X (dist?(u(t, xo0 +ry), N)) <t30 — |xo +ry|>
+
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By changing a variable t = 19 — A2 Pr? =t — B0, we have

B 1/B _ _ p(Bp—2) p(Bo=2)
t=tg—rP =r=t-n"% K=KAP?=Kr 72 =K(—1t)0r;

dt = —Bor®~'dr = —BoA* Prdr;

={ty—1)"° co:= i (72(17 b)) + 8)

r2ts A2 " By p—2

and an elementary computation
ht, y) = h, y, (1o — ")
K .2 1/By 5 1/Bo !
= 3 (dlst (ut, xo + (to — 0)/Boy), N)) 150 — |xg + (19 — 1)/ Boy)
+

_r(Bo—2)
Bo(p —2)

K ~
20T w s (o - r)lfBO)‘ .
2 =t

1
dh(t, y) = (to—0)""h(t, y) — o= N~y - Dyh(t, y)

Thus, we have

B

1o—r5o to—rBo
Uny1 = Bio / (to — 1)~ %)dt + Zéf;:g / (to — )" P(r)dt
to—p"0 to—pBo
to—i%0
+Blg / (to — )=~ / y - Dyh(z, y) B(y)dydt
to—pP0 R
=: Uz111 + Uz112 + U113, (5.39)

where we put
WA
P(1) == /h(t, By dy, B(y) = B(s, y)ls=—1 = (1 - Iylf’*‘)+ .
]RlTl
We will estimate each term in (5.39).
Now, we set r as

Ir, r<i<p : max P(t) = Pty — 7P). (5.40)

to—pBo<t<ty—rPo

Then, by integration by parts in the integral on 7, we have

19— 50 J
P
By x U = fo— )"0 —dt
o x Unin / (to — 1) yr
19—p5B0
1o—7Po
— _780 - -
= (o= 0" PW[ " s — / P(t)co (to — 1)~ " dr
io—pPo

PO B0 Pty —780) — pm0 B0 P(rg — p™)

%
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—P(ty — ;30) (,:*Co By _ pco Bo)
= o080 (P(tg = #%) = P(tg — p™)) 2 0. (5.41)
Clearly, Us112 > 0. By integration by parts in the integral on y, we also have

o (1= 1) T2 1y
1 — p= P=
Usiis = / m—nﬁrﬂ/Maw S A i L dydt
Bg p—2
t9—p"0 R
to—iBo
m —co—1 q
>~ (1o — 1) h(t, y)C?(t) Bdydt.
0 to—pBO R™
The last integral is estimated below as
CI(t) := CI(t, xo + (tg — 1)/ P0y);
to—r B0
—% / (19 — )~ / gu(®)C(1) Bdydt
0 to—p%0 R
> _ﬁz /de X
By
IR}’II
1o—r5o
x / (tg — )*°®=D gy
to—p%0
19— B0 o
K . a1
+ ?X(dlst (u(z, ), N))Ci @) |, (542
" L (suppB(1))
where we use Young’s inequality with an exponent «p > 1 and compute as
t=1g—rB —=r=@1y—1)/P;
Bp—2
A=r2r, hu@)=A"gu®));
B 2)—4 8
(=1 AP = (g =P by = L ED AP 0
Bo(p—2) By
and we choose g > 1 as
1 <oy < - < aplbg—1) > —1; by <1<<= By < p;
—bo
B 2) —4
>1<:>b0>0<:>0<8<M;
1 — by p=2
B 2)—4 4
M > O — BO > 7[’
p—2 p+2
6p—4 6p—4 4p
<— By > ; > — p > 2. 5.43
0 p+2 p+2 p+2 p (543)
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By (5.41) and (5.42) substituted into (5.39), we have

Usi1 = —%/dex

ORI?I
1o—750
Y O
X + e(u(t t
ag(bp — 1) + 1 Lo (suppB())
t9—p"0
(5.44)
yielding, with (5.36) and (5.37) for Uj1»,
=Uz1 = Uzi1 + U2
> —C (poto(bo—l)+l _ fao(bo—l)+l)
10— B0
O(Ol
-C e(u(t))Cl(t)]*”
/ lle(u(r)) Ci( )”Lw(suppB(z))
t9—p"0
to—r50
-C / 1C771 0 2NN o (i) -
to—pBo

By definition of P (¢) in (5.39) and r in (5.40), P (¢) is the local scaled integral of the penalty
term, because by changing a variable x = xg + (fo — 1)1/Boy

K
he, ) = x (dise e, v+ (o —0'%03), N)) (/50 = xo + to — 0!/ P0y1 ) ;
2 +
1 K
P@t) = / h(t, y)Cl(t) Bdy = N ?x(distz(u(t, x), N))Ce(t, x) B(t, x)dx
]:Rm ]:Rm
and it holds that
P(tg — r%) < P(19 — 7B0) for 7 in (5.40). (5.45)
Collecting the estimations for Uy, U, and U3z above in (5.30), we have, for 7 in (5.40),
E(p) —E() = —C (p" — ")
to—r5o
o 2p=1)
—c / ICT20) e
to—p®0

+C4 (1) (E(u()* + E(u(t))%) Iz (suppBay) dt- (5.:46)

Let us put, for ap > 1 in (5.43),

fp = max {2, %0 } . (5.47)
og— 1

From (5.46), our desired monotonicity estimate is shown to hold true in the range of scale
radius [7, p]. Also (5.45) is the monotonicity estimate in the range [r, 7] of the local scaled
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integral of the penalty term. Therefore, it remains to estimate the local scaled p-energy in
the range of scale radius [r, 7].

Step 3 : Monotonicity of the scaled p-energy. We now show a monotonicity estimate for
the scaled p-energy without the penalty term. Under the same notation as before we denote
the scaled p-energy by

F(r) = f f(s, y) B(s, »)Cl(s, yydy;  f=fv):= %(5 + |Dv]?)

14
2

{s=—1}xIR™
(5.48)
and compute the differentiation of F(r) on a scale radius r
d d d
ZF(r) = / — f(v)BCldy + / fw)B—Cdy
dr dr dr
{s=—1}xR™ {s=—1}xR™
1=2 d
= () PDU-d—DvBquy
r
{s=—1}xR™
B—-2 _2
v [ ewnTiseay
r(p—2)
{s=—1}xIR™
d
+ f(w)B—C%dy
dr
{s=—1}xIR™
=: Hy + Hy + H;. (5.49)

Clearly, H, > 0. Hz is similarly estimated as /71 of (5.9) in (5.10), and
1 A _2
H = - (1 +7 > / {div((p AT DVBCIR) - (vei? — b)
r

A
{s=—1}xR™

2
+(pH Dy (v DC‘1/2> chﬂ] dy

1 _2 2 — A

- - f diV((pf)l rz’DvBC")- ((ﬁ—i—Z)sasv—i—y-Dv) dy

r A
{s=—1}xR™

=:Hy + Hi+ His, (5.50)

where we use an integration by parts and the dilation derivative (5.12).
Estimation of Hy1 We have

1 A _2

Hy = - (1 + rA ) / div((p /)" P DvBCI?) - (ve?/? — ) dy
r

{s=—1}xR™

1 A
= - (1 +r X) / (et — ) - {(asv + Co Dyg(v)) BC1/?
;
{s=—1}xRR™

1
p—2

_2 P
P )y Du (1)
+ = ct
P-2ly

p—1
1-2 2
+(p /)7 Dv- DC B}dy.

=
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In the bracket of the right hand side, the 1st time-derivative term, the 3rd term and the 4th
term are the same ones as in /111, /112 and /113 of /11 in (5.13), respectively. These terms are
estimated as for /111, I112 and ;3.

The 2nd term containing the derivative of penalty term is estimated in the following.

1
f‘ / Co((qu/z—l_))~DugBC‘1/2dy‘
p
{s=—1}xIR™
(Co)? 2 1 2
== |(ve??) — o Bdy + 5 / |Dyg|”BCY dy.
{s=—1}xR™ {s=—1}xR™

The 1st term is the same as (—1) x2nd one in (5.16) and thus, estimated above by (—1) xthe
right hand side of (5.17). The 2nd term is estimated in the following. Multiplying a test
function B C? by (5.33), we have, by Cauchy’s inequality with a small ¢ > 0,

1 _2
(Ch— ) IDug )P BE! < %IasvlzBC" + div((p )77 DgBCY)

2
+ 5 (p T (et +BCI2DCP)

+C (Ar)ew)? B, (5.51)
, 2 IR =2
where B° = |y|»-! (1 - |y|1'*')Jr , and

dsg(v) = 05v - Dyg(v); Dg(v) = Dv - Dyg(v).

The inequality (5.51) is integrated on y and then, estimated by integration by parts as

1 »
! / Dyl BCTdy < 5 / B, Bt dy
r r
{s=—1}xR™ {s=—1}xR™
C _2
4= f ((Ar)ZEZBCq +(p (B +Bq26"’2|DC|2)) dy.
.
{s=—1}xIR"

(5.52)

Estimations of H12 and H13 Hjj is the same as I in (5.11) and thus, estimated as in (5.22)
and (5.20).

Hj3 is the same as I3 in (5.11) except the derivative term of the penalty term and thus, is
estimated similarly as for I3;, 7 = 1, ..., 5, and the estimation (5.52) for the derivative of
the penalty term in Hyj.

Gathering the estimations above and scaling back, we have, for 6 > 0,

d s T
EF(r)ZJ—C(r P2 +r )

~ 20-1) _
Y= le@(r)” 7 CT7%(t) + e(u(r))* CUO Lo (supp (1)) e
—10—
where in the 2nd line we estimate as
(ArPA2=r2<le=0<r<p<l; (B+B'C*+BIDC*) dy < 0,

{s=—1}xR™
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and, integrated on r in (r, p), yielding

F(p)—F(r)Z_C/p< gy - 1+s) o

r

e
_./ ¥ A2(p—D) ||€(M(t)) cq 2 +

- 2
+ e(l/{ (t)) c4 ([) ” Loo(supp (B(t)) t:[o—rBO dr. (553)
The 1st term in the right hand side is the same as U in (5.30) and estimated as in (5.31).
The term in the 2nd and 3rd lines is, by changing a variable t = 1y — ATPr2 = 1y — rBo,
computed as

p 1 .
/ Wﬂe(u(ﬂ) Cq ()

+eu(®))* C() || Lo (supp(B() | s (—Bor®~Ydr

t=to—r
1o—rbo
n(B 72)
=C / (to— 0 ) o) 5 e (2
to—p%0
+e(u (1)) C(0)7 || oo (supp(B(ry) dt
I()*VBO
<C / ||€(M(t)) C(f)q 2 e(u(0)* ) || Lo suppBaoy) dt, (5.54)
1o—p5B0

where the power exponent of scale radius is evaluated as

1 r(Bp—2)
1 (—2+ 25

-1 p—2 -1 __ _ By _ _ ..Bo.
r 7[\2(1)71)A r = (p—1)b )<:t_t0 r0,
By —2 4(p—1
L PB4
p—2
6p—4 O6p—4 4(p-—1) 2
<= By > ; > < —2)° > 0.
0 p+2 p+2 p (P )

Finally, we collect the estimations (5.45), (5.46) in Step 2, and (5.53), (5.54) in Step 3 to
complete the proof of (5.4). O

Now we show the validity of the forward monotonicity estimate, Lemma 13.

As before by parallel transformation let the Eq. (2.1) and its solutions u# be defined on
(0, 00) x R™ with the same notation.

Let (79, xo) in the parabolic like envelope {(t, x) : min{l, (RM)BO} >1> |x|BO},
By > 2.

The forward localized scaled penalized energy is

1
E(r) = f L autt, x) Blto, x0: 1,%)C9(t, x)dx: (5,55
AP {t=t0+A2=P r2}x B(Rpq) P

B2 6p —4
A=A(r)= 21’; B ;
r=r p>Bo>———

0 < r <min{l, (Ry)"/P0} (5.56)
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with weight

=N
Blto, xo; £, x) = % 1 - ('JC_XOE)] , t > to;
(t —19) %o (t — tg) Bo .
et = ("%~ 1) : q>2. (5.57)

The notation as above is used.

Lemma 20 Let p > 2 and q > 2. For any regular solution u to (2.1) the following estimate

is valid for any positive number r < p < min{1, ((RM)BO - to)l/BO}

E(p) < E(r)+ C (p* —r")
10+pB0
+C / 1C772(@) @@ L (5101150, xg)) 41+ (5.58)
to+rBo

where
Bo—2

A=A@)=r>r, (AG)*Pri=rk
and the positive exponents 6y > 2 and | depend only on By, p and N, m, p and By,
respectively, and the positive constant C depends only on the same ones as |1 and q.
Proof of Lemma 20. As before we put

Bo=2 6p —4
A=rr, p>By>
p+2

and let r any positive number in the range 0 < r < min{l, ((RM)BO — to)l/BO}. We make a

scaling transformation intrinsic to the evolutionary p-Laplace operator
u(to + A*"Prs, xo+rvy)

t=to+A>"Pr’s; x=xo4+ry; v, y) = " (5.59)
r

and, under the scaling transformation it holds that
t=ty+ A*Pr? = s = +1.

The scaled solution v is a solution of the scaled equation on {s = 1} x IR”

- p
dyv — div ((A*ZG +1Dv?)" ZDU) = —Cp K/ZA dix (dis?(Arv, N)). (5.60)
v

Hereafter we use the same notation as in (5.6).
Similarly as the backward case, the scaled energy is rewritten as

E(r) = f e((v(s, ) B(s, y)C(s, y)dy;
{s=1}xR™

s

[N

)
I )7
B(s, y) = /By (1 - <s1/30> ) ; C(s, y) = ((to + B0 g)1/Bo 1%, +ry|)+,

+

=

(5.61)
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where the integral in (5.61) is well-defined by supp(C) and supp(B).

The computation and estimation are similar as in those for the backward monotonicity
estimate. In the following we indicate only the part of estimations, different from the backward
monotonicity. In the following the integral region on y is changed to {s = 1} x R".

Similarly as in (5.9) in the backward case, we make differentiation of E(r) on r

d 2 d dv
—E®Fr) = (pf) PDv-—Dv+ Cy— - Dyg(v) | BCldy
dr dr dr
{s=1}xR™
B -2 _ _2
v [ (e T4 pcisw) Beray
r(p—2)
(s=1}xR™
_ d
+ e(v)B—C%dy
dr
{s=1}xR™
= I+ I1+1II. (5.62)

Estimation of 11 and I11. By Young’s inequality and 0 < € = A~2¢ < 1 the term /7 is
bounded with § > 0 by

S(p—2 §
C B 2(p=1) r <p11 : rpifpz
1< —— @) 7 ciBdy+c [+ C? Bdy.
r r r
(s=1} xR (s=1}xR™

For estimation of /71 the derivative of C on r is computed as

Bo—1
By ~1/By T s xo+ry
= X{o+ryl<otrog/o) |0 +r70s) /P

d
76 f, — .
’dr @, x) to +rBos  |xg+ry| ’

and thus, on the support {y € R : |y| < 1} of B(1, y)

d -1
’5(:“ = 3 Xixo+ryi<to—rPo) /B0 T
s=1

because of the conditions

rBo

O<tph<l1l, ———
- to +rBo —

Thus, exactly as (5.10) in the backward case, we have

3p

2(p=1 Crr2 2(p—1)
P

o) 200-1) _
Illfm / (e(v)) Ci1Bdy + cI™r T Bdy.

{s=1}xR™ {s=1}xR™

The estimation of [ is exactly same as (5.11) in the backward case. The terms corre-
sponding to /1 are bounded above by (—1) xthe terms (5.20), (5.21) and some controllable
integral terms containing B3, C and their derivatives, where the integral region is replaced by
{s = 1} x IR™. The term corresponding to I, is estimated above by (—1) xthe right hand
side of (5.22) with the integral region replaced by {s = 1} x R™.
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I3 is computed exactly as (5.23) and (5.24) with the integral region replaced by {s =
1} x R™. In the term corresponding to /37 we note by s = 1 that

(=) (2=p)rA™" A +2) = =By < 0 = A = rB=2/C=P) g, > 0.

The term corresponding to /33 is estimated above by

p I_Z _p=2 P "
r(p-2) / (P N7 1y Do ety (1= yI7T) 7 ay
r(p—=2) N

{s=1}xR™
1
p 2222 2\
) f p eIy (1= 1y7T) 7 dy
r(p—2) N
{s=1}xR™
Cr® 2p=1) 2 s e
= £ty (1= ) Ty
g +
{s=1}xIR™
cri® : l
re- _p—z —
+ / Cq |y|2 p—1 ( |y|l’ 1) -2 dy.
" +
{s=1}xR"

The other terms corresponding to I3;, i = 2,4, 5, are bounded above by (—1) xthe terms of
the right hand side of (5.25), (5.26), (5.27) and (5.28).
Combining all of the estimations above we have

d p_
SEn=TC <’7l”+r b, H”fz)
r

C
g |Dyg()|> BC? dy
{s=1}xR™
-8
T+ oL e @) T e supp s ' (5.63)
r A2(r—D (Supp (B®) -

where A = rBo=2/C2=p) py¢

1
J:_EBofl / |0;,v|> BC? dy.
{s=1}xR™

The term J is clearly nonpositive. From (5.63) integrated on the interval (r, p) we derive

E(p) — E(r)

P
SC/ <r—1+s+r 1+p2+r 1+">dr
,

e
+/ 35 A2 / |Dyg()|> BCY dydr
.

{s=1} xR
Py g2
e / T2y @) o supps dr
r r A2(=D (SUpp5(1) r=t94r50
— C (U + U + Us). (5.64)
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The terms in the right hand side of (5.64) correspond to those in (5.30). Note that Uy, U»
and Us are just (—1) x the corresponding terms in (5.30). U; and U3 can be estimated exactly
similarly as the corresponding terms in (5.30).

We have to care the estimation of U;. Under the scaling setting (5.59) and (5.60) in the
forward case now, we also have the Bochner type estimate (5.33) for the penalty term. We
can proceed to the estimations, similarly as in (5.34), to obtain

/ c _ ’ c P 1 2 q
(-5 e=(-3) [ e [ 1psPservar

{s=1}xR™

ro
{s=1}xIR™
+ /pL / 1 ((p HEr (B ¢t + Bg*ci™?|DCI?) +
. r3te A2 2¢
{s=1}xR™
+C (Ar)*&* BCY) dydr
=: Uy + Una,

IA

The estimation for U»; is the same as in (5.35) in the backward case.
U, is also computed as in (5.36) in the backward case

roo Pl
—Uy :/r el / av(gc‘f)tsdydr—/r v f g 9sC? Bdydr
{s=1}xIR™ {s=1}xIR™

: Uzt + Uzpo.

The estimation for |Uj12| is done in the same way as in (5.37) in the backward case. The esti-
mation for Ua | is performed in the following. By changing a variable t = 1o+ A (r)>~Pr? =
to + B0, we have

P(Bp—2) p(Bp—2)

t=tg+r® e=r=0—-1)"% K=KAP=Kr 2 =(—1)hr?;
dt = Bor®~ldr = ByA* Prdr;

1 _ 1 (2(p — Bo)
—— = (t —19)~; =——— 4+

and a computation

ht, y) = gx (distz(u(z, xo + (t — 19)/Boy), /\/)) (11/30 —|xo+(t — ;0)1/30y|)

_ p(Bo —2)
Bo(p —2)

K
+ Ea, (X (distz(u(t, x0 4 (1 — 10)/Boy), J\/)) x

x (zl/BO — |xo+ (t — to)l/B°y|> )

q
4’

1
dh(t, y) (t —t0)""h(t, y) + e 1)~y - Dyh(t, y)

q
+

=t
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Thus, we have

to+p%0 fo+p%0
1 - dP p(By —2) / en—1
Ui = — t—1) O —dt - ———= t—19) 7 P(t)dt
211 By / (t —10) T B —2) (t —19) (1)

to+750 to+750

to+pPo
(t = 1)~ / v Dyh(t, y) BOy)dydi

B2
0 R™

to+750

=: Uz111 + Uz112 + Uz113, (5.65)

where we put

=
|

3
9

_pP_
P@yi= [ bt »BOYy. BO)= Byl = (1= b17T)
]RVH
We will estimate each term in (5.65).

Now, we set r as

Ir, r<r<p : min P(1) = P(tg + 50). (5.66)

to+rB0<t<ty+pPo
Then, by integration by parts in the integral on 7, we have

to-+pB0
By x U. = / (t t)’”od—Pdt
0 2111 = 0 dt
to+rBo
to-+p50
_ +pBo en—
— - PO+ [ PO ar

19+750

p OB Pag + p™) — OB P(ag +75)
+P (g + 7P (F0 B0 — pmeo i)

v

= p 0 Bo (P(to + 080y — P(1p+ FBO)) > 0. (5.67)

By integration by parts in the integral on y, we also have

to+p%0
1
—co—1
Uaiiz = — (t —19)~7" x
By
to+75o
P

L 2
x/h(z, » (mB— %(1 — |y ) |y|ﬁ) dy dt;
o
]Rm

to+p50

1 (Bp —2) e
Vs + 02113 2 — (m — p7> / (t — 1)~ P() dt
B; p—2

\Y

to+750
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to+pB0
p

v t—t —co—1
B —2) (t —1o)

to+iBo

L
—1

/h(t el (1 - NG ‘)” I |yl7 T dydt.

R

The st term is nonnegative, since m —
below as

p(fo_ 2 m—p > 0, and the last integral is estimated

g(u()) == —x(dlst (ut, xo + (t — 1)/ Boy), N))
Ca(t) = CA(t, x0 + (t — 1)/ P y);

fo+p50
_pP
ol [ e [ewoern (- BV I 7T dydr
Bp-2 J
to+Bo R
BX(p—-2) f — P 2|y|v Tdy x
to+p50 to+p5o
x t — t)®®0=D gr + / = x(dist(u(t, ), N))C( w0 dt
f (1) I x(dise (e, 0, NI
o0+ 50 to+750
(5.68)

where g > 1 is as in (5.43) in the backward case. Therefore we have

Uy > —C <pao<bo—1>+1 _ ;ao(bo—lm)

to+pB0

_ q aol

Cc / lle(u(r) C (t)||L°C(SuppB(z))
to+7 50
to+pBo

-C / ||Cq*1(t)é(u(t))||Lm(supp(B(t)))dt.
to+750

By definition of P(¢) in (5.65) and 7 in (5.66), P (¢) is the local scaled integral of the penalty
term, because by changing a variable x = xo + (t — f9) /B0y

e, ) = S (s (ute, 0+ 0= 1) 5090, X)) (1~ -0 — )50y

P(t):/h(t y)de-% gx(distz(u(t, x), N)) €4, x)B(t, x)dx
]Rm ]Rm

and it holds that

P(to + 75 < P(1g + r) for 7 in (5.66). (5.69)
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Collecting the estimations for Uy, Uz and U; above in (5.64), we have, for 7 in (5.66),

E(p) — EG) < C (p* — )

to+pPo
2D
e / 1C2(0) )™ +
to+i50

+C7(1) (2u)* + é(u(z))%)u Lo (supp(By) 4t (5.70)

Let 0y be as in (5.43) and (5.47) in the backward case. By (5.70), our desired monotonicity
estimate holds true in the range of scale radius [, p], and (5.69) is the monotonicity estimate
in the range [r, 7] of the local scaled integral of the penalty term. Therefore, it remains to
estimate the local scaled p-energy in the range of scale radius [r, r]. The monotonicity
estimate of the local scaled p-energy in the range of scale radius [r, 7] is estimated exactly
as Step 3 in the backward case. In fact, letting as in (5.48)

)4
2

1
F(r)= / f(s, ) B(s, ) CUs, y)dy; f=f(v):= ;(E-F |Dv)?)?,
{s=1}xR™

we arrive at the estimate corresponding to (5.53)

F(p) = F(r) < C (p" —r")

2(p=1)

P C _ 42
+/r mlle(u(t)) PCIT() +

+e((®)* 1Dl 1 (supp Br) dr,

t=to+r50

where the last term is controlled as in (5.54). ]
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6. Appendix
Appendix A A global existence and regularity of a weak solution of (2.1).

Proof od Lemma 6. We use the Galerkin method and the monotonicity trick for p-Laplace
operator to solve the Cauchy problem (2.1). The proof is standard and we can refer to [6,
Theorem 1.5 and its proof, pp. 29-31].

Regularity of a weak solution. Let u = ug . be a weak solution of (2.1). The lower-order
term is bounded by the definition of yx as

‘K X (dis(p, N)) dist(p, N)D,, dist(p, )| < C K 8xrsup |x'(5)]
s>0
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and thus, we can apply the Holder regularity result for the evolutionary p-Laplace operator
in [12, Theorem 1.1’, p. 256] (also see [26]) to find that the solution u and its gradient are
locally Holder continuous on M,. We also have that the second derivative is integrable

p—2
: (e + |Du|2)1T |D?u/? is locally integrable in My, and that the gradient Du is locally
bounded in M, (see [12, Proposition 3.1, p. 223; Theorem 5.1 , p. 238]. Then, expanding
the principal part of the p-Laplace operator, the solution u is also satisfies the linear parabolic
systems with Holder continuous coefficients and lower-order terms almost everywhere. Thus,
it follows from the Schauder regularity theory that u, Du, D*u and 9,u are locally Holder
continuous in M. O

Appendix B Energy inequality and maximum principle

We present the proof of Lemmata 7 and 8.

Proof of Lemma 7. The energy inequality (3.1) is shown to be valid in the proof of Lemma 6.
However, as a priori estimates for regular solutions of (2.1), we naturally multiply (2.1) by
d;u +/|g| and integrate by parts on space variable in Mt for any T > O. O

Proof of Lemma 8. We multiply (2.1) by v/[g[u(|u|* — H?), and integrate in Moo, where
(f)Jr is the positive part of a function f. Since the support of x’ is in Oa5,,(N) C B(H),
%' (dist?>(u, N)) is zero in R\\B(H, 0). Also ug € N' C B(H). Hence, we have

1
Z/M (lu@)> — H?) dM
p=2 (] 2
+/ t(e—l—IDulf,) 2 <§|D(|u|2—H2)+|g+|Du|f,(|u|2—H2)+> dMdt =0 ;
1/ (lu@)? — H?)? dM <0
M

4
and thus, |u(¢)] < H in M and any ¢ > 0. ]

Appendix C Proof of the Bochner estimate.

Proof of Lemma 9. In the proof, for brevity, let the regularized p-energy density be

L
2

£ = £ =~ (e+1Duf)

In the general case in M, the terms containing the spatial derivative of gu4 only appear
and are bounded by C (e + [Du|*)P~1. In fact, in (6.5) below, by a direct computation, we
have the terms with derivatives of the metric

_Dyvisl
gl
1-2 afy VI
+Do((pf) "7 Dy (/Iglg*")g"" Dyu - Dgu)

1 1-2
=5 Da((p) 771818 Dpg"" Dy - Dyut)

1
Y

yu 1-2 ap
8 Duu'Da((Pf) ry/1glg Dﬁ”)

_2
(N7 {Dag? D, (1g18") Dyt - Dy
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-2 Dy,gV*D,u - Dgu
+E = Viglg =8P (D, ¢ Dy - Dy + 2" D,y Dyu - Do)
(pf)r
+V1g1g*? Dog?" Dyu - DgDyu + Dy (/1g1g*? 7" Dy Dyt - Dpu

-2 D,g""D,u - Dyu
+pT Iglgy“g“ﬁDaDuu-Dﬁuygﬂzv}, 6.1)
(pH)r
which are bounded by such terms as
1
CIDg 1 f; CIDgP|Ig*| 77 |D%ul (6.2)

with a positive constant C depending only on M, p and m. Here the 1st term is controllable
lower-order one. By Cauchy’s inequality with ¢ > 0, the 2nd term are estimated above as

_1 _2 _
CIDg1g%%| f'77 |D?ul < of "7 |Du? 4+ C(c7V) IDg g% f,

of which the 1st term with a small ¢ > 0 in the right hand side is abosrbed into the squared
2nd derivative term of the solution in (6.5) below, and the 2nd term is a controllable one. The

2
controllable terms C f above are multiplied by (pf )1_7 in (6.6) below, and thus, becomes
1
c fz(lfﬁ)_
Hereafter, we assume that the metric g = (gaﬁ) is the identity matrix.
Since u, Du and D?u are continuous in IRZ, it holds in the distribution sense that

Du - D(f“%Du) = D (AP Dy 1) = (p H'F| D2l

_a ]
—p-20p N 2|D§|Du|2|2. (6.3)

Hereafter the summation convention over repeated indices is used. Since x ( dist? (u, N )) =
2(8)* for u € R\ O, D(Du x (dist? (u, N))) = 0if dist(u, N) > 28, and then, we

have (3.4) by (2.1). We treat the case that dist(u, ) < 28 Noting that x ( dist?(u, N)
is smooth, by a direct calculation we have

K -2 _kK PN D e )
Du~D(2 Dy x ( dist (u,/\/')))- > (Du - Du )DMIDM,X(dlst u, N)) ;
D, D, x(dist*(u, N)) =2 D, dist(u, N)D,,; dist(u, N') (x' + 2 dist*(u, N)x”)

+2x’ dist(u, NYD,i D,; dist(u, N), (6.4)

where the arguments in x’ are omitted. By (6.3) and (6.4) with (2.1), we have

1 2 _2 ) _4, 1 )
05 )7 = Da(APDyf )+ (p N7 D2l + (p=2(p )7 D IDuP?|

+Co K|D dist(u, N)|* (x' + 2 dist*(u, N)x")

+ Co K x' dist(u, N)Du' - Du’ D, D,; dist(u, N) = 0. (6.5)
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2
Furthermore, multiplying (6.5) by (p f )1_5 , we obtain

_2 _4 _6, 1
0 = Da((p )77 AP Dy f) + (0 1777 D2 + (0 = 20 777D IDuP
+Co(p 77 KID dist, N (x' + 2 dis?(u, N)x")

2 . .
+Co(p )77 Kx' dist(u, N)Du' - Du’ D, D

dist(u, N) <0, (6.6)

llj

where we use the fact that
AP Dy fDL(p ) = p P (p = 2) AP Dy D f 2 0.
By differentiation of the penalty term
g=g) = gx(distz(u, J\f))
and (6.4), we have
tig — Du((p )77 A% Dyg)

2
= —Co|Dug|’ = (p /)" 7 K A% Dyu - D, dist(u, N)Dpu
D, dist(u, N) (x’ + 2 dist?(u, N) X”)

2 . .
—(p NP K x' distu, N)A Dyu' Dgu’ D,i D,,; dist(u, N)

_4 1
—(p—2)(p f)l 2 ((Dot” : Dﬁ”)DaDﬁ” -Dyg — D§|Du|2 : (Du : Dug)> s

6.7)
where in particular, multiplying (2.1) by the derivative of penalty term we compute
2
og — div((p ' Dg)
2 1-2 i j
=—Co|Dug|" = (p f) "7 (Du' - Du’)D,iD,; x
2
= —Co|Dug* = (p )7 K |Du - D, dist(u, /\/)|2(x’ +2 dist?(u, N)x”)

2 . .

—(p f)l_F K x' dist(u, NYDu' - Du’ D, D,; dist(u, N). (6.8)

By the support of x”, we have
dist? (u, N) |x”| < 100 sup |x/| x

and thus, the 2nd terms in the 2nd line of (6.6) and the 3rd line of (6.7), and the 3rd term in
the 3rd line of (6.8) are estimated above by

-2 . 2 " . 2
2K (p 77 disa, M) [x"] ((Co+ DD dist, M)

+ A% Dy, dist(u, N')Dg dist(u, N)|)
<CU+Cofg 6.9)
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with a positive constant C depending only on p and y, because
|D, dist(u, N)| =1; |D dist(u, N)| = |Du - D, dist(u, N)|
2
=1Dul=(pf)r.

By Schwarz’s and Cauchy’s inequalities, the terms in the 3rd lines of (6.6) and in the 4th
line of (6.7), (6.8) are bounded by

CN) (Co+p—1) (p )7 F|Dul Ky distu, )
CN) (Co+p—1) (p /)77 |Dul |Dyg]

2
(Q + 1) Dugl + C2 V) <% + u) (0 7 F1Dul®,  (6.10)

IA

2 4

where by a positive constant C (N) depending on a bound for the curvature of NV, we have
the boundedness for any u € N/

’(25“’3 + A*?)Dyu' Dgu’ D i D,,; dist(u, /\/)’ < CW\) |Dul?, (6.11)

of which the validity will be shown later.
The terms in the Sth line of (6.7) are bounded by

2p =) (p ' [D2ul IDugl = 50 7 (D2l 420~ 27 1Dy (612)
Gathering (6.9), (6.10) and (6.12) in (6.6) and (6.7), respectively, we obtain
dew) = Do (0 ) 77A% Dyeu)
+ o 0D 4 (o - 200 p207) |D%|Du|2|2 +C2 |Dug|?

12
< C*W) <%+%> e Dt rcarcn e 613

and thus, from (6.13), the desired inequality (3.4) is obtained, if the constant C is so large
that

C 25(p —2)2
=0 B =D (6.14)
2 2
We present the proof of (6.11). We follow the argument as in [2, Theorems 3.1 and 3.2,
their proofs, pp. 704-707] (also refer to [1, Theorem 2.2]). O

Lemma 21 There exists a positive constant C depending only on a bound of curvatures of
N such that, for any u € Oas,, and q € R' =7, R/,

\9" ¢/ D,i D, dist(u, N)| < Clql*. (6.15)
Proof Foranyu € Oys,, suchthatu ¢ N, we make parallel transformation with the direction

(u — TN (u)) /|u — TN (u)| and follow the following argument. Therefore, we treat the case
that u € NV and thus, 7ar(u) = u. For any v € Oy;,, let us put

d(v) := dist(v, N); n(v) = %d(v)z.
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We know that the squared distance function 7(v) is smooth on v € Oy;,,. Let g € R/ be
any vector in R/ and be fixed. Under the orthogonal decomposition of IR? with respect to the
tangent space T, N atu € N, R! = T,N & (T,N)L, we set as

Y. f():=d(u+1tp) foranyt e (0, 26a7], (6.16)

|9

q=4qr +q; p:=

where p is the unit normal vector along the normal component of ¢ and f(¢) is the distance
to N measured along p. Then, we compute as

df
Dod(u+1p) i= DidWlymriy = P 5-(0) = p- Dudu+1p) = |l =1 (6.17)

and, also, for any v € Op5,,, v ¢ N,

Dyn(v) = d(w)Dyd(v); D,iD,;n(w) =d®)D,D,jd(v)+ D,dv)D,;d(v)
D,iD,in(v) — D,d(v)D,,;d(v)

= D,iD,;d(v) = 3 (6.18)
Thus, letting, for any # € (0, 2571,
D,iD,jd(u + tp) := Dy Dv,-d(v)|v:u+tp ; DyiDyin(u+tp):= D, Dvm(v)|v:u+tp ,

we have

. ‘ )
q'D,iDyin(u+tp)g! — |q - Dyd(u + tp)|
d+1p)

)

q'DyiD,d(u +1tp)qg’ =

where by (6.17) we have, as t \( 0,

2-

)

q' Dy Dyin(u+1tp)g’ — q' Dy Dyinwg’ = |q,

lg- Dodu+1p))> = (q-p)* = |0|” > |a|s dw+1p) >0

and the 1st convergence is valid because D i D,jn(u) = D,iD,; n(v)‘ is the orthogonal

v=u

projection on (7, N )J- (see [2, Theorem 3.1, p.704]). Therefore, from 1’Hospital’s theorem,
we obtain

¢' Dy Dyyd (g’ =3 lim (¢ Dy Dyd(u +1p)g’)

. 4'q’ Dy Dy Dyn(u + 1p)p* —2q - Dy(p - Dyd(u +1p)) g - Dod(u + 1p)
N0 p - Dyd(u +tp)
=4'q/ Dy Dy Dyn (@) p*,

where we use that p - Dyd(u + tp) = |p|2 =1 and Dy(p - D,d(u + tp)) = 0. Thus, we
have

4'D, vad(u)qj‘ -

o )
q’q’DviDujkan(u)p"‘ <Clq|",

where in the last inequality the positive constant C depends only on a bound of curvatures
of A (see [2, Remark 3.3; Theorem 3.3, its proof, pp. 707-709]). ]
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Appendix D Proof of the gradient boundedness.

Here we demonstrate the proof of Lemma 10, relying on Moser’s iteration method as
usual. Such estimate has been originally done for the evolutionary p-Laplacian system with
controllable growth lower-order terms, by DiBenedetto, developing the intrinsic scaling trans-
formation to the evolutionary p-Laplace operator (refer to [10,12]).

However, the emphasis here is to make localization by use of the cut-off function C.

Proof of Lemma 10. In the following we use the same notation as in Lemma 10.
By use of a scaling transformation intrinsic to the evolutionary p-Laplace operator

t =10+ L>7P(ro)%s; x = xo+roy. (6.19)
we now rewrite (3.4) in Lemma 9 by the scaled solution v on Q(1, 1) := Q(1, 1)(0),

u (to + L*P(ro)s, xo +roy)
Lry

u(s, y) =

satisfying in Q(1, 1)

1
350 — —— Dy | (L™ 2%€ + | Dv| Igl ¢** D v)
SNV "‘<( ) g

p
=—Co K/2 L pox (dist*(Lrov, N)). (6.20)

We put the notation

=L 2%, K=L"K;

M

L
2

1 K
f=f):= ;(é +[Dv?)?; g =g() = Ex(distz(Lrv, N));

(p—2) g7 gf*Dyv - Dyv
¢+ D2

e() = f(v) +gv); B =g* ¢

As in “Appendix C”, we assume that the metric (g4g) is the identity matrix and, in the
general case in M, the terms with the derivative of gyg(xo + ry) appear and are bounded by

C f(v)z(1 ,as in (6.1) and (6.2), where we note that Dyg“ﬁ (xo + ry) = rDg*f(x) and
r <1.We proceed to the same computation as (6.6) and (6.7), where the quantities appeared
are transformed to the corresponding ones, respectively, defined by the scaled solution v as
above. Now we will look at the transformed estimation for the scaled solution v.

By the support of x”, we have

dist?(Lrov, N) [x"| < 100 sup x| x

and thus, the corresponding terms for the scaled solution v to 2nd terms in the 2nd line of
(6.6) and the 3rd line of (6.7), and the 3rd term in the 3rd line of (6.8) are estimated above
by

— 2
2K (p )77 dis(Lrov, N) [x"] x
x ((Co + )| D dist(Lrov, )| + B D, dist(Lrov, N)Dg dist(Lrov, N))

<CcU+C)(pNH g ©6.21)
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with a positive constant C depending only on p and yx, because, by the definition of rg,
D, dist(Lrov, N') = Lrog Dy dist(u, N)|,—p,pp: |Dy dist(Lrov, N)| = Lro;
1
|D dist(Lrov, N)| < Lrg |Dv| < Lrg z”D””L"C(Qo) =C.

By Schwarz’s and Cauchy’s inequality, the terms in the 3rd line of (6.6) and in the 4th
line of (6.7), (6.8) are estimated as

C) (Co+p—1) L2G0)* (p 1)\ F1DuP? Ry dist(Lrov, N)
<CW)C (Co+p—1) (p£) 71| IDygl
Co  (p—1)?

C _4
(70 + 1) IDugl? + (CANC) (7 + T) (p Y FIDVP. (6:22)

IA

where by the definition of r as before, and a positive constant C (') depending on a bound
for the curvature of A/, we compute as

1
Lro|Dv] = Lro | DullL>(gy) = C;

Dyg = Lro K x' dist(Lrov, N) Dy dist(u, N)ly—prgn: | Du dist@, Myerro| = 1;
D, D,; dist(Lrov, N) = L*(r0)* D, D,; dist(u, N)|

u=Lrov’

|25 + 5°) D' Dyo! D,y D, dist(u, V)| < C(A)|Dv[.

u=Lrov

The terms in 5th line of (6.7) are bounded by

_2 1 _4 2
2p-2(p N p|Dzv||Dvg|s§<pf>2 7 |D*|" +2(p —2)* IDygl*. (6.23)

Gathering all of the estimations above yields

m
he@) = D Do ((p )P BP Dgew) + €1 (p 77 [ D7f}
o, f=1
2
< W (% + %) (P PP HDUE+C A+ CO(p ) P g (6.24)
Finally we make Moser’s iteration estimate by (6.24) and scaling back to have (3.6). Now,
taking care of localization by the cut off function C, we proceed to the estimations.

Let B(p) = B(p, 0) be a ball in IR” with radius p < min{l, Ra¢/2, T'/*} and center
of origin. Let 0 < r < p. We use local parabolic cyllinders Q(rz, r) = (=r2,0) x B(r)
and Q(p2, p) = (—p?,0) x B(p), Let i be a smooth real-valued function on R” such that
0 < n < 1, the support of 7 is contained in B(p) and n = 1 on B(r). Let 0 = o (¢) be a
smooth real-valued function on R suchthat0 <o < 1,0 =1 on [—r2, oo)and o = 0 on
(—o00, — pz]. We denote by the original notation the scaled function under (6.19). Put

Cls, ) = (o + L7 (r0)*s + RV — xg+ro yl) ., (5, y) € Q(1, 1),

and also write as z = (s, y) € Q(1, 1) and dz = d Mds.
Put w = e(v) in the Bochner type estimate (6.24). Let & be nonnegative number and use
the test function w*n?o C4 /[g] in the weak form of (6.24). After a routine computation we
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have the so-called reverse Poincaré inequality

o 1 2
sup / w* o cTdM + / ‘Dwfﬂ_ﬁ n?o C4dz
—r2<t<0
{t}xB(p) Q(p2, p)
<C(a+p)’ / [ Hp2 g0 +w* (n2+|Dn|2)a]quz, (6.25)
0(p?, p)

where we compute as
1-2 .02
Dwl = vl ((p )77 [D?]+ |Dugl )

o 2
‘Duﬁ“_% <C(a+p)Y’uw* ((1171‘)2_%|D2U|24r |Dug|2)~

Applying the Sobolev embedding W, (B(p)) — L*"/"=(B(p)) we have

m=2

2m 2m o 1 2 %
/ (wz+1 pncz) dM <C (/ ’D(wa_F nC%) d/\/l) ,
B(p) B(p)
which is combined with (6.25) and yields
m—2
O m
+1 2m m+
sup / (w@)*™' CcTdM + f / w22 g Ciz d M dt
—r2<1<0
{t}xB(r) —r2 (r)
C 3 _2
< % / (et w77 et dz. (6.26)
p—r

0(p%, p)
By Holder’s inequality and (6.26) we compute as

2420+ gm+2)
/ wa+2 p+ m Com dz

o2

m(at2-2p~! m
< / / w*t c1 dM / w I e am | dr

—r2 \B(r) (r)

2 m=2
m 0 . m
m(a+2—2p~ ") m
<| sup / w(t)** cTdM f / wo oz iz dM dt
—r2<1<0
B(r) —r2 (r)
3 3 5 m+2
<<C(a+p) / Wt 04 4y +C(Oé+p) IQ(p,p)|>’”
"\ (=17 Jowr p (p—r)? ’
where we use a simple inequality valid for ¢ > 0
Wt = (Xwz1) + xw<y) !
22
< X{w>1} w4 X{w<1}
< wa+27% +1
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and also estimate the derivative of C as
IDCGs, I = | D ((t0 + L3P r)% s 4+ R*)1% — [xg + royl) |

ro

X0 +roy
= ‘_ X{lxo+royl <to; L2 (rop2s+ R0} (55 V)

|xo + 71yl

< (o + L7 (r0)%s + R*)'7%0 — |xo + royl) . x
ro
o + L7 ()% + R0 — [xg + 1o
< ((o+ L7 (r0)”s + R*)%0 — |xg + royl)
= C(S» Y),

[0sC(s, y)| = |0s ((to + L¥P(rg)%s 4+ RV —xo + roy|)+)
1 _ _ _
= ‘)TO (to + L2 I’(ro)Zs + R)»o)l/)»o 1 L2 P(ro)z X{\X(H—roy\<T(J+L27”(’0)2S+RAO}(S’ y)
1 ao) 1/20—1 A
= X0 X{ixo+royl<to+L>P (ro)?s+RP0} (52 ¥) ((p0)™) (o)™

P (po)*
= po/2 (po)*o
2C(s, y),

(0 + L*7P(r0)%s + R*)'/%0 — [xg + royl) .

because, by the range Q(1, 1) of (s, y) and the condition (3.5) of ro,

—1<s<0; |yl
(1o + R0 — |xo]

7 ;o < po/2; LPTP(ro)* < (po)™

£0

and so, we have the estimations

ro/(po/2) = 1

_ 1/A
(fo + L2772 (r0)%s + R™)/™ — |xg + roy| = (f0 + R — (p0)**) "™ = (xo| + r0)
(to + R*0)1/20 4 x| L0 Po
> — — > _— = —
> 5 |xo0l —ro = po > 2

We arrange some terms in an appropriate way to have

Q@2 1)
002, r)
1+2
C 3(142/m) 2 )(1H2/m 1 2
< Clet W02 p) ! / R S
(p — r)2d+2/m 10(p%, p)I
0(p?, p)

(6.27)

Here let {px} be a sequence of radii, defined as

pe=2"" (14278): Tz N2 0= (0% PO (6.28)
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and {ax} be a sequence of exponents

2
O=1+" q>1 g=96% 0<qg<q /oo ;
m

2 2 200 — 1 +2p7!
ak=9k+1——; 2——=ag <o / o0; ak+1=ak+u
p p m
2(p—2
)
mp

We choose r = pg+1, p = pr and @ = o in (6.27) and make routine computation to have

6
1 / Wk QO 7 < ck (o + p)39 (L / w C% dz + ]) :
[Qk+1l Okl Joy
Qlet1
0
1 k41 G+ k 30 L ok Gk
/w+C dz+1<2C" (ax + p) < /w C dz—i—l)
|Qk+l|Q [ Okl J o,
k+1
(6.30)
which is computed by sequences (6.28) and (6.29) as
1
T 1
1 & 1 oF
/ w1 CH dz + 1 < Co* <— f w% C% dz + 1)6 . (6.31)
[ Qk+11 Okl Joy

Ok+1

An iterative application of (6.31) yields, as k — oo,

1
gkF1

sup w0 «— / W+ CA0+1
0((po/2)%, p0/2) [Qkt1l

Ok+1

e
l / wak+1 C‘Ik+1 dZ + 1
[Ok+1]
Ok+1
ko ol
<cXima (7/ W C0 7 +1>0 , (6.32)
100l Jo,

where we use the relation of exponents

2
Qi1 = qo 0! < qoor1 = oy =08+ 1 - = okt
0=<C@,y) =<1, (s,y) €0, 1)(0)
and the limit as k — o0

Ok+1 P —

Finally, scaling back in (6.32) yields the desired estimate (3.6). O
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