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Abstract
We show a global existence for the Cauchy problemwith large initial data for the p-harmonic
flowbetween two smooth, compact Riemannianmanifolds.We devise newmonotonicity type
formulas of a local scaled energy and establish a partial regularity for the solution. The partial
regularity obtained is almost optimal, comparing with that of the corresponding stationary
case. The p-harmonic flow obtained also converges to a p-harmonic map along a certain
time sequence tending to infinity.

Mathematics Subject Classification Primary: 35B45 · 35B65; Secondary: 35D30 · 35K59 ·
35K65

1 Introduction

LetM andN be smooth compact Riemannian manifolds of dimension m and n with metric
g and h, respectively. We assume that, by Nash’s embedding theorem, N is isometrically
embedded into IRl (l > n). For a smooth map u from M to N ⊂ IRl , we consider the
p-energy

E(u) :=
∫
M

1

p
|Du|p dM, p ≥ 2. (1.1)

Here the unknown map u = (
ui
)
, i = 1, . . . , l, is a vector-valued function, defined on M

with values into N ⊂ IRl . In a local coordinate x = (xα), α = 1, . . . ,m, on M, the usual
notation is used : g = (

gαβ

)
,
(
gαβ

)−1 = (
gαβ

)
, |g| = | det (gαβ

) |, and dM = √|g|dx is a
volume elementwithm-dimensional Lebesguemeasure dx , and Dα = ∂/∂xα ,α = 1, . . . ,m,
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Du = (
Dαui

)
is the gradient of a map u, and |Du|2 = ∑m

α,β=1 g
αβDαu · Dβu with an

Euclidean inner product · in IRl .
The p-harmonic map is a critical point of the p-energy and satisfies the Euler–Lagrange

equation
{−�pu = |Du|p−2A(u)(Du, Du)

u ∈ N (1.2)

where the p-Laplace operator is denoted by

�pu = 1√|g|
m∑

α,β=1

Dα

(
|Du|p−2

√|g|gαβDβu
)

(1.3)

and the second fundamental form A(u)(Du, Du) of N ⊂ IRl is a vector field along the
map u ∈ N with values into the orthogonal complement of the tangent space of N at u (if
necessary, the manifold N is assumed to be orientable).

An approach to look for p-harmonicmaps is to exploit the gradient flowassociatedwith the
p-energy, called the p-harmonic flow, which are described by the evolutionary p-Laplacian
system

{
∂t u − �pu = |Du|p−2A(u)(Du, Du)

u ∈ N (1.4)

where u = u(t, x) is defined on M∞ = (0, ∞) × M with values onto IRl , ∂t u = (
∂t ui

)
is a partial derivative on time. In this paper we study a global existence and regularity of a
solution to the Cauchy problem for the p-harmonic flow (1.4).

Let IRl = TuN ⊕ (TuN )⊥ be the orthogonal decomposition of IRl with respect to the
tangent spaceTuN at eachu ∈ N . The corresponding orthonormal basis is (e1(u), . . . , en(u))

of the tangent space TuN and (en+1(u), . . . , el(u)) of its orthogonal complement (TuN )⊥.
Then we find an equivalent representation for the p-harmonic flow

∂t u − �pu ⊥ TuN ⇐⇒ ∂t u − �pu = |Du|p−2A(u)(Du, Du). (1.5)

In fact, there exists some vector-valued function λ = (
λ j (u)

)
, j = n + 1, . . . , l, such that

∂t u − �pu ⊥ TuN ⇐⇒ ∂t u − �pu =
l∑

j=n+1

λ j (u)e j (u)

and, simply multiplying each of the orthonormal basis e j (u), j = n+1, . . . , l, by the second
equation above, we have

λ j (u) = |Du|p−2
m∑

α,β=1

√|g|gαβDβu · (Dαu · Due j (u)
)
,

where ∂t u, Du ∈ TuN because the map u = u(t, x) moves on N , and thus, the usual
Euclidean innner product in IRl is taken, so that ∂t u · e j (u) = 0 and Du · e j (u) = 0, for
all j = n + 1, . . . , l. Here the last summation term in the equation above is nothing but the
second fundamental form of N along the map u. Furthermore, the Euclidean inner product
in IRl of ∂t u with the p-harmonic flow Eq. (1.4) leads the energy identity

|∂t u|2 − 1√|g|Dα

(
|Du|p−2

√|g|gαβDβu · ∂t u
)

+ ∂t
1

p
|Du|p = 0,
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integrated in M yielding, through integration by parts,

d

dt
E(u(t)) = −‖∂t u(t)‖22. (1.6)

Thus, the p-energy E(u(t)) is decreasing along the solution u(t) of the p-harmonic flow and,
in fact, the solution {u(t)} ⊂ C∞(M,N ), 0 < t < ∞, is the trajectory of negative direction
gradient vector field of the p-energy

du

dt
(t) = −∇E(u(t))

= �pu(t) + |Du(t)|p−2A(u(t))(Du(t), Du(t)),

by the Euler–Lagrange equation (1.2), where ∇E(u(t)) is the Gâteaux derivative of E(·) at
u(t) ∈ C∞(M,N ). Therefore, a global in time solution to (1.4) for any initial data may
converge to critical points of the p-energy, the p-harmonic maps, as time tends to ∞. This
heat flowmethod was originally realized by J. Eells and J. H. Sampson for the harmonic flow
in the case p = 2 under the condition that the sectional curvature of target manifold N is
non-positive, in their pioneering work [15,23]. This fundamental result in the harmonic flow
case p = 2 was also extends to hold similarly for the p-harmonic flow.

Theorem 1 [16,31] Suppose that the sectional curvature of the target manifold N is non-
positive, Sect(N ) ≤ 0. Then, for any smooth initial map fromM toN , there exists a unique
global in time weak solution of the Cauchy problem on M for p-harmonic flow (1.4). The
solution u and its gradient are Hölder continuous in time-space. The solution and its gradient
uniformly converge to a weak solution and its gradient, respectively, of the p-harmonic map,
as time tends to ∞, respectively, which are Hölder continuous.

We call the weak solution which is locally continuous on time-space together with its
gradient the regular solution. The curvature restriction on the target manifold in general is
necessary for the global existence of regular solution of the p-harmonic flow. In fact, without
any curvature restriction on the target manifold, we have some example of a blowing up
solution at a finite time (see [5] in the case p = m = 3). But, a global in time weak solution
may be exist.

Theorem 2 [24] Let p = m ≥ 2 and the initial data be in the set of Sobolev maps
W 1,p(M,N ) between two smooth, compact Riemannian manifolds M and N . Then, there
exists a global in time weak solution of Cauchy problem onM for the m-harmonic flow. The
solution and its gradient are Hölder continuous on time-space, except for at most finitely
many time slices.

In the case p = m = 2, the global in time existence as above is also shown for the initial-
boundary value problem of the two-dimensional harmonic flow. Moreover, the solution is
smooth except for at most finitely many points [3,38]. In the case p = m, a nice Sobolev type
inequality on time-space, referred as Ladyzhenskaya or Nash inequality, can be available and
is crucial for regularity estimate in this case.

In the higher dimensional case m ≥ 3, M. Struwe et al. established the following fun-
damental result for global existence and regularity of the harmonic flow in the case p = 2
in [8,9,39]

Theorem 3 [8,9,39] Let p = 2. Let initial and boundary data u0 be smooth map from M
into N . Then, there exists a global in time weak solution u of the harmonic flow (1.4). The
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solution u satisfies the energy inequality: letting M∞ = (0,∞) × M,

‖∂t u‖2L2(M∞)
+ sup

0<t<∞
E(u(t)) ≤ E(u0). (1.7)

There exists a relatively closed subset� ⊂ (0, ∞]×M such that the solution u is smooth in
the complement of �,M∞\�; � is of at most finite m-dimensional Hausdorff measure with
respect to the usual parabolic metric inM∞, and furthermore, for any time t0 > 0 and some
positive C0 = C(M,N , t0, E(u0)),Hm−2({t0}×�) ≤ C0; As time suitably tends to∞, the
solution converges to a weakly harmonic map u∞ weakly in Sobolev space W 1, 2(M, IRl).
There exists a closed set�∞ ⊂ M such that u∞ is smooth onM\�∞;�∞ is of at most finite
(m − 2)-dimensional Hausdorff measure: For some positive C ′

0 = C ′(M,N , t0, E(u0)),
Hm−2(�∞) ≤ C ′

0.

There also exist blowing up solutions at a finite time (see [4,7,11,22]).
If the target manifold is the standard unit sphere, the global in time existence of weak

solution to the p-harmonic flow is also shown by use of the special structure of the target
standard unit sphere [6,25,27,32].

In differential geometry, the regularity has been studied under a smallness of image of a
solution, instead of curvature condition [18], and the everywhere regularity of a small solution
of harmonic flow is shown in [19,20,37]. Such regularity of a small solution of p-harmonic
flow remained open (refer to [28]).

Theorem 3 implies the global in time existence of weak solution of the harmonic flow in
the case p = 2, which is partial regular in the sense of regularity outside exceptional closed
set. It has remained open whether or not the corresponding result holds for the p-harmonic
flow, since the important result, Theorem 2, was obtained for the case p = m.

A compactness for regular p-harmonic flows with uniform boundedness of p-energy has
been recently proved by the author in [33,34] (see [39, Theorem 6.1; its proof, pp. 494–497]
for the harmonic flow). The compactness result will be the key ingredient for the global in
time existence of p-harmonic flow (refer to [9] for the harmonic flow case).

Theorem 4 (A compactness of regular p-harmonic flows with uniformly bounded p-energy)
Let p > 2. Suppose that a family {uk} of regular p-harmonic flows on IRm∞ = (0, ∞) × IRm

satisfies the p-energy boundedness with uniform positive constant C

p ‖∂t uk‖2L2(IRm∞)
+ sup

0<t<∞
‖Duk(t)‖p

Lp(IRm ) ≤ C (1.8)

and converges to a limit map u in the sense

uk −→ u weakly ∗ in L∞ (
0, T ; W1,p(IRm∞, IRl)

)
, (1.9)

Duk −→ Du weakly in Lp
(
IRm∞, IRml

)
, (1.10)

∂t uk −→ ∂t u weakly in L2
(
IRm∞, IRl

)
. (1.11)

Then, the limit map u is a global weak solution on IRm∞ of the p-harmonic flow such that
u ∈ N almost everywhere in IRm∞, and the p-energy boundedness is valid, replacing uk by u
in (1.8). Moreover, the limit map u is partial regular in the sense : There exists a relatively
closed set � in IRm∞ such that u and its gradient Du are locally in time-space continuous
in the complement IRm∞\�, and the size of � is also estimated by the Hausdorff measure :
For any positive number γ0, 2 < γ0 < p, the set � is of at most locally zero m-dimensional
Hausdorff measure with respect to the time-space metric |t |1/γ0 + |x |, and, furthermore, for
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any positive time τ < ∞, the (m − γ0)-dimensional Hausdorff measure of {τ } × � with
respect to the usual Euclidean metric is locally zero.

In this paper we show the global existence and regularity of a weak solution of the Cauchy
problem for the p-harmonic flow (1.4) with an initial data u0{

∂t u − div
(|Du|p−2Du

) = |Du|p−2A(u)(Du, Du) in M∞
u(0) = u0 on M (1.12)

and a convergence of the solution of p-harmonic flow to a p-harmonic map along a time
sequence tending to infinity. The Sobolev space on M is usually defined as

Definition 1

W1, p
(
M, IRl

)
:=
{
v ∈ Lp

(
M, IRl

) ∣∣∣ ∃ a weak derivative Dv ∈ Lp
(
M, IRml

)}
;

W1, p (M, N ) :=
{
v ∈ W1, p

(
M, IRl

)
| v ∈ N almost everywhere in M

}
;

‖v‖W1, p(M) := ‖v‖p
Lp(M) + ‖Dv‖Lp(M) (1.13)

Definition 2 Let u0 ∈ W1,p(M, N ). A map u is called a global weak solution of the Cauchy
problem (1.12) if and only if u is a measurable vector-valued function defined on M∞ :=
(0, ∞) × M with values into IRl , satisfying the following four conditions :

(D1) u ∈ L∞(0,∞; W1,p(M, IRl)), ∂t u ∈ L2(M∞, IRl);
(D2) u ∈ N almost everywhere in M∞;
(D3) u satisfies (1.4) in the sense of distributions, that is, for any smooth map φ ∈

C∞
0 (M∞, IRl),
∫
M∞

{∂t u · φ + |Du|p−2Du · Dφ − |Du|p−2φ · A(u)(Du, Du)} dz = 0;

(D4) u attains the initial data continuously in the Sobolev space

|u(t) − u0|W1,p(M, IRl ) → 0 as t → 0.

Theorem 5 (A global existence and regularity for the p-harmonic flow) Let p > 2. Let
u0 ∈ W1,p(M, N ). Then, there exists a global weak solution u of (1.12), satisfying the
energy inequality

‖∂t u‖2L2(M∞)
+ sup

0<t<∞
E(u(t)) ≤ E(u0). (1.14)

Moreover, the solution u is partial regular in the following sense : There exists a relatively
closed set � in M∞ = (0,∞) × M such that u and its gradient Du are locally in time-
space continuous in the complement M∞\�, and the size of � is also estimated by the
Hausdorff measure : For any positive number γ0, 2 < γ0 < p, the set � is of at most zero
m-dimensional Hausdorff measure with respect to the time-space metric |t |1/γ0 + |x |, and,
furthermore, for any positive time τ < ∞, the (m − γ0)-dimensional Hausdorff measure of
{τ } × � with respect to the usual Euclidean metric is zero. As time suitably tends to ∞, the
solution converges to a weakly p-harmonic map u∞ weakly in W 1, p(M, IRl). There exists a
closed set �∞ ⊂ M such that u∞ and its gradient Du∞ are locally continuous onM\�∞;
For any positive number γ0, 2 < γ0 < p, �∞ is of at most zero (m − γ0)-dimensional
Hausdorff measure.
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Remark Measuring by use of the time-space metric |t |1/p + |x | onM∞, the (m + p − γ0)-
dimensional Hausdorff size of � is zero. The scale order in the estimate of singular set � is
almost optimal, since the exponent γ0 can be as close to p as possible.

The contents of the paper are as follows :

1. Introduction
2. Penalty approximation
3. Small energy regularity estimate
3.1 Preliminaries; 3.2 Local energy regularity estimate
4. Passing to the limit
5. Monotonicity estimate of a local scaled energy
6. Appendix

In Sect. 2, we introduce the so-called penalty approximation for the p-harmonic flow. In
Sect. 3, some preliminary estimates for the penalty approximating solutions are derived, those
proofs are given in “Appendix”, and then, the small energy regularity estimate is shown to
hold uniformly for the penalty approximating solutions, and is applied for their convergence
to a weak solution of the p-harmonic flow in Sect. 4, based on the compactness result,
Theorem 4. The monotonicity estimate, Lemmata 12 and 13, is demonstrated in Sect. 5.

2 Penalty approximation

In this section we set the approximation scheme for the p-harmonic flow. We will approx-
imate the p-harmonic flow by the solutions of the gradient flow for the so-called penalized
functional, introduced in [9] for the harmonic flow case p = 2 (also refer to [29,40]).

Since the manifold N is smooth and compact, there exists a tubular neighborhood O2δN
with width 2δN of N in IRl such that any point u ∈ O2δN has a unique nearest point
πN (u) ∈ N satisfying dist (u, πN (u)) = dist (u, N ) for the Euclidean distance dist (·, ·),
where the projection πN : O2δN → N is smooth, since the manifold N is smooth. The
distance function dist(u, N ) is Lipschitz continuous on u ∈ O2δN .

Let χ be a smooth, non-decreasing real-valued function defined on [0, ∞) such that
χ(s) = s for s ≤ (δN )2 and χ(s) = 2(δN )2 for s ≥ 4(δN )2. Then, the function
χ
(
dist2(u, N )

)
is smooth on u ∈ IRl . Its gradient at u ∈ O2δN is computed as

Duχ
(
dist2(u, N )

) = 2χ ′ ( dist2(u, N )
)
dist(u, N )Du dist(u, N );

Du dist(u, N ) = u − πN (u)

|u − πN (u)|
parallel to the vector field u−πN (u) and orthogonal to TπN (u)N . We also have that, for any
u ∈ N and any tangent vector τ ∈ TuN ,

∣∣∣τ iτ j Dui Du j dist(u, N )

∣∣∣ ≤ C(N )|τ |2

(see [2, Theorem 3.1, pp. 704–705], [1, Theorem 2.1]).
For positive parameters 1 ≤ K ↗ ∞ and 1 > ε ↘ 0, we consider the Cauchy problem

in M∞ with initial data u0 for the gradient flow, called the penalized equation,
{

∂t u − �p, εu + C0 K χ ′ ( dist2(u, N )
)
dist(u, N )Du dist(u, N ) = 0

u(0) = u0
(2.1)
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associated with the penalized functional, defined by

FK , ε(u) := Eε(u) + C0
K

2

∫
M

χ
(
dist2(u, N )

)
dM, (2.2)

where the positive constant C0 will be stipulated later, depending only on p, M and N
(see Lemma 9 and its proof in “Appendix B”). The partial differential operator �p, ε and
its corresponding energy, called the regularized p-Laplace operator and the regularized p-
energy, respectively, are defined as

�p, εu := 1√|g|
m∑

α,β=1

Dα

((
ε + |Du|2) p−2

2
√|g|gαβDβu

)
;

Eε(u) :=
∫
M

1

p

(
ε + |Du|2) p

2 dM (2.3)

We now state the global existence for (2.1). For the proof see “Appendix A”.

Lemma 6 (Existence for the penalty approximation) Let p > 2 and let u0 ∈ W1,p (M, N ).
For each positive numbers K and ε, there exists a weak solution u = uK , ε of the Cauchy
problem for the penalized equation (2.1) such that u = uK , ε satisfies the energy inequality

‖∂t u‖2L2(M∞)
+ sup

0<t<∞
FK , ε(u) ≤ Eε(u0) (2.4)

and, that u, Du, ∂t u and D2u are locally (Hölder) continuous on time and space (with some
Hölder exponent) in M∞ and u satisfies the penalized equation everywhere in M∞.

3 Small energy regularity estimate

3.1 Preliminaries

In this section we show some regularity estimates for solutions u = uK , ε of the penalized
equations (2.1). Those proofs are given in “Appendix”.

Lemma 7 (Energy inequality) Let u0 ∈ W1, p
(
M, N

)
and u = uK , ε be a regular solution

of (2.1). Then, it holds that

‖∂t u‖2L2(M∞)
+ sup

0<t<∞
FK , ε(u) ≤ Eε(u0). (3.1)

A solution of the penalized equation is uniformly bounded, that is used in the regularity
estimate.

Lemma 8 (Boundedness) Let u = uK , ε be a regular solution of (2.1). Then it holds that
supM∞ |u| ≤ H, where the positive number H is so large that B(H) ⊃ O2δN (N ) in IRl .

We will put the setting for local estimates for the penalized Eq. (2.1). For this purpose we
recall some standard geometrical settings. Let RM > 0 be a lower bound for the injective
radius of the exponential map on M. Thus, for any positive number R < RM and any
point x0 ∈ M, the geodesic ball B(R, x0) ⊂ M of radius R around x0 is well-defined
and diffeomorphic to the Euclidean ball B(R, 0) ⊂ IRm , under the linear homeomorphism
Tx0M ∼= IRm , through the exponential map
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expx0 · : IRm ⊃ B(R, 0) � x → expx0 x ∈ B(R, x0) ⊂ M.

For any t ∈ (0, ∞), the map

u
(
t, expx0 ·) : IRm ⊃ B(R, 0) � x → u

(
t, expx0 x

) ∈ IRl (3.2)

is well-defined. Hereafter let x0 ∈ M be arbitrarily taken and fixed. We abbreviate as
B(RM) = B(RM, 0). We denote u

(
t, expx0 x

)
by u(t, x) for any (t, x) ∈ (B(RM))∞ :=

(0, ∞)× B(RM) and, furthermore, by translation, regard u as a map defined on (B(RM))∞
with values into IRl .

Let us denote the penalized energy density for a map u by

eK , ε(u) := 1

p

(
ε + |Du|2) p

2 + K

2
χ
(
dist2(u, N )

)
. (3.3)

We need the so-called Bochner type estimate for the penalized energy density. See
“Appendix C” for the proof. Here the constant C0 in (2.1) is appropriately chosen.

Lemma 9 (Bochner type estimate) Let p > 2 and u = uK , ε be a regular solution to (2.1).
For brevity, put e(u) = eK , ε(u). Then, it holds in (BRM)∞ that

∂t e(u) − 1√|g|Dα

((
ε + |Du|2) p−2

2
√|g|AαβDβe(u)

)

+C1
(
ε + |Du|2) p−2

2
∣∣D2u

∣∣2 + C2

∣∣∣2−1 K Duχ
(
dist2

(
u, N

))∣∣∣2

≤ C3

(
1 + e(u)

2
p

)
e(u)

2
(
1− 1

p

)
, (3.4)

where

Aαβ := gαβ + (p − 2)
gαγ gβμDγ u · Dμu

ε + |Du|2 ,
∣∣D2u

∣∣2 = gαβgγμDαDγ u · DβDμu,

the summation convention over repeated indices is used and the positive constants Ci (i =
1, 2, 3) depend on p, M and N .

Let λ0 be a positive number, R be a positive number such that R < min{1, RM/2, T 1/λ0}
and (t0, x0) in the parabolic like envelope P := {

(t, x) : T − Rλ0 < t ≤ T , |x |λ0 < t
− (T − Rλ0)

}
. In the following we use time-space local cylinder. For r , τ > 0,

Q (τ, r) (t0, x0) = (t0 − τ, t0) × B(r , x0), where B(r , x0) is an open ball in BRM with
center x0 and radius r . For brevity, we put u = uK , ε , e(u) = eK , ε(u) in (3.3) and abbreviate
the time-space Lebesgue measure dt dM as dz.

Lemma 10 (Gradient boundedness on a small region) For some (t0, x0) ∈ P , let ρ0 :=(
(t0 − (T − Rλ0))1/λ0 − |x0|

)
/4. Suppose that, for λ0 > 0, r0 > 0, C1 > 0 and L > 0,

r0 ≤ ρ0

2
; L2−p (r0)

2 ≤ (ρ0)
λ0 ; r0 sup

Q(L2−p(r0)2, r0)(t0, x0)
(e(u))

1
p ≤ C1. (3.5)

Let q > 2 be a positive number. Then there exists a positive number C depending only on q,
p, M and N , but, independent of L, such that
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sup
Q(L2−p(r0/2)2, r0/2)(t0, x0)

e(u) Cq

≤ C L2−p∣∣Q (L2−p(r0)2, r0
)∣∣

∫

Q(L2−p(r0)2, r0)(t0, x0)

(e(u))
2− 2

p Cq dz + C L p;

C(t, x) :=
(

(t − (T − Rλ0))
1
λ0 − |x |

)
+

. (3.6)

The detail of proof is presented in “Appendix D” (refer to [10,12]).

3.2 Local regularity estimates

The partial regularity is based on the so-called small energy regularity estimate (refer to [39,
Theorems 5.1, 5.3, 5.4; their proofs, pp. 491–494]). The small energy regularity estimate
for the p-harmonic flow in the case p > 2 has been recently established in [33,34]. Our
main task here is to demonstrate that the small energy regularity estimate holds uniformly
for solutions of the penalized equations.

Theorem 11 (Small energy regularity) Let p > 2. Let B0 and a0 be positive numbers satis-
fying the conditions

6p − 4

p + 2
< B0 < p; B0 − 2

p − 2
< a0 ≤ 1. (3.7)

Let u = uK , ε be a regular solution of (2.1) on (B(RM))T = (0, T ) × B(RM, 0) for a
positive T < ∞, satisfying the energy bound

‖∂t u‖2L2(MT )
+ sup

0<t<T
FK , ε(u) ≤ C1 (3.8)

for a positive number C1 depending only onM, p andN . Then, there exists a small positive
numeber R0 < 1, depending only on M, N , p, B0, a0 and C1, and the following holds true
: Let γ0 be any positive number satisfying

2 < γ0 < p.

If, for some small positive R < min{RM, R0, T 1/B0},

lim sup
r↘0

rγ0−m
∫

{t=T−RB0 }×B(r , 0)
eK , ε(u(t, x)) dM ≤ 1, (3.9)

then, there holds

sup
(T−(R/4)B0 , T )×B(R/4, 0)

eK , ε(u(t, x)) ≤ C2 R
−a0 p, (3.10)

where the positive constant C2 depends only on γ0, B0, a0, p, M, N and C1.

The novelty here is a new monotonicity type estimate of a localized scaled energy, which
may be of its own interest. Let us define our localized scaled energy in the following way:
Let T ≥ 0 be given, and (t0, x0) in the parabolic like envelope

{
(t, x) ∈ (0,∞) × B(RM) : min{(RM)B0 , 1} > t − T ≥ |x |B0

}
; B0 > 2.
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The localized scaled energy is defined by

E±(r) = 1

�p

∫
{t=t0±�2−pr2}×B(RM)

ēK , ε(u(t, x))B±(t0, x0; t, x) Cq(t, x) dM;

ēK , ε(u) := 1

p

(
ε + |Du|2) p

2 + C0
K

2
χ
(
dist2(u, N

)
(3.11)

and � = �(r) is a function of a scale radius r , defined as

� = �(r) = r
B0−2
2−p ; p > B0 >

6p − 4

p + 2
(3.12)

for any r , 0 < r < RM/2, where we note that

p >
6p − 4

p + 2
⇐⇒ (p − 2)2 > 0.

The forward or backward in time Barenblatt like function, denoted by B− and B−, respec-
tively, are defined by

B±(t0, x0; t, x) = 1

(∓t0 ± t)
m
B0

⎛
⎝1 −

(
|x − x0|

2 (∓t0 ± t)
1
B0

) p
p−1
⎞
⎠

p−1
p−2

+
, ∓t < ∓t0. (3.13)

The localized function C is defined and used as

C(t, x) :=
(
(t − T )1/B0 − |x |

)
+ ; q > 2. (3.14)

We call E+(r) and E−(r) the forward and backward localized scaled p-energy, respectively.
Ourmonotonicity type estimate of a scaled energy is the following. The proof is postponed

by Sect. 5

Lemma 12 (Monotonicity estimate for the backward localized scaled p-energy) Let p > 2
and q > 2. For any regular solution u to (2.1) the following estimate holds for all positive
numbers r , ρ, r B0 = �(r)2−pr2 < ρB0 = �(ρ)2−pρ2 ≤ min{1, (RM)B0 , (t0 − T )/2},

E−(r) ≤ E−(ρ) + C
(
ρμ − rμ

)

+C

t0−r B0∫

t0−ρB0

‖Cq−2(t)
(
ēK , ε(u(t))

)θ0‖L∞(B((t0−t)1/B0 , x0)) dt, (3.15)

where B0 as in (3.12), and the positive exponents θ0 ≥ 2 and μ depend only on B0, p and
N , M, p and B0, respectively, and the positive constant C depends only on the same ones
as μ and q.

Lemma 13 (Monotonicity estimate for the forward localized scaled p-energy) Let p > 2
and q > 2. For any regular solution u to (2.1) the following estimate holds for all positive
numbers r , ρ, r B0 = �(r)2−pr2 < ρB0 = �(ρ)2−pρ2 ≤ min{1, T − t0 + (RM)B0}

E+(ρ) ≤ E+(r) + C
(
ρμ − rμ

)

+C

t0+ρB0∫

t0+r B0

‖Cq−2(t)
(
ēK . ε(u(t))

)θ0‖L∞(B((t−t0)1/B0 , x0)) dt, (3.16)
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where B0 as in (3.12), and the positive constants θ0 ≥ 2, μ and C have the same dependence
as those in Lemma 12.

From now on we show the validity of Theorem 11.
First of all wemake parallel translation t ′ = t−T , x ′ = x of the Eq. (1.4) and its solutions

u on (0, T ) × B(RM) to those on (−T , 0) × B(RM) with the same notation. The Eq. (1.4)
is invariant under parallel transformation.

Under this setting the statement of Theorem 11 is rewritten as

Lemma 14 There exists a positive number R0 < 1, depending only on B0, p, M and N ,
such that the following is valid : If

lim sup
r↘0

rγ0−m
∫

{t=−RB0 }×B(r , 0)
eK , ε(u(t, x)) dM ≤ 1, (3.17)

is satisfied for some small positive R ≤ R0 with

γ0 = p(B0 − 2)

p − 2
, (3.18)

then, it holds that, for a positive constant C2 depending only on p, M, N and B0,

sup
(−(R/4)B0 , 0)×B(R/4, 0)

eK , ε(u) ≤ C2 R
−a0 p. (3.19)

The proof of Lemma14 consists of several steps,which are separately explainedwith those
proofs. Our strategy of proof is based on a now classical argument similar to [9,39], originally
introduced by Schoen for the partial regularity of harmonic maps [36]. Here we carefully
make local estimates under an intrinsic scaling to the evolutionary p-Laplace operator.

Hereafter in this section we put, for brevity,

u = uK , ε; e(u) = eK , ε(u).

Let positive numbers λ0 > 2 and a0 < 1 be determined later. According to λ0 and a0, we
choose a positive number ε such that

0 < ε < 2

(
a0 − λ0 − 2

p − 2

)
, (3.20)

where we should choose a0 as

a0 − λ0 − 2

p − 2
> 0 ⇐⇒ a0 >

λ0 − 2

p − 2
. (3.21)

For t , −Rλ0 ≤ t ≤ 0, we define a function f (t) as

f (t) :=

⎛
⎜⎜⎜⎝ sup

−Rλ0<τ<t

⎛
⎜⎜⎜⎝ sup

x∈B
(
(τ+Rλ0)

1
λ0 , 0

)
(

(τ + Rλ0)
1
λ0 − |x |

)a0
(e(u(τ, x)))

1
p

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

A0

;

A0 := 2

(
1 − λ0 − 2

a0(p − 2)

)
− ε

a0
, (3.22)

where we notice by (3.20) that

A0 = 2

(
1 − λ0 − 2

a0(p − 2)

)
− ε

a0
> 0 ⇐⇒ ε < 2

(
a0 − λ0 − 2

p − 2

)
.
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Now we also define a function g(t) as

g(t) :=
(

sup
x∈B((t+Rλ0 )1/λ0 , 0)

(
(t + Rλ0)

1
λ0 − |x |

)a0
(e(u(t, x)))

1
p

)A0

,

−Rλ0 ≤ t ≤ 0. (3.23)

It is readily seen that, for any t , −Rλ0 ≤ t ≤ 0,

( f (t))
1
A0 = sup

−Rλ0≤τ≤t

⎛
⎜⎜⎜⎝ sup

x∈B
(
(τ+Rλ0)

1
λ0 , 0

)
(

(τ + Rλ0)
1
λ0 − |x |

)a0
(e(u(τ, x)))

1
p

⎞
⎟⎟⎟⎠

≥ sup
x∈B

(
(t+Rλ0)

1/λ0 , 0
)
(

(t + Rλ0)
1
λ0 − |x |

)a0
(e(u(t, x)))

1
p = (g(t))

1
A0 ;

0 ≤ g(t) ≤ f (t). (3.24)

Let t ,−Rλ0 < t ≤ 0, be arbitrarily taken and fixed. Then we can choose some time-space
points (t0, x0) such that t0 ∈ (−Rλ0 , t] and x0 ∈ B

(
(t0 + Rλ0)1/λ0 , 0

)
, and

( f (t))
1
A0 =

(
(t0 + Rλ0)

1
λ0 − |x0|

)a0
(e(u(t0, x0)))

1
p

= 4a0 (ρ0)
a0 (e(u(t0, x0)))

1
p (3.25)

where we put

ρ0 := (t0 + Rλ0)
1
λ0 − |x0|

4
. (3.26)

Here, if t0 = −Rλ0 or |x0| = (t0 + Rλ0)1/λ0 , then f (t) = 0 and g(t) = 0.
Refined gradient boundedness on a small region By Lemma 10, we make the gradient

bounded by a local scaled energy on a small region. We divide our consideration into two
cases.

Case 1. First we treat the case that (ρ0)a0 (e(u(t0, x0)))
1
p ≤ 1.

Then we have that
⎛
⎝ (t0 + Rλ0)

1
λ0 − |x0|

4

⎞
⎠

a0

(e(u(t0, x0)))
1
p ≤ 1

⇐⇒
(

(t0 + Rλ0)
1
λ0 − |x0|

)a0
(e(u(t0, x0)))

1
p ≤ 4a0

⇐⇒ f (t) ≤ 4p a0 A0 . (3.27)

By (3.24) and (3.27) we have

g(t) ≤ f (t) ≤ 4p a0 A0 . (3.28)
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Case 2. Next we study the case that (ρ0)a0(e(u(t0, x0)))
1
p > 1.

Then we have

r1 :=
(

1

(e(u(t0, x0)))
1
p

) 1
a0

< ρ0 ≤ 1. (3.29)

Let L be

L := (r1)
λ0−2
2−p . (3.30)

It holds that

L2−p (r1)
2 ≤ (ρ0)

λ0 , (3.31)

because

L2−p (r1)
2 = (r1)

λ0 ≤ (ρ0)
λ0 ⇐⇒ r1 ≤ ρ0.

Under (3.31) we have

r1 sup
Q(L2−p(r1)2, r1)(t0, x0)

(e(u))
1
p ≤ C1 := 2a0 . (3.32)

For the validity of (3.32), we observe from (3.22) and (3.25) that

sup
(t0−(ρ0)

λ0 , t0)×B(ρ0, x0)

(e(u))
1
p ≤ 2a0(e(u(t0, x0)))

1
p . (3.33)

Then we find that, for L in (3.30),

r1 sup
Q(L2−p(r1)2, r1)(t0, x0)

(e(u))
1
p ≤ (r1)

a0 sup
Q(L2−p(r1)2, r1)(t0, x0)

(e(u))
1
p

≤ 1

(e(u(t0, x0)))
1
p

sup
(t0−(ρ0)

λ0 , t0)×B(ρ0, x0)

(e(u))
1
p

≤ 2a0 , (3.34)

where we choose a0 as

0 < a0 ≤ 1. (3.35)

Here we show the validity of (3.33), through (3.22) and (3.25). For any τ , t0 − (ρ0)
λ0 ≤

τ ≤ t0, we find that

(2ρ0)
a0 sup

x∈B(ρ0, x0)
(e(u(τ, x)))

1
p ≤ sup

x∈B(ρ0, x0)

(
(τ + Rλ0)1/λ0 − |x |)a0 (e(u(τ, x)))

1
p ,

(3.36)

because it holds that for any τ , t0 − (ρ0)
λ0 ≤ τ ≤ t0, and any x ∈ B(ρ0, x0)

(
t0 + Rλ0 − (ρ0)

λ0
)1/λ0 ≥ (

t0 + Rλ0
)1/λ0 − ρ0 ;(

τ + Rλ0
)1/λ0 − |x | ≥ (

t0 − (ρ0)
λ0 + Rλ0

)1/λ0 − (|x0| + ρ0)

≥ (
t0 + Rλ0

)1/λ0 − |x0| − 2ρ0 = 2ρ0, (3.37)
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where we note the definition ρ0 in (3.26) and use the simple algebraic inequality for any
positive number a and b

a1/λ0 + b1/λ0 ≥ (a + b)1/λ0 .

From (3.36) we obtain that

(2ρ0)
a0 sup

(t0−(ρ0)
λ0 , t0)×B(ρ0, x0)

(e(u))
1
p

≤ sup
t0−(ρ0)

λ0<τ<t0

(
sup

x∈B(ρ0, x0)

{(
(τ + Rλ0)1/λ0 − |x |)a0 (e(u(τ, x)))

1
p

})

≤ sup
−Rλ0<τ<t

(
sup

x∈B((τ+Rλ0 )1/λ0 , 0)

{(
(τ + Rλ0)1/λ0 − |x |)a0 (e(u)(τ, x))

1
p

})

= (
(t0 + Rλ0)1/λ0 − |x0|

)a0
(e(u(t0, x0)))

1
p = (4ρ0)

a0 (e(u(t0, x0)))
1
p ,

where we use that for any τ , t0 − (ρ0)
λ0 ≤ τ ≤ t0

B(ρ0, x0) ⊂ B
(
(τ + Rλ0)1/λ0 , 0

)
,

because by (3.37), for any τ , t0 − (ρ0)
λ0 ≤ τ ≤ t0,

(
τ + Rλ0

)1/λ0 ≥ (
t0 + Rλ0 − (ρ0)

λ0
)1/λ0 ≥ |x0| + ρ0.

Thus, (3.33) is actually verified.
Under the choice of parameters λ0 > 2 and a0 in (3.21) and (3.35), we should have

λ0 − 2

p − 2
< a0 ≤ 1 ⇐� λ0 − 2

p − 2
< 1 (3.38)

⇐⇒ λ0 < p (3.39)

and, (3.32) which verifies the condition (3.5) with letting r0 = r1/2. Thus, we can apply
Lemma 10 and take the L∞-estimate of gradient (3.6), yielding

L−pe(u(t0, x0)) Cq(t0, x0)
≤ L−p sup

Q(L2−p (r1/4)2, r1/4)(t0, x0)
e(u) Cq

≤ C L−2p+2∣∣Q (L2−p(r1/2)2, r1/2
)∣∣

∫

Q(L2−p(r1/2)2, r1/2)(t0, x0)

(e(u))
2− 2

p Cq dz + C, (3.40)

where C > 0 depends only on a0, p, M and N .

Multiplying the both sides of (3.40) by
(
L−pe(u(t0, x0))

) 2
p −1, we have

(
L−pe(u(t0, x0))

) 2
p Cq(t0, x0)

≤ C L−p∣∣Q (L2−p (r1/2)2, r1/2
)∣∣

∫

Q(L2−p (r1/2)2, r1/2)(t0, x0)

e(u) Cq dz + C, (3.41)

where by r1 in (3.29), L in (3.30) and (3.33) we compute as
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(
L−pe(u(t0, x0))

) 2
p −1 = (r1)

(p−2)
(
a0− λ0−2

p−2

)
; L−p+2 = (r1)

λ0−2;
sup

Q
(
L2−p(r1/2)2, r1/2

)(e(u))
1− 2

p ≤ (
2a0(e(u(t0, x0)))

1
p
)p−2 = 2a0(p−2)(r1)

−a0(p−2);

(
L−pe(u(t0, x0))

) 2
p −1

L−p+2 sup
Q
(
L2−p(r1/2)2, r1/2

)(e(u))
1− 2

p ≤ 2a0(p−2).

Furthermore, we divide our estimations into two cases, depending on the size of r1.
The positive number q > 2 is selected later. Recall that the positive number ε is as in

(3.20). Then q/ε > 1.
Case 2-1 : 0 < r1 ≤ (ρ0)

q
ε ; Case 2-2 : (ρ0)

q
ε < r1 < ρ0.

Case 2-1 0 < r1 ≤ (ρ0)
q
ε .

Lemma 15 Suppose that

0 < r1 ≤ (ρ0)
q
ε . (3.42)

Then there exists t ′0 ∈ [t0 − (r1)λ0/4, t0
]
such that

(
e(u(t0, x0))

) 1
p

(
2
(
1− λ0−2

a0(p−2)

)
− ε

a0

)
≤ C (r1)

p(λ0−2)
p−2

|B (r1/2)|
∫

{t=t ′0}×B(r1/2, x0)

e(u) Cq(t) dM + C,

C(t, x) := (
(t + Rλ0)1/λ0 − |x |)+ ; q > 1, (3.43)

where the positive constant C depends only on a0, m, p and N .

Proof We will estimate both sides of (3.41).
By ρ0 in (3.42), r1 in (3.29) and L in (3.30), the left hand side of (3.41) is computed as

Cq(t0, x0)
(
L−pe(u(t0, x0))

) 2
p ≥ 4q (r1)

ε
(
L−pe(u(t0, x0))

) 2
p

= 4q
(
e(u(t0, x0))

) 1
p

(
2
(
1− λ0−2

a0(p−2)

)
− ε

a0

)
,

where by (3.42),

Cq(t0, x0) = (4 ρ0)
q ≥ 4q (r1)

ε (3.44)

and the parameters a0 and ε satisfy (3.38) and (3.20).
In the right hand side of (3.41), we take the supremum on time to have, by L and r1 in

(3.30),

C (r1)
p(λ0−2)
p−2∣∣Q (L2−p(r1/2)2, r1/2

)∣∣
∫

Q(L2−p(r1/2)2, r1/2)(t0, x0)

e(u) Cq dz

≤ C sup
t0−L2−p(r1/2)2<s<t0

(r1)
p(λ0−2)
p−2

|B(r1/2)|
∫

B(r1/2, x0)

e(u(s)) Cq dM

= C (r1)
p(λ0−2)
p−2

|B(r1/2)|
∫

{s=t ′0}×B(r1/2, x0)

e(u(s)) Cq dM, (3.45)
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where by continuity of the gradient of solution, we choose some t ′0 such that

t0 − L2−p(r1/2)
2 ≤ t ′0 ≤ t0 ⇐⇒ t0 − (r1)

λ0/4 ≤ t ′0 ≤ t0, (3.46)

at which the supremum of the second line is attained. ��

Case 2-2 (ρ0)
q
ε < r1 < ρ0.

Lemma 16 Suppose that

(ρ0)
q
ε < r1 < ρ0. (3.47)

Then there exists t ′0 ∈ [t0 − (ρ0)
q λ0/ε/4, t0

]
such that

(
e(u(t0, x0))

) 1
p

(
2
(
1− λ0−2

a0(p−2)

)
− ε

a0

)

≤ C (ρ0)
qp(B0−2)
ε(p−2)∣∣B ((ρ0)q/ε/2

)∣∣
∫

{t=t ′0}×B((ρ0)q/ε/2, x0)

e(u(t)) Cq dM + C, (3.48)

where the positive constant C depends only on a0, p, M and N .

Proof First we take a look at the inequality (3.43) in Case 2-1. For r1, 0 < r1 ≤ (ρ0)
q
ε it

holds that

(
e(u(t0, x0))

) 1
p

(
2
(
1− λ0−2

a0(p−2)

)
− ε

a0

)
≤ C (r1)

p(λ0−2)
p−2

|B (r1/2)|
∫

{t=t ′0}×B(r1/2, x0)

e(u(t)) Cq dM + C

⇐⇒ (r1)
2
(

λ0−2
p−2 −a0

)
+ε ≤ C (r1)

p(λ0−2)
p−2

|B (r1/2)|
∫

{t=t ′0}×B(r1/2, x0)

e(u(t)) Cq dM + C, (3.49)

where we use the definition of r1 in (3.29). In particular, (3.49) is valid for r1 = (ρ0)
q
ε and

the corresponding t ′0 as in (3.45) and (3.46)

t0 − (ρ0)
q λ0/ε/4 ≤ t ′0 ≤ t0 ;

(
(ρ0)

q
ε

)2( λ0−2
p−2 −a0

)
+ε ≤ C (ρ0)

qp(λ0−2)
ε(p−2)∣∣B ((ρ0)q/ε/2

)∣∣
∫

{t=t ′0}×B((ρ0)q/ε/2, x0)

e(u(t)) Cq dM + C .

(3.50)

Thus, for r1, (ρ0)
q
ε < r1 < ρ0, we simply have

(r1)
2
(

λ0−2
p−2 −a0

)
+ε ≤ C (ρ0)

qp(λ0−2)
ε(p−2)∣∣B ((ρ0)q/ε/2

)∣∣
∫

{t=t ′0}×B((ρ0)λ0/B0 /2, x0)

e(u(t)) Cq dM + C,

because of (3.20) and (3.38) again. ��
Now we derive an ordinary differential inequality for g(t), −Rλ0 ≤ t ≤ 0.
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Lemma 17 Let λ0, B0, a0 and ε be positive parameters satisfying the conditions

6p − 4

p + 2
< λ0 = B0 < p; (3.51)

λ0 − 2

p − 2
< a0 ≤ 1; 0 < ε < 2

(
a0 − λ0 − 2

p − 2

)
. (3.52)

Then the differential inequality holds for any positive R < 1 and any t, −Rλ0 ≤ t ≤ 0

g(t) ≤ g0 + C

t∫

−Rλ0

(g(τ ))
pθ0
A0 dτ, (3.53)

where the initial data g0 is

g0 := 4a0A0 + C Ra0A0 + C Ra0A0 lim sup
ρ↘0

ρ
p(B0−2)

p−2

|B(ρ)|
∫

{t=−Rλ0 }×B(ρ, x0)

e(u(t)) dM

(3.54)

and the positive constant C depends only on λ0, p, M and N .

Proof Simply saying, our desired inequality (3.53) in Lemma 17 is obtained from combining
the gradient L∞-estimate on a small region in Lemmata 15 and 16, and the monotonicity
estimate of local scaled energy in Lemmata 12 and 13. Here we observe the admissible range
of two parameters B0 in Lemmata 12 and 13, and λ0 in Lemmata 15 and 16, to choose as
λ0 = B0. By (3.12) and (3.39) we have

6p − 4

p + 2
< B0 < p; 2 < λ0 < p

and thus, we can choose B0 and λ0 as in (3.51), because

6p − 4

p + 2
< p ⇐⇒ (p − 2)2 > 0.

The choice of a0 in (3.38) and ε in (3.20) are as in (3.52).
By use of the monotonicity estimate in Lemmata 12 and 13. we estimate the local in

space scaled integral of gradient in the right hand side of (3.43) in Lemma 15 and (3.48) in
Lemma 16

Backward monotonicity estimate, Lemma 12 First we apply the backward monotonicity
estimate, Lemma 12, for the local scaled energy in the right hand side of (3.43) in Lemma 15
and (3.48) in Lemma 16.

Let us choose the time-component t0 of the pole of Barenblatt function B− in (5.3) as
follows: For each

t0 − (r1)
λ0/4 ≤ t ′0 ≤ t0 in Lemma 15,

or

t0 − (ρ0)
q λ0

ε /4 ≤ t ′0 ≤ t0 in Lemma 16, with r1 replaced by (ρ0)
q
ε , (3.55)

let t0 be as t1

t1 := t ′0 + (r1)
B0 = t ′0 + (�(r1))

2−p(r1)
2. (3.56)
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Then, the local scaled integral in the right hand side of (3.43) and (3.48) is estimated as

(r1)
p(B0−2)

p−2

|B(r1/2)|
∫

{t=t ′0}×B(r1/2, x0)

e(u(t)) C(t)q dM

≤ C

(�(r1))p

∫

{t=t1−(r1)B0}×B
(
r1, x0

) e(u(t))B− (t1, x0; t) C(t)qdM, (3.57)

because by (3.56) we have, for t := t ′0,

t = t1 − (�(r1))
2−p (r1)

2 ⇐⇒ t1 − t = (�(r1))
2−p(r1)

2 = (r1)
B0 ; x ∈ B(r1/2, x0)

�⇒ (r1)
−m

(
1 − 2− p

p−1

) p−1
p−2 ≤ B−(t1, x0; t, x).

Let ρ′ be a positive number, chosen as

(ρ′)B0 = t1 + Rλ0

2
(3.58)

and then, the backward monotonicity estimate in Lemma 12 yields the upper-boundedness
for (3.57) by

C

(�(ρ′))p

∫

{t=t1−(ρ′)B0}×B
(
ρ′, x0

) e(u(t))B− (t1, x0; t) C(t)q dM

+ C
(
(ρ′)μ − rμ

)

+C

t1−(r1)B0∫

t1−(ρ′)B0

‖C(τ )q−2 (e(u(τ )))θ0‖L∞(B((t1−τ)1/B0 , x0)) dτ. (3.59)

Forwardmonotonicity estimate, Lemma 13 Next, we use the forwardmonotonicty estmate
in Lemma 13 for estimating the first scaled energy in (3.59).

By use of C, the first term of (3.59) is evaluated by the forward scaled energy

C

(�(ρ))p

∫

{t=t1−ρB0}×B
(
ρ, x0

) e(u(t))B+
(−Rλ0 , 0; t) C(t)q− p−1

p−2 dM, (3.60)

since by (3.58) we find that, for t := t1 − (�(ρ′))2−p (ρ′)2,

t1 − t = (ρ′)B0 = t1 + Rλ0

2
= t − (−Rλ0);

(t1 − t)
− m

B0 =
(
t1 + Rλ0

2

)− m
B0 = (

t − (−Rλ0)
)− m

B0

and the function C can be evaluated above as

C(t, x) = (
(t + Rλ0)1/λ0 − |x |)+ = (t + Rλ0)1/λ0

(
1 − |x |

(t + Rλ0)1/λ0

)
+

≤
(
1 −

( |x |
(t + Rλ0)1/λ0

) p
p−1
)

+
;
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Cq ≤ Cq− p−1
p−2

(
1 −

( |x |
(t + Rλ0)1/λ0

) p
p−1
) p−1

p−2

+
,

because

λ0 = B0; p

p − 1
> 1;

(t + Rλ0)1/λ0 ≤ R ≤ 1; supp(C(t)) = B
(
(t + Rλ0)1/λ0 , 0

)
,

and thus, for t := t1 − (�(ρ′))2−p(ρ′)2,

B− (t1, x0; t) C(t)q ≤ B+
(−Rλ0 , 0; t) C(t)q− p−1

p−2 .

Also the third term of (3.59) is bounded above by

C

t1−(r1)B0∫

t1−(ρ′)B0

‖C(τ )q−2 (e(u(τ )))θ0‖L∞(B((τ+Rλ0 )1/B0 , 0)) dτ, (3.61)

because by the support of C the region of L∞ norm on space is actually

B((t1 − τ)1/B0 , x0) ∩ B((τ + Rλ0)1/B0 , 0) ⊂ B((τ + Rλ0)1/B0 , 0).

Then, by the forward monotonicity estimate in Lemma 13 (3.60) is bounded by

lim sup
ρ↘0

⎛
⎜⎜⎝ C

(�(ρ))p

∫

{t=ρB0−Rλ0}×B
(
ρ, 0
) e(u(t))B+

(−Rλ0 , 0; t) C(t)q− p−1
p−2 dM

⎞
⎟⎟⎠

+ C (ρ′)μ + C

(ρ′)B0−Rλ0∫

−Rλ0

‖C(τ )
q− p−1

p−2−2
(e(u(τ )))θ0‖L∞(B((τ+Rλ0 )1/B0 , 0)) dτ,

(3.62)

where again, we note that by (3.58)

(ρ′)B0 − Rλ0 = t1 − Rλ0

2
= t1 − (ρ′)B0 .

The first scaled energy term above is estimated above as

C lim sup
ρ↘0

⎛
⎜⎝ρ

p(B0−2)
p−2

|B(ρ)|
∫

{τ=ρλ0−Rλ0}×B(ρ)(0)

e(u(τ )) dM

⎞
⎟⎠ . (3.63)

Nowwe combine the estimations above, (3.43), (3.48), (3.57), (3.59), (3.60), (3.61), (3.62)
and (3.63) to have

(
e(u(t0, x0))

) 1
p

(
2
(
1− λ0−2

a0(p−2)

)
− ε

a0

)

≤ C lim sup
ρ↘0

⎛
⎜⎝ρ

p(B0−2)
p−2

|B(ρ)|
∫

{τ=ρB0−Rλ0}×B(ρ)(0)

e(u(τ )) dM

⎞
⎟⎠
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+C
(
(ρ′)μ − rμ

)+ C (ρ′)μ

+C

t1−(r1)B0∫

−Rλ0

‖C(τ )
q− 3p−5

p−2 (e(u(τ )))θ0‖L∞(B((τ+Rλ0 )1/B0 , 0)) dτ, (3.64)

where the power exponent in the left hand side is positive by (3.52), and the second one in
the right hand side is bounded as

C
(
(ρ′)μ − rμ

)+ C (ρ′)μ ≤ C Rμ, (3.65)

where we recall t1 in (3.56) and ρ′ in (3.58)

t1 = t ′0 + �(r1)
2−p (r1)

2; (�(r1))
2−p (r1)

2 = (r1)
B0 ; −Rλ0 < t ′0 < 0; λ0 = B0

�⇒ t1 ≤ Rλ0 ; ρ′ =
(
t1 + Rλ0

2

)1/B0

≤ (
Rλ0

)1/B0 = R.

Differential inequalityWegather (3.64) and (3.65) and then,multiply the resulting inequal-

ity by

((
t0 + Rλ0

)1/λ0 − |x0|
)a0 A0

to have

(((
t0 + Rλ0

) 1
λ0 − |x0|

)a0

e(u(t0, x0))
1
p

)A0

≤ C Ra0A0 lim sup
ρ↘0

⎛
⎜⎝ρ

p(λ0−2)
p−2

|B(ρ)|
∫

{t=ρB0−Rλ0 }×B(ρ, 0)

e(u(t)) dM

⎞
⎟⎠

+C Ra0A0
(
1 + Rμ

)

+C Ra0A0

t∫

−Rλ0

‖C(τ )
q− 3p−5

p−2 (e(u(τ )))θ0‖L∞(B((τ+Rλ0 )1/λ0, 0)) dτ , (3.66)

where we note by (3.51) that B0 = λ0.
Moreover, we will modify some terms in (3.66) for our demand. By (3.24) the left hand

side of (3.66) is estimated below by g(t).
In the third term in the right hand side of (3.66) the integrand is bounded by

‖
((

τ + Rλ0
) 1

λ0 − | · |
)a0 pθ0

(e(u(τ )))θ0 ‖L∞B((τ+Rλ0 )1/λ0 , 0), (3.67)

since q > 2 can be chosen to be large, comparing with a0 pθ0 and depending only on p and
B0, in fact,

0 < a0 ≤ 1; q − 3p − 5

p − 2
≥ a0 p θ0 ⇐� q ≥ p θ0 + 3p − 5

p − 2
,

where θ0 depends only on p and B0.
Finally, collecting (3.28) in Case 1, and (3.66) (3.67) in Case 2, we arrive at our desired

estimation (3.53).
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Here we observe that the principal integral quantity in (3.66) is rewritten as

lim sup
ρ↘0

ρ
p(B0−2)

p−2

|B(ρ)|
∫

{t=ρλ0−Rλ0 }×B(ρ, x0)

e(u(t)) dM

= lim sup
ρ↘0

ρ
p(B0−2)

p−2

|B(ρ)|
∫

{t=−Rλ0 }×B(ρ, x0)

e(u(t)) dM. (3.68)

In fact, by time-space continuity of Du, we have the estimation for sufficiently small positive
ρ

ρ
p(B0−2)

p−2

|B(ρ)|
∫

B(ρ, x0)

∣∣e (u(ρλ0 − Rλ0
))− e

((− Rλ0
))∣∣ dM ≤ C ρ

p(B0−2)
p−2 ,

which converges to 0, by taking the lim sup on ρ tending to 0 in the both side. ��
We are now in position to show the validity of Lemma 14. We solve the differential

inequality (3.53) and (3.54), yielding the uniform gradient bound (3.19).

Proof of Lemma 14. The differential inequality (3.53) and (3.54) can be easily solved as

g(t) ≤ g0/
(
1 − C (β − 1)

(
Rλ0 + t

)
(g0)

β−1) 1
β−1 , −Rλ0 ≤ t ≤ 0, (3.69)

with the exponent

β = p θ0

A0
> 1,

which is satisfied by θ0 > 1 and choice in (3.52).
We simply obtain from (3.69)

g(t) ≤ 2
1

β−1 g0, −Rλ0 ≤ t ≤ 0, (3.70)

under the choice of R such that

1 − C (β − 1)
(
Rλ0 + t

)
(g0)

β−1 ≥ 2−1 ⇐⇒
(

1

g0

)β−1 1

2C(β − 1)
≥ Rλ0 + t,

which is satisfied by

(
1

C

) β−1
λ0
(

1

2C(β − 1)

) 1
λ0 ≥ R ⇐� 0 < g0 < C; Rλ0 + t ≤ Rλ0 (3.71)

and so, let R0 be the positive number in the left hand side of the first inequality in (3.71). ��

4 Passing to the limit

In this section we present the proof of Theorem 5, based on Theorem 11. As before we
abbreviate the time-space Lebesgue measure dtdM as dz.

Let {εk} and {Kk} be sequences such that εk ↘ 0 and Kk ↗ ∞ as k → ∞. Let uKk , εk ,
k = 1, 2, . . ., be a sequence of solutions of the Cauchy problem with initial data u0 for the
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penalized equations (2.1) with approximating numbers ε = εk and K = Kk , obtained in
Lemma 6. Hereafter we put uk = uKk , εk ek(uk) = eKk , εk (uKk , εk ), for brevity.

By the energy inequality (2.4), there exist a subsequence of {uk}, also denoted by the same
notation, and the limit map u such that, as k → ∞,

uk −→ u weakly ∗ in L∞ (
0, ∞; W 1,p(M, IRl)

)
, (4.1)

∂t uk −→ ∂t u weakly in L2
(
M∞, IRl

)
, (4.2)

Duk −→ Du weakly in L p
loc

(
M∞, IRml

)
, (4.3)

χ( dist2(uk, N )) −→ 0 strongly in L2
loc

(
M∞, IRl

)
, (4.4)

uk −→ u strongly in Lq
loc

(
M∞, IRl

)
for any q, 1 ≤ q <

mp

(m − p)+
, (4.5)

where the strong convergence in (4.5) follows from (4.1) and (4.2) (see [6, Lemma 1.4, p.
28]). Thus, furthermore, for a subsequence {uk} denoted by the same notation,

uk −→ u, dist(uk, N ) −→ 0 almost everywhere in M∞. (4.6)

The use of convergence (4.3) and (4.2) in the energy inequality (3.1) for uk also yields (1.14)
for the limit map u.

We demonstrate that the limit map u is a partial regular weak solution of the p-harmonic
flow, as in the statement of Theorem 5. The proof is divided to several steps and proceeded.

Let us define the regular set of the limit map u as

Reg(u) := { z0 = (t0, x0) ∈ M∞ | u is regular in a neighborhood of z0}
and thus, the singular set as the complement of Reg(u), � := Sing(u) = M∞\ Reg(u). By
definition, Reg(u) is a relatively open set of M∞ and Sing(u) is relatively closed in M∞.
Let R0 be a sufficient small positive number, determined in Theorem 11. For τ , 0 < τ < ∞,
and R, 0 < R < min{R0, τ 1/B0}, we put two subsets in M as

S(τ, R) :=
{
x0 ∈ M : lim sup

k→∞

(
lim sup
r↘0

rγ0−m
∫

{t=τ−RB0 }×B(r , x0)

ek(uk(t, x)) dM
)

≥ 1
}
;

T (τ, R) :=
∞⋂
l=1

∞⋃
k=l

{
x0 ∈ M : lim sup

r↘0
rγ0−m

∫

{t=τ−RB0 }×B(r , x0)

ek(uk(t, x)) dM > 1/2
}
.

(4.7)

Then, let us define as

S(τ ) :=
⋂

0<R<min{R0, τ
1/B0 }

S(τ, R) ; S := ⊗
0<τ<∞

S(τ ), (4.8)

where ⊗
0<τ<∞

means the direct product of sets on positive time τ < ∞.

Regularity of the limit map We will prove that � = Sing(u) ⊂ S. For this purpose, we now
show the regularity of limit map u in the complement of S. Let (t0, x0) be in the complement
of S. Thus, there exist a positive R < min{R0, (t0)1/B0} and an infinite family {uk} of regular
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solutions such that

lim sup
r↘0

rγ0−m
∫

{t=t0−RB0 }×B(r , x0)

ek(uk(t, x)) dx < 1.

Then we can apply Theorem 11 for each uk above to obtain

sup
(t0−(R/4)B0 , t0)×B(R/4, x0)

ek(uk) ≤ C R−pa0 , (4.9)

where the positive constant C depends only on B0, p, M and N .

Put Q :=
(
t0 − (R/8)B0 , t0

)
× B(R/8, x0). From (4.9), there exists a subsequence of

{uk}, denoted by the same notation, such that, as k → ∞,

Duk −→ Du weakly ∗ in L∞ (Q) ; sup
Q

|Du| ≤ C R−pa0 . (4.10)

Now we will show the uniform continuity of {uk} in Q. For this purpose we will derive
a local L2 estimate of derivative of the penalty term. For any smooth function φ of compact
support in Q, we multiply the Bochner type estimate (3.4) in Lemma 9 by φ2 √|g| and
integrate by parts in Q to have, letting K = Kk , u = uk and e(u) = ek(uk),

∫
Q

φ2

(
C1

2

(
ε + |Du|2) p−2

2
∣∣D2u

∣∣2 + C2

2

∣∣∣∣K2 Duχ
(
dist2(u, N

)∣∣∣∣
2
)

dz

≤
∫
Q

(
φ |∂tφ| e(u) + |Dφ|2

(
2p

C1
e(u) + 2

C2
e(u)

2
p

)

+C3 φ 2
(
1 + e(u)

2
p

)
e(u)

2
(
1− 1

p

))
dz, (4.11)

where we use the Cauchy inequality in the first inequality.
Let (t0, x0) ⊂ Q be any point and r ≤ R/8 be any positive number, and Q(r) =

(t0 − rq , t0) × B(r , x0) with q > 1. In (4.11) we choose a smooth function φ such that
0 ≤ φ ≤ 1, φ = 1 in Q(r), φ = 0 outside Q(2r), and |Dφ| ≤ C/r and |∂tφ| ≤ C/rq . Thus,
from (4.9) and (4.11) we obtain

∫
Q(r)

(
C1

2

(
ε + |Du|2) p−2

2
∣∣D2u

∣∣2 + C2

2

∣∣∣∣K2 Duχ
(
dist2(u, N

)∣∣∣∣
2
)

dz

≤ C
(
rm + rm+q−2 + rm+q) ≤ C rm (4.12)

We also need the Poincaré inequality of parabolic type : Let u = uk . There exists a positive
constant C , depending only on M and p, such that, for any Q(r) ⊂ Q,

‖u − ūQ(r)‖2L2(Q(r)) ≤ C
(
r2 ‖Du‖2L2(Q(r)) + r−m+q−2 ‖(ε + |Du|2)1/2‖2(p−1)

L p−1(Q(r))

+r2q ‖2−1K Duχ( dist2(u, N ))‖2L2(Q(r))

)
, (4.13)

where ūQ(r) is the integral mean of u in Q(r). For the proof refer to [28].
Substituting (4.9) and (4.12) into (4.13), we have, for any (t0, x0) ⊂ Q, any positive

r ≤ R/8, and Q(r) = (t0 − rq , t0) × B(r , x0),

‖u − ūQ(r)‖2L2(Q(r)) ≤ C
(
rm+q+2 + rm+3q−2 + rm+2q) (4.14)
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and thus, choosing q > 1 in (4.14), we obtain from Campanato’s isomorphism theorem that
{uk} is uniformly Hölder continuous in Q with exponent min{1, q − 1, q

2 } on the metric
|t |1/q+|x |, uniformly on uk . Thus,we see that {uk} is equicontinuous, and uniformly bounded
in Q by Lemma 8. Therefore, by Arzela-Ascoli theorem we find for a subsequence of {uk},
denoted by the same notation, and the limit map u that, as k → ∞,

uk −→ u uniformly in Q (4.15)

and that the limit map u is uniformly continuous in Q. From (4.9) and (4.15), we see that, as
k → ∞,

χ( dist2(uk, N )) ≤ C/Kk −→ 0 uniformly in Q �⇒ u ∈ N in Q (4.16)

Now we will show that the limit map u satisfies the p-harmonic flow equation in Q. From

(4.9) and (4.11) we also see that
{
(Kk/2) Duχ

(
dist2(u, N

)∣∣
u=uk

}
is bounded in L2(Q, IRl)

and then, there exists a vector-valued function ν ∈ L2(Q, IRl) such that, as k → ∞,

(Kk/2) Duχ
(
dist2(u, N )

)∣∣
u=uk

−→ ν weakly in L2(Q). (4.17)

Let PN
(
u(Q)

)
be a neighborhood of u(Q) in N . Let τ(v) be any smooth tangent vector

field of N on PN
(
u(Q)

)
, τ(v) ∈ TvN for any v ∈ PN

(
u(Q)

)
. By (4.15), we can choose a

sufficiently large k0 such that, for any k ≥ k0,uk ∈ OδN inQ andπN (uk) ∈ PN
(
u(Q)

) ⊂ N
and τ(πN (uk)) ∈ TπN (uk )N in Q, where OδN is a tubular neighborhood in IRl of N with
width δN , and πN is the nearest point projection toN from the tubular neighborhood ofN .
Thus, we have that

Duχ
(
dist2(u, N )

)∣∣
u=uk

· τ(πN (uk)) = 2χ ′ dist(u, N ) Du dist(u, N )|u=uk · τ
(
πN (uk)

)
= 0 in Q,

because Du dist(u, N )|u=uk (z) is orthogonal to TπN (uk (z))N for any z ∈ Q, and then,
∫
Q

Kk

2
Duχ

(
dist2(u, N )

)∣∣
u=uk

· τ(πN (uk)) dz = 0. (4.18)

By (4.15) and (4.17), we can take the limit as k → ∞ in (4.18) to have, for any smooth
tangent vector field τ(v) of N on PN

(
u(Q)

) ⊂ N , as k → ∞,

0 =
∫
Q

Kk

2
Duχ

(
dist2(u, N )

)∣∣
u=uk

· τ(πN (uk)) dz −→
∫
Q

ν · τ(u) dz

�⇒
∫
Q

ν · τ(u) dz = 0

⇐⇒ ν(z)⊥ Tu(z)N for any z ∈ Q (4.19)

and thus, ν(z) is a normal vector field along u(z) for any z ∈ Q. In the weak form of (2.1),
for any smooth map φ with compact support in Q,
∫
Q

(
∂t uk · φ + (

εk + |Duk |2
) p−2

2 gαβDβuk · Dαφ + Kk

2
Duχ

(
dist2(u, N )

)∣∣
u=uk

· φ

)
dz = 0,

we pass to the limit as k → ∞ to find that the limit map u satisfies∫
Q

(
∂t u · φ + |Du|p−2gαβDβu · Dαφ + ν · φ

)
dz = 0, (4.20)

123



Global existence and partial regularity for the p-harmonic… Page 25 of 66 54

where we use the convergence in the first line of (4.19) and, the strong convergence of
gradients {Duk}, obtained from (2.1) with the convergence (4.1), (4.2) and (4.17) (see [6,
Theorem 2.1 and its proof, pp. 31–33]). Therefore, we obtain that

∂t u − �pu + ν = 0 almost everywhere in Q as L2(Q) − map. (4.21)

We now observe that

|ν(z)| = −|Du(z)|p−2gαβ(x)Dβu(z) · (Dαu(z) · Duγ (u)|u=u(z))

almost every z = (t, x) ∈ Q. (4.22)

Let z̄ = (t̄, x̄) ∈ Q be arbitrarily taken and fixed. Let γ (v) be a smooth unit normal vector
field of N in u(Q) ⊂ N such that γ (v) ∈ (TvN )⊥, |γ (v)| = 1 for any v ∈ u(Q) and
γ (u(z̄)) = ν(z̄)/|ν(z̄)|. We take the composite map γ (u) of γ (·) and the limit map u, and
use a test function

√|g|γ (u) η for any smooth real-valued function η with compact support
in Q to have∫

Q

(
∂t u · γ (u)η + |Du|p−2gαβDβu · (Dβγ (u)η + γ (u)Dβη

)+ ν · γ (u) η
)
dz = 0;

∫
Q

(|Du|p−2gαβDβu · Dβγ (u) + ν · γ (u)
)

η dz = 0

�⇒ ν · γ (u) = −|Du|p−2gαβDβu · Dβγ (u) almost everywhere in Q,

where in the second line, we use that ∂t u, Dαu ∈ TuN , α = 1, . . . ,m, and γ (u) ∈ (TuN )⊥
in Q. The last line yields, at z = z̄,

|ν(z̄)| = −|Du(z̄)|p−2gαβ(x̄)Dβu(z̄) · (Dβu(z̄) · Duγ (u)|u=u(z̄)

)
.

Thus, (4.22) actually holds true.
Furthermore, there exists a positive constant C depending only on bounds of curvature of

N and (gαβ) such that

|ν| ≤ C |Du|p almost everywhere in Q. (4.23)

In fact, from (4.22) we obtain

|ν(z)| ≤ C max
v∈u(Q)

|Dvγ (v)| |Du(z)|p for almost every z ∈ Q.

By (4.23) and (4.10) we have that

∂t u − �pu = −ν ∈ L∞(Q) almost everywhere in Q

�⇒ Du is locally Hölder continuous in Q, (4.24)

where for the last statement of gradient continuity, we refer to [12, Theorem 1.1, p. 245; Sect.
4, p. 291; Sect. 1-(ii), pp. 217–218] (also see [26]).

As a consequence, we have that (t0, x0) is a regular point and thus, � ⊂ S. Furthermore,
from (4.21) and (4.22) it follows that the limit map u satisfies the p-harmonic flow Eq. (1.4)
almost everywhere in Q.

Size estimate of the singular set We recall again that � = Sing(u) ⊂ S. Let us estimate the
size of S.

From the definition of limit supremumon k and (4.7), we see that, for every τ , 0 < τ < ∞,
and R, 0 < R < min{R0, τ 1/B0},

S(τ, R) ⊂ T (τ, R). (4.25)
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Here we have the estimation of size (see [17, Theorem 2.2; its proof, pp. 101–103], [21] for
the proof) : It holds that, for every τ , 0 < τ < ∞, and R, 0 < R < min{R0, τ 1/B0},

Hm−γ0(T (τ, R)) = 0

and so, by (4.25),

Hm−γ0(S(τ, R)) = 0; Hm−γ0(S(τ )) = 0.

Thus, for any positive τ < ∞,

{τ } × � ⊂ S(τ ); Hm−γ0
({τ } × �

) = 0.

Then, the m-dimensional Hausdorff measure of S ∩ M∞ with respect to the time-space
metric |t |1/γ0 + |x | is locally zero : For any positive T < ∞, letting MT = (0, T ) × M,

Hm
(
S
⋂

MT

)
=

T∫

0

Hm−γ0
(
S(τ )

)
dτ = 0.

Weak solution of the p-harmonic flow Now we set the two sequences of real-numbers as
follows : Let �0 be a positive number. Let ε be any small positive number and R0 < 1 be a
sufficient small positive number, which are sent to zero, later. For positive constants M > 1
and θ < 1, we define two geometrical progressions as

�l = �0M
l; Rl = R0θ

l , l = 0, 1, 2, . . . . (4.26)

It is seen that �l ↗ ∞ and Rl ↘ 0 as l → ∞.
Let K be any time-space domain, K = (0, T ) × B(RM, x0) for T > 0 and a geodesic

ball B(RM, x0) in M. We set a family of sets Sl , l = 0, 1, 2, . . ., as

S0 =
{
z ∈ M∞ : |Du(z)| ≤ �0

}⋂(
K
⋂

S
)

;
Sl =

{
z ∈ M∞ : �l−1 < |Du(z)| ≤ �l

}⋂(
K
⋂

S
)

, l = 1, 2, . . . , (4.27)

where S is as in (4.8).
By the size of S shown as before and the compactness of K

⋂
S, we can choose a covering

of K
⋂

S in the following way : There exist sequences of positive numbers {rl i } and time-
space points {zl i }, l = 0, 1, 2, . . .; i = 1, 2, . . . , I (l) with finite integer I (l) depending on
each l, such that, for each l = 0, 1, 2, . . .,

P(rl i )(zl i ) = (tl i − (rl i )
γ0 , tl i + (rl i )

γ0) × B(rl, i )(xl i ),

zl i = (tl i , xl i ), rl i ≤ Rl , i = 1, 2, . . . I (l), (4.28)

are a family of time-space cylinders and a covering of Sl in the sense that

Pl i := P(rl i )(zl i ) : disjoint each other ;

P ′
l i := P(5 rl i )(zl i ),

I (l)⋃
i=1

P ′
l i ⊃ Sl ;

I (l)∑
i=1

(5 rl i )
m ≤ ε, (4.29)

where ε is firstly taken as small positive number.
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Furthermore, by the compactness of K
⋂

S, we can take a covering of K
⋂

S from {P ′
l i },

obtained above, which consists of finitely many time-space cylinders P ′
l i , l = 0, 1, 2, . . . , L

with finite integer L; i = 1, 2, . . . , I (l), and has the properties

Pl i := P(rl i )(zl i ) : disjoint each other, l = 0, 1, 2, . . . , L; i = 1, 2, . . . , I (l);
L⋃

l=0

I (l)⋃
i=1

P ′
l i ⊃ K

⋂
S;

L∑
l=0

I (l)∑
i=1

(5 rl i )
m ≤ ε. (4.30)

Let η be a smooth function onM∞ such that 0 ≤ η ≤ 1, η = 1 in P(1)(0) := (−1, 1)×
B(1)(0) and the support of η is contained in P(2)(0) := ( − 2γ0 , 2γ0

) × B(2)(0), and
|∂tη|+|Dη| ≤ C with a positive numberC depending only onm and γ0. For l = 0, 1, 2, . . .;
i = 1, 2, . . . , I (l), we denote by η l i the scaled function

η l i (t, x) = η
(
(t − tl i )/(5 rl i )

γ0 , (x − xi )/5 rl i
)

and then, the support of η l i ⊂ P ′′
l i := P(10 rl i )(zl i ).

Let L := {0, 1, 2, . . . , L}, I(l) := {1, 2, . . . , I (l)}. Let φ be any smooth map defined on
M∞ with values into IRl with compact support in K . From (4.21) we obtain

0 =
∫

K

(
∂t u − �pu + ν

) · φ inf
l∈L; i∈I(l)

(1 − η l i ) dz

=
∫

K

(
∂t u · φ + |Du|p−2gαβDβu · Dαφ + ν · φ

)
inf

l∈L; i∈I(l)
(1 − η l i ) dz

−
∫

K

|Du|p−2gαβDβu · sup
l∈L; i∈I(l)

(φ Dαη l i ) dz. (4.31)

We note that the number of overlaps of
{
P ′′
l i

}
, l ∈ L; i ∈ I(l), is at most finite and thus,

there exists a subfamily {Ql i } of
{
P ′′
l i

}
such that

|Dη l i (z)| = sup
l∈L, i∈I(l)

|Dη l i (z)| for Ql i := ∃P ′′
l i � z

for any z ∈ ⋃
l∈L

⋃
i∈I(l)

(
supp (Dη l i )

⋂
P ′′
l i

⋂
Sl
)
. Thus, the last error term in (4.31) is

estimated above by

∫

K

|Du|p−1|φ| sup
l∈L; i∈I(l)

|Dη l i | dz =
∫

⋃
l∈L

⋃
i∈I(l)(P

′′
l i

⋂Sl)

|Du|p−1|φ| sup
l∈L; i∈I(l)

|Dη l i | dz

=
∫

⋃
l∈L

⋃
i∈I(l)(Ql i

⋂Sl)

|Du|p−1|φ||Dη l i | dz

≤ sup
K

|φ|
L∑

l=0

I (l)∑
i=1

⎛
⎜⎝C (rl i )

−1
∫

Ql i
⋂Sl

|Du|p−1 dz

⎞
⎟⎠ ,
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of which the last integral is bounded by

(rl i )
−1 |Ql i | (�l)

p−1 = (rl i )
−1
∣∣P ′′

l i

∣∣ (�l)
p−1

≤ C (�l)
p−1 (rl i )

m+γ0−1

≤ C (�l)
p−1 (Rl)

γ0−1 (rl i )
m,

with a positive constantC depending only onm, where we use that γ0 > 1 and that, by (4.27)
and (4.28), for each l = 0, 1, 2, . . .,

|Du| ≤ �l in Sl ; rl i ≤ Rl , i = 1, 2, . . . , I (l).

Thus, it holds that

∫

K

|Du|p−1|φ| sup
l∈L; i∈I(l)

|Dη l i | dz ≤ C sup
K

|φ|
L∑

l=0

(�l)
p−1(Rl)

γ0−1
I (l)∑
i=1

(rl i )
m

≤ C ′ ε
∞∑
l=0

(�l)
p−1(Rl)

γ0−1, (4.32)

where we use (4.29) and the positive constant C ′ depends only on m, γ0 and supK |φ|. For
summation on l, we choose the ratios M > 1 and θ < 1 in (4.26) as

0 < θ < 1; M = θ−a for some a > 0 chosen later (4.33)

and compute

(�l)
p−1(Rl)

γ0−1 = (�0)
p−1 (R0)

γ0−1 θ l(−a(p−1)+γ0−1)

and thus,

∞∑
l=0

(�l)
p−1(Rl)

γ0−1 ≤ (�0)
p−1 (R0)

γ0−1
∞∑
l=0

θ l(−a(p−1)+γ0−1)

= (R0)
γ0−1 (�0)

p−1

1 − θ−a(p−1)+γ0−1
, (4.34)

provided that

−a(p − 1) + γ0 − 1 > 0 ⇐⇒ 0 < a <
γ0 − 1

p − 1
; γ0 > 1.

Finally, we see from (4.29) and definition of η l i that

inf
l∈L; i∈I

(1 − η l i ) → 1 almost everywhere in K as R0 ↘ 0 (4.35)

and thus, we can take the limit as R0 ↘ 0 in (4.32) and (4.34), and use the Lebesgue
convergence theorem with (4.35) in the second line of (4.31) to find that the limit map u
satisfies the p-harmonic flow equation in the weak sense. ��

Convergence to the p-harmonic map at a time-infinity We will present the convergence
of u to a p-harmonic map as time tends to infinity. By (1.14) we choose a sequence of time
{τl}, τl ↗ ∞, and a limit map u∞ such that, as l → ∞,

u(τl) −→ u∞ weakly in W 1,p(M, IRl) (4.36)

Du(τl) −→ Du∞ weakly in L p(M, IRml) (4.37)
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∂t u(τl) −→ 0 strongly in L2(M, IRl), (4.38)

where from (1.14) we obtain that, for some time-sequence {tl}, tl ↗ ∞ as l → ∞,

‖∂t u(τl)‖2L2(M)
= ‖∂t u‖2L2((tl−1, tl )×M)

−→ 0.

Then, from the convergence (4.1), (4.2) and (4.3), there exists a subsequence of {uk(τk)},
satisfying the same convergence as in (4.36), (4.37) and (4.38) with u(τl) replaced by uk(τk),
as k ↗ ∞.

Let us define the regular set of u∞ as

Reg(u∞) := {x0 ∈ M : u∞ is regular in a neghborhood of x0} (4.39)

and the singular set Sing(u∞) as the complement of Reg(u∞), �∞ := Sing(u∞) = M\
Reg(u∞). By definition, Reg(u∞) is relatively open inM and Sing(u∞) is relatively closed
in M.

Let us put, for 0 < R < R0,

S∞(R) :=
{
x0 ∈ M : lim sup

k→∞

(
lim sup
r↘0

rγ0−m
∫

{t=τk−RB0 }×B(r , x0)
ek(uk(t, x)) dM

)
≥ 1

}
;

S∞ :=
⋂

0<R<R0

S∞(R). (4.40)

Then, similarly as in Size estimate of the singular set before, we have that, for any positive
R < R0,

Hm−γ0
(
S∞(R)

) = 0; Hm−γ0
(
S∞

) = 0. (4.41)

We will show that �∞ ⊂ S∞. Let x0 be in the complement of S∞ and then, there exist a
positive R < R0, a subsequence of {uk(τk)}, denoted by the same notation as before, such
that

lim sup
r↘0

rγ0−m
∫

{t=τk−RB0 }×B(r , x0)

ek(uk(t, x)) dM < 1.

Then, by Theorem 11, we have

sup
(τk−(R/4)B0 , τk )×B(R/4, x0)

ek(uk) ≤ C R−pa0 , (4.42)

where the positive constantC depends only on p,M andN . Based on (4.42), we can proceed
the same limit process as in (4.11)–(4.24) to find that u∞ is regular in B(R/8, x0) and thus,
x0 ∈ Reg(u∞) = M\�∞. Therefore, the complement of S∞ is contained in that of �∞,
Reg(u∞), and thus, �∞ ⊂ S∞. By use of the size estimate of S∞ in (4.41), we can adopt
the similar argument as in (4.26)–(4.35), where time-space regions used are replaced by the
corresponding space regions, and thus, find that u∞ is a weak solution of the p-harmonic
map. ��

5 Monotonicity estimate of a local scaled energy

We now prove the monotonicity type estimate.
We make parallel translation on time of the Eq. (2.1) and its solutions u on (T , ∞) ×

B(RM) to those on (0, ∞) × B(RM) with the same notation.
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Hereafter we assume that the metric g = (
gαβ

)
is the identity matrix. In the general case

with
(
gαβ

)
, the lower order terms containing the derivatives of gαβ only appear and controlled

well as in the following estimations.

Let (t0, x0) in the parabolic like envelope
{
(t, x) : min{1, (RM)B0} > t ≥ |x |B0

}
,

B0 > 2.
First we prove the backward monotonicity estimate, Lemma 12. Our localized scaled

penalized energy is defined as

E(r) = 1

�p

∫
{t=t0−�2−p r2}×B(RM)

ē(u(t, x))B(t0, x0; t, x) Cq(t, x) dx; (5.1)

ē(u) := ēK , ε(u) = 1

p

(
ε + |Du|2) p

2 + C0
K

2
χ
(
dist2(u, N

);
� = �(r) = r

B0−2
2−p ; p > B0 >

6p − 4

p + 2
; 0 < r ≤ min{1, RM, (t0)

1/B0} (5.2)

with weight

B(t0, x0; t, x) = 1

(t0 − t)
m
B0

⎛
⎝1 −

(
|x − x0|

(t0 − t)
1
B0

) p
p−1
⎞
⎠

p−1
p−2

+
, t < t0;

C(t, x) =
(
t1/B0 − |x |

)
+ ; q > 2. (5.3)

Hereafter, for brevity, we use the notation as above.

Lemma 18 Let p > 2 and q > 2. For any regular solution u to (2.1) the following estimate
is valid for any positive number r < ρ ≤ min{1, RM, (t0/2)1/B0}

E(r) ≤ E(ρ) + C
(
ρμ − rμ

)

+C

t0−r B0∫

t0−ρB0

‖Cq−2(t) (ē(u(t)))θ0‖L∞(B((t0−t)1/B0 , x0)) dt, (5.4)

where

� = �(r) = r
B0−2
2−p ; (�(r))2−p r2 = r B0

and the positive exponents θ0 ≥ 2 and μ depend only on B0, p and N , m, p and B0,
respectively, and the positive constant C depends only on the same ones as μ and q.

The proof is proceeded similarly as in [33, Lemmta 5 and 6]. Here we will study how to
control well the approximating term, the derivative of penalty term.

Proof of Lemma 18. As before, let

� = r
B0−2
2−p , p > B0 >

6p − 4

p + 2

and let r be any positive number in the range 0 < r ≤ min
{
1, RM, (t0/2)1/B0

}
. First we

make a scaling transformation intrinsic to the evolutionary p-Laplace operator

t = t0 + �2−pr2 s; x = x0 + r y; v(s, y) = u(t0 + �2−pr2 s, x0 + r y)

� r
(5.5)

123



Global existence and partial regularity for the p-harmonic… Page 31 of 66 54

and, under the scaling transformation

t = t0 − �2−pr2 ⇐⇒ s = −1.

Then the scaled solution v is a solution of the scaled equation on {s = −1} × {y ∈ IRm :
x0 + ry ∈ B(RM)}

∂sv − div

((
�−2ε + |Dv|2) p−2

2 Dv

)
= −C0

K/�p

2
Dvχ

(
dist2

(
� r v, N

))
(5.6)

and we put the notation

ε̄ = �−2ε; K̄ = �−pK ;
f = f (v) := 1

p

(
ε̄ + |Dv|2) p

2 ; g = g(v) := K̄

2
χ
(
dist2(�rv, N )

);

�pv = div

((
p f

)1− 2
p Dv

)
; ē = ē(v) = f (v) + C0 g(v).

The scaled penalized energy is rewritten as

E(r) =
∫

{s=−1}×IRm

ē(v(s, y))B(s, y)Cq (s, y) dy;

B(s, y) = 1

(−s)
m
B0

⎛
⎝1 −

(
|y|

(−s)
1
B0

) p
p−1
⎞
⎠

p−1
p−2

+
; C(s, y) =

(
(t0 + r B0 s)1/B0 − |x0 + r y|

)
+ ,

(5.7)

where the integral in (5.7) is well-defined by supp(C) and supp(B) and we simply compute
as

Dv(s, y) = 1

�
Dxu(t, x); ē(v) = 1

�p
ē(u)

� = r
B0−2
2−p ⇐⇒ �

p−2
B0 r

B0−2
B0 = 1; B(s, y) dy = B (t0, x0; t, x) dx .

Our main task in monotonicity estimate is to derive appropriate values of parameter such
that

p > B0 >
6p − 4

p + 2
. (5.8)

Step 1 : differentiation of E(r) on r . We compute differentiation of E(r) on r .

d

dr
E(r) =

∫

{s=−1}×IRm

d

dr
ē(v)B Cq dy +

∫

{s=−1}×IRm

ē(v)B
d

dr
Cq dy

=
∫

{s=−1}×IRm

(
(p f )1−

2
p Dv · d

dr
Dv + C0

dv

dr
· Dvg(v)

)
B Cqdy

+ B − 2

r (p − 2)

∫

{s=−1}×IRm

(
ε̄ (p f )1−

2
p + p C0 g(v)

)
B Cq dy
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+
∫

{s=−1}×IRm

ē(v)B
d

dr
Cq dy

= : I + I I + I I I , (5.9)

since

dē(v)

dr
= (p f )1−

2
p

(
ε̄(B − 2)

r (p − 2)
+ Dv · d

dr
Dv

)
+ C0 p(B − 2)

r (p − 2)
g(v) + C0

dv

dr
· Dvg(v).

Estimations of I I and I I I . The term I I is nonnegative.
The term I I I is estimated by Young’s inequality as

I I I = q
∫

{s=−1}×IRm

ē(v)B Cq−1 dC
dr

dy

≥ − C

r

∫

{s=−1}×IRm

ē(v) Cq−1 B dy

≥ − C

r1+δ

∫

{s=−1}×IRm

(ē(v))
2(p−1)

p Cq B dy − C r
δ p
p−2

r

∫

{s=−1}×IRm

Cq− 2(p−1)
p−2 B dy,

(5.10)

where C(s, y) :=
(
(t0 + r B0 s)1/B0 − |x0 + r y|

)
+ is a Lipschitz function and the derivative

of C on r is computed as∣∣∣∣ ddr C(s, y)

∣∣∣∣ =
∣∣∣∣ ddr

(
(t0 + r B0s)1/B0 − |x0 + ry|

)
+

∣∣∣∣
= χ{|x0+r y|≤(t0+r B0 s)1/B0 }

∣∣∣∣(t0 + r B0s)1/B0
r B0−1s

(t0 + r B0s)
− x0 + ry

|x0 + ry| · y
∣∣∣∣

and thus, on the support {y ∈ IRm : |y| < 1} of B(−1, y)∣∣∣∣ ddr C
∣∣∣∣
∣∣∣∣
s=−1

≤ 2χ{|x0+r y|≤(t0+r B0 )1/B0 } r
−1

because of the conditions

0 < t0 ≤ 1; r B0

t0 − r B0
≤ 1 ⇐⇒ r B0 ≤ t0

2
.

The 1st term of (5.10) is scaled back and bounded below by

− C

r1+δ

1

�2(p−1)
‖ (ē(u(t)))

2(p−1)
p Cq(t)‖L∞(supp(B(t)))

∣∣∣∣
t=t0−r B0

∫

{s=−1}×IRm

B dy,

where we use �2−p r2 = r B0 ,
∫

{s=−1}×IRm
B dy =

∫
IRm

(
1 − |y| p

p−1

) p−1
p−2

+ dy < ∞

and the notation

ē(u) := f (u) + C0 g(u) := 1

p

(
ε + |Du|2) p

2 + C0
K

2
χ
(
dist2(u, N )

)
.

123



Global existence and partial regularity for the p-harmonic… Page 33 of 66 54

Each term of I is separately estimated in the following.
Estimation of I . By integration by parts, we have

I =
∫

{s=−1}×IRm

(
− div

(
(p f )1−

2
p Dv B Cq

)+ C0 Dvg(v)B Cq
)

· dv

dr
dy

= 1

r

(
1 + r �′

�

) ∫

{s=−1}×IRm

{
div
(
(p f )1−

2
p Dv B Cq/2) · v Cq/2 − C0 v · Dvg(v)B Cq

+ (p f )1−
2
p Dv ·

(
v DCq/2

)
B Cq/2

}
dy

+ 1

r

∫

{s=−1}×IRm

(
− div

(
(p f )1−

2
p Dv B Cq

)+ C0 Dvg(v)B Cq
)
·

· (((2 − p) r �−1 �′ + 2
)
s ∂sv + y · Dv

)
dy

=: I1 + I2 + I3, (5.11)

where the generator of dilation is computed as

dv

dr
= r−1 (−(1 + r �−1 �′) v + (

(2 − p) r �−1 �′ + 2
)
s ∂sv + y · Dv

)
. (5.12)

Estimation of I1.

I1 = 1

r

(
1 + r �′

�

) ∫

{s=−1}×IRm

{(
div
(
(p f )1−

2
p Dv B Cq/2)− C0 Dvg(v)B Cq/2

)
·

· (v Cq/2 − v̄
)− C0 v̄ · Dvg(v)B Cq/2} dy

=: I11 + I12,

where v̄ is a weighted integral mean as in (5.14) below, and

−1

r

(
1 + r

�′

�

)
v̄

∣∣∣∣
s=−1

·
∫

{s=−1}×IRm

div
(
(p f )1−

2
p Dv B Cq/2

)
dy

= 0,

because of Gauss’s divergence theorem and the compactness of support of B and C.
Each term I11 and I12 is separately estimated in the following.
Estimation of I11. I11 is computed as

I11 = 1

r

(
1 + r

�′

�

) ∫

{s=−1}×IRm

(
(v Cq/2) − v̄

)
· ((�pv − C0 Dvg(v)

)
B Cq/2+

+(p f )1−
2
p Dv · DB Cq/2 + (p f )1−

2
p Dv · DCq/2 B

)
dy

= 1

r

(
1 + r

�′

�

) ∫

{s=−1}×IRm

(
(v Cq/2) − v̄

) ·
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·
{
∂sv B Cq/2 +

p (p f )1−
2
p y · Dv

(
1 − |y| p

p−1

) 1
p−2

+ Cq/2

(p − 2) |y| p−2
p−1

+ (p f )1−
2
p Dv · DCq/2 B

}
dy

=: I111 + I112 + I113. (5.13)

Now we will estimate each of three terms in (5.13).
For estimation of I111 we use the Poincaré type inequality with weight of Barenblatt like

function [35, Theorem 5.3.4, p. 134]. Let v̄ be a weighted integral mean

v̄ =
∫

{s=−1}×IRm
(v Cq/2)B dy/

∫
{s=−1}×IRm

B dy. (5.14)

Lemma 19 (Poincaré inequality)
∫

{s=−1}×IRm

∣∣∣(v Cq/2) − v̄

∣∣∣2 B dy ≤ C
∫

{s=−1}×IRm

∣∣∣D(v Cq/2)

∣∣∣2 B dy. (5.15)

I111 of (5.13). I111 is estimated by Cauchy’s inequality for small c > 0 as

I111 ≥ − c

2 r

∫

{s=−1}×IRm

|∂sv|2 B Cq dy − 1

2c r

∫

{s=−1}×IRm

∣∣∣(v Cq/2) − v̄

∣∣∣2 B dy,

(5.16)

where by definition of �, 1+ r �−1 �′ = (p − B0)(p − 2)−1. The 1st time-derivative term
is absorbed into that of (5.24) below, later. By the Poincaré inequality (5.15) and Young’s
inequality with δ > 0, the 2nd term is bounded below by

− C

2c r

∫

{s=−1}×IRm

∣∣∣D(v Cq/2)

∣∣∣2 B dy ≥ − C

r1+δ

∫

{s=−1}×IRm

(
p f

)2(1− 1
p

)
B Cq dy

− C

r1−
δ

p−2

∫

{s=−1}×IRm

B Cq dy

− C

r �2

∫

{s=−1}×IRm

Cq−2 B dy, (5.17)

where the last term is obtained from the derivative of C on y, scaling back, a boundedness of
the map u with a bound H depending only on N in Lemma 8

∣∣DyC(t, x)
∣∣ = χ{|x0+r y|≤(t0+r B0 s)1/B0 }

∣∣∣∣− x0 + ry

|x0 + ry| r
∣∣∣∣

≤ r χ{|x0+r y|≤(t0+r B0 s)1/B0 };

|v|2 |DC|2 ≤ |u|2
�2 r2

r2 = �−2 H2. (5.18)
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I112 of (5.13). By Cauchy’s inequality,

I112 ≥ − C

r

∫

{s=−1}×IRm

(
p f

)1− 1
p

∣∣∣(v Cq/2) − v̄

∣∣∣ |y| 1
p−1

(
1 − |y| p

p−1

) 1
p−2

+ Cq/2 dy

≥ − C

r

∫

{s=−1}×IRm

∣∣∣(v Cq/2) − v̄

∣∣∣2 B dy

− C

r

∫

{s=−1}×IRm

(
p f

)2− 2
p |y| 2

p−1

(
1 − |y| p

p−1

) 3−p
p−2

+ Cq dy, (5.19)

where the 1st one is the same as the 2nd term in (5.16) and bounded below for δ > 0 as in
(5.17) and, the 2nd one of (5.19), together with the 1st one of (5.17), is estimated below by

−C (r−δ + 1)

r �2(p−1)
‖C(t)q

(
p f (u(t))

)2(1− 1
p

)
‖L∞(supp (B(t)))

∣∣∣∣
t=t0−r B0

, (5.20)

where we make a scaling back and compute as
∫

IRm

|y| 2
p−1

(
1 − |y| p

p−1

) 3−p
p−2

+ dy < ∞; 3 − p

p − 2
> −1 ⇐⇒ 3 > 2.

I113 of (5.13). By the boundedness (5.18) of derivative of C and Cauchy’s inequality,

I113 ≥ −q(p − B0)

2(p − 2) r

∫

{s=−1}×IRm

(
p f

)1− 1
p

∣∣∣v Cq/2 − v̄

∣∣∣ Cq/2−1 |DC|B dy

≥ −C
∫

{s=−1}×IRm

(
p f

)2− 2
p Cq−2 B dy − C

∫

{s=−1}×IRm

∣∣∣v Cq/2 − v̄

∣∣∣2 B dy,

of which the 1st term is estimated, similarly as in (5.20), below by

−C (r−δ + 1)

r �2(p−1)
‖C(t)q−2 (p f (u(t))

)2(1− 1
p

)
‖L∞(supp (B(t)))

∣∣∣∣
t=t0−r B0

(5.21)

and the 2nd term is bounded below as in (5.17).
Estimation of I12. By Cauchy’s inequality with δ > 0, we estimate as

r−1

∣∣∣∣∣∣∣
v̄ ·

∫

{s=−1}×IRm

Dvg B Cq/2 dy

∣∣∣∣∣∣∣
≤ r−1 |v̄|

∫

{s=−1}×IRm

|Dvg|B Cq/2 dy

≤ C(‖u0‖L∞(IRm ), N )

� r2

∫

{s=−1}×IRm

|Dvg|B Cq/2 dy

≤ C r δ−1
∫

{s=−1}×IRm

B dy + C

�2 r3+δ

∫

{s=−1}×IRm

|Dvg|2 B Cq dy,

where we use a boundedness of u with H > 0 depending only on N in Lemma 8 to have

|v(s)| = |u|
� r

≤ H

� r
; |v̄| ≤

∫

{s=−1}×IRm

|v(s)|B dy/
∫

{s=−1}×IRm

B dy ≤ H

� r
.
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Estimation of I2. As before by Cauchy’s inequality

I2 ≥ −q(p − B0)

2(p − 2) r

∫

{s=−1}×IRm

(
p f

)1− 1
p |v| Cq/2−1|DC| Cq/2 B dy

≥ − C

r

∫

{s=−1}×IRm

(p f )
2
(
1− 1

p

)
Cq B dy − C

r�2

∫

{s=−1}×IRm

Cq−2 B dy, (5.22)

of which the 1st term is estimated below by (5.20).
Estimation of I3. I3 is treated as

I3 =
∫

{s=−1}×IRm

((
(2 − p) r �−1 �′ + 2

)
s ∂sv + y · Dv

) ·

·
((− �pv + C0 Dvg(v)

)
B Cq − (

p f
)1− 2

p Dv · (DB Cq + DCq B
))

dy

= 1

r

∫

{s=−1}×IRm

((
(2 − p) r �−1 �′ + 2

)
s ∂sv + y · Dv

) ·

·
{

− ∂sv B Cq + (
p f

)1− 2
p y · Dv

p
(
1 − |y| p

p−1

) 1
p−2

+
(p − 2) |y| p−2

p−1

Cq

−(p f
)1− 2

p Dv · DCq B
}
dy. (5.23)

Moreover each term of (5.23) is arranged as

1

r

∫

{s=−1}×IRm

(−s)
(
(2 − p) r �−1 �′ + 2

) |∂sv|2 B Cq dy

− 1

r

∫

{s=−1}×IRm

(y · Dv) · ∂sv B Cq dy

+ p

r (p − 2)

∫

{s=−1}×IRm

{(
p f

)1− 2
p |y · Dv|2

+ (
(2 − p) r �−1 �′ + 2

) (
p f

)1− 2
p (y · Dv) · (s ∂sv)

}
Cq×

× |y|− p−2
p−1

(
1 − |y| p

p−1

) 1
p−2

+ dy

− 1

r

∫

{s=−1}×IRm

((
(2 − p) r �−1 �′ + 2

)
s ∂sv + y · Dv

) (
p f

)1− 2
p Dv · DCq B dy.

=: I31 + I32 + I33 + I34 + I35. (5.24)

Now each term in (5.24) is separately estimated.
I31 of (5.24). I31 ≥ 0 by the positivity of the coefficient. In fact, by definition of � and

s = −1

(−s)
(
(2 − p) r �−1 �′ + 2

) = B0 > 0 ⇐⇒ � = r (B0−2)/(2−p), B0 > 0.
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I32 of (5.24). By Cauchy’s inequality for small c > 0,

I32 ≥ c

2 r

∫

{s=−1}×IRm

|∂sv|2 B Cq dy − 1

2c r

∫

{s=−1}×IRm

|y|2 |Dv|2 B Cq dy.

The time-derivative term is absorbed into I31. ByYoung’s inequality the 2nd term is estimated
below for δ > 0 by

− C

r1+δ

∫

{s=−1}×IRm

|Dv|2(p−1) B Cq dy − C

r1−
δ

p−2

∫

{s=−1}×IRm

B Cq dy, (5.25)

of which the 1st term is bounded below by (5.20).
I33 of (5.24). Clearly, I33 ≥ 0.
I34 of (5.24).
By Cauchy’s inequality for small c > 0,

I34 ≥ − p B0

r (p − 2)

∫

{s=−1}×IRm

|∂sv| (p f
)1− 1

p |y| 1
p−1

(
1 − |y| p

p−1

) 1
p−2

+ Cq dy

≥ − c

2 r

∫

{s=−1}×IRm

|∂sv|2 B Cq dy

− C

2c r

∫

{s=−1}×IRm

(
p f

)2(1− 1
p

)
|y| 2

p−1

(
1 − |y| p

p−1

) 3−p
p−2

+ Cq dy, (5.26)

where in the 1st inequality (2 − p) r �−1 �′ + 2 = B0 as before. The 1st term of (5.26) is
absorbed into I31. The 2nd term of (5.26) is estimated below by (5.20).

I35 of (5.24). By Young’s inequality and the estimation (5.18) of derivative of C,

I35 ≥ − c

2

∫

{s=−1}×IRm

|∂sv|2 Cq B dy − 1

2c

∫

{s=−1}×IRm

(
p f

)2(1− 1
p

)
Cq−2 B dy

−C
∫

{s=−1}×IRm

(
p f

)2(1− 1
p

)
C

2(q−1)(p−1)
p B dy − C

∫

{s=−1}×IRm

B dy, (5.27)

where the 1st term can be absorbed into I31 and the 2nd and 3rd terms are bounded below
by

−C (r−δ + 1)

r �2(p−1)
‖C(t)q−2 (p f (u(t))

)2(1− 1
p

)
‖L∞(supp (B(t)))

∣∣∣∣
t=t0−r B0

, (5.28)

because 2(q − 1)(p − 1)/p > q − 2 ⇐� q > 2.
Resulting estimation. Combining all of the estimations above we have

d

dr
E(r) = I + I I + I I I

≥ J − C
(
r−1+ δ

p−2 + r−1+δ
)

− C

r3+δ �2

∫

{s=−1}×IRm

|Dvg(v)|2 B Cq dy

−C
r−δ + 1

r �2(p−1)
‖C(t)q−2 ē(u(t))

2(p−1)
p ‖L∞(supp (B(t)))

∣∣∣∣
t=t0−r B0

(5.29)
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with � = r (B0−2)/(2−p), according to (5.20), (5.21) and (5.28), and

J = B0

2 r

∫

{s=−1}×IRm

(−s) |∂sv|2 B Cq dy

+ p

r (p − 2)

∫

{s=−1}×IRm

|Dv|p−2 |y · Dv|2 |y|− p−2
p−1

(
1 − |y| p

p−1

) 1
p−2

+ Cq dy.

The term J is clearly nonnegative. From (5.29) integrated on the interval (r , ρ) we derive

E(ρ) − E(r)

≥ −C
∫ ρ

r

(
r−1+ δ

p−2 + r−1+δ
)
dr −

∫ ρ

r

C

r3+δ �2

∫

{s=−1}×IRm

|Dvg(v)|2 B Cq dy dr

−C
∫ ρ

r

r−δ + 1

r �2(p−1)
‖C(t)q−2ē(u(t))

2(p−1)
p ‖L∞(supp(B(t)))

∣∣∣∣
t=t0−�2−p r2

dr .

=: C (U1 +U2 +U3
)
. (5.30)

Step 2 : a uniform bound. We will make a bound of each term Ui , i = 1, 2, 3, in the right
hand side of (5.30).

U1 of (5.30). The 1st integrals on r in the 2nd line of (5.30) are computed as
∫ ρ

r
r−1+ δ

p−2 dr = p − 2

δ

(
ρ

δ
p−2 − r

δ
p−2

)
;
∫ ρ

r
r−1+δ dr = 1

δ

(
ρδ − r δ

)
,

(5.31)

U3 of (5.30). −U3 is computed as
∫ ρ

r
r−1 (−B0 �2−p r

)−1 ×

× 1

�2(p−1)
�δ‖C(t)q−2 ē(u(t))

2(p−1)
p ‖L∞(supp (B(t)))

(−B0 �2−p r
)
dt

= 1

B0

t0−(�(r))2−p r2∫

t0−(�(ρ))2−p ρ2

(t0 − t)
−1+ 2(p−1)(B0−2)

B0(p−2) − δ(B0−2)
B0(p−2) ×

×‖C(t)q−2 ē(u(t))
2(p−1)

p ‖L∞(supp (B(t))) dt, (5.32)

where by definition of �

� = r (B0−2)/(2−p) ⇐⇒ (�(r))2−p r2 = r B0

and, in the last term we make a changing of variable

t = t0 − �2−p r2 ⇐⇒ t0 − t = �2−p r2 = r B0 ;
dt

dr
= −B0 �2−p r ⇐⇒ dt = −B0 �2−p r dr .

Here the exponent of power of (t0 − t) in (5.32) is estimated as

−1 + 2(p − 1)(B0 − 2)

B0(p − 2)
> 0 ⇐⇒ B0 >

4(p − 1)

p
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⇐� B0 >
6p − 4

p + 2
; 6p − 4

p + 2
>

4(p − 1)

p
⇐⇒ (p − 2)2 > 0;

−1 + 2(p − 1)(B0 − 2)

B0(p − 2)
− δ(B0 − 2)

B0(p − 2)
≥ 0 ⇐⇒ 0 < δ ≤ 2(p − 1) − B0(p − 2)

B0 − 2

and then,

t0 − (�(ρ))2−p ρ2 ≤ t ≤ t0 − (�(r))2−p r2 ⇐⇒ r B0 ≤ t0 − t ≤ ρB0 ,

(t0 − t)
−1+ 2(p−1)(B0−2)

B0(p−2) − δ(B0−2)
B0(p−2) ≤ ρ

B0
(
−1+ 2(p−1)(B0−2)

B0(p−2) − δ(B0−2)
B0(p−2)

)
≤ 1

and thus, the right hand side of (5.32) is bounded above by

1

B0

t0−r B0∫

t0−ρB0

‖C(t)q−2 ē(u(t))
2(p−1)

p ‖L∞(supp (B(t))) dt .

U2 of (5.30). U2 is given by the approximation term, the derivative of penalty term in
(2.1) and our task is to control U2 well in the appropriate way. U2 is evaluated by use of the
Bochner type estimate for the penalty term

∂s g − div
(
(p f )1−

2
p Dg

)+ C ′
0 |Dvg|2 ≤ C (�r)2 ē2 (5.33)

with positive constants C ′
0 and C depending only on p,M andN . The derivation of (5.33) is

done similarly as in “Appendix C”, under the scaling settings (5.5) and (5.6), by using (6.8)
below.

Let r̄ be as r ≤ r̄ < ρ and chosen later. In the following we will replace r by r̄ , r ≤ r̄ < ρ,
and proceed to the similar estimations as for U2.

Multiplying a test function B Cq in (5.33) and then, integrating the resulting inequality on
y in {s = −1} × IRm and on r in a interval (r̄ , ρ), the estimation for U2 is done as

−
(
C ′
0 − c

2

)
U2 =

(
C ′
0 − c

2

) ∫ ρ

r̄

1

r3+δ �2

∫

{s=−1}×IRm

|Dvg|2 B Cq dy dr

≤ −
∫ ρ

r̄

1

r3+δ �2

∫

{s=−1}×IRm

∂s g B Cq dy dr

+
∫ ρ

r̄

1

r3+δ �2

∫

{s=−1}×IRm

1

2c

(
(p f )2−

2
p
(
B′ Cq + B q2Cq−2|DC|2)

+C (�r)2 ē2 B Cq
)
dy dr

=: U21 +U22, (5.34)

where byCauchy’s inequalitywith a small c > 0, the integrand term in the 3rd line is obtained
from∣∣∣(p f )1−

2
p Dg · D(B Cq

)∣∣∣ = (p f )1−
1
p |Dvg|

(|DB|Cq + B|DCq |) .
≤ c

2
|Dvg|2 B Cq + 1

2c
(p f )

2(p−1)
p

(
B′ Cq + B q2Cq−2|DC|2) ;

B′ := |y| 2
p−1

(
1 − |y| p

p−1

) 3−p
p−2

+ .
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Each term in the right hand side of (5.34) is separately treated in the following.
U22 in (5.34) The 3rd and 4th lines in the right hand side of (5.34) , U22, is scaled back

and

U22 ≤ C
∫ ρ

r̄

1

r3+δ �2p ‖C(t)q−2(ε + |Du(t)|2)p−1 +
+ C(t)q r2 ē(u(t))2‖L∞(supp(B(t)))

∣∣
t=t0−r B0 dr ×

×
∫

{s=−1}×IRm

(
B′ C2 + B |DC|2 + B

)
dy, (5.35)

where in the 2nd line we compute as

(�r)2 �−2 = r2

and, the integral on y in the 3rd line is bounded by a constant as before, since

C + |DC| ≤ 2;
∫

IRm

(B + B′) dy < ∞,
3 − p

p − 2
> −1 ⇐⇒ 3 > 2.

The integral on r in the 1st and 2nd lines is transformed into that on time by changing a
variable t = t0 − �(r)2−pr2 = t0 − r B0

C

t0−r̄ B0∫

t0−ρB0

(t0 − t)
1
B0

(
−4−δ+ (p+2)(B0−2)

p−2

)
‖C(t)q−2(ē(u(t))

2(p−1)
p + ē(u(t))2

)‖L∞(supp(B(t)) dt

≤ C

t0−r̄ B0∫

t0−ρB0

‖C(t)q−2(ē(u(t))
2(p−1)

p + ē(u(t))2
)‖L∞(supp(B(t)) dt,

where the power exponents of scale radius are computed as

r2 ≤ 1 ⇐� 0 < r ≤ ρ ≤ 1;
�p−2 r−1

r3+δ �2p = r−4−δ+ (p+2)(B0−2)
p−2 ;

−4 − δ + (p + 2)(B0 − 2)

p − 2
≥ 0 ⇐⇒ 0 < δ ≤ −4 + (p + 2)(B0 − 2)

p − 2

⇐� −4 + (p + 2)(B0 − 2)

p − 2
> 0 ⇐⇒ B0 >

6p − 4

p + 2
.

U21 in (5.34) −U21 is computed as

−U21 =
∫ ρ

r̄

1

r3+δ �2

∫

{s=−1}×IRm

∂s
(
g Cq

)
B dy dr

−
∫ ρ

r̄

1

r3+δ �2

∫

{s=−1}×IRm

g ∂sCq B dy dr

=: U211 +U212 (5.36)

Each term in (5.36) is separately estimated in the following.
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U212 in (5.36) U212 is estimated by using

∂sC = χ{|x0+r y|B0≤(t0+r B0 s)}
1

B0
(t0 + r B0 s)

1
B0

−1
r B0 ≤ r

B0
;

r B0 ≤ t0/2, s = −1;
t0 − r B0 ≥ t0/2, (t0 − r B0)

1
B0

−1 ≤ (t0/2)
1
B0

−1 ≤ r1−B0 ;
1

r3+δ �2

∣∣g ∂sCq
∣∣ ≤ q

B0

1

r2+δ �2
|g| Cq−1 ≤ q

B0

1

r2+δ �2+p
|g(u)| Cq−1

and thus, by scaling back and a changing of variable t = t0 − �(r)2−pr2 = t0 − r B0 ,

g(u(t)) := K

2
χ
(
dist2

(
u(t, x0 + (t0 − t)1/B0 y), N

)) ;

|U212| ≤ q

2B0

∫ ρ

r̄

1

r2+δ �2+p

∫

IRm

g(u(t)) Cq−1(t)B dy

∣∣∣∣∣∣
t=t0−r B0

dr

≤ q

B0

t0−r̄ B0∫

t0−ρB0

(t0 − t)
1
B0

(
−2−δ+ (p+2)(B0−2)

p−2

)
‖e(u(t)) Cq−1(t)‖

L∞
(
supp(B(t))

) dt ×

×
∫
IRm

B dy

≤ C

t0−r̄ B0∫

t0−ρB0

‖Cq−1(t) ē(u(t))‖
L∞
(
supp(B(t))

) dt, (5.37)

where B = B(s, y)|s=−1 =
(
1 − |y| p

p−1

) p−1
p−2

+ and the exponents are computed as

−2 − δ + (p + 2)(B0 − 2)

p − 2
≥ 0 ⇐⇒ 0 < δ ≤ −2 + (p + 2)(B0 − 2)

p − 2

⇐� −2 + (p + 2)(B0 − 2)

p − 2
> 0 ⇐⇒ B0 >

4p

p + 2

⇐� B0 >
6p − 4

p + 2
; 6p − 4

p + 2
>

4p

p + 2
⇐⇒ p > 2.

U211 in (5.36) U211 is transformed into an integral on time by scaling back.

U211 =
∫ ρ

r̄

1

r3+δ �2

∫

{s=−1}×IRm

∂s
(
g Cq

)
B dy dr

=
∫ ρ

r̄

1

r3+δ �2

∫

{s=−1}×IRm

�2−p r2
K̄

2
∂t h̃(t, y, r)

∣∣∣∣
t=t0+�2−pr2s

B dy dr , (5.38)

where we put

h̃(t, y, r) := K̄

2
χ
(
dist2

(
u(t, x0 + ry), N

)) (
t

1
B0 − |x0 + ry|

)q

+
.
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By changing a variable t = t0 − �(r)2−pr2 = t0 − r B0 , we have

t = t0 − r B0 ⇐⇒ r = (t0 − t)1/B0 ; K̄ = K�−p = Kr
p(B0−2)

p−2 = K (t0 − t)
p(B0−2)
B0(p−2) ;

dt = −B0r
B0−1dr = −B0�

2−prdr;
1

r2+δ �2 = (t0 − t)−c0 ; c0 := 1

B0

(
2(p − B0)

p − 2
+ δ

)

and an elementary computation

h(t, y) := h̃(t, y, (t0 − t)1/B0)

= K̄

2
χ
(
dist2

(
u(t, x0 + (t0 − t)1/B0 y), N

)) (
t

1
B0 − |x0 + (t0 − t)1/B0 y|

)q

+
;

∂t h(t, y) = − p(B0 − 2)

B0(p − 2)
(t0 − t)−1h(t, y) − 1

B0
(t0 − t)−1y · Dyh(t, y)

+ K̄

2
∂τ h̃(τ, y, (t0 − t)1/B0)

∣∣∣
τ=t

.

Thus, we have

U211 = 1

B0

t0−r̄ B0∫

t0−ρB0

(t0 − t)−c0 dP

dt
dt + p(B0 − 2)

B2
0 (p − 2)

t0−r̄ B0∫

t0−ρB0

(t0 − t)−c0−1 P(t) dt

+ 1

B2
0

t0−r̄ B0∫

t0−ρB0

(t0 − t)−c0−1
∫

IRm

y · Dyh(t, y)B(y) dy dt

=: U2111 +U2112 +U2113, (5.39)

where we put

P(t) :=
∫

IRm

h(t, y)B(y) dy, B(y) = B(s, y)|s=−1 =
(
1 − |y| p

p−1

) p−1
p−2

+ .

We will estimate each term in (5.39).
Now, we set r̄ as

∃ r̄ , r ≤ r̄ ≤ ρ : max
t0−ρB0≤t≤t0−r B0

P(t) = P(t0 − r̄ B0). (5.40)

Then, by integration by parts in the integral on t , we have

B0 ×U2111 =
t0−r̄ B0∫

t0−ρB0

(t0 − t)−c0 dP

dt
dt

= (t0 − t)−c0 P(t)
∣∣t0−r̄ B0

t0−ρB0 −
t0−r̄ B0∫

t0−ρB0

P(t) c0 (t0 − t)−c0−1 dt

≥ r̄−c0 B0 P(t0 − r̄ B0) − ρ−c0 B0 P(t0 − ρB0)
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−P(t0 − r̄ B0)
(
r̄−c0 B0 − ρ−c0 B0

)

= ρ−c0 B0
(
P(t0 − r̄ B0) − P(t0 − ρB0)

)
≥ 0. (5.41)

Clearly, U2112 ≥ 0. By integration by parts in the integral on y, we also have

U2113 = 1

B2
0

t0−r̄ B0∫

t0−ρB0

(t0 − t)−c0−1
∫

IRm

h(t, y)

⎛
⎝−m B + p

(
1 − |y| p

p−1
) 1
p−2
+ |y| p

p−1

p − 2

⎞
⎠ dy dt

≥ − m

B2
0

t0−r̄ B0∫

t0−ρB0

(t0 − t)−c0−1
∫

IRm

h(t, y) Cq(t)B dy dt .

The last integral is estimated below as

Cq(t) := Cq(t, x0 + (t0 − t)1/B0 y);

− m

B2
0

t0−r̄ B0∫

t0−ρB0

(t0 − t)b0−1
∫

IRm

g(u(t))Cq(t)B dy dt

≥ − m

B2
0

∫

IRm

B dy ×

×
⎛
⎜⎝

t0−r̄ B0∫

t0−ρB0

(t0 − t)α0(b0−1) dt

+
t0−r̄ B0∫

t0−ρB0

∥∥∥∥K2 χ
(
dist2

(
u(t, ·), N )) Cq(t)

∥∥∥∥
α0

α0−1

L∞
(
suppB(t)

) dt
⎞
⎟⎠ , (5.42)

where we use Young’s inequality with an exponent α0 > 1 and compute as

t = t0 − r B0 ⇐⇒ r = (t0 − t)1/B0 ;
� = r

B0−2
2−p , h(u(t)) = �−pg(u(t));

(t0 − t)−c0−1 �−p = (t0 − t)b0−1; b0 := B0(p + 2) − 4p

B0(p − 2)
− δ

B0

and we choose α0 > 1 as

1 < α0 <
1

1 − b0
⇐� α0(b0 − 1) > −1; b0 < 1 ⇐� B0 < p;

1

1 − b0
> 1 ⇐⇒ b0 > 0 ⇐⇒ 0 < δ <

B0(p + 2) − 4p

p − 2
;

B0(p + 2) − 4p

p − 2
> 0 ⇐⇒ B0 >

4p

p + 2

⇐� B0 >
6p − 4

p + 2
; 6p − 4

p + 2
>

4p

p + 2
⇐⇒ p > 2. (5.43)
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By (5.41) and (5.42) substituted into (5.39), we have

U211 ≥ − m

B2
0

∫

IRm

B dy ×

×
⎛
⎜⎝ρα0(b0−1)+1 − r̄α0(b0−1)+1

α0(b0 − 1) + 1
+

t0−r̄ B0∫

t0−ρB0

‖ē(u(t)) Cq(t)‖
α0

α0−1

L∞
(
suppB(t)

)
⎞
⎟⎠ ,

(5.44)

yielding, with (5.36) and (5.37) for U212,

−U21 ≥ U211 +U212

≥ −C
(
ρα0(b0−1)+1 − r̄α0(b0−1)+1

)

−C

t0−r̄ B0∫

t0−ρB0

‖ē(u(t)) Cq(t)‖
α0

α0−1

L∞
(
suppB(t)

)

−C

t0−r̄ B0∫

t0−ρB0

‖Cq−1(t) ē(u(t))‖
L∞
(
supp(B(t))

) dt .

By definition of P(t) in (5.39) and r̄ in (5.40), P(t) is the local scaled integral of the penalty
term, because by changing a variable x = x0 + (t0 − t)1/B0 y

h(t, y) = K̄

2
χ
(
dist2

(
u(t, x0 + (t0 − t)1/B0 y), N

)) (
t1/B0 − |x0 + (t0 − t)1/B0 y|

)q
+ ;

P(t) =
∫

IRm

h(t, y) Cq(t)B dy = 1

�p

∫

IRm

K

2
χ
(
dist2(u(t, x), N )

)
Cq(t, x)B(t, x) dx

and it holds that

P(t0 − r B0) ≤ P(t0 − r̄ B0) for r̄ in (5.40). (5.45)

Collecting the estimations for U1, U2 and U3 above in (5.30), we have, for r̄ in (5.40),

E(ρ) − E(r̄) ≥ −C
(
ρμ − r̄μ

)

−C

t0−r̄ B0∫

t0−ρB0

‖Cq−2(t) ē(u(t))
2(p−1)

p

+Cq(t)
(
ē(u(t))2 + ē(u(t))

α0
α0−1

)‖L∞(supp(B(t))) dt . (5.46)

Let us put, for α0 > 1 in (5.43),

θ0 = max

{
2,

α0

α0 − 1

}
. (5.47)

From (5.46), our desired monotonicity estimate is shown to hold true in the range of scale
radius [r̄ , ρ]. Also (5.45) is the monotonicity estimate in the range [r , r̄ ] of the local scaled
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integral of the penalty term. Therefore, it remains to estimate the local scaled p-energy in
the range of scale radius [r , r̄ ].

Step 3 : Monotonicity of the scaled p-energy. We now show a monotonicity estimate for
the scaled p-energy without the penalty term. Under the same notation as before we denote
the scaled p-energy by

F(r) =
∫

{s=−1}×IRm

f (v(s, y))B(s, y) Cq(s, y) dy; f = f (v) := 1

p

(
ε̄ + |Dv|2) p

2

(5.48)

and compute the differentiation of F(r) on a scale radius r
d

dr
F(r) =

∫

{s=−1}×IRm

d

dr
f (v)B Cq dy +

∫

{s=−1}×IRm

f (v)B
d

dr
Cq dy

=
∫

{s=−1}×IRm

(p f )1−
2
p Dv · d

dr
Dv B Cq dy

+ B − 2

r (p − 2)

∫

{s=−1}×IRm

ε̄ (p f )1−
2
p B Cq dy

+
∫

{s=−1}×IRm

f (v)B
d

dr
Cq dy

=: H1 + H2 + H3. (5.49)

Clearly, H2 ≥ 0. H3 is similarly estimated as I I I of (5.9) in (5.10), and

H1 = 1

r

(
1 + r �′

�

) ∫

{s=−1}×IRm

{
div
(
(p f )1−

2
p Dv B Cq/2) · (v Cq/2 − v̄

)

+ (p f )1−
2
p Dv ·

(
v DCq/2

)
B Cq/2

}
dy

− 1

r

∫

{s=−1}×IRm

div
(
(p f )1−

2
p Dv B Cq

) ·
(( (2 − p) r �′

�
+2
)
s ∂sv+y · Dv

)
dy

= : H11 + H12 + H13, (5.50)

where we use an integration by parts and the dilation derivative (5.12).
Estimation of H11 We have

H11 = 1

r

(
1 + r �′

�

) ∫

{s=−1}×IRm

div
(
(p f )1−

2
p Dv B Cq/2) · (v Cq/2 − v̄

)
dy

= 1

r

(
1 + r

�′

�

) ∫

{s=−1}×IRm

(
(v Cq/2) − v̄

) ·
{(

∂sv + C0 Dvg(v)
)
B Cq/2

+
p (p f )1−

2
p y · Dv

(
1 − |y| p

p−1

) 1
p−2

+
(p − 2) |y| p−2

p−1

Cq/2

+(p f )1−
2
p Dv · DCq/2 B

}
dy.
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In the bracket of the right hand side, the 1st time-derivative term, the 3rd term and the 4th
term are the same ones as in I111, I112 and I113 of I11 in (5.13), respectively. These terms are
estimated as for I111, I112 and I113.

The 2nd term containing the derivative of penalty term is estimated in the following.

1

r

∣∣∣
∫

{s=−1}×IRm

C0
(
(v Cq/2 − v̄

) · Dvg B Cq/2 dy
∣∣∣

≤ (C0)
2

2r

∫

{s=−1}×IRm

∣∣(v Cq/2) − v̄
∣∣2 B dy + 1

2r

∫

{s=−1}×IRm

∣∣Dvg
∣∣2 B Cq dy.

The 1st term is the same as (−1)×2nd one in (5.16) and thus, estimated above by (−1)×the
right hand side of (5.17). The 2nd term is estimated in the following. Multiplying a test
function B Cq by (5.33), we have, by Cauchy’s inequality with a small c > 0,

(C ′
0 − 1

c
) |Dvg(v)|2 B Cq ≤ c

2
|∂sv|2 B Cq + div

(
(p f )1−

2
p Dg B Cq

)

+ c

2
(p f )2−

2
p
(
B′ Cq + B Cq−2|DC|2)

+C (�r)2 ē(v)2 B Cq , (5.51)

where B′ = |y| 2
p−1

(
1 − |y| p

p−1

) 3−p
p−2

+ , and

∂s g(v) = ∂sv · Dvg(v); Dg(v) = Dv · Dvg(v).

The inequality (5.51) is integrated on y and then, estimated by integration by parts as

1

r

∫

{s=−1}×IRm

|Dvg|2 B Cq dy ≤ c

2r

∫

{s=−1}×IRm

|∂sv|2 B Cq dy

+ C

r

∫

{s=−1}×IRm

(
(�r)2 ē2 B Cq + (p f )2−

2
p
(
B′ Cq + B q2Cq−2|DC|2)) dy.

(5.52)

Estimations of H12 and H13 H12 is the same as I2 in (5.11) and thus, estimated as in (5.22)
and (5.20).

H13 is the same as I3 in (5.11) except the derivative term of the penalty term and thus, is
estimated similarly as for I3i , i = 1, . . . , 5, and the estimation (5.52) for the derivative of
the penalty term in H11.

Gathering the estimations above and scaling back, we have, for δ > 0,

d

dr
F(r) ≥ J − C

(
r−1+ δ

p−2 + r−1+δ
)

− C

r �2(p−1)
‖ē(u(t))

2(p−1)
p Cq−2(t) + ē(u(t))2 Cq(t)‖L∞(supp (B(t))

∣∣∣∣
t=t0−r B0

,

where in the 2nd line we estimate as

(�r)2�−2 = r2 ≤ 1 ⇐� 0 < r ≤ ρ ≤ 1;
∫

{s=−1}×IRm

(
B + B′ C2 + B |DC|2) dy < ∞,
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and, integrated on r in (r , ρ), yielding

F(ρ) − F(r) ≥ −C
∫ ρ

r

(
r−1+ δ

p−2 + r−1+δ
)
dr

−
∫ ρ

r

C

r �2(p−1)
‖ē(u(t))

2(p−1)
p Cq−2(t) +

+ ē(u(t))2 Cq(t)‖L∞(supp (B(t))

∣∣∣
t=t0−r B0

dr . (5.53)

The 1st term in the right hand side is the same as U1 in (5.30) and estimated as in (5.31).
The term in the 2nd and 3rd lines is, by changing a variable t = t0 − �2−pr2 = t0 − r B0 ,
computed as

∫ ρ

r

−1

B0 r B0 �2(p−1)
‖ē(u(t))

2(p−1)
p Cq−2(t)

+ē(u(t))2 C(t)q‖L∞(supp(B(t))
∣∣
t=t0−r B0 (−B0 r

B0−1) dr

= C

t0−r B0∫

t0−ρB0

(t0 − t)
1
B0

(
−2+ p(B0−2)

p−2

)
‖ē(u(t))

2(p−1)
p C(t)q−2

+ē(u(t))2 C(t)q‖L∞(supp(B(t))) dt

≤ C

t0−r B0∫

t0−ρB0

‖ē(u(t))
2(p−1)

p C(t)q−2 + ē(u(t))2 C(t)q‖L∞(supp(B(t))) dt, (5.54)

where the power exponent of scale radius is evaluated as

r−1 1

�2(p−1)
�p−2r−1 = (t0 − t)

1
B0

(
−2+ p(B0−2)

p−2

)
⇐� t = t0 − r B0 ;

−2 + p(B0 − 2)

p − 2
≥ 0 ⇐⇒ B0 >

4(p − 1)

p

⇐� B0 >
6p − 4

p + 2
; 6p − 4

p + 2
>

4(p − 1)

p
⇐⇒ (p − 2)2 > 0.

Finally, we collect the estimations (5.45), (5.46) in Step 2, and (5.53), (5.54) in Step 3 to
complete the proof of (5.4). ��

Now we show the validity of the forward monotonicity estimate, Lemma 13.
As before by parallel transformation let the Eq. (2.1) and its solutions u be defined on

(0, ∞) × IRm with the same notation.

Let (t0, x0) in the parabolic like envelope
{
(t, x) : min{1, (RM)B0} > t ≥ |x |B0

}
,

B0 > 2.
The forward localized scaled penalized energy is

E(r) = 1

�p

∫
{t=t0+�2−p r2}×B(RM)

1

p
ē(u(t, x))B(t0, x0; t, x) Cq(t, x) dx; (5.55)

� = �(r) = r
B0−2
2−p ; p > B0 >

6p − 4

p + 2
; 0 < r ≤ min{1, (RM)1/B0} (5.56)
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with weight

B(t0, x0; t, x) = 1

(t − t0)
m
B0

⎛
⎝1 −

(
|x − x0|

(t − t0)
1
B0

) p
p−1
⎞
⎠

p−1
p−2

+
, t > t0;

C(t, x) =
(
t1/B0 − |x |

)
+ ; q > 2. (5.57)

The notation as above is used.

Lemma 20 Let p > 2 and q > 2. For any regular solution u to (2.1) the following estimate

is valid for any positive number r < ρ ≤ min{1, ((RM)B0 − t0
)1/B0}

E(ρ) ≤ E(r) + C
(
ρμ − rμ

)

+C

t0+ρB0∫

t0+r B0

‖Cq−2(t) (ē(u(t)))θ0‖L∞(B((t0−t)1/B0 , x0)) dt, (5.58)

where

� = �(r) = r
B0−2
2−p , (�(r))2−p r2 = r B0

and the positive exponents θ0 ≥ 2 and μ depend only on B0, p and N , m, p and B0,
respectively, and the positive constant C depends only on the same ones as μ and q.

Proof of Lemma 20. As before we put

� = r
B0−2
2−p , p > B0 >

6p − 4

p + 2

and let r any positive number in the range 0 < r ≤ min{1, ((RM)B0 − t0
)1/B0}. We make a

scaling transformation intrinsic to the evolutionary p-Laplace operator

t = t0 + �2−pr2 s; x = x0 + r y; v(s, y) = u(t0 + �2−pr2 s, x0 + r y)

� r
(5.59)

and, under the scaling transformation it holds that

t = t0 + �2−pr2 ⇐⇒ s = +1.

The scaled solution v is a solution of the scaled equation on {s = 1} × IRm

∂sv − div

((
�−2ε + |Dv|2) p−2

2 Dv

)
= −C0

K/�p

2

d

dv
χ
(
dist2

(
� r v, N

))
. (5.60)

Hereafter we use the same notation as in (5.6).
Similarly as the backward case, the scaled energy is rewritten as

E(r) =
∫

{s=1}×IRm

ē((v(s, y))B(s, y) Cq(s, y) dy;

B(s, y) = 1

sm/B0

(
1 −

( |y|
s1/B0

) p
p−1
) p−1

p−2

+
; C(s, y) =

(
(t0 + r B0 s)1/B0 −|x0 + r y|

)
+ ,

(5.61)
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where the integral in (5.61) is well-defined by supp(C) and supp(B).
The computation and estimation are similar as in those for the backward monotonicity

estimate. In the followingwe indicate only the part of estimations, different from the backward
monotonicity. In the following the integral region on y is changed to {s = 1} × IRm .

Similarly as in (5.9) in the backward case, we make differentiation of E(r) on r

d

dr
E(r) =

∫

{s=1}×IRm

(
(p f )1−

2
p Dv · d

dr
Dv + C0

dv

dr
· Dvg(v)

)
B Cqdy

+ B − 2

r (p − 2)

∫

{s=1}×IRm

(
ε̄ (p f )1−

2
p + p C0 g(v)

)
B Cq dy

+
∫

{s=1}×IRm

ē(v)B
d

dr
Cq dy

=: I + I I + I I I . (5.62)

Estimation of I I and I I I . By Young’s inequality and 0 < ε̄ = �−2ε ≤ 1 the term I I is
bounded with δ > 0 by

I I ≤ C

r1+δ

∫

{s=1}×IRm

(ē(v))
2(p−1)

p Cq B dy + C

⎛
⎝r

δ(p−2)
p

r
+ r

δ p
p−2

r

⎞
⎠

∫

{s=1}×IRm

Cq B dy.

For estimation of I I I the derivative of C on r is computed as

∣∣∣∣ ddr C(t, x)

∣∣∣∣ = χ{|x0+r y|≤(t0+r B0 s)1/B0 }
∣∣∣∣(t0 + r B0s)1/B0

r B0−1s

t0 + r B0s
− x0 + ry

|x0 + ry| · y
∣∣∣∣

and thus, on the support {y ∈ IRm : |y| < 1} of B(1, y)

∣∣∣∣ ddr C
∣∣∣∣
∣∣∣∣
s=1

≤ 3χ{|x0+r y|≤(t0−r B0 )1/B0 } r
−1

because of the conditions

0 < t0 ≤ 1; r B0

t0 + r B0
≤ 1.

Thus, exactly as (5.10) in the backward case, we have

I I I ≤ C

r1+δ

∫

{s=1}×IRm

(ē(v))
2(p−1)

p Cq B dy + C r
δ p
p−2

r

∫

{s=1}×IRm

Cq− 2(p−1)
p−2 B dy.

The estimation of I is exactly same as (5.11) in the backward case. The terms corre-
sponding to I1 are bounded above by (−1)×the terms (5.20), (5.21) and some controllable
integral terms containing B, C and their derivatives, where the integral region is replaced by
{s = 1} × IRm . The term corresponding to I2 is estimated above by (−1)×the right hand
side of (5.22) with the integral region replaced by {s = 1} × IRm .
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I3 is computed exactly as (5.23) and (5.24) with the integral region replaced by {s =
1} × IRm . In the term corresponding to I31 we note by s = 1 that

(−s)
(
(2 − p) r �−1 �′ + 2

) = −B0 < 0 ⇐⇒ � = r (B0−2)/(2−p), B0 > 0.

The term corresponding to I33 is estimated above by

p

r (p − 2)

∫

{s=1}×IRm

(p f )1−
2
p |y · Dv|2 Cq |y|− p−2

p−1

(
1 − |y| p

p−1

) 1
p−2

+ dy

≤ p

r (p − 2)

∫

{s=1}×IRm

p f Cq |y|2− p−2
p−1

(
1 − |y| p

p−1

) 1
p−2

+ dy

≤ C r−δ

r

∫

{s=1}×IRm

f
2(p−1)

p Cq |y|2− p−2
p−1

(
1 − |y| p

p−1

) 1
p−2

+ dy

+ C r
δ p
p−2

r

∫

{s=1}×IRm

Cq |y|2− p−2
p−1

(
1 − |y| p

p−1

) 1
p−2

+ dy.

The other terms corresponding to I3i , i = 2, 4, 5, are bounded above by (−1)×the terms of
the right hand side of (5.25), (5.26), (5.27) and (5.28).

Combining all of the estimations above we have

d

dr
E(r) ≤ J + C

(
r−1+δ + r−1+ δ

p−2 + r−1+ δ p
p−2

)

+ C

r3+δ �2

∫

{s=1}×IRm

|Dvg(v)|2 B Cq dy

+ C
r−δ + 1

r �2(p−1)
‖Cq−2(t) (ē(u(t)))

2(p−1)
p ‖L∞(supp (B(t)))

∣∣∣∣
t=t0+r B0

, (5.63)

where � = r (B0−2)/(2−p), but

J = −1

2
B0 r

−1
∫

{s=1}×IRm

|∂sv|2 B Cq dy.

The term J is clearly nonpositive. From (5.63) integrated on the interval (r , ρ) we derive

E(ρ) − E(r)

≤ C
∫ ρ

r

(
r−1+δ + r−1+ δ

p−2 + r−1+ δ p
p−2

)
dr

+
∫ ρ

r

C

r3+δ �2

∫

{s=1}×IRm

|Dvg(v)|2 B Cq dy dr

+C
∫ ρ

r

r−δ + 1

r �2(p−1)
‖Cq−2(t) (ē(u(t)))

2(p−1)
p ‖L∞(suppB(t))

∣∣∣∣
τ=t0+r B0

dr

=: C (U1 +U2 +U3). (5.64)
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The terms in the right hand side of (5.64) correspond to those in (5.30). Note that U1, U2

andU3 are just (−1)× the corresponding terms in (5.30).U1 andU3 can be estimated exactly
similarly as the corresponding terms in (5.30).

We have to care the estimation of U2. Under the scaling setting (5.59) and (5.60) in the
forward case now, we also have the Bochner type estimate (5.33) for the penalty term. We
can proceed to the estimations, similarly as in (5.34), to obtain

(
C ′
0 − c

2

)
U2 =

(
C ′
0 − c

2

) ∫ ρ

r

1

r3+δ �2

∫

{s=1}×IRm

|Dvg|2 B Cq dy dr

≤ −
∫ ρ

r

1

r3+δ �2

∫

{s=1}×IRm

∂sg B Cq dy dr

+
∫ ρ

r

1

r3+δ �2

∫

{s=1}×IRm

1

2c

(
(p f )2−

2
p
(
B′ Cq + B q2Cq−2|DC|2)+

+C (�r)2ē2 B Cq
)
dy dr

=: U21 +U22,

The estimation for U22 is the same as in (5.35) in the backward case.
U21 is also computed as in (5.36) in the backward case

−U21 =
∫ ρ

r

1

r3+δ �2

∫

{s=1}×IRm

∂s
(
g Cq

)
B dy dr −

∫ ρ

r

1

r3+δ �2

∫

{s=1}×IRm

g ∂sCq B dy dr

=: U211 +U212.

The estimation for |U212| is done in the same way as in (5.37) in the backward case. The esti-
mation forU211 is performed in the following. By changing a variable t = t0+�(r)2−pr2 =
t0 + r B0 , we have

t = t0 + r B0 ⇐⇒ r = (t − t0)
1/B0 ; K̄ = K�−p = Kr

p(B0−2)
p−2 = (t − t0)

p(B0−2)
B0(p−2) ;

dt = B0r
B0−1dr = B0�

2−prdr;
1

r2+δ �2 = (t − t0)
−c0 ; c0 := 1

B0

(
2(p − B0)

p − 2
+ δ

)

and a computation

h(t, y) := K̄

2
χ
(
dist2

(
u(t, x0 + (t − t0)

1/B0 y), N
)) (

t1/B0 − |x0 + (t − t0)
1/B0 y|

)q
+ ;

∂t h(t, y) = p(B0 − 2)

B0(p − 2)
(t − t0)

−1h(t, y) + 1

B0
(t − t0)

−1y · Dyh(t, y)

+ K̄

2
∂τ

(
χ
(
dist2

(
u(τ, x0 + (t − t0)

1/B0 y), N
))×

×
(
τ 1/B0 − |x0 + (t − t0)

1/B0 y|
)q

+

)∣∣∣∣
τ=t

.

123



54 Page 52 of 66 M. Misawa

Thus, we have

U211 = 1

B0

t0+ρB0∫

t0+r̄ B0

(t − t0)
−c0 dP

dt
dt − p(B0 − 2)

B2
0 (p − 2)

t0+ρB0∫

t0+r̄ B0

(t − t0)
−c0−1 P(t) dt

− 1

B2
0

t0+ρB0∫

t0+r̄ B0

(t − t0)
−c0−1

∫

IRm

y · Dyh(t, y)B(y) dy dt

=: U2111 +U2112 +U2113, (5.65)

where we put

P(t) :=
∫

IRm

h(t, y)B(y) dy, B(y) = B(s, y)|s=1 =
(
1 − |y| p

p−1

) p−1
p−2

+ .

We will estimate each term in (5.65).
Now, we set r̄ as

∃ r̄ , r ≤ r̄ ≤ ρ : min
t0+r B0≤t≤t0+ρB0

P(t) = P(t0 + r̄ B0). (5.66)

Then, by integration by parts in the integral on t , we have

B0 ×U2111 =
t0+ρB0∫

t0+r̄ B0

(t − t0)
−c0 dP

dt
dt

= (t − t0)
−c0 P(t)

∣∣t0+ρB0

t0+r̄ B0
+

t0+ρB0∫

t0+r̄ B0

P(t) c0 (t − t0)
−c0−1 dt

≥ ρ−c0 B0 P(t0 + ρB0) − r̄−c0 B0 P(t0 + r̄ B0)

+P(t0 + r̄ B0)
(
r̄−c0 B0 − ρ−c0 B0

)

= ρ−c0 B0
(
P(t0 + ρB0) − P(t0 + r̄ B0)

)
≥ 0. (5.67)

By integration by parts in the integral on y, we also have

U2113 = 1

B2
0

t0+ρB0∫

t0+r̄ B0

(t − t0)
−c0−1 ×

×
∫

IRm

h(t, y)

(
m B − p

p − 2

(
1 − |y| p

p−1
) 1
p−2
+ |y| p

p−1

)
dy dt;

U2112 +U2113 ≥ 1

B2
0

(
m − p(B0 − 2)

p − 2

) t0+ρB0∫

t0+r̄ B0

(t − t0)
−c0−1 P(t) dt
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− p

B2
0 (p − 2)

t0+ρB0∫

t0+r̄ B0

(t − t0)
−c0−1

∫

IRm

h(t, y) Cq(t)
(
1 − |y| p

p−1
) 1
p−2
+ |y| p

p−1 dy dt .

The 1st term is nonnegative, sincem− p(B0−2)
p−2 > m− p ≥ 0, and the last integral is estimated

below as

g(u(t)) := K

2
χ
(
dist2

(
u(t, x0 + (t − t0)

1/B0 y), N
))

,

Cq(t) := Cq(t, x0 + (t − t0)
1/B0 y);

− p

B2
0 (p − 2)

t0+ρB0∫

t0+r̄ B0

(t − t0)
b0−1

∫

IRm

g(u(t)) Cq (t)
(
1 − |y| p

p−1
) 1

p−2
+ |y| p

p−1 dy dt

≥ − p

B2
0 (p − 2)

∫

IRm

(
1 − |y| p

p−1
) 1

p−2
+ |y| p

p−1 dy ×

×
⎛
⎜⎝

t0+ρB0∫

t0+r̄ B0

(t − t0)
α0(b0−1) dt +

t0+ρB0∫

t0+r̄ B0

‖K
2

χ
(
dist2

(
u(t, ·), N )) Cq(t)‖

α0
α0−1

L∞
(
suppB(t)

)dt
⎞
⎟⎠ ,

(5.68)

where α0 > 1 is as in (5.43) in the backward case. Therefore we have

−U21 ≥ −C
(
ρα0(b0−1)+1 − r̄α0(b0−1)+1

)

−C

t0+ρB0∫

t0+r̄ B0

‖ē(u(t)) Cq(t)‖
α0

α0−1

L∞
(
suppB(t)

)

−C

t0+ρB0∫

t0+r̄ B0

‖Cq−1(t) ē(u(t))‖
L∞
(
supp(B(t))

) dt .

By definition of P(t) in (5.65) and r̄ in (5.66), P(t) is the local scaled integral of the penalty
term, because by changing a variable x = x0 + (t − t0)1/B0 y

h(t, y) = K̄

2
χ
(
dist2

(
u(t, x0 + (t − t0)

1/B0 y), N
)) (

t1/B0 − |x0 + (t − t0)
1/B0 y|

)q
+ ;

P(t) =
∫

IRm

h(t, y)B dy = 1

�p

∫

IRm

K

2
χ
(
dist2(u(t, x), N )

)
Cq(t, x)B(t, x) dx

and it holds that

P(t0 + r̄ B0) ≤ P(t0 + r B0) for r̄ in (5.66). (5.69)
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Collecting the estimations for U1, U2 and U2 above in (5.64), we have, for r̄ in (5.66),

E(ρ) − E(r̄) ≤ C
(
ρμ − r̄μ

)

+C

t0+ρB0∫

t0+r̄ B0

‖Cq−2(t) ē(u(t))
2(p−1)

p +

+Cq(t)
(
ē(u(t))2 + ē(u(t))

α0
α0−1

)‖L∞(supp(B(t))) dt . (5.70)

Let θ0 be as in (5.43) and (5.47) in the backward case. By (5.70), our desired monotonicity
estimate holds true in the range of scale radius [r̄ , ρ], and (5.69) is the monotonicity estimate
in the range [r , r̄ ] of the local scaled integral of the penalty term. Therefore, it remains to
estimate the local scaled p-energy in the range of scale radius [r , r̄ ]. The monotonicity
estimate of the local scaled p-energy in the range of scale radius [r , r̄ ] is estimated exactly
as Step 3 in the backward case. In fact, letting as in (5.48)

F(r) =
∫

{s=1}×IRm

f (v(s, y))B(s, y) Cq(s, y) dy; f = f (v) := 1

p

(
ε̄ + |Dv|2) p

2 ,

we arrive at the estimate corresponding to (5.53)

F(ρ) − F(r) ≤ C
(
ρμ − rμ

)

+
∫ ρ

r

C

r �2(p−1)
‖ē(u(t))

2(p−1)
p Cq−2(t) +

+ē(u(t))2 Cq(t)‖L∞(supp (B(t))

∣∣∣
t=t0+r B0

dr ,

where the last term is controlled as in (5.54). ��
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6. Appendix

Appendix A A global existence and regularity of a weak solution of (2.1).

Proof od Lemma 6. We use the Galerkin method and the monotonicity trick for p-Laplace
operator to solve the Cauchy problem (2.1). The proof is standard and we can refer to [6,
Theorem 1.5 and its proof, pp. 29–31].

Regularity of a weak solution. Let u = uK , ε be a weak solution of (2.1). The lower-order
term is bounded by the definition of χ as∣∣∣K χ ′ ( dist2(p, N )

)
dist(p, N )Dp dist(p, N )

∣∣∣ ≤ C K δN sup
s>0

∣∣χ ′(s)
∣∣
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and thus, we can apply the Hölder regularity result for the evolutionary p-Laplace operator
in [12, Theorem 1.1′, p. 256] (also see [26]) to find that the solution u and its gradient are
locally Hölder continuous on M∞. We also have that the second derivative is integrable

:
(
ε + |Du|2) p−2

2 |D2u|2 is locally integrable in M∞ and that the gradient Du is locally
bounded in M∞ (see [12, Proposition 3.1, p. 223; Theorem 5.1 , p. 238]. Then, expanding
the principal part of the p-Laplace operator, the solution u is also satisfies the linear parabolic
systemswithHölder continuous coefficients and lower-order terms almost everywhere. Thus,
it follows from the Schauder regularity theory that u, Du, D2u and ∂t u are locally Hölder
continuous in M∞. ��

Appendix B Energy inequality andmaximum principle

We present the proof of Lemmata 7 and 8.

Proof of Lemma 7. The energy inequality (3.1) is shown to be valid in the proof of Lemma 6.
However, as a priori estimates for regular solutions of (2.1), we naturally multiply (2.1) by
∂t u

√|g| and integrate by parts on space variable in MT for any T > 0. ��
Proof of Lemma 8. We multiply (2.1) by

√|g|u(|u|2 − H2
)
+ and integrate in M∞, where(

f
)
+ is the positive part of a function f . Since the support of χ ′ is in O2δN (N ) ⊂ B(H),

χ ′(dist2(u, N )) is zero in IRl\B(H , 0). Also u0 ∈ N ⊂ B(H). Hence, we have

1

4

∫
M

(|u(t)|2 − H2)
+ dM

+
∫
Mt

(
ε + |Du|2g

) p−2
2

(
1

2

∣∣D(|u|2 − H2)
+
∣∣2
g + |Du|2g

(|u|2 − H2)
+

)
dMdt = 0 ;

1

4

∫
M

(|u(t)|2 − H2)2
+ dM ≤ 0

and thus, |u(t)| ≤ H in M and any t ≥ 0. ��

Appendix C Proof of the Bochner estimate.

Proof of Lemma 9. In the proof, for brevity, let the regularized p-energy density be

f = f (u) := 1

p

(
ε + |Du|2) p

2 .

In the general case in M, the terms containing the spatial derivative of gαβ only appear
and are bounded by C (ε + |Du|2)p−1. In fact, in (6.5) below, by a direct computation, we
have the terms with derivatives of the metric

−Dγ

√|g|
|g| gγμDμu · Dα

(
(p f )1−

2
p
√|g|gαβDβu

)

+Dα

(
(p f )1−

2
p Dγ (

√|g|gαβ)gγμDμu · Dβu
)

−1

2
Dα

(
(p f )1−

2
p
√|g|gαβDβg

γμDγ u · Dμu
)

− 1√|g| (p f )
1− 2

p

{
Dαg

γμDγ (
√|g|gαβ)Dμu · Dβu
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+ p − 2

2

√|g|gαβ DαgγμDμu · Dβu

(p f )
2
p

(
Dγ g

μνDμu · Dνu + 2gμνDμDγ u · Dνu
)

+√|g|gαβDαg
γμDμu · DβDγ u + Dγ (

√|g|gαβgγμDαDμu · Dβu

+ p − 2

2

√|g|gγμgαβDαDμu · Dβu
Dγ gμνDμu · Dνu

(p f )
2
p

}
, (6.1)

which are bounded by such terms as

C |Dgαβ |2 f ; C |Dgαβ ||gαβ | f 1− 1
p |D2u| (6.2)

with a positive constant C depending only onM, p and m. Here the 1st term is controllable
lower-order one. By Cauchy’s inequality with c > 0, the 2nd term are estimated above as

C |Dgαβ ||gαβ | f 1− 1
p |D2u| ≤ c f 1−

2
p |D2u|2 + C(c−1) |Dgαβ |2|gαβ |2 f ,

of which the 1st term with a small c > 0 in the right hand side is abosrbed into the squared
2nd derivative term of the solution in (6.5) below, and the 2nd term is a controllable one. The

controllable terms C f above are multiplied by (p f )1−
2
p in (6.6) below, and thus, becomes

C f 2(1−
1
p ).

Hereafter, we assume that the metric g = (
gαβ

)
is the identity matrix.

Since u, Du and D2u are continuous in IRm∞, it holds in the distribution sense that

Du · D
(
f 1−

2
p Du

)
= Dα

(
AαβDβ f

)
− (p f )1−

2
p
∣∣D2u

∣∣2

− (p − 2)(p f )1−
4
p
∣∣D 1

2
|Du|2∣∣2. (6.3)

Hereafter the summation convention over repeated indices is used. Since χ
(
dist2(u, N )

) =
2(δN )2 for u ∈ IRl\O2δN , D

(
Duχ

(
dist2(u, N )

)) = 0 if dist(u, N ) > 2δN and then, we

have (3.4) by (2.1). We treat the case that dist(u, N ) ≤ 2δN . Noting that χ
(
dist2(u, N )

)
is smooth, by a direct calculation we have

Du · D
(K
2

Duχ
(
dist2(u, N )

)) = K

2

(
Dui · Du j

)
Dui Du j χ

(
dist2(u, N )

) ;
Dui Du j χ

(
dist2(u, N )

) = 2 Dui dist(u, N )Du j dist(u, N )
(
χ ′ + 2 dist2(u, N )χ ′′)

+ 2χ ′ dist(u, N )Dui Du j dist(u, N ), (6.4)

where the arguments in χ ′ are omitted. By (6.3) and (6.4) with (2.1), we have

∂t
1

2
(p f )

2
p − Dα

(
AαβDβ f

)
+ (p f )1−

2
p
∣∣D2u

∣∣2 + (p − 2)(p f )1−
4
p
∣∣D 1

2
|Du|2∣∣2

+C0 K |D dist(u, N )|2 (χ ′ + 2 dist2(u, N )χ ′′)
+C0 Kχ ′ dist(u, N )Dui · Du j Dui Du j dist(u, N ) = 0. (6.5)
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Furthermore, multiplying (6.5) by (p f )1−
2
p , we obtain

∂t f − Dα

(
(p f )1−

2
p AαβDβ f

)
+ (p f )2−

4
p
∣∣D2u

∣∣2 + (p − 2)(p f )2−
6
p
∣∣D 1

2
|Du|2∣∣2

+C0 (p f )1−
2
p K |D dist(u, N )|2 (χ ′ + 2 dist2(u, N )χ ′′)

+C0 (p f )1−
2
p Kχ ′ dist(u, N )Dui · Du j Dui Du j dist(u, N ) ≤ 0, (6.6)

where we use the fact that

AαβDβ f Dα(p f )1−
2
p = p− 2

p (p − 2)AαβDβ f Dα f ≥ 0.

By differentiation of the penalty term

g = g(u) := K

2
χ
(
dist2(u, N )

)

and (6.4), we have

∂t g − Dα

(
(p f )1−

2
p AαβDβg

)

= −C0
∣∣Dug

∣∣2 − (p f )1−
2
p K AαβDαu · Du dist(u, N )Dβu

·Du dist(u, N )
(
χ ′ + 2 dist2(u, N )χ ′′)

− (p f )1−
2
p K χ ′ dist(u, N )AαβDαu

i Dβu
j Dui Du j dist(u, N )

− (p − 2)(p f )1−
4
p

(
(Dαu · Dβu)DαDβu · Dug − D

1

2
|Du|2 · (Du · Dug

))
,

(6.7)

where in particular, multiplying (2.1) by the derivative of penalty term we compute

∂t g − div
(
(p f )1−

2
p Dg

)

= −C0
∣∣Dug

∣∣2 − (p f )1−
2
p
(
Dui · Du j )Dui Du j χ

= −C0
∣∣Dug

∣∣2 − (p f )1−
2
p K

∣∣Du · Du dist(u, N )
∣∣2(χ ′ + 2 dist2(u, N )χ ′′)

− (p f )1−
2
p K χ ′ dist(u, N )Dui · Du j Dui Du j dist(u, N ). (6.8)

By the support of χ ′′, we have

dist2(u, N )
∣∣χ ′′∣∣ ≤ 100 sup

∣∣χ ′∣∣χ
and thus, the 2nd terms in the 2nd line of (6.6) and the 3rd line of (6.7), and the 3rd term in
the 3rd line of (6.8) are estimated above by

2 K (p f )1−
2
p dist2(u, N )

∣∣χ ′′∣∣ ((C0 + 1)
∣∣D dist(u, N )

∣∣2
+ ∣∣AαβDα dist(u, N )Dβ dist(u, N )

∣∣)
≤ C (1 + C0) f g (6.9)
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with a positive constant C depending only on p and χ , because

|Du dist(u, N )| = 1; |D dist(u, N )| = |Du · Du dist(u, N )|
≤ |Du| ≤ (p f )

2
p .

By Schwarz’s and Cauchy’s inequalities, the terms in the 3rd lines of (6.6) and in the 4th
line of (6.7), (6.8) are bounded by

C(N ) (C0 + p − 1) (p f )1−
2
p |Du|2 Kχ ′ dist(u, N )

= C(N ) (C0 + p − 1) (p f )1−
2
p |Du|2 |Dug|

≤
(
C0

2
+ 1

)
|Dug|2 + C2(N )

(
C0

2
+ (p − 1)2

4

)
(p f )2−

4
p |Du|4, (6.10)

where by a positive constant C(N ) depending on a bound for the curvature of N , we have
the boundedness for any u ∈ N

∣∣∣(2δαβ + Aαβ
)
Dαu

i Dβu
j Dui Du j dist(u, N )

∣∣∣ ≤ C(N ) |Du|2, (6.11)

of which the validity will be shown later.
The terms in the 5th line of (6.7) are bounded by

2(p − 2) (p f )1−
2
p
∣∣D2u

∣∣ |Dug| ≤ 1

2
(p f )2−

4
p
∣∣D2u

∣∣2 + 2(p − 2)2 |Dug|2 . (6.12)

Gathering (6.9), (6.10) and (6.12) in (6.6) and (6.7), respectively, we obtain

∂t e(u) − Dα

(
(p f )1−

2
p AαβDβe(u)

)

+ (p f )
2
(
1− 2

p

)∣∣D2u
∣∣2 + (p − 2)(p f )

2
(
1− 3

p

)∣∣D 1

2
|Du|2∣∣2 + C2

∣∣Dug
∣∣2

≤ C2(N )

(
C0

2
+ (p − 1)2

4

)
(p f )

2
(
1− 2

p

)
|Du|4 + C (1 + C0) f g (6.13)

and thus, from (6.13), the desired inequality (3.4) is obtained, if the constant C0 is so large
that

C2 := C0

2
− 1 − 25(p − 2)2

2
> 0. (6.14)

We present the proof of (6.11). We follow the argument as in [2, Theorems 3.1 and 3.2,
their proofs, pp. 704–707] (also refer to [1, Theorem 2.2]). ��
Lemma 21 There exists a positive constant C depending only on a bound of curvatures of
N such that, for any u ∈ O2δN and q ∈ IRl ∼= TuIRl ,

∣∣qi q j Dui Du j dist(u, N )
∣∣ ≤ C |q|2. (6.15)

Proof For any u ∈ O2δN such that u /∈ N , wemake parallel transformationwith the direction(
u − πN (u)

)
/
∣∣u − πN (u)

∣∣ and follow the following argument. Therefore, we treat the case
that u ∈ N and thus, πN (u) = u. For any v ∈ O2δN let us put

d(v) := dist(v, N ); η(v) = 1

2
d(v)2.
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We know that the squared distance function η(v) is smooth on v ∈ O2δN . Let q ∈ IRl be
any vector in IRl and be fixed. Under the orthogonal decomposition of IRl with respect to the
tangent space TuN at u ∈ N , IRl = TuN ⊕ (TuN )⊥, we set as

q = qτ + qν; p := qν∣∣qν

∣∣ ; f (t) := d(u + tp) for any t ∈ (0, 2δN ], (6.16)

where p is the unit normal vector along the normal component of q and f (t) is the distance
to N measured along p. Then, we compute as

Dvd(u + tp) := Dvd(v)|v=u+tp = p; d f

dt
(t) = p · Dud(u + tp) = |p|2 = 1 (6.17)

and, also, for any v ∈ O2δN , v /∈ N ,

Dvη(v) = d(v)Dud(v); Dvi Dv j η(v) = d(v)Dvi Dv j d(v) + Dvi d(v)Dv j d(v)

⇐⇒ Dvi Dv j d(v) = Dvi Dv j η(v) − Dvi d(v)Dv j d(v)

d(v)
. (6.18)

Thus, letting, for any t ∈ (0, 2δN ],
Dvi Dv j d(u + tp) := Dvi Dv j d(v)

∣∣
v=u+tp ; Dvi Dv j η(u + tp) := Dvi Dv j η(v)

∣∣
v=u+tp ,

we have

qi Dvi Dv j d(u + tp)q j = qi Dvi Dv j η(u + tp)q j − ∣∣q · Dvd(u + tp)
∣∣2

d(u + tp)
,

where by (6.17) we have, as t ↘ 0,

qi Dvi Dv j η(u + tp)q j → qi Dvi Dv j η(u)q j = ∣∣qν

∣∣2;∣∣q · Dvd(u + tp)
∣∣2 = (q · p)2 = ∣∣qν

∣∣2 → ∣∣qν

∣∣2; d(u + tp) → 0

and the 1st convergence is valid because Dvi Dv j η(u) = Dvi Dv j η(v)
∣∣
v=u is the orthogonal

projection on (TuN )⊥ (see [2, Theorem 3.1, p.704]). Therefore, from l’Hospital’s theorem,
we obtain

qi Dvi Dv j d(u)q j := ∃ lim
t↘0

(
qi Dvi Dv j d(u + tp)q j

)

= lim
t↘0

qiq j Dvi Dv j Dvkη(u + tp)pk − 2q · Dv(p · Dvd(u + tp)) q · Dvd(u + tp)

p · Dvd(u + tp)

= qiq j Dvi Dv j Dvkη(u)pk,

where we use that p · Dvd(u + tp) = ∣∣p∣∣2 = 1 and Dv(p · Dud(u + tp)) = 0. Thus, we
have

∣∣∣qi Dvi Dv j d(u)q j
∣∣∣ =

∣∣∣qiq j Dvi Dv j Dvkη(u)pk
∣∣∣ ≤ C

∣∣q∣∣2,
where in the last inequality the positive constant C depends only on a bound of curvatures
of N (see [2, Remark 3.3; Theorem 3.5, its proof, pp. 707–709]). ��
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Appendix D Proof of the gradient boundedness.

Here we demonstrate the proof of Lemma 10, relying on Moser’s iteration method as
usual. Such estimate has been originally done for the evolutionary p-Laplacian system with
controllable growth lower-order terms, byDiBenedetto, developing the intrinsic scaling trans-
formation to the evolutionary p-Laplace operator (refer to [10,12]).

However, the emphasis here is to make localization by use of the cut-off function C.

Proof of Lemma 10. In the following we use the same notation as in Lemma 10.
By use of a scaling transformation intrinsic to the evolutionary p-Laplace operator

t = t0 + L2−p(r0)
2s; x = x0 + r0y, (6.19)

we now rewrite (3.4) in Lemma 9 by the scaled solution v on Q(1, 1) := Q(1, 1)(0),

v(s, y) = u
(
t0 + L2−p(r0)2s, x0 + r0y

)
L r0

satisfying in Q(1, 1)

∂sv − 1√|g|Dα

((
L−2ε + |Dv|2) p−2

2
√|g| gαβDβv

)

= −C0
K/L p

2
Dvχ

(
dist2

(
Lr0v, N

))
. (6.20)

We put the notation

ε̄ = L−2ε; K̄ = L−pK ;
f = f (v) := 1

p

(
ε̄ + |Dv|2) p

2 ; g = g(v) := K̄

2
χ
(
dist2(Lrv, N )

);

e(v) = f (v) + g(v); Bαβ = gαβ + (p − 2) gαγ gβμDγ v · Dμv

ε̄ + |Dv|2 .

As in “Appendix C”, we assume that the metric (gαβ) is the identity matrix and, in the
general case inM, the terms with the derivative of gαβ(x0 + ry) appear and are bounded by

C f (v)
2(1− 1

p ), as in (6.1) and (6.2), where we note that Dygαβ(x0 + ry) = r Dgαβ(x) and
r ≤ 1. We proceed to the same computation as (6.6) and (6.7), where the quantities appeared
are transformed to the corresponding ones, respectively, defined by the scaled solution v as
above. Now we will look at the transformed estimation for the scaled solution v.

By the support of χ ′′, we have

dist2(Lr0v, N )
∣∣χ ′′∣∣ ≤ 100 sup

∣∣χ ′∣∣ χ

and thus, the corresponding terms for the scaled solution v to 2nd terms in the 2nd line of
(6.6) and the 3rd line of (6.7), and the 3rd term in the 3rd line of (6.8) are estimated above
by

2 K̄ (p f )1−
2
p dist2(Lr0v, N )

∣∣χ ′′∣∣×
×
(
(C0 + 1)

∣∣D dist(Lr0v, N )
∣∣2 + BαβDα dist(Lr0v, N )Dβ dist(Lr0v, N )

)

≤ C (1 + C0) (p f )1−
2
p g (6.21)
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with a positive constant C depending only on p and χ , because, by the definition of r0,

Dv dist(Lr0v, N ) = Lr0 Du dist(u, N )|u=Lr0v ; |Dv dist(Lr0v, N )| = Lr0;
|D dist(Lr0v, N )| ≤ Lr0 |Dv| ≤ Lr0

1

L
‖Du‖L∞(Q0) ≤ C .

By Schwarz’s and Cauchy’s inequality, the terms in the 3rd line of (6.6) and in the 4th
line of (6.7), (6.8) are estimated as

C(N ) (C0 + p − 1) L2(r0)
2 (p f )1−

2
p |Dv|2 K̄χ ′ dist(Lr0v, N )

≤ C(N )C (C0 + p − 1) (p f )1−
2
p |Dv| |Dvg|

≤
(
C0

2
+ 1

)
|Dvg|2 + (C(N )C)2

(
C0

2
+ (p − 1)2

4

)
(p f )2−

4
p |Dv|2, (6.22)

where by the definition of r0 as before, and a positive constant C(N ) depending on a bound
for the curvature of N , we compute as

Lr0 |Dv| ≤ Lr0
1

L
‖Du‖L∞(Q0) ≤ C;

Dvg = Lr0 K̄ χ ′ dist(Lr0v, N ) Du dist(u, N )|u=Lr0v ; ∣∣Du dist(u, N )|u=Lr0v

∣∣ = 1;
Dvi Dv j dist(Lr0v, N ) = L2(r0)

2 Dui Du j dist(u, N )
∣∣
u=Lr0v

;∣∣∣(2δαβ + Bαβ
)
Dαvi Dβv j Dui Du j dist(u, N )

∣∣
u=Lr0v

∣∣∣ ≤ C(N )|Dv|2.

The terms in 5th line of (6.7) are bounded by

2(p − 2) (p f )1−
2
p
∣∣D2v

∣∣ |Dvg| ≤ 1

2
(p f )2−

4
p
∣∣D2v

∣∣2 + 2(p − 2)2 |Dvg|2 . (6.23)

Gathering all of the estimations above yields

∂t e(v) −
m∑

α, β=1

Dα

(
(p f )1−

2
p BαβDβe(v)

)
+ C1 (p f )2−

4
p
∣∣D2v

∣∣2

≤ C ′(N )

(
C0

2
+ (p − 1)2

4

)
(p f )2−

4
p |Dv|2 + C (1 + C0) (p f )1−

2
p g. (6.24)

Finally we make Moser’s iteration estimate by (6.24) and scaling back to have (3.6). Now,
taking care of localization by the cut off function C, we proceed to the estimations.

Let B(ρ) = B(ρ, 0) be a ball in IRm with radius ρ ≤ min{1, RM/2, T 1/λ0} and center
of origin. Let 0 < r < ρ. We use local parabolic cyllinders Q(r2, r) = (−r2, 0) × B(r)
and Q(ρ2, ρ) = (−ρ2, 0) × B(ρ), Let η be a smooth real-valued function on IRm such that
0 ≤ η ≤ 1, the support of η is contained in B(ρ) and η = 1 on B(r). Let σ = σ(t) be a
smooth real-valued function on IR such that 0 ≤ σ ≤ 1, σ = 1 on [−r2, ∞) and σ = 0 on
(−∞, −ρ2]. We denote by the original notation the scaled function under (6.19). Put

C(s, y) = (
(t0 + L2−p (r0)

2 s + Rλ0)1/λ0 − |x0 + r0 y|
)
+ , (s, y) ∈ Q(1, 1),

and also write as z = (s, y) ∈ Q(1, 1) and dz = dMds.
Put w = e(v) in the Bochner type estimate (6.24). Let α be nonnegative number and use

the test function wαη2σ Cq
√|g| in the weak form of (6.24). After a routine computation we
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have the so-called reverse Poincaré inequality

sup
−r2<τ<0

∫

{τ }×B(ρ)

wα+1η2σ Cq dM +
∫

Q(ρ2, ρ)

∣∣∣Dw
α
2 +1− 1

p

∣∣∣2 η2σ Cq dz

≤ C (α + p)3
∫

Q(ρ2, ρ)

{
wα+1η2 ∂tσ + w

α+2− 2
p
(
η2 + |Dη|2) σ} Cq dz, (6.25)

where we compute as

|Dw| ≤ |Dv|
(
(p f )1−

2
p
∣∣D2v

∣∣+ ∣∣Dvg
∣∣) ;

∣∣∣Dw
α
2 +1− 1

p

∣∣∣2 ≤ C (α + p)2 wα
(
(p f )2−

4
p
∣∣D2v

∣∣2 + ∣∣Dvg
∣∣2) .

Applying the Sobolev embedding W 1,2
0 (B(ρ)) → L2m/(m−2)(B(ρ)) we have

(∫
B(ρ)

(
w

α
2 +1− 1

p η C
q
2

) 2m
m−2

dM
)m−2

2m

≤ C

(∫
B(ρ)

∣∣∣D(w α
2 +1− 1

p η C
q
2
)∣∣∣2 dM

) 1
2

,

which is combined with (6.25) and yields

sup
−r2<τ<0

∫

{τ }×B(r)

(w(τ))α+1 Cq dM +
0∫

−r2

⎛
⎜⎝
∫

B(r)

w
2m
m+2

α
2 +1− 1

p C
mq
m−2 dM

⎞
⎟⎠

m−2
m

dt

≤ C (α + p)3

(ρ − r)2

∫

Q(ρ2, ρ)

(
wα+1 + w

α+2− 2
p

)
Cq dz. (6.26)

By Hölder’s inequality and (6.26) we compute as∫

Q(r2, r)

w
α+2− 2

p + 2(α+1)
m C

q(m+2)
m dz

≤
0∫

−r2

⎛
⎜⎝
∫

B(r)

wα+1 Cq dM

⎞
⎟⎠

2
m
⎛
⎜⎝
∫

B(r)

w
m(α+2−2 p−1)

m−2 C
qm
m−2 dM

⎞
⎟⎠

m−2
m

dt

≤
⎛
⎜⎝ sup

−r2<τ<0

∫

B(r)

w(τ)α+1 Cq dM

⎞
⎟⎠

2
m 0∫

−r2

⎛
⎜⎝
∫

B(r)

w
m(α+2−2 p−1)

m−2 C
qm
m−2 dM

⎞
⎟⎠

m−2
m

dt

≤
(
C (α + p)3

(ρ − r)2

∫
Q(ρ2, ρ)

w
α+2− 2

p Cq dz + C (α + p)3 |Q(ρ2, ρ)|
(ρ − r)2

)m+2
m

,

where we use a simple inequality valid for α ≥ 0

wα+1 = (
χ{w≥1} + χ{w<1}

)
wα+1

≤ χ{w≥1} w
α+2− 2

p + χ{w<1}

≤ w
α+2− 2

p + 1
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and also estimate the derivative of C as

|DC(s, y)| =
∣∣∣D ((t0 + L2−p(r0)

2 s + Rλ0 )1/λ0 − |x0 + r0y|
)
+
∣∣∣

=
∣∣∣∣− x0 + r0y

|x0 + r ′
1y|

r0

∣∣∣∣χ{|x0+r0 y|<t0;L2−p(r0)2s+Rλ0 }(s, y)

≤ (
(t0 + L2−p(r0)

2s + Rλ0 )1/λ0 − |x0 + r0y|
)
+ ×

× r0
(t0 + L2−p(r0)2s + Rλ0 )1/λ0 − |x0 + r0y|

≤ (
(t0 + L2−p(r0)

2s + Rλ0 )1/λ0 − |x0 + r0y|
)
+

= C(s, y);
|∂sC(s, y)| =

∣∣∣∂s ((t0 + L2−p(r0)
2s + Rλ0 )1/λ0 − |x0 + r0y|

)
+
∣∣∣

=
∣∣∣∣ 1λ0 (t0 + L2−p(r0)

2s + Rλ0 )1/λ0−1 L2−p(r0)
2
∣∣∣∣χ{|x0+r0 y|<t0+L2−p(r0)2s+Rλ0 }(s, y)

≤ 1

λ0
χ{|x0+r0 y|<t0+L2−p(r0)2s+Rλ0 }(s, y)

(
(ρ0)

λ0
)1/λ0−1

(ρ0)
λ0

≤ ρ0

ρ0/2

(ρ0)
λ0

(ρ0)λ0

(
(t0 + L2−p(r0)

2s + Rλ0 )1/λ0 − |x0 + r0y|
)
+

= 2 C(s, y),

because, by the range Q(1, 1) of (s, y) and the condition (3.5) of r0,

−1 ≤ s ≤ 0; |y| ≤ 1;
ρ0 = (t0 + Rλ0)1/λ0 − |x0|

4
; r0 ≤ ρ0/2; L2−p(r0)

2 ≤ (ρ0)
λ0

and so, we have the estimations

r0/(ρ0/2) ≤ 1;
(t0 + L2−p(r0)

2s + Rλ0)1/λ0 − |x0 + r0y| ≥ (
t0 + Rλ0 − (ρ0)

λ0
)1/λ0 − (|x0| + r0)

≥ (t0 + Rλ0)1/λ0 + |x0|
2

− |x0| − r0 ≥ ρ0 − ρ0

2
= ρ0

2
.

We arrange some terms in an appropriate way to have

1

|Q(r2, r)|
∫

Q(r2, r)

w
α+2− 2

p + 2(α+1)
m C

q(m+2)
m dz

≤ C (α + p)3(1+2/m) |Q(ρ2, ρ)|1+2/m

(ρ − r)2(1+2/m)

⎛
⎜⎝ 1

|Q(ρ2, ρ)|
∫

Q(ρ2, ρ)

w
α+2− 2

p Cq dz + 1

⎞
⎟⎠

1+ 2
m

.

(6.27)

Here let {ρk} be a sequence of radii, defined as

ρk = 2−1
(
1 + 2−k

)
; 1 ≥ ρk ↘ 1/2; Qk = Q((ρk)

2, ρk)(0) (6.28)
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and {αk} be a sequence of exponents

θ = 1 + 2

m
; q > 1; qk = q θk; 0 < q < qk ↗ ∞ ;

αk = θk + 1 − 2

p
; 2 − 2

p
=: α0 < αk ↗ ∞; αk+1 = αk + 2(αk − 1 + 2 p−1)

m

= αk θ − 2(p − 2)

mp
. (6.29)

We choose r = ρk+1, ρ = ρk and α = αk in (6.27) and make routine computation to have

1

|Qk+1|
∫

Qk+1

wαk+1 Cqk+1 dz ≤ Ck (αk + p)3θ
(

1

|Qk |
∫
Qk

wαk Cqk dz + 1

)θ

;

1

|Qk+1|
∫

Qk+1

wαk+1 Cqk+1 dz + 1 ≤ 2Ck (αk + p)3θ
(

1

|Qk |
∫
Qk

wαk Cqk dz + 1

)θ

(6.30)

which is computed by sequences (6.28) and (6.29) as

⎛
⎜⎝ 1

|Qk+1|
∫

Qk+1

wαk+1 Cqk+1 dz + 1

⎞
⎟⎠

1
θk+1

≤ C
k
θk

(
1

|Qk |
∫
Qk

wαk Cqk dz + 1

) 1
θk

. (6.31)

An iterative application of (6.31) yields, as k → ∞,

sup
Q((ρ0/2)2, ρ0/2)

w Cq0 ←−
⎛
⎜⎝ 1

|Qk+1|
∫

Qk+1

wαk+1 Cq0αk+1 dz

⎞
⎟⎠

1
θk+1

≤
⎛
⎜⎝ 1

|Qk+1|
∫

Qk+1

wαk+1 Cqk+1 dz + 1

⎞
⎟⎠

1
θk+1

≤ C
∑k

i=1
i
θ i

(
1

|Q0|
∫
Q0

wα0 Cq0 dz + 1

) 1
θ0

, (6.32)

where we use the relation of exponents

qk+1 = q0 θk+1 < q0αk+1 ⇐⇒ αk+1 = θk+1 + 1 − 2

p
> θk+1;

0 ≤ C(s, y) ≤ 1, (s, y) ∈ Q(1, 1)(0)

and the limit as k → ∞
αk+1

θk+1 = 1 + p − 2

p θk+1 → 1.

Finally, scaling back in (6.32) yields the desired estimate (3.6). ��
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