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Abstract
A variational formula for the Lutwak affine surface areas � j of convex bodies in R

n is
established when 1 ≤ j ≤ n − 1. By using introduced new ellipsoids associated with
projection functions of convex bodies, we prove a sharp isoperimetric inequality for � j ,
which opens up a new passage to attack the longstanding Lutwak conjecture in convex
geometry.

Mathematics Subject Classification 52A40 · 46B06

1 Introduction

Among all compact domains of given surface area S in the Euclidean space Rn , the volume
Vn of a domain D is maximized only by the ball. This isoperimetric property of ball is usually
formulated as the following classical isoperimetric inequality

S(D)n ≥ nnωnVn(D)n−1, (1.1)

with equality if and only if the compact domain D is a ball, where ωn = πn/2/�(1 + n
2 )

is the volume of unit ball B in R
n . The literature on isoperimetric inequality, as well as its

various generalizations and applications, is abundant. See, e.g., the excellent survey articles
by Osserman [20] and Gardner [4].

Let K be a convex body inRn . Write Vj (K |ξ) for the j-dimensional volume of projection
of K onto a j-dimensional subspace ξ ⊆ R

n , and call it the j th projection function. The
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important geometric quantities related to Vj (K |ξ) are the j th surface area, defined by

S j (K ) = nωn

ω j

∫
Gn, j

V j (K |ξ) dμ j (ξ), j = 1, 2, . . . , n − 1, n, (1.2)

where the Grassmann manifold Gn, j is endowed with the normalized Haar measure μ j . The
j th surface area is a generalization of the surface area and volume. Indeed, 1

n Sn(K ) is the
volume of K . Let j = n − 1. We have the celebrated Cauchy surface area formula

Sn−1(K ) = S(K ) = 1

ωn−1

∫
Sn−1

Vn−1(K |u⊥) dHn−1(u),

where u⊥ denotes the (n − 1)−dimensional subspace orthogonal to u, Hn−1 denotes the
Lebesgue measure on unit sphere Sn−1. This formula says that the surface area of a convex
body is, up to a factor depending only on n, the average volume of its shadows.

Note that in accordance with the conventional terminology in convex geometry, 1
n S j (K )

is precisely the so-called (n− j)th quermassintegral Wn− j (K ) of convex body K . Here, we
prefer to calling it the j th surface area and denoting it by S j because the integral in (1.2)
shows the true nature of “surface area”.

For j th surface area S j (K ), there holds the extended isoperimetric inequality

S j (K )n ≥ nnωn− j
n Vn(K ) j , (1.3)

with equality if and only if K is a ball.
Without doubt, the Euclidean ball, uniquely characterized by isoperimetric inequalities,

such as (1.1) and (1.3), is one of the most important geometric objects. However, to study
isoperimetric features of other important geometric objects, such as ellipsoids, simplices and
parallelotopes, a fruitful and natural approach is from affine geometry. First of all, we need
to study geometric quantities which are affine invariant. As an aside, the j th surface area is
not affine invariant. In some sense, to establish sharp affine isoperimetric inequalities, is a
central problem in isoperimetric theory, as well as in affine geometry.

In 1970s, Petty [22] proved the following celebrated affine isoperimetric inequality, which
is now known as the Petty projection inequality

Vn(�
∗K )Vn(K )n−1 ≤

(
ωn

ωn−1

)n

, (1.4)

with equality if and only if K is an ellipsoid. Here, �K is the projection body of a convex
body K with its support function h�K (u) = Vn−1(K |u⊥), for u ∈ S

n−1. �∗K denotes the
polar body of �K . It is noted that by monotonicity of power means, the Petty projection
inequality (1.4) is far stronger than the Euclidean isoperimetric inequality (1.1). The reverse
form of (1.4) is known as the Zhang projection inequality, which was conjectured by Ball [1]
and was first proved by Zhang [26].

Since

[Vn(�∗K )]−
1
n =

(
1

n

∫
Sn−1

Vn−1(K |u⊥)−n du

)− 1
n

,

it indicates the functional [Vn(�∗K )]− 1
n has the true nature of “surface area”. Later, analogous

quantities were considered by Lutwak and Grinberg in the setting of convex bodies. In [11],
Lutwak proposed to define affine quermassintegrals �0(K ), �1(K ), . . ., �n(K ) for each
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convex body K in Rn , by taking �0(K ) = Vn(K ), �n(K ) = ωn , and for 1 ≤ j ≤ n − 1, by

� j (K ) = ωn

ωn− j

(∫
Gn,n− j

Vn− j (K |ξ)−n dμn− j (ξ)

)−1/n

. (1.5)

Grinberg [7] proved that these geometric quantities, as their names suggest, are invariant
under volume-preserving affine transformations. Concerning the Lutwak dual affine quer-
massintegral and its related affine isoperimetric inequality extended to the bounded integrable
functions, one can refer to the excellent article [2] by S. Dann, G. Paouris and P. Pivovarov.

In light of the integral in (1.5) has the character of surface area, we slightly modify these
quantities � j (K ) and write them by

� j (K ) = n�n− j (K ), j = 0, 1, . . . , n − 1, n. (1.6)

We call � j (K ) the j th integral affine surface area of convex body K . Note that �n−1(K )

is a constant multiple (depending only on n) of [Vn(�∗K )]− 1
n . Thus, the Petty projection

inequality (1.4) can be reformulated as the following

�n−1(K )n ≥ nnωnVn(K )n−1,

with equality if and only if K is an ellipsoid.
In contrast to the classical isoperimetric inequality for surface area functional and the

Petty projection inequality for (n − 1)th integral affine surface area, Lutwak [12] proposed
the following insightful conjecture for general j th integral affine surface areas.

The Lutwak conjecture Suppose K is a convex body in R
n . Then

� j (K )n ≥ nnωn− j
n Vn(K ) j , j = 1, 2, . . . , n − 1,

with equality if and only if K is an ellipsoid.
Unfortunately, the Lutwak conjecture has not made any essential progress during the last

3decades. It has not even received the attention it deserves, because only two nontrivial
cases follow from the classical results: when j = n − 1, it is the above mentioned Petty
projection inequality; when j = 1 and K is symmetric, it is exactly the celebrated Blaschke–
Santaló inequality. In each case equality holds precisely when K is an ellipsoid. For j =
2, 3, . . . , n − 1, the Lutwak conjecture still remains open.

In this article, we focus on the Lutwak integral affine surface areas. In Sect. 2, a variational
formula for the affine surface area � j (K ) of convex body K in R

n is established when
j = 1, 2, . . . , n − 1. From the established variational formula, we define a new measure,
called affine projection measure, and show this measure is indeed affine invariant. In Sect. 3,
we introduce a new ellipsoid P j K , which is associated with the j th projection function
Vj (K |·) of convex body K , and call it the j th projection mean ellipsoid of K . It is with
this projection mean ellipsoid that we prove the following main results in Sects. 4 and 5,
respectively.

Theorem 1.1 Suppose K is a convex body in Rn. Then,

� j (K )n ≥ nnωn− j
n Vn(P j K ) j , j = 1, 2, . . . , n − 1. (1.7)

If j = 2, 3, . . . , n − 1, or j = 1 and K is centrally symmetric, the equality holds if and only
if K is an ellipsoid. If j = 1, the equality holds if and only if K has an SL(n) image with
constant width.
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Theorem 1.2 Suppose K is an origin-symmetric convex body in Rn. Then,

Vn(K
∗)Vn(P1K ) ≤ ω2

n, (1.8)

with equality if and only if K is an ellipsoid.

The sharp affine isoperimetric inequality (1.7) within Theorem 1.1, including its equality
condition, can be viewed as a modified version of the Lutwak conjecture. In this new geo-
metric inequality, as well as inequality (1.8), projection mean ellipsoid plays a crucial and
indispensable role.

It is worth mentioning that projection and intersection, are two most fundamental geo-
metric means to study structures of convex bodies in convex geometry. Meanwhile, ellipsoid,
especially the classical John ellipsoid and its various generalizations, such as L p John ellip-
soids [16], mixed L p John ellipsoids [9], Orlicz–John ellipsoids [28], Orlicz–Legendre
ellipsoids [29], are both powerful to attack reverse isoperimetric problems and effective
to establish reverse isoperimetric inequalities. See, e.g., [1,9,13,15,17,18,24,25,27,28], etc.
In this article, for the first time we take into account these two important characters: projec-
tion and ellipsoid, and introduce a new ellipsoid by using projection function. It is wonderful
that this new ellipsoid is tailor-made to do extremum problem for the Lutwak integral affine
surface area, which opens up a entirely distinctive passage to tackle the longstanding Lutwak
conjecture in convex geometry.

As for the ellipsoid associated with intersection function and its applications to affine
isoperimetric problem, one can refer to [10]. In Sect. 6, we provide an example to compare
the volumes of convex body itself and the projection mean ellipsoid.

2 A variational formula for the integral affine surface area

The setting for this paper is Euclidean n-dimensional space Rn . As usual, write B and Sn−1

for standard Euclidean unit ball and unit sphere in R
n , respectively. Write Gn, j for the

Grassmannian manifold of all j-dimensional linear subspaces in R
n . For ξ ∈ Gn, j , let |ξ

denote the orthogonal projection from R
n onto ξ .

2.1 Basics on convex bodies

Write Kn for the class of convex bodies in R
n . A compact convex set K in R

n is uniquely
determined by its support function hK : Rn → R, defined for x ∈ R

n by

hK (x) = max {x · y : y ∈ K } . (2.1)

It is clear that the support function is positively homogeneous with degree 1.
Suppose K is a convex body in R

n with the origin in its interior. Its radial function
ρK : Sn−1 → (0,∞) is defined for u ∈ S

n−1 by ρK (u) = max{λ > 0 : λu ∈ K }. The polar
body K ∗ of K is still a convex body with the origin in its interior, and ρK ∗(u) = hK (u)−1.

For compact convex sets K and L , their Hausdorff distance is defined by

δ(K , L) = ‖hK − hL‖∞, (2.2)

where ‖ · ‖∞ denotes the L∞ norm on Sn−1.
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For compact convex sets K , L in R
n , the volume of K + εL , ε ≥ 0, can be represented

as the following Steiner–Minkowski polynomial

Vn(K + εL) =
n∑
j=0

(
n
j

)
Vn, j (K , L)ε j , (2.3)

where Vn, j (K , L) is called the j thmixed volume of (K , L). Note that the notation Vn, j (K , L)

is slightly different from common use, but it is convenient for our purpose. When L = Bn ,
nVn, j (K , B) = S j (K ).

From (2.3), it follows that

Vn,1(K , L) = lim
ε→0+

Vn(K + εL) − Vn(K )

nε
. (2.4)

If in addition K is a convex body, then there is the following integral representation

Vn,1(K , L) = 1

n

∫
Sn−1

hL(u) dS(K , u). (2.5)

Here, S(K , ·) denotes the surface area measure of K . For more information on surface area
measure, see, e.g., Gardner [5], Gruber [8] and Schneider [23].

For ξ ∈ Gn, j and 1 ≤ j ≤ n − 1, write Vj,1(K |ξ, L|ξ) for the first mixed vol-
ume of (K |ξ, L|ξ) defined in the subspace ξ . It is convenient to use the normalization of
Vj,1(K |ξ, L|ξ). That is,

V̄ j,1(K |ξ, L|ξ) = Vj,1(K |ξ, L|ξ)

Vj (K |ξ)
. (2.6)

2.2 Affine projectionmeasures

Let K ∈ Kn and 1 ≤ j ≤ n − 1. It is useful to introduce a Borel measure μ j (K , ·) of
convex body K , which is defined over Gn, j and called the j th affine projection measure of
K . μ j (K , ·) is absolutely continuous to Haar measure μ j with Radon–Nikodym derivative

dμ j (K , ξ)

dμ j (ξ)
= Vj (K |ξ)−n . (2.7)

Obviously, μ j (K + x, ·) = μ j (K , ·) for x ∈ R
n , and μ j (αK , ·) = α−njμ j (K , ·) for α > 0.

Note that the total mass μ j (K ,Gn, j ) of μ j (K , ·) and the j th integral affine surface area
� j (K ) have the equality

μ j (K ,Gn, j ) =
(

nωn

ω j� j (K )

)−n

.

So, μ j (K , ·) can be viewed as the differential of the j th integral affine surface area � j .
For convenience, write μ̄ j (K , ·) for the normalization of μ j (K , ·), that is,

μ̄ j (K , ·) = μ j (K , ·)/μ j (K ,Gn, j ), (2.8)

which will be appeared in the variational formula in Theorem 2.3.
The following theorem shows μ j (K , ·) is indeed affine invariant.

Theorem 2.1 Suppose K ∈ Kn and 1 ≤ j ≤ n − 1. Then for g ∈ SL(n),

dμ j (gK , ξ) = dμ j (K , gT ξ), ∀ξ ∈ Gn, j .
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Proof Since g induces a linear transformation from ξ to gξ , for any Lebesgue measurable
A ⊂ ξ with positive Lebesgue measure, the volume ratio Vj (gA)/Vj (A) depends only on g
(and is independent of the choice of A). Thus, it is reasonable to define

σ j (g, ξ) = Vj (gA)/Vj (A). (2.9)

Let gμ j be the image measure of μ j under the map g : Gn, j → Gn, j , ξ → gξ . Since the
GrassmannianGn, j is of classC∞, through local coordinates, itsRiemannian volume element
dμ j (ξ) is always represented as the differential form f (x1, . . . , xl)dx1 · · · dxl , where f is
of class C∞ and l = dim(Gn, j ). So, gμ j is absolutely continuous with respect to μ j , with
a positive Radon–Nikodym derivative everywhere.

Hence, we can take the Radon–Nikodym derivative, σGn, j (g, ξ), of g−1μ j with respect to
μ j . Then, σGn, j (g, ξ) = dμ j (g−1ξ)/dμ j (ξ). Using the fact that σGn, j (g, ξ) = σ j (g, ξ)−n ,
proved by Furstenberg and Tzkoni [3], we have

dμ j (g
−1ξ) = σ j (g, ξ)−ndμ j (ξ). (2.10)

Recall that in [7], Grinberg proved the following identity

Vj ((gK )|ξ) = σ j (g
T , ξ)Vj (K |gT ξ). (2.11)

Now, from (2.7), (2.11), the fact ξ = g−T (gT ξ), (2.10), (2.9) and finally (2.7) again, it
follows that

dμ j (gK , ξ) = Vj ((gK )|ξ)−n dμ j (ξ)

= Vj (K |gT ξ)−nσ j (g
T , ξ)−n dμ j (ξ)

= Vj (K |gT ξ)−nσ j (g
T , g−T (gT ξ))−n dμ j (g

−T (gT ξ))

= Vj (K |gT ξ)−nσ j (g
T , g−T (gT ξ))−nσ j (g

−T , gT ξ)−n dμ j (g
T ξ)

= Vj (K |gT ξ)−nσ j (g
T g−T , gT ξ)−n dμ j (g

T ξ)

= Vj (K |gT ξ)−ndμ j (g
T ξ)

= dμ j (K , gT ξ),

as desired. ��
The following lemma shows the weak convergence of affine projection measure.

Lemma 2.2 Suppose K , Ki ∈ Kn, i ∈ N and 1 ≤ j ≤ n − 1. If Ki → K in the Hausdorff
metric as i → ∞, then μ j (Ki , ·) → μ j (K , ·) weakly.
Proof Let f be a continuous function on Gn, j . We aim to prove the convergence∫

Gn, j

f (ξ) dμ j (Ki , ξ) →
∫
Gn, j

f (ξ) dμ j (K , ξ).

For each ξ ∈ Gn, j , since Ki → K , it follows that Ki |ξ → K |ξ . Since the volume
functional Vj is continuous in the Hausdorff metric, this implies that Vj (Ki |ξ) → Vj (K |ξ).
So,

f (ξ)Vj (Ki |ξ)−n → f (ξ)Vj (K |ξ)−n .

To make use of the Lebesgue dominated theorem to obtain the desired limit, we need to
show

max
(i,ξ)∈N×Gn, j

| f (ξ)|Vj (Ki |ξ)−n < ∞.
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Since Gn, j is compact, the continuity of f implies that maxGn, j | f | < ∞. So, it suffices to
prove

0 < c1 := min
(i,ξ)∈N×Gn, j

V j (Ki |ξ).

In fact, by the convergence Ki → K , it yields that there exists a constant c2 > 0, a point
x ∈ K and an index i0 ∈ N, such that c2B + x ⊂ intK and c2B + x ⊆ Ki , for i ≥ i0 + 1.
Note that

0 < min

{
min

ξ∈Gn, j
V j (K1|ξ), . . . , min

ξ∈Gn, j
V j (Ki0 |ξ), c j2ω j

}
≤ c1,

which completes the proof. ��

2.3 Integral affine surface area

The starting point of this article is to calculate the first variational of � j .

Theorem 2.3 Suppose K , L ∈ Kn and 1 ≤ j ≤ n − 1. Then,

lim
ε→0+

� j (K + εL) − � j (K )

j� j (K )ε
=

∫
Gn, j

V̄ j,1(K |ξ, L|ξ) dμ̄ j (K , ξ)

Proof From compactness of convex bodies, there are positive constant numbers RK and
RL such that K ⊆ RK Bn and L ⊆ RL Bn . Let 0 < ε ≤ ε0 < ∞ and ξ ∈ Gn, j . From
monotonicity of mixed volumes with respect to set inclusion and homogeneity of mixed
volumes, for 1 ≤ l ≤ j , we have

Vj,l(K |ξ, L|ξ) ≤ Vj,l((RK Bn)|ξ, (RL B
n)|ξ)

= RK
j−l RL

lVj,l(B
n |ξ, Bn |ξ)

= RK
j−l RL

lVj (B
n |ξ)

= RK
j−l RL

lω j .

By using Steiner–Minkowski (2.3) to Vj ((K |ξ) + εL|ξ), it yields

Vj ((K + εL)|ξ) − Vj (K |ξ)

ε
≤ c := ω j

j∑
l=1

(
l
j

)
RK

j−l RL
lε0

l−1.

Observe that the constant c is positive and finite, and is independent of ξ ∈ Gn, j . Hence, the
following family of positive integrable functions{

Vj ((K + εL)|·) − Vj (K |·)
ε

: 0 <ε ≤ ε0

}

is uniformly bounded on the Grassmannian Gn, j .
Moreover,∣∣Vj ((K + εL)|·)−n − Vj (K |·)−n

∣∣
ε

≤ n

Vj (K |·)n+1 · Vj ((K + εL)|·) − Vj (K |·)
ε

≤ nc

minGn, j V j (K |·)n+1

< ∞.
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Thus, the set {
Vj ((K + εL)|·)−n − Vj (K |·)−n

ε
: 0 <ε ≤ ε0

}

is also uniformly bounded on the Grassmannian Gn, j .
Meanwhile, by (2.4) and (2.6), for each ε, the function ε−1

(
Vj ((K+εL)|·)−n−Vj (K |·)−n)

is μ j -integrable on Gn, j , and for each ξ ∈ Gn, j , there holds the limit

lim
ε→0+

Vj ((K + εL)|ξ)−n − Vj (K |ξ)−n

ε
= −njVj (K |ξ)−n V̄ j,1(K |ξ, L|ξ).

By the Lebesgue dominated theorem, the functional Vj (K |·)−n V̄ j,1(K |·, L|·) is integrable
with respect to μ j . From (2.7), we have

d

dε

∣∣∣∣
ε=0+

∫
Gn, j

V j ((K + εL)|ξ)−n dμ j (ξ) = −nj
∫
Gn, j

V̄ j,1(K |ξ, L|ξ) dμ j (K , ξ).

This shows � j (K + εL)−n has right derivative at 0 with respect to ε. By direct calculations,
we obtain the desired formula. ��

For K , L ∈ Kn and 1 ≤ j ≤ n − 1, the previous theorem suggests us to define the
following geometric quantity

�̄ j (K , L) =
∫
Gn, j

V̄ j,1(K |ξ, L|ξ) dμ̄ j (K , ξ). (2.12)

Then, �̄ j (K , K ) = 1. If we set �n(K ) = Vn(K ), then �̄n(K , L) = V̄n,1(K , L).

What follows provides some fundamental properties for �̄ j (K , L).

Lemma 2.4 Suppose K ∈ Kn and 1 ≤ j ≤ n − 1. Then the following claims hold.

(1) � j (gK ) = � j (K ), for g ∈ SL(n).
(2) � j (αK ) = α j� j (K ), for α > 0.
(3) � j (K + x) = � j (K ), for x ∈ R

n.

Proof (1) was shown by Grinberg [7]. Also, it is an immediate consequence of Theorem 2.1.
From the definition of � j and the fact that Vj ((λK + x)|ξ) = λ j V j (K |ξ), for λ > 0 and
x ∈ R

n , (2) and (3) are obtained. ��
Lemma 2.5 Suppose K , L ∈ Kn and 1 ≤ j ≤ n − 1. Then the following claims hold.

(1) �̄ j (gK , L) = �̄ j (K , g−1L), for g ∈ SL(n).
(2) �̄ j (α1K , α2L) = α−1

1 α2�̄ j (K , L), for α1, α2 > 0.
(3) �̄ j (K + x, L + y) = �̄ j (K , L), for x, y ∈ R

n.

Proof From (2.12) together with Theorem 2.3, Lemma 2.4 (1), and Theorem 2.3 together
with (2.12) again, we have

�̄ j (gK , L) = lim
ε→0+

� j (gK + εL) − � j (gK )

j� j (gK )ε

= lim
ε→0+

� j (K + εg−1L) − � j (K )

j� j (K )ε

= �̄ j (K , g−1L),

as desired. Combining (2.12) with Theorem 2.3 and Lemma 2.4, (2) and (3) can be obtained
similarly. ��
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Lemma 2.6 Suppose K , L1, L2 ∈ Kn and 1 ≤ j ≤ n − 1. If L1 ⊆ L2, then

�̄ j (K , L1) ≤ �̄ j (K , L2).

Proof Let L1 ⊆ L2. By the monotonicity of mixed volumes with respect to set inclusions, it
implies that Vj,1(K |ξ, L1|ξ) ≤ Vj,1(K |ξ, L2|ξ), for any ξ ∈ Gn, j . From this fact together
with the definition of �̄ j (K , ·), the desired inequality is obtained. ��

From the definition of �̄ j (K , ·) together with the fact that for ξ ∈ Gn, j , we have

Vj,1(K |ξ, (L1 + L2)|ξ) = Vj,1(K |ξ, L1|ξ) + Vj,1(K |ξ, L2|ξ),

the following lemma is obtained.

Lemma 2.7 Suppose K , L1, L2 ∈ Kn and 1 ≤ j ≤ n − 1. Then,

�̄ j (K , L1 + L2) = �̄ j (K , L1) + �̄ j (K , L2).

3 Projectionmean ellipsoids

In this section, a new kind of ellipsoid operators P j associated with projection functions,
j = 1, . . . , n − 1, for convex bodies are introduced. It is remarkable that these ellipsoid
operators are closely connected with the Lutwak conjecture. For K ∈ Kn , these ellipsoids
P j K are well defined by solving an optimization problem.

Theorem 3.1 Suppose K is a convex body in R
n and j = 1, . . . , n − 1. Among all origin-

symmetric ellipsoids E, there exists a unique ellipsoid P j K which solves the constrained
maximization problem

max
E

Vn(E) subject to �̄ j (K , E) ≤ 1.

Proof Give an ellipsoid E , let dE denote its maximal principal radius and uE be the maximal
principal direction.Write [−dEuE , dEuE ] for the line segmentwith endpoints±dEuE . Then,
[−dEuE , dEuE ]|ξ ⊂ E |ξ .

By compactness of convex body K , there exist finite positive numbers r , R and a point
x ∈ K such that r B + x ⊆ K ⊆ RB. From monotonicity of mixed volume with respect
to set inclusion together with the fact (r B + x)|ξ ⊆ K |ξ , the homogeneity and translation
invariance of mixed volume, and (2.5), it follows that for any ξ ∈ Gn, j ,

Vj,1(K |ξ, E |ξ) ≥ Vj,1((r B
n + x)|ξ, [−dEuE , dEuE ]|ξ)

≥ r j−1dEVj,1(B
n |ξ, [uE , uE ]|ξ)

= r j−1dE
j

∫
ξ∩Sn−1

|uE · v|dH j−1(v).

Thus, from (2.12) together with (2.7) and (2.8), the fact that r jω j ≤ Vj (K |ξ) ≤ R jω j for
all ξ ∈ Gn, j , Fubini’s theorem, and the fact that

∫
Sn−1 |uE · v|dHn−1(v) = 2Vn−1(B|u⊥

E ),
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we have

�̄ j (K , E) =
∫
Gn, j

V j,1(K |ξ, E |ξ)Vj (K |ξ)−(n+1)dμ j (ξ)∫
Gn, j

V j (K |ξ)−ndμ j (ξ)

≥
( r

R

) j(n+1) dE
r

1

jω j

∫
Gn, j

∫
ξ∩Sn−1

|uE · v|dH j−1(v)dμ j (ξ)

=
( r

R

) j(n+1) dE
r

1

nωn

∫
S−1

|uE · v|dHn−1(v)

=
( r

R

) j(n+1) dE
r

2ωn−1

nωn
.

Hence, an origin-symmetric ellipsoid E satisfying the constraint satisfies the condition

dE ≤ nωn

2ωn−1

(
R

r

) j(n+1)

r < ∞.

Consequently, any maximizing ellipsoid sequence {Ei }i∈N for the extremum problem is
bounded from above. By Blaschke selection theorem, there exists a convergent subsequence
{Eik }k∈N converging to an origin-symmetric ellipsoid E0. It remains to prove that E0 is not

degenerated. Note that 0 < �̄ j (K , B) < ∞. Then, �̄ j

(
K , B

�̄ j (K ,B)

)
= 1. This implies that

the ball �̄ j (K , B)−1B satisfies the constraint. Therefore,

0 < �̄ j (K , B)−nωn ≤ Vn(E0),

which ensures dim(E0) = n.
Now, we show the uniqueness. Assume two positive definite symmetric transformations

g1, g2 ∈ GL(n) are such that the ellipsoids Ei = gi B, i = 1, 2, solve the maximization
problem. We aim to prove that g1 = g2. From the definition of support function of ellipsoid
and triangle inequality, we obtain that g1+g2

2 B ⊆ g1B+g2B
2 . So, from Lemmas 2.6, 2.7 and

that �̄ j (K , Ei ) ≤ 1 for i = 1, 2, it follows that

�̄ j

(
K ,

g1 + g2
2

B

)
≤ 1.

This means that the ellipsoid g1+g2
2 B also satisfies the constraint of extremum problem. So,

Vn
( g1+g2

2 B
) ≤ Vn(g1B) = Vn(g2B). Consequently,

det

(
g1 + g2

2

)1/n

≤ det (g1)1/n + det (g2)1/n

2
.

On the other hand, the Minkowski inequality for positive definite matrices asserts that the
reverse of the above inequality always holds. Thus, equality has to occur in the above inequal-
ity. By equality condition of the Minkowski inequality, it follows that g1 = λg2 for some
λ > 0. Since det(g1) = det(g2), it follows that g1 = g2. ��

Therefore, for K ∈ Kn , by Theorem 3.1, a family of ellipsoids P j K , j = 1, . . . , n − 1,
are produced. We call P j K the j th projection mean ellipsoid of K .

Recall that for convex body K ∈ Kn , the John ellipsoid JK is the unique ellipsoid of
maximal volume contained in K . For each ξ ∈ Gn, j , 1 ≤ j ≤ n − 1, we have JK |ξ ⊆ K |ξ .
By Theorem 3.1, Vn(P j K ) ≥ Vn(JK ).
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In additional, �̄n(K , L) is just the normalized mixed volume V̄n,1(K , L). When j = n,
it is interesting that the nth projection mean ellipsoid PnK is precisely the classical Petty
ellipsoid PK . The volume-normalized Petty ellipsoid [21] is obtained by minimizing the
surface area of K under SL(n) transformations of K . See also Giannopoulos [6].

From Theorem 3.1 and Lemma 2.5, we obtain the following result.

Lemma 3.2 Suppose K ∈ Kn and 1 ≤ j ≤ n − 1. Then for any g ∈ GL(n) and x ∈ R
n,

P j (gK + x) = gP j K .

4 A new affine isoperimetric inequality for the integral affine surface
area

For convex body K in R
n , Lutwak [11] conjectured that

� j (K )n ≥ nnωn− j
n Vn(K ) j , j = 2, . . . , n − 2,

with equality if and only if K is an ellipsoid. In this section, we present a variant of the
Lutwak conjecture.

Theorem 4.1 Suppose K is a convex body in Rn. Then,

� j (K )n ≥ nnωn− j
n Vn(P j K ) j , j = 1, . . . , n − 1.

If j = 2, 3, . . . , n − 1, or j = 1 and K is centrally symmetric, the equality holds if and only
if K is an ellipsoid. If j = 1, the equality holds if and only if K has an SL(n) image with
constant width.

To prove this theorem, we need to prove several lemmas.

Lemma 4.2 Suppose K , L ∈ Kn. Then,

�̄ j (K , L) ≥
(

� j (L)

� j (K )

)1/ j

, j = 1, . . . , n − 1. (4.1)

If j = 2, 3, . . . , n − 1, the equality holds if and only if K and L are homothetic. If j = 1,
the equality holds if and only if wK = λwL for some λ > 0. If j = 1 and K , L are centrally
symmetric, the equality holds if and only if K and L are homothetic.

Proof By the Minkowski first inequality, for each ξ ∈ Gn, j , there holds

V̄ j,1(K |ξ, L|ξ) ≥
(
Vj (L|ξ)

Vj (K |ξ)

)1/ j

,

with equality if and only if K |ξ and L|ξ are homothetic. If j = 1, the equality always holds.
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44 Page 12 of 18 D. Zou, G. Xiong

From (2.12), Minkowski’s first inequality, the definition of μ j (K , ·), Hölder’s inequality,
and finally the definition of � j , it follows that

�̄ j (K , L) =
∫
Gn, j

V̄ j,1(K |ξ, L|ξ) dμ j (K , ξ)

≥
∫
Gn, j

(
Vj (L|ξ)

Vj (K |ξ)

) 1
j

dμ j (K , ξ)

=
∫
Gn, j

V j (L|ξ)
(−n)· −1

jn V j (K |ξ)
(−n)· jn+1

jn dμ j (ξ)∫
Gn, j

V j (K |ξ)−n dμ j (ξ)

≥
(∫

Gn, j
V j (L|ξ)−n dμ j (ξ)

)−1
jn

(∫
Gn, j

V j (L|ξ)−n dμ j (ξ)
) jn+1

jn

∫
Gn, j

V j (K |ξ)−n dμ j (ξ)

=
(

� j (L)

� j (K )

) 1
j

,

which establishes inequality (4.1).
Assume the equality holds in (4.1). Then equalities in the second line and the fourth line

both hold. If 2 ≤ j ≤ n − 1, by the equality condition of the Minkowski inequality, K |ξ
and L|ξ are homothetic for all ξ ∈ Gn−1, and therefore K and L are homothetic (see, e.g.,
Theorem 3.1.3 in [5]). If j = 1, the equality condition of the Holder inequality implies that
wK = λwL for some constant λ > 0. If in addition K and L are centrally symmetric, then
they are homothetic.

On the contrary, if K and L are homothetic, by Lemma 2.5 (1) and (2), it follows that the
equality holds in (4.1). ��

From Lemma 2.5 together with the definition of P j K , we obtain the following result.

Lemma 4.3 Suppose K ∈ Kn. Then,

�̄ j (K ,P j K ) = 1, j = 1, . . . , n − 1.

Lemma 4.4 Suppose E is an ellipsoid in Rn. Then,

� j (E) = nω
(n− j)/n
n Vn(E) j/n, j = 1, 2, . . . , n − 1.

Proof From the j th positive homogeneity of � j , the SL(n) invariance of � j (K ), and the
fact � j (B) = nωn , it follows that

� j (E) = � j

(
Vn(E)1/n

E

Vn(E)1/n

)

= Vn(E) j/n� j

(
E

Vn(E)1/n

)

= Vn(E) j/n� j

(
B

ω
1/n
n

)

= Vn(E) j/nω
− j/n
n � j (B)

= nω
(n− j)/n
n Vn(E) j/n,

as desired. ��
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Lemma 4.5 Suppose E is an ellipsoid with center cE . Then,

P j E = E − cE , j = 1, 2, . . . , n − 1, n.

Proof ByLemma 3.2, it suffices to prove P j B = B. FromLemmas 4.3, 4.2 and 4.4, it follows
that

1 = �̄ j (B,P j B) ≥
(

� j (P j B)

� j (B)

)1/ j

=
(
Vn(P j B)

Vn(B)

)1/n

.

So, Vn(P j B) ≥ Vn(B).

On the other hand, since �̄ j (B, B) = 1, i.e., unit ball B satisfies the constraint of the
extremum problem in Theorem 3.1 for (B, j), it follows that Vn(P j B) ≤ Vn(B).

Thus, Vn(P j B) = Vn(B). By uniqueness of projection mean ellipsoid, P j B = B is
obtained. ��

Lemma 4.6 Suppose K ∈ Kn. Then,

� j (K ) ≥ � j (P j K ), j = 1, 2, . . . , n − 1. (4.2)

If j = 2, 3, . . . , n − 1, or j = 1 and K is centrally symmetric, the equality holds if and only
if K is an ellipsoid. If j = 1, the equality holds if and only if K has an SL(n) image with
constant width.

Proof From Lemmas 4.2 and 4.3, it follows that for j = 1, 2, . . . , n − 1,

1 = �̄ j (K ,P j K ) ≥
(

� j (P j K )

� j (K )

) 1
j

.

That is, � j (K ) ≥ � j (P j K ).
Assume the equality holds. By Lemma 4.6, if j = 2, 3, . . . , n − 1, then the bodies P j K

and K are homothetic. Therefore, K is an ellipsoid. Let j = 1. SincewK = αwP1K for some
α > 0, from the affine nature of P1K , there exists an SL(n) transformation g such that gP1K
is an origin-symmetric ball. Thus, wgK = αwP1(gK ). That is, the body gK is of constant
width. Moreover, if in addition K is centrally symmetric, then gK is a ball, and therefore, K
is an ellipsoid.

Assume that K is an ellipsoid. By Lemma 4.5, P j K = K − cK , here cK is the center of
K . By Lemma 2.4 (3), � j (P j K ) = � j (K ). ��

We are now in the position to finish the proof of Theorem 4.1.

Proof of Theorem 4.1 From Lemma 4.4, it follows that

� j (P j K ) = nω
(n− j)/n
n Vn(P j K ) j/n .

Combining this fact with Lemma 4.6, it follows that

� j (K ) ≥ � j (P j K ) = nω
(n− j)/n
n Vn(P j K ) j/n,

as desired. The equality condition are derived from Lemma 4.6 immediately. ��
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5 A sharp affine isoperimetric inequality for 1st projectionmean
ellipsoid

Lemma 5.1 Suppose K and L are origin-symmetric convex bodies in R
n with the origin in

their interior. Then,

�̄1(K , L) =
∫
Sn−1 ρL∗(u)−1ρK ∗(u)n+1 dHn−1(u)

nVn(K ∗)
. (5.1)

Proof Since ∫
Gn,1

V1,1(K |ξ, L|ξ)V1(K |ξ)−(n+1) dμ1(ξ)

= (nωn)
−1

∫
Sn−1

wL(u)wK (u)−(n+1) dHn−1(u)

= 2−n(nωn)
−1

∫
Sn−1

hL(u)hK (u)−(n+1) dHn−1(u)

= 2−n(nωn)
−1

∫
Sn−1

ρL∗(u)−1ρK ∗(u)n+1 dHn−1(u),

and ∫
Gn,1

V1(K |ξ)−ndμ1(ξ) = 2−n(nωn)
−1

∫
Sn−1

ρK ∗(u)ndHn−1(u).

By the definition of �̄1(K , L), (5.1) is obtained. ��
Theorem 5.2 Suppose K is an origin-symmetric convex body in Rn. Then,

Vn(K
∗)Vn(P1K ) ≤ ω2

n,

with equality if and only if K is an ellipsoid.

Proof From the Hölder inequality and the polar formula for volume, it yields that

n−1
∫
Sn−1

ρL∗(u)−1ρK ∗(u)n+1dHn−1(u) ≥ Vn(K
∗)(n+1)/nVn(L

∗)−1/n,

with equality if and only if K ∗ and L∗ are dilates. From Lemma 5.1, it follows that

�̄1(K , L) ≥
(
Vn(K ∗)
Vn(L∗)

) 1
n

,

with equality if and only if K and L are dilates.
Let L = P1K . Using Lemma 4.3, we obtain

1 ≥ Vn(K ∗)
Vn((P1K )∗)

,

with equality if and only if K is an ellipsoid. By the Blaschke–Santaló inequality, we have

ωn
2

Vn((P1K )∗)
= Vn(P1K ).
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Thus,

ωn
2 ≥ ωn

2Vn(K ∗)
Vn((P1K )∗)

= Vn(K
∗)Vn(P1K ),

as desired. ��

6 Which one is bigger, Vn(K) or Vn(PjK)?

In light of the longstanding Lutwak conjecture, a natural question is posed as follows: For a
convex body K in R

n , which geometric quantity is bigger, Vn(K ) or Vn(P j K )?
Recall that when j = n, PnK is just the classical Petty ellipsoid of K . It is known that

Vn(K ) ≥ Vn(PnK ). As a result, one may tempt to conjecture that Vn(K ) ≥ Vn(P j K ), for
j = 1, 2, . . . , n − 1?

In this section, we provide an example to show that it is not always true. So, projection
mean ellipsoid not only owns strong geometric intuition, but also is of great value to attack
the Lutwak conjecture for affine surface area.

Lemma 6.1 Suppose Bp is the unit ball in R
n with lp norm, 1 ≤ p ≤ ∞. Then the mean

projection ellipsoid P j Bp, j = 1, 2, . . . , n, is an origin-symmetric Euclidean ball.

Proof We argue by contradiction. Assume P j Bp is not an Euclidean ball. We prove that there
exists an orthogonal transformation g, such that

gBp = Bp but gP j Bp �= P j Bp.

However, this is impossible, since by Lemma 3.2 and gBp = Bp , it necessarily yields that
gP j Bp = P j Bp .

By the above assumption, among all principal radii of the ellipsoid P j Bp there exists
a principal radius, say λ0, which differs from the others. Suppose ±u0 are the principal
directions corresponding to λ0. Say, u0 = (u01, . . . , u

0
n).

We first handle the case where u0i0 = 1 or −1, for some index i0. W.l.o.g., assume that

i0 = 1. Then, u0i = 0 for i �= 1. Take the orthogonal transformation g : Rn → R
n ,

(x1, x2, x3, . . . , xn) → (x2, x1, x3, . . . , xn).

Clearly, gBp = Bp . Observe that the principal radii of gP j Bp are identical to those of
P j Bp , and ±gu0 are the unit principal directions corresponding to principal radius λ0 of
gP j Bp . The choice of g implies that {±gu0} �= {±u0}. Moreover, gP j Bp �= P j Bp , since if
gP j Bp = P j Bp , then it yields that {±gu0} = {±u0}.

To complete the proof, it remains to consider the case where vector u0 has two nonzero
components, say u0i1 and u0i2 . W.l.o.g., assume that i1 = 1 and i2 = 2. Take the orthogonal
transformation g : Rn → R

n ,

(x1, x2, x3, . . . , xn) → (−x2, x1, x3, . . . , xn).

Clearly, gBp = Bp . An argument similar to the above yields that gP j Bp �= P j Bp . ��
For convex body K with its centroid at the origin, its isotropic constant LK is given by

LK
2 = 1

n
min

⎧⎪⎨
⎪⎩

1

V (gK )1+ 2
n

∫

gK

|x |2 dx : g ∈ GL(n)

⎫⎪⎬
⎪⎭ .
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In particular, modulo orthogonal transformations, there is a unique SL(n) transformation g
such that

1

nV (gK )1+ 2
n

∫

gK

|x |2dx = LK
2,

i.e.,

1

nV (gK )

∫

Sn−1

ρn+2
gK (u) dHn−1(u) = (n + 2)V (gK )

2
n LK

2.

If in addition gK is orthogonal, then K is said to be isotropic. One of the main remained
open problems in asymptotic theory of convex bodies is the hyperplane conjecture, which
is equivalently asks whether there exists an absolute upper bound for isotropic constant. For
more information, see, e.g., the classical paper by Milman and Pajor [19].

Recall that a known fact concerning Bp , 1 ≤ p ≤ ∞, is that it is isotropic. Meanwhile,
note that B∗

p = Bp∗ , with p∗ denoting the conjugate of p. Thus, we have

1

nV (B∗
p)

∫

Sn−1

ρn+2
B∗
p

(u) dHn−1(u) = (n + 2)V (B∗
p)

2
n L B∗

p
2. (6.1)

Theorem 6.2 Let 1 ≤ p ≤ ∞. Then,
(
Vn(P1Bp)

Vn(Bp)

)1/n

≥ ω
−1/n
n√
n + 2

L−1
B∗
p
, (6.2)

with equality if and only if p = 2.

Proof By Lemma 6.1, P1Bp is an origin-symmetric Euclidean ball. Let rp be its radius. From
Lemmas 4.3 and 5.1, it follows that

rp
nVn(B∗

p)

∫
Sn−1

ρB∗
p
(u)n+1 dHn−1(u) = 1. (6.3)

Then,

Vn(P1Bp)

Vn(Bp)
= nnωnVn(B∗

p)
n

Vn(Bp)
(∫

Sn−1 ρB∗
p
(u)n+1 dHn−1(u)

)n .

Meanwhile, from the Jensen inequality and (6.1), it follows that

1

nVn(B∗
p)

∫
Sn−1

ρB∗
p
(u)n+1dHn−1(u) ≤

(
1

nVn(B∗
p)

∫
Sn−1

ρB∗
p
(u)n+2dHn−1(u)

)1/2

= (n + 2)1/2Vn(B
∗
p)

1/n LB∗
p
,

with equality in the first line if and only if p = 2. Thus,

Vn(P1Bp)

Vn(Bp)
≥ ωn

Vn(Bp)Vn(B∗
p)(n + 2)n/2LB∗

p
n
,

with equality if and only if p = 2. Finally, with the Blaschke–Santaló inequality, the desired
inequality is obtained. ��
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An important fact goes back to Milman and Pajor [19] (also see LYZ [14]) states that for a
convex body K with centroid at the origin,

LK ≥ ω
−1/n
n√
n + 2

, (6.4)

with equality if and only if K is an origin-symmetric ellipsoid.

Corollary 6.3 Let 1 ≤ p ≤ ∞. Then,

max
1≤p≤∞

Vn(P1Bp)

Vn(Bp)
≥ 1.

Proof Since B∗
p is continuous in p ∈ [1,∞], then rp is also continuous in p ∈ [1,∞] by

Eq. (6.3). From (6.2) and (6.4), it follows that

max
1≤p≤∞

Vn(P1Bp)

Vn(Bp)
≥ 1

min1≤p≤∞ ωn(n + 2)n/2LB∗
p
n

≥ 1,

as desired. ��
Specifically, let n = 2 and p = ∞. We show that V2(P1B∞) > V2(B∞).

For this aim, we use the polar coordinate {(ρ, θ) : 0 ≤ ρ ≤ ∞, 0 ≤ θ ≤ 2π}. Since
ρB∗∞(θ) = (| cos θ | + | sin θ |)−1, it yields that

V2(P1B∞)

V2(B∞)
= 4πV2(B∗∞)2

V2(B∞)

⎛
⎝

2π∫

0

ρB∗∞(θ)3dθ

⎞
⎠

−2

= π

4

⎛
⎝

π/2∫

0

(cos θ + sin θ)−3dθ

⎞
⎠

−2

= 2π

⎛
⎜⎝2

π/2∫

π/4

sin−3θdθ

⎞
⎟⎠

−2

= 2π(√
2 + log(

√
2 + 1)

)2 = 1.1923 · · · > 1.

Recall that P1Bp = rp B is continuous in p ∈ [1,∞]. So, there exists a p0 ∈ (2,∞), so
that for p0 < p ≤ ∞, V2(P1Bp) > V2(Bp).
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