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Abstract
We present an analytical treatment of a three-dimensional variational model of a sys-
tem that exhibits a second-order phase transition in the presence of dipolar interactions.
Within the framework of Ginzburg–Landau theory, we concentrate on the case in which
the domain occupied by the sample has the shape of a flat thin film and obtain a reduced
two-dimensional, non-local variational model that describes the energetics of the system in
terms of the order parameter averages across the film thickness. Namely, we show that the
reduced two-dimensional model is in a certain sense asymptotically equivalent to the original
three-dimensional model for small film thicknesses. Using this asymptotic equivalence, we
analyze two different thin film limits for the full three-dimensional model via the methods of
�-convergence applied to the reduced two-dimensional model. In the first regime, in which
the film thickness vanishes while all other parameters remain fixed, we recover the local
two-dimensional Ginzburg–Landau model. On the other hand, when the film thickness van-
ishes while the sample’s lateral dimensions diverge at the right rate, we show that the system
exhibits a transition from homogeneous to spatially modulated global energy minimizers.
We identify a sharp threshold for this transition.

Mathematics Subject Classification 35B36 · 35B40 · 49S05

1 Introduction

This paper is concerned with the behavior of ground states in systems exhibiting a second-
order phase transition which gives rise to the emergence of dipolar order. A prototypical
example may be found in strongly uniaxial ferromagnets, such as magnetic garnet films
with perpendicular easy axis [5,17,23,26]. In such films, spontaneous magnetization appears
below the Curie temperature due to ferromagnetic exchange, with the magnetic moments of
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the electrons aligning in the direction normal to the film plane. However, this local ordering is
frustrated by theweak dipole-dipole coupling, which instead favors anti-parallel alignment of
distant magneticmoments. Under appropriate conditions, this competition between the short-
range attractive and long-range repulsive interactions is well known to produce various types
of inhomogeneous spatial patterns of magnetization, often referred to as “modulated phases”
[2,17,37]. Other physical systems with similar behavior include uniaxial ferroelectrics [23,
38], ferrofluids [36] and Langmuir layers [1,37].

Within the mean-field approximation, these types of systems are usually modeled by an
appropriate free energy functional that contains non-local terms coming from the dipolar
interaction. Spatially modulated phases are interpreted as either local or global minimizers
of the respective energy functional. A phase diagram is then established by comparing the
energies of the candidate “phases” and selecting those corresponding to the global minimum
of the energy. Mathematically, this leads to a formidable variational problem, which has been
well known to exhibit intricate dependence on the model parameters and geometry because
of its non-convex and non-local character. In the context of micromagnetics, a whole zoo
of different behaviors have been recently established (see, e.g., [6,7,10,20,22,34]; this list is
certainly very far from exclusive).

The complexity of the problem may be somewhat reduced near a phase transition point,
where the energy functional attains an asymptotically universal form coming from the Landau
expansion (still within themean-field approximation). This is the approach taken by [2,13,18,
29,30,35,37], which is also adopted by us here.We start by formulating the three-dimensional
Ginzburg–Landau theory of a system undergoing a second-order phase transition, in which
the order parameter is associated with dipolar ordering (for a recent review of the general
Ginzburg–Landau formalism, see [16]; for a stochastic perspective, see also [8,28]). We then
derive a reduced two-dimensional Ginzburg–Landau theory with a modified non-local term
which becomes asymptotically equivalent to the full three-dimensional theory as the film
thickness vanishes. This reduction is done in the spirit of �-development [4] and is the main
result of the paper.

Consider a region � ⊂ R
3 occupied by the material and assume that this region is in the

shape of a film of thickness δ > 0, cross-section D ⊂ R
2 and rounded edges (a pancake-

shaped domain). Namely, we assume that1

D × (0, δ) ⊂ � ⊂ (D + Bδ) × (0, δ), (1.1)

and both D and � have boundaries of class C2. Note that we do not necessarily assume
that D is connected. We are particularly interested in the case when δ is sufficiently small,
corresponding to a thin film (how small the value of δ should be in order for a film to be
considered as thin will be discussed later). Inside�, the state of the material is described by a
scalar order parameter φ = φ(r), where r = (x, y, z) ∈ R

3 stands for the spatial coordinate.
The order parameter represents the magnitude of the magnetization or polarization vector in
the z-direction. In the following, we extend φ by zero outside �. Then the Ginzburg–Landau
free energy plus the dipolar interaction energy can be written in the following form [23]:

F(φ)

kBTc
=

∫
�

(
g

2
|∇φ|2 + a

2
(T − Tc)φ

2 + b

4
φ4 − hφ

)
d3r + c

2

∫
R3

∂zφ(−�)−1∂zφ d3r .

(1.2)

Here, kB is the Boltzmann constant, T is temperature, Tc is the transition temperature in
the absence of the dipolar interaction, h = h(x, y) is the applied field normal to the film

1 Recall that D + Bδ = {r ∈ R
2 : dist(r, D) < δ}.
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plane, and a, b, c, g are positive material constants. Also, the symbol (−�)−1 stands for
the convolution with the Newtonian potential 1/(4π |r|) in three space dimensions, and the
derivative ∂zφ in R

3 is understood distributionally.
When δ is small, the gradient term is expected to strongly penalize the variations of φ in

the z-direction. Furthermore, it is easy to see that to the leading order the dipolar term should
become local. Indeed, since for small δ we have � ≈ ∂2z in a certain sense, the energy in
(1.2) may be equivalently rewritten as

F(φ)

kBTc
=

∫
�

(
g

2
|∇φ|2 + a

2
(T − T ∗

c )φ2 + b

4
φ4 − hφ

)
d3r + c

2

∫
R3

(
∂zφ(−�)−1∂zφ − φ2

)
d3r ,

(1.3)

where we introduced the renormalized critical temperature T ∗
c = Tc − c

a that contains the
contribution of the dipolar interaction and rewrote the last term so that it is expected to be
o(δ) as δ → 0. Note that in the context of micromagnetics, such an argument was made
rigorous by Gioia and James [15] (see also the following sections). Furthermore, plugging
in a z-independent ansatz φ(x, y, z) = φ̄(x, y), where φ̄ : D → R is sufficiently smooth
(extended by zero outside D), one straightforwardly obtains (here and everywhere below we
use r to denote either a point in R

3 or R2, depending on the context)

F(φ)

kBTc
=δ

∫
D

(
g

2
|∇φ̄|2 + a

2
(T − T ∗

c )φ̄2 + b

4
φ̄4 − hφ̄

)
d2r + O(δ2)

+ c

4π

∫
R2

∫
R2

(
1

|r − r′| − 1√
|r − r′|2 + δ2

− 2πδ(2)(r − r′) δ

)
φ̄(r)φ̄(r′) d2r d2r ′,

(1.4)

where δ(2)(r) is the two-dimensional Dirac delta-function. Formally expanding the integrand
in the last term in (1.4) in the powers of δ, one can then see that to the leading order the kernel
becomes δ2/(8π |r − r′|3). In the physics literature, this approximation is often adopted to
arrive at a leading order asymptotic theory for thin films with dipolar interactions, with the
1/r3 kernel representing the dipole-dipole repulsion (as is done, e.g., in the review [2]). This,
however, is incorrect, since the 1/r3 kernel is too singular in two dimensions, and thus the
resulting double integral does not make sense. A more sound approach mathematically is to
go to Fourier space, perform an expansion there and then invert the transform. This leads to
the following formula:

F(φ)

kBTcδ
≈

∫
D

(
g

2
|∇φ̄|2 + a

2
(T − T ∗

c )φ̄2 + b

4
φ̄4 − hφ̄

)
d2r

− cδ

16π

∫
R2

∫
R2

(φ̄(r) − φ̄(r′))2

|r − r′|3 d2r d2r ′. (1.5)

Contrary to the previous case, the last integral in the right-hand side of (1.5) is well defined,
at least for smooth functions vanishing on ∂D. Moreover, since this term can be interpreted,
up to a constant factor, as the homogeneous H1/2-norm squared of φ̄ (see, e.g., [11]):

‖φ̄‖2
H̊1/2(R2)

= 1

4π

∫
R2

∫
R2

(φ̄(r) − φ̄(r′))2

|r − r′|3 d2r d2r ′ =
∫
R2

φ̄(−�)1/2φ̄ d2r , (1.6)

one can write (1.5) as [1,18]
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F(φ)

kBTcδ
≈

∫
D

(
g

2
|∇φ̄|2 + a

2
(T − T ∗

c )φ̄2 + b

4
φ̄4 − hφ̄

)
d2r − cδ

4

∫
R2

φ̄(−�)1/2φ̄ d2r ,

(1.7)

where the half-Laplacian operator (−�)1/2 is understood as a map whose Fourier symbol is
|k|, or, equivalently, as an integral operator whose action on smooth functions with compact
support is given by [11]

(−�)1/2φ̄(r) = 1

4π

∫
R2

2φ̄(r) − φ̄(r − z) − φ̄(r + z)
|z|3 d2z r ∈ R

2. (1.8)

In particular, since D is assumed to be bounded, we must necessarily have φ̄ ∈ H1(D)

in order for the right-hand side of (1.5) to be less than +∞. If also φ̄ ∈ H1
0 (D), then by

interpolation the energy is bounded below and is thus well defined [24]. Yet, there is still an
issue with the expression for the energy in (1.5), which becomes negative infinity as soon
as φ̄ does not vanish at the boundary of D. This issue is quite severe and exists even for
φ̄ = const in D. The reason for the latter is that the energy in (1.5) fails to capture a reduced
local contribution of the dipoles near the boundary, since only half of the neighbors are present
at ∂D. In the following, we fix this issue by introducing a smooth cutoff near the boundary of
D in computing the last term in the right-hand side of (1.5). This allows us to estimate, under
appropriate assumptions, the original energy from (1.2) from below by a reduced energy
similar to the one in (1.5) evaluated on the average of the order parameter in the z-direction,
with the relative error controlled only by δ (for precise statements, see the following section).
Since the latter energy is also a good approximation to the original energy for z-independent
configurations, this then allows us to make a number of conclusions regarding the energy
minimizers of the full energy in (1.2) defined on three-dimensional configurations. Thus,
understanding the behavior of the energy minimizers for (1.2) can be achieved by looking
at a somewhat simpler energy of the type in (1.5), which, nevertheless, retains most of the
complexity of the former.

To summarize, in this paper we show that the energy in (1.5) is in a certain sense asymp-
totically equivalent to the energy in (1.2) without assuming that the order parameter does
not vary in the z-direction. Instead, we show that the energy in (1.5) correctly describes the
energetics of the low-energy three-dimensional order parameter configurations in terms of
their z-averages. More precisely, under some technical assumptions the energy in (1.5) eval-
uated on the z-average of the order parameter gives an asymptotically accurate lower bound
for the full energy in (1.2) evaluated on the three-dimensional order parameter configuration.
On the other hand, extending a two-dimensional order parameter configuration to a three-
dimensional z-independent configuration, one gets a value of the full energy in (1.2) that is
asymptotically bounded above by the value of the reduced energy in (1.5) evaluated on the
two-dimensional configuration. We note that the first result in that direction was obtained
by Kohn and Slastikov in the context of micromagnetics, see [22, Lemma 3]. Our analysis
differs from that in [22] in that it identifies the first two non-trivial leading order terms in the
expansion of the dipolar energy in δ and provides sharp universal estimates for the remainder.

Themain result of this paper on the asymptotic equivalence of the two energies is presented
in Theorem2.1. This theorem relies on keyLemma4.1,which establishesmatching upper and
lower bounds for the dipolar energy of three-dimensional order parameter configurations in
terms of a non-local energy functional evaluated on the z-averages in the plane, with the error
controlled by the Dirichlet energy with a vanishingly small coefficient as the film thickness
becomes small. This produces errors that can be controlled by the L∞ norm of the order
parameter, apart from some possible additional contributions near the film edge in the upper
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bounds. Notice that boundedness of the L∞ norm of both the three- and two-dimensional
energy minimizing order parameter configurations is a reasonable assumption in view of the
regularity of minimizers established in Propositions 3.3 and 3.6. We also note that a uniform
L∞ bound by the equilibrium value of the order parameter is a fairly standard assumption
for the ansatz-based computations in the physics literature and is a property which is also
observed in some numerical simulations (see, e.g., [13,18,19,33,35]).

With the reduced energy identified, we proceed to analyze two thin film regimes. In the
first regime, only the film thickness is sent to zero, with all the other parameters as well as
the film cross-section fixed. In the context of micromagnetics, such a result was first obtained
by Gioia and James in [15]. Here under a uniform L∞ bound this type of result follows
immediately from Theorem 2.1. Still, we are able to relax the L∞ constraint and prove the
result in the full generality by establishing �-convergence of the full energy to the local
energy evaluated on the z-averages, see Theorem 2.2. Here the proof requires a different
treatment of the non-local contributions to the energy near the film edge.

Finally, we consider a regime in which simultaneously the film thickness goes to zero,
while the film’s lateral dimension goes to infinity with a suitable rate that is exponential in the
film thickness. We note that these types of scalings were previously discussed in the physics
literature [19,33] and have been recently treated by Knüpfer, Muratov and Nolte within the
framework of micromagnetics [21]. In this regime, after a rescaling that fixes the domain in
the plane we prove a �-convergence result for the reduced energy in Theorem 2.4. Together
with Theorem 2.1, this result then gives asymptotic non-existence of non-trivial minimizers
of the full energy, under a uniform L∞ bound and a technical assumption that the sample
is maintained in a single phase near the edge. We further identify a critical value of the
rescaled film thickness above which pattern formation occurs, see Corollaries 2.6 and 2.7.
The proof relies on the standard Modica-Mortola trick [27] and an interpolation Lemma 6.1
similar to the one obtained in the context of thin filmmicromagnetics [9], and follows closely
the arguments that lead to Theorem 3.5 in our companion paper [21]. Note that combining
Theorem 2.4 with Theorem 2.1 yields an analog of Theorem 3.1 in [21]. A novel aspect of
Theorem 2.4 is the consideration of the energy contribution from the non-local term near the
sample edge.

Our paper is organized as follows. In Sect. 2, we present the main results of the paper. In
Sect. 3, a number of auxiliary results is obtained that are used throughout the proofs. Here
we also derive the Euler-Lagrange equations associated with minimizers of the full and the
reduced energies, see Propositions 3.3 and 3.6. Then, in Sect. 4 we give the proof of Theorem
2.1 and in Sect. 5, we give the proof of Theorem 2.2. Finally, in Sect. 6 we present the proof
of Theorem 2.4 and Corollary 2.6.

2 Main results

We now turn to our main results. We start by carrying out a suitable non-dimensionalization
for the energy in (1.2). To that end, we use instead the representation in (1.3) and choose
the units of length, φ and the energy in such a way that kBTc = a(T ∗

c − T ) = b = g = 1,
treating the most interesting case T < T ∗

c . Also, to simplify the presentation we set h = 0
throughout the rest of the paper. The external field h can be trivially added back in all the
results below.
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Denoting the dimensionless dipolar strength by γ > 0, we write the rescaled version of
the energy in (1.3), up to an additive constant, as

E(φ) :=
∫

�

(
1

2
|∇φ|2 + 1

4

(
1 − φ2)2) d3r + γ

2

∫
R3

(
∂zφ(−�)−1∂zφ − φ2) d3r , (2.1)

where φ ∈ H1(�), extended by zero to R
3\�. The energy E in (2.1) thus depends on only

two dimensionless parameters, δ and γ , as well as on the domain D, whose diameter may
have a relationship with these two parameters when considering various asymptotic regimes.
The unit of length above is chosen so that the characteristic length scale of variation of φ in
the absence of the dipolar interaction is of order unity. Therefore, the thin film regime that we
are interested in should correspond to δ � 1. Note that in terms of the original, dimensional
variables, we have

γ = c

a(T ∗
c − T )

. (2.2)

In the context of ferromagnetism, the parameter γ may be both small and large, depending
on how close the value of T is to T ∗

c . Indeed, since the stray field interaction is a relativistic
effect in comparison with the exchange interaction driving the phase transition, it should be
considerably weaker than the latter away from the critical temperature [5]. At the same time,
as T approaches T ∗

c , the value of γ diverges.
We next introduce a cutoff function χδ ∈ C∞

c (R2). Namely, we define η : R → [0, 1]
such that η ∈ C∞(R), η(t) = 0 for all t ≤ 1, η(t) = 1 for all t ≥ 2 and 0 ≤ η′(t) ≤ 2 for
all t ∈ R. We then define χδ(r) = η(δ−1dist(r,R2\D)). We also define

Dδ := {r ∈ D : dist(r, ∂D) > δ} and �δ := Dδ × (0, δ), (2.3)

and note that Dδ = supp(χδ). Finally, with a slight abuse of notation we will also treat χδ as
a z-independent function of all three coordinates, depending on the context.

We now define the following reduced energy for φ̄ ∈ H1(D) and α > 0:

E(φ̄) :=
∫
D

(
1

2

(
1 − αδ2

) |∇φ̄|2 + 1

4

(
1 − φ̄2)2) d2r

− γ δ

16π

∫
R2

∫
R2

(χδ(r)φ̄(r) − χδ(r′)φ̄(r′))2

|r − r′|3 d2r d2r ′. (2.4)

This definition makes sense, because we have χδφ̄ ∈ H1(R2) and, hence, the last term in
(2.4) is well-defined [24, Section 7.11]. What we will show below is that if

φ̄(x, y) = 1

δ

∫ δ

0
φ(x, y, z) dz (x, y) ∈ D, (2.5)

then with a suitable explicit choice of α the value of E(φ̄)δ may be used to bound from
below the value of E(φ), up to a small error in δ. Conversely, the value of E(φ̄)δ provides a
good approximation for the value of E(φ), with a small relative error, when φ is chosen to
be independent of z. We make this statement precise in the following theorem.

Theorem 2.1 There exist universal constants α1 > 0, α2 > 0 and β > 0 such that for every
δ > 0 sufficiently small there holds:

(i) If φ ∈ H1(�) ∩ L∞(�) and φ̄ is defined by (2.5), then

E(φ) ≥ E(φ̄)δ − βγ δ2‖φ‖2L∞(�)|∂D|, (2.6)

with α = α1 + γα2.
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(ii) For every φ̄ ∈ H1(D)∩L∞(D) there exists φ ∈ H1(�)∩L∞(�) such that ‖φ‖L∞(�) ≤
‖φ̄‖L∞(D), φ(x, y, z) = φ̄(x, y) for all (x, y) ∈ D, and

E(φ) ≤(1 − 2αδ2)−1E(φ̄)δ

+ βδ2(1 + γ 2)
(
1 + ‖φ̄‖4L∞(D)

)
|∂D| + βδ‖∇φ̄‖2L2(D\Dδ)

. (2.7)

Note that for γ � 1 and ‖φ‖L∞(�) � 1 the additive error term appearing in both the upper
and the lower bound in Theorem 2.1 is of the order of the dipolar self-interaction energy
of φ at the sample edge �\�δ . Thus, the asymptotic equivalence of E and E established in
Theorem 2.1 holds when |E(φ)| � δ2, when the bulk contribution to the energy dominates
that of the edge. Note that in this case the non-local term in E is expected to capture the
leading O(δ2| log δ|) contribution to E from the film edge. Hence, the additive error term
appearing in Theorem 2.1 should still be negligible evenwhen the edge effects are prominent.
We point out that a smooth cutoff near the sample edge was recently used to model boundary
effects in computational micromagnetic studies of ultrathin ferromagnetic films, a closely
related problem [32].

We now showhowTheorem2.1may be used to establish some of the asymptotic properties
of the energy minimizing configurations for the original energy E as δ → 0 by studying the
reduced energy E . We begin by establishing a result similar to that of Gioia and James for
a closely related vectorial model of micromagnetics in the thin film limit [15]. Namely, we
consider the simplest thin film regime, in which δ → 0 with both γ and D fixed. In this
regime, we show that the energetics of the low energy configurations in the original three-
dimensional model can be asymptotically described via the local two-dimensional energy.
The proof for uniformly bounded sequences follows by combining the result in Theorem 2.1
with the δ → 0 limit behavior of E established in Proposition 5.2. A slight modification of
the proof of Theorem 2.1 in this regime allows to remove the assumption of boundedness,
so below we state the result in its full generality.

For fixed D, consider a family of bounded open sets �δ ⊂ R
3 such that D × (0, δ) ⊂

�δ ⊂ (D + Bδ) × (0, δ). Given φδ ∈ H1(�δ), we define φ̄δ to be its z-average on D, i.e.,
φ̄δ ∈ H1(D) is defined by (2.5) with φ replaced by φδ . We next define Eδ to be the family
of functionals given by (2.1) with � = �δ . We also define E0 to be given by (2.4) with δ

formally set to zero, i.e., we define

E0(φ̄) :=
⎧⎨
⎩

∫
D

(
1

2
|∇φ̄|2 + 1

4

(
1 − φ̄2)2) d2r φ̄ ∈ H1(D),

+∞ otherwise.
(2.8)

Then the following �-convergence result holds true (for a general introduction to �-
convergence, see, e.g., [3]).

Theorem 2.2 As δ → 0, we have

δ−1Eδ
�→ E0, (2.9)

with respect to the L2 convergence of the z-averages, in the following sense:

(i) For any sequence of δ → 0 and φδ ∈ H1(�δ) such that ‖∇φδ‖2L2(�)
≤ Cδ for some

C > 0 independent of δ, φ̄δ⇀φ̄ in H1(D) and φ̄δ → φ̄ in L2(D), we have

lim inf
δ→0

δ−1Eδ(φδ) ≥ E0(φ̄). (2.10)
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(ii) For any φ̄ ∈ H1(D) and every sequence of δ → 0, there exists φδ ∈ H1(�δ) such that
‖∇φδ‖2L2(�)

≤ Cδ for some C > 0 independent of δ, φ̄δ → φ̄ in L2(D) and

lim sup
δ→0

δ−1Eδ(φδ) ≤ E0(φ̄). (2.11)

The assumption on the gradient in Theorem 2.2 is a natural assumption consistent with
the scaling of the minimum energy for Eδ . In particular, the theorem above applies, upon
extraction of subsequences, to φδ ∈ H1(�δ) satisfying

lim sup
δ→0

δ−1Eδ(φδ) < +∞, (2.12)

in view of the compactness of their z-averages in H1(D), see Proposition 5.1. Therefore,
by Corollary 3.2 we have the following immediate consequence of Theorem 2.2 concerning
global minimizers of Eδ . Note that the latter exist for each δ > 0 by Proposition 3.3.

Corollary 2.3 Let φδ ∈ H1(�δ) by a minimizer of Eδ . Then for any sequence of δ → 0 we
have φ̄δ → φ̄ in L2(D), where φ̄ takes a constant value ±1 in every connected component
of D.

Let us point out that the addition to Eδ(φ) of an applied field term − ∫
�δ hφ d3r with

h = h(x, y) ∈ L2(�δ) does not change the �-convergence result in Theorem 2.2, provided
that the term − ∫

D hφ̄ d2r is added to the definition of E0 in (2.8). Thus, as expected, in the
thin film limit with D and γ fixed one recovers the local Ginzburg–Landau energy functional.
We note, however, that physically the effect of the dipolar interaction is still present in the
renormalization of the transition temperature from Tc to T ∗

c .
We finally turn our attention to a regime of practical interest in which modulated patterns

spontaneously emerge. In view of the previous result, this requires simultaneous vanishing
of the film thickness and blowup of the film’s lateral dimensions. To this end, we introduce
a small parameter ε > 0 and consider domain Dε = ε−1D, with a fixed bounded open set
D ⊂ R

2 with C2 boundary describing the shape of the film in the plane and lateral length
scale ε−1 � 1. Next, we rescale all lengthswith ε−1 and define the rescaled domain�ε ⊂ R

3

occupied by the material. Thus, for a film of thickness δ = δε we have D× (0, εδε) ⊂ �ε ⊂
(D + Bεδε ) × (0, εδε).

In the rescaled variables, the energy in (2.1) takes the following form:

Eε(φ) :=
∫

�ε

(
1

2
|∇φ|2 + 1

4ε2
(
1 − φ2)2) d3r + γ

2ε2

∫
R3

(
∂zφ(−�)−1∂zφ − φ2) d3r ,

(2.13)

where φ ∈ H1(�ε) and the energy has been rescaled with an overall factor ε. Similarly,
rescaling the energy in (2.4) with ε as well, for φ̄ ∈ H1(D) we define

Eε(φ̄) :=
∫
D

(
ε

2
(1 − αδ2ε )|∇φ̄|2 + 1

4ε

(
1 − φ̄2)2) d2r

− γ δε

16π

∫
R2

∫
R2

(χεδε (r)φ̄(r) − χεδε (r
′)φ̄(r′))2

|r − r′|3 d2r d2r ′. (2.14)

Notice that the overall factor of ε in the energy scale for both energies above is chosen
to obtain the Modica-Mortola scaling [27] in the reduced two-dimensional energy Eε , in
anticipation of its limit behavior as ε → 0.
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With these notations, the lower bound in Theorem 2.1 for φε ∈ H1(�ε) ∩ L∞(�ε)

satisfying ‖φε‖L∞(�ε) ≤ M for some M ≥ 1 fixed and for all δε sufficiently small becomes

Eε(φε) ≥ Eε(φ̄ε)δε − Cδ2ε , (2.15)

where

φ̄ε(x, y) = 1

εδε

∫ εδε

0
φε(x, y, z) dz (x, y) ∈ D, (2.16)

and C > 0 depends only on γ , D and M , for a suitable choice of α depending only on
γ . Concentrating on the bulk properties of the configurations, we further assume that the
order parameter is equal to its bulk equilibrium value near the film edge and does not exceed
it in magnitude throughout the film (a more thorough analysis of the behavior of global
minimizers as ε → 0 goes far beyond the scope of the present paper and will be treated
elsewhere). Hence, we set M = 1 and for ρ > 0 sufficiently small fixed we assume that
φ̄ε = 1 in D\Dρ , where Dρ is as in (2.3). In this case the upper bound from Theorem 2.1
reads for all φ̄ε ∈ H1(D) ∩ L∞(D) such that ‖φ̄ε‖L∞(D) = 1 and φ̄ε = 1 in D\Dρ , for all
δε sufficiently small:

Eε(φε) ≤ (1 − 2αδ2ε )
−1Eε(φ̄ε)δε + Cδ2ε , (2.17)

where C > 0 is as before and φε ∈ H1(�ε) ∩ L∞(�ε) satisfies φε(x, y, z) = φ̄ε(x, y) for
all (x, y) ∈ D, and ‖φε‖L∞(�ε) = 1. We note that related ideas were used in [31] in the
asymptotic analysis of the two-dimensional Ohta-Kawasaki energy.

We now specify the scaling of δε with ε for which modulated patterns emerge. This
scaling has been recently identified in [21] in the studies of a closely related model from
micromagnetism. For λ > 0 fixed, we set

δε = λ

γ | ln ε| , (2.18)

and consider the limit behavior of the energies in (2.13) and (2.14) as ε → 0. In [21], a
critical value of λ = λc has been identified, below which no modulated patterns emerge as
energy minimizers in this limit, while above this value pattern formation occurs. A similar
phenomenon takes place in our problem, too. In the subcritical regime, the conclusion above
is a consequence of the following �-convergence result. In our case, the threshold value of
λ is

λc := 2π
√
2

3
. (2.19)

We also define the constants

σ0 = 2
√
2

3
, σ1 = 1

π
, (2.20)

and notice that λc = σ0/σ1. The following theorem is a close analog of Theorem 3.5 in [21]
obtained in a periodic setting.

Theorem 2.4 Let ρ > 0, 0 < λ < λc and let Eε be defined by (2.14) with δε given by (2.18).
Then as ε → 0 we have

Eε
�→ E∗, E∗(φ̄) := −1

4
σ1λ|∂D| + 1

2
(σ0 − σ1λ)

∫
D

|∇φ̄| d2r , (2.21)

where φ̄ ∈ BV (D; {−1, 1}), with respect to the L1(D) convergence, in the following sense:
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(i) For every sequence of φ̄ε ∈ H1(D)∩L∞(D) such that φ̄ε = 1 in D\Dρ , ‖φ̄ε‖L∞(D) = 1,
and

lim sup
ε→0

Eε(φ̄ε) < +∞, (2.22)

there exists a subsequence (not relabelled) such that φ̄ε → φ̄ in L1(D) and

lim inf
ε→0

Eε(φ̄ε) ≥ E∗(φ̄), (2.23)

for some φ̄ ∈ BV (D; {−1, 1}) such that φ̄ = 1 in D\Dρ .
(ii) For any φ̄ ∈ BV (D; {−1, 1}) such that φ̄ = 1 in D\Dρ there exists a sequence of

φ̄ε ∈ H1(D) ∩ L∞(D) such that φ̄ε = 1 in D\Dρ , ‖φ̄ε‖L∞(D) = 1, φ̄ε → φ̄ in L1(D)

and

lim sup
ε→0

Eε(φ̄ε) ≤ E∗(φ̄). (2.24)

Remark 2.5 The inequalities in (2.23) and (2.24) remain true for λ ≥ λc as well, if one
assumes that φ̄ε → φ̄ in BV (D) in addition to φ̄ε = 1 in D\Dρ and ‖φ̄ε‖L∞(D) = 1.
However, the compactness statement of Theorem 2.4 no longer holds for λ > λc (for more
details in a periodic setting, see [21]).

Theorem 2.4 implies, in particular, that for λ < λc all minimizers of Eε among functions
φ̄ε ∈ H1(D) ∩ L∞(D) satisfying ‖φ̄ε‖L∞(D) = 1 and φ̄ε = 1 in D\Dρ for some ρ > 0
converge a.e. to φ̄ = 1 in D as ε → 0, implying that minimizers within this class approach
a monodomain state for all ε sufficiently small. This is consistent with the result in Corol-
lary 2.3 in the other scaling regime considered earlier. As was already noted, relaxing the
assumption of boundedness and the behavior near the edge to make the same conclusion
about the unconstrained minimizers of Eε would require a rather delicate analysis of the
energy minimizing configurations near the film edge, which goes beyond the scope of the
present paper. Still, within the considered restricted class we may conclude, by (2.15) and
(2.17), that the same result is true for the z-averages φ̄ε of the minimizers φε of Eε in the
respective class. The precise statement is in the following corollary.

Corollary 2.6 Let ρ > 0, 0 < λ < λc and let Eε be defined by (2.13) with δε given by (2.18).
Let φε ∈ H1(�ε) ∩ L∞(�ε) be a minimizer of Eε among all functions satisfying φε = 1 in
�ε\(Dρ × (0, εδε)) and ‖φε‖L∞(�ε) = 1. Then if φ̄ε is defined by (2.16), we have φ̄ε → 1
in BV (D) as ε → 0.

We also point out that, despite asymptotic non-existence of non-trivial minimizers of Eε

for λ < λc the effect of the dipolar interaction can still be seen in the energetics via a
renormalized line tension σ = σ0 − λσ1 for the domain patterns in the plane. At the same
time, Remark 2.5 also allows us to conclude that for λ > λc the minimizers in Corollary 2.6
must develop spatial oscillations as ε → 0.

Corollary 2.7 Let ρ, φε and φ̄ε be as in Corollary 2.6, and let λ > λc. Then φ̄ε �→ 1 in
BV (D), as ε → 0.

In fact, it is possible to show that for λ > λc minimizers of Eε or the z-averages ofminimizers
of Eε cannot converge in BV (D). Instead, they develop fine oscillations throughout D (for
an analogous result in micromagnetics, see [21, Theorem 3.6]).
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3 Preliminaries

In this section, we collect a few basic facts for various terms appearing both in the original
energy in (2.1) and the reduced energy in (2.4). In particular, we establish existence and
regularity of the minimizers of both energies. We remind the reader that, except in the
following lemma, we always consider a function φ ∈ H1(�) to be extended by zero to
the whole space whenever we view φ as a function defined on R

3. Similarly, a function
φ̄ ∈ H1(D) is assumed to be extended by zero to the rest of R2 whenever it is treated as a
function defined on R2.

We begin by a characterization of the non-local term appearing in (2.1). Recall that the
derivative ∂zφ in (2.1) is understood in the distributional sense in the whole of R3.

Lemma 3.1 Letφ,ψ ∈ H1(�) and let φ̃, ψ̃ be their extensions by zero toR3\�, respectively.
Then ∫

R3
∂z φ̃(−�)−1∂zψ̃ d3r := 1

4π

∫
R3

∫
R3

∂z φ̃(r) ∂zψ̃(r′)
|r − r′| d3r d3r ′ (3.1)

defines an inner product on H1(�). Furthermore,
∫
R3 ∂z φ̃(−�)−1∂zψ̃ d3r ≤ ‖φ‖L2(�)

‖ψ‖L2(�), and we have∫
R3

∂z φ̃(−�)−1∂zψ̃ d3r = −
∫

�

φ ∂2z (−�)−1ψ d3r , (3.2)

where (−�)−1ψ ∈ W 2,2
loc (R3) is the Newtonian potential of ψ̃:

(−�)−1ψ(r) := 1

4π

∫
�

ψ(r′)
|r − r′| d

3r r ∈ R
3. (3.3)

Proof First of all, observe that since φ,ψ ∈ H1(�) and � is a bounded set with boundary
of class C2, we have φ̃, ψ̃ ∈ BV (R3) ∩ L2(R3), with ∂z φ̃ = ∂z φ̃

a + ∂z φ̃
j , where ∂z φ̃

a =
L3(�)�∂zφ is the absolutely continuous part and ∂z φ̃

j = H2(∂�)�(−ez ·ν)T (φ) is the jump
part [12]. Here, T (φ) denotes the trace of φ on ∂�, ν is the outward unit normal vector to
∂� and ez is the unit vector in the positive z direction. Furthermore, since T (φ) ∈ L2(∂�)

by the trace embedding theorem [12], it is easy to see that the right-hand side of (3.1) defines
an absolutely convergent integral. Then, arguing by approximation, we can write

∫
R3

∂z φ̃(−�)−1∂zψ̃ d3r =
∫
R3

(k · ez)2
|k|2 φ̂∗

kψ̂k
d3k

(2π)3
, (3.4)

where φ̂k and ψ̂k are the Fourier transforms of φ̃ and ψ̃ , respectively, with the convention

φ̂k :=
∫
R3

eik·rφ̃(r) d3r . (3.5)

Thus, by Cauchy–Schwarz inequality and Parseval’s identity, the first part of the statement
follows. To complete the proof of the second part, we note that by standard elliptic regularity
[14], we have (−�)−1ψ ∈ W 2,2

loc (R3) and, therefore, ∂2z (−�)−1ψ ∈ L2
loc(R

3). The claim
then follows by passing again to the Fourier space. ��

As can be seen from the proof of Lemma 3.1, the Fourier representation in (3.4) of the
integral in the right-hand side of (3.1) justifies our choice of notation for the left-hand side of
(3.1). Throughout the rest of the paper, we drop the tildes from all the formulas involving the
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extensions. An immediate corollary to Lemma 3.1 is the following, with the last statement
obtained by testing the energy against φ ≡ 1.

Corollary 3.2 We have for all φ ∈ H1(�)

0 ≤
∫
R3

∂zφ(−�)−1∂zφ d3r ≤
∫

�

φ2 d3r . (3.6)

In particular, infφ∈H1(�) E(φ) ≤ 0.

Wenext turn to existence and some basic properties of theminimizers of E . The arguments
of the proof are fairly standard, based on the direct method of calculus of variations and stan-
dard elliptic regularity theory, with the exception of a separate treatment of the contributions
to the non-local term coming from the boundary trace of φ.

Proposition 3.3 There exists a minimizer φ of E in (2.1) among all functions in H1(�).
Furthermore, we have φ ∈ C∞(�) ∩ C1,α(�) for all α ∈ (0, 1), and φ satisfies

0 =�φ(r) + (1 + γ )φ(r) − φ3(r) − γ

4π

∫
�

ez · (r − r′)
|r − r′|3 ∂zφ(r′)d3r ′

+ γ

4π

∫
∂�

ez · (r − r′)
|r − r′|3 (ez · ν(r′))φ(r′)dH2(r′) ∀r ∈ �, (3.7)

where ez is the unit vector in the positive z direction and ν is the outward unit normal to ∂�,
with ν · ∇φ(r) = 0 for all r ∈ ∂�.

Proof By Lemma 3.1 and Sobolev embedding [12], the energy in (2.1) is well-defined and
bounded below for all φ ∈ H1(�). Let φn ∈ H1(�) be a minimizing sequence. Then by
Corollary 3.2 and Cauchy–Schwarz inequality we have

1

2
‖∇φn‖2L2(�)

− 1

2
(1 + γ )|�|1/2‖φn‖2L4(�)

+ 1

4
‖φn‖4L4(�)

≤ C, (3.8)

for some C > 0 independent of n. Therefore, upon extraction of a subsequence we may
assume that φn⇀φ in H1(�) as n → ∞, and upon further extraction we also have φn → φ

in L p(�) for all 1 ≤ p < 6 [12]. In particular, up to a subsequence (not relabeled) we
have φn → φ in L2(�), and by Lemma 3.1 we also have

∫
R3 ∂zφn(−�)−1∂zφn d3r →∫

R3 ∂zφ(−�)−1∂zφ d3r as n → ∞. Therefore, by lower semicontinuity of the gradient
squared term in the energy, we have lim infn→∞ E(φn) ≥ E(φ), and so φ is a minimizer.

By Lemma 3.1 and an explicit calculation, the energy in (2.1) is Fréchet differentiable,
and the minimizer φ satisfies∫

�

(∇φ · ∇ψ − (1 + γ )φψ + φ3ψ
)
d3r + γ

∫
R3

∂z(ψχ�)(−�)−1∂zφ d3r = 0, (3.9)

where χ� is the characteristic function of �, for every ψ ∈ C∞
c (R3). Therefore, by Lemma

3.1 we have

0 =
∫

�

∇φ · ∇ψ d3r −
∫

�

(
(1 + γ )φ − φ3 + γ ∂2z (−�)−1φ

)
ψ d3r . (3.10)

Since the bracket in the last integral in (3.10) is in L2(�) by Sobolev embedding and Lemma
3.1, by standard elliptic estimates [14] we have φ ∈ W 2,2(�) and, therefore, φ ∈ L p(�)

for any 1 ≤ p < ∞, again, by Sobolev embedding (recall that � ⊂ R
3 is a bounded

open set with boundary of class C2). Then, again by standard elliptic regularity we also
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have (−�)−1φ ∈ W 2,p(�) and, hence, ∂2z (−�)−1φ ∈ L p(�). Thus, we conclude that
φ ∈ W 2,p(�) as well, and by Sobolev embedding φ ∈ C1,α(�), for any α ∈ (0, 1). In
particular, φ satisfies Neumann boundary condition.

Finally, to arrive at (3.7) we note that with the above regularity of φ we can write

∂2z (−�)−1φ(r) = − 1

4π

∫
�

ez · (r − r′)
|r − r′|3 ∂zφ(r′) d3r ′

+ 1

4π

∫
∂�

ez · (r − r′)
|r − r′|3 (ez · ν(r′))φ(r′) dH2(r′), (3.11)

in D′(R3). The last term in the right-hand side of (3.11) defines a smooth function of r ∈ �,
while the first term has derivatives belonging to L p(�), in view of the fact that φ ∈ W 1,p(�)

and using standard elliptic regularity. Thus, we can apply a bootstrap argument to establish
interior C∞ regularity of φ in �. This then allows us to obtain (3.7) from (3.10). ��
Remark 3.4 Observe that by Proposition 3.3 every minimizer φ of E over H1(�) is bounded.
However, it is not a priori clear under which conditions the L∞ norm of φ remains bounded
as δ → 0, with other parameters such as γ or the diameter of � possibly going to infinity. It
is natural to expect that in some thin film regimes the minimizers may develop a boundary
layer near the edge, i.e., in the vicinity of �\(D × (0, δ)), and blow up at ∂D × (0, δ) as
δ → 0.

Before turning to the discussion of the reduced energy E in (2.4), we consider the contri-
bution of the film’s edge to the non-local term in the energy in (2.1). We have the following
estimate for the contribution of the edge to the non-local term in the energy in the following
lemma. Note that this estimate is expected to be optimal for small δ, since for φ = 1, for
example, the self-interaction energy associated with the edge can be easily seen to be of order
δ2.

Lemma 3.5 Let φ ∈ H1(�) and δ > 0. Then∣∣∣∣
∫
R3

∂zφ(−�)−1∂zφ d3r −
∫
R3

∂z(χδφ)(−�)−1∂z(χδφ) d3r

∣∣∣∣ ≤ 3‖φ‖L2(�)‖φ‖L2(�\�2δ)
.

(3.12)

Furthermore, there exists δ0 > 0 depending only on D such that for all 0 < δ ≤ δ0 we have
for all φ ∈ H1(�) ∩ L∞(�):

∣∣∣∣
∫
R3

∂zφ(−�)−1∂zφ d3r −
∫
R3

∂z(χδφ)(−�)−1∂z(χδφ) d3r

∣∣∣∣
≤ 98|∂D|δ2‖φ‖2L∞(�). (3.13)

Proof Denoting the left-hand side of (3.13) by R, writingφ = χδφ+(1−χδ)φ and expanding
the difference, we have R ≤ 2R1 + R2, where

R1 :=
∣∣∣∣
∫
R3

∂z((1 − χδ)φ)(−�)−1∂z(χδφ) d3r

∣∣∣∣ , (3.14)

R2 :=
∫
R3

∂z((1 − χδ)φ)(−�)−1∂z((1 − χδ)φ) d3r . (3.15)

The rough bound in (3.12) is then an immediate consequence of Lemma 3.1.
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To proceed towards the proof of (3.13), we still estimate R2 roughly:

R2 ≤ ‖φ‖2L2(�\�6δ)
≤ 14|∂D|δ2‖φ‖2L∞(�), (3.16)

where we chose δ so small depending only on D that |(D+ Bδ)\D6δ| ≤ 14|∂D|δ and, hence,
|�\�6δ| ≤ 14|∂D|δ2. Focusing on R1, we write, using again Lemma 3.1 to estimate the first
term:

R1 ≤
∣∣∣∣
∫
R3

∂z((1 − χδ)φ)(−�)−1∂z((χδ − χ3δ)φ) d3r

∣∣∣∣
+

∣∣∣∣
∫
R3

∂z((1 − χδ)φ)(−�)−1∂z(χ3δφ) d3r

∣∣∣∣
≤ 14|∂D|δ2‖φ‖2L∞(�)

+ 1

4π

∣∣∣∣
∫

�\�2δ

∫
�3δ

3(ez · (r − r′))2 − |r − r′|2
|r − r′|5 (1 − χδ(r))χ3δ(r′)φ(r) φ(r′) d3r ′ d3r

∣∣∣∣
≤ 14|∂D|δ2‖φ‖2L∞(�) + 1

π
‖φ‖2L∞(�)

∫
�\�2δ

(∫
�3δ

1

|r − r′|3 d3r ′
)
d3r

≤ 14|∂D|δ2‖φ‖2L∞(�) + 1

π
δ2‖φ‖2L∞(�)

∫
(D+Bδ)\D2δ

(∫
R2\Bδ(r)

1

|r − r′|3 d2r ′
)
d2r

≤ 42|∂D|δ2‖φ‖2L∞(�). (3.17)

Combining this estimate with (3.16) yields (3.13). ��
Let us note that the universal constants appearing in Lemma3.5 are not intended to be optimal.

We now proceed to establishing existence and regularity of the minimizers of E from
(2.4) among all φ̄ ∈ H1(D).

Proposition 3.6 For every α > 0 and every δ > 0 such that αδ2 < 1 there exists a minimizer
φ̄ of E in (2.4) among all functions in H1(D). Furthermore, we have φ̄ ∈ C∞(D)∩C1,α(D)

for all α ∈ (0, 1), and φ̄ satisfies for every r ∈ D:

0 = (1 − αδ2)�φ̄(r) + φ̄(r) − φ̄3(r)

+ γ δ

8π
χδ(r)

∫
R2

2χδ(r)φ̄(r) − χδ(r − z)φ̄(r − z) − χδ(r + z)φ̄(r + z)
|z|3 d2z, (3.18)

with ν · ∇φ̄(r) = 0 for all r ∈ ∂D, where ν is the outward unit normal.

Proof The proof is analogous to that of Proposition 3.3 and is simpler, because now χδφ̄ ∈
H1(R2). This means that the non-local term in the energy may be controlled by the H1(R2)

norm of χδφ̄ [24, Section 7.11], which, in turn, can be controlled by the H1(D) norm of φ.
Thus, if φ̄n ∈ H1(D) is a minimizing sequence, recalling (1.6) we may write

C ≥E(φ̄n) − 1

4
|D|

=1

2
(1 − αδ2)‖∇φ̄n‖2L2(D)

− 1

2
‖φ̄n‖2L2(D)

+ 1

4
‖φ̄n‖4L4(D)

− γ δ

4
‖χδφ̄n‖2H̊1/2(R2)

≥1

2
(1 − αδ2)‖∇φ̄n‖2L2(D)

− 1

2
‖φ̄n‖2L2(D)

+ 1

4
‖φ̄n‖4L4(D)

− γ δ

4
‖χδφ̄n‖L2(R2)‖∇(χδφ̄n)‖L2(R2)
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≥1

2
(1 − αδ2)‖∇φ̄n‖2L2(D)

− 1

2
‖φ̄n‖2L2(D)

+ 1

4
‖φ̄n‖4L4(D)

− γ δ

4
‖φ̄n‖L2(D)

(‖∇φ̄n‖L2(D) + ‖∇χδ‖L∞(R2)‖φ̄n‖L2(D\D2δ)

)

≥1

2
(1 − αδ2)‖∇φ̄n‖2L2(D)

− 1

2
‖φ̄n‖2L2(D)

+ 1

4
‖φ̄n‖4L4(D)

− γ

4
‖φ̄n‖L2(D)

(
δ‖∇φ̄n‖L2(D) + 2‖φ̄n‖L2(D\D2δ)

)
, (3.19)

for someC > 0 independent of n and all δ sufficiently small. Therefore, by Cauchy–Schwarz
and Young’s inequalities we obtain

‖∇φ̄n‖2L2(D)
− C1‖φ̄n‖2L4(D)

+ C2‖φ̄n‖4L4(D)
≤ C3, (3.20)

for some C1,C2,C3 > 0 independent of n. This yields compactness in H1(D) which, upon
extraction of a subsequence, produces φ̄ ∈ H1(D) such that φ̄n⇀φ̄ in H1(D), φ̄n → φ̄ in
L p(D) for any 1 ≤ p < ∞ (recall that D ⊂ R

2 and is bounded), and again by interpolation
we have φ̄n → φ̄ in H1/2(R2) [24]. Finally, by lower semicontinuity of the gradient squared
term, we obtain that φ̄ is a minimizer.

Once existence of a minimizer φ̄ is established, the weak form of (3.18) is obtained by an
explicit computation:

0 =(1 − αδ2)

∫
D

∇φ̄ · ∇ψ̄ d2r +
∫
D
(φ̄3 − φ̄)ψ̄ d2r

− γ δ

8π

∫
R2

∫
R2

(χδ(r)φ̄(r) − χδ(r′)φ̄(r′))(χδ(r)ψ̄(r) − χδ(r′)ψ̄(r′))
|r − r′|3 d2r d2r ′,

(3.21)

for any ψ̄ ∈ H1(D). Passing to Fourier space in the last term, we can then interpret this
equation distributionally in D:

0 = (1 − αδ2)�φ̄ + φ̄ − φ̄3 + γ δ

2
χδ(−�)1/2(χδφ̄), (3.22)

where for test functions the operator (−�)1/2 is defined by (1.8) (for a more detailed
discussion of various representations of half-Laplacian in R

2, see [25]). Moreover, since
χδφ̄ ∈ H1(D), the last term in (3.22) belongs to L2(R2), and by standard elliptic regu-
larity φ̄ ∈ H2(D), with Neumann boundary condition. Applying bootstrap then yields the
remaining claims. ��

We finish this section with an estimate for the energy E on a fixed domain D and small δ
that will be useful in establishing the asymptotic behavior of the energy for δ → 0.

Lemma 3.7 There exists δ0 > 0 depending only on α and D such that for all 0 < δ ≤ δ0
and all φ̄ ∈ H1(D) there holds

E(φ̄) ≥1

8
‖∇φ̄‖2L2(D)

− 1

2

(
1 + γ 2δ2

4

)
‖φ̄‖2L2(D)

+ 1

4
‖φ̄‖4L4(D)

+ 1

4
|D|

− γ |∂D|1/4δ1/4‖φ̄‖L2(D)‖φ̄‖L4(D). (3.23)

Proof We argue as in the proof of Proposition 3.6. Taking αδ2 ≤ 1
2 and using the estimate

in (3.19), with the help of Young’s inequality we obtain
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E(φ̄) ≥1

4
‖∇φ̄‖2L2(D)

− 1

2
‖φ̄‖2L2(D)

+ 1

4
‖φ̄‖4L4(D)

+ 1

4
|D|

− γ

4
‖φ̄‖L2(D)

(
δ‖∇φ̄‖L2(D) + 2‖φ̄‖L2(D\D2δ)

)

≥1

8
‖∇φ̄‖2L2(D)

− 1

2
‖φ̄‖2L2(D)

+ 1

4
‖φ̄‖4L4(D)

+ 1

4
|D|

− γ 2δ2

8
‖φ̄‖2L2(D)

− γ

2
‖φ̄‖L2(D)‖φ̄‖L2(D\D2δ)

. (3.24)

On the other hand, choosing δ so small that |D\D2δ| ≤ 16|∂D|δ, by Cauchy–Schwarz
inequality we have

‖φ̄‖L2(D\D2δ)
≤ 2|∂D|1/4δ1/4‖φ̄‖L4(D). (3.25)

Combining (3.25) with (3.24) then yields the result. ��

4 Proof of Theorem 2.1

The main ingredient in the proof of Theorem 2.1 is a careful estimate of the non-local part
of the three-dimensional energy E evaluated on χδφ (to exclude the effect of the edge) in
terms of the non-local part of the two-dimensional energy E evaluated on χδφ̄ , where φ̄

is given by (2.5). The key point is that the difference between the two can be controlled by
the gradient squared term in E(φ). Note that a similar argument in the periodic setting was
recently introduced in [21]. We establish the estimate in the following lemma.

Lemma 4.1 Let φ ∈ H1(�) be extended by zero to the whole of R3 and let φ̄ be defined by
(2.5). Then∣∣∣∣

∫
R3

(
∂z(χδφ)(−�)−1∂z(χδφ) − χ2

δ φ2) d3r + δ2

2

∫
R2

χδφ̄(−�)1/2χδφ̄ d2r

∣∣∣∣
≤ δ2

2

∫
�

|∇(χδφ)|2 d3r . (4.1)

Proof To simplify the notations, let us introduce ψ := χδφ and ψ̄ := χδφ̄. Notice that in
view of Lemma 3.1, we can argue by approximation and assume that ψ ∈ C∞

c (R3) and
ψ̄ ∈ C∞

c (R2). Next, for each z ∈ R define the Fourier transform of ψ = ψ(x, y, z) in the
first two variables (x, y) = r ∈ R

2:

ψ̂k(z) :=
∫
R2

eik·rψ(r, z) d2r k ∈ R
2. (4.2)

We write the three-dimensional dipolar interaction energy (up to a factor) in terms of the
associated potential ϕ ∈ C∞(R3):

Ed(ψ) :=
∫
R3

∂zψ(−�)−1∂zψ d3r = −
∫
R3

ϕ ∂zψ d3r , �ϕ = ∂zψ in R
3.

(4.3)

Passing to the Fourier space, with the help of Parseval’s identity we get

Ed(ψ) = − 1

(2π)2

∫
R2

∫ δ

0
ϕ̂∗
k ∂zψ̂k dz d

2k, (4.4)
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where we introduced the Fourier transform ϕ̂k = ϕ̂k(z) of ϕ, which solves

d2ϕ̂k

dz2
− |k|2ϕ̂k = ∂zψ̂k z ∈ R. (4.5)

Introducing the fundamental solution

Hk(z) := e−|k||z|

|k| k ∈ R
2\{0}, z ∈ R, (4.6)

of the ordinary differential equation

−d2Hk(z)

dz2
+ |k|2Hk(z) = 2δ(1)(z) z ∈ R, (4.7)

where δ(1)(z) is the one-dimensional Dirac delta-function, we can write the solution of (4.5)
in terms of Hk(z) as

ϕ̂k(z) = −1

2

∫
R

Hk(z − z′)∂zψ̂k(z
′)dz′ z ∈ R. (4.8)

Thus, we have

Ed(ψ) = 1

8π2

∫
R2

∫
R

∫
R

∂zψ̂
∗
k (z)Hk(z − z′)∂zψ̂k(z

′)dz dz′ d2k. (4.9)

Introduce now H (0)
k (z − z′) := |k|−1 and observe that

E(0)
d (ψ) := 1

8π2

∫
R2

∫
R

∫
R

∂zψ̂
∗
k (z)H (0)

k (z − z′)∂zψ̂k(z′)dz dz′ d2k

= 1
8π2

∫
R2

1
|k|

∫
R

∫
R

∂zψ̂
∗
k (z)∂zψ̂k(z′)dz dz′ d2k = 0. (4.10)

Similarly, with H (1)
k (z − z′) := −|z − z′| we have by Parseval’s identity

E(1)
d (ψ) = 1

8π2

∫
R2

∫
R

∫
R

∂zψ̂
∗
k (z)H (1)

k (z − z′)∂zψ̂k(z
′)dz dz′ d2k

= 1

(2π)2

∫
R2

∫
R

∂zψ̂
∗
k (−∂2z )

−1∂zψ̂k dz d
2k

= 1

(2π)2

∫
R2

∫
R

∣∣ψ̂k
∣∣2 dz d2k =

∫
R3

ψ2d3r . (4.11)

In turn, with H (2)
k (z − z′) = 1

2 |k|(z − z′)2 we have

E(2)
d (ψ) = 1

8π2

∫
R2

∫
R

∫
R

∂zψ̂
∗
k (z)H (2)

k (z − z′)∂zψ̂k(z
′)dz dz′ d2k

= − 1

8π2

∫
R2

|k|
∫ δ

0

∫ δ

0
ψ̂∗
k (z)ψ̂k(z

′) dz dz′ d2k

= − δ2

8π2

∫
R2

|k|
∣∣∣ψ̂k

∣∣∣2 d2k = −δ2

2

∫
R2

ψ̄ (−�)1/2 ψ̄ d2r . (4.12)

We now estimate the energy difference�Ed(ψ) = Ed(ψ)−E(0)
d (ψ)−E(1)

d (ψ)−E(2)
d (ψ).

Introduce Ik(z) := Hk(z) − H (0)
k (z) − H (1)

k (z) − H (2)
k (z), and observe that Ik ∈ C2(R) and

I ′′
k (z) = d2 Ik(z)

dz2
= −|k|

(
1 − e−|k||z|) , (4.13)
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In particular, we have

|I ′′
k (z)| ≤ |k|2δ ∀|z| ≤ δ. (4.14)

Integrating by parts, we express the excess energy in terms of I ′′
k (z):

�Ed(ψ) = 1

8π2

∫
R2

∫
R

∫
R

∂zψ̂
∗
k (z)Ik(z − z′)∂zψ̂k(z

′)dz dz′ d2k

= − 1

8π2

∫
R2

∫
R

∫
R

ψ̂∗
k (z)I ′′

k (z − z′)ψ̂k(z
′) dz dz′ d2k. (4.15)

Therefore, applying Cauchy–Schwarz inequality and using (4.14), we obtain

|�Ed(ψ)| ≤ 1

8π2

∫
R2

∫ δ

0

∫ δ

0

∣∣ψ̂k(z)
∣∣ ∣∣I ′′

k (z − z′)
∣∣ ∣∣ψ̂k(z

′)
∣∣ dz dz′ d2k

≤ δ2

8π2

∫
R2

∫ δ

0
|k|2 ∣∣ψ̂k(z)

∣∣2 dz d2k ≤ δ2

2

∫
�

|∇ψ |2d3r , (4.16)

which yields the claim. ��
Proof of Theorem 2.1 We begin with a lower bound and split the energy into the local and the
dipolar parts:

E(φ) = El(φ) + γ

2

(
Ed(φ) −

∫
R3

φ2 d3r

)
, (4.17)

where Ed is defined in (4.3). Applying Jensen’s inequality to the positive terms, for any
α1 > 0, α2 > 0 and δ > 0 such that (α1 + α2γ )δ2 < 1 we have

El(φ) =
∫

�

(
1

2
|∇φ|2 − 1

2
φ2 + 1

4
φ4 − 1

4

)
d3r

≥
∫
D×(0,δ)

(
1

2
(1 − α1δ

2 − α2γ δ2)|∇φ̄|2 − 1

2
φ2 + 1

4
φ̄4 − 1

4

)
d3r

+ δ2

2
(α1 + α2γ )

∫
�

|∇φ|2d3r

≥
∫
D×(0,δ)

(
1

2
(1 − α1δ

2 − α2γ δ2)|∇φ̄|2 + 1

4

(
1 − φ̄2)2) d3r

− 1

2

∫
D×(0,δ)

(φ − φ̄)2d3r + δ2

2
(α1 + α2γ )

∫
�

|∇φ|2d3r . (4.18)

Therefore, by Poincaré’s inequality we obtain

El(φ)≥
∫
D×(0,δ)

(
1

2
(1 − α1δ

2 − α2γ δ2)|∇φ̄|2 + 1

4

(
1 − φ̄2)2) d3r + α2γ δ2

2

∫
�

|∇φ|2d3r ,
(4.19)

with α1 = π−2.
Turning now to the dipolar part, we observe that byLemma3.5we have for all δ sufficiently

small:

Ed(φ) ≥ Ed(χδφ) − 98δ2‖φ‖2L∞(�)|∂D|. (4.20)
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At the same time, by Lemma 4.1 we may write

Ed(χδφ) ≥
∫

�

χ2
δ φ2 d3r − δ2

2

∫
R2

χδφ̄(−�)1/2χδφ̄ d2r − δ2

2

∫
�

|∇(χδφ)|2d3r . (4.21)

By Young’s inequality, the last term in (4.21) may be estimated as

δ2

2

∫
�

|∇(χδφ)|2d3r ≤ δ2
∫

�

(|∇χδ|2φ2 + χ2
δ |∇φ|2) d3r

≤ 4
∫

�\�2δ

φ2d3r + δ2
∫

�

|∇φ|2d3r . (4.22)

Therefore, we have

Ed(χδφ) −
∫

�

φ2d3r + δ2

2

∫
R2

χδφ̄(−�)1/2χδφ̄ d2r

≥ −5‖φ‖2L∞(�)|�\�2δ| − δ2
∫

�

|∇φ|2d3r . (4.23)

Noting that |�\�2δ| ≤ 6|∂D|δ2 for all δ > 0 sufficiently small depending only on D and
combining (4.23) with (4.20), we finally arrive at

Ed(φ) −
∫

�

φ2d3r + δ2

2

∫
R2

χδφ̄(−�)1/2χδφ̄ d2r

≥ −βδ2‖φ‖2L∞(�)|∂D| − δ2
∫

�

|∇φ|2d3r , (4.24)

for some universal β > 0. The lower bound in (2.6) then follows by combining the above
estimate with (4.19) and choosing α2 = 1.

We now proceed to proving (2.7). To begin, we define φ in � to be a z-independent
function, thus, satisfying (2.5) in D × (0, δ). Namely, for (x, y, z) ∈ D × (0, δ), we define
φ(x, y, z) := φ̄(x, y). Next, we extend φ to the rest of � by a reflection about ∂D × (0, δ).
More precisely, for r ∈ R

2 define ρ(r) := dist(r,R2\D) − dist(r, D) to be the signed
distance function to ∂D in the plane. Then, for all δ sufficiently small depending only on
D there is a tubular neighborhood of ∂D in which we can define a continuous unit outward
normal vector ν to the projection on ∂D, i.e., we have r+ρ(r)ν(r) ∈ ∂D for all r ∈ D such
that |ρ(r)| ≤ δ and all 0 < δ ≤ δ0 for some δ0 > 0 depending only on D. We then define for
r = (x, y) ∈ R

2\D and all z ∈ (0, δ) the extension of φ̄ as φ(x, y, z) := φ̄(r + 2ν(r)ρ(r)).
In view of the regularity of ∂D, we then have∫

�\(D×(0,δ))
|∇φ|2d3r ≤ 2δ

∫
D\Dδ

|∇φ̄|2d2r , (4.25)

for δ0 sufficiently small depending only on D.
We now use positivity of different terms in the energy and Lemma 3.1 to estimate

(1 − 2αδ2)E(φ) ≤ δ

∫
D

(
1

2
(1 − αδ2)|∇φ̄|2 + 1

4

(
1 − φ̄2

)2)
d2r

+
∫
�\(D×(0,δ))

(
1

2
|∇φ|2 + 1

4

(
1 − φ2

)2)
d3r + γ

2

∫
R3

(
∂zφ(−�)−1∂zφ − φ2

)
d3r

+ γαδ2
∫
�

φ2d3r − αδ2

2

∫
�

|∇φ|2d3r . (4.26)
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Accordingly, possibly increasing the values of α1, α2 and β, by Lemmas 3.5 and 4.1, Young’s
inequality and using (4.25), we may write

(1 − 2αδ2)E(φ) ≤E(φ̄)δ + δ

∫
D\Dδ

|∇φ̄|2d2r

+ βδ2(1 + γ 2)
(
1 + ‖φ‖4L∞(�)

)
(|∂D| + |D|δ). (4.27)

The result then follows by possibly further decreasing the value of δ0 and increasing the value
of β.

5 Proof of Theorem 2.2

We begin by establishing compactness of sequences satisfying (2.12). As in the statement of
Theorem 2.2, for φδ ∈ H1(�δ) we define φ̄δ ∈ H1(D) to be given by (2.5) with φ replaced
by φδ . We also define �δ

δ , etc., to be given by (2.3) with � replaced by �δ .

Proposition 5.1 For a sequence of δ → 0, assume φδ ∈ H1(�δ) satisfies (2.12). Then,
we have ‖∇φδ‖2L2(�δ)

≤ Cδ for some C > 0 independent of δ, and upon extraction of a

subsequence φ̄δ⇀φ̄ in H1(D) and φ̄δ → φ̄ in L p(D) for any 1 ≤ p < ∞.

Proof By Corollary 3.2 and Cauchy–Schwarz inequality, we have

Cδ ≥ Eδ(φδ) ≥
∫

�δ

(
1

2
|∇φδ|2 − 1

2
(1 + γ )φ2

δ + 1

4
φ4

δ

)
d3r

≥
∫

�δ

(
1

2
|∇φδ|2 + 1

4
φ4

δ

)
d3r − 1

2
(1 + γ )|�δ|1/2

(∫
�δ

φ4
δ d

3r

)1/2

≥ 1

4

∫
�δ

|∇φδ|2d3r + 1

4

∫
D

∫ δ

0
|∇′φδ|2dz d2r + 1

8

∫
�δ

φ4
δ d

3r − 1

2
(1 + γ )2|�δ|,

(5.1)

where ∇′ = (∂x , ∂y, 0), for some C > 0 independent of δ. On the other hand, for all δ

sufficiently small we have |�δ| ≤ 2|D|δ. Hence, by Jensen’s inequality and arguing by
approximation we have

C + (1 + γ )2|D| ≥ 1

4δ

∫
�δ

|∇φδ|2d3r + 1

4δ2

∫
D

∣∣∣∣
∫ δ

0
∇′φδ dz

∣∣∣∣
2

d2r + 1

8

∫
D

φ̄4
δ d

2r

≥ 1

4δ

∫
�δ

|∇φδ|2d3r + 1

4

∫
D

|∇φ̄δ|2d2r + 1

8|D|
(∫

D
φ̄2

δ d
2r

)2

, (5.2)

where we again used Cauchy–Schwarz inequality in the last step. Thus, the sequence of
δ−1/2|∇φδ| is bounded in L2(�δ), the sequence of φ̄δ is bounded in H1(D), and by compact
embedding there exists a subsequence with the desired properties. ��

Wenow turn to the proof ofTheorem2.2.Wenote that ifwe also assume that‖φδ‖L∞(�δ) ≤
M for some M > 0 independent of δ, we could immediately combine the result of Theorem
2.1 with the result of the following proposition to obtain the claim (however, see Remark
3.4). Below Eδ denotes the energy E from (2.4) with the dependence on δ highlighted.
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Proposition 5.2 Let φ̄δ ∈ H1(D), and assume that for a sequence of δ → 0we have φ̄δ → φ̄

in L2(D). Then

lim inf
δ→0

Eδ(φ̄δ) ≥ E0(φ̄). (5.3)

Conversely, for any φ̄ ∈ H1(D) we have

lim sup
δ→0

Eδ(φ̄) ≤ E0(φ̄). (5.4)

Proof Without loss of generality, we may assume that

lim sup
δ→0

Eδ(φ̄δ) < +∞. (5.5)

Then, by Lemma 3.7 and Young’s inequality the sequence of φ̄δ is bounded in H1(D) and
L4(D). Therefore, upon extraction of a subsequence, we also have φ̄δ⇀φ̄ in H1(D). Arguing
as in the proof of Lemma 3.7, by lower semicontinuity of the H1(D) and L4(D) norms as
well as strong convergence in L2(D) we then obtain (5.3). Lastly, to obtain (5.4) we simply
note that Eδ(φ̄) ≤ E0(φ̄). ��

Proof of Theorem 2.2 The proof follows closely the arguments of the proof of Theorem 2.1,
except we only apply the rough bound in (3.12). The local part of the energymay be estimated
exactly as in (4.19). For the non-local part, we apply the first part of Lemma 3.5. This leads
to a lower bound

Eδ(φδ) ≥ Eδ(φ̄δ)δ − 2γ ‖φδ‖L2(�δ)‖φδ‖L2(�δ\�δ
2δ)

+ 1

4

∫
�δ\(D×(0,δ))

(
1 − φ2

δ

)2
d3r . (5.6)

To proceed, we note that by Poincaré’s inequality we have

‖φδ‖L2(D×(0,δ)) ≤ δ1/2‖φ̄δ‖L2(D) + δ

π
‖∇φδ‖L2(D×(0,δ)), (5.7)

and a similar estimate holds for ‖φδ‖L2((D\D2δ)×(0,δ)). Therefore, from our assumption on
the gradient of φδ we obtain

‖φδ‖L2((D×(0,δ)) ≤ δ1/2‖φ̄δ‖L2(D) + Cδ3/2, (5.8)

‖φδ‖L2((D\D2δ)×(0,δ)) ≤ δ1/2‖φ̄δ‖L2(D\D2δ)
+ Cδ3/2, (5.9)

for some C > 0 independent of δ. Using these estimates, we get

‖φδ‖L2(�δ)‖φδ‖L2(�δ\�δ
2δ)

≤‖φδ‖2L2(�δ\(D×(0,δ)))

+ 2δ1/2‖φδ‖L2(�δ\(D×(0,δ)))(‖φ̄δ‖L2(D) + Cδ)

+ δ(‖φ̄δ‖L2(D) + Cδ)(‖φ̄δ‖L2(D\D2δ)
+ Cδ). (5.10)

Therefore, since φ̄δ → φ̄ in L2(D), there is C > 0 such that

‖φδ‖L2(�δ)‖φδ‖L2(�δ\�δ
2δ)

≤‖φδ‖2L2(�δ\(D×(0,δ))) + Cδ1/2‖φδ‖L2(�δ\(D×(0,δ)))

+ Cδ(‖φ̄δ‖L2(D\D2δ)
+ δ), (5.11)

for all δ sufficiently small. Thus, by Cauchy–Schwarz inequality we have
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‖φδ‖L2(�δ)‖φδ‖L2(�δ\�δ
2δ)

≤Cδ(‖φδ‖2L4(�δ\(D×(0,δ)))

+ ‖φδ‖L4(�δ\(D×(0,δ))) + ‖φ̄δ‖L2(D\D2δ)
+ δ), (5.12)

for some C > 0 and all δ small enough.
On the other hand, for δ sufficiently small depending only on D we have

1

4

∫
�δ\(D×(0,δ))

(
1 − φ2

δ

)2
d3r ≥

∫
�δ\(D×(0,δ))

(
1

8
φ4

δ − 1

)
d3r

≥ − 2|∂D|δ2 + 1

8
‖φδ‖4L4(�δ\(D×(0,δ))). (5.13)

Combining this estimate with (5.12) and (5.6), we then get

Eδ(φδ) − Eδ(φ̄δ)δ ≥1

8
‖φδ‖4L4(�δ\(D×(0,δ))) − Cδ(‖φδ‖2L4(�δ\(D×(0,δ)))

+ ‖φδ‖L4(�δ\(D×(0,δ))) + ‖φ̄δ‖L2(D\D2δ)
+ δ)

≥ − C ′δ4/3 − Cδ‖φ̄δ‖L2(D\D2δ)
, (5.14)

for some C,C ′ > 0 and all δ small enough. The lower bound in (2.10) then follows from
Proposition 5.2 and the fact that ‖φ̄δ‖L2(D\D2δ)

→ 0 as δ → 0. The latter is an immediate
consequence of the strong convergence of φ̄δ to φ̄ in L2(D).

For the upper bound, we use the same construction as in the proof of Theorem 2.1. Let
φδ ∈ H1(�δ) be the function obtained from a given φ̄ ∈ H1(D) in this way. Note that by
construction we have

‖φδ‖2L2(�δ\(D×(0,δ))) ≤ 2δ‖φ̄‖2L2(D\Dδ)
, (5.15)

‖φδ‖4L4(�δ\(D×(0,δ))) ≤ 2δ‖φ̄‖4L4(D\Dδ)
, (5.16)

‖∇φδ‖2L2(�δ\(D×(0,δ))) ≤ 2δ‖∇φ̄‖2L2(D\Dδ)
, (5.17)

for all δ sufficiently small depending only on D. In particular, we have ‖∇φδ‖2L2(�δ)
≤ Cδ

for some C > 0 independent of δ. By Lemmas 3.5 and 4.1, we get

(1 − 2αδ2)Eδ(φδ) ≤Eδ(φ̄)δ + 2γ ‖φδ‖L2(�δ)‖φδ‖L2(�δ\�δ
2δ)

+ γαδ2‖φ‖2
L2(�δ

δ)

+
∫

�δ\(D×(0,δ))

(
1

2
|∇φδ|2 + 1

4
(1 − φ2

δ )2
)
d3r . (5.18)

Therefore, for δ sufficiently small depending only on D we obtain

(1 − 2αδ2)Eδ(φδ) ≤Eδ(φ̄)δ + 6γ δ‖φ̄‖L2(D)‖φ̄‖L2(D\D2δ)
+ γαδ3‖φ̄‖2L2(D)

+ δ

∫
D\Dδ

(|∇φ̄|2 + 1 + φ̄4) d2r . (5.19)

Note that the integral in the right-hand side of (5.19) vanishes as δ → 0, since φ̄ ∈ H1(D) ⊂
L4(D) by Sobolev embedding. Similarly, ‖φ̄‖L2(D\D2δ)

→ 0 as δ → 0. Thus, the estimate
in (2.11) follows by Proposition 5.2. ��

123



A universal thin film model for Ginzburg–Landau energy… Page 23 of 28 52

6 Rest of the proofs

We begin this section by presenting a brief demonstration of Corollary 2.6. Assume Theorem
2.4 holds true. We use φ̄ ≡ 1 as an admissible test function for E∗ to estimate the minimum
energy from above. Then, if φε is a minimizer of Eε and φ̄ε is its z-average given by (2.16),
by (2.15) and (2.17) we have

Eε(φ̄ε)δε ≤ Eε(φε) + O(δ2ε ) ≤ (1 − 2αδ2ε )
−1E∗(1)δε + o(δε), (6.1)

as ε → 0. Thus, by the �-convergence of Eε to E∗ we get

1

2
(σ0 − σ1λ)

∫
D

|∇φ̄ε| d2r → 0 as ε → 0, (6.2)

and in view of the fact that φ̄ε = 1 in D\Dρ , we have φ̄ε → 1 in BV (D).
The proof of Theorem 2.4 relies on a key interpolation lemma that goes back to [9] and

is generalized in [21], all in the periodic setting, to estimate the homogeneous H1/2 norm
of φ̄ from above by the L∞ and the BV norms of φ̄. As was already pointed out in [9],
this is impossible without an additional penalty term due to the “logarithmic failure” of the
corresponding embedding [9]. Here we use the approach of [21] to extend a version of the
estimate in [21, Lemma 4.1] to our setting, noting that we need a nonlinear version of [21,
Lemma 4.1] in order to combine it with the Modica-Mortola lower bound for the local part
of the energy.

Lemma 6.1 Let φ̄ ∈ H1(R2) ∩ L∞(R2) be such that ‖φ̄‖L∞(R2) ≤ 1 and supp(φ̄) ∈ BR.
Then

1

4π

∫
R2

∫
R2

(φ̄(r) − φ̄(r′))2

|r − r′|3 d2r d2r ′

≤ 3

π
ln

(
R

r

)
‖∇ (

φ̄ − 1
3 φ̄

3) ‖L1(R2) + r‖∇φ̄‖2L2(R2)
+ πR, (6.3)

for any r ∈ (0, R).

Proof The proof is a close adaptation of the proof of [21, Lemma 4.1]. Write the integral in
(6.3) as

∫
R2

∫
R2

(φ̄(r) − φ̄(r′))2

|r − r′|3 d2r d2r ′ =
∫
B2R

∫
B2R

(φ̄(r) − φ̄(r′))2

|r − r′|3 d2r d2r ′

+ 2
∫
B2R

∫
R2\B2R

φ̄2(r)
|r − r′|3 d2r ′ d2r

≤
∫
B2R

∫
B4R

(φ̄(r + z) − φ̄(r))2

|z|3 d2z d2r

+ 2
∫
BR

∫
R2\BR

φ̄2(r)
|z|3 d2z d2r

=
∫
B2R

∫
B4R

(φ̄(r + z) − φ̄(r))2

|z|3 d2z d2r + 4π

R
‖φ̄‖2L2(R2)

.

(6.4)
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Focusing now on the first term above, we observe that by Jensen’s inequality we have for all
z ∈ B4R :∫

B2R
(φ̄(r + z) − φ̄(r))2d2r ≤

∫
B2R

∫ 1

0
|z · ∇φ̄(r + tz)|2 dt d2r ≤

∫
B6R

|z · ∇φ̄(r)|2 d2r .
(6.5)

Similarly, introducing ψ̄ := φ̄ − 1
3 φ̄

3, we have
∫
B2R

(φ̄(r + z) − φ̄(r))2d2r

≤
∫
B2R∩{φ̄(r+z) �=φ̄(r)}

(φ̄(r + z) − φ̄(r))2

|φ̄(r + z) − 1
3 φ̄3(r + z) − φ̄(r) + 1

3 φ̄3(r)|
∫ 1

0
|z · ∇ψ̄(r + tz)| dt d2r

≤ 3
∫
B6R

|z · ∇ψ̄(r)| d2r , (6.6)

where we used the fact that∣∣∣∣∣
(s − t)2

s − 1
3 s

3 − t + 1
3 t

3

∣∣∣∣∣ ≤ 3 ∀(s, t) ∈ (−1, 1)2, s �= t, (6.7)

which can be readily verified by means of elementary calculus. Indeed, for every −1 < s <

t < 1 we have

F(s, t) := (s − t)2

s − 1
3 s

3 − t + 1
3 t

3
= 3(s − t)

3 − t2 − ts − s2
, (6.8)

and taking partial derivatives, we obtain

∂F

∂t
= −9(1 − s2) + 3(s − t)2

(3 − s2 − st − t2)2
< 0,

∂F

∂s
= 9(1 − t2) + 3(s − t)2

(3 − s2 − st − t2)2
> 0. (6.9)

Hence 0 > F(s, t) > F(−1, 1) = −3 for all −1 < s < t < 1. Since F(s, t) = −F(t, s),
we conclude that |F(s, t)| ≤ 3 for all (s, t) ∈ (−1, 1)2 with s �= t .

Now, splitting the integral over z in (6.4) into a near-field part and a far-field part and
using (6.5) and (6.6) to estimate the respective pieces, we get for any 0 < r < R:
∫
B2R

∫
B4R

(φ̄(r + z) − φ̄(r))2

|z|3 d2z d2r

≤
∫
B4r

∫
B6R

|z · ∇φ̄(r)|2
|z|3 d2r d2z + 3

∫
B4R\B4r

∫
B6R

|z · ∇ψ̄(r)|
|z|3 d2r d2z

≤
∫ 2π

0

∫ 4r

0

∫
R2

cos2 θ |∇φ̄(r)|2 d2r ds dθ + 3
∫ 2π

0

∫ 4R

4r

∫
R2

| cos θ |
s

|∇ψ̄(r)| d2r ds dθ

= 4πr‖∇φ̄‖2L2(R2)
+ 12 ln

(
R

r

)
‖∇ψ̄‖L1(R2), (6.10)

where in the next-to-last line we passed to polar coordinates (s, θ) for z. Then, combining
this estimate with (6.4), we obtain the result. ��

We point out that, importantly, the constant in front of the logarithm in Lemma 6.1 is the
best possible one (as was already observed in [9,21] in a slightly different setting), which
can be easily seen by considering the characteristic function of BR/2 mollified at scale r as
a test function, provided that r is small enough.
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We will also need a slightly modified version of Lemma 6.1.

Lemma 6.2 Let φ̄ ∈ L∞(R2) ∩ H1
loc(R

2) be such that φ̄ = 1 in R
2\D and ‖φ̄‖L∞(R2) = 1.

Then

1

4π

∫
R2

∫
R2

(φ̄(r) − φ̄(r′))2

|r − r′|3 d2r d2r ′

≤ 3

π
ln

(
R

r

)
‖∇ (

φ̄ − 1
3 φ̄

3) ‖L1(R2) + r‖∇φ̄‖2L2(R2)
+ 4πR, (6.11)

for some R > 0 and all r ∈ (0, R).

The proof of Lemma 6.2 is identical to that of Lemma 6.1. We note that the left-hand side
in (6.11) makes sense because φ̄ − 1 ∈ H1(R2) and can be interpreted as the homogeneous
H1/2 norm squared of φ̄ − 1.

Proof of Theorem 2.4 We begin with the proof of compactness. Let φ̄ε be as in part (i) of
Theorem 2.4 and define ψ̄ε := φ̄ε − 1

3 φ̄
3
ε . Using the Modica-Mortola trick [27] and weak

chain rule [12], we write for all ε sufficiently small

Eε(φ̄ε) ≥ (λc + λ)
√
1 − αδ2ε

2λc
√
2

∫
D

|∇ψ̄ε| d2r

+ ε(λc − λ)(1 − αδ2ε )

4λc

∫
D

|∇φ̄ε|2 d2r + λc − λ

8ελc

∫
D
(1 − φ̄2

ε )2 d2r

− λ

16π | ln ε|
∫
R2

∫
R2

(χεδε (r)φ̄ε(r) − χεδε (r
′)φ̄ε(r′))2

|r − r′|3 d2r d2r ′. (6.12)

Applying Lemma 6.1 with r = εδε and R sufficiently large independent of ε, we get

Eε(φ̄ε) + C‖∇χεδε‖L1(D) + Cεδ2ε‖∇χεδε‖2L2(D)
+ Cδε

≥ 1

4
(σ0 − λσ1)

∫
D

|∇ψ̄ε| d2r + λc − λ

8ελc

∫
D
(1 − φ̄2

ε )2 d2r , (6.13)

for some C > 0 and all ε small enough. Here we used the fact that φ̄ = 1 on D\Dρ

and that to the leading order the coefficient of
∫
D |∇ψ̄ε| d2r in the right-hand side equals

λc+λ

2λc
√
2

− 3λ
4π = 3

8 (σ0 − λσ1) > 1
4 (σ0 − λσ1), allowing to absorb the additional logarithmic

terms coming from Lemma 6.1 for λ < λc. Since the left-hand side of the above expression
is bounded as ε → 0, we obtain, upon extraction of a subsequence, that |φ̄ε| → 1 in L1(D)

and a.e. in D. Furthermore, by compactness in BV [12] , we have, upon extraction of another
subsequence, that ψ̄ε⇀ψ̄ in BV (D), and ψ̄ε → ψ̄ in L1(D) and a.e. in D, with |ψ̄ | = 2

3
a.e. in D. Thus, we get that ψ̄ ∈ BV (D; {− 2

3 ,
2
3 }), which, in turn, implies that φ̄ε → φ̄ in

L1(D) with φ̄ = 3
2 ψ̄ ∈ BV (D; {−1, 1}). Also, clearly φ̄ = φ̄ε = 1 in D\Dρ .

We now prove the lower bound in (2.23). To that end, we make the estimate in (6.13)
quantitative by isolating the contribution of the edge to the non-local energy. We redefine
φ̄(x) := 1 for all x ∈ R

2\D and introduce

E0
ε (φ̄) :=

∫
D

(
ε

2

(
1 − αδ2

) |∇φ̄|2 + 1

4ε

(
1 − φ̄2)2) d2r

− λ

16π | ln ε|
∫
R2

∫
R2

(φ̄(r) − φ̄(r′))2

|r − r′|3 d2r d2r ′, (6.14)
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which represents the energy Eε without the contribution of the edges. Then, since by our
assumption φ̄ε = 1 in R

2\Dρ , we have χεδε φ̄ε = φ̄ε − 1 + χεδε for all ε sufficiently small
and, therefore,

Eε(φ̄ε) = E0
ε (φ̄ε) − λ

16π | ln ε|
∫
R2

∫
R2

(χεδε (r) − χεδε (r
′))2

|r − r′|3 d2r d2r ′

− λ

8π | ln ε|
∫
R2

∫
R2

(φ̄ε(r) − φ̄ε(r′))(χεδε (r) − χεδε (r
′))

|r − r′|3 d2r d2r ′. (6.15)

Using Lemma 6.2 and arguing as in (6.13), we can estimate

E0
ε (φ̄ε) ≥ 3

4
(σ0 − λσ1)

∫
D

|∇ψ̄ε| d2r − C

| ln ε| , (6.16)

for some C > 0 and all ε small enough. At the same time, by a direct computation as in the
proof of [21, Lemma 5.3] we have

∫
R2

∫
R2

(χεδε (r) − χεδε (r
′))2

|r − r′|3 d2r d2r ′ ≤ 4 |∂D| | ln ε| + C ln | ln ε|, (6.17)

for some C > 0 and ε small enough. Finally, we estimate the integral involving the mixed
term in (6.15) for all ε so small that χεδε = 1 in Dρ/2:

∫
R2

∫
R2

(φ̄ε(r) − φ̄ε(r′))(χεδε (r) − χεδε (r
′))

|r − r′|3 d2r d2r ′

= 2
∫
Dρ

∫
R2\Dρ/2

(φ̄ε(r) − 1)(1 − χεδε (r
′))

|r − r′|3 d2r ′ d2r

≤ 8
∫
Dρ

(∫
R2\Bρ/2(r)

1

|r − r′|3 d2r ′
)
d2r ≤ 32π |D|

ρ
. (6.18)

Putting all these estimates together, we then obtain

Eε(φ̄ε) ≥ 3

4
(σ0 − λσ1)

∫
D

|∇ψ̄ε| d2r − λσ1

4
|∂D| − C

ln | ln ε|
| ln ε| , (6.19)

for someC > 0 and all ε small enough. The proof is concluded from the lower semicontinuity
of the total variation [12] and the fact that φ̄ = 3

2 ψ̄ .
Finally, the upper bound in (2.24) follows from the standard construction of the recovery

sequence for the Ginzburg–Landau energy exactly as in [21, Lemma 5.3] ��
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