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Abstract
We extend themain results obtained by Iwaniec and Onninen inMemoirs of the AMS (2012).
In this paper,we solve the (ρ, n)-energyminimization problem for Sobolev homeomorphisms
between two concentric annuli in the Euclidean space Rn . Here ρ is a radial metric defined
in the image annulus. The key element in the proofs is the solution to the Euler–Lagrange
equation for a radial harmonic mapping. This is a new contribution on the topic related to the
famous J. C. C. Nitsche conjecture on harmonic mappings between annuli on the complex
plane. Namely we prove that the minimum of (ρ, n)-energy of diffeomorphisms between
annuli is attained by a certain (ρ, n)-harmonic diffeomorphisms if and only if the original
annulus can be mapped onto the image annulus by a radial (ρ, n)-harmonic diffeomorphisms
and the last fact is equivalent with a certain inequality for annuli which we call a generalized
J. C. C. Nitsche type inequality.

Mathematics Subject Classification Primary 31A05 · Secondary 42B30

1 Introduction

Let 0 < r < R, 0 < r∗ < R∗ and let A = A(r , R)
def== {x : r < |x | < R} and

A∗ = A(r∗, R∗)
def== {x : r∗ < |x | < R∗} be two annuli in the Euclidean space Rn equipped

with the Euclidean norm | · |. Here n � 2. Let ρ be a continuous function on the closure of
A∗. The (ρ, n)-energy integral of a mapping h ∈ W 1,n(A,A∗) is defined by

Eρ[h] =
∫
A(r ,R)

ρ(h(x))‖Dh(x)‖ndx . (1.1)
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The central aim of this paper is to minimize the (ρ, n)-energy integral between A and A∗
throughout the class of homomorphisms from theSobolev classW 1,n(A,A∗).Wewill assume
that ρ is C1 radial metric that is ρ(y) = ρ(|y|) for y ∈ A∗. We will also assume that

min
r∗≤s≤R∗

ρ(s)sn = ρ(r∗)rn∗ (1.2)

and refer to suchmetrics as regularmetrics. Themodulus of A(r , R) is defined by the formula
Mod A(r , R) = ωn−1 log R

r , where ωn−1 is the area of the unit sphere Sn−1.
For a homomorphism f of Sobolev class classW 1,1 we say that f has finite outer distortion

if

‖Df ‖n ≤ nn/2KO [ f , x]J f (x),
where 1 ≤ KO [ f , x] is measurable and the smallest function with the above property. Then
KO [ f , x] is called the outer distortion of f . Here

‖Df ‖ = √〈Df , Df 〉 =
√√√√ n∑

k=1

|Df (x)ei |2,

and J f is the determinant of the Jacobian matrix. A concept dual to the outer distortion is
the inner distortion defined by the so-called co-factor matrix of Df (x). Namely we define
adj(Df (x)) = J f (D∗ f (x))−1. Then

KI [ f , x] = ‖adj(Df (x))‖n
nn/2det(adj(Df (x)))

= ‖adj(Df (x))‖n
nn/2 Jn−1

f (x)
,

for J f (x) �= 0 and KI [ f , x] = 1 for J f (x) = 0.
An important fact to be noticed in this introduction is that if ρ is a continuous function on

the closure of A∗ and if f ∈ W 1,n−1(A∗,A) is a homeomorphism, then its inverse mapping
h belongs to the Sobolev class W 1,n(A,A∗) and we have the following formula∫

A

ρ(h(x))‖Dh(x)‖ndx = nn/2
∫
A∗

ρ(y)KI [ f , y]dy. (1.3)

Concerning the criteria of integrability of inverse mapping and related problems we refer to
the papers [2,3].

In this paper we extend the main result and simplify the proofs in [6]. We made a unified
approach to the minimizing problem of (ρ, n)-energy for the class of all C1 radial metrics ρ

satisfying the condition ρ(s)sn is non-decreasing. This condition is fulfilled by two metrics
ρ(s) ≡ 1 and ρ(s) ≡ s−n considered by Iwaniec and Onninen in [6]. The paper generalizes
also the main results by Astala, Iwaniec andMartin in [1], and also by the author in [9] where
it is treated the similar problem but only for the case n = 2. The case of non-circular annuli
and non radial metrics has been treated in the papers [5] and [8] respectively, but also for
the case n = 2. In this paper we assume that n � 3. The paper is a continuation of study of
the so-called Nitsche phenomenon, invented by J. C. C. Nitsche in [14] where he stated his
famous conjecture. Further the conjecture has been proved by Iwaniec, Kovalev and Onninen
in [4], after some partial results obtained by Weitsman [15], Lyzzaik [12] and Kalaj [10].
For its counterpart to general annuli on Riemannian surfaces we refer to the recent paper
[11]. The Nitsche conjecture in the context of (ρ, n)-harmonic mappings is given in (2.6).
We prove in the first result (Theorem 2.2) that we can find a radial (ρ, n)-harmonic harmonic
mapping between two annuli A and A∗ if and only if the generalized Nitsche bound (2.6), is
satisfied. This bound said roughly speaking that if we have a (ρ, n) harmonic diffeomorphism
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(n, ρ)-harmonic mappings and energy minimal deformations between annuli Page 3 of 19 51

between annuli A and A∗, then the image annulus cannot bee too thin, but can be arbitrary
thick. On the other hand this bound is equivalent with the fact that the (ρ, n)-energy integral
is minimized for a certain radial (ρ, n)-harmonic diffeomorphism if n = 3; if n � 4, then we
have some obstruction, and in this case the image annulus cannot be too thick (Theorem 3.1),
provided that there exists a radial mapping which is a minimizer. The precise estimate how
thick the image annulus could be, remains an open interesting problem.

1.1 (�, n)-harmonic equation

Assume that X is domain in Rn (for example X is homeomorphic to an circular annulus
{x ∈ Rn |1 < |x | < R}). The classical Dirichlet problem concerns the energy minimal
mapping h : X → R

n of the Sobolev class h ∈ h◦ + W 1,n◦ (X,Rn) whose boundary values
are explicitly prescribed by means of a given mapping h◦ ∈ W 1,n(A,Rn). Let us consider
the variation h � h + εη, in which η ∈ C∞◦ (X,Rn) and ε → 0, leads to the integral form
of the familiar n-harmonic system of equations∫

X

(〈∇ρ, η〉 || Dh || n + 〈ρ(h) || Dh || n−2Dh, Dη〉) = 0, for every η ∈ C∞◦ (X,Rn).

(1.4)
Equivalently

�nh = Div
(
ρ(h) || Dh || n−2Dh

)− 1

n
|| Dh || n∇ρ = 0, (1.5)

in the sense of distributions.
Similarly to [6], one may derive the general (ρ, n)-harmonic equation which by using a

different variation as the following.
The situation is different if we allow h to slip freely along the boundaries. The inner

variation come to stage in this case. This is simply a change of the variable; hε = h ◦ ηε ,
where ηε : X onto−−→ X is a C∞-smooth diffeomorphsm of X onto itself, depending smoothly
on a parameter ε ≈ 0 where η◦ = id : X onto−−→ X. Let us take on the inner variation of the
form

ηε(x) = x + ε η(x), η ∈ C∞◦ (X,Rn). (1.6)

By using the notation y = x + ε η(x) ∈ X, we obtain

ρ(hε)Dhε(x) = ρ(h(y))Dh(y)(I + εDη(x)).

Hence

ρ(hε(x)) || Dhε(x) || n = ρ(h(y)) || Dh(y) || n
+ nε ρ(h(y))〈 || Dh(y) || n−2D∗h(y) · Dh(y) , Dη〉 + o(ε).

By integrating with respect to x ∈ X we obtain

Eρ[hε] =
∫
X

ρ(hε(x)) || Dhε(x) || ndx

=
∫
X

[
ρ(h(y)) || Dh(y) || n

+ nερ(h(y))〈 || Dh(y) || n−2D∗h(y) · Dh(y) , Dη(x)〉
]
dx + o(ε).
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We now make the substitution y = x + ε η(x), which is a diffeomorphism for small ε,
for which we have: x = y − ε η(y) + o(ε), Dη(x) = Dη(y) + o(1), when ε → 0, and the
change of volume element dx = [1 − ε Tr Dη(y)] dy + o(ε). Further∫

X

ρ(h(y)) || Dh(y) || ndx =
∫
X

ρ(h(y)) || Dh(y) || n[1 − ε Tr Dη(y)] dy + o(ε).

The so called equilibrium equation for the inner variation is obtained from d
dε Ehε = 0 at

ε = 0, ∫
X

〈ρ(h) || Dh || n−2D∗h · Dh − ρ(h)

n
|| Dh || n I , Dη〉 dy = 0 (1.7)

or, by using distributions

Div

(
ρ(h) || Dh || n−2D∗h · Dh − ρ(h)

n
|| Dh || n I

)
= 0. (1.8)

The name generalized n-harmonic equation is given to (1.8) in [6, Chapter 3] for the
Euclidean metric ρ ≡ 1 because of the following:

Lemma 1.1 [6] Assume that ρ is the Euclidean metric. Every n-harmonic mapping h ∈
W 1,n

loc (X,Rn) is a solution of the generalized n-harmonic equation (1.8).

We believe that a similar statement related to Lemma 1.1 holds true for the general ρ

metric, but we didn’t consider this question, since we do not need in this paper.
In dimension n = 2, the generalized harmonic equation reduces to

Div

(
ρ(h)D∗h Dh − ρ(h)

2
|| Dh || 2 I

)
= 0. (1.9)

This equation is known as the Hopf equation, and the corresponding differential is called the
Hopf differential. Since for h(z) = (a(z), b(z)), we have

ρ(h)D∗h Dh − ρ(h)

2
|| Dh || 2 I =

(
U V
V −U

)
,

where

U = ρ(h)

2

(
a2x + b2x − a2y − b2y

)

and

V = ρ(h)(axay + bxby),

then (1.9) in complex notation takes the form

(Ux +Uy) − i(Vx + Vy) = 0

or what is the same
∂

∂ z̄

(
ρ(h(z))hzhz̄

) = 0, z = x + iy. (1.10)

In [5] and [8], it is used the fact that Hopf’s differential of a minimizer has special form
namely

ρ(h(z))hzhz̄ = c

z2
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for a certain constant c that depends on the ration of modulus of annuli. In this paper, this
constant c will be also crucial for proving the minimization result.

If, in addition h ∈ C 2 then (1.10) is equivalent with

hzz + (log ρ)w ◦ h · hz hz̄ = 0, (1.11)

which is known as the harmonicmapping equation. In particular, ifρ(w) = (1−|w|2)−2, then
the equation leads to hyperbolic harmonic mappings. The class is particularly interesting,
due to recent discover that every quasisimmetric map of the unit circle onto itself can be
extended to a quasiconformal hyperbolic harmonic mapping of the unit disk onto itself. This
problem is known as the Schoen conjecture and it was proved by Marković in [13].

2 Radial solutions to the generalized n-harmonic equation

We assume that R > 1, and R∗ > 1 and A = A(1, R), A∗ = A(1, R∗). Recall that ρ is a
radial C1 function in A∗ = A(1, R∗) so that ρ(s)sn attains its minimum for s = 1. Let us
consider a radial mapping

h(x) = H
(|x |) x

|x | , where H = H(t) is C2

We find that

� = ρ(h) || Dh || n−2
(
D∗h · Dh − 1

n
|| Dh || 2 I

)

= ρ(h)(n − 1)
n−2
n

(
H2 + |x |2 Ḣ2

n − 1

) n−2
2 (

H2 − |x |2 Ḣ2) 1

|x |n
(
x ⊗ x

|x |2 − 1

n
I

)
.

(2.1)

Thus (1.9) reduces to
Div� ≡ 0. (2.2)

We show that if h is a C 2-smooth n-harmonic mapping then H = H(t) must satisfy the
characteristic equation

ρ(h)

(
H2 + |x |2 Ḣ2

n − 1

) n−2
2

· (H2 − |x |2 Ḣ2) ≡ const. (2.3)

Assume that h = H(t) x
|x | , t = |x |, is a radial function, where H is a real diffeomorphism

between intervals [1, R] and [1, R∗]. Then by a direct calculation we obtain

‖Dh‖2 = Ḣ2(t) + (n − 1)
H2(t)

t2
,

and

Jh = Ḣ Hn−1

tn−1 .

Thus

Eρ[h] = E[H ] def== ωn−1

∫ R

1
ρ(H(t))tn−1

(
Ḣ(t)2 + (n − 1)

H2(t)

t2

)n/2

dt .
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If

L[t, H , Ḣ ] def== ρ(H(t))tn−1
(
Ḣ(t)2 + (n − 1)

H2(t)

t2

)n/2

then the Euler–Lagrange equation is

LH [t, H , Ḣ ] = ∂

∂t
L Ḣ [t, H , Ḣ ]. (2.4)

Then (2.4) is equivalent to (2.2), because H ∈ C2. The Eq. (2.4) further reduces to

M
def== 1

(n − 1)H(t)2 + t2 Ḣ2
(n − 1)tn−1

(
(n − 1)H(t)2

t2
+ Ḣ2

)n/2

×
(

− nρ[H(t)] (H(t) − t Ḣ
) (

(n − 1)H(t)2 + (−2 + n)t H(t)Ḣ + t2 Ḣ2)

− (
H(t)2 − t2 Ḣ2) ((n − 1)H(t)2 + t2 Ḣ2) ρ′[H(t)]

+ nt2ρ[H(t)] (H(t)2 + t2 Ḣ2) Ḧ
)

= 0.

Now we gave the following formula, which is the key of our approach

M = (n − 1)t−1−n
(
(n − 1)H(t)2 + t2 Ḣ2

)
Ḣ

× ∂

∂t

(
ρ[H(t)] (H(t)2 − t2 Ḣ2) ((n − 1)H(t)2 + t2 Ḣ2) 12 (n−2)

)
= 0.

Thus we obtain

L[H ] = ρ[H(t)] (H(t)2 − t2 Ḣ2) (H(t)2 + t2 Ḣ2

n − 1

) 1
2 (n−2)

≡ c. (2.5)

Further we look at increasing diffeomorphisms H between two intervals [1, R] and [1, R∗]
that are solutions of the previous equation. Then

c = ρ[H(t)] (H(t)2 − t2 Ḣ2) (H(t)2 + t2 Ḣ2

n − 1

) 1
2 (n−2)

Since the function

ψ(b)
def== (

a2 − b2
) (

a2 + b2

n − 1

) 1
2 (n−2)

is decreasing, because

ψ ′(b) = −
b
(
a2 + b2

) (
a2 + b2

n−1

)n/2
(n − 1)n

(
b2 + a2(n − 1)

)2
we obtain that

c ≤ ρ[H(t)]H(t)n,

and thus

c ≤ min{ρ[H(t)]H(t)n, 1 ≤ |t | ≤ R} = ρ[H(1)]H(1)n = ρ(1).
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Thus we conclude that if the equation has a solution then

c ≤ c�
def== ρ(1), (2.6)

which we call the generalized J. C. C. Nitsche inequality.
Let us demonstrate the connection of (2.6) with the standard Nitsche inequality.
In this special case ρ ≡ 1 and n = 2. So the inequality (2.6) is equivalent with the

inequality

H(t)2 − t2 Ḣ2 ≤ 1.

Assuming that Ḣ � 0, H(1) = 1 and H(R) = R∗ then the last inequality is equivalent with∫ R

1

dr

r
≤
∫ R∗

1

dH√
H2 − 1

or what is the same as

log

[
R∗ +

√
R2∗ − 1

]
� log R.

Thus we obtain

R∗ � 1 + R2

2R
, (2.7)

which is the standard Nitsche inequality. Recall that the condition (2.7) is sufficient and
necessary for the existence of a planar harmonic diffeomorphism between annuli A(1, R)

and A(1, R∗) ([4]).
We will prove that the condition (2.6) is equivalent with the fact that there exists a radial

(ρ, n)-harmonic diffeomorphism between given annuli and conjecture the following

Conjecture 2.1 There is a (ρ, n) harmonic mappings between annuli A(1, R) and A(1, R∗)
if and only (2.6) holds.

The conjecture will be verified on the class of minimizers of (ρ, n) energy (Theorem 3.1).
Let

ηH (t) = η(t)
def== t2(Ḣ(t))2

H2(t)
,

and let

ζ(t)
def== η2(t).

Assume also that the constant c satisfies (2.6). Then the equation L[H ] = c is equivalent
with the equation

(1 − η2(t))

(
1 + η2(t)

n − 1

)(n−2)/2

= vc(H(t)),

or

�(ζ)
def== (1 − ζ(t))

(
1 + ζ(t)

n − 1

)(n−2)/2

= vc(H(t)),

where

vc(H)
def== c

Hnρ(H)
≤ 1.
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Since

�′(ζ ) = −1

2
(n − 1)1−

n
2 n(1 + ζ )(n − 1 + ζ )−2+ n

2 ,

we conclude that � : [0,∞) → (−∞, 1] is strictly decreasing and smooth function and
thus a diffeomorphism. Moreover �(0) = 1, �(1) = 0 and �(∞) = −∞. Let � = �−1 :
(−∞, 1] → [0,∞). Then � is strictly decreasing as well with �(0) = 1 and thus

�(ζ) � 1, if ζ ≤ 0. (2.8)

Then

ζ(t) = �(vc(t)).

Further

ηH (t) = t H ′(t)
H(t)

= √
�(vc(H(t))). (2.9)

Now by taking the initial condition H(1) = 1, we arrive to the implicit solution

log t =
∫ s

1

1

y
√

�(vc(y))
dy,

with s = H(t).
Thus for

Tc(s)
def== exp

[∫ s

1

1

y
√

�(vc(y))
dy

]
,

the diffeomorphism

Hc
def== T−1

c (2.10)

is a solution of the equationL[H ](t) = cwith the initial conditions H(1) = 1 and H ′(1) � 0.
Further Tc(R∗) = R, where

R = exp

[∫ R∗

1

1

y
√

�(vc(y))
dy

]
. (2.11)

Let us emphasize the following important fact. Every parameter from the set {R, R∗, c} is
uniquely determined by two others. More precisely, we have

c = c(R, R∗), R = R(c, R∗), and R∗ = R∗(c, R).

Since Hc(t) is increasing, then vc(Hc(t)) is decreasing for c > 0 and increasing for c < 0,
and thus

√
�(vc(H(t))) increases for c � 0 and decreases for c ≤ 0. Thus we obtain that

⎧⎨
⎩

ηH (t) � 1, and ηH (t) increases on [1, R] if c < 0;
ηH (t) ≤ 1, and ηH (t) decreases on [1, R] if c > 0.
ηH (t) ≡ 1, on [1, R] if c = 0.

(2.12)

Let n � 4 and let κn be the solution of the equation

(n − 1 + η2)
n−2
2 (η2 − 1) = ηn

on the interval [1,
√
n−1√
n−3

]. Then for n � 4we put c� := −ρ(1)κn
n . If n = 3we put c� := −∞.
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Furthermore, if c� ≤ c1 < c2 ≤ c�, then Tc1(R∗) < Tc2(R∗). Now if Hc1(R) = R∗, then
we have R < Tc2(Hc1(R)) and thus Hc2(R) ≤ Hc1(R). If we use the convention Hc� ≡ +∞
for n = 3, then we infer that for every n � 3

Hc�(R) < Hc�(R), R > 1. (2.13)

We conclude this section by proving the following theorem.

Theorem 2.2 Let R > 1 be fixed. Let ρ be a regular metric on A = A(1, R). If R∗ > 1, then
there is a radial (ρ, n)-harmonic diffeomorphism h = hc between annuli A = A(1, R) and
A∗ = A(1, R∗) if and only if

Hc�(R) ≤ R∗, (2.14)

or equivalently if
c(R, R∗) ≤ ρ(1). (2.15)

Proof Let R∗ � Hc�(R). We prove that there is c ≤ c� so that Hc(R) = R∗. Then

hc(x)
def== Hc(|x |) x

|x | (2.16)

is a n-harmonic diffeomorphism between A(1, R) and A(1, R∗). In order to do so define the
function

�(c) = exp

[∫ R∗

1

1

h
√

�(vc(h))
dh

]
.

Then �(c) is continuous for c ∈ (−∞, c�]. Moreover the function c → �(vc(y)) is
increasing for fixed y and so c → y

√
�(vc(y)) is strictly decreasing. So c → 1

y
√

�(vc(y))
is increasing and thus � is increasing. As �(−∞) = 1, by Mean value theorem there is a
unique c so that �(c) = R∗.

To prove the converse part, assume that h = H(|x |) x
|x | is a harmonic diffeomorphism

between annuli A(1, R) and A(1, R∗). Then, because of Lemma 1.1, for a constant c,L[H ] =
c. Further, H is a diffeomorphism, and so c ≤ c�. It follows that (2.14). ��

3 Themain result

Theorem 3.1 Assume that n � 3 and ρ is a regular metric in A∗ = A(1, R∗), R∗ > 1.
a) Let R > 1 be fixed. We have the sharp inequality∫

A(1,R)

ρ(|h|)‖Dh‖n �
∫
A(1,R)

ρ(|hc|)‖Dhc‖n, (3.1)

for orientation preserving homeomorphisms h of the class W 1,n between A(1, R) and
A(1, R∗) mapping the inner boundary onto the inner boundary if

Hc�(R) ≤ R∗ ≤ Hc�(R), (3.2)

or in its equivalent form if
− ρ(1)κn

n ≤ c ≤ ρ(1). (3.3)

Here hc is defined in (2.16). The equality is attained if and only if h = T hc where T is a
linear isometry of Rn.
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b) If R∗ > 1, n > 3 and if

c < −2ρ(R∗)Rn∗
n − 2

(
n − 2

n − 3

)n/2

, (3.4)

then the (ρ, n)-harmonic diffeomorphism hc = Hc(|x |) x
|x | : A(1, R) → A(1, R∗) is not the

minimizer of the functional of energy. Here R = R(c, R∗) is defined in (2.11).

Remark 3.2 Theorem 3.1 extends the corresponding result by Iwaniec and Onninen in [6],
where the authors have considered only the cases ρ(x) ≡ 1 and ρ(x) = 1/|x |n . Moreover
the item b) contains a more explicit result even for the case ρ(x) ≡ 1.

By using (1.3) and Theorem 3.1 we obtain

Corollary 3.3 Assume that A∗ = A(1, R∗) is an annulus and assume that ρ is a regular
metric on A∗. For −ρ(1)κn

n ≤ c ≤ ρ(1) let R = R(c, R∗) and let f c = (hc)−1. Then we
have the following sharp inequality∫

A∗
ρ(y)KI [ f , y] �

∫
A∗

ρ(y)KI [ f c, y], (3.5)

for every homeomorphism f : A∗ → A preserving the inner boundary and the orientation
and belonging to the Sobolev space W 1,n−1.

Remark 3.4 The question arises how general can be two doubly connected domains, in order
to have similar result.

• Instead of A(1, R) and A(1, R∗), we could take the annuli A(r , R) and A(r∗, R∗). The
last case reduces to the previous one because the (ρ, n)-harmonic mappings are invari-
ant under homothety of domain and of image domain. Namely if h is (ρ, n) harmonic
mapping between annuli A(r , R) and A(r∗, R∗), then λh(μx) is harmonic as well w.r.t.
the metric ρ(μ|x |) between annuli A(μr , μR) and A(λr∗, λR∗).

• If h : A(1, R) → A(1, R∗) is a harmonic homeomorphism that map the inner boundary
onto the outer boundary, then

h1(x) = h

(
R

x

|x |2
)

: A(1, R) → A(1, R∗)

that map the inner boundary onto the inner boundary. This follows from the fact that the
class of n-harmonic mappings is invariant under precomposing by conformal mappings
of the space, exactly as in the planar case. More precisely, if h : D → Rn is (ρ, n)-
harmonic, then h ◦ T is (ρ, n)- harmonic in D′ = T−1(D), for every metric ρ and every
Möbius transformation T on the spaceRn . Here D ⊂ Rn is an open subset. This follows
from the following formulas

Eρ[h] =
∫
D

ρ(h(x))‖Dh(x)‖ndx

=
∫
D

ρ(h(x))‖Dh(x)‖ndx

=
∫
D′

ρ(h(T (y)))‖Dh(T (y))‖n JT (y)dy

=
∫
D′

ρ(h ◦ T (y))‖Dh(T (y))‖n |DT (y)|ndy

=
∫
D′

ρ(h ◦ T (y))‖D(h ◦ T )(y)‖ndy = Eρ[h ◦ T ]
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Here |DT (y)| def== max|h|=1 |DT (y)h|. Thus if h is a stationary point of energy integral,
then so is h ◦ T .

• If f is a n-harmonic mapping between annuli A(r , R) and A(r∗, R∗) w.r.t. the metric
ρ(|w|), then f̃ (x) = f (x)

| f (x)|2 is a n-harmonic mapping between annuli A(r , R) and
A(1/R∗, 1/r∗) w.r.t. the metric

ρ̃(|ω|) = |ω|nρ
(

1

|ω|
)

.

Namely, if g(x) = x
|x |2 , then g is conformal and thus

〈Dg(x)h, Dg(x)k〉 = |Dg(x)|2 〈h, k〉 ,

where

|Dg(x)| = max|h|=1
|Dg(x)h|.

Here

Dg(x)h = h

|x |2 − x 〈x, h〉
|x |4 ,

and thus

‖Dg(x)‖2 = n|Dg(x)|2 = n

|x |2 .

Further we obtain

‖D f̃ ‖2 = Tr((D f̃ )∗D f̃ ) =
n∑

k=1

〈
D f̃ ek, D f̃ ek

〉

=
n∑

k=1

〈
g′( f (x))Df ek, g

′( f (x))Df ek
〉 = ‖Df ‖2

| f |2 ,

and so

Eρ̃[ f̃ ] = Eρ[ f ].
So if f is the minimizer of Eρ then f̃ is the minimizer of Eρ̃ .

• The main result can be formulated in a slightly more general case, namely for two
double connected domains whose boundry components are two spheres (which are not
concentric). Namely for annuli A = T1(A) and A∗ = T1(A∗), where T1 and T2 are
certain Möbius transformations of the space Rn . The class of conformal mappings on
the space is very rigid, indeed it coincides with the class of Möbius transformations. The
planar case is far more interesting but also more difficult in this context (cf. [5,8]).

Remark 3.5 If we take the substitution

η(t) = t H ′(t)
H(t)

in (2.5) we obtain

n + nt
(
1 + η[t]2) η′[t](−1 + η[t]2) (n − 1 + η[t]2) + H(t)R′[H(t)]

R[H(t)] = 0.

123



51 Page 12 of 19 D. Kalaj

In particular if ρ(s) = sν , we have
(
1 + η[t]2) η′[t](

1 − η[t]2) (n − 1 + η[t]2) = n + ν

nt
. (3.6)

By following the approach as in [6], where are considered the special cases ν = 0 and
ν = −n, we can find that the solution H = Hc can be expressed by mean of the so called
elasticity function η = ηH , and has the similar features as in the case ν = 0 (see [6, p. 35-42]).
However we do not need those properties in order to prove our main result. Instead, we use
only some general results regarding the modulus of annuli obtained in [6] (Corollary 3.6).

For x ∈ A let N = x
|x | . Further let T2, . . ., Tn be n − 1 unit vectors mutually orthogonal

and orthogonal to N . Denote by hN , hT2 , . . ., hTn the corresponding directional derivatives.
Use the notation

|hT | =
√

|hT2 |2 + . . . + |hTn |2
n − 1

.

Then we have

Corollary 3.6 [6]. Let h be a homeomorphism between spherical rings A and A
∗ in the

Sobolev class W 1,n(A,A∗). Then
∫
A

�
(|h|) |hN | |hT |n−1 � ωn−1

∫ R∗

1
τ n−1�(τ) dτ (3.7)

whenever � is integrable in [1, R∗]. We have the equality in (3.7) if and only if

|hN | |hT |n−1 = Jh(x). (3.8)

Furthermore,
∫
A

|hN |
|h| |x |n−1 � ModA∗ (3.9)

∫
A

|hT |n−1

|h|n−1 |x | � ModA (3.10)

Note that we have equalities if h is a radial mapping.
We also need the following simple lemmas.

Lemma 3.7 [6] Let u, v � 0 and 0 ≤ σ ≤ 1. Then

[
u2 + (n − 1)v2

] n
2 � a(σ ) vn + b(σ ) uvn−1 (3.11)

where

a(σ ) = (n − 1)
(
σ 2 + n − 1

) n−2
2
(
1 − σ 2) (3.12)

and

b(σ ) = nσ
(
σ 2 + n − 1

) n−2
2 (3.13)

Equality holds if and only if u = σv.
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Lemma 3.8 [6] Let u, v � 0 and 1 ≤ σ < σn. Then

a = a(σ )
def== (σ 2 + n − 1)

n−2
2 (σ 2 − 1)

σ n
< 1 (3.14)

and, we have [
u2 + (n − 1)v2

] n
2 � a un + b uvn−1 (3.15)

where

b = n
(
σ 2 + n − 1

) n−2
2

σ
(3.16)

Equality holds if and only if u = σv.

4 Proof of Theorem 3.1

♣ Proof of a).
Here we assume (3.2). This bound means that there is a radial (ρ, n)-harmonic homeomor-
phism

hc : A → A
∗ , hc(x) = Hc

(|x |) x

|x | (4.1)

Recall the characterictic equation for H = Hc(t) is

[
H2 + t2 Ḣ2

n − 1

] n−2
2 (

H2 − t2 Ḣ2) ≡ c

ρ(H)
(4.2)

where c = C(R, R∗) is a constant determined by (R, R∗).
• The case 0 ≤ c ≤ c�.
Let

ηH = t Ḣ

Ḣ
.

Then (4.2) is equivalent with

(
1 + η2

H

n − 1

) n−2
2 (

1 − η2
H

) = c

ρ(H)Hn
. (4.3)

Here c satisfies the condition c ≤ ρ(1) and so

c

ρ(H)Hn
≤ 1.

Now, let h : A
onto−→ A

∗, h ∈ W 1,n(A,A∗), be arbitrary orientation preserving homeo-
morphism of annuli mapping the inner boundary onto the inner boundary. For x ∈ A, let
u = ∣∣hN (x)

∣∣, v = ∣∣hT (x)
∣∣. The equation (4.3) suggests that we should consider the nonneg-

ative solution η = η(t) to the equation

(
1 + η2

n − 1

) n−2
2

(1 − η2) = c

ρ(t)tn
, 1 < t < R∗. (4.4)
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There is exactly one such η and it lies in the interval [0, 1] because
c

ρ(t)tn
≤ c

ρ(1)
≤ 1.

Let σ = η
(
t
)
be the solution of (4.4), where t = |h(x)|. Then 0 ≤ σ ≤ 1. We apply Lemma

3.7 to obtain the point-wise inequality

ρ(h) || Dh || n = ρ(h)
[|hN |2 + (n − 1) |hT |2] n2

� ρ(h)a(σ ) |hT |n + ρ(h)b(σ ) |hN | |hT |n−1 (4.5)

Now we find

a(σ ) = (n − 1)
(
σ 2 + n − 1

) n−2
2
(
1 − σ 2)

= (n − 1)
n
2

c

|h|nρ(|h|)
and so

ρ(h) || Dh || n = ρ(h)
[|hN |2 + (n − 1) |hT |2] n2

� (n − 1)
n
2 c

|hT |n
|h|n + B

(|h|) |hN | |hT |n−1 (4.6)

Here

B
(|h|) = nρ(|h|) (η2(|h|) + n − 1

) n−2
2

comes from (3.13). An important fact about B
(|h|) is that we have equality at (4.6) if |hN | =

η(|h|) |hT |. This is true for the radial (ρ, n)-harmonic map at (4.1), by the definition of the
constant c. Let us integrate (4.6) over the annulus A. For the last term we apply the lower
bound at (3.7). To estimate the first term in the right hand side of (4.6) we use Hölder’s
inequality and we have

(∫
A

|hT |n−1

|x | |h|n−1

) n
n−1

≤
∫
A

|hT |n
|h|n

(∫
A

dx

|x |n
) 1

n−1

,

and then use (3.10). Thus we have

∫
A

ρ(h) || Dh || n � (n − 1)
n
2 c

(∫
A

|hT |n−1

|x | |h|n−1

) n
n−1 (∫

A

dx

|x |n
) −1

n−1

+ωn−1

∫ R∗

r∗
τ n−1B(τ ) dτ

� (n − 1)
n
2 cModA + ωn−1

∫ R∗

r∗
τ n−1B(τ ) dτ (4.7)

Finally, observe that we have equalities in all estimates for the radial stretchings. Thus∫
A

ρ(h) || Dh || n �
∫
A

ρ(hc) || Dhc || n (4.8)

as stated.
• The case c� ≤ c ≤ 0. Then A∗ is thinner than A. Let H = Hc. Then

L[H ] = c ≤ 0.
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Thus

c1 ≡ −c = (n − 1)
2−n
2 ρ(H)

[
t2(Ḣ)2 + (n − 1)H2] n−2

2 (t2(Ḣ)2 − H2) � 0.

or

(n − 1 + η2)
n−2
2 (η2 − 1) = c1(n − 1)

n−2
2

|H |n p(H)

Now we consider the general mapping h. There is exactly one solution σ = η(|h(x)|) of the
equation

(n − 1 + η2)
n−2
2 (η2 − 1) = c1(n − 1)

n−2
2

|h(x)|n p(|h(x)|) .

Since 1 ≤ |h(x)| ≤ R∗, we conclude that

a(σ ) := (n − 1 + σ 2)
n−2
2 (σ 2 − 1)

σ n
≤ 1.

From Lemma 3.8 we obtain

ρ(|h|)(‖Dh‖n) = ρ(|h|)(|hN |2 + (n − 1)|hT |2)n/2

� ρ(|h|) (a(σ )|hN |n + b(σ )|hN | · |hT |n−1)

= c1(n − 1)
n−2
2

[ |hN |
|h|η(|h|)

]n
+ �(|h|)|hN | · |hT |n−1

(4.9)

where

�(|h|) = ρ(|h|)b(|η(|h|)) = ρ(|h|)n
(
η2(|h|) + n − 1

) n−2
2

η(|h|) .

According to Lemma 3.8, equality holds at a given point x if and only if |hN (x)| =
η
(|h(x)|) |hT (x)|. In particular, it holds almost everywhere for h = hc(x), because

|(hc)N | = ηH |(hc)T |.We now integrate over the annulusA. The last term at (4.9) is estimated
by using (3.7),

∫
A

�
(|h|) |hN | |hT |n−1 � ωn−1

∫ R∗

r∗
τ n−1�(τ) dτ

=
∫
A

�
(|hc|) |(hc)N | |(hc)T |n−1 (4.10)

To estimate the first term in the right hand side of (4.9) we make use of the identities

|(hc)N |
|hc| η

(|hc|) = Ḣ

H ηH

= 1

|x | . (4.11)

Having in mind the simple inequality |h|N ≤ |hN |, by using Hölder’s inequality we obtain(∫
A

|h|N dx

|h| η
(|h|) |x |n−1

)n

≤
∫
A

[
|hN |

|h| η
(|h|)

]n (∫
A

dx

|x |n
)n−1

. (4.12)

Further, as in the proof of [6, Proposition 12.1], we obtain
∫
A

|h|N dx

|h| η
(|h|) |x |n−1

=
∫
A

|hc|N dx

|hc| η
(|hc|) |x |n−1

=
∫
A

Ḣ
(|x |) dx

H ηH |x |n−1 =
∫
A

dx

|x |n
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Hence ∫
A

[
|hN |

|h| η
(|h|)

]n
�
∫
A

dx

|x |n = ModA. (4.13)

Thus ∫
A

ρ(h) || Dh || n � c1(n − 1)
n−2
2 ModA + ωn−1

∫ R∗

r∗
τ n−1�(τ) dτ, (4.14)

with equality attained for hc, as stated. This finishes the proof of the fact that if the condition
(3.2) is satisfied, then we have the sharp inequality (3.1). In order to prove the opposite
statement, assume that R∗ > Hc�(R). Then by Theorem 2.2 there is c = c(R, R∗) < c�
and a diffeomorphism H = Hc : [1, R] → [1, R∗], so that h(x) = H(|x |) x

|x | is a (ρ, n)-
harmonic diffeomorphism between A and A∗.

This finishes the proof of Theorem 3.1 a), up to the uniqueness part. The uniqueness part
follows by repetition the approach of the similar statement from [6], and we will not write
the details here. It is important to emphasize that in some key places where we used the sharp
inequalities, the equality statement is attained if and only if

Jh(x) = |hT |n−1 |hN |
and so the matrix

C(x, h)
def== D∗h · Dh =

⎡
⎢⎢⎢⎣

|hN |2 0 · · · 0
0 |hT |2 · · · 0

. . .

0 0 · · · |hT |2

⎤
⎥⎥⎥⎦

arises, in order to prove that h is radial.
♣ Proof of b). Let R = R(A , A∗) be the class of orientation preserving radial (ρ, n)-
harmonic diffeomorphisms mapping the inner boundary onto itself and let D = D(R, R∗)
be the class of orientation preserving C2 diffeomorphisms of [1, R] onto [1, R∗]. Now, we
find the infimum in the left hand side of (3.1) for n > 3 and obtain

inf
h∈R

∫
A

ρ(h) || Dh || n = ωn−1 inf
H∈D

∫ R

1
ρ(H)

[
Ḣ2 + (n − 1)t−2H2] n2 tn−1dt . (4.15)

Here

L(t, H , Ḣ)
def== ρ(H)

[
Ḣ2 + (n − 1)t−2H2] n2 tn−1

is strictly convex in K = Ḣ and coercive and thus the minimum is attained for a smooth
function H◦ satisfying the Euler–Lagrange equation and boundary conditions H◦(1) = 1
and H◦(R) = R∗. Then H◦ = Hc. In order to prove this fact notice that, in view of (2.8) and
(2.11) we obtain R∗ > R. Thus

∫ R

1

|Ḣ◦|
H◦

dt =
∫ R

1
|d log H◦(t)|dt

�
∥∥∥∥
∫ R

1
d log H◦(t)dt

∥∥∥∥
= log R∗ > log R =

∫ R

1

1

t
dt .
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By (2.5) the expression

|Ḣ◦|
H◦

− 1

t

has a constant sign, and thus L[H◦] = c1 < 0.
So by (2.5) we infer that H ′◦(t) > 0, and thus H◦ is an increasing diffeomirphism. But

then it coincides with Hc, because of uniqueness of the solution under this constraint. We
obtain that

inf
h∈R

∫
A

ρ(h) || Dh || n = ωn−1

∫ R

1
ρ(Hc)

[
t2 Ḣc

2 + (n − 1)Hc
2
] n

2 dt

t

= ωn−1

∫ R

1
ρ[Hc(t)] [Hc(t)]

n
[
η2
Hc

(t) + n − 1
] n

2 dt

t
.

(4.16)

Let �λ : Sn−1 → Sn−1 be the so called spherical homothety constructed in [6], where
λ > 0 is a real parameter, so that�1 = Id. More precisely, if (θ, ϕ1, . . . , ϕn−2) are spherical
coordinates of x , then (ϕ(θ), ϕ1, . . . , ϕn−2) are spherical coordinates of�λ(x), whereϕ(θ) =
2 tan−1(λ tan θ

2 ). Then ϕ is a diffeomorphism of [0, π] onto itself. Furthermore �λ is a
conformal self-mapping of the unit sphere. Thus if ζ = S(θ, ϕ1, . . . , ϕn−2) are spherical
coordinates, and �λ(ζ ) = S(ϕ(θ), ϕ1, . . . , ϕn−2), by using conformality of �λ and the
formula

�λ(S(θ, ϕ1, . . . , ϕn−2)) = S(ϕ(θ), ϕ1, . . . , ϕn−2),

we obtain that the ratio between Gram determinants of

DS(ϕ(θ), ϕ1, . . . , ϕn−2)

and of

DS(θ, ϕ1, . . . , ϕn−2)

is equal to ϕ′(θ)n−1. Thus, having in mind the conformality of �λ we define

|D�λ(ζ )| = ϕ′(θ) = sin ϕ(θ)

sin θ
= 2λ

1 + λ2 + (1 − λ2) cos θ
, (4.17)

where θ ∈ [0, π] is the meridian of ζ .
Notice that ϕ is the only diffeomorphism that produces a conformal mapping on Sn−1.

Indeed it is only solution of the differential equation with respect to ϕ in (4.17).
By [6, Eq. 14.50] we have

φ(λ) := 1

ωn−1

∫
Sn−1

[
σ 2 + (n − 1)|D�λ|2] n2 <

[
σ 2 + n − 1

] n
2 (4.18)

for every parameter 1 < λ

√
n−3
n−1σ, where σ >

√
n−1
n−3 .

This mean that λ = 1 is a local maximum of φ. We prove here more, λ = 1 is local

maximum of φ if and only if σ >

√
n−1
n−3 .

Then, by direct computation, in view of (4.17) we find that

φ′(1) = 0
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and

φ′′(1) = 2
(−1 − σ 2(−3 + n) + n

)√
π�

( 1+n
2

)
�
( n
2

) .

So φ′′(1) < 0 if and only if σ >

√
n−1
n−3 .

Then we test the infimum in the right hand side of (3.1) with the mapping

hλ(x) = H
(|x |)�λ

(
x

|x |
)

(4.19)

where, as in the previous case, �λ : Sn−1 → Sn−1 is the spherical homothety and H = Hc.
An important facts concerning �λ, which follows from (4.17), is the following∫

Sn−1
|D�λ|n−1 = ωn−1.

From the equation

(η2(t) − 1)

(
1 + η2(t)

n − 1

)(n−2)/2

= −vc(H(t)) = −c

ρ[H(t)]H(t)n

in view of (2.12) we infer that

(η2(t) − 1)

(
1 + η2(t)

n − 1

)(n−2)/2

� −c

ρ(R∗)Rn∗
.

From (3.4) we obtain

(η2(t) − 1)

(
1 + η2(t)

n − 1

)(n−2)/2

>

⎛
⎝
(√

n − 1

n − 3

)2

− 1

⎞
⎠
⎛
⎜⎝1 +

(√
n−1
n−3

)2
n − 1

⎞
⎟⎠

(n−2)/2

,

and thus

η = ηH (t) >

√
n − 1

n − 3
. (4.20)

From (4.16) and (4.18) we find that

inf
h∈P (A ,A∗)

∫
A

ρ(h) || Dh || n ≤
∫
A

ρ(hλ) || Dhλ || n

=
∫ R

r
ρ[H(t)] [H(t)]n

∫
Sn−1

[
η2
H
(t) + (n − 1)|D�λ|2] n2 dt

t

< ωn−1

∫ R

r
ρ[H(t)] [H(t)]n

[
η2
H
(t) + n − 1

] n
2
dt

t

= inf
h∈R(A ,A∗)

∫
A

ρ(h) || Dh || n .

Here we have chosen λ > 1 sufficiently close to 1.
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