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Abstract
We prove the existence of infinitely many mixing solutions for the Muskat problem in the
fully unstable regime displaying a linearly degradedmacroscopic behaviour inside themixing
zone. In fact, we estimate the volume proportion of each fluid in every rectangle of themixing
zone. The proof is a refined version of the convex integration scheme submitted in De Lellis
and Székelyhidi Jr. (Arch Ration Mech Anal 195:225–260, 2010), Székelyhidi (Ann Sci
Éc Norm Supér 45(3):491–509, 2012) applied to the subsolution in Castro et al. (Mixing
solutions for the Muskat problem, arXiv:1605.04822, 2016). More generally, we obtain a
quantitative h-principle for a class of evolution equations which shows that, in terms of
weak*-continuous quantities, a generic solution in a suitablemetric space essentially behaves
like the subsolution. This applies of course to linear quantities, and in the case of IPM to
the power balance P (14) which is quadratic. As further applications of such quantitative
h-principle we discuss the case of vortex sheet for the incompressible Euler equations.

Mathematics Subject Classification 35Q35

1 Introduction

We study the dynamic of two incompressible fluids with constant densities ρ± and viscosities
ν±, moving through a 2-D porous medium with permeability κ , under the action of gravity
g = −(0, g). In this work we assume ν± = ν, ρ+ > ρ− and κ constant, and we denote
ϑ = g κ

ν
. This can be modelled [19] by the IPM (Incompressible Porous Media) system
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∂tρ +∇ · (ρu) = 0, (1)

∇ · u = 0, (2)
ν
κ
u = −∇ p + ρg, (3)

in R
2 × (0, T ), where (1) represents the mass conservation law, (2) the incompressibility,

and (3) is Darcy’s law, which relates the velocity of the fluid u with the forces (the pressure
p and the gravity g) acting on it, coupled with the Muskat type initial condition

ρ|t=0 = ρ0 = ρ+1�+(0) + ρ−1�−(0). (4)

Without loss of generality we may assume ρ+ = −ρ− = � > 0 (see Sect. 2). We focus
on the situation when initially one of the fluids lies above the other, i.e., there is a function
f0 ∈ C1,α(R) so that the initial interface is ∂�±(0) = Graph( f0) = {(s, f0(s)) : s ∈ R}.
The Muskat problem describes the evolution of the system (1)–(4) under the assumption
that the fluids remain in contact at a moveable interface which divides R

2 into two connected
regions �±(t), i.e., ∂�±(t) = Graph( f (t)), which turns out a Cauchy problem for f . If
the heaviest fluid stays down, fully stable regime, such Cauchy problem is well-posed in
Sobolev spaces (see [4] for H3 and [5,6,18] for improvements of the regularity), whereas
if the heaviest fluid stays on the top, fully unstable regime, it is ill-posed (see [2] for H4

and [4] for Hs with s > 3/2 for small initial data). In spite of this, the existence of weak
solutions of (1)–(4) in the fully unstable regime has been proved recently (see [1,11,26]
and also [22]) by replacing the continuum free boundary assumption with the opening of a
“mixing zone” where the fluids begin to mix “indistinguishably” (mixing solutions). In order
to prevent misunderstanding we call the existence and properties of such mixing solutions
the Muskat-Mixing problem. In [1] the authors define a mixing zone as

�mix(t) = x(R × (−1, 1), t), t ∈ (0, T ], (5)

and also �mix = ∪t∈(0,T ]�mix(t)× {t} from the map

x : R × [−1, 1] × [0, T ] → R
2

(s, λ, t) �→ (s, f (s, t)+ cλt)

where f ∈ C ([0, T ]; H4(R)) is a suitable evolution of f0 ∈ H5(R) (see [1, (1.11)]) and
c > 0 is the speed of growth of the mixing zone. At each t ∈ (0, T ], the mixing zone
�mix(t) splitsR

2 into two open connected sets�±(t) defined from ∂�±(t) = x(R,±1, t) =
Graph( f (t)) ± (0, ct). Notice x ∈ C ((0, T ];Diff1(R × (−1, 1);�mix(t))) because the
Jacobian is Jx(t)(s, λ) = ct . We recall the definition of mixing solution introduced in [1].

Definition 1.1 (Mixing solution, [1]) A pair ρ,u ∈ L∞([0, T ]; L∞(R2)) is a mixing solu-
tion for the map x if it is a weak solution of IPM (see [1, Def. 2.1]) satisfying:

(a′)
{
ρ = ±� a.e. in �±,
|ρ| = � a.e. in �mix.

(b′) Mix in space-time: For every (space-time) open ball B ⊂ �mix,∫
B
(� − ρ(x, t)) dx dt

∫
B
(� + ρ(x, t)) dx dt 
= 0.
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The property (b’) states mixing in every (space-time) ball, but it does not give information
about the volume proportion of each fluid. As it stands it does not exclude that arbitrarily
close to �+ could be a sufficiently big ball with 99% of ρ−. In spite of the stochastic nature
of the mixing phenomenon, this is obviously unrealistic from the experiments. In fact, as
we shall explain after theorem 1.1, we find natural to obtain mixing solutions displaying a
linearly degradedmacroscopic behaviour. In addition, we take care of replacing “space-time”
by the stronger and more suitable version “space at each time slice”.

The main result The aim of this paper is to prove that the Muskat-Mixing problem
admits (infinitely many) solutions: continuous in time, mixing in space at each time slice
and displaying a linearly degraded macroscopic behaviour. We call them degraded mixing
solutions. In fact, we have obtained an estimate of the volume proportion in every rectangle
of �mix(t) at each time slice. Due to Lebesgue differentiation theorem, the error in this esti-
mate depends on the size of the rectangles. For the suitable definition we consider arbitrary
α ∈ [0, 1), increasing space-error functions S ∈ C0([0, 1]; [0, 1]) and time-error functions
T ∈ C0([0, T ]; [0, 1]) with S (0) = T (0) = 0 and S (r),T (t) > 0 for r , t > 0. For
instance

Sε(s) = εe− 1
εs , Tε(t) = εe− 1

εt , (6)

for ε, ε > 0 arbitrarily small. We define

E (λ, t) = S (1− |λ|)T (t), {A}α = 1 ∧ |A|α
|A| , (7)

where (λ, t) ∈ (−1, 1)× (0, T ], |A| denotes the area of measurable sets A in R
2 and ∧ the

minimum between two quantities.

Remark 1.1 The function E has been introduced to show that the error in the estimate of the
volume proportion also depends on the distance to the (space-time) boundary of the mixing
zone. The parameter α has been introduced to refine this estimate for small rectangles.
However, the case E constant and α = 0 contains relevant information about the degraded
mixing phenomenon, and it is easier to understand in a first reading.

Definition 1.2 (Degraded mixing solution) We say that ρ,u ∈ C0([0, T ]; L∞
w∗(R2)) is a

degraded mixing solution for the map x of degree (α, E ) if it is a weak solution of IPM
such that, at each t ∈ [0, T ], it satisfies:
(a) {

ρ(t) = ±� a.e. in �±(t),
|ρ(t)| = � a.e. in �mix(t).

(b) Mix in space at each time slice: For every non-empty (bounded) open � ⊂ �mix(t),∫
�

(� − ρ(x, t)) dx
∫
�

(� + ρ(x, t)) dx 
= 0.

(c) Linearly degradedmacroscopic behaviour: For every non-empty bounded rectangleR =
S × L ⊂ R × (−1, 1),∣∣∣∣−

∫
x(R,t)

ρ(x, t) dx − 〈L〉�
∣∣∣∣ ≤ E (〈L〉, t){x(R, t)}α,

where 〈L〉 = −
∫
L λ dλ ∈ (−1, 1) is the center of mass of L .
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Remark 1.2 The new condition (c) implies a nice property. For λ ∈ (−1, 1) and 0 < δ < 1
consider the rectangle RδN (λ) = (−N , N ) × (λ − 1

N δ
, λ + 1

N δ
). This fits the contour line

R × {λ} when N → ∞. Then, such degraded mixing solutions display a perfect linearly
degraded macroscopic behaviour on contour lines x(R, λ, t)

lim
N→∞−

∫
x(RδN (λ),t)

ρ(x, t) dx = λ�, (8)

uniformly in λ ∈ (−1, 1) and t ∈ (0, T ].
Our main result is the following.

Theorem 1.1 Let f0 ∈ H5(R), E from (7) and α ∈ [0, 1). Then, the Muskat-Mixing problem
for the initial interface Graph( f0) and mixing speed 1 ≤ c/(ϑ�) < 2 admits infinitely many
degraded mixing solutions for the map x of degree (α, E ).

Let us explain in more detail the motivation and consequences of the theorem 1.1. In
Otto [22] proposed a relaxational approach of the Muskat-Mixing problem for the flat inter-
face f0 = 0. Roughly speaking, by neglecting the non-convex constraint ρ ∈ {ρ−, ρ+} by
its local average in space ρ̆ ∈ [ρ−, ρ+], the author obtained an unique solution

ρ̆(x, t) =
{ ±�, ±x2 ≥ 2ϑ�t,

x2
2ϑ t , |x2| < 2ϑ�t,

of a relaxed problem (see also [13]). This can be thought as a solution of the Muskat-Mixing
problem at a mesoscopic scale. In Székelyhidi Jr. [26] proved the existence of infinitely many
weak solutions to the Muskat-Mixing problem for the initial flat interface f0 = 0 satisfying
(a’). The proof is based on the convex integration method, which reverses Otto’s relaxation
switching from the “subsolution” ρ̆ to exact solutions. In Castro et al. [1] generalized Széke-
lyhidi’s result for initial interfaces f0 ∈ H5(R) and they added the property (b’), where the
subsolution is given by the following density function adapted to x

ρ̆(x, t) =
{±�, x ∈ �±(t),
λ�, x = x(s, λ, t) ∈ �mix(t).

(9)

Observe ρ̆ can be though as a generalization of Otto’s density for these more general initial
interfaces.
If we understand this subsolution as a coarse-grained density for the Muskat-Mixing prob-
lem, it predicts a linearly degraded macroscopic behaviour of its solutions. Let us give a
naive physical intuition about why such phenomenon is natural to be expected. At molec-
ular level, since the natural regime of the heaviest fluid is at the bottom, in the stable case
the molecules are already well-placed, whereas in the unstable case the molecules of the
heaviest fluid are forced into break through the molecules of the lightest. Let us simplify
the dynamic as a kind of random walk for the flat case to illustrate it (see [22, Sect. 2] for
a different approach). We interpret the conservation of mass and volume by setting that two
close different molecules may interchange their positions if the heaviest is above the lightest,
i.e., if their state is unstable due to gravity. Darcy’s law is interpreted by setting that such
interchange happens with some probability depending on the viscosities and in terms of the
proximity to the rest molecules of the same fluid respectively. In the balanced case ν+ = ν−,
we set the probability is one half, independently of the relative position. We also set the size
of the discretization as r = �xi = 2c�t , where c may depend on ϑ and �. In spite of the
randomness, the expectation on contour lines of molecules ρ̆r is a deterministic function. In
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fact, this mean density ρ̆r is an step function which increases linearly from −� to � inside a
strip (the mixing zone) that grows linearly in time with speed c. Returning to the continuum
model, the coarse-grained density ρ̆ (9) (for the flat case) is obtained when r ↓ 0 (Fig. 1).

This motivates to look for solutions ρ of the Muskat-Mixing problem with a perfect
linearly degraded macroscopic behaviour on contour lines (see rem. 1.2). However, an error
in the average between such ρ and ρ̆ is unavoidable on sufficiently small rectangles due to
Lebesgue differentiation theorem. Since this error spreads as the molecules advance into the
mixing zone, it must depend on the distance to where the fluids begin to mix too.
This is precisely the information recovered by theorem 1.1 (see Fig. 2). Observe that the
volume proportion of fluid with density ρ± in x(R, t) is

|{x ∈ x(R, t) : ρ(x, t) = ±�}|
|x(R, t)| = 1

2

(
1± 1

�
−
∫
x(R,t)

ρ(x, t) dx

)
, (10)

i.e., the average of ρ quantifies the amount of each fluid. From [1] we know the existence of

a sequence of mixing (in space-time) solutions ρk such that ρk
∗
⇀ρ̆. Thus, we would like to

obtain solutions which are as close as possible to satisfy

−
∫
x(R,t)

ρ(x, t) dx ≈ −
∫
x(R,t)

ρ̆(x, t) dx = −
∫
L
λ� dλ = 〈L〉�, (11)

for every rectangle R = S × L ⊂ R × (−1, 1) at each t ∈ (0, T ]. However, Lebesgue
differentiation theorem tells us that

lim|R|↓0
ς0=〈R〉,R regular

−
∫
x(R,t)

ρ(x, t) dx = ρ(x0, t), (12)

for almost every x0 = x(ς0, t) ∈ �mix(t) at each t ∈ (0, T ], where ρ jumps unpredictably
between ±� because of (b). In other words, if the position is localized, R ↓ {ς0}, then
the average of ρ is undetermined. The opposite side of the coin is given by (c) because it
states that we can know exactly the average of ρ on unbounded domains. Schematically, this
phenomenon can be interpreted as an “uncertainty principle” as follows:

R −∫x(R,t) ρ(x, t) dx
Certainty Position {ς0} Unpredictably

Average Unbounded 〈L〉�

As we have already commented, the first row is nothing but (b) in combination with (12).
The second row is due to (c) because such degraded mixing solutions satisfy

lim
L↓L0|S|·|L|→∞

−
∫
x(R,t)

ρ(x, t) dx = 〈L0〉�,

for every interval L0 ⊂ (−1, 1) at each t ∈ (0, T ]. Consequently, the volume proportion of
fluid with density ρ± in the strip x(R, L0, t) is exactly 1

2 (1±〈L0〉). Furthermore, theorem 1.1
not only quantifies these extremal situations, R ↓ {ς0} and R ↑ unbounded, but also the
intermediate cases. More precisely, since �(1 + |〈L〉|) is the maximum possible error in
(11) due to (12), for every small 0 < ε < �, such degraded mixing solutions improve the
knowledge of (10) around each point x0 = x(ς0, t) ∈ �mix(t) at each t ∈ (0, T ]
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∣∣∣∣−
∫
x(R,t)

ρ(x, t) dx − 〈L〉�
∣∣∣∣ ≤ ε, (13)

for every rectangle R = S × L ⊂ R × (−1, 1) containing ς0 in the regime

{x(R, t)}α ≤ εE (〈L〉, t)−1.

Observe α = 1 is excluded.
Moreover, for every small ε, ε > 0 there is δ > 0 such that, for allR = S× L ⊂ R× (−1, 1)
with (1 − |〈L〉|) ∧ |t | ≤ δ and |x(R, t)|1−α ≥ ε, then (13) holds. That is, the uncertainty
depends on the distance to the (space-time) boundary of the mixing zone. In other words, the
linearly degraded macroscopic behaviour is almost perfect close to where the fluids begin to
mix.

Furthermore, the mass is not the only quantity that can be recovered from the subsolution.
More precisely, our argument shows that linear quantities are almost preserved, e.g., that
ŭ = ϑBS(−∂1ρ̆) (see [1, Sect. 4.1.2]) can be understood as the coarse-grained velocity.
Moreover, not only linear quantities are inherited but also those weak*-continuous in the
space of solutions of the stationary Eqs. (2) and (3) (see Sect. 2). For instance, the “power
balance”

P(ρ,u) = u · (u+ ϑ(0, ρ)) = |u|2 + ϑρu2, (14)

which can be interpreted as the balance between the density of energy per unit time consumed
by the friction and the density ofwork per unit time done by the gravity.We have the following
theorem.

Theorem 1.2 In the context of theorem 1.1, there exist infinitely many degraded mixing solu-
tions such that, at each t ∈ (0, T ], they satisfy:
(d) For every non-empty bounded rectangle R = S × L ⊂ R × (−1, 1),∣∣∣∣−

∫
x(R,t)

[u− ŭ](x, t) dx
∣∣∣∣ ≤ E (〈L〉, t){x(R, t)}α

and ∣∣∣∣−
∫
x(R,t)

[P(ρ,u)− P(ρ̆, ŭ)](x, t) dx
∣∣∣∣ ≤ E (〈L〉, t){x(R, t)}α.

Our proof is essentially based on the version of the h-principle presented by De Lellis
and Székelyhidi for the incompressible Euler equations in [9]. The concept of h-principle
(homotopy principle) and the convex integration method was developed in Differential
Geometry by Gromov [12] as a far-reaching generalization of the ground-breaking work
of Nash [21] and Kuiper [17] for isometric embeddings. The philosophy of this method
consists of adding suitable localized corrections to switch from some “relaxed solution”
to exact solutions. Müller and Šverak [20] combined this method with Tartar compensated
compactness [27] to apply it to PDEs andCalculus ofVariations (see also [7,16]).Remarkably,
De Lellis and Székelyhidi [8] discovered in 2009 that the incompressible Euler equations
could also be brought to this framework, opening a new way to understand weak solutions
in hydrodynamics, which end up in the proof of Onsager’s conjecture [14].

In the context of IPM, Córdoba et al. ([3]) applied this method to prove lack of uniqueness.
In [24] this result was extended to more general active scalar equations, and in [15] the
regularity of this kind of solutions was improved to Cα . As we have already commented,
Székelyhidi [26] proved the existence of infinitelymanyweak solutions to theMuskat-Mixing
problem for the initial flat interface f0 = 0 satisfying (a’). In addition, Székelyhidi showed
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that, for this relaxation, the mixing zone is always contained in a maximal mixing zone [26,
Prop. 4.3] given by

cmax = 2ϑ�. (15)

As suggested in [22,26], in spite of the inherent stochasticity of the Muskat-Mixing problem
explains the emanation of infinitely many microscopic solutions, there is a way to identify a
selection criterion among subsolutions which leads to uniqueness, i.e., the physically relevant
solutions are those which behave more like the mesoscopic solution. In Castro et al. [1]
generalized Székelyhidi’s result for initial interfaces f0 ∈ H5(R) and they added the property
(b’). In addition, they showed that, in the class of subsolutions given by (9), the maximal
speed of growth is (15) too. Recently, Förster and Székelyhidi [11] have proved the existence
of mixing solutions for initial interfaces f0 ∈ C3,α∗ (R). In particular, to attain (15) with the
moremanageable piecewise constant subsolutions, they constructed them as simple functions
approaching ρ̆. All this motivates the search of such degraded mixing solutions.

This is the starting point of this paper. Since we want to control our solutions at each
time slice, we follow [9]. This readily yields continuity in time, but with a careful look also
the property (b). The third and more relevant aim is to prove the property (c). To this end,
a more precise look at the h-principle of De Lellis and Székelyhidi is required. Thus, the
observation here is that, by definingmore carefully the space of subsolutions,we can show that
a generic solution will almost inherit the properties of the subsolution, which are described
by weak*-continuous functionals. For the Muskat-Mixing problem, these are the degraded
mixing solutions. In fact, we have chosen to present a general theorem (Theorem 3.1) for
a class of evolution equations, in the spirit of [9,26], instead of an adapted version to the
Muskat-Mixing problem. As an illustration, we shall discuss the case of vortex sheet for the
incompressible Euler equations.

The paper is organized as follows. In Sect. 2 we present the convex integration scheme
and in Sect. 3 we prove the corresponding quantitative h-principle. This allows to prove
Theorems 1.1 and 1.2 as particular cases in Sect. 4. In addition, we show an application to
the vortex sheet problem in Sect. 5.

2 Convex integration scheme for a class of evolution equations

Before embarking in the more general scheme, let us recall the case of the Muskat-Mixing
problem to motivate it [3,26]. By applying the rotational operator on (3), p is eliminated

∇⊥ · u = −ϑ∂1ρ. (16)

By decomposing ρ± = 〈ρ〉±� where 〈ρ〉 = ρ++ρ−
2 and � = ρ+−ρ−

2 are the mean value and
the deviation of the density respectively, it is clear we may assume 〈ρ〉 = 0. More precisely,
the mean density is absorbed by the pressure in (3). Thus, � is the significant term and all the
results follow by adding 〈ρ〉 to ρ.
Now we normalize the problem as usual. Notice that if (ρ,u) is a degraded mixing solution
with deviation 1, parameter 1 and initial density ρ0 = 1�+(0) − 1�−(0), then the pair

ρ̃(x, t) = �ρ(x, ϑ�t), ũ(x, t) = ϑ�u(x, ϑ�t),
is a degraded mixing solution with deviation �, parameter ϑ and initial density (4). Thus,
from now on we may assume � = ϑ = 1.

Following [26], let us make the change of variables in R
2 given by v = 2u + (0, ρ) and

let us introduce a new variablem to relax the non-linearity in IPM. Thus, our set of variables
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will be z = (ρ, v,m) ∈ R × R
2 × R

2 � R
5. The expression of the stationary equations of

IPM (2)(16), the BS (Biot–Savart) system, in these variables is

∇ · (v − (0, ρ)) = 0
∇⊥ · (v + (0, ρ)) = 0

in D(R2)∗. (17)

We denote L∞
BS(R

2) by the closed linear subspace of L∞
w∗(R2) consisting of functions z =

(ρ, v,m) ∈ L∞(R2) satisfying (17). Therefore, by setting the constraint as usual

K =
{
(ρ,u,m) ∈ R

5 : m = 1
2ρv, |ρ| = 1

}
,

the Muskat-Mixing problem attempts to find a bounded (with respect to the L∞-norm) and
continuous curve in L∞

BS(R
2;K)

z ∈ C0([0, T ]; L∞
BS(R

2;K)),
satisfying the Cauchy problem

∂tρ + ∇ ·m = 0 in D(R2 × (0, T ))∗,
z|t=0 = z0 in L∞

BS(R
2;K), (18)

with ρ0 = 1�+(0) − 1�−(0) and u0 = BS(−∂1ρ0) (see [1, (4.13)]). In other words, the
Muskat-Mixing problem can be written as a differential inclusion. In [26] it was observed
that it is also convenient to consider some compact subsets of K. They are

KM = {(ρ, v,m) ∈ K : |v| ≤ M} � K, M > 1.

The first step in the relaxation has been to replace the non-linearity with a new variable.
Since this is too imprecise to capture the problem, the second step consists of restricting the
variables to a bigger set K̃ ⊃ K for which the differential inclusion is still solvable and from
which K is “reachable”. In [26], a suitable relaxation for the Muskat-Mixing problem was
calculated. This is the �-convex hull [16, Def. 4.3] of K (and KM ). A point z = (ρ,u,m)
belongs to K� if and only if it satisfies the inequalities

|ρ| ≤ 1, (19)∣∣m− 1
2ρv

∣∣ ≤ 1
2 (1− ρ2), (20)

and it belongs to K�M if and only if it satisfies (19)(20) and also

|v|2 ≤ M2 − (1− ρ2), (21)∣∣m− 1
2v

∣∣ ≤ M
2 (1− ρ), (22)∣∣m+ 1

2v
∣∣ ≤ M

2 (1+ ρ). (23)

2.1 Tartar framework for evolution equations

The Tartar framework is by now awell known approach to tackle non-linear equations arising
in hydrodynamics inwhich the constitutive relations are interpreted as a differential inclusion.
We recall the definitions. As for the Muskat-Mixing problem, it seems to us convenient to
distinguish between stationary equations and conservation laws.
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Definition 2.1 Let 1 < p1, . . . , pN ≤ ∞ be Hölder exponents, D ⊂ R
d a non-empty open

domain and S = (Si ) a d-tuple of m1 × N matrices. We denote by p = (p j ) and Lp
S(D) the

closed linear subspace of

Lp
w∗(D) =

N⊗
j=1

L
p j
w∗(D),

consisting of functions z = (z j ) ∈ Lp(D) satisfying the system of m1 linear (stationary)
equations

S · ∇z =
d∑

i=1

Si∂i z = 0 in D(D)∗. (24)

If S is trivial, simply Lp
S(D) = Lp

w∗(D). If p1 = · · · = pN = p, we simply denote p = p.

Next we introduce the Cauchy problem. For some fixed closed (constraint) K ⊂ R
N , given

an initial data z0 ∈ Lp
S(D;K), our aim is to find a bounded (with respect to the Lp-norm)

and continuous curve in Lp
S(D;K)

z ∈ C0([0, T ]; Lp
S(D;K)), (25)

satisfying the Cauchy problem

C0∂t z + C · ∇x z = 0 in D(D × (0, T ))∗,
z|t=0 = z0 in Lp

S(D;K), (26)

where C0 = [Im2 |0] ∈ R
m2×N and C = (Ci ) is a d-tuple of m2 × N matrices (m2 ≤ N ).

We note that (the L p-version of) [9, Lemma 8] suggests that (25) is an appropriate space for
the problem.

In Sect. 2.2 we introduce several hypothesis, in the spirit of [9,26], under which a quantita-
tive h-principle shall be proved in Sect. 3. Before setting them, let us give a brief explanation.

Plane-wave analysis For smooth solutions, the above system of M = m1 + m2 linear
equations can be written compactly in the original Tartar framework as

T · ∇z = 0 in D × (0, T ), (27)

where T = (Ti ) is a (d + 1)-tuple of M × N matrices by setting T T
i = (STi |CT

i ) and S0 = 0.
Notice (27) can be also written in divergence-free form as

∇ · (Tz) = 0 in D × (0, T ), (28)

whereTz = (T0z| · · · |Tdz) ∈ R
M×(d+1). The set of directions of one-dimensional oscillatory

solutions of (27) is well-known as its wave cone [27]

�T =
⋃

ξ∈Sd−1×R

Ker(T · ξ) =
{
z̄ ∈ R

N : ∃ξ ∈ S
d−1 × R s.t. (Tz̄)ξ = 0

}
, (29)

where T · ξ = ∑d
i=0 ξi Ti . We note that we are excluding the frequencies ξ = (0, ξ0) in (29).

As will be discussed later, this is due to lemma 3.2.
The relaxation As for the Muskat-Mixing problem, instead of focusing on the diffi-

cult problem (26), we consider also solutions of (26) for a suitable bigger set K̃ ⊃ K
(briefly (26,K̃)) for which Lp

S(D; K̃) is (weak*) closed, with the hope of going back to
K by adding localized one-dimensional oscillatory solutions of (27). Thus, we say that
z ∈ C0([0, T ]; Lp

S(D; K̃)) is a K̃-subsolution if it satisfies (26,K̃). Obviously, z is an exact
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solution if and only if K̃ = K. The highly oscillatory behaviour of exact solutions is deter-
mined by the compatibility of the set K with the cone �T, which is expressed in terms of
the �T-convex hull of K, K�T [16, Def. 4.3]. Thus, a natural choice of K̃ is K�T . However,
sometimes it is enough to consider a smaller set [3,24]. For a further explanation see [10,
Sect. 4].

Convergence strategy We follow the strategy based on Baire category inspired in [16].
Since we want to achieve the inclusion at every time our starting point is [9, Sect. 3]. To make
general the arguments in [9] we need a function which plays the role of distance function D
which is “semistrongly concave”.

Definition 2.2 We say that a concave function D ∈ C (RN ) is semistrongly concave if there
are continuous functions G ∈ C (RN ;R

N ) and 0 
= H ∈ C (RN ;R+) being H positive
homogeneous of degree γ ≥ 1 such that

D(z + w) ≤ D(z)+G(z) · w −H(w), z, w ∈ R
N .

Remark 2.1 This concept can be understood as a weakening of the classical strongly concav-
ity, for which we recall H must be H(w) = C |w|2 for some C > 0. On the one hand, this
notion admits directions where H can be zero, e.g., (v, u) �→ e − 1

2 |v|2 in [9]. On the other
hand, it does not require the Hessian to be uniformly definite negative, e.g., v �→ e − |v|γ
for γ > 2.

Quantitative h-principle At the end, we shall reverse the relaxation. This h-principle can be
written schematically in the standard way as

(26,K) relaxation−→ (26, K̃)��� h-principle

−→

solution z ←−
convex

integration

z̆ K̃-subsolution

Since we want to select those solutions which best emphasize the relation between the relax-
ation and the convex integration, we introduce a family of (weak*) continuous functionals to
test the h-principle diagram, in other words, to help us restrict the space of K̃-subsolutions.
Let us explain it in more detail. Notice the property (c) for the Muskat-Mixing problem
requires to bound ∫

x(C,t)
[F(z)− F(z̆)](x, t)g(x, t) dx, (30)

where F(z) = ρ for z = (ρ, v,m) and g = 1. For the general case (26), F can be chosen as
any affine transformations or, more generally, as any functional F : Lp

S(D; K̃) → L p
loc(D)

(weak*) continuous on bounded subsets of D for some p ∈ (1,∞] (e.g., F(z) = u and
F = P for the property (d) in Theorem 1.2). The L p-duality suggests to consider weights
g ∈ C ((0, T ]; Lq

loc(D)) with q ∈ (p∗,∞] ( 1p + 1
p∗ = 1). We exclude q = p∗ to leave

room for another Hölder exponent r in order to prove a suitable perturbation property as in
[9, Prop. 3]. Although for the Muskat-Mixing problem we only need g = 1, we know other
problems shall require this generality. In addition, we will bound (30) on convex bodies C
instead of only rectangles R. For the map, we need first an open set Uper in the space-time
domain D × (0, T ] with

Uper(t) = {x ∈ D : (x, t) ∈ Uper} 
= ∅, t ∈ (0, T ],
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which plays the roll of �mix(t) for the Muskat-Mixing problem. In other words, this will
be the domain where the K̃-subsolution fails to be exact but being “perturbable”. Then, we
consider an auxiliary open setU ′

per inR
d×(0, T ] and some change of variables y : U ′

per → D
which play the roll ofR×(−1, 1)×(0, T ] and the map x respectively for theMuskat-Mixing
problem. Let us set the definition of this family.

Definition 2.3 We define F as the family consisting of triples (F, g, y) satisfying:

(F, g) There is a triple (p, q, r) ∈ [1,∞]3 with r 
= ∞ and 1
p + 1

q + 1
r = 1 so that

F : Lp
S(D; K̃)→ L p

loc(D), g : D × (0, T ] → R and, for every bounded open� ⊂ D
and U � Uper,

F ∈ C (Lp
S(�; K̃); L p

w∗(�)), g ∈ C ((0, T ]; Lq(U (t))).

(y) There is an open setU ′
per in the space-time domain R

d × (0, T ] so that y : U ′
per → D

with

y ∈ C ((0, T ];Hom(U ′
per(t);Uper(t))),

with y(t) differentiable at each t ∈ (0, T ] with Jacobian

Jy ∈ C((0, T ];C(U ′
per(t))).

Remark 2.2 Notice that F 
= ∅ since we can always consider U ′
per = Uper and y(t) =

idU per(t).

2.2 Hypothesis

From now on we assume that there are a closed set K̃ ⊃ K for which Lp
S(D; K̃) is (weak*)

closed and some open set U ⊂ K̃\K such that the following three hypothesis holds [9,26].

(H1) The wave cone. There are a cone � ⊂ R
N and a profile 0 
= h ∈ C1(T; [−1, 1])

with
∫
h = 0 such that the following holds. For all z̄ ∈ � and ψ ∈ C∞

c (R
d+1) there exists

ξ ∈ S
d−1 × R so that there are localized smooth solutions of (27) of the form

z̃k(y) = z̄h(kξ · y)ψ(y)+O(k−1)

where O only depends on |z̄|, |ξ | and {|Dαψ(y)| : 1 ≤ |α| ≤ n} for some fixed n.

(H2) The�-segment. There is a semistrongly concave functionD ∈ C (RN ) and an increas-
ing function � ∈ C ((0, 1]; (0,∞)) such that the following holds.

(D) The restriction function satisfies D(K̃) ⊂ [0, 1] with D|−1
K̃ (0) ⊂ K.

(�) For all z ∈ U there is a large enough �-direction z̄ ∈ �
H(z̄) ≥ �(D(z)),

where H is given in def. 2.2, while the associated �-segment stays in U

z + [−z̄, z̄] ⊂ U .

(H3) The space of K̃-subsolutions. There exists a K̃-subsolution z̆ which is exact outside
Uper

z̆(x, t) ∈ K a.e. x ∈ D\Uper(t), ∀t ∈ (0, T ],
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while it is perturbable inside

z̆ ∈ C (Uper;U ).
We surround z̆ in a topological space X0 consisting of admissible perturbations of z̆. Here,
z perturbable means that z is continuous from Uper to U , and an admissible perturbation of
z is z̃k such that zk = z + z̃k is also perturbable. Obviously, we impose as usual z and zk to
be K̃-subsolutions. The new feature is that we require z and zk to be “close” to z̆ in the sense
that they make (30) small. Next we give the precise definition of X0. For that we consider a
finite family F0 ⊂ F and, for each (F, g, y) ∈ F0, we fix some 0 < α < 1

r , some increasing
space-error function S ∈ C0([0, 1]; [0, 1]) and time-error function T ∈ C0([0, T ]; [0, 1])
with S (0) = T (0) = 0 and S (s),T (t) > 0 for s, t > 0 (e.g., (6)). We define

E (A, t) = S

(
1 ∧ sup

ς∈A
dist(ς, ∂U ′

per(t))

)
T (t), {A}α = 1 ∧ |A|α

|A| ,

where t ∈ (0, T ] and |A| denotes the volume of measurable sets A in R
d . Then, we define

X0 as follows.

Definition 2.4 A K̃-subsolution z belongs to X0 if it satisfies the following conditions.

(U ) It agrees with z̆ where the constraint holds

z(x, t) = z̆(x, t) a.e. x ∈ D\Uper(t), ∀t ∈ [0, T ],
while it is perturbable where the constraint fails

z ∈ C (Uper;U ).
(F0) There is C(z) ∈ (0, 1) such that, for all (F, g, y) ∈ F0 and t ∈ (0, T ],∣∣∣∣−

∫
y(C,t)

[
F(z)− F(z̆)

]
(x, t)g(x, t) dx

∣∣∣∣ ≤ C(z)E (C, t){y(C, t)}α,

for every convex body C ⊂ U ′
per(t).

We say that an element of X0 is a (z̆,F0)-subsolution (notice z̆ ∈ X0).

Once we have defined X0, we make the following assumption. There is a closed ball B of
Lp(D) such that, every K̃-subsolution z satisfying (U ) is a curve inside B, z([0, T ]) ⊂ B.
Indeed, z([0, T ]) ⊂ B̃ = B ∩ Lp

S(D; K̃) � B. Under this assumption, we define the closure
of X0 in the standard way as in [9]. Since B is compact and metrizable in Lp

w∗(D), its metric
dB induces naturally a metric d on Y = C0([0, T ]; (B̃, dB)) via

d(z, w) = sup
t∈[0,T ]

dB(z(t), w(t)), z, w ∈ Y.

The space Y inherits the completeness of B̃. The topology induced by d on Y is equivalent
to the topology of Y as subset of C0([0, T ]; Lp

S(D; K̃)). We define X as the closure of X0 in
(Y, d). In this way, X is a complete metric subspace of Y ⊂ C0([0, T ]; Lp

S(D; K̃)).
Remark 2.3 There are some differences between theMuskat-Mixing problem and the incom-
pressible Euler equations considered in [9]. On the one hand, for theMuskat-Mixing problem
the domain Uper(t) depends on time, whereas in [9] does not. In addition, this convex inte-
gration scheme gives more information about the solutions thanks to (F0). Indeed, for F0
trivial we would recover the usual scheme. On the other hand, in [9] the constraint K(x, t)
and consequently the sets K̃(x, t) and U (x, t) depend on space-time. Although we could
combine both cases, we prefer this approach for convenience and simplicity.
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3 Quantitative h-principle for a class of evolution equations

In this section we prove a quantitative h-principle assuming (H1)–(H3) from Sect. 2.2. First
of all let us recall several notions in Baire category theory [23]. Given a complete metric
space X, a set R ⊂ X is residual if it is countable intersection of open dense sets. By
virtue of Baire category theorem, every residual set is dense. A function J : X → R is
Baire-1 if it is pointwise limit of continuous functions, e.g., if J is upper-semicontinuous
(lim supz→z0 J (z) ≤ J (z0)∀z0 ∈ X). The set of continuity points of a Baire-1 function J

XJ = {z ∈ X : J is continuous at z} ,
is residual inX. Now, letX as in (H3). SinceUper is open in R

d × (0, T ], for every (x0, t0) ∈
Uper there are a bounded open domain (with Lipschitz boundary) x0 ∈ � � Uper(t0) and a
time-interval I = [t1, t2] � (0, T ] with t1 < t0 ≤ t2 such that �× I � Uper. We associate
to �× I the relaxation-error functional

J : X → R+

z �→ sup
t∈I

∫
�

D(z(x, t)) dx

well defined because Lp
S(D; K̃) is closed by definition of K̃ and (H2,D). Furthermore, (H2,D)

also implies
J−1(0) ⊂ {z ∈ X : z(x, t) ∈ K a.e. x ∈ �, ∀t ∈ I } . (31)

We omit the proof of the following lemma since it is analogous to [9, Lemma 4]. The crucial
information here is that D is concave and bounded on K̃.

Lemma 3.1 The functional J is upper-semicontinuous. Therefore, XJ is residual in X.

The following lemma, which is nothing but a simple observation in Youngmeasure theory,
generalizes [9, Lemma 7]. Observe this can be understood as a generalization of Riemann–
Lebesgue lemma. For our purpose, since the convex integration method is based on adding
suitable perturbations z̃k from (H1) to a given z ∈ X0, for h as in (H1) and A = id, this

lemma will imply zk = z + z̃k
d→ z, whereas for A = H as in (H2,D) (recall def. 2.2) it will

imply J (zk) � J (z). Notice the same cannot be done with frequencies ξ = (0, ξ0). All this
allow to prove XJ ⊂ J−1(0) and then, by covering Uper, the quantitative h-principle.

Lemma 3.2 Let h ∈ L∞(T;R
N ) and ξ ∈ S

d−1 × R. Then, for every open � ⊂ R
d , g ∈

L1(�) and A ∈ C (RN ),∫
�

g(x)A(h(kξ · (x, t))) dx →
∫
�

g(x) dx
∫
T

A(h(τ )) dτ, (32)

uniformly in t ∈ R when k → ∞.

Proof First assume g ∈ C∞
c (�). If ξ = (ζ, ξ0), take an orthonormal basis {ζi } of R

d with
ζ1 = ζ and O = (ζ1| · · · |ζd) ∈ SO(d). We make first the change of variables x = Ox ′ =∑d

i=1 x
′
iζi with �

′ = OT� and G(x ′) = g(Ox ′)∫
�

g(x)A(h(kξ · (x, t))) dx =
∫
�′

G(x ′)A(h(kx ′1 + kξ0t)) dx
′,

∫
�

g(x) dx =
∫
�′

G(x ′) dx ′.
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After that, we integrate by parts

∫
�′

G(x ′)A(h(kx ′1 + kξ0t)) dx
′ = −1

k

∫
�′
∂1G(x

′)
∫ kx ′1

0
A(h(τ + kξ0t)) dτ dx

′,
∫
�′

G(x ′) dx ′ = −
∫
�′
∂1G(x

′)x ′1 dx ′.

Finally, by adding and subtracting the term

1

k

∫
�′
∂1G(x

′)
∫ �kx ′1 

0
A(h(τ + kξ0t)) dτ dx

′ = 1

k

∫
�′
∂1G(x

′)�kx ′1 
∫ 1

0
A(h(τ )) dτ dx ′,

where �· is the ceiling function, we get
∣∣∣∣
∫
�

g(x)A(h(kξ · (x, t))) dx −
∫
�

g(x) dx
∫ 1

0
A(h(τ )) dτ

∣∣∣∣
= 1

k

∣∣∣∣∣
∫
�′
∂1G(x

′)
[∫ �kx ′1 −kx ′1

0
A(h(τ + kξ0t)) dτ + (kx ′1 − �kx ′1 )

∫ 1

0
A(h(τ )) dτ

]
dx ′

∣∣∣∣∣
≤ 2

k
‖∂1G‖L1(�′)‖A‖C0(Bh ),

being Bh the ball of radius ‖h‖L∞(T). Therefore, (32) follows. By density, the result is
extended for all g ∈ L1(�). "#

The following lemma shows that the�-segments in (H2) can be selected uniformly away
from the boundary on compact sets.

Lemma 3.3 Let � from (H1) and D,H,� from (H2). For every z ∈ U, define

�z = {σ = [−z̄, z̄] ⊂ � : H(z̄) ≥ �(D(z)), z + σ ⊂ U },
which is non-empty by (H2). Then, the function

D : U → (0,∞)
z �→ sup

σ∈�z

dist(z + σ, ∂U )

is lower-semicontinuous.

Proof Fix z0 ∈ U and 0 < ε < 1
2 . The definition of D yields a σ0 = [−z̄0, z̄0] ∈ �z0 so that

dist(z0 + σ0, ∂U ) ≥ (1− ε)D(z0) > 0.

Now let (zk) ⊂ U with zk → z0. Since � ◦ D is continuous and positive on U , the term

δk =
∣∣∣∣∣
(
�(D(zk))
�(D(z0))

) 1
γ − 1

∣∣∣∣∣ → 0, (33)

where γ is the degree of homogeneity ofH (def. 2.2). We take λk = 1+ δk and σk = λkσ0 =
[−λk z̄0, λk z̄0]. Let us show that, for a big enough k0, we have σk ∈ �zk for all k ≥ k0. On
the one hand, since H is positive homogeneous of degree γ , σ0 ∈ �z0 and (33), we have

H(λk z̄0) = λγkH(z̄0) ≥ λγk�(D(z0)) ≥ �(D(zk)).
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On the other hand, by adding and subtracting z0 + λz̄0, the triangle inequality implies

dist(zk + σk, ∂U ) = min|λ|≤1
z′∈∂U

|(zk + λλk z̄0)− z′|

≥ dist(z0 + σ0, ∂U )− |zk − z0| − δk |z̄0|.
Hence, for a big enough k0, dist(zk+σk, ∂U ) ≥ (1−2ε)D(z0) and consequently zk+σk ⊂ U
for all k ≥ k0. Therefore

D(zk) ≥ dist(zk + σk, ∂U ) ≥ (1− 2ε)D(z0), (34)

for all k ≥ k0. Finally, by computing the lim inf on (34) and then making ε ↓ 0 we deduce
that D is lower-semicontinuous at z0. "#

The key point to prove the quantitative h-principle is the following perturbation property.
The steps 1, 2 and 4 in the proof are an adaptation of the proof of [9, Prop. 3]. We recall it
for convenience. The step 3 is the new requirement from (H3,F0) and our main contribution
in this scheme. More precisely, although the approximating sequence is constructed in the
same way as in [9, Prop. 3], we need to check that it belongs to our X0, i.e., that it satisfies
(H3,F0).

Proposition 3.1 (Perturbation property) For everyμ > 0 there exists β(�,μ) > 0 such that,
for all z ∈ X0 satisfying

J (z) ≥ μ,
there exists a sequence (zk) ⊂ X0 with zk

d→ z so that

J (z) ≥ lim sup
k→∞

J (zk)+ β. (35)

Proof Step 1. The shifted grid and the discretization First we recall how the shifted grid and
the discretization are constructed in [9, Prop. 3 step 1]. Let s > 0 be the side length of the
cubes in the grid to be determined. Denote I s = [t1 − s, t2 + s] and Is = I s ∩ [0, T ] =
[t1 − s, (t2 + s) ∧ T ]. Fix 0 < s0 ≤ 1

2 t1 such that � × Is0 � Uper. For ζ ∈ Z
d , let Qs

ζ

and Q̃s
ζ be the cubes in R

d centered at sζ with side length s and 3
4 s respectively. Next, for

(ζ, i) ∈ Z
d × Z, depending on

∑
j ζ j ∈ 2Z + b for some binary number b ∈ {0, 1}, define

Cs
ζ,i = Qs

ζ × I si,b, C̃s
ζ,i = Q̃s

ζ × Ĩ si,b,

where I si,b and Ĩ si,b are the intervals inR centered at s(i+ b
2 )with length s and

3
4 s respectively

(see [9, Fig. 1]). For each b ∈ {0, 1}, define
�s

b =
⋃

Cs
ζ,i⊂�×I s

|ζ |∈2Z+b

Q̃s
ζ , I sb =

⋃
I si,b⊂I s

Ĩ si,b.

Takeχ ∈ C∞
c ((0, 1); [0, 1])withχ |( 18 , 78 ) = 1.Considerψ s

ζ,i (x, t) = χ s
ζ1
(x1) · · ·χ s

ζd
(xd)χ s

i,b

(t) = χ s
ζ (x)χ

s
i,b(t) the corresponding cut-off function on Cs

ζ,i with ψ s
ζ,i |C̃s

ζ,i
= 1, i.e.,

χ s
ζ j

= χ
( ·−sζ j

s

)
and χ s

i,b = χ
( ·−s(i+b/2)

s

)
. Now, for every f : R

d+1 → R we define its

discretization in the grid as the simple function

�s f =
∑

(ζ,i)∈Zd×Z

f (〈C̃s
ζ,i 〉)1C̃s

ζ,i
.
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For uniformly continuous functions f on �× Is0 it follows that, for any b ∈ {0, 1},

sup
t∈I

∣∣∣∣∣
∫
�s
b

�s f (x, t) dx − 1
2

( 3
4

)d ∫
�

f (x, t) dx

∣∣∣∣∣ → 0,

when s ↓ 0. Hence, since D ◦ z and the constant function 1 are uniformly continuous on
�× Is0 , there exists 0 < s1 ≤ s0 depending on D, z, μ and |�| so that

sup
t∈I

∣∣∣∣∣
∫
�s
b

�sD(z(x, t)) dx − 1
2

( 3
4

)d ∫
�

D(z(x, t)) dx

∣∣∣∣∣ ≤ 1
8

( 3
4

)d
μ, (36)

∣∣∣|�s
b| − 1

2

( 3
4

)d |�|
∣∣∣ ≤ 1

4

( 3
4

)d |�|, (37)

for every b ∈ {0, 1} and 0 < s ≤ s1.
Now, we need to refine the grid to guarantee that the �-segment from lemma 3.3 associated
to the image of the middle point of each cube in the grid is also away from the boundary for
the rest of the points of the cube. Since z(�× Is0) � U , lemma 3.3 ensures that there exists
δ(z,�, I ) > 0 so that, for all y ∈ �× Is0 there is a�-segment σz(y) = [−z̄(y), z̄(y)] ∈ �z(y)

satisfying

dist(z(y)+ σz(y), ∂U ) ≥ δ.
Let us fix 0 < s2 ≤ s1 such that |z(y) − z(y′)| ≤ 1

2 δ whenever max j |y j − y′j | ≤ 1
2 s2 on

�× Is0 . From now on, whenever there is no ambiguity, we skip s2 to simplify the notation.
Step 2. The perturbation Here we recall how the perturbation is constructed in [9,

Prop. 3 step 2]. For eachCζ,i ⊂ �× I s2 , denote yζ,i = 〈C̃ζ,i 〉, zζ,i = z(yζ,i ) and σζ,i = σzζ,i .
Let ξζ,i ∈ S

d−1×R be the direction and z̃kζ,i the localized smooth solution in (H1) associated
to z̄ζ,i and ψζ,i . Then, since

z(y)+ z̃kζ,i (y) = (zζ,i + z̄ζ,i h(kξζ,i · y)ψζ,i (y))+ (z(y)− z(yζ,i ))+O(k−1),

for all y ∈ Cζ,i , for a big enough k0

z(y)+ z̃kζ,i (y) ∈ B δ
2+O(k−1)(zζ,i + σζ,i ) ∈ U ,

for all y ∈ Cζ,i and k ≥ k0. We define the perturbation as usual

z̃k =
∑

Cζ,i⊂�×I s2

z̃kζ,i and zk = z + z̃k .

Hence, for every ϕ ∈ Lq(D), by applying (H1) and lemma 3.2, we get
∣∣∣∣
∫
D
ϕ(x) · (zk(x, t)− z(x, t)) dx

∣∣∣∣ =
∑

Cζ,i⊂�×I s2

∣∣∣∣∣
∫
Qζ
ϕ(x) · z̃kζ,i (x, t) dx

∣∣∣∣∣
≤

∑
Cζ,i⊂�×I s2

(
‖ϕ‖Lq(D )‖z̃kζ,i (·, t)− z̄ζ,i h(kξζ,i · (·, t))ψζ,i (·, t)‖Lp(Qζ )

+ |z̄ζ,i |
∣∣∣∣∣
∫
Qζ
ϕ(x) · χζ (x)h(kξζ,i · (x, t)) dx

∣∣∣∣∣
)

→
∑

Cζ,i⊂�×I s2

|z̄ζ,i |
∣∣∣∣∣
∫
Qζ
ϕ(x) · χζ (x) dx

∣∣∣∣∣
∣∣∣∣
∫
T

h dτ

∣∣∣∣ = 0,
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uniformly in t ∈ [0, T ] when k → ∞ (notice the sum is finite). Therefore, zk → z in
C0([0, T ]; Lp

w∗(D)) when k → ∞, in particular in C0([0, T ]; Lp
S(D; K̃)).

Step 3. The (F0)-property Here we want to show that, for a big enough k1 ≥ k0, zk ∈ X0

for all k ≥ k1. Since we have checked (H3,U ), it is enough to show (H3,F0). The idea of
the proof is that, for small C’s the property holds immediately, whereas for large C’s one
can reduce to a finite number of sets and times in order to exploit then the convergence
in C0([0, T ]; Lp

S(D; K̃)). Fix 0 < C ′(z) < 1 − C(z) where C(z) ∈ (0, 1) is the constant
of z from (H3,F0). Since F0 is finite, without loss of generality we may assume F0 =
{(F, g, y)} for simplicity. If ỹ : U ′

per → Uper denotes the homeomorphism defined by

ỹ(x, t) = (y(x, t), t), then ỹ−1(� × Is0) � U ′
per. On the one hand, this implies that the

projection of ỹ−1(� × Is0) into R
d , i.e., ∪t∈Is0 y

−1(�, t), is bounded. Hence, we can fix

a bounded cube Q0 ⊂ R
d containing it. On the other hand, this implies that y−1(�, t) is

uniformly (in time) away from ∂U ′
per(t). Let us consider this distance

ε = ε(�, I ,F0) = 1 ∧ inf
t∈Is0

dist(y−1(�, t), ∂U ′
per(t)) > 0,

and also

E = E(�, I ,F0) = S (ε)T (t1 − s0) > 0.

Hence, for every (convex body) C ⊂ U ′
per(t) and t ∈ Is2 with y(C, t) ∩� 
= ∅, necessarily
E (C, t) ≥ E . (38)

Now, for every (convex body) C ⊂ U ′
per(t) and t ∈ (0, T ], by adding and subtracting the

corresponding term with z and applying that z ∈ X0 we deduce∣∣∣∣
∫
y(C,t)

[F(zk)− F(z̆)](x, t)g(x, t) dx
∣∣∣∣

≤ C(z)E (C, t)(1 ∧ |y(C, t)|α)+
∣∣∣∣
∫
y(C′,t)

[F(zk)− F(z)](x, t)g(x, t) dx
∣∣∣∣ ,

where C′ = C ∩ Q0 because there is not perturbation outside Q0. Indeed, since there is not
perturbation outside�× Is2 and Q0 is a convex body, by (38) it is enough to show that there
is a big enough k1 ≥ k0 such that∣∣∣∣

∫
y(C′,t)

[F(zk)− F(z)](x, t)g(x, t) dx
∣∣∣∣ ≤ C ′E(1 ∧ |y(C′, t)|α), (39)

for every convex body C′ ⊂ Q0 ∩U ′
per(t), t ∈ Is2 and k ≥ k1.

Now (recall (H3)), since zk([0, T ]), z([0, T ]) ⊂ B̃ � Lp
S(�; K̃) and F ∈ C (Lp

S(�; K̃); L p
w∗

(�)), we have F(zk([0, T ])),F(z([0, T ])) ⊂ F(B̃) � L p
w∗(�). Consider the constant

B = B(�, I ,F0) = sup
z∈B̃

‖F(z)‖L p(�)‖g‖C0(Is0 ;Lq (�)) <∞.

Then, for every (convex body) C′ such that |y(C′, t)| ≤ 1 and 2B|y(C′, t)| 1r −α ≤ C ′E ,
Hölder inequality implies (39) because∫

y(C′,t)
|[F(zk)− F(z)](x, t)||g(x, t)| dx ≤ 2B|y(C′, t)| 1r ≤ C ′E(1 ∧ |y(C′, t)|α).
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For all the rest C′, there is a constant D(�, I ,F0,C ′) > 0 such that

(1 ∧ |y(C′, t)|α) ≥ D. (40)

Let us fix a fine enough and finite families of cubes and times respectively. For the cubes, let
j ∈ N such that

2B sup
t∈Is0

‖Jy(t)‖
1
r
C0(y−1(�,t))

(4d
3
2 |Q0|2− j )

1
r ≤ 1

3C
′ED, (41)

where Jy(t) is the Jacobian of y(t). With this j we construct the homogeneous grid in Q0 with
side length 2− j�(Q0), being �(Q0) the side length of Q0. Let us denote {Q1, . . . , Qa0} by
the finite family of all possible cubes in the grid of side length 2− j�(Q0). Then, we consider
the finite family of all possible unions of these cubes

Q = {QF : F ⊂ {1, . . . , a0}} where QF =
⋃
a∈F

Qa,

with Q∅ = ∅. Thus, for each C′ ⊂ Q0 we define C′
Q ∈ Q as

C′
Q =

⋃
Qa⊂C

Qa .

Now, for every r ≥ 0 we define the convex subset C′
r = {ς ∈ C′ : dist(ς, Q0\C′) ≥ r}

of C′. We claim that C′
r ⊂ C′

Q for r = 2
√
d�(Q0)2− j . This follows from the fact that if

ς ∈ C′
r and Qa is a cube in the grid containing ς , then for all ς ′ ∈ Qa we have

dist(ς ′, Q0\C′) ≥ dist(ς, Q0\C′)− dist(ς ′, ς) ≥ r − r
2 > 0,

and consequently ς ′ ∈ C′. Hence, by the monotonicity of the perimeter of convex bodies
and Fubini’s theorem it follows that

|C′\C′
Q| ≤ |C′\C′

r | ≤ |∂C′|r ≤ |∂Q0|r = 4d
3
2 |Q0|2− j , (42)

where |∂C′| and |∂Q0| = 2d�(Q0)
d−1 denote the perimeter of C′ and Q0 respectively. In

particular, for every convex body C′ ⊂ Q0 ∩ U ′
per(t) and t ∈ Is2 , (41), (42) and Hölder

inequality implies∫
y(C′\C′

Q,t)
|[F(zk)− F(z)](x, t)||g(x, t)| dx ≤ 2B sup

t∈Is2
‖Jy(t)‖

1
r
C0(y−1(�,t))

|C′\C′
Q| 1r

≤ 1
3C

′ED. (43)

For the times, since

t �→ GF (·, t) = g(·, t)1y(QF∩y−1(�,t),t)(·),
is uniformly continuous from Is2 to L

p∗(�),we can take afinite family of times {t1, . . . , tc0} ⊂
Is2 such that, for every t ∈ Is2 there is c ∈ {1, . . . , c0} so that

2 sup
z∈B̃

‖F(z)‖L p(�)‖GF (·, t)− GF (·, tc)‖L p∗ (�) ≤ 1
3C

′ED, (44)

for all F ⊂ {1, . . . , a0}. Once these families are fixed, since zk → z inC0([0, T ]; Lp
S(D; K̃))

and F ∈ C (Lp
S(�; K̃); L p

w∗(�)), we can take a big enough k1 ≥ k0 such that

sup
t∈Is2

∣∣∣∣
∫
�

[F(zk)− F(z)](x, t)GF (x, tc) dx

∣∣∣∣ ≤ 1
3C

′ED (45)
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for all F ⊂ {1, . . . a0}, c ∈ {1, . . . c0} and k ≥ k1. Finally, for every convex body C′ ⊂
Q0 ∩ U ′

per(t) and t ∈ Is2 satisfying (40) consider QF = C′
Q and tc as before. Then, by

adding and subtracting first the term∫
y(C′

Q,t)
[F(zk)− F(z)](x, t)g(x, t) dx =

∫
y(QF∩y−1(�,t),t)

[F(zk)− F(z)](x, t)g(x, t) dx

=
∫
�

[F(zk)− F(z)](x, t)GF (x, t) dx,

where we have used that zk = z outside �, and secondly the term∫
�

[F(zk)− F(z)](x, t)GF (x, tc) dx,

(43)–(45) yields∣∣∣∣
∫
y(C′,t)

[F(zk)− F(z)](x, t)g(x, t) dx
∣∣∣∣

≤ 2B sup
t∈Is2

‖Jy(t)‖
1
r
C0(y−1(�,t))

|C′\C′
Q| 1r + 2 sup

z∈B̃
‖F(z)‖L p(�)‖GF (·, t)

− GF (·, tc)‖L p∗ (�) +
∣∣∣∣
∫
�

[F(zk)− F(z)](x, t)GF (x, tc) dx

∣∣∣∣ ≤ C ′ED,

for all k ≥ k1, as we wanted.
Step 4. The β-property Here we follow [9, Prop. 3 step 3] but replacing “e− 1

2 |v|2” by D.
Let b ∈ {0, 1}. Then, for every Cζ,i ⊂ �b, since ψ s

ζ,i |C̃s
ζ,i

= 1 we have

H(z̃k(y)) = H(z̄ζ,i h(kξζ,i · y)), y ∈ C̃ζ,i ,

where H is given in def. 2.2. Hence, lemma 3.2 implies

lim
k→∞

∫
Q̃ζ

H(z̃k(x, t)) dx =
∫
Q̃ζ

∫
T

H(z̄ζ,i h(τ )) dτ dx = CγH(z̄ζ,i )|Q̃ζ |,

uniformly in t ∈ I s2b ∩ I , whereCγ = ‖h‖γLγ (T) > 0. Let�∗ be the convex-envelope (see [16,
Def. 1.7]) of � in (H2), which is also increasing with �∗ ∈ C ((0, 1]; (0,∞)) and �∗ ≤ �.
Then,

H(z̄ζ,i ) ≥ �∗(D(zζ,i )) = �∗(�D(z(y))), y ∈ C̃ζ,i .

Therefore, for each b ∈ {0, 1}, by summing over all the cubes and applying Jensen inequality,
we get

lim
k→∞

∫
�b

H(z̃k(x, t)) dx ≥ Cγ

∫
�b

�∗(�D(z(x, t))) dx

≥ Cγ |�b|�∗
(

1

|�b|
∫
�b

�D(z(x, t)) dx
)

≥ Cγ
4

( 3
4

)d |�|�∗
(

1

|�|
∫
�b

�D(z(x, t)) dx
)
,

uniformly in t ∈ I s2b ∩ I . In general,

lim inf
k→∞

∫
�

H(z̃k(x, t)) dx ≥ Cγ
4

( 3
4

)d |�|�∗
(

1

|�| min
b∈{0,1}

∫
�b

�D(z(x, t)) dx
)
,
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uniformly in t ∈ (I s20 ∪ I s21 ) ∩ I = I . Since zk = z + z̃k , the semistrongly concavity of D
implies∫
�

D(zk(x, t)) dx ≤
∫
�

D(z(x, t)) dx +
∫
�

G(z(x, t)) · z̃k(x, t) dx −
∫
�

H(z̃k(x, t)) dx .

Since G ◦ z is uniformly continuous on � × Is0 , without loss of generality (by taking a
subsequence and relabelling if necessary), we may assume the linear term goes to zero
uniformly in t ∈ I when k → ∞. Then,

lim sup
k→∞

∫
�

D(zk(x, t)) dx ≤
∫
�

D(z(x, t)) dx

− Cγ
4

( 3
4

)d |�|�∗
(

1

|�| min
b∈{0,1}

∫
�b

�D(z(x, t)) dx
)

uniformly in t ∈ I . Finally, at each t ∈ I , if∫
�

D(z(x, t)) dx ≤ 1
2μ,

then directly

lim sup
k→∞

∫
�

D(zk(x, t)) dx ≤ 1
2μ ≤ J (z)− 1

2μ.

Otherwise, by applying (36),

lim sup
k→∞

∫
�

D(zk(x, t)) dx ≤ J (z)− Cγ
4

( 3
4

)d |�|�∗
(

1
8

( 3
4

)d μ

|�|
)
.

In general, (35) holds for

β(�,μ) = min

{
1
2μ,

Cγ
4

( 3
4

)d |�|�∗
(

1
8

( 3
4

)d μ

|�|
)}
.

This concludes the proof. "#
As a consequence of the perturbation property, we deduce the quantitative h-principle that

we are looking for. In addition, we show a corollary which can be though as a generalization
of the “mix in space at each time slice” property (def. 1.2(b)) for theMuskat-Mixing problem.

Theorem 3.1 (Quantitative h-principle) The set of functions z ∈ X satisfying:

(i) z is an exact solution.
(ii) For all (F, g, y) ∈ F0 and t ∈ (0, T ],∣∣∣∣−

∫
y(C,t)

[
F(z)− F(z̆)

]
(x, t)g(x, t) dx

∣∣∣∣ ≤ E (C, t){y(C, t)}α,

for every convex body C ⊂ U ′
per(t).

contains a residual set in X.

Proof Let us start showing that all z ∈ X satisfies (ii). Take (zk) ⊂ X0 with zk
d→ z. Fix

t ∈ (0, T ] and a convex body C ⊂ U ′
per(t). Hence, since (F, g, y) ∈ F0, we have∫

y(C,t)
F(zk)(x, t)g(x, t) dx →

∫
y(C,t)

F(z)(x, t)g(x, t) dx,
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when k → ∞. This implies (ii). Let us show now that the set of exact solutions contains a
residual set. For all (x0, t0) ∈ Uper let (x0, t0) ∈ �× I � Uper and the associated relaxation-
error functionalJ . Following [9], the perturbation property impliesXJ ⊂ J−1(0). Thus, by
coveringUper (second countable) with a countable family {� j × I j }, we deduce that ∩ jXJ j

is a residual set in X contained in ∩ jJ−1
j (0) ⊂ {z ∈ X : z exact solution} (recall (31)). "#

Remark 3.1 As we state in def. 1.2(c), ifU ′
per(t) is convex for all t ∈ (0, T ], then the error E

can be written in terms of the center of mass 〈C〉 = −
∫
C ς dς instead of the farthest point.

Corollary 3.1 Let B be a countable family of compact sets in R
d . Suppose that for some

(F, g, y) ∈ F0 there is a compact set C � R so that every z ∈ X0 satisfies:

(iii) At each t ∈ (0, T ], for every B ∈ B with B ⊂ U ′
per(t),∫

y(B,t)
F(z)(x, t)g(x, t) dx /∈ C .

Then, the set of functions z ∈ X satisfying (i), (ii) and (iii) contains a residual set in X.

Proof Since B is countable, we may assume for simplicity that B = {B}. Let I be a compact
set of times so that B × I � U ′

per. Define

CB,I =
{
z ∈ X :

∫
y(B,t)

F(z)(x, t)g(x, t) dx ∈ C for some t ∈ I

}
.

We claim that CB,I is closed in X. Let (zk) ⊂ CB,I with zk → z in X. By definition, for
each k there is tk ∈ I and ck ∈ C such that∫

y(B,tk )
F(z)(x, tk)g(x, tk) dx = ck .

Since I and C are compact, without loss of generality we may assume tk → t0 and ck → c0
for some t0 ∈ I and c0 ∈ C respectively. On the one hand, since� = ∪t∈I y(B, t) is bounded
in D and

t �→ G(·, t) = g(·, t)1y(B,t)(·),
is continuous from I to L p∗(�), then∫
�

|F(zk)(x, tk)||G(x, tk)− G(x, t0)| dx ≤ sup
z∈B̃

‖F(z)‖L p(�)‖G(·, tk)− G(·, t0)‖L p∗ (�) → 0,

when k → ∞. On the other hand, since

dB(zk(tk), z(t0)) ≤ d(zk, z)+ dB(z(tk), z(t0))→ 0,

when k → ∞, we have F(zk(tk))→ F(z(t0)) in L p
w∗(D) and consequently

lim
k→∞

∫
�

F(zk)(x, tk)G(x, t0) dx =
∫
�

F(z)(x, t0)G(x, t0) dx .

Therefore,∫
y(B,t0)

F(z)(x, t0)g(x, t0) dx = lim
k→∞

∫
y(B,tk )

F(zk)(x, tk)g(x, tk) dx = lim
k→∞ ck = c0,
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and z ∈ CB,I . Since CB,I ∩ X0 = ∅ and CB,I ⊂ X = X0, necessarily (CB,I )
◦ = ∅, so

X\(CB,I ) is open and dense in X. Finally, since the set of times I∗ for which B ⊂ U ′
per(t) is

the union of a countable family of compact set of times {I j }, then ∩ j (X\(CB,I j )) is residual
in X. "#

4 Proof of themain results

In this section we prove theorems 1.1 and 1.2 as particular cases of theorem 3.1. For the
Muskat-Mixing problem, let us fix 1 ≤ c < 2 and f0 ∈ H5(R). By virtue of [1, Thm. 4.1],
there is f ∈ C0([0, T ]; H4(R)) solving a suitable Cauchy problem for f0 (see [1, (1.11)]).
We consider the map x associated to f and c and we define the coarse-grained density ρ̆
adapted to it (9) and ŭ = BS(−∂1ρ̆) (see [1, (4.13)]). Thus, the domain of perturbation is

Uper(t) = �mix(t), t ∈ (0, T ].
The divergence-free expression (28) of the relaxation of the Muskat-Mixing problem is

∇ · (Tz) = ∇ ·
⎛
⎝ v1 v2 − ρ 0
v2 + ρ −v1 0
m1 m2 ρ

⎞
⎠ = 0, (46)

in R
2 × (0, T ). From this, it is clear that the associated wave cone is

�T = {(ρ̄, v̄, m̄) ∈ R
5 : |ρ̄| = |v̄|}. (47)

This was already observed in [3,24,26]. For (H1), we take � = �T. For convenience, we
briefly recall how it is proved in [3] to be sure that the directions are not of the form (0, ξ0).
From (46) it is natural to consider the potential

P(φ, ϕ) =
⎛
⎝ 2∂12φ (∂22 − ∂11)φ −�φ 0
(∂22 − ∂11)φ +�φ −2∂12φ 0

−∂t1φ − ∂2ϕ −∂t2φ + ∂1ϕ �φ

⎞
⎠ ,

for φ, ϕ ∈ C3(R3) (notice ∇ · P(φ, ϕ) = 0). Let z̄ = (ρ̄, v̄, m̄) ∈ � and 0 
= h ∈
C1(T; [−1, 1]) with ∫

h = 0. Take H ∈ C3(T) such that H ′′ = h. Let ξ = (ζ, ξ0) ∈ S
1 ×R

and a, b ∈ R to be determined. Consider

φk(y) = a
k2
H(kξ · y), ϕk(y) = b

k H
′(kξ · y).

Then,

P(φk, ϕk) =
⎛
⎝ 2aζ1ζ2 −2aζ 21 0

2aζ 22 −2aζ1ζ2 0
−aζ1ξ0 − bζ2 −aζ2ξ0 + bζ1 a

⎞
⎠ h(kξ · y).

For our purpose, take a = ρ̄. Since z̄ ∈ �, if ρ̄ = 0, then z̄ = (0, 0, m̄). Hence, for this
�-direction we take b = |m̄| and ζ ∈ S

1 such that bζ⊥ = m̄. Suppose now that ρ̄ 
= 0. Then,

there is η ∈ S
1 such that v̄ = ρ̄η. This induces to take ζ1 =

√
1−η2
2 and ζ2 = sgn(η1)

√
1+η2
2

(notice 2ζ 21 = 1 − η2, 2ζ 22 = 1 + η2 and 2ζ1ζ2 = η1). Finally, since a 
= 0, we can take
(ξ0, b) ∈ R

2 solving (−aζ1 −ζ2
−aζ2 ζ1

)(
ξ0
b

)
=

(
m̄1

m̄2

)
.
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Therefore, for every ψ ∈ C∞
c (R

3), we obtain a localized plane-wave solution z̃k

P(ψφk, ψϕk) = T(z̄h(kξ · y)ψ +O(k−1)) = Tz̃k,

where O only depends on |z̄|, |ξ | and {|Dαψ(y)| : 1 ≤ |α| ≤ 2}.
For (H2), following [26], we set

K̃ = K�, UM = (K�M )◦.
By virtue of [26, Prop. 2.4], L∞

BS(R
2;K�) is (weak*) closed. For convenience, we prove a

more precise version of [26, Prop. 3.3].

Lemma 4.1 Let M > 2. Consider the semistrongly concave function D(z) = 1 − ρ2 (with
G(z) = −2(ρ, 0, 0) and H(z) = ρ2) for z = (ρ, v,m). Then, there is an increasing
function �M ∈ C ((0, 1]; (0,∞)) so that, for all z ∈ UM there is a sizeable �-direction
z̄ = (ρ̄, ū, m̄) ∈ �

ρ̄2 ≥ �M (1− ρ2),
while the associated �-segment stays in UM

z + [−z̄, z̄] � UM .

Proof Let z = (ρ, v,m) ∈ UM . We want to find a suitable z̄ = (1, e, m̄) ∈ � such that

zλ = z + λz̄ ∈ UM ,

for all |λ|2 ≤ �M (1 − ρ2). For (19), it is easy to show that there is an universal constant
0 < c0 <

1
2 such that

1
2 ≤ 1± ρλ

1± ρ ≤ 2,

for all |λ| ≤ c0(1−ρ2). Thus, we just need to control the other conditions. First assume that
|v| ≥ |ρ|. Denote

me = 1
2ρv + 1

2 (1− ρ2)e, e ∈ S
1.

Consider the compact set

 (ρ, v) = {
e ∈ S

1 : ∣∣me ± 1
2v

∣∣ ≤ M
2 (1± ρ)} , (48)

where (48) means that me must satisfy both inequalities + and − respectively. Since
∣∣me ± 1

2v
∣∣2 = 1

4 (1± ρ)2|v|2 + 1
4 (1− ρ2)2 ± 1

2 (1± ρ)(1− ρ2)v · e,
the direction e ∈ S

1 belongs to  if and only if

∓2(1∓ρ)(ρ − v · e) ≤ M2 − |v|2 − (1− ρ2),
for both+ and− respectively. Since |v| ≥ |ρ|, there is e ∈ S

1 such that v · e = ρ, so 
= ∅.
In particular, for every e ∈  , since (1 − ρ2)|ρ − v · e| ≤ M2 − |v|2 − (1 − ρ2), for (21)
we have

M2 − |vλ|2 − (1− (ρλ)2) = M2 − |v|2 − (1− ρ2)+ 2λ(ρ − v · e)
≥ (1− 2c0)(M

2 − |v|2 − (1− ρ2)).
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Consider the relative-error points

ω = 2
1−ρ2

(
m− 1

2ρv
)
, ω± = 2

M(1±ρ)
(
m± 1

2v
)
,

which satisfy |ω|, |ω±| < 1. Since  is non-empty, we can select the direction e ∈  

minimizing |m−me| = 1
2 (1− ρ2)|e − ω|. Now, straightforward computations yield

mλ − 1
2ρλvλ = 1

2 (1− (ρλ)2)ω + λ (m̄− m̄0)+ 1
2λ

2(ω − e), (49)

mλ ± 1
2vλ = M

2 (1± ρλ)ω± + λ (m̄− m̄±) , (50)

where

m̄0 = 1
2 (v + ρe)− ρω, m̄± = ∓ 1

2e ± M
2 ω±.

First assume |ω| > |ω+| ∨ |ω−|. Since M > 2, it is not difficult to show that e = ω
|ω| . Take

m̄ = m̄0.

On the one hand, by applying (49), (20) holds if and only if

|e − ω|2
1− |ω|2

(
λ2

1− ρ2
)2

− 2
1− (ρλ)2
1− ρ2

(e − ω) · ω
1− |ω|2

λ2

1− ρ2 <
(
1− (ρλ)2
1− ρ2

)2

.

Hence, there is an universal constant 0 < c1 ≤ c0 such that the above inequality holds for
all |λ| ≤ c1(1− ρ2). On the other hand, since

m̄0 − m̄± = 1
2 (ρ ± 1)(e − ω), (51)

by applying (50), (22) and (23) hold if and only if

|e − ω|2
1− |ω±|2 λ

2 ± 2M
1± ρλ
1± ρ

(e − ω) · ω±
1− |ω±|2 λ < M2

(
1± ρλ
1± ρ

)2

.

Since |e − ω| = 1 − |ω| ≤ 1 − |ω±|, there is an universal constant 0 < c2 ≤ c1 such that
the above inequality holds uniformly for |λ| ≤ c2(1− ρ2). Otherwise, for some ± we have
|ω±| ≥ |ω| ∨ |ω∓|. Take

m̄ = m̄±.

On the one hand, the ± condition of (22) and (23) is trivially checked because (50) implies∣∣mλ ± 1
2vλ

∣∣ = M
2 (1± ρλ)|ω±|.

On the other hand, since

m̄± − m̄∓ = ∓(e − ω),
by applying (50), the ∓ condition of (22) and (23) holds if and only if

|e − ω|2
1− |ω∓|2

(
λ

1∓ρ
)2

∓M
1∓ρλ
1∓ρ

(e − ω) · ω∓
1− |ω∓|2

λ

1∓ρ <
M2

4

(
1∓ρλ
1∓ρ

)2

. (52)

Finally, by applying (51) and (49), the condition (20) is equivalent to

|e − ω|2
1− |ω|2

(
λ2 + (ρ ± 1)λ

1− ρ2
)2

− 2
1− (ρλ)2
1− ρ2

(e − ω) · ω
1− |ω|2

λ2 + (ρ ± 1)λ

1− ρ2 <

(
1− (ρλ)2
1− ρ2

)2

.

(53)
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Both (52) and (53) can be verified for |λ| depending onM and 1−ρ2.More precisely, for (53)
consider N = {(ρ, v,m) ∈ UM : e · ω ≥ |ω|2 for some e ∈  (ρ, v)}. Notice e · ω ≥ |ω|2
defines the circumference of radius 1

2 inside the unit-circumferencewhich is tangential to e. If
z ∈ N we have |e−ω|2 ≤ 1−|ω|2 and also |(e−ω)·ω| ≤ |e−ω|2+(1−e ·ω) ≤ 2(1−|ω|2),
while outside it is not difficult to prove that |ω| ( 1 due toM > 2. For (52), it is not difficult to
show that there isC depending continuously onM and 1−ρ2 such thatC |e−ω| ≤ (1−|ω∓|).
Finally, if |v| ≤ |ρ|, notice that the condition (21) is easily checked

M2 − |vλ|2 − (1− (ρλ)2) ≥ M2 − 1− 4|λ| ≥ 1
2 (M

2 − 1),

for |λ| ≤ 1
8 (M

2 − 1). Then, by taking e ∈ S
1 minimizing |e−ω| and m̄ as before, we check

the other conditions analogously. "#
For (H3), it is shown in [1] that there exists m̆ such that z̆ = (ρ̆, v̆, m̆) becomes into a K̃-

subsolution.We surround z̆ in the topological spaceX0 of admissible perturbations (def. 2.4).
For this, we fix a finite family F0 ⊂ F given by the triples (F, 1, y):

(1) F(z) = ρ and y = x with 0 < α < 1
r = 1,

(2) F(z) = u and y = x with 0 < α < 1
r = 1,

(3) F = P (14) and y = x with 0 < α < 1
r = 1,

(4) F(z) = 1∓ρ and y(t) = id�mix(t).

Therefore, we can apply theorem 3.1 to the Muskat-Mixing problem.With (1), we deduce
the “linearly degraded macroscopic behaviour” property (def. 1.2(c)). With (4), since every
z ∈ X0 satisfies ∫

B
(1∓ρ(x, t)) dx /∈ {0}

for every ball B ∈ B = {Br (x) : x ∈ Q
2, r ∈ Q} with B ⊂ �mix(t) at each t ∈ (0, T ], we

are in the situation of corollary 3.1. Hence, there is a residual set of X satisfying∫
�

(1∓ρ(x, t)) dx 
= 0

for every non-empty bounded open � ⊂ �mix(t) and t ∈ (0, T ]. Otherwise, it would be
ρ|� = ±1 (|ρ| ≤ 1 for states in X). But then, since � is open, we would find a ball B ∈ B
with B ⊂ �, which would contradict corollary 3.1. This is exactly the “mix in space at each
time slice” property (def. 1.2(b)). Finally, we prove theorem 1.2 with (2) and (3). For that we
recall that P is continuous from L∞

BS to L∞
w∗ on bounded subsets of R

2 as a consequence of
the div-curl lemma [27].

5 Application to the vortex sheet problem

The motion of an incompressible fluid is modelled by the incompressible Euler equations

∂tu+ ∇ · (u⊗ u)+ ∇ p = 0, (54)

∇ · u = 0, (55)

in R
2 × (0, T ), where u is the incompressible velocity field and p is the pressure. As for the

Muskat-Mixing problem, p may be ignored. As pointed in the ground-breaking work of De
Lellis and Székelyhidi [8], the incompressible Euler equations can be shown as a differential

123



58 Page 28 of 29 Á. Castro et al.

inclusion. In addition, as we have commented, they introduced in [9] the ideas for the convex
integration scheme that we have adapted for other evolution equations in the Sect. 2. On the
one hand, the space associated to the system of the stationary Eq. (55) is L∞

div(R
2). On the

other hand, the Cauchy problem is given by (54) for some initial data u0 ∈ L∞
div(R

2). A
similar situation to the Muskat-Mixing problem with f0 = 0 for these equations is given by
the vortex sheet initial data

u0(x) = (1�+(0) − 1�−(0))e1, (56)

where e1 = (1, 0) and �±(0) = {x ∈ R
2 : ±x2 > 0}. In Székelyhidi [25] applied

the convex integration method to prove the existence of infinitely many weak solutions in
C0([0, T ]; L∞

div(R
2)) for the vortex sheet initial data (56) for which a “turbulence zone”

defined by

�tur(t) = {x ∈ R
2 : |x2| < ct},

appears, where 0 < c < 1 represents its speed of growth. Similarly, the distinguished
regions are �±(t) = {x ∈ R

2 : ±x2 > ct}. For a suitable relaxation [9], the subsolution is
ŭ(x, t) = u(x, t)e1 with

u(x, t) =
{±1, ±x2 > ct,

x2
ct , |x2| < ct .

Now, the quantitative h-principle allows to select those solutions which best inherit the
properties of the subsolution. More precisely, the following theorem holds.

Theorem 5.1 Let E from (7) and α ∈ [0, 1). There exist infinitely many weak solutions
u ∈ C ([0, T ]; L∞

div(R
2)) to the incompressible Euler equations for the vortex sheet initial

data (56) satisfying: the modulus of the velocity is constant |u| = 1, they are not affected
outside the turbulence zone

u(·, t)|�±(t) = ±e1,

while the behaviour inside the turbulence zone obeys

∫
�

(1− u2(x, t)) dx
∫
�

(1+ u2(x, t)) dx 
= 0,

for every non-empty bounded open � ⊂ �tur(t), but displaying a linearly degraded macro-
scopic behaviour

∣∣∣∣−
∫
R
u(x, t) dx − 〈L〉e1

∣∣∣∣ ≤ E (〈L〉, t){R}α,

for every non-empty bounded rectangle R = S × ct L ⊂ R × (−ct, ct) and t ∈ (0, T ].
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