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Abstract
In this paper we analyze the behavior of the distance function under Ricci flows whose scalar
curvature is uniformly bounded. We will show that on small time-intervals the distance
function is 1

2 -Hölder continuous in a uniform sense. This implies that the distance function
can be extended continuously up to the singular time.

Mathematics Subject Classification 53C44

1 Introduction

In this paper, we extend the estimates of [1], to prove the following result:

Theorem 1.1 For any 0 < A < ∞ and n ∈ N there is a constant C = C(A, n) < ∞ such
that the following holds:

Let (Mn, (gt )t∈[0,1]) be a Ricci flow (∂t gt = − 2Ricgt ) on an n-dimensional compact
manifold M with the property that ν[g0, 1 + A−1] ≥ −A. Assume that the scalar curvature
satisfies |R| ≤ R0 on M × [0, 1] for some constant 0 ≤ R0 ≤ A.

Then for any 0 ≤ t1 ≤ t2 ≤ 1 and x, y ∈ M we have the distance bound

dt1(x, y) − C
√
t2 − t1 ≤ dt2(x, y) ≤ exp

(
CR1/2

0

√
t2 − t1

)
dt1(x, y) + C

√
t2 − t1.

In particular, if min{dt1(x, y), dt2(x, y)} ≤ D for some D < ∞, then
∣∣dt1(x, y) − dt2(x, y)

∣∣ ≤ C ′√t2 − t1,

where C ′ may depend on A, D and n.
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By parabolic rescaling, we obtain distance bounds on larger time-intervals. Note that
Theorem 1.1 is a generalization of [1, Theorem 1.1], which only provides a bound on the
distance distortion that does not improve for t2 close to t1. The constant ν[g0, 1 + A−1] is
defined as the infimum of Perelman’sμ-functional (cf [4])μ[g0, τ ] over all τ ∈ (0, 1+A−1).
For more details see [1, Sect. 2]. The condition ν[g0, 1 + A−1] ≥ −A, can be viewed as
a non-collapsing condition. The exponential factor in the upper bound is necessary, as one
can see for example in the case in which (M, (gt )t∈[0,1]) is the Ricci flow on a hyperbolic
manifold and the distance between x, y is very large. The proof of Theorem 1.1 will heavily
use the results of [1], in particular the heat kernel bound, [1, Theorem 1.4].

As a consequence of Theorem 1.1, we obtain the following:

Corollary 1.2 Let (M, (gt )t∈[0,T )), T < ∞ be aRicci flow on a compactmanifold and assume
that the scalar curvature satisfies R < C < ∞ onM × [0, T ). Then the distance function

d : M × M × [0, T ) −→ [0,∞), (x, y, t) 	−→ dt (x, y)

can be extended continuously onto the domain M × M × [0, T ].
Note that the corollary does not state that dT : M × M → [0,∞) is a metric on M.

It only follows that dT is a pseudometric, which means that we may have dT (x, y) = 0
for some x 
= y. After taking the metric identification, however, (M/∼, dT ) is in fact the
Gromov–Hausdorff limit of (M, gt ) as t ↗ T . Here x ∼ y if and only if dT (x, y) = 0.
Moreover, since the volume measure converges as well, the space (M/∼, dT ) becomes a
metric measure space with doubling property and this space is the limit of (M, gt ) in the
measured Gromov–Hausdorff sense.

More generally, we obtain the following consequence of Theorem 1.1.

Corollary 1.3 Let (Mi , (git )t∈[0,1]) be a sequence of Ricci flows on n-dimensional compact
manifolds Mi with the property that ν[gi0, 1 + A−1] ≥ −A and |R| < A on M × [0, 1] for
some uniform A < ∞. Let xi ∈ Mi be points. Then, after passing to a subsequence, we can
find a pointed metric space (M, d, x), a continuous function

d∞ : M × M × [0, 1] → [0,∞), (x, y, t) 	→ d∞
t (x, y)

and a continuous family of measures (μt )t∈[0,1] such that for any x, y ∈ M, the function t 	→
d∞
t (x, y) is 1

2 -Hölder continuous and such that for any t ∈ [0, 1], the metric identification
(M/∼t , d∞

t , μt , x) is a metric measure space with doubling property for balls of radius
less than

√
t . Here x ∼t y if and only if d∞

t (x, y) = 0. Moreover, for any t ∈ [0, 1]
the sequence (Mi , git , dg

i
t , xi ) converges to (M/∼t , d∞

t , μt , x) in the pointed, measured
Gromov–Hausdorff sense.

For the proof of Corollary 1.3 see Sect. 5.
Note that if we impose the extra assumption that |R| < Ri onM×[0, 1] for some sequence

Ri with limi→∞ Ri = 0, then the limiting family of measures (μt )t∈[0,1] is constant in time.
Unfortunately, however, our results do not imply that (d∞

t )t∈[0,1] is constant in time as well.
Finally, we mention a direct consequence of Theorem 1.1, which can be interpreted as an

analogue of the main result of [2] in the parabolic case.

Corollary 1.4 For any 0 < A < ∞ and n ∈ N there is a constant C = C(A, n) < ∞ such
that the following holds:

Let (Mn, (gt )t∈[0,1]) be a Ricci flow on an n-dimensional compact manifold M with the
property that ν[g0, 1 + A−1] ≥ −A. Assume that the scalar curvature satisfies |R| ≤ A on
M × [0, 1].
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Then for any r > 0 and 0 ≤ t1 ≤ t2 ≤ 1 and x ∈ M we have the following bound for
Gromov–Hausdorff distance of r-balls

dGH(B(x, t1, r), B(x, t2, r)) ≤ C
√|t1 − t2|.

For the rest of the paper, we will fix the dimension n ≥ 2 of the manifoldM. Most of our
constants will depend on n. For convenience we will not mention this dependence anymore.

2 Upper volume bound

We first generalize the upper volume bound from [5] or [3].

Lemma 2.1 For any A < ∞ there is a uniform constant C0 = C0(A) < ∞ such that the
following holds:

Let (Mn, (gt )t∈[−1,1]) be a Ricci flow on a compact, n-dimensional manifold M with
|R| ≤ 1 on M × [−1, 1]. Assume that ν[g−1, 4] ≥ −A. Then for any (x, t) ∈ M × [0, 1]
and r > 0 we have

|B(x, t, r)|t < C0r
neC0r .

Here |S|t denotes the volume of a set S ⊂ M with respect to the metric gt .

Proof It follows from [3–5] (see also [1, Sect. 2]), that for any x ∈ M and 0 ≤ r ≤ 1, we
have

crn ≤ |B(x, t0, r)|t0 ≤ Crn, (2.1)

for some constants c,C , which only depend on A.
Fix some x ∈ M and let N < ∞ be maximal with the property that we can find points

x1, . . . , xN ∈ B(x, t, 1
2 ) such that the balls B(x1, t,

1
8 ), . . . , B(xN , t, 1

8 ) are pairwise dis-
joint. Note that then

B
(
x1, t,

1
8

)
, . . . , B

(
xN , t, 1

8

) ⊂ B(x, t, 1).

So, by (2.1), we have N ≤ C∗ := (c( 18 )
n)−1C . Moreover, by the maximality of N , we have

B
(
x1, t,

1
4

) ∪ . . . ∪ B
(
xN , t, 1

4

) ⊃ B
(
x, t, 1

2

)
. (2.2)

We now argue that for all r ≥ 1
2

B(x1, t, r) ∪ . . . ∪ B(xN , t, r) ⊃ B
(
x, t, r + 1

4

)
. (2.3)

Let y ∈ B(x, t, r + 1
4 ) and consider a time-t minimizing geodesic γ : [0, l] → M between x

and y that is parameterized by arclength. Then l < r+ 1
4 . By (2.2)wemay pick i ∈ {1, . . . , N }

such that γ ( 12 ) ∈ B(xi , t,
1
4 ). Then

distt (xi , y) ≤ (
l − 1

2

) + distt
(
γ

( 1
2

)
, xi

) ≤ l − 1
4 < r .

So y ∈ B(xi , t0, r), which confirms (2.3).
Let us now prove by induction on k = 1, 2, . . . that for any x ∈ M

∣∣B
(
x, t, 1

4k
)∣∣
t < Ck∗ . (2.4)
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49 Page 4 of 14 R. H. Bamler, Q. S. Zhang

For k = 1, the inequality follows from (2.1) (assuming c < 1 and hence C∗ > C). If the
inequality is true for k, then we can use (2.3) to conclude

∣
∣B

(
x, t, 1

4 (k + 1)
)∣∣
t ≤ ∣

∣B
(
x1, t,

1
4k

)∣∣
t + . . . + ∣

∣B
(
xN , t, 1

4k
)∣∣
t

≤ N · Ck∗ ≤ C∗ · Ck∗ = Ck+1∗ .

So (2.4) also holds for k + 1. This finishes the proof of (2.4).
The assertion of the lemma now follows from (2.1) for r < 1. For r ≥ 1 choose k ∈ N

such that 1
4 (k − 1) ≤ r < 1

4k. Then, by (2.4), we have

|B(x, t, r)|t <
∣
∣B

(
x, t, 1

4k
)∣∣
t < Ck∗ = C∗e(logC∗)(k−1) ≤ C∗e4(logC∗)r .

This finishes the proof. ��

3 Generalizedmaximum principle

Consider a Ricci flow (gt )t∈I on a closed manifoldM. In the following we will consider the
heat kernel K (x, t; y, s) on a Ricci flow background. That is, for any (y, s) ∈ M × I the
kernel K (·, ·; y, s) is defined for t > s and x ∈ M and satisfies

(∂t − �x )K (x, t; y, s) = 0 and lim
t↘s

K (·, t; y, s) = δy .

Then, for fixed (x, t) ∈ M × I , the function K (x, t; ·, ·), which is defined for s < t , is a
kernel for the conjugate heat equation

(−∂s − �y + R(y, s))K (x, t; y, s) = 0 and lim
s↗t

K (x, t; ·, s) = δx .

Recall that for any s < t and x ∈ M we have
∫

M

K (x, t; y, s)dgs(y) = 1. (3.1)

Lemma 3.1 Let (M, (gt )t∈[0,1]) be a Ricci flow on a compact manifoldM with |R| ≤ R0 on
M × [0, 1] for some constant R0 ≥ 0. Then for any (x, t) ∈ M × (0, 1] we have

t∫

0

∫

M

K (x, t; y, s)|Ric|2(y, s)dgs(y)ds ≤ R0.

Proof This follows from the identities

R(x, t) =
∫

M

K (x, t; y, 0)R(y, 0)dg0(y) + 2

t∫

0

∫

M

K (x, t; y, s)|Ric|2(y, s)dgs(y)ds

and (3.1) as well as R(x, t) ≤ R0 and R(·, 0) ≥ −R0 on M. ��
We will now use the Gaussian bounds from [1] to bound the forward heat kernel in terms

of the backwards conjugate heat kernel based at a certain point and time. Note that in the
following Lemmawe only obtain estimates on the time-interval [0, 1], but we need to assume
that the flow exists on [−1, 1]. This is due to an extra condition in [1, Theorem 1.4].
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Lemma 3.2 For any A < ∞ there are uniform constants C1 = C1(A), Y = Y (A) < ∞
such that the following holds:

Let (Mn, (gt )t∈[−1,1]) be a Ricci flow on a compact, n-dimensional manifold M with the
property that ν[g−1, 4] ≥ −A.Assume that |R| ≤ 1 onM×[−1, 1]. Let0 ≤ t1 < t2 < t3 ≤ 1
such that

Y (t2 − t1) ≤ t3 − t2 ≤ 10Y (t2 − t1).

Then for all x, y ∈ M

K (x, t2; y, t1) < C1K (y, t3; x, t2).
Proof Recall that, by [1, Theorem 1.4] and the remark afterwards, there are constants C∗

1 =
C∗
1 (A),C∗

2 = C∗
2 (A) < ∞ such that for any 0 ≤ s < t ≤ 1

1

C∗
1 (t − s)n/2 exp

(
−C∗

2d
2
s (x, y)

t − s

)
< K (x, t; y, s) <

C∗
1

(t − s)n/2 exp
(
− d2t (x, y)

C∗
2 (t − s)

)
.

(3.2)
Set now

Y := (C∗
2 )

2 and C1 := (C∗
1 )

2(10Y )n/2.

Then

K (x, t2; y, t1) <
C∗
1

(t2 − t1)n/2 exp
(
− d2t2(x, y)

C∗
2 (t2 − t1)

)

≤ C∗
1

(10Y )−n/2(t3 − t2)n/2 exp
(
− d2t2(x, y)

C∗
2 (t2 − t1)

)

≤ C1
1

C∗
1 (t3 − t2)n/2 exp

(
− d2t2(x, y)

C∗
2Y

−1(t3 − t2)

)

= C1
1

C∗
1 (t3 − t2)n/2 exp

(
−C∗

2d
2
t2(x, y)

(t3 − t2)

)
< C1K (y, t3, x, t2).

This finishes the proof. ��
Next, we combine Lemmas 3.1 and 3.2 to obtain the following bound.

Lemma 3.3 For any A < ∞ there are uniform constants C2 = C2(A) < ∞, θ2 = θ2(A) > 0
such that the following holds:

Let (Mn, (gt )t∈[−1,1]) be a Ricci flow on a compact, n-dimensional manifold M with the
property that ν[g−1, 4] ≥ −A. Assume that |R| ≤ R0 on M × [−1, 1] for some constant
0 ≤ R0 ≤ 1. Then for any 0 ≤ t < 1 and 0 < a ≤ θ2(1 − t) and x ∈ M we have

t+2a∫

t+a

∫

M

K (y, s; x, t)|Ric|(y, s)dgs(y)ds < C2R
1/2
0

√
a.

Proof Choose θ2 := 1
2Y

−1 and set

t3 := t + 2Ya ≤ 1.

So for any s ∈ [t + a, t + 2a] we have
Y (s − t) ≤ Y · 2a = t3 − t ≤ 10Ya ≤ 10Y (s − t).
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49 Page 6 of 14 R. H. Bamler, Q. S. Zhang

So by Lemma 3.2, we have for any (y, s) ∈ M × [t + a, t + 2a]
K (y, s; x, t) < C1K (x, t3; y, s).

We can then conclude, using Cauchy-Schwarz, (3.1) and Lemma 3.1, that

t+2a∫

t+a

∫

M

K (y, s; x, t)|Ric|(y, s)dgs(y)ds

≤ C1

t+2a∫

t+a

∫

M

K (x, t3; y, s)|Ric|(y, s)dgs(y)ds

≤ C1

( t+2a∫

t+a

∫

M

K (x, t3; y, s)dgs(y)ds
)1/2

·
( t+2a∫

t+a

∫

M

K (x, t3; y, s)|Ric|2(y, s)dgs(y)ds
)1/2

= C1
√
a

( t+2a∫

t+a

∫

M

K (x, t3; y, s)|Ric|2(y, s)dgs(y)ds
)1/2

≤ C1R
1/2
0

√
a.

This proves the desired result. ��
Lemma 3.4 For any A < ∞ there are constants C3 = C3(A) < ∞, θ3 = θ3(A) > 0 such
that the following holds:

Let (Mn, (gt )t∈[0,1]) be a Ricci flow on a compact, n-dimensional manifold M with the
property that ν[g−1, 4] ≥ −A. Assume that |R| ≤ R0 on M × [−1, 1] for some constant
0 ≤ R0 ≤ 1. Then for any 0 ≤ s < t ≤ 1 with t − s ≤ θ3(1 − s) and any x ∈ M, we have

t∫

s

∫

M

K (y, s; x, t)|Ric|(y, s)dgs(y)ds < C3R
1/2
0

√
t − s.

Proof Choose θ3(A) = θ2(A). Then, using Lemma 3.3,

t∫

s

∫

M

K (y, s; x, t)|Ric|(y, s)dgs(y)

=
∞∑

k=1

s+2(t−s)2−k∫

s+(t−s)2−k

∫

M

K (y, s; x, t)|Ric|(y, s)dgs(y)ds

≤
∞∑

k=1

C2R
1/2
0

√
(t − s)2−k

= C2R
1/2
0

√
t − s

∞∑

k=1

2−k/2
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≤ CC2R
1/2
0

√
t − s.

This proves the desired estimate. ��

Proposition 3.5 For every A < ∞ there are constants θ4 = θ4(A) > 0 and C4 = C4(A) <

∞ such that the following holds:
Let (Mn, (gt )t∈[−1,1]) be a Ricci flow on a compact, n-dimensional manifold M with the

property that ν[g−1, 4] ≥ −A. Assume that |R| ≤ R0 onM×[−1, 1] for some constant 0 ≤
R0 ≤ 1. Let H > 1 and [t1, t2] ⊂ [0, 1) be a sub-interval with t2−t1 ≤ θ4 min{(1−t1), H−1}
and consider a non-negative function f ∈ C∞(M × [t1, t2]) that satisfies the following
evolution inequality in the barrier sense:

−∂t f ≤ � f + H |Ric| f − R f .

Then

max
M

f (·, t1) ≤ (
1 + C4HR1/2

0

√
t2 − t1

)
max
M

f (·, t2).

Note that with similar techniques, we can analyze the evolution inequality−∂t f ≤ � f +
H |Ric|p f for any p ∈ (0, 2).

Proof We first find that that for any (x, t) ∈ M × [−1, 1) and t < s ≤ 1

d

ds

∫

M

K (y, s; x, t)dgs(y) =
∫

M

(
�y K (y, s; x, t) − K (y, s; x, t)R(y, s)

)
dgs(y)

≤ R0

∫

M

K (y, s; x, t)dgs(y),

which implies
∫

M

K (y, s; x, t)dgs(y) ≤ eR0(s−t).

So for any (x, t) ∈ M × [t1, t2] we have by Lemma 3.4, assuming θ4 ≤ θ3 and C3 > 1,

f (x, t) ≤
∫

M

K (y, t2; x, s) f (y, t2)dgt2(y)

+
t2∫

t

∫

M

K (y, s; x, t) · H |Ric|(y, s) · f (y, s)dgs(y)ds

≤ eR0(t2−t) max
M

f (·, t2) + H
(

max
M×[t,t2]

f
)

t2∫

t

∫

M

K (y, s; x, t)|Ric|(y, s)dgs(y)ds

≤ eR0(t2−t) max
M

f (·, t2) + H
(

max
M×[t,t2]

f
) · C3R

1/2
0

√
t2 − t .

It follows that

max
M×[t,t2]

f ≤ eR0(t2−t) max
M

f (·, t2) + (
max

M×[t,t2]
f
) · C3HR1/2

0

√
t2 − t .
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So if t2 − t < (2C3H)−2, then

max
M×[t,t2]

f ≤ eR0(t2−t) maxM f (·, t2)
1 − C3HR1/2

0
√
t2 − t

≤ (
1 + 10C3HR1/2

0

√
t2 − t

)
max
M

f (·, t2).

This finishes the proof. ��

4 Proof of theorem 1.1

We will first establish a lower bound on the distortion of the distance:

Lemma 4.1 For every A < ∞ there is a constant C5 = C5(A) < ∞ such that the following
holds:

Let (Mn, (gt )t∈[−1,1]) be a Ricci flow on a compact, n-dimensional manifold M with the
property that ν[g−1, 4] ≥ −A. Assume that |R| ≤ 1 onM× [−1, 1]. Let [t1, t2] ⊂ [0, 1] be
a sub-interval and consider two points x1, x2 ∈ M. Then

dt2(x1, x2) ≥ dt1(x1, x2) − C5
√
t2 − t1.

Proof Set d := dt1(x1, x2) and let u ∈ C0(M× [t1, t2]) ∩C∞(M× (t1, t2]) be a solution to
the heat equation

∂t u = �u, u(·, t1) = dt1(x1, ·).
Then for any (x, t) ∈ M × [t1, t2]

u(x, t) =
∫

M

K (x, t; y, t1)u(t1)dgt1(y) =
∫

M

K (x, t; y, t1)dt1(x1, y)dgt1(y).

Using [1, Theorem 1.4] (compare also with (3.2)), we find that by Lemma 2.1

u(x1, t2) ≤
∫

M

C∗
1

(t2 − t1)n/2 exp

(
− d2t1(x1, y)

C∗
2 (t2 − t1)

)
dt1(x1, y)dgt1(y)

=
∞∑

k=−∞

∫

B(x1,t1,2k )\B(x1,t1,2k−1)

C∗
1

(t2 − t1)n/2 exp

(
− d2t1(x1, y)

C∗
2 (t2 − t1)

)

· dt1(x1, y)dgt1(y)

≤
∞∑

k=−∞
|B(x1, t1, 2

k)|t1
C∗
1

(t2 − t1)n/2 exp

(
− 22k−2

C∗
2 (t2 − t1)

)
· 2k

≤
∞∑

k=−∞
C0(2

k)neC02k
C∗
1

(t2 − t1)n/2 exp

(
− 22k

4C∗
2 (t2 − t1)

)
· 2k

≤
∫

Rn

CC0C∗
1

(t2 − t1)n/2 exp

(
2C0|x | − |x |2

4C∗
2 (t2 − t1)

)
|x |dx

= √
t2 − t1

∫

Rn

CC0C
∗
1 exp

(
2C0|x |√t2 − t − |x |2

4C∗
2

)
|x |dx ≤ C

√
t2 − t1
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On the other hand, using (3.1),

|d − u(x2, t2)| =
∣
∣
∣
∣

∫

M

K (x2, t; y, t1)(d − dt1(x1, y))dgt1(y)

∣
∣
∣
∣

≤
∫

M

K (x2, t; y, t1)|dt1(x1, x2) − dt1(x1, y)|dgt1(y)

≤
∫

M

K (x2, t; y, t1)dt1(x2, y)dgt1(y).

So similarly,

|d − u(x2, t2)| ≤ C
√
t2 − t1.

It follows that
|u(x1, t2) − u(x2, t2)| ≥ d − 2C

√
t2 − t1. (4.1)

Next, consider the quantity |∇u| onM× [t1, t2]. It is not hard to check that, in the barrier
sense,

∂t |∇u| ≤ �|∇u|. (4.2)

Since |∇u|(·, t1) ≤ 1, we have by the maximum principle that |∇u| ≤ 1 onM× [t1, t2]. So
|u(x1, t2) − u(x2, t2)| ≤ dt2(x1, x2).

Together with (4.1) this gives us

dt2(x1, x2) ≥ d − 2C
√
t2 − t1 = dt1(x1, x2) − 2C

√
t2 − t1.

This finishes the proof. ��
For the upper bound on the distance distortion, we will argue similarly, by reversing

time. The derivation of the bound on |∇u| will now be more complicated, since the equation
(4.2) will have an extra 4|Ric||∇u| term. We will overcome this difficulty by applying the
generalized maximum principle from Proposition 3.5.

Lemma 4.2 For every A < ∞ there are constants θ6 = θ6(A) > 0 and C6 = C6(A) < ∞
such that the following holds:

Let (Mn, (gt )t∈[−1,1]) be a Ricci flow on a compact, n-dimensional manifold M with the
property that ν[g−1, 4] ≥ −A. Assume that |R| ≤ R0 on M × [−1, 1] for some constant
0 ≤ R0 ≤ 1. Let [t1, t2] ⊂ [0, 1) be a sub-interval with t2 − t1 ≤ θ6(1 − t1) and consider
two points x1, x2 ∈ M. Then

dt2(x1, x2) ≤ exp
(
C6R

1/2
0

√
t2 − t1

)
dt1(x1, x2) + C6

√
t2 − t1.

Proof Set d := dt2(x1, x2). For i = 1, 2 let ui ∈ C0(M × [t1, t2]) ∩ C∞(M × [t1, t2)) be a
solution to the backwards (not the conjugate!) heat equation

− ∂t ui = �ui , ui (·, t2) = dt2(xi , ·) (4.3)

and let vi ∈ C0(M×[t1, t2])∩C∞(M×[t1, t2)) be a solution to the conjugate heat equation
−∂tvi = �vi − Rvi , vi (·, t2) = dt2(xi , ·).
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Note that by the maximum principle, we have onM × [t1, t2]
u1 + u2 ≥ min

M

(
u1(·, t2) + u2(·, t2)

) ≥ min
M

(
dt2(x1, ·) + dt2(x2, ·)

) ≥ d. (4.4)

We also claim that we have for all t ∈ [t1, t2]
ui (·, t) ≤ eR0(t2−t)vi (·, t). (4.5)

This inequality follows by the maximum principle and by the fact that whenever vi ≥ 0, we
have

(−∂t − �)
(
eR0(t2−t)vi (·, t)

) = eR0(t2−t)R0vi (·, t) − eR0(t2−t)R(·, t)vi (·, t) ≥ 0.

We now make use of the fact that for any x ∈ M,

vi (x, t1) =
∫

M

K (y, t2; x, t1)vi (y, t2)dgt2(y) =
∫

M

K (y, t2; x, t1)dt2(xi , y)dgt2(y)

and

K (y, t2; x, t1) <
C∗
1

(t2 − t1)n/2 exp

(
− d2t2(x, y)

C∗
2 (t2 − t1)

)
,

for some constants C∗
1 ,C

∗
2 , which depend only on A. Note that the latter inequality is similar

to (3.2) except that the distance between x, y is taken at time t2. This inequality follows from
[1, Theorem 1.4] and the subsequent comment in that paper.We can hence estimate, similarly
as in the proof of Lemma 4.1,

vi (xi , t1) ≤
∫

M

C∗
1

(t2 − t1)n/2 exp

(
− d2t2(xi , y)

C∗
2 (t2 − t1)

)
dt2(xi , y)dgt2(y) ≤ C

√
t2 − t1.

So, using (4.5), we have

ui (xi , t1) ≤ CeR0(t2−t1)
√
t2 − t1 ≤ 10C

√
t2 − t1.

So by (4.4) we have

u1(x2, t1) ≥ d − u2(x2, t1) ≥ d − 10C
√
t2 − t1.

This implies
|u1(x1, t1) − u1(x2, t2)| ≥ d − 20C

√
t2 − t1. (4.6)

Taking derivatives of (4.3), we obtain the evolution inequality

−∂t |∇u1| ≤ �|∇u1| + 4|Ric| · |∇u1| ≤ �|∇u1| + (4 + √
n)|Ric| · |∇u1| − R|∇u1|,

which holds in the barrier sense. Note that by definition |∇u1(·, t2)| ≤ 1. So, by Proposi-
tion 3.5, we have for sufficiently small θ6

|∇u1(·, t1)| ≤ 1 + CR1/2
0

√
t2 − t1.

So, using (4.6), we obtain

dt2(x1, x2) − 10C
√
t2 − t1 ≤ |u(x1, t1) − u(x2, t2)|

≤ (
1 + CR1/2

0

√
t2 − t1

)
dt1(x1, x2) ≤ exp

(
CR1/2

0

√
t2 − t1

)
dt1(x1, x2).

This finishes the proof. ��
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Next, we remove the assumption t2 − t1 ≤ θ6(1 − t1) from Lemma 4.2.

Lemma 4.3 For every A < ∞ there is a constant C7 = C7(A) < ∞ such that the following
holds:

Let (Mn, (gt )t∈[−1,1]) be a Ricci flow on a compact, n-dimensional manifold M with the
property that ν[g−1, 4] ≥ −A. Assume that |R| ≤ R0 on M × [−1, 1] for some constant
0 ≤ R0 ≤ 1. Let 0 ≤ t1 ≤ t2 ≤ 1 and consider two points x, y ∈ M. Then

dt2(x, y) ≤ exp
(
C7R

1/2
0

√
t2 − t1

)
dt1(x, y) + C7

√
t2 − t1.

Proof In the case in which t2 − t1 ≤ θ6(1 − t1), the bound follows immediately from
Lemma 4.2. Let us now assume that t2 − t1 > θ6(1− t1). By continuity we may also assume
without loss of generality that t2 < 1.

Choose times

t ′k := 1 − (1 − θ6)
k(1 − t1)

and observe that t ′0 = t1 and

t ′k+1 − t ′k = θ6(1 − θ6)
k(1 − t1) = θ6(1 − t ′k).

So by Lemma 4.2

dt ′k (x, y) ≤ exp
(
C6R

1/2
0

k∑

l=1

√
t ′l − t ′l−1

)
dt1(x, y)

+C6

k∑

l=1

exp
(
C6R

1/2
0

k∑

j=l+1

√
t ′j − t ′j−1

)√
t ′l − t ′l−1.

Since

k∑

l=1

√
t ′l − t ′l−1 =

k∑

l=1

√
θ6(1 − θ6)

l/2
√
1 − t1 ≤ C ′√1 − t1

and

k∑

l=1

exp
(
C6R

1/2
0

k∑

j=l+1

√
t ′j − t ′j−1

)√
t ′l − t ′l−1

≤
k∑

l=1

exp
(
C6C

′R1/2
0

√
1 − t1

)√
t ′l − t ′l−1 ≤ C ′′√1 − t1,

we find that for a generic constant C < ∞
dt ′k (x, y) ≤ exp

(
CR1/2

0

√
1 − t1

)
dt1(x, y) + C

√
1 − t1.

Choose now k such that t ′k ≤ t2 < t ′k+1. Then t2 − t ′k ≤ t ′k+1 − t ′k ≤ θ6(1 − t ′1), so again by
Lemma 4.2, we have

dt2(x, y) ≤ exp
(
C6R

1/2
0

√
t2 − t ′k

)
dt ′k (x, y) + C6

√
t2 − t ′k

≤ exp
(
(C + C6)R

1/2
0

√
1 − t1

)
dt1(x, y) + C exp(1 + C6)

√
1 − t1 + C6

√
1 − t1.

The claim now follows using
√
1 − t1 < θ

−1/2
6

√
t2 − t1. ��
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We can finally prove Theorem 1.1.

Proof of Theorem 1.1 Consider the Ricci flow (Mn, (gt )t∈[0,1]) with ν[g0, 1 + A−1] ≥ −A
and |R| ≤ R0 for 0 ≤ R0 ≤ A. After replacing A by 4A + 2, we may assume without loss
of generality that A > 2 and that we even have ν[g0, 1 + 4A−1] ≥ −A.

We will first prove the distance bounds for the case in which t1 > 0 and t2 ≤ (1+ A−1)t1.
By monotonicity of ν (compare with [1, Sect. 2]), we find that for any t ∈ [0, 1] we have

ν[gt , 4A−1] ≥ ν[g0, 1 + 4A−1] ≥ −A.

Restrict the flow to the time-interval [(1 − A−1)t1, (1 + A−1)t1] and parabolically rescale
by A1/2t−1/2

1 to obtain a flow (g̃t )t∈[A−1,A+1]. Then ν [̃gA−1, 4] ≥ −A and |R̃| ≤ R̃0 :=
A−1t1R0 ≤ 1. Then t1, t2 correspond to times t̃1 := A, t̃2 := At−1

1 t2 and we have

R̃1/2
0

√
t̃2 − t̃1 = R1/2

0

√
t2 − t1.

So the distance bounds follow from Lemmas 4.1 and 4.3.
Consider now the case in which t2 > (1 + A−1)t1. So t1 < λt2, where λ := (1 +

A−1)−1 < 1. By continuity we may assume without loss of generality that t1 > 0. Then we
can find 1 ≤ k2 < k1 such that t1 ∈ [λk1 , λk1−1] and t2 ∈ [λk2 , λk2−1]. Using our previous
conclusions, we find

dt2(x, y) ≥ dλk2 (x, y) − C
√

λk2 ≥ . . . ≥ dt1(x, y) − C
k2∑

l=k1

√
λl ≥ dt1(x, y) − C ′Cλk2/2.

Since t1 < λt2, we have
√
t2 − t1 >

√
(1 − λ)t2 >

√
1 − λ

√
λk2 . So

dt2(x, y) ≥ dt1(x, y) − C ′C(1 − λ)−1/2√t2 − t1.

This establishes the lower bound.
For the upper bound, set t ′0 := t1, t ′1 := λk1−1, …, t ′k1−k2

:= λk2 , t ′k1−k2+1 := t2. Then we
have by our previous conclusions

dt2(x, y) ≤ exp
(
CR1/2

0

k1−k2+1∑

l=1

√
t ′l − t ′l−1

)
dt1(x, y)

+C
k2−k1+1∑

l=1

exp
(
CR1/2

0

k1−k2+1∑

j=l+1

√
t ′j − t ′j−1

)√
t ′l − t ′l−1

Similarly as in the proof of Lemma 4.3, we conclude

dt2(x, y) ≤ exp
(
CR1/2

0

√
λk2

)
dt1(x, y) + C

√
λk2 .

Again, using
√
t2 − t1 >

√
1 − λ

√
λk2 , we get the desired bound. ��

5 Proof of corollary 1.3

Proof of Corollary 1.3 For each i consider the metric d
i
onMi with

d
i
(x, y) :=

∫ 1

0
dit (x, y)dt .
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Note that by the Hölder bound in Theorem 1.1 there is a uniform constant c′ > 0 such that
for all t, t ′ ∈ [0, 1] we have dit ′(x, y) > 1

2d
i
t (x, y) whenever |t − t ′| ≤ c′(dit (x, y))2. So

there is a uniform constant c > 0 such that for all t ∈ [0, 1]
d
i
(x, y) ≥ c

(
min{dit (x, y), 1}

)3
. (5.1)

So by the triangle inequality and Theorem 1.1, for any A < ∞ there is a constant C < ∞
such that for any x, y, x ′, y′ ∈ M and t, t ′ ∈ [0, 1]with di (x, y)+d

i
(x, x ′)+d

i
(y, y′) < A

we have
∣
∣dit (x, y) − dit ′(x

′, y′)
∣
∣ ≤ C

(
d
i
(x, x ′)

)1/3 + C
(
d
i
(y, y′)

)1/3 + C |t − t ′|1/2. (5.2)

We first argue that the sequence (Mi , d
i
) is uniformly totally bounded in the following

sense: For any 0 < a < b there is a number N = N (a, b) < ∞ such that for any i and

any x ∈ Mi , the ball B
i
(x, b) := {x ∈ Mi : d

i
(x, z) < b} contains at most N pairwise

disjoint balls B
i
(y j , a), j = 1, . . . ,m. Fix 0 < a < b and assume without loss of generality

that a < 1. By (5.1) there is a constant b′ = b′(b) < ∞ such that B
i
(x, b) ⊂ Bi (x, t, b′)

for all t ∈ [0, 1].
Assume that y1, . . . , ym ∈ B

i
(x, b) such that the balls B

i
(y j , a) are pairwise disjoint.

This implies d
i
(y j1 , y j2) ≥ 2a for all j1 
= j2. By the Hölder bound in Theorem 1.1, we

may find a large integer L = L(a) < ∞ such that whenever d
i
(y, y′) ≥ 2a for some points

y, y′ ∈ Mi , then dil
L
(y, y′) > a for some l ∈ {1, . . . , L}. So for any j1 
= j2, there is an

l j1, j2 ∈ {1, . . . , L} such that
dil j1, j2

L

(y j1 , y j2) > a.

This implies the following statement: If we form the L-fold Cartesian product Mi,L :=
(Mi )L = M × . . . × M equipped with the metric gi1

L
⊕ . . . ⊕ giL−1

L
and if we define yLj :=

(y j , . . . , y j ) ∈ Mi,L , then dM
i,L

(yLj1 , y
L
j2
) > a for any j1 
= j2. So the 1

2a-balls around yLj1
are pairwise disjoint and contained in Bi (x, 1

L , b′ + a) × . . . × Bi (x, L−1
L , b′ + a). Using

(2.1) and Lemma 2.1, we conclude that
(
c
( a√

L

)n)L · m ≤
(
C0(b

′)neC0b′)L
,

which yields an upper bound on m. So the sequence (Mi , d
i
) is in fact uniformly totally

bounded.
Wemay now pass to a subsequence and assume that (Mi , d

i
, xi ) converges to somemetric

space (M, d, x) in the pointed Gromov–Hausdorff sense. By (5.2) and Arzelá–Ascoli and
after passing to another subsequence, the sequence of time-dependent metrics (di )t∈[0,1] con-
verges locally uniformly to a time-dependent, continuous family of pseudometrics (d∞

t )t∈[0,1]
onM. So for any t ∈ [0, 1], the pointedmetric spaces (Mi , dit , xi ) converge to (M/∼t , d∞

t , x)
in the pointed Gromov–Hausdorff sense. Passing to another subsequence once again, and
using (2.1), we can ensure that also the volume forms dgit converge uniformly for every
rational t ∈ [0, 1]. Since e−A|t2−t1|dgit1 ≤ dgit2 ≤ eA|t2−t1|dgit1 , the convergence holds for
any t ∈ [0, 1]. The doubling property for balls of radius less than √

t follows from (2.1) after
parabolic rescaling by ( 12 t)

−1/2. ��
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