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Abstract
We prove an optimal control on the time-dependent measure of a measurable set under
a reparametrized Lagrangian mean curvature flow of almost calibrated submanifolds in a
Calabi–Yau manifold. Moreover we give a classification of those Lagrangian translating
solitons in C

m that evolve by this reparametrized flow.

Mathematics Subject Classification 53C44 · 53C21 · 53C42

1 Introduction

Suppose (N , J , gN ) is a Calabi–Yau manifold of real dimension n = 2m. A smooth immer-
sion F : M → N is called Lagrangian, ifm = dim M and F∗ωN = 0, whereωN denotes the
Kähler form on N . Let dz denote the complex volume form on N . A Lagrangian immersion
is called special Lagrangian, if the Lagrangian is calibrated with respect to the real part of
the complex volume form, i.e. if F∗dz coincides with the induced volume form dμ on M .

It is well known, that for general Lagrangian immersions F : M → N one has

F∗dz = eiφdμ,

with a multi-valued phase function φ. Thus the phase φ vanishes for special Lagrangians.
Since special Lagrangians are calibrated they are volumeminimizing in their homology class,
in particular the mean curvature vector field H vanishes. In fact, the phase φ is related to
the mean curvature vector field H by dφ = ΘH , where ΘH (·) = 〈H , J ·〉 denotes the mean
curvature 1-form on M . It is well known that dΘH = 0 and that the cohomology class of
ΘH coincides up to a multiple of π with the first Maslov class m1 of M . Any locally defined
potential α for ΘH is called a Lagrangian angle and must coincide up to a constant with the
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phase functionφ. Conversely, if M is minimal Lagrangian, thenφ = φ0 for some constantφ0.
Thus minimal Lagrangians are also calibrated (special) with respect to the complex volume
form e−iφ0dz.

ALagrangian immersion is called almost calibrated, if cos(φ−φ0) > 0 for some choice of
constant phase shift φ0. Therefore a Lagrangian is almost calibrated, if and only if ΘH = dα

with some globally defined Lagrangian angle α with cosα > 0. Since the Lagrangian angle
satisfies the heat equation, it follows immediately from the maximum principle that the
condition to be almost calibrated is preserved during the flow.

One of the most important open questions in the (Lagrangian) mean curvature flow is the
classification of possible singularities. In general these fall into two categories, type-I and
type-II singularities. The first category describes those finite time singularities for which

lim sup
t→T

(|A|2(T − t)
)

is bounded, where T denotes the singular time and |A| denotes the norm of the second funda-
mental form. This category is relatively well understood and it follows from themonotonicity
formula of Huisken [2] that a rescaled subsequence converges to a self-similarly shrinking
solution. In the compact case, one easily observes from the elliptic equation induced for the
Lagrangian angle (see [11]), that there do not exist any compact self-shrinkers with trivial
Maslov class (so in particular the first Betti number of a compact self-shrinker must be posi-
tive). This was later extended by Neves in [6] to the case of forming type-I singularities (even
non-compact) in the zeroMaslov class case and he proved that they never occur. Therefore in
the Lagrangian mean curvature flow with zero Maslov class, only type-II singularities need
to be studied. This applies in particular to the case of almost calibrated Lagrangians, which
was first observed by Wang [14].

Nevertheless, it is a hard and in general an unsolved question, what these singularities are.
From the general theory for type-II singularities it follows that the tangent flow of such sin-
gularities will be an eternal Lagrangian mean curvature flow in Cm with uniformly bounded
second fundamental form. Possible candidates are translating solitons, special Lagrangians
and products of these types. Besides these there might exist various other types of eternal
solutions. A very interesting class of translating solitons was found by Joyce et al. in [3],
in particular there exist non-trivial translating solitons with arbitrary small oscillation of
their Lagrangian angle. Recently Kunikawa [4] proved that there do not exist non-flat com-
plete Lagrangian eternal solutions with nonnegative Ricci curvature to the almost-calibrated
Lagrangian mean curvature flow in C

m with cosφ ≥ ε > 0 for some constant ε.
To understand how type-II singularties formone needs to take a closer look at the formation

itself. Hopefully, one can then exclude certain types of eternal solutions in the corresponding
tangent flow. E.g. in [7], Neves and Tian classified two-dimensional translating solitons
under various conditions, one of which is a control on the volume growth. We believe that
the following theorem about the local non-collapsing of volume under the Lagrangian mean
curvature flow will be useful in understanding many aspects related to the volume in more
detail, since it gives an optimal control on the time-dependent measure of a measurable set
under the Lagrangianmean curvature flow of almost calibrated submanifolds in a Calabi–Yau
manifold.

Theorem A Let (N , J , gN ) be a Calabi–Yau manifold and suppose F0 : M → N is a com-
pact almost calibrated Lagrangian immersion and let α denote a choice for the Lagrangian
angle with cosα > 0. If F : M × [0, T ) → N is a smooth solution of the reparametrized
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Lagrangian mean curvature flow

d

dt
F = H − tan α · J H , F(·, 0) = F0, (∗)

then for each measurable set Ω ⊂ M and any time t ∈ [0, T ) we have

1

ε
· vol0(Ω) ≥ volt (Ω) ≥ ε · vol0(Ω), (1.1)

where ε is the uniform constant given by

ε := min
M×{0} cosα > 0

and volt denotes the induced measure on M at time t.

Remark 1.1 We add some remarks.

1. The flow described in (∗) differs from the standard Lagrangian mean curvature flow
only by a tangential variation, i.e. there exists a time dependent smooth family of diffeo-
morphisms φt : M → M such that F̃(x, t) := F(φt (x), t) evolves by the usual mean
curvature flow. In particular the flow describes the same evolving submanifolds in N .

2. Since the firstMaslov class is trivial on an almost calibratedLagrangian, almost calibrated
Lagrangian submanifolds cannot develop singularities of type-I. Hence all possible finite
time singularities are of type-II and the tangent flow of such singularities gives eternal
solutions of the Lagrangianmean curvature flow inCm with bounded second fundamental
form (the tangent flow of the reparametrized flow in Theorem A will also be the same
reparametrized Lagrangianmean curvature flow inCm).Moreover these eternal solutions
must be almost calibrated as well (that cosα > 0 follows from cosα ≥ 0, the real
analyticity of the submanifolds and the strong elliptic maximum principle.)

3. As long as cosα ≥ ε > 0 during the flow, one can drop the compactness assumption in
Theorem A and in such situations it equally well holds in the complete case.

Example 1.1 The grim reaper [1] Γ ⊂ C given by the graph of the function u :
(−π/2, π/2) → R,

u(x) = log
1

cos x

is a translating Lagrangian soliton, translating with constant speed 1 in direction of V :=
∂/∂u. A short computation shows dx = ΘH , V = H + ∇u. So in particular α := x is a
Lagrangian angle and

u = log
1

cos x
or

eu cos x = 1.

Since eu cos x is constant, we get du = tan x · ΘH , so that with α = x

V = H + ∇u = H − tan α · J H .

The same holds for the product Γ × Σ of Γ with a minimal Lagrangian submanifold
Σ ⊂ C

m−1. Thus these translating solitons evolve by the reparametrized Lagrangian mean
curvature flow given in Theorem A.
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A special case of the above example is the product of the grim reaper Γ with a flat
Lagrangian subspaceΣ ⊂ C

m−1. This translator usually appears as the blow-upmodel of the
type-II singularities forming in the evolution of immersed Lagrangian spheres, e.g. this is the
case for a large class of equivariant spheres containing the Whitney spheres (see [10]). Since
the reparametrized Lagrangian mean curvature flow naturally appears for some translating
solitons and seems to favor them, we want to understand this in more detail. Without loss
of generality we may assume that the origin is contained in M . The next theorem gives a
classification of these translators.

Theorem B Let M ⊂ C
m be a complete translating soliton, 0 ∈ M, translating in direction

of a unit vector V ∈ C
m and let x, u be the two coordinate functions on M induced by the

plane −J V ∧ V , i.e. u(p) := 〈V , p〉 and x(p) := 〈−J V , p〉 for any p ∈ M. Then α := x
is a Lagrangian angle. Moreover, the following statements are equivalent.

(a) The translator evolves according to (∗).
(b) The function eu cosα admits a local extremum.
(c) eu cosα is constant.
(d) M = Γ ×Σ , where Σ ⊂ C

m−1 is a minimal Lagrangian submanifold and Γ is the grim
reaper given by the function u(x) = − log cos x.

All products M = Γ × Σ of the grim reaper with a minimal Lagrangian submanifold Σ

have in common that cosα > 0 and infM cosα = 0. This implies in particular that these
translating solitons do not occur as a blow-up of a type-II singularity on a compact almost
calibrated Lagrangian since for such compact Lagrangians we have a uniform lower bound
cosα ≥ ε > 0 for all t ∈ [0, T ). On the other hand this argument does not exclude translating
solitons of the form M = �×Σ , where � is a straight line in direction of V . For those solitons
however we observe that the coordinate function u is unbounded from below in contrast to
those given by Γ × Σ . That this is not a coincidence will be shown in the next theorem.

Theorem C Let M ⊂ C
m be a complete translating soliton, 0 ∈ M, translating in direction

of a unit vector V ∈ C
m and with bounded second fundamental form. Let the functions

α := x and u be defined as in Theorem B and suppose that cosα ≥ ε > 0 for some constant
ε. Then the coordinate function u is unbounded from above and below.

Note, that it was shown by Joyce, Lee and Tsui in [3] that for any ε ∈ (0, 1) there exist
non trivial translating Lagrangian solitons which satisfy cosα ≥ ε.

In Theorem C we impose the boundedness of the second fundamental form to guarantee
the Omori–Yau maximum principle is applicable and hence this condition can be relaxed as
long as the Omori–Yau maximum principle still holds. On the other hand, the assumption on
the boundedness of the second fundamental form is quite natural, because this will be valid
for any parabolic blow-up of a type-II singularity of the mean curvature flow.

2 Basic notations

Let (N , J , gN ) be a Calabi–Yau manifold and suppose F : M → N is a Lagrangian immer-
sion. The differential d F will be considered as a 1-form with values in the pull-back bundle
F∗T N , i.e.

d F ∈ Ω1(M, F∗T N ).
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Composing J with d F we obtain another 1-form

ν = Jd F ∈ Ω1(M, F∗T N ).

From the Lagrangian condition we deduce

ν ∈ Ω1(M, T ⊥M),

where T ⊥M is the normal bundle of M with respect to the immersion.
The first fundamental form g on M is the metric induced by F , i.e.

g = F∗gN .

By definition, the second fundamental tensor A of F is

A = ∇d F,

where we will use∇ to denote any canonical connection induced by the Levi–Civita connec-
tions on T M resp. T N . Since it is well known that A is normal, i.e. A ∈ Γ (T ⊥M ⊗ T ∗M ⊗
T ∗M), the Lagrangian condition implies that the tri-linear form

h(u, v, w) = 〈A(u, v), Jw〉
is fully symmetric. In the sequel, let e1, . . . , em be a local orthonormal frame for the tangent
bundle T M . From the Lagrangian condition we get that ν1, . . . , νm with νk := ν(ek) forms
a local orthonormal frame for the normal bundle T ⊥M . Taking covariant derivatives of d F
resp. ν one obtains for any u, w ∈ T M the equations

(∇ud F)(w) =
m∑

k=1

h(u, w, ek)νk, (2.1)

(∇uν)(w) = −
m∑

k=1

h(u, w, ek)d F(ek). (2.2)

3 Variations of Lagrangian immersions

Suppose now that for some T > 0 we have a time dependent smooth map

F : M × [0, T ) → N

such that each map

Ft : M → N , Ft (p) := F(p, t)

is a smooth Lagrangian immersion into N . Let d F
dt be the velocity vector field along M

considered as a section in the pull-back bundle F∗T N over M . We can thus define two
one-forms η, τ ∈ Ω1(M) by

η(w) :=
〈

d F

dt
, ν(w)

〉
, τ (w) :=

〈
d F

dt
, d F(w)

〉
,

where w ∈ T M is arbitrary.
Let us first define the bilinear forms K , L by
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K (u, w) := (∇uη)(w) +
m∑

k=1

τ(ek)h(u, w, ek),

L(u, w) := (∇uτ)(w) −
m∑

k=1

η(ek)h(u, w, ek).

Next we compute the evolution of the 1-form d F under the flow. We get

(∇ d
dt

d F
)
(w) = ∇w

(
d F

dt

)

= ∇w

(
m∑

k=1

η(ek)ν(ek) +
m∑

k=1

τ(ek)d F(ek)

)

= trace
(∇w(η ⊗ ν + τ ⊗ d F)

)

=
m∑

k=1

(
(∇wη)(ek) +

m∑

l=1

h(w, ek, el)τ (el)
)
νk

+
m∑

k=1

(
(∇wτ)(ek) −

m∑

l=1

h(w, ek, el)η(el)
)

d F(ek)

=
m∑

k=1

K (w, ek)νk +
m∑

k=1

L(w, ek)d F(ek), (3.1)

From this we can derive the evolution equation for the metric
( d

dt
g
)
(u, w) =

〈(∇ d
dt

d F
)
(u), d F(w)

〉
+

〈(∇ d
dt

d F
)
(w), d F(u)

〉

= (∇uτ
)
(w) + (∇wτ

)
(u) − 2

m∑

k=1

η(ek)h(u, w, ek)

= L(u, w) + L(w, u), (3.2)

Thus the evolution of the volume form dμ is given by

d

dt
dμ = 1

2
traceg

( d

dt
g
)

dμ = (d†τ − 〈ΘH , η〉)dμ, (3.3)

whered†τ is definedbyd†τ = trace(∇τ) = ∑m
k=1

(∇ek τ
)
(ek), H denotes themean curvature

vector field H = traceA and ΘH is the mean curvature 1-form on M given by ΘH (·) =
〈H , J ·〉. In the next step we compute the evolution equation of the second fundamental form.

(∇ d
dt

h
)
(u, v, w)

=
〈
∇ d

dt
(∇d F)(u, v), ν(w)

〉

︸ ︷︷ ︸
=:S

+
〈
(∇ud F)(v), J (∇ d

dt
d F)(w)

〉

︸ ︷︷ ︸
=:T

,

where we have used that J is parallel. For T we compute with (2.1) and (3.1)

T =
〈
(∇ud F)(v), J (∇ d

dt
d F)(w)

〉

=
m∑

k=1

h(u, v, ek)L(w, ek).
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To compute S we first need to interchange the covariant derivatives. By definition of the
curvature tensor of the pull-back bundle we have

S =
〈
∇ d

dt
(∇d F)(u, v), ν(w)

〉

=
〈
∇u

(∇ d
dt

d F
)
(v) + RN

(
d F

dt
, d F(u)

)
d F(v), ν(w)

〉
,

where RN denotes the curvature tensor on N . Taking into account (3.1) and Jν(ek) =
−d F(ek), the first term on the RHS simplifies to

〈
∇u

(∇ d
dt

d F
)
(v), ν(w)

〉
= (∇u K )(v,w) +

m∑

k=1

h(u, w, ek)L(v, ek)

Combining everything gives
(∇ d

dt
h
)
(u, v, w) = (∇u K )(v,w)

+
m∑

k=1

h(u, w, ek)L(v, ek) +
m∑

k=1

h(u, v, ek)L(w, ek)

+
〈

RN

(
d F

dt
, d F(u)

)
d F(v), ν(w)

〉
.

The mean curvature form ΘH is given by ΘH (u) = ∑m
k=1 h(u, ek, ek). Taking into account

(3.2), we take the trace in the last evolution equation over v,w and obtain

∇ d
dt

ΘH = d(trace(K )) = d
(
d†η + 〈τ,ΘH 〉),

where we have used that the Lagrangian condition and the Kähler identity on N imply that
the trace

m∑

k=1

〈
RN

(
d F

dt
, d F(u)

)
d F(ek), ν(ek)

〉

gives a Ricci curvature and thus vanishes since Calabi–Yau manifolds are Ricci flat.
From this evolution equation we deduce that the Lagrangian angle α, i.e. the potential

with dα = ΘH , evolves according to

d

dt
α = d†η + 〈τ,ΘH 〉. (3.4)

As above let dz denote the complex volume form on the Calabi–Yaumanifold. Since F∗dz =
eiφdμ with phase function φ we must have α = φ − φ0 for some constant φ0. Thus

F∗(e−iφ0dz) = (cosα + i sin α)dμ.

Therefore from (3.3) we get the evolution equation

d

dt
F∗(e−iφ0dz) =

(
i

d

dt
α + d†τ − 〈ΘH , η〉

)
F∗(e−iφ0dz).

This and (3.4) imply
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d

dt
(cosα dμ) =

(
− sin α(d†η + 〈τ,ΘH 〉) + cosα(d†τ − 〈ΘH , η〉)

)
dμ,

d

dt
(sin α dμ) =

(
cosα(d†η + 〈τ,ΘH 〉) + sin α(d†τ − 〈ΘH , η〉)

)
dμ.

If we now choose

η = ΘH , τ = tan α · ΘH = −d(log cosα),

we get

− sin α(d†η + 〈τ,ΘH 〉) + cosα(d†τ − 〈ΘH , η〉)
= − sin α(d†ΘH + tan α|ΘH |2)

+ cosα

(
tan α · d†ΘH + |ΘH |2

cos2 α
− |ΘH |2

)

= 0.

Moreover

cosα(d†η + 〈τ,ΘH 〉) + sin α(d†τ − 〈ΘH , η〉)
= cosα(d†ΘH + tan α|ΘH |2)

+ sin α

(
tan α · d†ΘH + |ΘH |2

cos2 α
− |ΘH |2

)

= d†ΘH

cosα
+ sin α

cos2 α
|ΘH |2 = Δ

(

log

√
1 + sin α

1 − sin α

)

We summarize this in the following Lemma.

Lemma 3.1 Under the reparametrized Lagrangian mean curvature flow

d

dt
F = H − tan α · J H

we have

d

dt
(cosα dμ) = 0, (3.5)

d

dt
(sin α dμ) = 1

2
Δ

(
log

1 + sin α

1 − sin α

)
dμ. (3.6)

Remark 3.1 If one first chooses η = ΘH , then d
dt (cosα dμ) = 0, if and only if

d†(cosα · τ − sin α · ΘH ) = 0.

Therefore one observes that d
dt (cosα dμ) = 0, if and only if

cosα · τ = sin α · ΘH + σ,

where d†σ = 0, i.e. where σ is a smooth time-dependent co-closed 1-form.

From the computations above one observes that the Lagrangian angle evolves under the
reparametrized Lagrangian mean curvature flow (∗) according to

d

dt
α = Δα + tan α |∇α|2.

Equation (3.5) is the key ingredient to prove Theorem A.
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Proof of TheoremA The evolution equation for cosα is

d

dt
cosα = Δ cosα + cosα |∇α|2 − 1

cosα
|∇(cosα)|2.

Thus the parabolic maximum principle implies

min
M×{t} cosα ≥ min

M×{0} cosα = ε, for all t ∈ [0, T ). (3.7)

Then for each measurable set Ω ⊂ M we get

volt (Ω) =
∫

Ω×{t}
dμ ≥

∫

Ω×{t}
cosα dμ

(3.5)=
∫

Ω×{0}
cosα dμ ≥ εvol0(Ω).

Similarly

volt (Ω) =
∫

Ω×{t}
dμ

(3.7)≤ 1

ε

∫

Ω×{t}
cosα dμ

(3.5)= 1

ε

∫

Ω×{0}
cosα dμ ≤ 1

ε
vol0(Ω).

This completes the proof of Theorem A. ��

4 Translating solitons

In general, the equation for a translating soliton F : M → C
m for the mean curvature flow

is

H = V ⊥, (4.1)

where H denotes the mean curvature vector of M , V is a constant vector of unit length in
C

m and V ⊥ denotes the normal part of V along the submanifold. There exist a number of
results for translating solitons, e.g. in [5,7,12,13].

In case of a Lagrangian translating soliton M ⊂ C
m Eq. (4.1) can be expressed in terms

of the mean curvature 1-form ΘH ,

ΘH = dx, (4.2)

where x is the coordinate function

x := −〈J V , F〉.
In particular, translating Lagrangian solitons have trivial firstMaslov class and are of gradient
type. Moreover,

α := x (4.3)

is a choice for the Lagrangian angle α. From this one immediately gets

V = H + ∇u, (4.4)

where u is the coordinate function

u := 〈V , F〉.
|V | = 1 implies

1 = |∇α|2 + |∇u|2. (4.5)
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Next we will compute the Laplacians of various functions. From α = x we get

∇2α = −h(∇u, ·, ·), (4.6)

∇2u = h(∇α, ·, ·). (4.7)

Taking traces gives

Δα + 〈∇α,∇u〉 = 0, (4.8)

Δu − |∇α|2 = 0. (4.9)

With (4.5) we derive from (4.9) that

Δeu = eu(Δu + |∇u|2) = eu. (4.10)

Let us define the function

f := eu cosα.

Since

∇ f = eu(cosα∇u − sin α∇α) = f ∇u − eu sin α∇α, (4.11)

we obtain

∇2 f = ∇ f ⊗ ∇u + f (∇2u − ∇α ⊗ ∇α) − eu sin α(∇2α + ∇u ⊗ ∇α).

(4.12)

Hence taking a trace and using (4.8), (4.9) we get

Δ f − 〈∇ f ,∇u〉 = 0. (4.13)

We want to exploit Eq. (4.12) even further in case cosα > 0. To this end observe that from
1 = 1

cos2 α
− tan2 α we get

∇2u − ∇α ⊗ ∇α − tan α(∇2α + ∇u ⊗ ∇α)

= 1

cos2 α
(∇2u − ∇α ⊗ ∇α)

+ tan α

cosα

(
sin α(∇α ⊗ ∇α − ∇2u) − cosα(∇2α + ∇u ⊗ ∇α)

)
.

The last line can be substituted using equations (4.6), (4.7) and this gives

∇2u − ∇α ⊗ ∇α − tan α(∇2α + ∇u ⊗ ∇α)

= 1

cos2 α
(∇2u − ∇α ⊗ ∇α)

+ tan α

cosα

(
h(cosα∇u − sin α∇α, ·, ·) + (sin α∇α − cosα∇u) ⊗ ∇α

)
.

Therefore we have

∇2u − ∇α ⊗ ∇α − tan α(∇2α + ∇u ⊗ ∇α)

= 1

cos2 α
(∇2u − ∇α ⊗ ∇α) + tan α

f

(
h(∇ f , ·, ·) − ∇ f ⊗ ∇α

)
.

Combining this with (4.12) implies

∇2 f = ∇ f ⊗ ∇u + f

cos2 α
(∇2u − ∇α ⊗ ∇α)
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+ tan α
(

h(∇ f , ·, ·) − ∇ f ⊗ ∇α
)

= 1

f
∇ f ⊗ ∇ f + tan α · h(∇ f , ·, ·)

+ f

cos2 α

(
h(∇α, ·, ·) − ∇α ⊗ ∇α

)
. (4.14)

Proof of Theorem B Let us first mention that since 0 ∈ M and α = x = −〈p, J V 〉, there
exists at least one point p ∈ M with u(p) = 0 and α(p) = 0. Therefore, if f is constant,
this constant clearly is 1.

1. We prove (a)⇔(c):
From V = H + ∇u we see that V takes the form in (∗), if and only if

∇u = − tan α · J H = tan α ∇α,

i.e. if and only if

∇(eu cosα) = eu(cosα∇u − sin α∇α) = 0.

2. The equivalence (b)⇔(c) follows from the strong elliptic maximum principle applied to
the equation (4.13).

3. (d)⇔(c):
Since eu cosα ≡ 1 on the grim reaper Γ , this implies that eu cosα must be constant
and equal to 1 as well on the product of Γ with a minimal Lagrangian submanifold
Σ ⊂ C

m−1. So clearly (d) implies (c). It remains to show that (c) implies (d). Let us
assume that eu cosα is constant. Since the origin is contained in M , this constant is 1.
Thus in particular cosα > 0 on M . From ∇ f = 0 with f = eu cosα we first observe

∇u = tan α ∇α (4.15)

and then with (4.5)

sin2 α|∇α|2 = cos2 α|∇u|2 = cos2 α(1 − |∇α|2)
which implies

|∇α|2 = cos2 α > 0.

In particular the kernel of ΘH = dα at each point p ∈ M is (m − 1)-dimensional. Let D
denote the corresponding (m−1)-dimensional distribution on M defined byDp := kerΘH |p .

��
Claim D is parallel.

Proof From (4.14) and ∇ f = 0 we derive

h(∇α, ·, ·) = ∇α ⊗ ∇α.

With (4.6) and (4.15) we then conclude

∇2α = −h(∇u, ·, ·)
= − tan α · h(∇α, ·, ·)
= − tan α · ∇α ⊗ ∇α.
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Now let γ : [0, 1] → M be a smooth curve with γ (0) = p and let W be the parallel transport
of W0 ∈ Dp along γ . Then we compute along γ :

∂

∂s

(
ΘH (W )

) = (∇γ ′ΘH
)
(W ) = − tan α · ΘH (γ ′)ΘH (W ).

Since the solution of this ODEwithΘH (W )(0) = 0 is unique, it follows thatΘH (W )(s) = 0
for all s ∈ [0, 1] which implies that W (γ (s)) ∈ Dγ (s) for all s and that D is invariant under
parallel transport. This proves the claim. ��
Therefore the manifold M splits into a Riemannian product of a curve β with an (m − 1)-
dimensional submanifold Σ . Let π : M → Σ denote the natural projection. The tangent
space Tπ(p)Σ is given by Dp . Since J∇α = H = V ⊥, the curve β lies in the (x, u)-plane
spanned by V , J V . Therefore Σ ⊂ C

m−1 is also Lagrangian. If at a point p ∈ M we
choose an ONB ν1 . . . , νm of the normal space T ⊥

p M with ν1 = H/|H |, then the trace of
Aνk := 〈A(·, ·), νk〉 is given by −ΘH (Jνk) and hence vanishes for all k ≥ 2. Therefore
from the Lagrangian condition and Dp = kerΘH |p we see that the mean curvature vector
of Σ vanishes identically and Σ is a minimal Lagrangian submanifold. Since M = β × Σ ,
with a minimal Lagrangian submanifold Σ , we finally conclude that β ⊂ C must itself be a
translating soliton in the plane, wich implies β must be the grim reaper Γ . ��

The Omori–Yau maximum principle [8] (later extended by Yau [15], see also [9]) states
that if (M, g) is a complete Riemannian manifold with sectional curvatures bounded below,
then for every f ∈ C2(M) that is bounded above there exists a sequence (xk)k∈� ⊂ M such
that

f (xk) ≥ sup
M

f − 1

k
, |∇ f (xk)| <

1

k
, ∇2 f (xk) ≤ 1

k
g.

If a translator M ⊂ C
m has bounded second fundamental form, then theGauß equations imply

that all sectional curvatures are bounded. Hence we may apply the Omori-Yau maximum
principle to complete translators with bounded second fundamental form. Since the function
eu satisfies the equation

Δeu = eu

the Omori–Yau maximum principle immediately implies that u cannot be bounded above
on any complete translator with bounded second fundamental form. Theorem C claims that
this holds also from below, provided the translator is strictly almost calibrated in the sense
cosα ≥ ε for some constant ε > 0.

Proof of Theorem C Suppose that u is bounded below by some constant c0. We will derive a
contradiction. Since by assumption cosα ≥ ε > 0, we can choose a constant σ > 1 such
that

cos(σα) ≥ ε

2
. (4.16)

We set fσ := eu cos(σα) and compute

Δ fσ = cos(σα)Δeu + euΔ cos(σα) + 2〈∇eu,∇ cos(σα)〉
= fσ + eu(−σ sin(σα)Δα − σ 2 cos(σα)|∇α|2)

+ 2〈∇u, eu ∇ cos(σα)〉
(4.8)= fσ + 〈∇u, eu ∇ cos(σα)〉 − σ 2 fσ |∇α|2
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= 〈∇u,∇ fσ 〉 − fσ |∇u|2 + fσ − σ 2 fσ |∇α|2
= 〈∇u,∇ fσ 〉 + (1 − σ 2) fσ |∇α|2. (4.17)

Now

∇ fσ = fσ
(∇u − σ tan(σα)∇α

)
,

so that

σ 2 tan2(σα)|∇α|2 =
∣
∣
∣
∣
∇ fσ

fσ
− ∇u

∣
∣
∣
∣

2

which in view of |∇u|2 = 1 − |∇α|2 implies

(σ 2 − 1) sin2(σα) + 1

cos2(σα)
|∇α|2 = 1 + |∇ fσ |2

f 2σ
− 2

〈∇ fσ
fσ

,∇u
〉
.

Because |∇u|2 ≤ 1 and σ 2 − 1 ≥ 0 we can apply the Peter-Paul inequality on the right hand
side to obtain

σ 2

cos2(σα)
|∇α|2 ≥ 1

2
− |∇ fσ |2

f 2σ
. (4.18)

Since by assumption u ≥ c0, we may combine

δ := inf
M

fσ ≥ ε

2
ec0 > 0

with (4.17), (4.18) to get the estimate

Δ fσ ≤ |∇u| · |∇ fσ | + (1 − σ 2) fσ |∇α|2

≤ |∇ fσ | + 1 − σ 2

σ 2 cos2(σα)

(
fσ
2

− |∇ fσ |2
fσ

)

≤ |∇ fσ | + 1 − σ 2

σ 2 cos2(σα)

(
δ

2
− |∇ fσ |2

δ

)

≤ |∇ fσ | + σ 2 − 1

σ 2 cos2(σα)

( |∇ fσ |2
δ

− δ

4

)

− δε2(σ 2 − 1)

16σ 2 , (4.19)

wherewe have used (4.16) and σ 2−1 ≥ 0 in the last step. Since infM fσ = δ, theOmori–Yau
maximum principle implies that there exists a sequence (xk)k∈N ∈ M such that

fσ (xk) ≤ δ + 1

k
, |∇ fσ (xk)| <

1

k
, Δ fσ (xk) ≥ −1

k
.

Therefore, for large enough k, inequality (4.19) gives at the points xk

−1

k
≤ Δ fσ (xk) ≤ −δε2(σ 2 − 1)

16σ 2

which is a contradiction for sufficiently large k. Hence the function u cannot be bounded
below. ��
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