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Abstract
We investigate the bottom of the spectra of infinite quantum graphs, i.e., Laplace operators
on metric graphs having infinitely many edges and vertices. We introduce a new definition
of the isoperimetric constant for quantum graphs and then prove the Cheeger-type estimate.
Our definition of the isoperimetric constant is purely combinatorial and thus it establishes
connections with the combinatorial isoperimetric constant, one of the central objects in spec-
tral graph theory and in the theory of simple random walks on graphs. The latter enables us
to prove a number of criteria for quantum graphs to be uniformly positive or to have purely
discrete spectrum. We demonstrate our findings by considering trees, antitrees and Cayley
graphs of finitely generated groups.
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1 Introduction

The main focus of our paper is on the study of spectra of quantum graphs. The notion of
“quantum graph” refers to a graphG considered as a one-dimensional simplicial complex and
equipped with a differential operator. The spectral and scattering properties of Schrödinger
operators on such structures attracted a considerable interest during the last two decades,
as they provide, in particular, relevant models of nanostructured systems (we only mention
recent collected works and monographs with a comprehensive bibliography: [8,9,24,57]).

Let G be a locally finite connected metric graph, that is, a locally finite connected combi-
natorial graph Gd = (V , E), where each edge e ∈ E is identified with a copy of the interval
[0, |e|] and |·| denotes the edge length.We shall always assume throughout the paper that each
edge has finite length, that is, | · | : E → (0,∞). In the Hilbert space L2(G) = ⊕

e∈E L2(e),
we can define the HamiltonianH which acts in this space as the (negative) second derivative

− d2

dx2e
on every edge e ∈ E . To giveH the meaning of a quantummechanical energy operator,

it must be self-adjoint and hence one needs to impose appropriate boundary conditions at
the vertices. Kirchhoff (also known as Kirchhoff–Neumann) conditions (2.6) are the most
standard ones (cf. [9]) and the corresponding operator denoted byH is usually called a Kirch-
hoff (Kirchhoff–Neumann) Laplacian (we refer to Sects. 2.2–2.4 for a precise definition of
the operator H). If the graph G is finite (G has finitely many vertices and edges), then the
spectrum of H is purely discrete (see, e.g., [9]). During the last few years, a lot of effort has
been put in estimating the first nonzero eigenvalue of the operator H (notice that 0 is always
a simple eigenvalue if Gd is connected) and also in understanding its dependence on various
characteristics of the corresponding metric graph including the number of essential vertices
of the graph (vertices of degree 2 are called inessential); the number or the total length of
the graph’s edges; the edge connectivity of the underlying (combinatorial) graph, etc. For
further information we refer to a brief selection of recent articles [3,4,7,40,41,44,58].

If the graphG is infinite (there are infinitelymany vertices and edges), then the correspond-
ing pre-minimal operator H0 defined by (2.7) is not automatically essentially self-adjoint.
One of the standard conditions to ensure the essential self-adjointness ofH0 is the existence
of a positive lower bound on the edges lengths, �∗(G) = infe∈E |e| > 0 (see [9]). Only
recently several self-adjointness conditions without this rather restrictive assumption have
been established in [25,43] (see Sect. 2.3 for further details). Of course, the next natural ques-
tion is the structure of the spectrum of the operator H. Clearly, the spectrum of an infinite
quantum graph is not necessarily discrete and hence one is interested in the location of the
bottom of the spectrum, λ0(H), as well as of the bottom of the essential spectrum, λess0 (H),
of H. Since the graph is infinite, many quantities of interest for finite quantum graphs (e.g.,
the number of vertices, edges, or its total length) are no longer suitable for these purposes
and the corresponding bounds usually lead to trivial estimates. However, it is widely known
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that quantum graphs in a certain sense interpolate between Laplacians on Riemannian man-
ifolds and difference Laplacians on combinatorial graphs and hence quantum graphs can be
investigated by modifying techniques that have been developed for operators on manifolds
and graphs and we explore these analogies in the present paper. Notice that this insight has
already proved to be very fruitful and it has led to many important results in spectral theory
of operators on metric graphs (see, e.g., [9]). Although quantum graphs are essentially oper-
ators on one-dimensional manifolds, our point of view is that the corresponding results and
estimates should be of combinatorial nature.

Our central result is a Cheeger-type estimate for quantum graphs, which establishes lower
bounds for λ0(H) and λess0 (H) in terms of the isoperimetric constant α(G) of the metric
graph G (Theorem 3.4). Although the Cheeger-type bound for (finite) quantum graphs was
proved 30 years ago by Nicaise (see [50, Theorem 3.2]), we give a new purely combinatorial
definition of the isoperimetric constant (see Definition 3.2) and as a result this establishes a
connection with isoperimetric constants for combinatorial graphs [see Lemma 4.2 and also
(4.10)–(4.11)]. To a certain extent this connection is expected (cf. Theorem 2.11 and also
[10,14,57,63]).Moreover, it was observed recently in [25,43] by using the ideas from [42] that
spectral properties of the operatorH are closely connected with the corresponding properties
of the discrete Laplacian defined in �2(V ;m) by the expression

(τG f )(v) := 1

m(v)

∑

u∼v

f (v) − f (u)

|eu,v| , v ∈ V , (1.1)

where the weight function m : V → R>0 is given by

m : v �→
∑

u∼v

|eu,v|. (1.2)

Using this connection, several criteria for λ0(H) and λess0 (H) to be positive have been
established in [25], however, in terms of isoperimetric constants and volume growth of the
combinatorial graphs, which were introduced, respectively, in [5] and [27,33] [in this paper
we obtain these results as simple corollaries of our estimate (3.8)].

Despite the combinatorial nature of (3.3) and (3.4), it is known that computation of the
combinatorial isoperimetric constant is an NP-hard problem [48] (see also [34,36] for further
details). Motivated by Bauer et al. [5] and Dodziuk [20], we introduce a quantity, which
sometimes is interpreted as a curvature of a graph, leading to estimates for the isoperimetric
constants α(G) and αess(G). It also turns out to be very useful in many situations of interest
as we show by the examples of trees and antitrees. Another way to estimate isoperimetric
constants is provided by the volume growth. Namely, we can apply the exponential volume
growth estimates for regular Dirichlet forms from [62] (see also [33,51]) to prove upper
bounds (Brooks-type estimates [6]) for quantum graphs (see Theorem 7.1). However, this
can be done under the additional assumption that the metric graph is complete with respect to
the natural path metric (notice that in this caseH0 is essentially self-adjoint andH coincides
with its closure, see Corollary 2.3).

The quantitiesλ0(H) andλess0 (H) are of fundamental importance for several reasons. From
the spectral theory point of view, the positivity of λ0(H) or λess0 (H) corresponds to bounded
invertibility or Fredholmness of the operator H. Moreover, λess0 (H) = +∞ holds precisely
when the spectrum of H is purely discrete, which is further equivalent to the compactness
of the embedding H1

0 (G) into L2(G) (the definition of the form domain H1
0 (G) is given in

Sect. 2.4). It is difficult to overestimate the importance of λ0(H) and λess0 (H) in applications.
For example, in the theory of parabolic equations λ0(H) gives the speed of convergence of the
system towards equilibrium. On the other hand, Cheeger-type inequalities have a venerable
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history. Starting from the seminal work of Cheeger [15], where a connection between the
isoperimetric constant of a compact manifold and a first nontrivial eigenvalue of the Laplace–
Beltrami operator was found, this topic became an active area of research in both manifolds
and graphs settings. One of the most fruitful applications of Cheeger’s inequality in graph
theory (this inequality was first proved independently in [19,21] and [1,2]) is in the study of
networks connectivity, namely, in constructing expanders (see [16,18,34,46]).Notice also that
the positivity of the isoperimetric constant (also known as a strong isoperimetric inequality)
is of fundamental importance in the study of random walks on graphs (we refer to [65] for
further details).

Let us now finish the introduction by describing the content of the article. First of all, we
review necessary notions and facts on infinite quantum graphs in Sect. 2, where we introduce
the pre-minimal operatorH0 (Sect. 2.2), discuss its essential self-adjointness (Sect. 2.3) and
the corresponding quadratic form tG (Sect. 2.4), and also touch upon its connection with the
difference Laplacian (1.1) (Sect. 2.5).

Section 3 contains our first main result, Theorem 3.4, which provides the Cheeger-type
estimate for quantumgraphs. Its proof follows closely the line of arguments as in themanifold
case with the only exception, Lemma 3.7, which enables us to replace the isoperimetric
constant (3.12) having the form similar to that of in [50] (see also [40,56]) by the quantity (3.3)
having a combinatorial structure. The latter also reveals connections with the combinatorial
isoperimetric constant αcomb from [2,19], which measures connectedness of the underlying
combinatorial graph, and with the discrete isoperimetric constant αd introduced recently in
[5] for the difference Laplacian (1.1). Bearing in mind the importance of both αcomb and αd

in applications as well as the fact that these quantities are widely studied, we discuss these
connections in Sect. 4.

Similar to manifolds and combinatorial Laplacians, one can estimate λ0(H) and λess0 (H)

by using the isoperimetric constant not only from below but also from above (Lemma 5.1).
However, the price we have to pay is the existence of a positive lower bound on the edges
lengths, infe∈E |e| > 0. Combining these estimates with the results from Sect. 4, we conclude
that in this case the positivity of λ0(H) (resp., λess0 (H)) is equivalent to the validity of a strong
isoperimetric inequality, i.e., αcomb > 0 (resp., αess

comb > 0).
In Sect. 6, we introduce a quantity which may be interpreted as a curvature of a metric

graph. Firstly, using this quantity we are able to obtain estimates on the isoperimetric con-
stant. Secondly, we discuss its connection with the curvatures introduced for combinatorial
Laplacians in [20] and for unbounded difference Laplacians in [5]. The latter, in particular,
enables us to obtain simple discreteness criteria for σ(H) (see Lemma 6.5 and Corollary 6.6),
which to a certain extent can be seen as the analogs of the discreteness criteria from [22] and
[30].

The estimates in terms of the volume growth are given in Sect. 7. In Sect. 8, we consider
several illustrative examples. The case of trees is treated in Sect. 8.1. We show that for trees
without inessential vertices and loose ends (vertices having degree 1), λ0(H) > 0 if and only
if supe |e| < ∞. Moreover, the spectrum of H is purely discrete if and only if the number
#{e ∈ E : |e| > ε} is finite for every ε > 0. Notice that under the additional symmetry
assumption that a given metric tree is regular similar results, however, for the so-called Neu-
mann Laplacian were observed by Solomyak [61]. The case of antitrees is considered in
Sect. 8.2. We provide some general estimates and also focus on two particular examples of
exponentially and polynomially growing antitrees. In particular, it turns out that for a poly-
nomially growing antitree, our results provide rather good estimates for λ0(H) and λess0 (H)

(see Example 8.9). In the last subsection, we consider the case of Cayley graphs of finitely
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generated groups. Similar to combinatorial Laplacians, the amenability/non-amenability of
the underlying group plays a crucial role.

Finally, in “Appendix A” we provide a slight improvement to the Cheeger estimates from
[5] by noting that one can replace intrinsic path metrics in the definition of isoperimetric
constants simply by edge weight functions having an intrinsic property.

2 Quantum graphs

2.1 Combinatorial andmetric graphs

In what follows, Gd = (V , E) will be an unoriented graph with countably infinite sets of
vertices V and edges E . For two vertices u, v ∈ V we shall write u ∼ v if there is an edge
eu,v ∈ E connecting u with v. For every v ∈ V , we denote the set of edges incident to the
vertex v by Ev and

degG(v) := #{e| e ∈ Ev} (2.1)

is called the degree (or combinatorial degree) of a vertex v ∈ V . When there is no risk of
confusion which graph is involved, we shall write deg instead of degG . By #(S) we denote
the cardinality of a given set S. A path P of length n ∈ Z≥1 ∪ {∞} is a sequence of vertices
{v0, v1, . . . , vn} such that vk−1 ∼ vk for all k ∈ {1, . . . , n}. If v0 = vn and all intermediate
vertices are distinct, then P is called a cycle.

We shall always make the following assumption.

Hypothesis 2.1 The infinite graph Gd is locally finite (deg(v) < ∞ for every v ∈ V ),
connected (for any two vertices u, v ∈ V there is a path connecting u and v), and simple
(there are no loops or multiple edges).

Next we assign each edge e ∈ E a finite length |e| ∈ (0,∞). In this case
G := (V , E, | · |) = (Gd , | · |) is called a metric graph. The latter enables us to equip
G with a topology and metric. Namely, by assigning each edge a direction and calling one
of its vertices the initial vertex e0 and the other one the terminal vertex ei , every edge e ∈ E
can be identified with a copy of the interval Ie = [0, |e|]; moreover, the ends of the edges
that correspond to the same vertex v are identified as well. Thus, G can be equipped with the
natural path metric �0 (the distance between two points x, y ∈ G is defined as the length of
the “shortest” path connecting x and y). Moreover, a metric graph G can be considered as a
topological space (one-dimensional simplicial complex). For further details we refer to, e.g.,
[9, Chapter 1.3].

Also throughout this paper we shall assume the following conditions.

Hypothesis 2.2 There is a finite upper bound for lengths of graph edges:

�∗(G) := sup
e∈E

|e| < ∞. (2.2)

In fact, Hypothesis 2.2 is not a restriction for our purposes [see Lemma 2.8 and also
Remark 2.9(i)].

Hypothesis 2.3 All edges in G are essential, that is, deg(v) 
= 2 for all v ∈ V .

This assumption is not a restriction at all since vertices of degree 2 are irrelevant for
the spectral properties of the Kirchhoff Laplacian and hence can be removed (see, e.g., [9,
Remark 1.3.3]).
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2.2 Kirchhoff’s Laplacian

Let G be a metric graph satisfying Hypothesis 2.1–2.3. Upon identifying every e ∈ E with a
copy of the interval Ie and considering G as the union of all edges glued together at certain
endpoints, let us introduce the Hilbert space L2(G) of functions f : G → C such that

L2(G) =
⊕

e∈E
L2(e) =

{
f = { fe}e∈E

∣
∣ fe ∈ L2(e),

∑

e∈E
‖ fe‖2L2(e) < ∞

}
.

The subspace of compactly supported L2(G) functions will be denoted by

L2
c(G) = {

f ∈ L2(G)| f 
= 0 only on finitely many edges e ∈ E
}
.

Next let us equip G with the Laplace operator. For every e ∈ E consider the maximal
operator He,max acting on functions f ∈ H2(e) as a negative second derivative. Here and
below Hn(e) for n ∈ Z≥0 denotes the usual Sobolev space. In particular, H0(e) = L2(e)
and

H1(e) = { f ∈ AC(e) : f ′ ∈ L2(e)}, H2(e) = { f ∈ H1(e) : f ′ ∈ H1(e)}.
Now consider the maximal operator on G defined by

Hmax =
⊕

e∈E
He,max, He,max = − d2

dx2e
, dom(He,max) = H2(e). (2.3)

For every fe ∈ H2(e) the following quantities

fe(eo) := lim
x→eo

fe(x), fe(ei ) := lim
x→ei

fe(x), (2.4)

and

f ′
e(eo) := lim

x→eo

fe(x) − fe(eo)

|x − eo| , f ′
e(ei ) := lim

x→ei

fe(x) − fe(ei )

|x − ei | , (2.5)

arewell defined. TheKirchhoff (orKirchhoff–Neumann) boundary conditions at every vertex
v ∈ V are then given by

{
f is continuous at v,
∑

e∈Ev
f ′
e(v) = 0.

(2.6)

Imposing these boundary conditions on themaximal domain dom(Hmax) and then restrict-
ing to compactly supported functions we get the pre-minimal operator

H0 = Hmax � dom(H0),

dom(H0) = { f ∈ dom(Hmax) ∩ L2
c(G)| f satisfies (2.6), v ∈ V }. (2.7)

Integrating byparts one obtains thatH0 is symmetric.Wecall its closure theminimalKirchhoff
Laplacian. Notice that the values of f at the vertices (2.4) and one-sided derivatives (2.5)
do not depend on the choice of orientation on G. Moreover, the second derivative is also
independent of orientation on G and hence so is the operator H0.

Remark 2.1 If deg(v) = 1, then Kirchhoff’s condition (2.6) at v is simply the Neumann
condition

f ′
e(v) = 0. (2.8)
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Let us mention that one can replace it by the Dirichlet condition

fe(v) = 0 (2.9)

and we shall consider the operator H0 with mixed boundary conditions (either Neumann or
Dirichlet) at the vertices v ∈ V of the graph G such that deg(v) = 1.

In the rest of our paper, we shall denote by VD (respectively, by VN ) the set of vertices
v ∈ V such that deg(v) = 1 and the Dirichlet condition (2.9) [respectively, the Neumann
condition (2.8)] is imposed at v. The sets of corresponding edges will be denoted by ED and
EN , respectively.

2.3 Self-adjointness

In the rest of our paper we shall always assume that the graph Gd is infinite, that is, both
sets V and E are infinite (since Gd is assumed to be locally finite). In this case the operator
H0 is not necessarily essentially self-adjoint (that is, its closure may have nonzero deficiency
indices) and finding self-adjointness criteria is a challenging open problem. The next results
were proved recently in [25]. Define the weight function m : V → R>0 by

m : v �→
∑

e∈Ev

|e|, (2.10)

and then let pm : E → R>0 be given by

pm : eu,v �→ m(u) + m(v). (2.11)

The path metric �m on V generated by pm is defined by

�m(u, v) := inf
P={v0,...,vn} : v0=u vn=v

∑

k

pm(evk−1,vk ), (2.12)

where the infimum is taken over all paths connecting u and v.

Theorem 2.2 ([25]) If (V , �m) is complete as a metric space, then H0 is essentially self-
adjoint. In particular, H0 is essentially self-adjoint if

inf
v∈V m(v) > 0. (2.13)

Replacing pm in (2.12) by the edge length | · |, we end up with the natural path metric
�0 on V . Clearly, (V , �m) is complete if so is (V , �0) and hence we arrive at the following
Gaffney-type theorem for quantum graphs.

Corollary 2.3 ([25]) If G equipped with a natural path metric is complete as a metric space,
then H0 is essentially self-adjoint.

The next well known result (see [9, Theorem 1.4.19]) also immediately follows from
Theorem 2.2.

Corollary 2.4 If

�∗(G) := inf
e∈E |e| > 0, (2.14)

then H0 is essentially self-adjoint.
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2.4 Quadratic forms

In this section we present the variational definition of the Kirchhoff Laplacian. Consider the
quadratic form

t0G [ f ] := (H0 f , f )L2(G), f ∈ dom(t0G) := dom(H0). (2.15)

For every f ∈ dom(H0), an integration by parts gives

t0G [ f ] =
∫

G
| f ′(x)|2 dx = ‖ f ′‖2L2(G)

. (2.16)

Clearly, the form t0G is nonnegative. Moreover, it is closable since H0 is symmetric. Let us
denote its closure by tG and the corresponding domain by H1

0 (G) := dom(tG). By the first
representation theorem, there is a unique nonnegative self-adjoint operator corresponding to
the form tG .

Definition 2.5 The self-adjoint nonnegative operatorH associated with the form tG in L2(G)

will be called the Kirchhoff Laplacian.

If the pre-minimal operatorH0 is essentially self-adjoint, thenH coincideswith its closure.
In the case when H0 is a symmetric operator with nontrivial deficiency indices, the operator
H is the Friedrichs extension of H0.

Remark 2.6 Of course, one may consider the maximally defined form

t
(N )
G [ f ] :=

∫

G
| f ′(x)|2 dx, f ∈ dom

(
t
(N )
G

)
, (2.17)

where

dom
(
t
(N )
G

)
:= {

f ∈ L2(G)| f ∈ H1
loc(G), f ′ ∈ L2(G)

} =: H1(G), (2.18)

and then associate a self-adjoint positive operator, let us denote it by HN , with this form
in L2(G). Clearly, the forms tG and t

(N )
G coincide if and only if H is the unique positive

self-adjoint extension of H0 (this in particular holds if H0 is essentially self-adjoint). We
are not aware of a description of the self-adjoint operator HN associated with the form t

(N )
G

if the pre-minimal operator has nontrivial deficiency indices (however, see the recent work
[12,37]). Moreover, to the best of our knowledge, the description of deficiency indices ofH0

and its self-adjoint extensions is a widely open problem.

If at some vertices v ∈ V with deg(v) = 1 the Neumann condition (2.8) is replaced by the
Dirichlet condition (2.9), then the corresponding form domain will be denoted by H̃1

0 (G).
Notice that

H̃1
0 (G) = {

f ∈ H1
0 (G)| fe(v) = 0, v ∈ VD

}
. (2.19)

By abusing the notation, we shall denote the corresponding self-adjoint operator by H. The
bottom of the spectrum of H can be found by using the Rayleigh quotient

λ0(H) := inf σ(H) = inf
f ∈H̃1

0 (G)

f 
=0

(H f , f )L2(G)

‖ f ‖2
L2(G)

= inf
f ∈H̃1

0 (G)

f 
=0

‖ f ′‖2
L2(G)

‖ f ‖2
L2(G)

. (2.20)
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Moreover, the bottom of the essential spectrum is given by

λess0 (H) := inf σess(H) = sup
G̃⊂G

inf
f ∈H̃1

0 (G\G̃)

f 
=0

‖ f ′‖2
L2(G\G̃)

‖ f ‖2
L2(G\G̃)

, (2.21)

where the sup is taken over all finite subgraphs G̃ of G. Here for any G̃ ⊂ G we define
H̃1
0 (G\G̃) as the set of H1

0 (G\G̃) functions satisfying the following boundary conditions:
for vertices inG\G̃ having one or more edges in G̃, we change the boundary conditions from
Kirchhoff–Neumann to Dirichlet; for all other vertices in G\G̃, we leave them the same.
This equality is known as a Persson-type theorem (or Glazman’s decomposition principle in
the Russian literature, see [32]) and its proof in the case of quantum graphs is analogous to
the case of Schrödinger operators (see, e.g., [17, Theorem 3.12]).

Remark 2.7 Let us mention that the following equivalence holds true

λ0(H) = 0 ⇐⇒ λess0 (H) = 0. (2.22)

The implication “ ⇐ ” is obvious. However, λ0(H) = 0 and λess0 (H) 
= 0 holds only if 0 is
an isolated eigenvalue. On the other hand, (2.16) implies that 0 is an eigenvalue of H only if
1 ∈ L2(G). The latter happens exactly when

mes(G) :=
∑

e∈E
|e| < ∞.

and hence the equivalence (2.22) holds true whenever mes(G) = ∞,
On the other hand, it turns out that 1 /∈ H1

0 (G) if mes(G) < ∞ and hence 0 is never an

eigenvalue of H [see Corollary 3.5(iv)]. In particular, the latter implies that tG 
= t
(N )
G if the

metric graph G has finite total volume, mes(G) < ∞. The analysis of this case is postponed
to a separate publication.

If G1, G2 are finite subgraphs with G1 ⊆ G2 ⊂ G, then H̃1
0 (G\G2) ⊆ H̃1

0 (G\G1) in
the sense that every function in H̃1

0 (G\G2) can be extended to be in H̃1
0 (G\G1) by setting

it zero on remaining edges. Thus,

inf
f ∈H̃1

0 (G\G2)

f 
=0

‖ f ′‖2
L2(G\G2)

‖ f ‖2
L2(G\G2)

≥ inf
f ∈H̃1

0 (G\G1)

f 
=0

‖ f ′‖2
L2(G\G1)

‖ f ‖2
L2(G\G1)

.

Let KG be the set of all finite, connected subgraphs of G ordered by the inclusion relation
“⊆” and hence KG is a net. Moreover,

λess0 (H) = sup
G̃∈KG

inf
f ∈H̃1

0 (G\G̃)

f 
=0

‖ f ′‖2
L2(G\G̃)

‖ f ‖2
L2(G\G̃)

= lim
G̃∈KG

inf
f ∈H̃1

0 (G\G̃)

f 
=0

‖ f ′‖2
L2(G\G̃)

‖ f ‖2
L2(G\G̃)

. (2.23)

The limit is understood in the sense of nets and in this case we will say that G̃ tends to G.
The next result provides an estimate, which easily follows from (2.20) to (2.21).

Lemma 2.8 Set

�∗
ess(G) := inf

Ẽ
sup

e∈E\Ẽ
|e|, (2.24)
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15 Page 10 of 40 A. Kostenko, N. Nicolussi

where the infimum is taken over all finite subsets Ẽ of E. Then

λ0(H)≤ π2

�∗(G)2
, λess0 (H)≤ π2

�∗
ess(G)2

. (2.25)

Proof By construction, the set H̃1
c (G) := H̃1

0 (G) ∩ L2
c(G) is a core for tG . Moreover, every

f ∈ H̃1
c (G) admits a unique decomposition f = flin + f0, where flin ∈ H̃1

c (G) is piecewise
linear on G (that is, it is linear on every edge e ∈ E) and f0 ∈ H̃1

c (G) takes zero values at
the vertices V . It is straightforward to check that

tG [ f ] =
∫

G
| f ′(x)|2dx =

∫

G
| f ′

lin(x)|2dx +
∫

G
| f ′

0(x)|2dx = tG [ flin] + tG [ f0].
(2.26)

Now the estimates (2.25) easily follow from the decomposition (2.26). Indeed, for every
f = f0 ∈ H̃1

c (G)

tG [ f0] =
∑

e∈E
‖ f ′

0,e‖2L2(e), (2.27)

where f0,e := f0 � e ∈ H1
0 (e). Noting that

inf
f ∈H1

0 ([0,l])
‖ f ′‖2

L2

‖ f ‖2
L2

=
(π

l

)2
,

and then taking into account (2.20) and (2.21), we arrive at (2.25). ��

Remark 2.9 A few remarks are in order:

(i) The estimate (2.25) shows that the condition (2.2) is not a restriction since in the case
�∗(G) = ∞ one immediately gets λ0(H) = λess0 (H) = 0. Moreover, in this case σ(H)

coincides with the positive semi-axis R≥0 (see [60, Theorem 5.2]).
(ii) The second inequality in (2.25) implies that the condition �∗

ess(G) = 0 is necessary for
the spectrum ofH to be purely discrete. Notice that �∗

ess(G) = 0 means that the number
#{e ∈ E | |e| > ε} is finite for every ε > 0.

(iii) The estimates (2.25) can be slightly improved by noting that we can use other test
functions on the edges e ∈ EN to improve the bound (π/|e|)2 by (π/2|e|)2. For example,
we get the following estimate

λ0(H) ≤ min
{

inf
e∈E\EN

(
π

|e|
)2

, inf
e∈EN

(
π

2|e|
)2 }

. (2.28)

2.5 Connection with the difference Laplacian

In this section we restrict for simplicity to the case of Neumann boundary conditions at the
loose ends, that is, f ′

e(v) = 0 for all v ∈ V with deg(v) = 1. Let the weight function
m : V → R>0 be given by (2.10). Consider the difference Laplacian defined in �2(V ;m) by
the expression
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(τG f )(v) := 1

m(v)

∑

u∼v

f (v) − f (u)

|eu,v| , v ∈ V . (2.29)

Namely, τG generates in �2(V ;m) the pre-minimal operator

h0 : dom(h0) → �2(V ;m)

f �→ τG f
, dom(h0) := Cc(V ), (2.30)

where Cc(V ) is the space of finitely supported functions on V . The operator h0 is a nonneg-
ative symmetric operator. Denote its Friedrichs extension by h.

It was observed in [25] that the operators H and h are closely connected (for instance, by
[25, Corollary 4.1(i)], H0 and h0 are essentially self-adjoint only simultaneously). In fact,
it is not difficult to notice a connection between H and h by considering their quadratic
forms (see [25, Remark 3.7]). Namely, let L = ker(Hmax) be the kernel of Hmax, which
consists of piecewise linear functions on G. Every f ∈ L can be identified with its values
{ f (ei ), f (eo)}e∈E on V and, moreover,

‖ f ‖2L2(G)
=

∑

e∈E
|e| | f (ei )|

2 + Re( f (ei ) f (eo)∗) + | f (eo)|2
3

. (2.31)

Now restrict ourselves to the subspace Lcont = L ∩ Cc(G). Clearly,
∑

e∈E
|e|(| f (ei )|2 + | f (eo)|2) =

∑

v∈V
| f (v)|2

∑

e∈Ev

|e| = ‖ f ‖2
�2(V ;m)

defines an equivalent norm on Lcont since the Cauchy–Schwarz inequality immediately
implies

1

6
‖ f ‖2

�2(V ;m)
≤ ‖ f ‖2L2(G)

≤ 1

2
‖ f ‖2

�2(V ;m)
. (2.32)

On the other hand, for every f ∈ Lcont we get

tG [ f ] = (H f , f )L2(G) =
∑

e∈E

∫

e
| f ′(xe)|2dxe =

∑

e∈E

| f (eo) − f (ei )|2
|e|

= 1

2

∑

u,v∈V

| f (v) − f (u)|2
|eu,v| = (h f , f )�2(V ;m) =: th[ f ].

(2.33)

Hence we end up with the following estimate.

Lemma 2.10

λ0(H)≤ 6λ0(h), λess0 (H)≤ 6λess0 (h). (2.34)

Proof Clearly, the Rayleigh quotient (2.20) together with (2.32) and (2.33) imply

λ0(H) = inf
f ∈H1

0 (G)

tG [ f ]
‖ f ‖2

L2(G)

≤ inf
f ∈Lcont

tG [ f ]
‖ f ‖2

L2(G)

≤ inf
f ∈Cc(V )

th[ f ]
1
6‖ f ‖2

�2(V ;m)

= 6λ0(h).

��
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If G is equilateral (that is, |e| = 1 for all e ∈ E), then m(v) = deg(v) for all v ∈ V and
hence τG coincides with the combinatorial Laplacian

(τcomb f )(v) := 1

degG(v)

∑

u∼v

f (v) − f (u), v ∈ V . (2.35)

In this particular case spectral relations between H and h have already been observed by
many authors (see [63], [14, Theorem 1], [23] and [10, Theorem 3.18]).

Theorem 2.11 If |e| = 1 for all e ∈ E, then

λ0(h) = 1 − cos
(√

λ0(H)
)
, λess0 (h) = 1 − cos

(√
λess0 (H)

)
. (2.36)

Remark 2.12 Actually, far more than (2.36) is known in the case of equilateral quantum
graphs. In fact, there is a sort of unitary equivalence between equilateral quantum graphs and
the corresponding combinatorial Laplacians (see [52,53] and also [45]).

Hence for equilateral graphs we obtain

λ0(h) ≤ 1

2
λ0(H), λess0 (h) ≤ 1

2
λess0 (H).

The latter together with (2.34) imply that for equilateral graphs the following equivalence
holds true

λ0(H) > 0
(
λess0 (H) > 0

) ⇐⇒ λ0(h) > 0
(
λess0 (h) > 0

)
. (2.37)

In fact, it was proved recently in [25, Corollary 4.1] that the equivalence (2.37) holds true if
themetric graphG satisfiesHypothesis 2.2. Unfortunately, there is no such simple connection
like (2.36) if G is not equilateral.

Remark 2.13 Spectral gap estimates for combinatorial Laplacians is an established topic
with a vast literature because of their numerous applications (see [1,2,16,18,19,26,34,65]
and references therein). Recently there was a considerable interest in the study of spectral
bounds for discrete (unbounded) Laplacians on weighted graphs (see [5,39]). On the one
hand, (2.36) and (2.37) indicate that there must be analogous estimates for quantum graphs,
however, we should stress that (2.36) holds only for equilateral graphs. On the other hand,
these connections also indicate that spectral estimates for quantum graphs should have a
combinatorial nature.

Remark 2.14 Since 4
π2 x ≤ 1 − cos(

√
x) for all x ∈ [0, π2/4], (2.36) implies the following

estimate for equilateral quantum graphs

λ0(H) ≤ π2

4
λ0(h), λess0 (H) ≤ π2

4
λess0 (h),

which improves (2.34).Moreover, the constantπ2/4 is sharp in the equilateral case. However,
it remains unclear to us how sharp is the estimate (2.34).
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3 The Cheeger-type bound

For every G̃ ∈ KG we define the boundary of G̃ with respect to the graph G as the set of all
vertices v ∈ Ṽ \VN such that either degG̃(v) = 1 or degG̃(v) < degG(v), that is,

∂GG̃ := {
v ∈ Ṽ | v ∈ VD or degG̃(v) < degG(v)

}
. (3.1)

For a given finite subgraph G̃ ⊂ G we then set

deg(∂GG̃) :=
∑

v∈∂GG̃

degG̃(v). (3.2)

Remark 3.1 Let us stress that our definition of a boundary is different from the combinatorial
one. In particular, we define the boundary as the set of vertices whereas the combinatorial
definition counts the number of edges connecting Ṽ with its complement V \Ṽ .

Definition 3.2 The isoperimetric (or Cheeger) constant of a metric graph G is defined by

α(G) := inf
G̃∈KG

deg(∂GG̃)

mes(G̃)
∈ [0,∞), (3.3)

where mes(G̃) denotes the Lebesgue measure of G̃, mes(G̃) := ∑
e∈Ẽ |e|.

The isoperimetric constant at infinity is defined by

αess(G) := sup
G̃∈KG

α(G\G̃) ∈ [0,∞]. (3.4)

Recall that for any G̃ ∈ KG we consider G\G̃ with the following boundary conditions:
for vertices inG\G̃ having one or more edges in G̃, we change the boundary conditions from
Kirchhoff–Neumann to Dirichlet; for all other vertices in G\G̃, we leave them the same.
These boundary conditions imply that for a subgraph Y ∈ KG\G̃ ,

∂G\G̃Y = ∂GY, (3.5)

where the left-hand side is the boundary of Y with respect to G\G̃ (with the new Dirichlet
conditions) and the right-hand side is the boundary with respect to the original graph G.
Hence,

α(G\G̃) = inf
Y∈KG\G̃

deg(∂G\G̃Y)

mes(Y)
= inf

Y∈KG\G̃

deg(∂GY)

mes(Y)

and α(G\G1) ≤ α(G\G2) whenever G1 ⊆ G2. Thus,

αess(G) = sup
G̃∈KG

α(G\G̃) = lim
G̃∈KG

α(G\G̃). (3.6)

Remark 3.3 Choosing G̃ as an edge e ∈ E or a star Ev with some v ∈ V , one gets the
following simple bounds on the isoperimetric constant

α(G) ≤ 2

�∗(G)
, α(G) ≤ inf

v∈V
degG(v)

m(v)
. (3.7)
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The next result is the analog of the famous Cheeger estimate for Laplacians on manifolds
[15].

Theorem 3.4

λ0(H) ≥ 1

4
α(G)2, λess0 (H) ≥ 1

4
αess(G)2. (3.8)

As an immediate corollary we get the following result.

Corollary 3.5 (i) H is uniformly positive whenever α(G) > 0.
(ii) λess0 (H) > 0 if αess(G) > 0.
(iii) The spectrum of H is purely discrete if αess(G) = ∞.
(iv) If the metric graph G has finite total volume, mes(G) < ∞, then H is a uniformly

positive operator with purely discrete spectrum.

Proof Clearly, we only need to prove (iv). Since mes(G) < ∞ and taking (3.3) into account,
we immediately obtain

α(G) ≥ 1

mes(G)
, (3.9)

which together with (3.8) implies the inequality λ0(H) > 0. Next, using (3.4) together with
the estimate (3.9) and the net property of KG , one gets αess(G) = ∞, which finishes the
proof. ��

Before proving the estimates (3.8) we need several preliminary lemmas. In what follows,
for every U ⊆ G, we shall denote by ∂U the boundary of a set U in the sense of the natural
metric topology on G (see Sect. 2.1). For every measurable function h : G → R and every
t ∈ R let us define the set

�h(t) := {x ∈ G| h(x) > t}. (3.10)

The next statement is known as the co-area formula and we give its proof for the sake of
completeness.

Lemma 3.6 If h : G → R is continuous on G and continuously differentiable on every edge
e ∈ E, then ∫

G
|h′(x)| dx =

∫

R

#(∂�h(t)) dt . (3.11)

Proof Assume first that supp(h) ⊂ e for some e ∈ E .We can identify ewith the open interval
(0, |e|) and hence

Me := {x ∈ e| h′(x) 
= 0}
can be written as Me = ⋃

n In for (at most countably many) disjoint open intervals In ⊆
(0, |e|). Since h is strictly monotone on each of these intervals,

∫

G
|h′(x)| dx =

∫

e
|h′(x)| dx =

∫

Me

|h′(x)| dx

=
∑

n

∫

In
|h′(x)| dx =

∑

n

mes(h(In)) =
∑

n

∫

R

1h(In)(s) ds.
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Here mes(X) denotes the Lebesgue measure of X ⊆ R. Moreover, by continuity of h, it is
straightforward to check that 1h(In)(t) = #(∂�h(t) ∩ In) for all t ∈ R. Hence we end up
with

∑

n

∫

R

1h(In)(t) dt =
∑

n

∫

R

#(∂�h(t) ∩ In) dt =
∫

R

#(∂�h(t) ∩ Me) dt .

Now assume that t ∈ R is such that ∂�h(t) ∩ Mc
e 
= ∅, where

Mc
e := e\Me = {x ∈ e| h′(x) = 0}

is the set of critical points of h. By Sard’s Theorem [59], h(Mc
e ) has Lebesgue measure zero

and hence
∫

R

#(∂�h(t) ∩ Me) dt =
∫

R

#(∂�h(t) ∩ e) dt .

Assume now that h : G → R is an arbitrary function satisfying the assumptions. Then we
get

∫

G
|h′(x)| dx =

∑

e∈E

∫

e
|h′(x)| dx

=
∑

e∈E

∫

R

#(∂�h(t) ∩ e) dt =
∫

R

#(∂�h(t) ∩ (G\V )) dt .

If ∂�h(t) ∩ V 
= ∅, then t ∈ h(V ). Since V is countable, we arrive at (3.11). ��
Next it will turn out useful to rewrite the Cheeger constant (3.3) in the following way. Let

α̃(G) := inf
U∈UG

#(∂U )

mes(U )
, (3.12)

where UG = ∪G̃∈KG
UG̃ and

UG̃ = {U ⊆ G̃| U is open, U ∩ VD = ∅ and ∂U ∩ V = ∅}. (3.13)

Lemma 3.7 Let α(G) be defined by (3.3). Then

α(G) = α̃(G). (3.14)

Proof (i) It easily follows from the definition of α̃(G) that

α̃(G) ≤ α(G).

Indeed, assume first that G̃ ∈ KG and identify G̃ with a closed subset of the graph. For a
sufficiently small ε > 0, we cut out a ball Bε(v) of radius ε at each point in v ∈ ∂GG̃ and
obtain the set

U := G̃\
⋃

v∈∂GG̃

Bε(v).

We have U ∈ UG and, moreover, ∂U has precisely deg(∂GG̃) points. In total,

#(∂U )

mes(U )
= deg(∂GG̃)

mes(G̃) − ε deg(∂GG̃)
.
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Letting ε tend to zero, we obtain the desired inequality.
(ii) To prove the other inequality, let U ∈ UG and G̃ = (Ṽ , Ẽ) be the finite subgraph

consisting of all edges e ∈ E with e ∩ U 
= ∅ and all vertices incident to such an edge.
Clearly, mes(U ) ≤ mes(G̃). Also, by (3.2),

deg(∂GG̃) =
∑

v∈∂G̃

degG̃(v) = #
{
e ∈ Ẽ | e connects ∂GG̃ and G̃\∂GG̃

}

+ 2#
{
e ∈ Ẽ | both vertices are in ∂GG̃

}
.

Since U is open, every point of ∂GG̃ is not in U . Therefore, every edge in the subgraph G̃
connected to a vertex in ∂GG̃ must contain at least one boundary point ofU . If both vertices
of the edge are in ∂GG̃, it must even contain at least two boundary points of U . Also, since
V ∩ ∂U = ∅, the boundary points lie in the strict interior of each edge and therefore cannot
coincide for different edges. Thus, deg(∂GG̃) ≤ #(∂U ).

Finally, notice that G̃ might be disconnected. If it is the case, then write G̃ = ∪̇nG̃n as a
disjoint, finite union of connected subgraphs G̃n ∈ KG . Then

#(∂U )

mes(U )
≥ deg(∂GG̃)

mes(G̃)
=

∑
n deg(∂GG̃n)

∑
n mes(G̃n)

≥ min
n

deg(∂GG̃n)

mes(G̃n)
,

which implies that α̃(G) ≥ α(G). ��

Now we are in position to prove the Cheeger-type estimates (3.8).

Proof of Theorem 3.4 Let us show that the following inequality

α(G) ‖ f ‖L2(G) ≤ 2‖ f ′‖L2(G) (3.15)

holds true for all f ∈ dom(t0G) = dom(H0). Without loss of generality we can restrict
ourselves to real-valued functions. So, suppose f ∈ dom(H0) is real-valued. Observe that
(see, e.g., [31, Lemma I.4.1])

‖ f ‖2L2(G)
=

∫

G
f (x)2 dx =

∫ ∞

0
mes(� f 2(t)) dt .

Next we want to use Lemma 3.7 with h = f 2. If t > 0 is such that ∂� f 2(t) ∩ V 
= ∅,
then t ∈ f 2(V ) by continuity of f 2. Since V and hence f 2(V ) are countable, we get that
� f 2(t) ∈ UG for almost every t > 0. Thus, in view of Lemma 3.7

α(G)‖ f ‖2L2 ≤
∫ ∞

0
#(∂� f 2(t)) dt . (3.16)

On the other hand, applying Lemma 3.6 to h = f 2 and then the Cauchy–Schwarz inequality,
we get

∫ ∞

0
#(∂� f 2(t))dt = 2

∫

G
| f (x) f ′(x)|dx ≤ 2‖ f ‖L2(G)‖ f ′‖L2(G). (3.17)

Combining the last two inequalities, we arrive at (3.15), which together with the Rayleigh
quotient (2.20) proves the first inequality in (3.8).
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The proof of the second inequality in (3.8) follows the same line of reasoning since by
(2.21)

λess0 (H) ≥ inf
f ∈H̃1

0 (G\G̃)

f 
=0

‖ f ′‖2
L2(G\G̃)

‖ f ‖2
L2(G\G̃)

,

for every finite subgraph G̃ of G. Notice that the boundary conditions on G\G̃ are defined
after (3.4). ��

Remark 3.8 The Cheeger estimate for finite quantum graphs was first proved in [50] (see
also [56, §6] and [39]). Our result extends [50, Theorem 3.2] to the case of infinite graphs
and also provides a bound on the essential spectrum of H. However, our definition of the
isoperimetric constant (3.8) is purely combinatorial since the infimum is taken over finite
connected subgraphs of G, although the definition in [50] (see also [40,56]) is similar to
(3.12).

Let us mention that one can obtain a similar statement for the operator HN that is related
to the maximally defined quadratic form (see Remark 2.6). However, one needs to take the
infimum in the definition of the isoperimetric constant over all subgraphs of finite volume.

Taking into account the equivalence (2.22), let us finish this section with the next obser-
vation.

Lemma 3.9 The following equivalence holds true

α(G) = 0 ⇐⇒ αess(G) = 0. (3.18)

Proof Clearly, we only need to prove the implication α(G) = 0 ⇒ αess(G) = 0. Assume
the converse, that is, there is an infinite graph G satisfying Hypotheses 2.1–2.3 such that
α(G) = 0 and αess(G) > 0. Then by (3.3), there is a sequence {Gn} ⊂ KG such that

α(G) = lim
n→∞

deg(∂GGn)

mes(Gn)
= 0.

On the other hand, (3.4) implies that there is G̃ ∈ KG such that α(G\G̃) = α0 > 0. In
particular, taking into account (3.5), the latter is equivalent to the fact that

deg(∂G\G̃Y)

mes(Y)
= deg(∂GY)

mes(Y)
≥ α0 > 0

for every finite subgraph Y ⊂ G\G̃.
Next observe that

lim
n→∞

deg(∂G(Gn\G̃))

mes(Gn\G̃)
= 0,

which leads to a contradiction. Indeed, by construction, limn→∞ mes(Gn) = ∞ and hence
mes(Gn\G̃) = mes(Gn)(1 + o(1)) as n → ∞. It remains to note that

deg(∂GGn) − deg(G̃) ≤ deg
(
∂G(Gn\G̃)

) ≤ deg(∂GGn) + deg(G̃).

��
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4 Connections with discrete isoperimetric constants

For every vertex set X ⊆ V , we define its boundary and interior edges by

Eb(X) = {e ∈ E | e connects X and V \X},
Ei (X) = {e ∈ E | all vertices incident to e are in X}.

Also, for a vertex set X ⊆ V we set

m(X) :=
∑

v∈X
m(v),

where m : V → (0,∞) is defined by (2.10) (in fact, m(v) = mes(Ev) for every v ∈ V ). The
(discrete) isoperimetric constant αd(Y ) of Y ⊆ V is defined by

αd(Y ) := inf
X⊆Y

X is finite

#(Eb(X))

m(X)
∈ [0,∞). (4.1)

The discrete isoperimetric constant of the graph G is then given by

αd(V ) := inf
X⊆V

X is finite

#(Eb(X))

m(X)
∈ [0,∞). (4.2)

Moreover, we need the discrete isoperimetric constant at infinity

αess
d (V ) := sup

X⊆V
X is finite

αd(V \X) ∈ [0,∞]. (4.3)

Remark 4.1 Our definition of the isoperimetric constants follows the one provided in
“Appendix A” (see Remark A.4). This definition is slightly different from the one given
in [5], which uses the notion of an intrinsic metric on V (cf. [28]). In particular, the natural
path metric �0 (cf. Sect. 2.3) is intrinsic in the sense of [5,28] and in certain cases (if, for
example, Gd is a tree) the corresponding definitions from [5] coincide with (4.2) and (4.3).
Notice that the following Cheeger-type estimates for the discrete Laplacian (2.29)–(2.30)
(see [5, Theorems 3.1 and 3.3] and Theorem A.1) hold true

λ0(h) ≥ 1

2
αd(V )2, λess0 (h) ≥ 1

2
αess
d (V )2. (4.4)

The next result provides a connection between isoperimetric constants.

Lemma 4.2 The isoperimetric constants (3.3) and (4.2) can be related by

1

2
α(G)≤ αd(V ),

2

α(G)
≤ 1

αd(V )
+ �∗(G). (4.5)

In particular, the isoperimetric constants at infinity (3.4) and (4.3) satisfy

1

2
αess(G)≤ αess

d (V ),
2

αess(G)
≤ 1

αess
d (V )

+ �∗
ess(G). (4.6)

Proof (i) First, let X ⊂ V be finite. Let also G̃ = (Ṽ , Ẽ) be the finite subgraph of G
consisting of all edges with at least one vertex in the set X . Observe that

Ẽ =
⋃

v∈X
Ev = Ei (X) ∪ Eb(X).
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Then

m(X) =
∑

v∈X
m(v) = 2

∑

e∈Ei (X)

|e| +
∑

e∈Eb(X)

|e| ≤ 2
∑

e∈Ẽ
|e| = 2mes(G̃).

Note that for every v ∈ X , the whole star Ev attached to it is in G̃. Therefore, every vertex
from ∂GG̃ is not in X . Now consider an edge e in the subgraph G̃ which is connected to
a vertex v ∈ ∂GG̃. Then its other endpoint must be in X (because of the definition of G̃).
Hence

deg(∂GG̃) =
∑

v∈∂G̃

degG̃(v) =
∑

v∈∂G̃

#{e| e connects v and X}

≤ #{e ∈ Ẽ | e connects X and V \X} = #(Eb(X)).

Splitting G̃ in finitely many connected components as in the proof of Lemma 3.7, we arrive
at the first inequality in (4.5).

To prove the second inequality, assume G̃ ∈ KG . Write Ẽ = Ẽ0 ∪ Ẽ1 ∪ Ẽ2, where Ẽ0,
Ẽ1, Ẽ2 are the sets of edges in the subgraph with, respectively, none, one, and two vertices
in ∂GG̃. Clearly,

deg(∂GG̃) = #(Ẽ1) + 2#(Ẽ2). (4.7)

Now define the finite vertex set X := Ṽ \∂GG̃. We have

Ei (X) = Ẽ0, Eb(X) = Ẽ1.

Thus,

2
mes(G̃)

deg(∂GG̃)
= 2

∑
e∈Ẽ0

|e| + ∑
e∈Ẽ1

|e| + ∑
e∈Ẽ2

|e|
#(Ẽ1) + 2#(Ẽ2)

= 2
∑

e∈Ei (X) |e| + ∑
e∈Eb(X) |e|

#(Eb(X)) + 2#(Ẽ2)
+

∑
e∈Eb(X) |e| + 2

∑
e∈Ẽ2

|e|
#(Eb(X)) + 2#(Ẽ2)

= m(X)

#(Eb(X)) + 2#(Ẽ2)
+

∑
e∈Eb(X) |e| + 2

∑
e∈Ẽ2

|e|
#(Eb(X)) + 2#(Ẽ2)

≤ m(X)

#(Eb(X))
+

∑
e∈Eb(X) |e| + 2

∑
e∈Ẽ2

|e|
#(Eb(X)) + 2#(Ẽ2)

≤ m(X)

#(Eb(X))
+ sup

e∈E
|e|.

(ii) To prove (4.6), let first X ⊆ V be a finite and connected (in the sense that for two
vertices in X , there always exists a path connecting them and only passing through vertices
in X ) set of vertices. Then the subgraph G̃ X ⊆ G consisting of all edges with both vertices
in X is finite and connected. Now note that for a finite vertex set Y ⊆ V \X , the subgraph G̃Y

defined above is contained in G\G̃ X . Hence taking into account (3.5) and using the same
line of reasoning as in (i), we get α(G\G̃ X ) ≤ 2αd(V \X). Finally, choose an increasing
sequence {Xn} ⊆ V of finite and connected vertex sets such that every finite vertex set X ⊆ V
is eventually contained in Xn . Then the corresponding sequence {G̃n} ⊆ KG of subgraphs
is increasing and every finite, connected subgraph G̃ ∈ KG is eventually contained in G̃n . In
view of (3.6), we obtain the first inequality in (4.6) by taking limits.

To prove the second, for a subgraph G0 ∈ KG , choose X to be the set of vertices in G0.
Let G̃ ∈ KG\G0 . If a vertex v is both in Ṽ and in X , then it has at least one incident edge
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which lies in the cut out graph G0 and therefore v ∈ ∂GG̃. Thus, the vertex set Y = Ṽ \∂GG̃
satisfies Y ∩ X = ∅. Refining the previous estimate,

2
mes(G̃)

deg(∂GG̃)
≤ m(Y )

#(Eb(Y ))
+

∑
e∈Eb(Y ) |e| + 2

∑
e∈Ẽ2

|e|
#(Eb(Y )) + 2#(Ẽ2)

≤ m(Y )

#(Eb(Y ))
+ �∗(G\G0),

and hence

2

α(G\G0)
≤ 1

αd(V \X)
+ �∗(G\G0).

Choosing an increasing sequence {Gn} ⊆ KG such that every G0 ∈ KG is eventually
contained in Gn and applying the same limit argument as before, we arrive at the second
inequality in (4.6). ��
Remark 4.3 It can be seen by examples that the estimates (4.5) and (4.6) are sharp. Indeed, on
the equilateral Bethe lattice (see Example 8.3), one gets equalities in the second inequalities
(4.5) and (4.6) [cf. (8.3)].

Combining (4.5) with Corollary 3.5, we obtain Theorem 4.18 from [25].

Corollary 4.4 ([25])

(i) λ0(H) > 0 if αd(V ) > 0.
(ii) λess0 (H) > 0 if αess

d (V ) > 0.
(iii) The spectrum ofH is purely discrete if the number #{e ∈ E : |e| > ε} is finite for every

ε > 0 and αess
d (V ) = ∞.

Proof We only need to mention that �∗
ess(G) = 0 if and only if the number #{e ∈ E : |e| > ε}

is finite for every ε > 0. Moreover, in this case it follows from (4.6) that αess(G) = αess
d (V ).

��
Finally, let us mention that in the case of equilateral graphs the discrete isoperimetric

constants coincide with the combinatorial isoperimetric constants introduced in [21]:

αcomb(V )= inf
X⊆V

X is finite

#(∂X)

deg(X)
, αess

comb(V )= sup
X⊆V

X is finite

αcomb(V \X) (4.8)

Comparing (4.8) with (4.2) and (4.3) and noting that

�∗(G) degG(v) ≤ m(v) ≤ �∗(G) degG(v)

for all v ∈ V , one easily derives the estimates

αcomb(V )

�∗(G)
≤αd(V )≤ αcomb(V )

�∗(G)
,

αess
comb(V )

�∗
ess(G)

≤ αess
d (V )≤ αess

comb(V )

�ess∗ (G)
.

Here

�ess∗ (G) := sup
Ẽ

inf
e∈E\Ẽ

|e|, (4.9)

and the supremum is taken over all finite subsets Ẽ of E . Moreover, taking into account
Lemma 4.2, we get the following connection between our isoperimetric constants and the
combinatorial ones:

2αcomb(V )

�∗(G)(1 + αcomb(V ))
≤ α(G) ≤ 2αcomb(V )

�∗(G)
(4.10)
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and

2 αess
comb(V )

�∗
ess(G)(1 + αess

comb(V ))
≤ αess(G) ≤ 2 αess

comb(V )

�ess∗ (G)
. (4.11)

Since αcomb(V ) ∈ [0, 1), we end up with the following result.

Corollary 4.5 Let G be a metric graph such that �∗(G) < ∞. Then:

(i) λ0(H) > 0 if αcomb(V ) > 0.
(ii) λess0 (H) > 0 whenever αess

comb(V ) > 0.
(iii) The spectrum of H is purely discrete if �∗

ess(G) = 0 and αess
comb(V ) > 0.

5 Upper bounds via the isoperimetric constant

It is possible to use the isoperimetric constants to estimate λ0(H) and λess0 (H) from above,
however, for this we need to impose additional restrictions on the metric graph.

Lemma 5.1 Suppose that �∗(G) = infe∈E |e| > 0. Then

λ0(H) ≤ π2

2 �∗(G)
α(G), λess0 (H) ≤ π2

2 �ess∗ (G)
αess(G). (5.1)

Proof To estimate λ0(H), choose any φ ∈ H1([0, 1]) with φ(0) = 0, φ(1) = 1 and
‖φ‖L2(0,1) = 1 and set

φ̃(x) := 1[0,1/2](x)φ(2x) + 1(1/2,1](x)φ(2 − 2x), x ∈ [0, 1].
Assume a subgraph G0 ∈ KG and a finite, connected subgraph G̃ = (Ṽ , Ẽ) of G\G0. Then
define g ∈ H̃1

c (G\G0) by setting

g(xe) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, e ∈ EG\G0 , e /∈ Ẽ

1, e ∈ Ẽ0

φ(
|xe−u|

|e| ), e = eu,ũ ∈ Ẽ1, u ∈ ∂G̃

φ̃(
|xe−eo|

|e| ), e ∈ Ẽ2

,

where Ẽ0, Ẽ1, Ẽ2 are defined as in the previous subsection and |xe − y| denotes the distance
between xe ∈ e and some y ∈ e. If G0 
= ∅ and v ∈ G\G0 is a vertex with at least one
incident edge in G0, then either v is not in Ṽ or v is a boundary vertex of G̃. In both cases,
g vanishes at v. Therefore, g ∈ H̃1(G\G0). Next we get

‖g‖2L2(G\G0)
=

∑

e∈Ẽ0

|e| +
∑

e∈Ẽ1

|e|‖φ‖2L2(0,1) +
∑

e∈Ẽ2

2
|e|
2

‖φ‖2L2(0,1) = mes(G̃),

and, in view of (4.7),

‖g′‖2L2(G\G0)
=

∑

e∈Ẽ1

1

|e| ‖φ
′‖2L2(0,1) +

∑

e∈Ẽ2

4

|e| ‖φ
′‖2L2(0,1)

≤
‖φ′‖2

L2(0,1)

�∗(G\G0)
(#(Ẽ1) + 4#(Ẽ2)) ≤

2‖φ′‖2
L2(0,1)

�∗(G\G0)
deg(∂GG̃).
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Choosing φ(x) = √
2 sin( π

2 x), we obtain the estimate

‖g′‖2
L2(G\G0)

‖g‖2
L2(G\G0)

≤ π2

2 �∗(G\G0)

deg(∂GG̃)

mes(G̃)
.

Choosing G0 = ∅, (2.20) and (3.3) imply the first inequality in (5.1). Now assume G0 
= ∅.
Then

inf
f ∈H̃1(G\G0)

f 
=0

‖ f ′‖2
L2(G\G0)

‖ f ‖2
L2(G\G0)

≤ π2

2 �∗(G\G0)
α(G\G0).

Finally, using (2.23) and (3.6) we end up with

λess0 (H) ≤ lim
G0∈KG

π2

2 �∗(G\G0)
α(G\G0) = π2

2 �ess∗ (G)
αess(G).

��

CombiningLemma5.1with theCheeger-type bounds (3.8) and the estimates (4.10)–(4.11)
and taking into account Lemma 3.9, we immediately get the following result.

Corollary 5.2 If �∗(G) > 0 and �∗(G) < ∞, then the following are equivalent:

(i) λ0(H) > 0,
(ii) λess0 (H) > 0,
(iii) αcomb(G) > 0,
(iv) αess

comb(G) > 0.

Remark 5.3 A few remarks are in order:

(i) If �∗(G) = 0, then the estimate in (5.1) becomes trivial.
(ii) Notice that (5.1) is better than (2.25) only if the isoperimetric constant satisfies

α(G) <
2 �∗(G)

�∗(G)2
.

(iii) In [11], Buser noticed that the isoperimetric constant can be used for obtaining upper
estimates on the spectral gap for Laplacians on compact Riemannian manifolds. Hence
estimates of the type (5.1) are often called Buser-type estimates. Let us mention that for
combinatorial Laplacians aBuser-type estimatewasfirst proved in [2] (see also [16,18]).
For finite quantum graphs, a Buser-type bound can be found in [40, Proposition 0.3],
which is, however, different from our estimate (5.1).

6 Bounds by curvature

Despite the combinatorial nature of isoperimetric constants (3.3) and (3.4), it is known
that computation of the combinatorial isoperimetric constant (4.8) is an NP-hard problem
(see [34,36,48] for further details). Our next aim is to introduce a quantity, which provides
estimates for α(G) and αess(G) and also turns out to be very useful in many situations (see
Sect. 8).
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Suppose now that our graph is oriented, that is, every edge is assigned a direction. For
every v ∈ V , let E+

v and E−
v be the sets of outgoing and incoming edges, respectively. Next

define the function K : V → R ∪ {−∞} by

K : v �→ #(E+
v ) − #(E−

v )

#(E+
v )

inf
e∈E+

v

1

|e| . (6.1)

K can take both positive and negative values, and K(v) = −∞ whenever #(E+
v ) = ∅.

Lemma 6.1 Assume G is an oriented graph such that the function K is positive. Then the
isoperimetric constant (3.3) satisfies

α(G) ≥ K(G) := inf
v∈V K(v) ≥ 0. (6.2)

Proof Let G̃ ∈ KG be a finite and connected subgraph. For every v ∈ Ṽ , denote by E+
v (G̃)

and E−
v (G̃) the sets of outgoing and incoming edges in G̃. Since K(v) > 0 is positive, we

get

sup
e∈E+

v

|e| ≤ 1

K(v)

(
1 − #(E−

v )

#(E+
v )

)
,

for all v ∈ V . Therefore,

mes(G̃) =
∑

e∈Ẽ
|e| =

∑

v∈Ṽ

∑

e∈E+
v (G̃)

|e| ≤ 1

K(G)

∑

v∈Ṽ

∑

e∈E+
v (G̃)

1 − #(E−
v )

#(E+
v )

= 1

K(G)

∑

v∈Ṽ
#(E+

v (G̃))
(
1 − #(E−

v )

#(E+
v )

)
.

First observe that
∑

v∈Ṽ
#(E+

v (G̃)) =
∑

v∈Ṽ
#(E−

v (G̃)) = #(Ẽ).

Moreover, for any non-boundary point v ∈ Ṽ \∂GG̃, the whole star Ev is contained in G̃ and
hence E±

v (G̃) = E±
v . Therefore, we get

∑

v∈Ṽ
#(E+

v (G̃))
(
1 − #(E−

v )

#(E+
v )

)
=

∑

v∈Ṽ
#(E+

v (G̃)) −
∑

v∈Ṽ
#(E+

v (G̃))
#(E−

v )

#(E+
v )

=
∑

v∈Ṽ
#(E−

v (G̃)) −
∑

v∈Ṽ
#(E+

v (G̃))
#(E−

v )

#(E+
v )

=
∑

v∈∂GG̃

#(E−
v (G̃)) − #(E+

v (G̃))
#(E−

v )

#(E+
v )

≤
∑

v∈∂GG̃

degG̃(v) = deg(∂GG̃).
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Combining this with the previous estimates, we end up with the following bound

mes(G̃) ≤ 1

K(G)
deg(∂GG̃),

which proves the claim. ��

Remark 6.2 The function K is sometimes interpreted as curvature. Several notions of curva-
ture have been introduced for discrete and combinatorial Laplacians. Perhaps, the closest one
to (6.1) have been introduced in [38]. Namely, since the natural path metric �0 is intrinsic,
define the function Kd : V → R by

Kd : v �→ #(E+
v ) − #(E−

v )

m(v)
. (6.3)

Moreover, m(v) = deg(v) for all v ∈ V if the corresponding metric graph is equilateral
(i.e., |e| ≡ 1), and hence (6.3) coincides with the definition suggested for combinatorial
Laplacians in [20]. Notice that for equilateral graphs (6.1) reads

K(v) = Kcomb(v) := 1 − #(E−
v )

#(E+
v )

, v ∈ V , (6.4)

and hence in this case

2

K(v)
= 2

Kcomb(v)
= 1 + 1

Kd(v)
, v ∈ V . (6.5)

It seems there is no nice connection between K and Kd in the general case.

Remark 6.3 Let us also mention that Lemma 6.1 can be seen as the analog of [5, Theorem
6.2], where the following bound for the discrete isoperimetric constant was established:

αd(V ) ≥ Kd(V ) := inf
v∈V Kd(v), (6.6)

if Kd is nonnegative on V . Combining (6.6) with the second inequality in (4.5), we end up
with the following bound

2

α(G)
≤ 1

Kd(V )
+ �∗(G). (6.7)

In what follows we shall call the function Kcomb : V → Q ∪ {−∞} defined by (6.4) as
the combinatorial curvature (in [20, p. 32], Kd is called a curvature of the combinatorial
distance spheres). Note that the curvature can take both positive and negative values, and
Kcomb(v) = −∞ whenever #(E+

v ) = ∅. The next simple estimate turns out to be very useful
in applications.

Lemma 6.4 Assume Kcomb is positive on V and

Kcomb(V ) := inf
v∈V Kcomb(v).

Then the isoperimetric constant (3.3) satisfies

α(G) ≥ Kcomb(V )

�∗(G)
. (6.8)
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Proof Noting that Kcomb is positive and comparing (6.4) with (6.1), we get

Kcomb(v)

�∗(G)
≤ K(v) (6.9)

for all v ∈ V . Hence the claim follows from Lemma 6.1. ��
With a little extra effort and using an argument similar to that in the proof of (4.5) one

can show the following bounds.

Lemma 6.5 Assume G is an oriented graph such that the function K (and hence Kcomb) is
positive on V and set

Kess(G) := lim inf
v∈V K(v), Kess

comb(V ) := lim inf
v∈V Kcomb(v). (6.10)

Then the isoperimetric constant at infinity (3.4) satisfies

αess(G) ≥ Kess(G), (6.11)

and

Kess
comb(V )

�∗
ess(G)

≤ αess(G) ≤ 2

�∗
ess(G)

, (6.12)

Combining Lemma 6.5 with the Cheeger-type estimate, we immediately get the following
result.

Corollary 6.6 If G is an oriented graph such that the function Kcomb is nonnegative on V ,
then

λ0(H)≥ Kcomb(V )2

4 �∗(G)2
, λess0 (H)≥ Kess

comb(V )2

4 �∗
ess(G)2

. (6.13)

In particular, if Kess
comb(V ) > 0, then the spectrum of H is purely discrete precisely when

�∗
ess(G) = 0.

Remark 6.7 Let us mention that in the case when Kess
comb(V ) = 0 the condition �∗

ess(G) = 0
is no longer sufficient for the discreteness. For further details we refer to Sect. 8.2 and, more
specifically, to the example of polynomially growing antitrees (see Example 8.7).

7 Growth volume estimates

Here we plan to exploit the results from [62] to get upper bounds on the spectra of quantum
graphs in terms of the exponential volume growth rates, the so-called Brooks-type estimates
(cf. [6,33,62] for further details and references). Following [62], we introduce the following
notation. For every x ∈ G and r > 0, let

Br (x) := {y ∈ G| �0(x, y) < r}. (7.1)

Here �0 is the natural path metric on G. Let also

volx (r) := mes(Br (x)), (7.2)

and

vol∗(r) := inf
x∈G

mes(Br (x))

mes(B1(x))
. (7.3)

123



15 Page 26 of 40 A. Kostenko, N. Nicolussi

Next we define the following numbers

μx (G) := lim inf
r→∞

log(volx (r))

r
, μ∗(G) := lim inf

r→∞
log(vol∗(r))

r
. (7.4)

Notice that μx (G) does not depend on x ∈ G if G = ∪r>0Br (x) for some (and hence for
all) x ∈ G. If both conditions are satisfied, then we shall write μ(G) instead of μx (G).

Theorem 7.1 Suppose (V , �0) is complete as a metric space. Then

λ0(H) ≤ λess0 (H) ≤ 1

4
μ∗(G)2 ≤ 1

4
μ(G)2. (7.5)

Proof The first and the last inequalities in (7.5) are obvious and hence it remains to show
that

λess0 (H) ≤ 1

4
μ∗(G)2.

Notice that by Corollary 2.3, the pre-minimal operator H0 is essentially self-adjoint and
hence H is its closure. Let us consider the corresponding quadratic form tG defined as the
closure in L2(G) of the form t0G (see (2.15) and (2.16)). It is not difficult to check that the
form tG is a strongly local regular Dirichlet form (see [29] for definitions). On the other
hand, using the Hopf–Rinow type theorem for graphs (see [35]), with a little work one can
show that every ball Br (x) is relatively compact if (V , �0) is complete. Therefore, by [62,
Theorem 5] and [51, Theorem 1], [33, Theorem 1.1], we get

λ0(H) ≤ 1

4
μ∗(G)2, λess0 (H) ≤ 1

4
μ(G)2.

Noting that mes(B1(x)) ≥ 1 for all x ∈ G and taking into account [33, Remark (e) on p.885],
we arrive at the desired estimate. ��

The next result is straightforward from Theorem 7.1.

Corollary 7.2 Let (V , �0) be complete as a metric space. Then:

(i) λ0(H) = λess0 (H) = 0 if μ(G) = 0.
(ii) The spectrum of H is not discrete if μ∗(G) < ∞.

Remark 7.3 Clearly, to compute or estimate μ∗(G) is a much more involved problem com-
paring to that of μ(G). However, it might happen that μ∗(G) < μ(G) and hence μ∗(G)

provides a better bound (see Example 8.4).

Remark 7.4 Let us mention that these results have several further consequences for the heat
semigroup e−tH generated by the operatorH. For example,μ∗(G) = 0 implies the exponen-
tial instability of the corresponding heat semigroup on L p(G) for all p ∈ [1,∞] (see [62,
Corollary 2]).

We finish this section with comparing the estimates (7.5) with the ones obtained in [25]
in terms of the volume growth of the corresponding discrete graph. Following [33] (see also
[25, §4.3]), define the constant

μd(G) := lim inf
r→∞

logm(Br (v))

r
(7.6)
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for a fixed v ∈ V . Here

m(Br (v)) =
∑

u∈Br (v)

m(u), v ∈ V .

Notice that μd(G) does not depend on the choice of v ∈ V if G = ∪r>0Br (x).

Lemma 7.5 If �∗(G) < ∞ and (V , �0) is complete as a metric space, then

μ(G) = μd(G). (7.7)

Proof First observe that

m(Br (v)) = 2
∑

{u,ũ}⊂Br (v)

|eu,ũ | +
∑

{u,ũ}
⊂Br (v)
{u,ũ}∩Br (v)
=∅

|eu,ũ | ≥ mes(Br (v)) = volv(r).

for all v ∈ V and r > 0, which immediately implies μ(G) ≤ μd(G). Similarly, we also get

m(Br (v)) ≤ 2mes(Br+�∗(v)) (7.8)

for all v ∈ V and r > 0 and hence

μd(G) ≤ lim inf
r→∞

log(2volv(r + �∗))
r

= μ(G),

which finishes the proof of (7.7). ��
Remark 7.6 A few remarks are in order.

(i) On the one hand, it does not look too surprising that the exponential growth rates for two
Dirichlet forms tG and th coincide. In particular this reflects the equivalence (2.37) in the
case of sub-exponential growth rates. However, comparing (7.7) with the fact that there
is no equality between λ0(H) and λ0(h) (see Sect. 2.5), one can conclude that in the case
of an exponential growth of volume balls, (7.5) might not lead to qualified estimates
(and examples of trees and antitrees in the next section confirm this observation).

(ii) Combining (7.7) with Corollary 7.2 we obtain Theorem 4.19 from [25].

8 Examples

In this section we are going to apply our results to certain classes of graphs (trees, antitrees,
and Cayley graphs of finitely generated groups). Let us also recall that we always assume
Hypotheses 2.1–2.3 to be satisfied.

8.1 Trees

Let us first recall some basic notions. A connected graph without non-trivial cycles (i.e.,
cycles of lengths 2) is called a tree. We shall denote trees (both combinatorial and metric)
by T. Notice that for any two vertices u, v on a tree T = (V , E) there is exactly one path P
connecting u and v. A tree T = (V , E) with a distinguished vertex o ∈ V is called a rooted
tree and o is called the root of T. In a rooted tree the vertices can be ordered according to
(combinatorial) spheres. Namely, let d(·) := d(o, ·) be the combinatorial distance to the root
o and Sn be the n-th (combinatorial) sphere, i.e., the set of vertices v ∈ V with d(v) = n.
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A vertex in the (n + 1)-th sphere, which is connected to v in the n-th sphere, is called a
forward neighbor of v. In what follows, we define an orientation on a rooted tree according
to combinatorial spheres, that is, for every edge e its initial vertex belongs to the smaller
combinatorial sphere.

We begin with the following simple estimate for rooted trees. According to the choice of
orientation, we get Kcomb(o) = 1 and

Kcomb(v) = #(E+
v ) − #(E−

v )

#(E+
v )

= deg(v) − 2

deg(v) − 1

for all v ∈ V \{o}. Therefore, Kcomb is nonnegative on V if there are no loose ends, that is,
deg(v) 
= 1 for all v ∈ V \{o}. Let

deg∗(V ) := inf
v∈V deg(v), degess∗ (V ) := lim inf

v∈V deg(v).

Hence we easily get

Kcomb(T ) = deg∗(V ) − 2

deg∗(V ) − 1
, Kess

comb(T ) = degess∗ (V ) − 2

degess∗ (V ) − 1
,

and therefore we end up with the following estimate.

Lemma 8.1 Assume T is a rooted tree without loose ends. Then

λ0(H)≥ Kcomb(T )2

4 �∗(G)2
, λess0 (H)≥ Kess

comb(T )2

4 �∗
ess(G)2

. (8.1)

In particular, λ0(H) > 0 if and only if �∗(G) < ∞ and the spectrum of H is purely discrete
if and only if �∗

ess(G) = 0.

Proof The proof immediately follows from Corollary 6.6, Remark 2.9(i) and the fact that the
combinatorial curvature admits the following bound (take also into account Hypothesis 2.3)

1

2
≤ Kcomb(T ) < 1.

��

Remark 8.2 A few remarks are in order.

(i) In the case of regular metric trees (these are rooted trees with an additional symmetry—
all the vertices from the same distance sphere have equal degrees as well as all the edges
of the same generation are of the same length), the second claim in Lemma 8.1 was
observed by Solomyak in [61]. In fact, under Hypothesis 2.3, conditions (5.1) and (5.5)
of [61] hold true if and only if, respectively, �∗(G) < ∞ and �∗

ess(G) = 0. However,
the case of the Neumann Laplacian is considered in [61], and it follows that criteria for
the positivity and discreteness for the Neumann and Dirichlet Laplacians coincide.

(ii) Let us mention that the positivity (however, without estimates) of a combinatorial
isoperimetric constant for the type of trees considered in Lemma 8.1 is known (see
[65, Theorem 10.9])

In the case of trees the estimates (8.1) can be improved, however, instead of providing
these generalizations we are going to consider only one particular case.
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v0 v1 v2 v3 v4 v5

Fig. 1 Tree with loose ends

Example 8.3 (Bethe lattices) Fix β ∈ Z≥3 and consider the combinatorial graph, which is
a rooted tree such that all vertices have degree β. This type of trees is called Bethe lattices
(also known as Cayley trees or homogeneous trees) and they will be denoted by Tβ . Suppose
that the corresponding metric graph is equilateral, that is, |e| = 1 for all e ∈ E . By abusing
the notation, we shall denote the corresponding metric graph by Tβ too. Then one computes

Kcomb(Tβ) = Kess
comb(Tβ) = β − 2

β − 1
=: Kβ .

Noting that Kβ ∈ [1/2, 1) and applying Lemma 8.1, we arrive at the following estimate

λess0 (Tβ) ≥ λ0(Tβ) ≥ 1

4
K2

β . (8.2)

On the other hand, it is straightforward to check that (see, e.g., [20])

α(Tβ)=Kcomb(Tβ)= β − 2

β − 1
, αd(Tβ)= β − 2

β
. (8.3)

In particular, this implies that the equality holds in the second inequality in (4.5). Moreover,
the spectra of both operators H and h can be computed explicitly (see, e.g., [61, Example
6.3] or [20, Theorem 1.14] together with Theorem 2.11) and, in particular,

λ0(H) = λess0 (H) = arccos2
(2

√
β − 1

β

)
.

Comparing the last equality with the estimate (8.2), one can notice a gap between these
estimates.

Let us mention that

μ(Tβ) = μo(Tβ) = μ∗(Tβ) = β − 1,

and thus the volume growth estimates (7.5) do not provide a reasonable upper bound for large
values of β. ��

Finally, we would like to mention that the absence of loose ends in Lemma 8.1 is essential
as the next example shows.

Example 8.4 (A “sparse” tree with loose ends) Consider the half-line R≥0 as an equilateral
graph with vertices at the integers. Let us write vn for the vertex placed at n ∈ Z≥0. Then,
we will modify this graph by attaching edges to the vertices vn with n ≥ 1. More precisely,
to the j2-th vertex v j2 with j ∈ Z≥1, we attach 2 j2 edges and to every other vertex vn with
n /∈ { j2} j≥1, we attach exactly one edge (see Fig. 1).

Clearly, we end up with a tree graph T. For simplicity, we shall assume that the corre-
sponding metric graph is equilateral, that is, |e| = 1 for all e ∈ T. This tree is in a certain
sense sparse and as a result it turns out that
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μ∗(T ) = 0,

and hence, by Theorem 7.1,

λ0(H) = λess0 (H) = 0.

In fact, it is enough to show that vol∗(r) = 1 for all r > 1. Namely, take r > 1 and set
jr := 1 + �(r + 1)/2�, where �·� is the usual floor function. Since j2r − ( jr − 1)2 > r , we
get

1 ≤ vol∗(r) ≤ inf
n≥ jr

mes(Br (vn2))

B1(vn2)
= inf

n≥ jr

2n
2 + 2r + 2(r − 1)

2n2 + 2
= 1.

It is interesting to mention that in this case μ(T ) = log(2) > 0. Indeed,

2r − 1 +
�√r�−1∑

k=1

(2k
2 − 1) ≤ volo(r) = mes(Br (v0)) ≤ 2r − 1 +

�√r�∑

k=1

(2k
2 − 1)

and hence for all r > 1 we get

2(�√r�−1)2 < volo(r) ≤ 2�√r�2+1,

which implies the desired equality. ��

8.2 Antitrees

LetGd = (V , E) be a connected combinatorial graph. Fix a root vertex o ∈ V and then order
the graph with respect to the combinatorial spheres Sn , n ∈ Z≥0 (notice that S0 = {o}). The
connected graph Gd is called an antitree if every vertex in Sn is connected to every vertex in
Sn+1 and there are no horizontal edges, i.e., there are no edges with all endpoints in the same
sphere (see Fig. 2). Clearly, an antitree is uniquely determined by the sequence sn := #(Sn),
n ∈ Z≥1.

Let us denote antitrees by the letter A and also define the edge orientation according to
the combinatorial ordering, that is, for every edge e its initial edge is the one in the smaller
combinatorial sphere. It turns out that the curvatures of antitrees can be computed explicitly.
Namely, define the following quantities:

�n := sup
e∈E+

v : v∈Sn
|e|, (8.4)

and

K0 := 1, Kn+1 := 1 − sn
sn+2

(8.5)

for all n ∈ Z≥0.

Lemma 8.5 IfA is an antitree, then

Kcomb(A)= inf
n≥0

Kn, Kess
comb(A)= lim inf

n→∞ Kn, (8.6)

and

K(A)= inf
n≥0

Kn

�n
, Kess(A)= lim inf

n→∞
Kn

�n
. (8.7)
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S0

S1

S2

S3

Fig. 2 Example of an antitree with sn = n + 1

Proof The proof follows by a direct inspection since Kcomb(v) = Kn for all v ∈ Sn and
n ∈ Z≥0. ��

Combining Lemma 8.5 with the estimates for the corresponding isoperimetric constants
(e.g., Corollary 6.6), we immediately end up with the estimates for λ0(H) and λess0 (H). Let
us demonstrate this by considering two examples.

Example 8.6 (Exponentially growing antitrees) Fix β ∈ Z≥2 and let Aβ be an antitree with
sphere numbers sn = βn . Then K0 = 1 and

Kn = 1 − β−2 (8.8)

for all n ∈ Z≥1. Hence by Lemma 8.5

1 − β−2

�∗(Aβ)
≤ K(Aβ) ≤ 1

�∗(Aβ)

and

Kess(Aβ) = 1 − β−2

�∗
ess(Aβ)

.

Applying Lemmas 6.1 and 6.5 together with Theorem 3.4 and Lemma 2.8, we get

(1 − β−2)2

4 �∗(Aβ)2
≤ λ0(Hβ) ≤ π2

�∗(Aβ)2
, (8.9)

and

(1 − β−2)2

4 �∗
ess(Aβ)2

≤ λess0 (Hβ) ≤ π2

�∗
ess(Aβ)2

. (8.10)

In particular, these bounds imply that the Kirchhoff LaplacianHβ is uniformly positive if and
only if �∗(Aβ) < ∞. Moreover, its spectrum is purely discrete exactly when �∗

ess(Aβ) = 0
(cf. Corollary 6.6).

Finally, let us compare these estimateswith the volumegrowth estimates under the assump-
tion that the tree is equilateral. In this case,

K(Aβ) = Kess(Aβ) = 1 − β−2.

On the other hand,

mes(Bn(o)) =
n−1∑

k=0

β2k+1 = β
β2n − 1

β2 − 1
,
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and then (7.4) implies that μ(Aβ) = 2 log(β). With a little more work one can show that

μ∗(Aβ) = μ(Aβ) = 2 log(β).

Indeed, it suffices to note thatμ∗(Aβ) ≤ μ(Aβ). Moreover, for all x ∈ eu,v where e connects
Sn with Sn+1, n ∈ Z≥0 we have

mes(B1(x)) ≤ mes(B1(v)) = βn + βn+2 = βn(β2 + 1)

and for all r > 2

mes(Br (x)) ≥ mes(B�r�(u)) = mes(Bn+�r�(o)) − mes(Bn−�r�(o))

≥ mes(Bn+�r�(o)) − mes(Bn(o)) =
n+�r�−1∑

k=n

β2k+1 = β2n+1 β2�r� − 1

β2 − 1
.

Thus, we obtain

vol∗(r) = inf
x∈G

mes(Br (x))

mes(B1(x))
≥ inf

n≥0

β2n+1 β2�r�−1
β2−1

βn(β2 + 1)
= β2�r�+1 − β

β4 − 1
,

which shows that μ∗(Aβ) ≥ 2 log(β) and hence we are done.
Notice that the volume growth estimates (7.5) do not provide a reasonable upper bound

for large values of β. ��

Example 8.7 (Polynomially growing antitrees) Fix q ∈ Z≥1 and let Aq be the antitree with
sphere numbers sn = (n + 1)q , n ≥ 0 (the case q = 1 is depicted on Fig. 2). Then

Kn = 1 − nq

(n + 2)q
= 1 −

( n

n + 2

)q = 2q

n
+ O(n−2), (8.11)

as n → ∞. Hence, by Lemma 8.5,

Kcomb(Aq) = Kess
comb(Aq) = 0

and

K(Aq) = inf
n≥0

1

�n

(

1 −
( n

n + 2

)q
)

, Kess(Aq) = lim inf
n→∞

1

�n

(

1 −
( n

n + 2

)q
)

.

Clearly, further analysis heavily depends on the behavior of the sequence {�n}. Let us
consider one particular case. Fix an s ≥ 0 and assume now that

|e| = (n + 1)−s

for each edge e connecting Sn and Sn+1. Let us denote the correspondingKirchhoff Laplacian
byHq,s . It is not difficult to showbyapplyingTheorem2.2 that the correspondingpre-minimal
operator is essentially self-adjoint whenever s ≤ q+1, however, (Vq , �0) is complete exactly
when s ∈ [0, 1].

Remark 8.8 In our forthcoming publication we shall show that the pre-minimal operator H0

is essentially self-adjoint exactly when the corresponding metric graph has infinite volume,
that is, when s ≤ 2q + 1. Moreover, in the case s > 2q + 1, the deficiency indices ofH0 are
equal to 1 and one can describe all self-adjoint extensions of H0.

123



Spectral estimates for infinite quantum graphs Page 33 of 40 15

Since �n = (n + 1)−s for all n ∈ Z≥0, we get

�∗(Aq)= 1, �∗
ess(Aq)=

{
1, s = 0

0, s > 0
,

and

Kess(Aq) = lim
n→∞(n + 1)s

(

1 −
( n

n + 2

)q
)

=

⎧
⎪⎨

⎪⎩

0, s ∈ [0, 1),
2q, s = 1,

+∞, s > 1.

(8.12)

In the case s = 1, it is easy to show that the sequence {Kn/�n} is strictly increasing and hence
this is also true for all s > 1. Hence

K(Aq) = K(o) = 1, s ≥ 1.

Moreover, the corresponding isoperimetric constant is given by α(Aq) = K(Aq) = 1 (to see
this just take the ball B1(o) as a subgraph G and then one gets α(Aq) ≤ 1, which together
with (6.2) implies the equality).

Next let us compute μ(Aq) assuming that s ∈ [0, 1] (otherwise we can’t apply the result
from Sect. 7). Set

rn :=
n−1∑

k=0

�k =
n−1∑

k=0

1

(1 + k)s
= (1 + o(1)) ×

{
n1−s

1−s , s ∈ [0, 1),
log(n), s = 1,

as n → ∞. Then

volo(rn) =
n−1∑

k=0

�ksksk+1 =
n−1∑

k=0

(k + 1)q−s(k + 2)q = n2q−s+1

2q − s + 1
(1 + o(1))

as n → ∞. Therefore, it is not difficult to show that

μ(Aq) = μo(Aq) = lim
n→∞

log(volo(rn))

rn
=

{
0, s ∈ [0, 1),
2q, s = 1.

(8.13)

Applying Theorem 7.1 together with Lemmas 6.1 and 6.5, we end up with the following
estimates.

Lemma 8.9 Assume q ∈ Z≥1 and s ∈ R≥0. Then

λ0(Hq,s) = λess0 (Hq,s) = 0 (8.14)

if and only if s ∈ [0, 1). If s ≥ 1, then the operator Hq,s is uniformly positive and

1

4
≤ λ0(Hq,s) ≤ π2, λess0 (Hq,s) =

{
q2, s = 1,

+∞, s > 1.
(8.15)

Remark 8.10 The exact value of λ0(Hq,s) for s ≥ 1 or at least its asymptotic behavior with
respect to q remains an open problem. ��
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8.3 Cayley graphs

Suppose � is a finitely generated (infinite) group with the set of generators S. The Cayley
graph C(�, S) of � with respect to S is the vertex set � and u ∼ v exactly when u−1v ∈ S.
This graph is connected, locally finite and regular (deg(v) = #S for all v ∈ �). We assume
that the unit element o does not belong to the set S (this excludes loops). The lattice Z

d is the
standard example of a Cayley graph. Notice also that the Bethe lattice Tβ is a Cayley graph
if either S = {a1, . . . , aβ | a2i = o, i = 1, . . . , β} or β = 2N and � = FN is a free group of
N generators.

It is known that the positivity of a combinatorial isoperimetric constant αcomb is closely
connected with the amenability of the group � (this is a variant of Følner’s criterion, see,
e.g., [65, Proposition 12.4]).

Theorem 8.11 If Gd = C(�, S) is the Cayley graph of a finitely generated group �, then
αcomb(�) = 0 if and only if � is an amenable group.

Notice that the class of amenable groups contains all Abelian groups, all subgroups of
amenable groups, all solvable groups etc. In turn, the class of non-amenable groups includes
countable discrete groups containing free subgroups of two generators. For further informa-
tion on amenability and Cayley graphs we refer to [47,49,54,55,64,65].

Combining Theorem 8.11 with Corollaries 4.5 and 5.2, we arrive at the following result.

Lemma 8.12 Let Gd be a Cayley graph C(�, S) of a finitely generated group �. Also, let
| · | : E → R>0 and G = (Gd , | · |) be a metric graph. Then:
(i) If� is non-amenable, then λ0(H) > 0 if and only if �∗(G) < ∞. Moreover, the spectrum

of H is purely discrete if and only if �∗
ess(G) = 0.

(ii) If � is amenable, then λ0(H) = λess0 (H) = 0 whenever �∗(G) > 0.

Remark 8.13 (i) If � is an amenable group, then the analysis of λ0(H) and λess0 (H) in the
case �∗(G) = 0 remains an open (and, in our opinion, rather complicated) problem.

(ii) The volume growth provides a number of amenability criteria. For example, groups of
polynomial or subexponential growth are amenable. For further results and references
we refer to [55].

(iii) Using a completely different approach, the inequality λ0(H) > 0 was proved recently
in [13, Theorem 4.16] for Cayley graphs of free groups under the additional symmetry
assumption that edges in the same edge orbit have the same length.
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Appendix A. Cheeger’s inequality for discrete Laplacians

LetGd = (V , E) be an (unoriented) graphwith countably infinite sets of verticesV and edges
E . Also, assume that Hypothesis 2.1 is satisfied. Let m : V → R>0 and b : V × V → R≥0
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be weight functions such that b(u, v) = b(v, u) for all u, v ∈ V and b(u, v) 
= 0 only if
u ∼ v. In fact, b can be considered as a weight function on the edge set E . Usually, the triple
(V ,m, b) is called a weighted graph. With every such a triple one can associate a Laplace
operator defined by the difference expression

(τ f )(v) := 1

m(v)

∑

u∼v

b(u, v)( f (v) − f (u)), v ∈ V . (A.1)

Since the graphGd is locally finite, τ is well defined on the setCc(V ) of compactly supported
functions and hence gives rise to a nonnegative symmetric pre-minimal operator in �2(V ;m).
Let us denote its Friedrichs extension by h.

The Cheeger inequality for h was proved recently in [5] by using the notion of intrinsic
metrics on graphs (see Theorems 3.1 and 3.3 in [5]). The main aim of this section is to give a
slight improvement to this estimate. Namely, let d : E → R>0 be a weight (or edge lengths).
Similar to [5], we shall call d intrinsic on Gd (with respect to m and b) if the following
inequality ∑

e∈Ev

d(e)2b(e) ≤ m(v) (A.2)

holds for all v ∈ V .
For every X ⊆ V , we define its boundary edges by

Eb(X) = {e ∈ E | e connects X and V \X}.
For any U ⊆ V , define

αd(U ) := inf
X⊆U
X finite

(d · b)(Eb(X))

m(X)
, (A.3)

where for X ⊆ V ,

m(X) =
∑

v∈X
m(v), (d · b)(Eb(X)) =

∑

e∈Eb(X)

d(e)b(e).

We define the isoperimetric constant with respect to d by

α := αd(V ). (A.4)

The isoperimetric constant at infinity is given by

αess := sup
X⊆V
X finite

αd(V \X). (A.5)

Theorem A.1 If d is an intrinsic weight, then

λ0(h)≥ 1

2
α2, λess0 (h)≥ 1

2
α2
ess. (A.6)

Remark A.2 As it was already mentioned, the Cheeger estimates for weighted graph Lapla-
cians were proved in [5]. However, the definition of the isoperimetric constants in [5] uses
metrics and hence one has to replace d in (A.3) by the corresponding path metric �d defined
on V in a standard way

�d(u, v) := inf
P={v0,...,vn} : v0=u vn=v

∑

k

d(evk−1,vk ). (A.7)
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Clearly, �d is intrinsic (in the sense of [5]) if so is the weight d since

�d(u, v) ≤ d(u, v) (A.8)

for all u ∼ v. Of course, in certain cases this leads to the same isoperimetric constant (e.g.,
if Gd is a tree), however, for graphs having a lot of non-trivial cycles a construction of an
intrinsic metric becomes a highly nontrivial task, which automatically implies complications
in calculating the corresponding isoperimetric constant. On the other hand, to construct an
intrinsic weight (in the sense of (A.2)) is a rather simple task, in particular, for the weighted
Laplacian (2.29) (see Remark A.4).

The proof of Theorem A.1 is literally the same as of Theorem 3.1 and Theorem 3.3 from
[5], however, we shall give it below for the sake of completeness.

Lemma A.3 (Co-area formulae) Let m and d be weight functions on V and E, respectively.
For any f : V → R≥0 and t ≥ 0, let �t := �t ( f ) = {v ∈ V | f (v) > t}. Then

∑

v∈V
f (v)m(v) =

∫ ∞

0
m(�t ) dt, (A.9)

∑

e∈E
d(e)| f (ei ) − f (e0)| =

∫ ∞

0
d(Eb(�t )) dt, (A.10)

where the value +∞ on both sides of the equation is allowed.

Proof For an interval I ⊆ R, let 1I (·) be its indicator function. Then
∑

v∈V
f (v)m(v) =

∑

v∈V
m(v)

∫ f (v)

0
dt =

∑

v∈V
m(v)

∫ ∞

0
1[0, f (v))(t) dt

=
∫ ∞

0

∑

v∈V
m(v)1[0, f (v))(t) dt =

∫ ∞

0

∑

v∈�t

m(v) dt =
∫ ∞

0
m(�t ) dt .

For every e ∈ E , put Ie := [min{ f (e0), f (ei )},max{ f (e0), f (ei )}) ⊂ R. We have t ∈ Ie if
and only if e ∈ Eb(�t ). Hence

∑

e∈E
d(e)| f (ei ) − f (e0)| =

∑

e∈E
d(e)

∫

Ie
dt =

∑

e∈E
d(e)

∫ ∞

0
1Ie (t) dt

=
∫ ∞

0

∑

e∈E
d(e)1Ie (t) dt =

∫ ∞

0

∑

e∈Eb(�t )

d(e) dt =
∫ ∞

0
d(Eb(�t )) dt .

��

Proof of Theorem A.1 We start by proving the first estimate in (A.6). The Rayleigh quotient
implies that it suffices to show that

2 th[u] ≥ α2‖u‖2
�2(V ,m)

(A.11)

holds for all real-valued u with finite support, where

th[u] = (hu, u)�2(V ,m) =
∑

e∈E
b(e)|u(ei ) − u(e0)|2
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is the corresponding quadratic form. Let us now exploit Lemma A.3 with f := u2. Notice
that the set �t is finite for all t ≥ 0 and hence by (A.3) and (A.4) we have (d · b)(Eb(�t )) ≥
αm(�t ) for all t ≥ 0. Therefore we get from the co-area formulas

α ‖u‖2
�2(V ,m)

= α
∑

v∈V
u(v)2m(v) = α

∫ ∞

0
m(�t ) dt

≤
∫ ∞

0
(d · b)(Eb(�t )) dt =

∑

e∈E
d(e)b(e)|u(ei )

2 − u(e0)
2|

=
∑

e∈E

√
b(e)|u(ei ) − u(e0)| · d(e)

√
b(e)|u(ei ) + u(e0)|

≤ th[u]1/2
( ∑

e∈E
d(e)2b(e)(u(ei ) + u(e0))

2
)1/2

by employing the Cauchy–Schwarz inequality in the last step. On the other hand,

∑

e∈E
d(e)2b(e)(u(ei ) + u(e0))

2 ≤ 2
∑

e∈E
d(e)2b(e)(u(ei )

2 + u(e0)
2)

= 2
∑

v∈V
u(v)2

∑

e∈Ev

d(e)2b(e) ≤ 2‖u‖2
�2(V ,m)

,

where we used (A.2) in the last step.
To get the second inequality, assume X ⊆ V finite. Let P denote the orthogonal projection

onto the subspace of functions vanishing on X . Then hV \X := PhP with dom(hV \X ) =
dom(h) is a relatively compact perturbation of h. Thus we have

λess0 (h) = λess0 (hV \X ) ≥ λ0(hV \X ) = inf
u 
=0

th[u]
‖u‖�2(V ;m)

,

where the infimum is taken over all real-valued u with finite support which vanish on X . For
such u, note that �t ( f ) is contained in V \X . Hence (A.11) is valid with α(V \X) instead of
α. Then 2λess0 (h) ≥ α(V \X)2 and the second estimate follows. ��

Remark A.4 For the difference expression τG defined in Sect. 2.5, the function m is given
by (2.10) and the edge weight b is defined by b(e) := 1/|e| for all e ∈ E . Hence setting
d(e) := |e| for e ∈ E , we conclude that | · | is intrinsic in the sense of (A.2) since

∑

e∈Ev

d(e)2b(e) =
∑

e∈Ev

|e|2 1

|e| =
∑

e∈Ev

|e| = m(v)

for all v ∈ V . Moreover, in this case we have

(d · b)(Eb(X)) =
∑

e∈Eb(X)

d(e)b(e) =
∑

e∈Eb(X)

|e| 1|e| = #(Eb(X)),

and hence (A.4) and (A.5) coincide with (4.2) and (4.3), respectively. In particular, Theorem
A.1 implies the estimate (4.4).
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