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Abstract
In this paper we will analyze the blow-up behaviors of solutions to the singular Liouville
type equation with exponential Neumann boundary condition. We generalize the Brezis–
Merle type concentration-compactness theorem to this Neumann problem. Then along the
line of the Li–Shafrir type quantization property we show that the blow-up value m(0) ∈
2πN ∪ {2π(1 + α) + 2π(N ∪ {0})} if the singular point 0 is a blow-up point. In the end,
when the boundary value of solutions has an additional condition, we can obtain the precise
blow-up value m(0) = 2π(1 + α).

Mathematics Subject Classification 35B40 · 35J65

1 Introduction

Let � be a bounded smooth domain in R
2. As is well known, topological degree and

variational methods can be used to obtain existence results for many Liouville type equa-
tions. And this requires the compactness property for the solution set. So it is important to
obtain the blow-up analysis for the equations. The asymptotic blow-up analysis for Liou-
ville type equations has already a lot of progresses. In 1991, Brezis and Merle [2] showed a
concentration-compactness phenomena of solutions to the following Liouville equation:

−�u = V (x)eu in �.

And then Li and Shafrir [10] initiated to evaluate the blow-up value at the blow-up point.
They showed at the each blow-up point the blow-up value is quantized, i.e., there is no

Communicated by J. Jost.

The authors are supported partially by NSFC of China (No. 11771285).

B Chunqin Zhou
cqzhou@sjtu.edu.cn

Tao Zhang
zt1234@sjtu.edu.cn

1 School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-018-1442-7&domain=pdf


163 Page 2 of 32 T. Zhang, C. Zhou

contribution of mass outside the m disjoint balls which contain a contribution of 8πm mass
for some positive integer m.

In recent years, the Liouville type equation with singular data attracts much attention
due to their many applications in Mathematics and Physics, such as cosmic string equation,
Chern–Simons and Electroweak self-dual vortices, etc, see [12,14–17]. This type equation
can be reduced to the following equation:

−�u = |x |2αV (x)eu in �,α > −1.

The Brezis–Merle type concentration-compactness type result has been established in [4]
and [3]. Furthermore, Tarantello [13] generalized Li–Shafrir type quantization property to
show that the blow-up value m(0) ∈ 8πN∪ {8π(1+ α) + 8π(N∪ {0})} if the singular point
0 is a blow-up point.

In addition, there have been some progresses in the blow-up analysis of the Liouville
type equation under the Neumann boundary condition. Guo and Liu [7] have analyzed the
following equation: { −�u = 0 in �,

∂u

∂ν
+ β = h(x)eu on ∂�.

Here and in the sequel, ν is the out unit normal vector on the boundary. They also obtained
Brezis–Merle type concentration-compactness phenomena and Li–Shafrir type quantization
property. Later, Bao et al. [5] have studied the following geometric equations on compact
Riemnn surface (M, g): {−�ug = 2e2u − Kg in Mo,

∂u

∂ν
= ceu − hg on ∂M .

TheyobtainedBrezis–Merle type concentration-compactness phenomena.Recently,Zhang et
al. [18] have proved the quantization property of blowing-up solutions for the local equations:{−�u = V (x)e2u in �,

∂u

∂ν
= h(x)eu on L.

Here L is a proper subset of ∂�, V (x) and h(x) are nonnegative bounded functions.
In this paper we will consider the local singular Liouville type equation with Neumann

boundary condition. Without loss of generality, we consider the following boundary value
problem in B+

R (0): {−�un = Vn(x)|x |2αe2un in B+
R (0),

∂un
∂ν

= hn(x)|x |αeun on ∂B+
R (0) ∩ ∂R2+,

(1)

where α ∈ (−1,+∞) and the coefficient functions Vn and hn satisfy

Vn → V , hn → h uniformly in B̄+
R ;

0 < a ≤ Vn ≤ C, |∇Vn | ≤ A; 0 < b ≤ hn ≤ C, |∇hn | ≤ B. (2)

In the sequel, we always assume that Vn(x) and hn(x) satisfy the above assumptions. We
set B+

R (x0) = {x = (s, t) ∈ R
2||x − x0| < R, t > 0}, LR(x0) = ∂B+

R (x0) ∩ ∂R2+ and
S+
R (x0) = ∂B+

R (x0) ∩ R
2+. We also use the notations B+

R , LR , S
+
R for B+

R (0), LR(0), S+
R (0)

respectively.
Our first main result is about “Brezis–Merle type concentration-compactness phenomena

Theorem”.
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Theorem 1.1 Assume that {un} is a sequence of solutions of (1) with α ∈ (−1,+∞). If {un}
satisfies the energy conditions∫

B+
R

Vn |x |2αe2un ≤ C and
∫
LR

hn |x |αeun ≤ C (3)

for the constant C which is independent of n, then there exists a subsequence, denoted still
by {un}, satisfying one of the following alternatives:

(i) {un} is bounded in L∞
loc(B

+
R ∪ LR),

(ii) {un} → −∞ uniformly on compact subsets of B+
R ∪ LR,

(iii) We can define a finite and nonempty blow-up set of un

S = {x ∈ B+
R ∪ LR, there is a sequence yn → x such that un(yn) → +∞}.

such that

{un} → −∞ uniformly on compact subsets of (B+
R ∪ LR)\S.

Our second main result is about “Li–Shafrir type quantization property”.

Theorem 1.2 Assume that {un} is a sequence of solutions of (1) with R = 1 and α ∈
(−1,+∞)\{2k + 1}, k = 0, 1, 2, . . .. If {un} satisfies in addition that∫

B+
1

Vn |x |2αe2unφ +
∫
L1

hn |x |αeunφ → m(0)φ(0), for every φ ∈ C∞
c (B+

1 ∪ L1), (4)

i.e. zero is the only blow-up point of un in B̄+
1 , then m(0) ∈ 2πN∪{2π(1+α)+2π(N∪{0})}.

From Theorem 1.2 it is natural to ask what is the precise value of the “mass” m(0). We
give an affirmative answer under an extra boundary condition:

max
S+
1

un − min
S+
1

un ≤ C (5)

with C a suitable positive constant.

Theorem 1.3 Under the assumptions of Theorem 1.2, if we suppose in addition that un
satisfies (5), then we have m(0) = 2π(1 + α).

The proof of our main results follow closely the ideas in [4,10,13]. Since the problems
involve Neumann boundary condition and the singular data, the steps of the blow-up anal-
ysis become more delicate. When we prove Theorem 1.1, we need to use the local Green
representation formula and the Pohozaev type identity of Neumann problem. For the proof
of Theorem 1.2, we will use the approach in [10,13], which is based on a classification result
of bubbling equation

−	u = e2u in R
2

with
∫
R2 e2u < ∞ and a “sup+ inf” type inequality

u(0) + C1 inf
B1

u ≤ C2
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for equation −	u = Ve2u in B1. For our problem, we need the corresponding results. On
one hand, besides of the above bubbling equation, there exist the other two kinds of bubbling
equation, i.e. {−�u = V (0)e2u in R

2 ∩ {t > −
},
∂u

∂ν
= h(0)eu on R

2 ∩ {t = −
},
with the energy conditions∫

R2∩{t>−
}
V (0)e2u < +∞,

∫
R2∩{t=−
}

h(0)eu < +∞;

and {−�u = V (0)|x |2αe2u in R
2+,

∂u

∂ν
= h(0)|x |αeu on ∂R2+.

with the energy condition∫
R
2+

|x |2αe2udx < +∞,

∫
∂R2+

|x |αeuds < ∞.

We will use the classification results shown in [8,11] to handle our problem. On the other
hand, we need to prove a “sup+ inf” type inequality for this Neumann problem by using the
moving plan method.

This paper is organized as follows. In this introduction, we state our main theorems.
In Sect. 2, we study the blow-up behaviors for the considered Neumann boundary value
problem, and give the proof of corresponding concentration-compactness Theorem 1.1. In
Sects. 3 and 4, we give the version of Tarantello’s decomposition Proposition and “sup+ inf”
type inequality under the Neumann boundary conditions separately. In Sect. 5, we will prove
Theorem 1.2. In Sect. 6, we will consider the case un satisfy (5) and then we give the the
proof of Theorem 1.3.

2 Blow-up analysis

In this section, we will study the blow-up behaviors for the considered Liouville type equa-
tion with Neumann boundary value condition and with singular data. We shall analyze the
regularity of solutions to (1), (2) and (3). Consequently, we can prove Theorem 1.1. In the
sequel, we will handle the problem with α ≥ 0 and −1 < α < 0 separately.

Proposition 2.1 Let α ≥ 0, ε1 < π
2 and ε2 < π . Assume that {un} is a sequence of solutions

which satisfies that {−�un = Vn |x |2αe2un , in B+
r ,

∂un
∂ν

= hn |x |αeun , on Lr ,

and ∫
B+
r

Vn |x |2αe2un dx < ε1,

∫
Lr

hn |x |αeun dx < ε2. (6)

Then u+
n is bounded in L∞(B̄+

r
4
).
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Proof Define u1,n , u2,n by⎧⎪⎨
⎪⎩

−�u1,n = Vn |x |2αe2un , in B+
r ,

∂u1,n
∂ν

= 0, on Lr ,

u1,n = 0, on S+
r .⎧⎪⎨

⎪⎩
−�u2,n = 0, in B+

r ,
∂u2,n
∂ν

= hn |x |αeun , on Lr ,

u2,n = 0, on S+
r .

Extending un , u1,n and Vn evenly we have{−�u1,n = Vn |x |2αe2un , in Br ,
u1,n = 0, on ∂Br .

Due to ε1 < π
2 we obtain that ∫

Br
Vn |x |2αe2un < 2ε1 < π.

Now by Theorem 1 in [2] we can choose δ1 such that

4π − δ

2ε1
= 4 + δ1,

with δ1 > 0. Then we have∫
B+
r

e(4+δ1)|u1,n | = 1

2

∫
Br

e(4+δ1)|u1,n | ≤ C .

For u2,n , since ε2 < π , by Lemma 3.2 in [8] we also can choose δ2 > 0, δ3 > 0 such that∫
B+
r

e(4+δ2)|u2,n | ≤ C,

∫
Lr

e(2+δ3)|u2,n | ≤ C .

Let u3,n = un − u1,n − u2,n . Then we have{−�u3,n = 0, in B+
r ,

∂u3,n
∂ν

= 0, on Lr .

Extending u3,n evenly, u3,n becomes a harmonic function in Br . Then themean value theorem
for harmonic functions implies that

‖u+
3,n‖L∞(B̄+

r
2
) ≤ C‖u+

3,n‖L1(B+
r ).

Notice that

u+
3,n ≤ u+

n + |u1,n| + |u2,n|.
Now we choose t > 0 such that

∫
B+
r

1
|x |2αt dx ≤ C . Set s = t

t+1 < 1 when α > 0 and s = 1
when α = 0. Then it follows from Holder’s inequality to get∫

B+
r

e2sun dx ≤
(∫

B+
r

|x |2αe2un dx
)s (∫

B+
r

1

|x |2αt dx
)1−s

≤ C .
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Therefore we have ∫
B+
r

u+
n dx ≤ 1

2s

∫
B+
r

e2sun dx ≤ C,

and consequently we have

‖u+
3,n‖L∞(B̄+

r
2
) ≤ C .

Finally, we rewrite the equations as{−�un = Vn |x |2αe2un = fn, in B+
r ,

∂un
∂ν

= hn |x |αeun = gn, on Lr .

Since

fn = Vn |x |2αe2u3,n+2u1,n+2u2,n , gn = hn |x |αeu3,n+u1,n+u2,n ,

we know that ‖ fn‖Lq (B+
r
2

) ≤ C and ‖gn‖Lq (L r
2
) ≤ C for some q > 1. Then the standard

elliptic estimates imply that

‖u+
n ‖L∞(B̄+

r
4
) ≤ C .

�

Next we consider the case −1 < α < 0. There have subtle differences between the case
−1 < α < 0 and the case α ≥ 0.

Proposition 2.2 Let −1 < α < 0, and choose suitable constants 1 < p < 2
1−α

, p1 = α−1
2α

and p2 = 1−α
1+α

such that 1
p1

+ 1
p2

= 1. Let ε1 < π
2pp2

, and ε2 < π
pp2

. Assume that {un} is a
sequence of solutions which satisfies that{−�un = Vn |x |2αe2un , in B+

r ,
∂un
∂ν

= hn |x |αeun , on Lr ,

and ∫
B+
r

Vn |x |2αe2un dx < ε1,

∫
Lr

hn |x |αeun dx < ε2. (7)

Then ‖u+
n ‖L∞(B̄+

r
4
) is bounded.

Proof Define u1,n , u2,n by⎧⎪⎨
⎪⎩

−�u1,n = Vn |x |2αe2un , in B+
r ,

∂u1,n
∂ν

= 0, on Lr ,

u1,n = 0, on S+
r .⎧⎪⎨

⎪⎩
−�u2,n = 0, in B+

r ,
∂u2,n
∂ν

= hn |x |αeun , on Lr ,

u2,n = 0, on S+
r .
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Extending un , u1,n and Vn(x) evenly we have{−�u1,n = Vn |x |2αe2un , in Br ,
u1,n = 0, on ∂Br .

As the similar arguments in Proposition 2.1 we can obtain for some δ > 0 that∫
B+
r

e(4+δ)pp2|u1,n | = 1

2

∫
Br

e(4+δ)pp2|u1,n | ≤ C,

and ∫
B+
r

e(4+δ)pp2|u2,n | ≤ C,

∫
Lr

e(2+δ)pp2|u2,n | ≤ C .

Let u3,n = un − u1,n − u2,n . Then we have{−�u3,n = 0, in B+
r ,

∂u3,n
∂ν

= 0, on Lr .

Extending u3,n evenly, u3,n becomes a harmonic function in Br . Then themean value theorem
for harmonic function implies that

‖u+
3,n‖L∞(B̄+

r
2
) ≤ C‖u+

3,n‖L1(B+
r ).

Notice that

u+
3,n ≤ u+

n + |u1,n| + |u2,n|.
Since α < 0, (7) implies ∫

B+
r

eun dx ≤ C .

So we get ∫
B+
r

u+
n dx ≤

∫
B+
r

eun dx ≤ C .

And we have

‖u+
3,n‖L∞(B̄+

r
2
) ≤ C .

Thus, by Holder’ inequality and pp1 < − 1
α
,∫

B+
r
2

|x |2α pe2pun dx ≤
∫
B+
r
2

|x |2α pp1dx ·
∫
B+
r
2

e2pp2un dx ≤ C .

Hence we have u1,n is uniformly bounded in B+
r ∪ Lr and consequently∫

L r
2

|x |α pepun dx ≤
∫
L r

2

|x |α pp1dx ·
∫
L r

2

epp2un dx ≤ C .

The standard elliptic estimates imply that

‖u+
n ‖L∞(B̄+

r
4
) ≤ C .

�
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Next we present an inequality which has been established in [7].

Lemma 2.3 [7] Let l be an imbedded C1 curve in R
2. f ∈ L1(l). Set ‖ f ‖1 = ∫

l | f (x)|dx,
and ρ = diam l. If we define

ω(x) = 1

π

∫
l
log

ρ

|x − y| f (y)dy,

then for every δ ∈ (0, π) we have∫
l
exp[(π − δ)|ω(x)|/‖ f ‖1]dx ≤ C

δ
. (8)

By using Lemma 2.3, we can get the following Lemma.

Lemma 2.4 Set f (x) ∈ L1(Lr ). If we define

ω(x) = 1

π

∫
Lr

log
2r

|x − y| f (y)dy,

then for every k > 0 we have ek|ω| ∈ L1(Lr ) and ek|ω| ∈ L1(B+
r ).

Proof Let 0 < ε < 1
k . Since f (x) ∈ L1(Lr ), we can split f (x) as f (x) = f1(x) + f2(x)

with ‖ f1‖1 < ε and f2 ∈ L∞(Lr ). Write ω(x) = ω1(x) + ω2(x) where

ωi (x) = 1

π

∫
Lr

log
2r

|x − y| fi (y)dy.

Choosing δ = π − 1 in Lemma 2.3 we find
∫
Lr

exp[|ω1(x)|/‖ f1‖1]dx ≤ C . This implies

that ek|ω1| ∈ L1(Lr ) for every k > 0. Thus the conclusion follows the fact |ω| ≤ |ω1| + |ω2|
and ω2 ∈ L∞(Lr ). Using the same method of Lemma 2.3, we can get

∫
B+
r
exp[(2π −

δ)|ω(x)|/‖ f ‖1]dx ≤ C . Further more we can also obtain ek|ω| ∈ L1(B+
r ) for every k > 0.

�
Remark 2.5 If we set f (x) ∈ L1(B+

r ) and

ω(x) = 1

π

∫
B+
r

log
2r

|x − y| f (y)dy,

by using the arguments in Lemma 2.4 again, then we can also obtain ek|ω| ∈ L1(Lr ) and
ek|ω| ∈ L1(B+

r ) for every k > 0 .

In addition we need a Harnack inequality for a non-homogenous Neumann-type boundary
problem for second-order elliptic equations, which has been established in [9].

Proposition 2.6 Let f ∈ L p(B+
r ) for some 1 < p ≤ +∞, g ∈ Lq(B+

r ∩ ∂R2+) for some
1 < q ≤ +∞, and u satisfy⎧⎪⎨

⎪⎩
−�u = f , in B+

r ,
∂u

∂ν
= g, on B+

r ∩ ∂R2+,

u ≤ 0, on ∂B+
r ∩ R

2+.

Then for any 0 < θ < 1, there exist a constant β ∈ (0, 1) depending on r, θ only, and a
constant γ > 0 depending on r, p, q only such that

sup
B̄+

θr

u ≤ β inf
B̄+

θr

u + γ (‖ f ‖L p(B+
r ) + ‖g‖Lq (∂B+

r ∩∂R2+)).
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When the energy
∫
B+
R
Vn |x |2αe2un and

∫
LR

hn |x |αeun are large, the blow-up phenomenon
may occur, which is declared in Theorem 1.1. Next we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Firstlywe treat the caseα ≥ 0. SinceVn|x |2αe2un is bounded in L1(B+
R )

and hn |x |αeun is bounded in L1(LR), along a subsequence (still denoted by un), such that∫
B+
R

Vn |x |2αe2unϕ →
∫
B+
R

ϕdμ,

∫
LR

hn |x |αeunφ →
∫
LR

φdϑ,

for every ϕ ∈ Cc(B
+
R ∪ LR) and φ ∈ Cc(LR). Here μ and ϑ are two nonnegative bounded

measures. A point x ∈ B+
R ∪ LR is called an ε− regular point with respect toμ and ϑ if there

is a function ϕ ∈ C(B+
R ∪ LR), suppϕ ∈ Br (x) ∩ (B+

R ∪ LR) with 0 ≤ ϕ ≤ 1 and ϕ = 1 in
a neighborhood of x such that∫

B+
R

ϕdμ < ε, if x ∈ B+
R ;

∫
B+
R

ϕdμ < ε and
∫
LR

ϕdϑ < ε, if x ∈ LR .

�
We define the

�(ε) = {x ∈ B+
R ∪ LR : x is not an ε − regular point with respect to μ and ϑ}.

By
∫
B+
R
Vn |x |2αe2un ≤ C and

∫
LR

hn |x |αeun ≤ C , we have �(ε) is finite. Furthermore we

have S = �(ε0) by using the similar arguments in [2,5], where ε0 = min{ε1, ε2} as in
Proposition 2.1.

When S = ∅, it follows that (i) or (ii) holds. S = ∅ means that u+
n is uniformly bounded

in L∞(B+
R ∪ LR). Thus fn = Vn |x |2αe2un is bounded in L p(B+

R ) for any p > 1, and gn =
hn |x |αeun is bounded in L p(LR) for any p > 1. Apply Harnack inequality in Proposition
2.6, we know that (i) or (ii) holds.

For the case −1 < α < 0, we will use Proposition 2.2 instead of Proposition 2.1. Then
similar with the case α ≥ 0, we can show (i) or (ii) holds when S = ∅.

When S �= ∅, we can show that (iii) holds. Actually in this case, we know that u+
n is

uniformly bounded in L∞
loc(B

+
R ∪ LR\S) and therefore fn is bounded in L p

loc(B
+
R \S) for

some p > 1 and gn is bounded in L p
loc(LR\S) for some p > 1. Then we have that either

un is bounded in L∞
loc(B

+
R ∪ LR\S), (9)

or
un → −∞ uniformly on compact subsets of (B+

R ∪ LR)\S. (10)

We should show that (9) does not happen when S �= ∅. To this purpose, we can take a point
p ∈ S and choose a small r0 > 0 such that p is the only blow-up point in B̄+

r0 . Then it is
suffice to prove that

un → −∞ uniformly on compact subsets of B̄+
r0\{p}. (11)

If p �= 0, this is a smooth case and (11) has been shown in [5]. So next we suppose p = 0.
Since un is uniformly bounded in L∞

loc(B̄
+
r0\{0}), then we use elliptic estimates, and along a

123
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subsequence, we may assume that

un → ξ pointwise a.e. and in C1,δ
loc (B̄

+
r0\{0}), for some δ ∈ (0, 1), (12)

Noticing that, by Fatou’s lemma, V (x)|x |2αe2ξ ∈ L1(B+
r0 ) and h(x)|x |αeξ ∈ L1(Lr0),

we have for any 0 < r ≤ r0∫
B+
r

Vn |x |2αe2un +
∫
Lr

hn |x |αeun →
∫
B+
r

V |x |2αe2ξ +
∫
Lr

h|x |αeξ + β, (13)

here β is the blow-up value for the blow-up point p = 0, which is defined by

β = lim
r→0

lim
n→∞

{∫
B+
r

Vn |x |2αe2un +
∫
Lr

hn |x |αeun
}

.

Set

ϕ1(x) = V (x)|x |2αe2ξ and ϕ2(x) = h(x)|x |αeξ .

By Green’s representation formula for un in B̄+
r0 and (13) we derive that

ξ(x) = β

π
ln

1

|x | + φ(x) + γ (x),

with

φ(x) = 1

π

∫
B+
r0

ln
1

|x − y|ϕ1(y)dy + 1

π

∫
Lr0

ln
1

|x − y|ϕ2(y)dy,

and

γ (x) = 1

π

∫
S+
r0

log
1

|x − y|
∂ξ

∂ν
dy + 1

π

∫
S+
r0

(x − y) · ν

|x − y|2 ξ(y)dy.

Clearly,
γ (x) ∈ C1(B̄+

r ), for every r ∈ (0, r0). (14)

For φ(x), we want to estimate the decay of φ near the zero. we observe first that φ(x) is
bounded from below on B̄+

r0 , as we have,

φ(x) ≥ 1

π
ln

1

2r0
(

∫
B+
r0

V (y)|y|2αe2ξdy +
∫
Lr0

h(y)|y|αeξdy), ∀x ∈ B̄+
r0 .

By (2) we find

ϕ1(x) = V (x)|x |2αe2ξ = V (x)
|x |2α
|x | 2βπ

e2φ(x)+2γ (x) ≥ C

|x |2( β
π

−α)
,

and

ϕ2(x) = h(x)|x |αeξ = h(x)
|x |α
|x | β

π

eφ(x)+γ (x) ≥ C

|x | β
π

−α
.

Thus by the integrability of ϕ1 and ϕ2, we see that necessarily

β < π(1 + α). (15)

On the other hand, let us set s = β
π

− α and split φ = φ1 + φ2, where

φ1(x) = 1

π

∫
B+
r0

ln
1

|x − y|ϕ1(y)dy, and φ2(x) = 1

π

∫
Lr0

ln
1

|x − y|ϕ2(y)dy.
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Noticing that, in view of (15), s < 1, it follows that

ϕ1(x) = V (x)|x |2αe2ξ ≤ C

|x |2s e
2φ1(x)+2φ2(x), in B̄+

r0 ,

and

ϕ2(x) = h(x)|x |αeξ ≤ C

|x |s e
φ1(x)+φ2(x), in B̄+

r0 .

By Lemma 2.4 and Remark 2.5, for every k > 0 we have ek|φ1| ∈ L1(Lr0), e
k|φ2| ∈ L1(Lr0),

ek|φ1| ∈ L1(B+
r0 ) and e

k|φ2| ∈ L1(B+
r0 ). ByHolder’s inequality it follows thatϕ1(x) ∈ Lt (B+

r0 )

for any t ∈ (1, 1
s ) if s > 0, and V (x)|x |2αe2ξ ∈ Lt (B+

r0 ) for any t > 1 if s ≤ 0. We also have

ϕ2(x) ∈ Lt (Lr0) for any t ∈ (1, 1
s ) if s > 0, and ϕ2(x) ∈ Lt (Lr0) for any t > 1 if s ≤ 0.

But if −1 < α < 0, we have 0 < s < 1. Since φ satisfies that

{−�φ = ϕ1, in B+
r0 ,

∂φ

∂ν
= ϕ2, on L+

r0 ,

we get that φ is in L∞(B+
r0 ∩ Lr0). Furthermore, if s ≤ 0, then φ is in C1(B+

r0 ∩ Lr0). If
s > 0, ∇φ(x) will have a decay when x → 0. Without loss of generality, we assume that
0 < s < 1 in the sequel. We estimate ∇φ(x) for x ∈ B+

r0 (0).

|∇φ(x)| ≤ 1

π

∫
B+
r0

1

|x − y|ϕ1(y)dy + 1

π

∫
Lr0

1

|x − y|ϕ2(y)dy

= 1

π

∫
{|x−y|≥ |x |

2 }∩B+
r0

1

|x − y|ϕ1(y)dy + 1

π

∫
{|x−y|≤ |x |

2 }∩B+
r0

1

|x − y|ϕ1(y)dy

+ 1

π

∫
{|x−y|≥ |x |

2 }∩Lr0

1

|x − y|ϕ2(y)dy + 1

π

∫
{|x−y|≤ |x |

2 }∩Lr0

1

|x − y|ϕ2(y)dy

= I1 + I2 + I3 + I4.

For I1, we fix t ∈ (1, 1
s ) and choose τ1 > 0 such that τ1t

t−1 < 2, and hence we have
0 < τ1 < 2 − 2s. By Holder’s inequality we obtain,

|I1| ≤ 1

π

(∫
{|x−y|≥ |x |

2 }∩B+
r0

1

|x − y| τ1 t
t−1

dy

) t−1
t

·
(∫

{|x−y|≥ |x |
2 }∩B+

r0

1

|x − y|t(1−τ1)
|ϕ1(y)|t dy

) 1
t

≤ C

|x |1−τ1
.

For I2, since |x − y| ≤ |x |
2 implies that |y| ≥ |x |

2 , we have

|I2| ≤ C
∫

{|x−y|≤ |x |
2 }∩B+

r0

1

|x − y|
1

|y|s dy

≤ C

|x |s
∫

{|x−y|≤ |x |
2 }∩B+

r0

1

|x − y|dy ≤ C |x |1−s .
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Similarly, for I3, we fix t ∈ (1, 1
s ) and choose τ2 > 0 such that τ2t

t−1 < 1. and hence we have
0 < τ2 < 1 − s. By Holder’s inequality we obtain,

|I3| ≤ 1

π

(∫
{|x−y|≥ |x |

2 }∩Lr0

1

|x − y| τ2 t
t−1

dy

) t−1
t

·
(∫

{|x−y|≥ |x |
2 }∩Lr0

1

|x − y|t(1−τ2)
|ϕ2(y)|t dy

) 1
t

≤ C

|x |1−τ2
.

For I4 we have

|I4| ≤ C
∫

{|x−y|≤ |x |
2 }∩Lr0

1

|x − y|
1

|y|s dy

≤ C

|x |s
∫

{|x−y|≤ |x |
2 }∩Lr0

1

|x − y|dy ≤ C

|x |τ3 ,

for some τ3 with 0 < τ3 < 1.
In conclusion, for all x ∈ B+

r0 (0) we have

|∇φ(x)| ≤ C

|x |1−τ1
+ C

|x |1−τ2
+ C

|x |τ3 , (16)

for suitable constants 0 < τ1 < 2 − s, 0 < τ2 < 1 − s and 0 < τ3 < 1.
At this point we are ready to derive our contradiction bymeans of a Pohozaev type identity.

We multiply all terms in (1) by x · ∇un and integrate over B+
r (0) for any r ∈ (0, r0) to get

r
∫
S+
r

(
1

2
|∇un |2 − |∂un

∂ν
|2)dσ

= −(1 + α)

∫
B+
r

Vn |x |2αe2un dx − (1 + α)

∫
Lr

hn |x |αeun dσ

+ r

2

∫
S+
r

Vn |x |2αe2un dσ − 1

2

∫
B+
r

|x |2αe2un (x · ∇Vn)dx

+hn(x1, 0)|x1|αx1eun(x1,0) |x1=r
x1=−r −

∫ r

−r

∂h(x1, 0)

∂x1
|x1|αx1eun(x1,0)dx1. (17)

Passing to the limit in (17) to derive the following identity

r
∫
S+
r

(
1

2
|∇ξ |2 − |∂ξ

∂ν
|2)dσ

= −(1 + α)

∫
B+
r

V |x |2αe2ξdx − (1 + α)

∫
Lr

h|x |αeξdσ + r

2

∫
S+
r

V |x |2αe2ξdσ

−1

2

∫
B+
r

|x |2αe2ξ (x · ∇V )dx −
∫ r

−r

∂h(x1, 0)

∂x1
|x1|αx1eξ(x1,0)dx1

+h(x1, 0)|x1|αx1eξ(x1,0) |x1=r
x1=−r −β(1 + α). (18)
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Set η = φ + γ . Since ∇ξ(x) = − β
π

x
|x |2 + ∇η(x), we have

�r := r
∫
S+
r

(
1

2
|∇ξ |2 − |∂ξ

∂ν
|2)ds

= r
∫
S+
r

1

2
[( β

π
)2

1

|x |2 − 2
β

π

x · ∇η

|x |2 + |∇η|2]ds − r
∫
S+
r

(−β

π

1

|x | + x · ∇η

|x | )2ds

= r
∫
S+
r

[−1

2
(
β

π
)2

1

|x |2 + β

π

x · ∇η

|x |2 + 1

2
|∇η|2 − (

x · ∇η

|x | )2]dσ

= −1

2
(
β

π
)2π + β

π
r
∫
S+
r

x · ∇η

|x |2 + r

2

∫
S+
r

|∇η|2 − r
∫
S+
r

(
x · ∇η

|x | )2.

Since γ ∈ C1(B+
r ), by (16) we have

|∇η(x)| ≤ C

|x |1−τ1
+ C

|x |1−τ2
+ C

|x |τ3 + C,

with 0 < τ1 < 2 − s, 0 < τ2 < 1 − s and 0 < τ3 < 1. So,

�r = − β2

2π
+ o(1), as r → 0. (19)

Similarly, letting r → 0 on the right side of (18) we also can obtain that

�r = −β(1 + α) + o(1), as r → 0. (20)

Comparing (19) and (20), we see that necessarily β = 2π(1+α), in contradiction with (15).
Therefore, the proof of Theorem 1.1 is finished.

3 A version of Tarantello’s decomposition proposition

In this section, we would like to show the new version of Tarantello’ decomposition Propo-
sition for Liouville equation under the Neumann boundary condition. Firstly we give the
“Minimal-Mass Lemma”, which is frequently used in the following Proposition.

Lemma 3.1 Assume that {un} is a sequence of solutions to (1) for R = 1 and un satisfies (2)
and (4). If there exists a sequence {xn} ⊂ B̄+

1 \{0} such that

xn → x0 ⊂ B̄+
1 and un(xn) + (α + 1) log |xn | → +∞. (21)

Then we must have x0 = 0 and

lim sup
n→+∞

(∫
B+

δ|xn |(xn)
Vn |x |2αe2un +

∫
Lδ|xn |(xn)

hn |x |αeun
)

≥ 2π, (22)

for every small δ > 0.

Proof Noticing that 0 is the only blow-up point for un in B̄+
1 and un(xn) → +∞, we have

x0 = 0. Next we consider the new function

vn(x) = un(|xn |x) + (α + 1) log |xn |.
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163 Page 14 of 32 T. Zhang, C. Zhou

Then vn(x) satisfies ⎧⎨
⎩

−�vn = Vn(|xn |x)|x |2αe2vn in B+
1

|xn |
∂vn

∂ν
= hn(|xn |x)|x |αevn on L 1

|xn |

(23)

with the energy conditions∫
B+

1|xn |

Vn(|xn |x)|x |2αe2vn ≤ C,

∫
L 1|xn |

hn(|xn |x)|x |αevn ≤ C .

Suppose that along a subsequence xn|xn | → x0 ∈ R̄
2+ with |x0| = 1. Hence x0 define a blow-up

point for vn as we have

vn(
xn
|xn | ) = un(xn) + (α + 1) log |xn | → +∞.

Moreover functions Vn(|xn |x)|x |2α and hn(|xn |x)|x |α are uniformly bounded from above
and below near x0.

Consequently, if x0 ∈ R
2+, by [2] we have for sufficiently small δ > 0,

lim sup
n→+∞

∫
B+

δ (
xn|xn | )

Vn(|xn |x)|x |2αe2vn ≥ 4π,

and if x0 ∈ ∂R2+, by [5] we have for sufficiently small δ > 0,

lim sup
n→+∞

(∫
B+

δ (
xn|xn | )

Vn(|xn |x)|x |2αe2vn +
∫
Lδ(

xn|xn | )
hn(|xn |x)|x |αevn

)
≥ 2π.

A simple change of variables leads to the conclusion. �
On the other hand, if (21) fails to hold, i.e. sup

B̄+
R

{un(x) + (α + 1) log |x |} ≤ C , we will

treat this situation in the following Lemma.

Lemma 3.2 Assume that {un} is a sequence of solutions to (1) for R > 0 and un satisfies (2)
and (4). If

sup
B̄+
R

{un(x) + (α + 1) log |x |} ≤ C, (24)

then we have

un(0) = max
B̄+
R

un + O(1) as n → +∞.

Proof Let un(xn) = max
B̄+
R

un → +∞ and εn = e− un (xn )
α+1 → 0. By (24) we get

|xn |
εn

= O(1), as n → +∞.

In B̄+
R
εn

we define

ξn(x) = un(εnx) + (α + 1) log εn .
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Then ξn satisfies ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�ξn = Vn(εnx)|x |2αe2ξn in B+
R
εn

,

∂ξn

∂ν
= hn(εnx)|x |αeξn on L R

εn
,

max
B̄+

R
εn

ξn = ξn(
xn
εn

) = 0,
(25)

with the energy conditions

∫
B+

R
εn

Vn(εnx)|x |2αe2ξn ≤ C,

∫
L R

εn

hn(εnx)|x |αeξn ≤ C .

Then necessarily alternative (i) in Theorem 1.1 must hold, in other words, ξn is uniformly
bounded in L∞

loc(R̄
2+). In particular,

un(0) − un(xn) = ξn(0) = O(1), as n → +∞.

�

Remark 3.3 In fact in Lemma 3.2, we have additionally that along a subsequence ξn → ξ

uniformly in C2
loc(R

2+) ∩ C1
loc(R̄

2+\{0}) ∩ C0
loc(R̄

2+). Without loss of generality we always
assume that

V (0) = h(0) = 1

in the sequel. Then by the classification results in [8] we know that ξ takes the form

ξ = log
2(α + 1)λ(α+1)

|xα+1 − y0|2 + λ2(α+1)
, λ > 0, some y0 ∈ R̄

2+. (26)

In addition,
∫
R
2+ |x |2αe2ξ + ∫

∂R2+ |x |αeξ = 2π(1 + α). In the forth section, we can further
obtain by assistant with the Harnack inequality

lim
n→∞

(∫
B+
R

Vn |x |2αe2un dx +
∫
LR

hn |x |αeun ds
)

= 2π(1 + α)

provided that the assumptions of Lemma hold.

In general, the assumption “sup
B̄+
R

{un(x) + (α + 1) log |x |} ≤ C” does not always hold. So

we must distinguish between the situation whether (24) holds or not. In particular we have
the following Tarantello’s decomposition Proposition.
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Proposition 3.4 Assume that {un} is a sequence of solutions to (1) for R = 1 and un satisfies
(2) and (4). Then there exists ε0 ∈ (

0, 1
2

)
such that the following alternatives hold:

either (i) sup
B̄+
2ε0

{un(x) + (α + 1) log |x |} ≤ C (27)

or (i i) there exist finite sequences {x j,n} ∈ B̄+
1 \{0}, j = 1, . . . ,m, such that

1. x j,n → 0, un(x j,n) + (α + 1) log |x j,n| → +∞; (28)

2. sup
Dn

{un(x) + (α + 1) log |x |} ≤ C (29)

where Dn = {B̄+
2ε0|x1,n |} ∪ {B̄+

1 \B̄+
1

2ε0
|xm,n |};

3. If m ≥ 2, then
|x j,n |

|x j+1,n| → 0, as n → +∞, and

sup
B̄+
2ε0 |x j+1,n |\B̄+

1
2ε0

|x j,n |

{un(x) + (α + 1) log |x |} ≤ C . (30)

Proof If (27) fails to hold for every ε0 ∈ (0, 1
2 ), then we find a sequence xn ⊂ B̄+

1 and

un(xn) + (α + 1) log |xn | → +∞.

Then by (22), we have

xn → 0 and lim sup
n→+∞

(∫
B+

δ|xn |(xn)
Vn(x)|x |2αe2un +

∫
Lδ|xn |(xn)

hn |x |αeun
)

≥ 2π,

∀δ > 0. Setting
vn(x) = un(|xn |x) + (α + 1) log |xn |. (31)

Next we consider the new sequences vn in B̄+
2ε0

. We repeat the alternative above for the

sequence vn in B̄+
2ε0

. If sup
B̄+
2ε0

{vn(x) + (α + 1) log |x |} ≤ C holds with a suitable ε0 ∈ (0, 1
2 ),

then in this casewe can set x1,n = xn . If there exists a sequence x ′
n , vn(x

′
n)+(α+1) log |x ′

n | →
+∞, then in this case there exists a second sequence x̃n = |xn |x ′

n ⊂ B̄+
1 , such that

|x̃n |
|xn | → 0 and un(x̃n) + (α + 1) log |x̃n | → +∞.

Consequently by (22),

lim sup
n→+∞

(∫
B+

δ|x̃n |(x̃n)
Vn |x |2αe2un +

∫
Lδ|x̃n |(x̃n)

hn |x |αeun
)

≥ 2π.

In addition, notice that B̄+
δ|x̃n |(x̃n) and B̄+

δ|xn |(xn) do not intersect for δ ∈ (0, 1) and n large.
Next we consider the new scaling sequences

v′
n(x) = un(|x̃n |x) + (α + 1) log |x̃n |.

We make the same alternative above for the new sequence v′
n . We see that each time the

new iterated sequence v′
n fails to verify (27), we contribute with at least an account of 2π to

123



Liouville type equation with exponential Neumann… Page 17 of 32 163

the blow-up value m(0). So necessarily after a number of steps we find ε0 ∈ (
0, 1

2

)
and a

sequence {x1,n} ⊂ B̄+
1 :

x1,n → 0, un(x1,n) + (α + 1) log |x1,n | → +∞,

and sup
B̄+
2ε0 |x1,n |

{un(x) + (α + 1) log |x |} ≤ C .

Now, for ε0 ∈ (
0, 1

2

)
, we repeat an analogous alternative for un on the set B̄

+
1 \B̄+

1
2ε0

|x1,n |. If

sup
B̄+
1 \B̄+

|x1,n |
2ε0

{un(x) + (α + 1) log |x |} ≤ C,

in this case we then obtain the first sequences x1,n . If there exists a sequence {yn} ⊂ B̄+
1 \{0}

such that |x1,n |
|yn | → 0 and un(yn) + (α + 1) log |yn | → +∞. (32)

By (22) we have

yn → 0 and lim sup
n→+∞

(∫
B+

δ|yn |(yn)
Vn |x |2αe2un +

∫
Lδ|yn |(yn)

hn |x |αeun
)

≥ 2π (33)

for ∀δ > 0. Our next task is to obtain the second sequence x2,n for ε0 ∈ (0, 1
2 ). In this

direction, we consider

sup
B̄+
2ε0 |yn |\B̄+

|x1,n |
2ε0

{un(x) + (α + 1) log |x |}. (34)

If (34) is uniformly bounded for any ε0 ∈ (0, 1
2 ) then we would let x2,n = yn and adjust

according ε0 in order to ensure (30) with j = 1. Otherwise we would replace yn with a

new sequence y′
n which have the same properties (32) and (33), but |y′

n ||yn | → 0, as n → ∞.
Moreover each time when such a new sequences exist, we at least contribute an amount of
2π to the blow-up value m(0). So making the same alternative for such new sequence, this
procedure must stop a number of steps. And we arrive to one for which (34) is uniformly
bounded for every ε0 ∈ (0, 1

2 ). Such sequence will define x2,n . So we obtain the desired
proproties (29) (30) for j = 1 by adjust ε0 ∈ (0, 1

2 ). At this point we iterate the argument
above by replacing x1,n with the new sequence x2,n .

Either (28) (29) (30) hold for m = 2, or we obtain a third sequence for which we can
verify (29) (30) for j = 1, 2. Since the blow-up value m(0) is finite, so only a finite number
of sequence x j,n satisfying (29) (30) are allowed. Then after a finite number of steps we
arrive to the desired conclusion. �

4 A version of “sup+ inf” type inequality

In this section we will show a version of “sup+ inf” type inequality for Liouville equation
under theNeumannboundary condition. This inequality concerns the casewhere the sequence
un is subject to alternative (ii) of Proposition 3.4. It is the key part for the proof of Theorem1.2.
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Proposition 4.1 Assume that {un} is a sequence of solutions to (1)with R = 1which satisfying
(2) and (3). Suppose that there exists ε0 > 0 and a sequence {xn} ⊂ B̄+

1 such that

(i) xn → 0, un(xn) + (α + 1) log |xn | → +∞;
(ii) sup

B̄+
2ε0 |xn |

{un(x) + (α + 1) log |x |} ≤ C;

Set vn(x) = un(|xn |x) + (α + 1) log |xn |. Then passing to a subsequence, we have

either (a) max
B̄+

ε0

vn → −∞ and inf
B̄+
1

un ≤ max
B̄+
r0 |xn |

vn + (α + 1) log |xn | + C,

or (b) vn(0) → +∞ and inf
B̄+
1

un ≤ −un(0) + C .

for suitable constant r0 > 0.

Proof We use a moving plane technique to obtain our conclusion. Similar arguments also
be used in [1,13]. As usual we identify x = (x1, x2) ∈ R

2 and x1 + i x2 ∈ C, where C is
complex plane. Recalling (2), without loss of generality, suppose A ≥ B and a ≤ b.

In polar coordinates, define

ωn(t, θ) = un(e
t+iθ ) + (α + 1)t − A

a
et (35)

for (t, θ) ∈ Q = (−∞, 0] × [0, π ]. A simple calculation shows that⎧⎪⎪⎨
⎪⎪⎩

−�ωn = Ṽn(t, θ)e2ωn + A
a e

t ,
∂ωn

∂ν
|θ=0 = h̃n(t, 0)eωn(t,0)

∂ωn
∂ν

|θ=π = h̃n(t, π)eωn(t,π)

(36)

where Ṽn(t, θ) = Vn(et+iθ )e
2A
a et and h̃n(t, θ) = hn(et+iθ )e

A
a e

t
.

Since for fixed n

ωn(2μ − t, θ) − ωn(t, θ)

= un(e
2μ−t+iθ ) + 2(α + 1)(μ − t) − A

a
e2μ−t − un(e

t+iθ ) + A

a
et ,

we have

ωn(2μ − t, θ) − ωn(t, θ) ≤ (α + 1)μ + C(n),∀t ∈ [μ
2

, 0], θ ∈ [0, π].
Furthermore,

∂

∂t
ωn(t, θ) ≥ (α + 1) − C(n)e

μ
2 ,∀t <

μ

2
, θ ∈ [0, π].

for suitableC(n) > 0 depending on n. Thuswe can choose λ sufficiently negative (depending
on n) such that ∀μ ≤ λ:

ωn(2μ − t, θ) − ωn(t, θ) < 0 for t ∈ [μ
2

, 0], θ ∈ [0, π]
∂

∂t
ωn(t, θ) > 0 for t <

μ

2
, θ ∈ [0, π].

Therefore we get, for fixed n, there exists λ < 0(depending on n) such that

∀μ < λ,ωn(2μ − t, θ) − ωn(t, θ) < 0, for μ < t < 0 and θ ∈ [0, π]. (37)
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Consequently we can define

λn = sup{λ ≤ 0 : (37) holds }.
We claim that

min
θ∈[0,π ] ωn(0, θ) ≤ max

θ∈[0,π ] ωn(2λn, θ). (38)

To prove the claim, we let ψn(t, θ) = ωn(2λn − t, θ) − ωn(t, θ). Hence by (37) we get
ψn ≤ 0. By using assumption (2) we obtain

∂

∂t
(Ṽn(t, θ)eξ + A

a
et ) ≥ 0 and

∂

∂t
(h̃n(t, θ)eξ ) ≥ 0, (39)

for ∀ξ ∈ R. By virtue of (39) we have⎧⎪⎨
⎪⎩

�ψn ≥ 0,
∂ψn

∂ν
|θ=0 ≤ 0,

∂ψn
∂ν

|θ=π ≤ 0,

(40)

for (t, θ) ∈ [λn, 0] × [0, π ]. Suppose by the contradiction that

max
θ∈[0,π ] ωn(2λn, θ) < min

θ∈[0,π ] ωn(0, θ).

By the strongmaximum principle, Hopf Lemma and a result in Appendixwe haveψn(t, θ) <

0 in (λn, 0) × [0, π] and ∂ψn(t,θ)
∂t |t=λn < 0 for θ ∈ [0, π]. On the other hand, from the

definition of λn , there exists a sequence λn,k → λn , as k → +∞, such that

max[λn,k ,0]×[0,π ](ωn(2λn,k − t, θ) − ωn(t, θ)) > 0.

Set xk is the maximum point of ωn(2λn,k − t, θ) − ωn(t, θ) in [λn,k, 0] × [0, π]. From
continuity, we have xk → x0 and x0 lies on {λn}×[0, π ]. In addition, we have ∂ψn(t,θ)

∂t |x0 = 0.
Thus we get a contradiction. So we arrive to the conclusion (38).

Next we want to estimate λn . To this purpose, let us note that vn satisfies⎧⎨
⎩

−�vn = Vn(|xn |x)|x |2αe2vn in B+
2ε0

,
∂vn

∂ν
= hn(|xn |x)|x |αevn on L2ε0 ,

(41)

and
sup
B̄+
2ε0

{vn(x) + (α + 1) log |x |} ≤ C, (42)

and ∫
B+
2ε0

Vn(|xn |x)|x |2αe2vn ≤ C,

∫
L2ε0

hn(|xn |x)|x |αevn ≤ C .

Thus in view of (42) and Lemma 3.2 we have

either vn(0) = max
B̄+
2ε0

vn + O(1) → +∞, as n → +∞; (43)

or max
B̄+
2ε0

vn < +∞. (44)

In order to proceed further, we distinguish two cases.
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Case 1. (43) holds, and necessarily un(0) → +∞.
In this case, we set

εn = e− un (0)
α+1 → 0 and

|xn |
εn

= e
vn (0)
α+1 → +∞.

We also set ξn(x) = un(εnx) + (α + 1) log εn . Then in B̄+
2ε0

|xn |
εn

, ξn satisfies

⎧⎨
⎩

−�ξn = Vn(εnx)|x |2αe2ξn in B+
2ε0

|xn |
εn

,

∂ξn

∂ν
= hn(εnx)|x |αeξn on L2ε0

|xn |
εn

,

and ξn(0) = 0. In addition, in view of (43), we have

max
B̄+
2ε0

|xn |
εn

ξn = max
B̄+
2ε0 |xn |

un + (α + 1) log εn

= max
B̄+
2ε0

vn − (α + 1) log |xn | + (α + 1) log εn

= vn(0) − (α + 1) log |xn | + (α + 1) log εn + O(1)

= ξn(0) + O(1) = O(1).

Therefore we argue as in Lemma 3.2 and Remark 3.3 to conclude that

ξn(x) = un(εnx) + (α + 1) log εn → ξ (45)

uniformly inC2
loc(R

2+)∩C1
loc(R̄

2+\{0})∩C0
loc(R̄

2+), where ξ takes the form (26) and satisfies
ξ(0) = 0.

Claim.
λn ≤ log εn + O(1) (46)

with εn = e− un (0)
α+1 and

inf
B̄+
1

un ≤ −un(0) + O(1) (47)

as n → +∞, and then we obtain part (b) of our Proposition.
To establish this Claim, recalling (45), we may use Case (1) to obtain

ξn(x) = un(εnx) + (α + 1) log εn → ξ = log
2(α + 1)λ(α+1)

|xα+1 − y0|2 + λ2(α+1)
, (48)

uniformly in C2
loc(R

2+) ∩ C1
loc(R̄

2+\{0}) ∩ C0
loc(R̄

2+), with λ > 0, y0 ∈ C such that 2(α +
1)λα+1 = |y0|2 + λ2(α+1).

For (t, θ) ∈ Q, let

ω(t, θ) = ξ(et+iθ ) + (α + 1)t = log
2(α + 1)λ(α+1)e(α+1)t

|xα+1 − y0|2 + λ2(α+1)
. (49)

Set y0 = (|y0| cos θ0, |y0| sin θ0) and τ = ( 1
2(α+1)λα+1 )

1
α+1 . Since

e
2(α+1) log 1√

τ = |y0|2 + λ2(α+1) = 2(α + 1)λα+1,

we have

e2(α+1)t · e2(α+1) log 1√
τ + 2(α + 1)λα+1 = 2(α + 1)λα+1 · e2(α+1)t + e

2(α+1) log 1√
τ ,
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and further have

e
2(α+1)(log 1√

τ
+t) + |y0|2 + λ2(α+1) = e

2(α+1) log 1√
τ + e2(α+1)t (|y0|2 + λ2(α+1)).

Then by a direct computation we can obtain

1

e2(α+1)t (|e2(α+1)(log 1√
τ
−t+iθ) − y0|2 + λ2(α+1))

= 1

|e2(α+1)(log 1√
τ
+t+iθ) − y0|2 + λ2(α+1)

.

This impliesω(log 1√
τ
−t, θ) = ω(log 1√

τ
+t, θ) for (t, θ) ∈ Q andω(t, θ) is symmetricwith

respect to t = log 1√
τ
, τ = ( 1

2(α+1)λα+1 )
1

α+1 . On the other hand, if we let t1 < t2 < log 1√
τ
,

then we have

τ−(1+α) > e2(α+1)t2 > e(α+1)t1 · e(α+1)t2 .

Furthermore we have

τ−(1+α) · e(α+1)t1 + e(α+1)t1 · e2(α+1)t2

< τ−(1+α) · e(α+1)t2 + e2(α+1)t1 · e(α+1)t2 ,

and

e(α+1)t1 · e2(α+1)t2 + e2(α+1)t1(|y0|2 + λ2(α+1))

< e(α+1)t2 · e2(α+1)t1 + e2(α+1)t2(|y0|2 + λ2(α+1)).

Then by a direct calculation we can get

e(α+1)t1

|e2(α+1)(t1+iθ) − y0|2 + λ2(α+1)
<

e(α+1)t2

|e2(α+1)(t2+iθ) − y0|2 + λ2(α+1)
.

This implies that ω(t, θ) is increasing for t < log 1√
τ
and then attain its maximum at t =

log 1√
τ
.

By the definition of ω(t, θ), we have

ω(t, θ) ≤ (α + 1)t + C . (50)

In addition, by (35),

ωn(t + log εn, θ) = un(e
t+log εn+iθ ) + (α + 1)(t + log εn) − εn

A

a
et

= ξn + (α + 1)t − εn
A

a
et .

Then in view of (48), (49), for every fixed s ∈ R we have

sup
t≤s,θ∈[0,π ]

|ωn(t + log εn, θ) − ω(t, θ)| → 0, as n → +∞. (51)

From (51) and ω(t, θ) attain its maximum at t = log 1√
τ
, for large n, we have

sup
t≤4+log 1√

τ
,θ∈[0,π ]

|ωn(t + log εn, θ) − ω(t, θ)| < 1, (52)

and

ωn(4 + log
1√
τ

+ log εn, θ) < ωn(log
1√
τ

+ log εn, θ),∀θ ∈ [0, π]. (53)
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By (53), we see that for large n, if we set λ = log εn+log 1√
τ
+2 and t = log εn+log 1√

τ
+4,

(37) fails to hold. As a consequence, (46) follows. Hence using (46), (50), (52) for large n,
we can estimate

ωn(2λn, θ) ≤ ω(2λn − log εn, θ) + 1 ≤ (α + 1)(2λn − log εn) + C

≤ (α + 1) log εn + O(1) = −un(0) + O(1).

Then in view of (35), (38), we have

inf
B̄+
1

un = inf
S+
1

un = min
θ∈[0,π ] ωn(0, θ) + A

a
≤ max

θ∈[0,π ] ωn(2λn, θ) + A

a

≤ −un(0) + O(1).

Case 2. (44) holds.
In this case, duo to the assumption (i) we have firstly

vn(
xn
|xn | ) → +∞, as n → +∞.

Suppose that along a subsequence,

xn
|xn | → x0, with |x0| = 1.

Therefore vn admits a blow-up point x0. Then we apply Theorem 1.1 to vn to get that vn
must verify alternative (iii) in Theorem 1.1. Moreover by (44), 0 /∈ S. Consequently,

max
B̄+

ε0

vn → −∞, as n → +∞. (54)

We choose s0 small enough such that x0 is an only blow-up point for vn in Bs0(x0) ∩ R̄
2+.

If x0 ∈ R
2+, we can choose s0 small enough such that Bs0(x0) ⊂ R

2+. Let yn ∈ B̄s0(x0),
and vn(yn) = max

B̄s0 (x0)
vn . Then yn → x0 and vn(yn) → +∞. Set

δn = e−vn(yn) → 0, ξn(x) = vn(yn + δnx) + log δn .

Then we have ⎧⎪⎨
⎪⎩

−�ξn = Une2ξn in B s0
2δn

,

max
B̄ s0
2δn

ξn = ξn(0) = 0, (55)

with the energy condition ∫
B s0
2δn

Une
2ξn ≤ C,

where Un(x) = |yn + δnx |2αVn(|xn |yn + |xn |δnx) → 1 in BL(0) for all L > 0. Then along
a subsequence, by the classification results in [6] we have

ξn(x) → ξ(x) = log
1

(1 + 1
8 |z|2)2

uniformly in C2
loc(R

2). (56)

Now we need consider the following two situations.
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If x0 ∈ ∂R2+, then Bs0(x0) ∩ R
2+ = B+

s0 (x0). Let yn ∈ B̄+
s0 (x0), and vn(yn) = max

B̄+
s0 (x0)

vn .

Denote yn = (yn,1, yn,2). Then yn → x0 and vn(yn) → +∞. Set

δn = e−vn(yn) → 0, ξn(x) = vn(yn + δnx) + log δn .

Then we have ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�ξn = Une2ξn in B s0
2δn

∩ {t > − yn,2
δn

},
∂ξn

∂ν
= Hneξn on B s0

2δn
∩ {t = − yn,2

δn
},

max
B̄+

s0
2δn

ξn = ξn(0) = 0,
(57)

with the energy coniditions

∫
B s0
2δn

∩{t>− yn,2
δn

},
Une

2ξn ≤ C,

∫
B s0
2δn

∩{t=− yn,2
δn

}
Hne

ξn ≤ C,

where Un(x) = |yn + δnx |2αVn(|xn |yn + |xn |δnx) → 1 in B+
S and Hn(x) = |yn +

δnx |αhn(|xn |yn + |xn |δnx) → 1 on LS for all S > 0. Now we need consider the following
two situations.

(1): |yn,2|
δn

→ +∞. Then along a subsequence, by the classification results in [6] we have

ξn(x) → ξ(x) = log
1

(1 + 1
8 |z|2)2

uniformly in C2
loc(R

2), (58)

with ξ(0) = max
R2

ξ = 0.

(2): |yn,2|
δn

→ 
 < +∞. Also by the classification results in [11] we have

ξn(x) → ξ(x) = log
2λ

λ2 + (x1 − s0)2 + (x2 + 
 + λ)2

uniformly in C2
loc(R

2−
 ∩ C1
loc(R̄

2−
), (59)

with ξ(0) = max
R̄
2−


ξ = 0.

Claim.
λn ≤ log |xn | + O(1), as n → +∞. (60)

To establish this claim, we first notice that (54). By using the convergence properties (56),
(58) and (59), we have for suitable small σ > 0 and n large,

vn(yn + δnx) ≤ vn(yn) − 2σ,∀x : {1
2

≤ |x | ≤ 3}
⋂

R̄
2−
. (61)

Let ρn ∈ (0,+∞) and θn ∈ [0, 2π ] be the polar coordinate for yn , i.e.

ρne
iθn = yn .
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Since yn → x0 and |x0| = 1, we have ρn → 1 as n → +∞. Recalling the definition of ωn ,
we have for all s > 0

ωn(log |xn | + log ρn + 2 log(1 + s), θn)

= un(|xn |ρn(1 + s)2eiθn ) + (α + 1) log[|xn |ρn(1 + s)2] − A

a
|xn |ρn(1 + s)2

= vn((1 + s)2yn) + (α + 1) log[ρn(1 + s)2] − A

a
|xn |ρn(1 + s)2.

Thus we obtain

ωn(log |xn | + log ρn + 2 log(1 + δn), θn)

= vn((1 + δn)
2yn) + (α + 1) log[ρn(1 + δn)

2] − A

a
|xn |ρn(1 + δn)

2,

and

ωn(log |xn | + log ρn), θn) = vn(yn) + (α + 1) log ρn − A

a
|xn |ρn .

Since δn → 0, then for n large, we can use (61) to obtain

ωn(log |xn | + log ρn + 2 log(1 + δn), θn) − ωn(log |xn | + log ρn, θn)

= vn(yn + δn(2yn + δn yn)) − vn(yn) + (α + 1) log(1 + δn)
2

− A

a
|xn |ρn[(1 + δn)

2 − 1] < −σ. (62)

Consequently, for θ = θn , when λ = log |xn | + log ρn + log(1 + δn) and t = log |xn | +
log ρn + 2 log(1 + δn), (37) fails to hold. And (60) is established.

From (38), (60) we have

inf
B̄+
1

un = inf
S+
1

un = min
θ∈[0,π ] ωn(0, θ) + A

a
≤ max

θ∈[0,π ] ωn(2λn, θ) + A

a

≤ max
θ∈[0,π ] vn(

e2λn+iθ

|xn | ) + (α + 1)(2λn − log |xn |) + A

a
≤ max

B̄+
r0 |xn |

vn + (α + 1) log |xn | + C

for suitable constant r0 > 0. The Proposition is completely established. �
We shall need the following version of Proposition 4.1.

Corollary 4.2 Under the assumptions of Proposition 4.1, for every r ∈ (0, 1], we have
ei ther (a) max

B̄+
ε0

vn → −∞ and inf
B̄+
r

un ≤ max
B̄+
r0 |xn |

vn + (α + 1) log |xn | − 2(α + 1) log r + C,

or (b) vn(0) → +∞ and inf
B̄+
r

un ≤ −un(0) − 2(α + 1) log r + C,

for suitable r0 > 0 and C.

Proof For r ∈ (0, 1), in B̄+
1
r
we define

un,r (x) = un(r x) + (α + 1) log r . (63)
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Then un,r satisfies {−�un,r = Vn,r (x)|x |2αe2un,r in B+
1 ,

∂un,r

∂ν
= hn,r (x)|x |αeun,r on L1,

where Vn,r (x) = Vn(r x) and hn,r (x) = hn(r x). Notice that

un,r (
1

r
xn) + (α + 1) log(

1

r
xn) = un(xn) + (α + 1) log |xn | → +∞,

and Vn,r (x) and hn,r (x) still satisfy (2) in B̄+
1 . If we set xn,r = xn

r and

vn,r (x) = un,r (|xn,r |x) + (α + 1) log |xn,r | = vn(x),

then by applying Proposition 4.1 to un,r (x) and vn,r (x) we conclude that

ei ther (a) max
B̄+

ε0

vn → −∞, and inf
B̄+
1

un,r ≤ max
B̄+
r0 |xn |

vn + (α + 1) log
|xn |
r

+ C,

or (b) vn(0) → +∞ and inf
B̄+
1

un,r ≤ −un,r (0) + C .

So when case (a) holds, we have

inf
B̄+
r

un ≤ max
B̄+
r0 |xn |

vn + (α + 1) log |xn | − 2(α + 1) log r + C .

When case (b) holds, then

inf
B̄+
r

un ≤ −un(0) − 2(α + 1) log r + C .

�
As already mentioned, Proposition 4.1 play a crucial role in proving Theorem 1.2 as it

also implies the following result.

Corollary 4.3 In addition to the assumptions of Proposition 4.1, we suppose further that

sup
B̄+
2rn

\B̄+
δn
2

(un(x) + (α + 1) log |x |) ≤ C, (64)

with

γ |xn | ≤ δn < rn <
1

2
,

for γ > 0 suitable constant. Then along a subsequence,∫
B+
rn \B+

δn

Vn |x |2αe2un +
∫
Lrn \Lδn

hn |x |αeun → 0, as n → +∞.

Proof For given r ∈ (δn, rn), define un,r as in (63). So⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�un,r = Vn(r x)|x |2αe2un,r := fn,r in B+
2 \B+

1
2
,

∂un,r

∂ν
= hn(r x)|x |αeun,r := gn,r on L2\L 1

2
,

sup
B̄+
2 \B̄+

1
2

un,r ≤ C .
(65)
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And by (64) we have

‖ fn,r‖L∞(B̄+
2 \B̄+

1
2
) ≤ C and ‖gn,r‖L∞(L2\L 1

2
) ≤ C .

Thus we can use Harnack inequality to conclude that there exists a constant β ∈ (0, 1) such
that

sup
S+
r

un ≤ β inf
S+
r

un + (α + 1)(β − 1) log r + C . (66)

According to Corollary 4.2, we must treat two situations.
For case (54), i.e.

max
B̄+

ε0

vn → −∞, (67)

and Corollary 4.2 implies that

inf
S+
r

un = inf
B̄+
r

un ≤ max
B̄+
r0 |xn |

vn + (α + 1) log |xn | − 2(α + 1) log r + C . (68)

Hence if we insert (68) in (66) we obtain∫
B+
rn \B+

δn

Vn |x |2αe2un ≤ Ce
2β max

B̄+
ε0

vn

|xn |2(α+1)β

(
1

δ
2(α+1)β
n

− 1

r2(α+1)β
n

)

≤ Cγ −2(α+1)βe
2β max

B̄+
ε0

vn

→ 0, as n → +∞.

Similarly, ∫
Lrn \Lδn

hn |x |αeun ≤ Ce
β max

B̄+
ε0

vn

|xn |(α+1)β

(
1

δ
(α+1)β
n

− 1

r (α+1)β
n

)

≤ Cγ −(α+1)βe
β max

B̄+
ε0

vn

→ 0, as n → +∞.

In case (43), we have
vn(0) → +∞, (69)

and Corollary 4.2 implies that

inf
S+
r

un ≤ −un(0) − 2(α + 1) log r + C . (70)

Inserting (70) in (66), we obtain∫
B+
rn \B+

δn

Vn |x |2αe2un ≤ Ce−βun(0)

(
1

δ
2(α+1)β
n

− 1

r2(α+1)β
n

)

≤ Cγ −2(α+1)βe−βvn(0) → 0, as n → +∞.

Similarly, ∫
Lrn \Lδn

hn |x |αeun ≤ Ce−βun(0)

(
1

δ
(α+1)β
n

− 1

r (α+1)β
n

)

≤ Cγ −(α+1)βe−βvn(0) → 0, as n → +∞.

Thus we achieve the proof of this Corollary. �
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5 Proof of Theorem 1.2

Now we come to prove Theorem 1.2.

Proof of theorem 1.2 We will consider separately alternatives (i) and (ii) for un in Proposi-
tion 3.4. Firstly we consider the case where alternative (i) holds in Proposition 3.4. We have
the following Claim.

Claim 1 If (27) holds, then m(0) = 2π(1 + α).
Note that by Lemma 3.2, the validity of (27) implies

un(0) = max
B̄+
2ε0

un + O(1), as n → +∞.

So we set
εn = e− un (0)

α+1 → 0, as n → +∞,

and as in Lemma 3.2 and Remark 3.3, along a subsequence,

ξn(x) = un(εnx)+ (α +1) log εn → ξ uniformly in C2
loc(R

2+)∩C1
loc(R̄

2+\{0})∩C0
loc(R̄

2+),

here ξ described in (26).
Since

∫
R
2+
V (0)|x |2αe2ξ +

∫
∂R2+

h(0)|x |αeξ = 2π(1 + α),

we can find Rn → +∞ such that, along a subsequence,

∫
B+
Rnεn

Vn |x |2αe2un +
∫
LRnεn

hn |x |αeun → 2π(1 + α), as n → +∞.

For every r ∈ (Rnεn, ε0), we can also apply Harnack inequality as in the proof of Corollary
4.3 to derive

sup
S+
r

un ≤ β inf
S+
r

un + (α + 1)(β − 1) log r + C (71)

with β ∈ (0, 1).
Moreover by the alternative (b) in Proposition 4.1 and Corollary 4.2 we derive that

inf
S+
r

un = inf
B̄+
r

un ≤ −un(0) − 2(α + 1) log r + C . (72)

Combine (72) with (71), we get the estimate

Vn |x |2αe2un ≤ C
e−βun(0)

r2(α+1)β+2
and hn |x |αeun ≤ C

e−βun(0)

r (α+1)β+1
, (73)
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on S+
r . Consequently,

∫
B+

ε0\B+
Rnεn

Vn |x |2αe2un ≤ Ce−βun(0)

(
1

(Rnεn)2(α+1)β
− 1

ε
2(α+1)β
0

)

≤ C

R2(α+1)β
n

→ 0, as n → +∞.

∫
Lε0\LRnεn

hn |x |αeun ≤ Ce−βun(0)

(
1

(Rnεn)(α+1)β
− 1

ε
(α+1)β
0

)

≤ C

R(α+1)β
n

→ 0, as n → +∞.

So we have ∫
B+

ε0

Vn |x |2αe2un +
∫
Lε0

hn |x |αeun

=
∫
B+
Rnεn

Vn |x |2αe2un +
∫
LRnεn

hn |x |αeun + o(1)

= 2π(1 + α) + o(1).

Hence by (4), letting n → +∞, the desired conclusion follows.
We are left to treat the case where alternative (ii) holds in Proposition 3.4. In this case, we

can apply Corollary 4.3 and derive∫
B+
1 \B+

1
2ε0

|xm,n |

Vn |x |2αe2un +
∫
L1\L 1

2ε0
|xm,n |

hn |x |αeun → 0, as n → +∞.

And similarly for m ≥ 2,∫
B+
2ε0 |x j+1,n |\B+

1
2ε0

|x j,n |

Vn |x |2αe2un +
∫
L2ε0 |x j+1,n |\L 1

2ε0
|x j,n |

hn |x |αeun → 0

as n → +∞ for j = 1, . . . ,m − 1. Consequently,∫
B+
1

Vn |x |2αe2un +
∫
L1

hn |x |αeun

=
∫
B+
2ε0 |x1,n |

Vn |x |2αe2un + �m
j=1

∫
B+

1
2ε0

|x j,n |\B
+
2ε0 |x j,n |

Vn |x |2αe2un

+
∫
L2ε0 |x1,n |

hn |x |αeun + �m
j=1

∫
L 1

2ε0
|x j,n |\L2ε0 |x j,n |

hn |x |αeun + o(1) (74)

as n → +∞. Set

D0 = B̄+
1

2ε0

\B̄+
2ε0

.

And set

v j,n(x) = un(|x j,n |x) + (α + 1) log |x j,n |, j = 1, . . . ,m.
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Then we see that ⎧⎪⎨
⎪⎩

−�v j,n = Vj,ne2v j,n in B+
1

2ε0

\B+
2ε0

,

∂v j,n

∂ν
= h j,nev j,n on L 1

2ε0
\L2ε0 ,

(75)

with the energy conditions∫
B+

1
2ε0

\B̄+
2ε0

Vj,ne
2v j,n ≤ C,

∫
L 1

2ε0
\L2ε0

h j,ne
v j,n ≤ C,

where Vj,n(x) = |x |2αVn(|x j,n |x) and h j,n(x) = |x |αhn(|x j,n |x) satisfy
0 < a1 ≤ Vj,n ≤ C, |∇Vj,n| ≤ A1; 0 < b1 ≤ h j,n ≤ C, |∇h j,n | ≤ B1 in D0.

Now we set

β0 = lim
n→+∞

(∫
B+
2ε0

V1,ne
2v1,n +

∫
L2ε0

h1,ne
v1,n

)
,

β j = lim
n→+∞

⎛
⎜⎝∫

B+
1

2ε0

\B̄+
2ε0

Vj,ne
2v j,n +

∫
L 1

2ε0
\L2ε0

h j,ne
v j,n

⎞
⎟⎠ .

So that by (74), we have

m(0) = β0 + �m
j=1β j .

Claim 2 Either β0 = 0 or β0 = 2π(1 + α).
In fact, by Proposition 4.1, we see that either max

B̄+
2ε0

v1,n → −∞ or v1,n(0) → +∞. If

max
B̄+
2ε0

v1,n → −∞, then β0 = 0 in this case. If v1,n(0) → +∞, we see that 0 is the only

blow-up point of v1,n in B̄+
2ε0

since sup
B̄+
2ε0

{v1,n + (α + 1) log |x |} ≤ C . We can apply Theorem

1.1 and conclude that lim
n→+∞(

∫
B+
2ε0

V1,ne2v1,n + ∫
L2ε0

h1,nev1,n ) = β0. Furthermore, since

sup
B̄+
2ε0

{v1,n+(α+1) log |x |} ≤ C we can use Claim 1 above for v1,n and obtain β0 = 2π(1+α)

in this case.

Claim 3 β j ∈ 2πN, j = 1, 2, . . . ,m.
In fact, (28) implies

v j,n

(
x j,n
|x j,n |

)
→ +∞, as n → +∞.

And by (29)(30) we have

max
D0\{B̄+

1
2ε0

\B̄+
2ε0

}
v j,n ≤ C .

Therefore, the blow-up set S j of v j,n is nonempty and satisfy:

S j ⊂ B̄+
1

2ε0

\B̄+
2ε0

⊂⊂ D0.
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At this point, we are in position to apply Li–Shafrir and Zhang–Zhou–Zhou (see [10,18])
results around each point S j and derive β j ∈ 2πN, ∀ j = 1, . . . ,m.

Thus by the Claims above, Theorem 1.2 is completely established. �

6 Proof of Theorem 1.3

In this section, we will obtain the precise blow-up value at the singular blow-up point when
un have the following mild boundary condition:

max
S+
1

un − min
S+
1

un ≤ C . (76)

As we shall see, the behavior of un around the blow-up point 0 is very seriously affected by
the validity of (76). Now we give the proof of Theorem 1.3.

Proof of Theorem 1.3 Let pn satisfy⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�pn = 0 in B+
1 ,

∂ pn
∂ν

= 0 on L1,

pn = un − min
S+
1

un, on S+
1 .

(77)

From (76), the maximum principle and Hopf Lemma we have

‖pn‖L∞(B̄+
1 ) ≤ C .

Set wn = un − min
S+
1

un − pn , then wn satisfies

⎧⎪⎨
⎪⎩

−�wn = Wn |x |2αe2wn in B+
1 ,

∂wn

∂ν
= Gn |x |αewn on L1,

wn = 0, on S+
1 ,

(78)

where Wn(x) = e
min
S+
1

2un+2pn

and Gn(x) = e
min
S+
1

un+pn

. In addition, by (4) we have∫
B+
1

Wn(x)|x |2αe2wnφ+
∫
L1

Gn(x)|x |αewnφ → m(0)φ(0), for every φ ∈ C∞(B̄+
1 ). (79)

By Green’s representation formula,

wn(x)

= 1

π

∫
B+
1

ln
1

|x − y|Wn(y)|y|2αe2wn dy + 1

π

∫
B+
1

R(x, y)Wn(y)|y|2αe2wn dy

+ 1

π

∫
L1

ln
1

|x − y|Gn(y)|y|αewn dy + 1

π

∫
L1

R(x, y)Gn(y)|y|αewn dy, (80)

where R(x, y) is the regular part of the Green function. Passing to the limit in (80), we have

wn(x) → m(0)

π
ln

1

|x | + m(0)R(x, 0). (81)
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Set g(x) = βR(x, 0) ∈ C1(B̄+
1 ) and

w0(x) = m(0)

π
ln

1

|x | + g(x). (82)

By the Pohozaev identity for wn in B̄+
r , we have

r
∫
S+
r

(
|∂wn

∂ν
|2 − 1

2
|∇wn |2

)
dσ

= (1 + α)

∫
B+
r

Wn |x |2αe2wn dx + (1 + α)

∫
Lr

Gn |x |αewn dσ

− r

2

∫
S+
r

Wn |x |2αe2wn dσ + 1

2

∫
B+
r

|x |2αe2wn (x · ∇Wn)dx

−Gn(x1, 0)|x1|αx1ewn(x1,0) |x1=r
x1=−r +

∫ r

−r

∂Gn(x1, 0)

∂x1
|x1|αx1ewn(x1,0)dx1 (83)

Let n → ∞ in (83), and using (79) and (81) we find the identity:

r
∫
S+
r

(
|∂w0

∂ν
|2 − 1

2
|∇w0|2

)
dσ = m(0)(1 + α) + or (1). (84)

Inserting (82) into (84), we obtain

r
∫
S+
r

(
|∂w0

∂ν
|2 − 1

2
|∇w0|2

)
dσ = m(0)2

2π
+ or (1).

Letting r → 0, then we have m(0) = 2π(1 + α). �

Appendix

Identifying x = (x1, x2) ∈ R
2. Suppose � = (a, 0) × (0, b) with a < 0, b > 0 is an open

rectangle in R2. Let x0 = (a, b). Suppose u satisfy⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u ≥ 0, in �,
∂u

∂ν
≤ 0, on x2 = b,

u(x) = 0, on {a} × [0, b],
u(x) ≤ 0 in �̄

u(x) < 0, on {0} × [0, b],
Then we have ∂u

∂x1
|x0 < 0.

Proof Firstly we choose a point y ∈ (a, 0) × {b} which is the center of the circle whose
radius is |x0 − y| = R. And let R < min{b, |a|

2 }. Set BR(y) ∩ � = B−
R (y). For 0 < ρ < R,

we introduce an auxiliary function v by defining

v(x) = e−γ r2 − e−γ R2

where r = |x − y| > ρ and γ is a positive constant yet to be determined. Direct calculation
gives

�v(x) = e−γ r2(4γ 2r2 − 2γ ).
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Hence γ may be chosen large enough so that �v ≥ 0 throughout the annular region A =
B−
R (y) − B−

ρ (y). By the strong maximum principle and Hopf Lemma we have u(x) < 0 in
� and u(x) < 0 in (a, 0) × {b}. Since u − u(x0) < 0 on ∂B−

ρ (y) ∩ {0 < x2 < b}, there is a
constant ε > 0 small enough for which u−u(x0)+ εv ≤ 0 on ∂B−

ρ (y)∩{0 < x2 < b}. This
inequality is also satisfied on ∂B−

R (y) ∩ {0 < x2 < b}. Suppose there exists a point y1 on
∂B−

R (y)\∂B−
ρ (y) ∩ {x2 = b} satisfies u(y1) − u(x0) + εv(y1) = max

∂B−
R (y)\∂B−

ρ (y)∩{x2=b}
(u −

u(x0) + εv). Since �(u − u(x0) + εv) ≥ 0 in A, so we have ∂(u−u(x0)+εv)
∂x2

|y1 > 0 by Hopf

Lemma. But since ∂v
∂x2

|x2=b = 0 then we have ∂(u−u(x0)+εv)
∂x2

|x2=b ≤ 0, which is the desired
contradiction. The weak maximum principle implies that u − u(x0) + εv ≤ 0 throughout A.
Then we have

∂u

∂x1
|x0 ≤ −ε

∂v

∂x1
|x0 = 2εγ ae−γ (a2+b2) < 0.

�
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