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Abstract

In this paper we will analyze the blow-up behaviors of solutions to the singular Liouville
type equation with exponential Neumann boundary condition. We generalize the Brezis—
Merle type concentration-compactness theorem to this Neumann problem. Then along the
line of the Li—Shafrir type quantization property we show that the blow-up value m(0) €
2rN U {27 (1 + o) + 27 (N U {0})} if the singular point O is a blow-up point. In the end,
when the boundary value of solutions has an additional condition, we can obtain the precise
blow-up value m(0) = 27 (1 + ).

Mathematics Subject Classification 35B40 - 35J65

1 Introduction

Let Q be a bounded smooth domain in R2. As is well known, topological degree and
variational methods can be used to obtain existence results for many Liouville type equa-
tions. And this requires the compactness property for the solution set. So it is important to
obtain the blow-up analysis for the equations. The asymptotic blow-up analysis for Liou-
ville type equations has already a lot of progresses. In 1991, Brezis and Merle [2] showed a
concentration-compactness phenomena of solutions to the following Liouville equation:

—Au =V (x)e" inQ.

And then Li and Shafrir [10] initiated to evaluate the blow-up value at the blow-up point.
They showed at the each blow-up point the blow-up value is quantized, i.e., there is no
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contribution of mass outside the m disjoint balls which contain a contribution of 877m mass
for some positive integer m.

In recent years, the Liouville type equation with singular data attracts much attention
due to their many applications in Mathematics and Physics, such as cosmic string equation,
Chern—Simons and Electroweak self-dual vortices, etc, see [12,14—17]. This type equation
can be reduced to the following equation:

—Au=|xP*V(x)e" inQ,a>—1.

The Brezis—Merle type concentration-compactness type result has been established in [4]
and [3]. Furthermore, Tarantello [13] generalized Li—Shafrir type quantization property to
show that the blow-up value m(0) € 8N U {87 (1 + o) + 87 (N U {0})} if the singular point
0 is a blow-up point.

In addition, there have been some progresses in the blow-up analysis of the Liouville
type equation under the Neumann boundary condition. Guo and Liu [7] have analyzed the
following equation:

ou
— + B8 = h(x)e" ondf.
av

Here and in the sequel, v is the out unit normal vector on the boundary. They also obtained
Brezis—Merle type concentration-compactness phenomena and Li—Shafrir type quantization
property. Later, Bao et al. [5] have studied the following geometric equations on compact
Riemnn surface (M, g):

! —Au =0 in 2,

—Aug = 2¢* — K, in M°,
ou
— =ce’ —hg ondM.
av
They obtained Brezis—Merle type concentration-compactness phenomena. Recently, Zhang et
al. [18] have proved the quantization property of blowing-up solutions for the local equations:
—Au = V(x)e2 inQ,
u
— = h(x)e"* onlL.
av
Here L is a proper subset of 92, V (x) and /(x) are nonnegative bounded functions.
In this paper we will consider the local singular Liouville type equation with Neumann

boundary condition. Without loss of generality, we consider the following boundary value
problem in B; 0):

—Auy = Vy(x)|x[**e* in B (0),
1
a”" = h,(x)|x|%"  on 3B} (0) N IR, @
v
where o € (—1, +00) and the coefficient functions V,, and &, satisfy
Vo — V., h, — h uniformly in B;;
0<a<V,<C,|VVy| <A, 0<b=<h,<C,|Vh,| <B. 2)

In the sequel, we always assume that V,,(x) and &, (x) satisfy the above assumptions. We
set B;{(xo) ={x = (s,1) € R¥|]x —xo| < R, ¢ > 0}, Lr(xg) = BB;{(XO) N 3R3_ and
S%(x0) = 3B} (xo) N R%. We also use the notations B, Lg, S for B (0), L (0), S (0)
respectively.

Our first main result is about “Brezis—Merle type concentration-compactness phenomena
Theorem”.
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Theorem 1.1 Assume that {u,} is a sequence of solutions of (1) with a € (—1, +00). If {u,}
satisfies the energy conditions

/ Volx|*%e® < C  and / halx|%e" < C (3)
+ L

BR R

for the constant C which is independent of n, then there exists a subsequence, denoted still
by {un}, satisfying one of the following alternatives:

(i) {un} is bounded in L{S.(Bj U L),
(i) {un} — —oo uniformly on compact subsets of B}' U LRg,
(iii) We can define a finite and nonempty blow-up set of u,

S={xe B; U LR, there is a sequence y,, — x such that u, (y,) — +00}.
such that

{un} — —o0 uniformly on compact subsets of(BIJer U Lr)\S.
Our second main result is about “Li—Shafrir type quantization property”.

Theorem 1.2 Assume that {u,} is a sequence of solutions of (1) with R = 1 and a €
(=1, 4+00)\{2k + 1}, k =0, 1,2, .. .. If {u,} satisfies in addition that

er Vn|x|2°‘62“"¢+/ hylx|%e* ¢ — m(0)¢(0), for every ¢ € CCOO(BI'*'ULl), 4)

B] Ly
i.e. zero is the only blow-up point of uy in B}, then m(0) € 2xNU{27 (14+a)+27(NU{0})}.

From Theorem 1.2 it is natural to ask what is the precise value of the “mass” m(0). We
give an affirmative answer under an extra boundary condition:

max u, —minu, < C %)
s s
1 1

with C a suitable positive constant.

Theorem 1.3 Under the assumptions of Theorem 1.2, if we suppose in addition that u,
satisfies (5), then we have m(0) = 2w (1 + «).

The proof of our main results follow closely the ideas in [4,10,13]. Since the problems
involve Neumann boundary condition and the singular data, the steps of the blow-up anal-
ysis become more delicate. When we prove Theorem 1.1, we need to use the local Green
representation formula and the Pohozaev type identity of Neumann problem. For the proof
of Theorem 1.2, we will use the approach in [10,13], which is based on a classification result
of bubbling equation

—Au =™ inR?
with f]RZ €2 < oo and a “sup + inf” type inequality

u(0) 4+ Cq igfu <
1
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for equation —Au = Ve?* in By. For our problem, we need the corresponding results. On
one hand, besides of the above bubbling equation, there exist the other two kinds of bubbling
equation, i.e.

9
M h)e* onREN{t = —A},

{—Au =V inRZN{r > —A},
ov

with the energy conditions
/ V(0)e* < 400, h(0)e" < +o0;
R2N{t>—A} R2N{r=—A}

and
{—Au = V(0)]x[**e® inRZ,

9
% = h(0)|x|%"  on IR2.

with the energy condition

/ Ix|?%e*dx < +o0, [x|%e*ds < oo.
R% aR%

We will use the classification results shown in [8,11] to handle our problem. On the other
hand, we need to prove a “sup + inf” type inequality for this Neumann problem by using the
moving plan method.

This paper is organized as follows. In this introduction, we state our main theorems.
In Sect. 2, we study the blow-up behaviors for the considered Neumann boundary value
problem, and give the proof of corresponding concentration-compactness Theorem 1.1. In
Sects. 3 and 4, we give the version of Tarantello’s decomposition Proposition and “sup + inf™
type inequality under the Neumann boundary conditions separately. In Sect. 5, we will prove
Theorem 1.2. In Sect. 6, we will consider the case u,, satisfy (5) and then we give the the
proof of Theorem 1.3.

2 Blow-up analysis

In this section, we will study the blow-up behaviors for the considered Liouville type equa-
tion with Neumann boundary value condition and with singular data. We shall analyze the
regularity of solutions to (1), (2) and (3). Consequently, we can prove Theorem 1.1. In the
sequel, we will handle the problem with @ > 0 and —1 < o < 0 separately.

Proposition 2.1 Leta > 0, €] < % and €3 < 1. Assume that {u,} is a sequence of solutions
which satisfies that

ouy
av

[—Aun = V,|x|*e®,  in BT,

= hylx|%e"r, on Ly,

and
/ Volx|?%e®ndx < €, / hy|x|%e"dx < €. 6)
B;" Ly

Then u;t is bounded in L (BT).
I
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Proof Define u; ,, uz , by

—Auyy = VylxP%en, in BT,
Ul g
— =0, on L,,
av
uy, =0, on S;.
—Auy, =0, in B,
un
—% = hylx|%e"",  on L,
v
urn =0, on S;t.

Extending u,, u1 , and V,, evenly we have
_ _ 20 ,2uy :
Auyp = Vplx[*e™™,  in B,
uy, =0, on 0B,.

Due to €] < 7 we obtain that

/ Vo |x|?%e?n < 2¢; < .
By

Now by Theorem 1 in [2] we can choose &1 such that

dr —§
2¢;

=446,

with §; > 0. Then we have

/ G+l _ %/ (DIl < .
B

)

For u3 j, since €3 < m, by Lemma 3.2 in [8] we also can choose 82 > 0, §3 > 0 such that

f il < . / (2l < .
B

,
Letus,, = u, —u1,, — uz . Then we have
—Auz, =0, in B},

0
Hsm _ 0, on L,.
dv

Extending u3 , evenly, u3 , becomes a harmonic function in B,. Then the mean value theorem

for harmonic functions implies that
+ +
||”3,n ||L°°(B¢') =< C||u3.n||1‘1(3;*')~
2
Notice that

+
uy, <uy 4wl + luzl.

Now we choose ¢ > Osuchthathi —_dx <C.Sets = - <1whena >0ands =1

x| 1+1
when « = 0. Then it follows from Holder’s inequality to get

s 1 1—s
f Py < (f |x|2“e2””dx> (/ — tdx) <C.
B} B} B X[
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Therefore we have

and consequently we have

+
||u3,n IILOC(BD <C.
2

Finally, we rewrite the equations as

—Auy = Vy|x|?e® = f,, in B},
au
al)n = hy|x|%e" = 8n> on L,.

Since

fu=Vy |x|2a32u3,n+2u1.n+2uz,n’ gn = hp|x|® e 3n Tt

we know that || full ¢ pt) = C and |gnllLe(,) < C for some g > 1. Then the standard
L 2
2
elliptic estimates imply that
||”:||L00(1§j:) <C.
7
O
Next we consider the case —1 < o < 0. There have subtle differences between the case
—1 < o < 0 and the case @ > 0.
Lo s 2 —1
Proposition 2.2 Let —1 < a < 0, and choose suitable constants 1 < p < =5, p1 = 037

— 1o LTI S kg T j
and pr = TTa su.ch that . + 7 = 1. Let € < ST and €) < o Assume that {u,} is a
sequence of solutions which satisfies that

—gun = Vylx|**e®*,  in B,
u
2= hylx|®etn, on Ly,
av
and
/ Volx|?e?rdx < e, / hylx|%e"dx < €. @)
B .

Then ””:“LOC(BJ;) is bounded.
i

Proof Define u; ,, uz , by

—Auyy = Vylx|**e*n,  in BT,
duq
—" =0, on L,,
av
u, =0, on St.
—Auy, =0, in B,
uy
— = hn|x|(¥eun’ on L,,
ov
ury =0, on S;.
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Extending u,, u1 , and V,(x) evenly we have

—Auy, = Vn|x|2"‘e2"", in B,
ui, =0, on 9B,.

As the similar arguments in Proposition 2.1 we can obtain for some § > 0 that

/ SO Pl %/ Ol < ¢,
B

r

and

/ S0Pl < . / 2Pzl <
B

r

Letus,, =u, —uy,, — uz . Then we have
—Aug,,, = 0, in Bj_,

u
T3n _ 0, on L,.
av

Extending u3 , evenly, u3 , becomes a harmonic function in B,. Then the mean value theorem
for harmonic function implies that

+ a +
||“3,n ”Lw(BD = C||”3,n”L‘(B,+)'
2
Notice that
u;n =< u; + lurnl + luz,nl.

Since o < 0, (7) implies

/ e'"dx < C.
B

So we get

/ u;:'dx 5/ e'"dx < C.
B Bt

And we have
+ _
lluz o llpoo gty = C-
2

Thus, by Holder’ inequality and pp; < -1

o’

/ |x|24P e2P¥n d x 5/ |x|2""’mdx-/ e2PP2ngyx < C.
BT BT B}

M

2 2 2

Hence we have u1 5 is uniformly bounded in B;L U L, and consequently

/ |x|*PePrdx 5/
L

|x|“PP1d x / elPndx < C.
L L
The standard elliptic estimates imply that

r r r
2 2 2

”u;:—”LOO(BD <C.
I

[}
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Next we present an inequality which has been established in [7].

Lemma 2.3 [7] Let [ be an imbedded C' curve in R*. f € L'(1). Set || fl = ;1 f(x)ldx,
and p = diam l. If we define

1
o) = ~ / log —"— F(y)dy.
T Ji |x — vyl

then for every é € (0, w) we have

c
=3

/ZBXP[(JT = Ole)/I1fI]ldx < ®)

By using Lemma 2.3, we can get the following Lemma.

Lemma2.4 Set f(x) € L'(L,). If we define

1 2r
o) = / log FOdy.
o T

then for every k > 0 we have eklol e LY(L,) and X! € Ll(Br'*').

Proof Let0 < € < % Since f(x) € L'(L,), we can split f(x) as f(x) = fi(x) + fo(x)
with || f1]l1 < € and f € L°°(L,). Write w(x) = w;(x) + w2 (x) where
1 2r
w0 =+ [ tog = fidy.
T Ji, T lx—yl
Choosing § = w — 1 in Lemma 2.3 we find fLr expllor(x)|/Il fillildx < C. This implies

that k11l ¢ L1(L,) for every k > 0. Thus the conclusion follows the fact |w| < |w; | + w2
and wy € L°°(L,). Using the same method of Lemma 2.3, we can get fo exp[(2r —

8)|w )|/l fll1ldx < C. Further more we can also obtain eklel ¢ Ll(Br*') for every k > 0.
O

Remark 2.5 1f we set f(x) € L'(B;") and

1 2r
w(x) = */ log fdy,
T Jgt T lx—yl

by using the arguments in Lemma 2.4 again, then we can also obtain ¢*1?l € L1(L,) and
ekl e LY (BF) forevery k > 0.

In addition we need a Harnack inequality for a non-homogenous Neumann-type boundary
problem for second-order elliptic equations, which has been established in [9].

Proposition 2.6 Let f € LP(B;") for some 1 < p < 400, g € LY(B N 8R3_) for some
1 < g < 400, and u satisfy
—Au = f, in Br*,
3, =8 on Bfn B]Ri,
u <0, on 3B NR2.

Then for any 0 < 6 < 1, there exist a constant B € (0, 1) depending on r, 6 only, and a
constant y > 0 depending on r, p, q only such that

S_U_Pu = ,Blé{rf” + V(||f||Lp(Bj') + ”g”L‘i(aBﬁ'ﬂaRi))'
Bé)r or
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When the energy || B Vi lx|?%e?n and J, Li hy,|x|¥e"n are large, the blow-up phenomenon
may occur, which is declared in Theorem 1.1. Next we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Firstly we treat the case @ > 0. Since V, |x|>**¢?"» isbounded in L' (BIJ{)
and hy,|x|%e* is bounded in L1 (Lg), along a subsequence (still denoted by u,,), such that

/ anxlzaez“"¢—>/ pdu,
BY By

R

/h,,lxl"e”"qb—>/ ¢d?,
Lgp Lg

for every ¢ € CC(B; U Lp) and ¢ € C.(Lg). Here u and ¥ are two nonnegative bounded
measures. A point x € B,Jg U Lg is called an € — regular point with respect to p and ¢ if there
is a function ¢ € C(Bj U Lg), suppg € B,(x) N (B ULg) with0 < ¢ < landg = lin
a neighborhood of x such that

: +.
/;3+g0du<e, if x € By;

i

od i <eand/ pdd <€, ifx € Lg.
+

R Lg

We define the
Y()={x€ B; U Lg : x is not an € — regular point with respect to ; and ¥'}.

By fng Vi lx|*e®n < C and /LR hplx|%e" < C, we have X (¢) is finite. Furthermore we
have § = X(¢p) by using the similar arguments in [2,5], where €9 = min{ey, €2} as in
Proposition 2.1.

When S = §, it follows that (i) or (ii) holds. S = ¥} means that u;ﬁ' is uniformly bounded
in L°°(B}' U Lpg). Thus f, =V, |x |2 e2n is bounded in LP(B}') forany p > 1,and g, =
hy|x|%e" is bounded in L”(Lg) for any p > 1. Apply Harnack inequality in Proposition
2.6, we know that (i) or (ii) holds.

For the case —1 < o < 0, we will use Proposition 2.2 instead of Proposition 2.1. Then
similar with the case o« > 0, we can show (i) or (ii) holds when S = .

When S # ), we can show that (iii) holds. Actually in this case, we know that u;| is
uniformly bounded in L (B; U Lg\S) and therefore f,, is bounded in L? (BI}L\S) for

loc loc
some p > 1 and g, is bounded in Lf; (LR\S) for some p > 1. Then we have that either

u, is bounded in LS. (Bx U Lg\S), ©)
or
u, — —oo uniformly on compact subsets of (B,Jer U Lg)\S. (10)

We should show that (9) does not happen when S # ¢J. To this purpose, we can take a point
p € S and choose a small 9 > 0 such that p is the only blow-up point in B,‘g. Then it is
suffice to prove that

u,, — —oo uniformly on compact subsets of l_?;g\{p}. a1

If p # 0, this is a smooth case and (11) has been shown in [5]. So next we suppose p = 0.

Since u, is uniformly bounded in L%’C(B;g\{O}), then we use elliptic estimates, and along a
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subsequence, we may assume that

1y — & pointwise a.e. and in C};0 (B, \{0}), for some & € (0, 1), (12)

loc

Noticing that, by Fatou’s lemma, V (x)|x|**¢* € L'(B/}) and h(x)|x|*e* € L'(Ly,),
we have for any 0 < r < rg

/+Vn|x|2°‘ez"" +/ i lx|et — /+V|x|2°‘ezg+/ h|x|% + B, (13)
B; L, By Ly

here g is the blow-up value for the blow-up point p = 0, which is defined by
B = lim lim {/ Vi |x |2 e +/ hplx|®en }
r—0n—o0 BrJr L,

@1(x) = V(0)|x[**e*  and g2 (x) = h(x)|x|%e*

Set

By Green’s representation formula for u,, in B;g and (13) we derive that

1
£(x) = i In ] +o(x) +y ),

with : :
P(x) = f/ In p1(y)dy + *f ©2(y)dy,
7By X =yl bl
and | | 85 ( )
X v
rw = [ tog ay+ - [ E e ay,
7 s Byl T Jg T
Clearly, )
y(x) € Cl(Bf), for every r € (0, rp). (14)

For ¢ (x), we want to estimate the decay of ¢ near the zero. we observe first that ¢ (x) is
bounded from below on Br'g , as we have,

1 1 _
() = —1n—(f V)lyledy +/ h)lyleetdy), Vx e B
T 2r Bfo

Ly,
By (2) we find
|x |2 c
1) = Ve = V() 2R > ,
x| x5
and
C
P20 = h()x[e = h(r) L gpeorrm 5 €
NE x|~
Thus by the integrability of ¢; and ¢, we see that necessarily
B <m(l+a). (15)

On the other hand, let us set s = g — o and split ¢ = ¢1 + ¢o, where

p2(y)dy.

1 1 1 1
1) = — / In o1y, and ¢a(x) = — / In
T JB lx — i T Jr lx — i

0
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Noticing that, in view of (15), s < 1, it follows that

C _
P1(x) = V@6 < S5O0, in B

and

P2 (x) = h(x)|x|%* < %ewmq’m, in B
By Lemma 2.4 and Remark 2.5, for every k > 0 we have ekl ¢ Ll(LrO), ko2l ¢ 1 (Lry)s
k1?1l e L1(B,T)and 192! € L'(B}). By Holder’s inequality it follows that ¢; (x) € L' (B/)
foranyt € (1, %) ifs > 0,and V(x)|x|*e¥ € L’(BrJg) forany r > 1ifs < 0. We also have
@2(x) € L'(Ly,) forany r € (1, %) ifs > 0,and g2(x) € L'(Ly,) forany r > 1ifs < 0.
Butif —1 <o <0, we have 0 < s < 1. Since ¢ satisfies that

0
o _ @, on L}

[—A¢=(p1, lIl Br()’
v "o’

we get that ¢ is in L(B;} N Ly,). Furthermore, if s < 0, then ¢ is in Cl(Brt N Ly). If
s > 0, V¢ (x) will have a decay when x — 0. Without loss of generality, we assume that
0 < s < 1 in the sequel. We estimate V¢ (x) for x € B} 0 (0).

1
Vo)l = —

A

1 1 1
wr(ndy + — / 2(y)dy
B 1x =l 7L, X =l

= f/ _ p1(y)dy + — @1(y)dy
T J{x—yl= 5B X = VI T Jix—yi=hng 1x = ¥l

1 1 1 1
+f/ 02()dy + — 02(y)dy
T Jx—yiz L, ¥ =Vl 7 Jx—yi<lhnL, ¥ =Yl

=hL+hL+15+ 1L

For Iy, we fix t € (1, 1) and choose 7y > 0 such that 2%

0<1 <2-—25.By Holder s inequality we obtain,

< 2, and hence we have

t—1

1 1 v
] = — / " —rdy
TANx—yIz 5084 |x — y|i=T
1
1 ! C
: =l (n)'d < =
</ﬂx—y|>';"}msz,+0 e — ypram AT x| 1=

For I, since |x — y| < &l 5+ implies that |y| > bl e have

1 1
C — —dy
{r—yi<hngs X =yl Iyl

C 1
—7/ , dy < Clx|'™*.
X Jie—yi<Bhng 1x =yl

|17]

IA

IA

@ Springer



163 Page 12 0f 32 T. Zhang, C. Zhou

(213

%7 < 1. and hence we have

Similarly, for I3, we fix t € (1, %) and choose 75 > 0 such that
0 < 1» < 1 — 5. By Holder’s inequality we obtain,

=1

1 1 v
3] = — / ——rdy
T A\Ne—yz500Ly |x — y|7T

/ ey < —©
’ T =) |92V y < /.
(x—ylzhnL,, 1x — yd=m= x|1-

For I we have

[14]

IA

11
C/ —dy
{r—yi<EhnL, X =yl Iyl

C f 1 Iy < C
I y < :
1XI* Jyx—yi<Bhne,, 1 =l |x %

for some 3 with 0 < 13 < 1.
In conclusion, for all x € Bj(; (0) we have

IA

C C

x]—‘rz x‘r3’
|x] |x|

C
Vo)l < —— + (16)
[T

for suitable constants 0 < 71 <2 —5,0 <1 <1 —sand0 < 3 < 1.
At this point we are ready to derive our contradiction by means of a Pohozaev type identity.
We multiply all terms in (1) by x - Vu,, and integrate over BrJr (0) for any r € (0, rp) to get

1 2 ouy
r/s,*(§|vu”| —|8T| Ydo

=-(+ oz)/+ Valx[*e*rdx — (1 +a) | hylx|*e"do
B; L,

1
+2 [ v e do — f/ 122 (x - V'V, )dx
2 S 2 ):

_ " 9h(x1,0
Fh(x1, 0)[xy [*xper CHO [T / SRCL D)) g0, (17)

_,  0x
Passing to the limit in (17) to derive the following identity

| LT
rfﬁ(zwa 12 P)do

v

=—(1+a)/ V|x|2°‘e25dx—(1+a)/ h|x|°‘e5da+f/ Vix|**e* do
B L, 2 Jst

1 " dh(xy,0
_5/ x> (x - VV)dx _/ %Iml“me“‘“o)dxl
B"+ —r X1

+h(x1, 0)|x1[“xp 1O T B(1 4 a). (18)

xX|=-r
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Setn = ¢ + y. Since V&(x) = _gﬁ + V(). we have

/ (51VEP - S| )ds

:r/ﬁz[(ﬁ 2|x1|2 25 " |2 1 1 \vnPd S_r/, (_gﬁ xl.xTn)zds
/[“( )2|x1|2 f E |2 lIVnIZ—( ||

_ 1By x-Vn _r _
= ( )= / e +2/s VP r/( |x|

Since y € C'(B;), by (16) we have

C C

wie T TO

C
[Vn(x)| < W +

withO <11 <2—-5,0<mp <1l—sand0 < 13 < 1. So,

2
o, = 5 +o(1), asr — 0. 19)
2

Similarly, letting » — 0O on the right side of (18) we also can obtain that
P, = -1 +a)+o(l), asr — 0. (20)

Comparing (19) and (20), we see that necessarily B = 27 (1 4 «), in contradiction with (15).
Therefore, the proof of Theorem 1.1 is finished.

3 A version of Tarantello’s decomposition proposition

In this section, we would like to show the new version of Tarantello’ decomposition Propo-
sition for Liouville equation under the Neumann boundary condition. Firstly we give the
“Minimal-Mass Lemma”, which is frequently used in the following Proposition.

Lemma 3.1 Assume that {uy,} is a sequence of solutions to (1) for R = 1 and uy, satisfies (2)
and (4). If there exists a sequence {x,} C Bf\{O} such that

X, = X0 C 1§1+ and u, (x,) + (o« + 1) log |x,| — +o0. 21

Then we must have xo = 0 and

lim sup / Vx| ?% e + / hplx|%e" | > 27, (22)
n——+00 B;\xn\(x”) La\xn\(xn)

for every small § > 0.

Proof Noticing that 0 is the only blow-up point for u, in 1§1+ and u, (x,) - +00, we have
xo = 0. Next we consider the new function

Un (X) = un(|Xn|X) + (o + 1) log [x,].
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Then v, (x) satisfies
—Av, = Vy(|x,]x)|x**e* in B,
[xn| (23)

= hp(|xa]x)|x]|%"™  on L 1
av [nl

Un

with the energy conditions

f . Va(mlolx e < C, f R (Jxa)x)]x|%e™ < C.
B

e L

[xn | [xn ]

Suppose that along a subsequence ~2. — xq € ]1_%3_ with |xg| = 1. Hence x( define a blow-up

s 2|
point for v, as we have

X
w(ﬁ) = 1ty (xn) + (& + D log x| — +o0.
n
Moreover functions V,, (|x,|x)|x|2* and A, (|x,|x)|x|* are uniformly bounded from above
and below near xg.
Consequently, if xo € R, by [2] we have for sufficiently small § > 0,

n—+00

lim sup/ Vo (|xn ) x| %€V > 4rr,
B (3

and if xo € RZ, by [5] we have for sufficiently small § > 0,

lim sup / Vn(|xn|x)|x|2aezvn +/
n—+00 B;(;—Z‘) Ls(52)

n
[xn|

hn(|xn|x)|x|aev"> > 2m.

A simple change of variables leads to the conclusion. O

On the other hand, if (21) fails to hold, i.e. sup{u,(x) + (¢ + 1) log x|} < C, we will
Bi
treat this situation in the following Lemma.
Lemma 3.2 Assume that {u,} is a sequence of solutions to (1) for R > 0 and u,, satisfies (2)

and (4). If
sup{u, (x) + (@ + D log|x|} < C, (24)

Bj
then we have
u, (0) = max iy, + O(l) asn — +oo.
BR
un (xp
Proof Let u,(x,) = max iy — t+ooand e, = e~ alp — 0. By (24) we get
BR

|5 |

=0(), asn — +o0.
En

In BY, we define

€n

En(x) = upy(gpx) + (a + 1) logey,.
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Then &, satisfies
— A&, = Vy(eax)|x|*e* in B,

&n

ad
6%;7 = h, (inx)|x|°‘e§" on Lﬁ’ 25)
IEEX&,, = %_n(i) =0,
R

with the energy conditions
[ wemipeds <c. [ e <c.
B

R Lg
n én

Then necessarily alternative (i) in Theorem 1.1 must hold, in other words, &, is uniformly

bounded in L} (Ri). In particular,

U (0) — up(xn) = £,(0) = O(1), asn — +o0.

Remark 3.3 In fact in Lemma 3.2, we have additionally that along a subsequence &, — §
uniformly in Clzo . (]R%_) nc 110 . (Rﬁ_\{O}) N Cg) . (]R%_). Without loss of generality we always
assume that

V(©0)=h(0) =1
in the sequel. Then by the classification results in [8] we know that & takes the form

2( + DAet+h -,
& =log T — oL 4 32D A >0, some yp € RY. (26)

In addition, fRi [x[%e* + |, oR2 |x|%e5 = 27 (1 + «). In the forth section, we can further
obtain by assistant with the Harnack inequality

lim (f Vn|x|2°‘62“”dx+/ h,,|x|°‘e“”ds> =27(1 +a)
n—00 B; Lr

provided that the assumptions of Lemma hold.

In general, the assumption “sup{u, (x) + (¢ + 1) log |x|} < C” does not always hold. So
By
we must distinguish between the situation whether (24) holds or not. In particular we have
the following Tarantello’s decomposition Proposition.
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Proposition 3.4 Assume that {u,} is a sequence of solutions to (1) for R = 1 and u,, satisfies
(2) and (4). Then there exists gy € (0, %) such that the following alternatives hold:

either (i) sup{u,(x) + (@ + 1) log|x|} < C (27)
B;O
or (ii) there exist finite sequences {x; ,} € B{F\{O}, j=1,...,m, such that
Lo xj = 0,u,(xj,) + (@+1)log|x; .| — +o0; (28)
2. sup{u,(x) + (@ + 1)log|x|} < C (29)
Dll
where D, = {B;‘;(ﬂxl nl} U {éf’\éi‘x |};
’ 2 Imn
|xj,n|
3. Ifm > 2, then — 0, asn — 400, and
%+ 1,nl
o swp {ug) + @+ Dloglx]) < C. (30)
B$O|Xj+l.n‘\3;rl—\x- I
80 J.n

Proof 1f (27) fails to hold for every gy € (0, %), then we find a sequence x,, C l_?fr and
up(xy) + (o + 1) log |x,| — +o0.

Then by (22), we have

x, — 0 and lim sup / Vi (x)]x |2 e +/ hnlx|%e" ) > 27,
n—+o0 \JB . (x) Ly (Xn)

Vé > 0. Setting
U (xX) = up(|x2]x) + (@ + 1) log |xp . (31
Next we consider the new sequences v, in B;;O. We repeat the alternative above for the
sequence v, in By, . If sup{v,(x) + (@ + 1) log x|} < C holds with a suitable & € (0, H,
B,
then in this case we canset x|, = x,. If there exists a sequence x,,, v, (x,’i)—i—(oz—i—l) log |x),| —
+o0, then in this case there exists a second sequence X, = |x,|x], C B, such that

|Xn

ol — 0and u,(x,) + (¢ + 1) log |x,| = +o0.
Xn

Consequently by (22),

lim sup / Vo |x| 2% % +/ hyl|x|%e" | > 2.
n—+oo \JBJ. (%) L[z | (Fn)

In addition, notice that B(SJTX |()?n) and B;Tx ‘(xn) do not intersect for § € (0, 1) and n large.
n n
Next we consider the new scaling sequences

U, (¥) = 1y (|15 |X) + (@ + 1) log [

We make the same alternative above for the new sequence v),. We see that each time the
new iterated sequence v, fails to verify (27), we contribute with at least an account of 27 to
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the blow-up value m(0). So necessarily after a number of steps we find &g € (O, %) and a
sequence {x] ,} C 1§1+:

Xl,n — 0, un(xl,n) +(x+1) 10g |xl,n| — +00,
and sup {u,(x)+ (@ +1)log|x|} < C.
B+

BZSO\XLV,\

Now, for gp € (0, %) we repeat an analogous alternative for u, on the set B]Jr \B™, It

%le,nll

Cosup fup(x) + (@ + Dloglx|} = C,
Br\Bwa
R

in this case we then obtain the first sequences x . If there exists a sequence {y,} C B;“\{O}
such that
|x1 n |

[l

— 0and u, (yu) + (@ + 1) log|y,| — +o0. (32)

By (22) we have

yu — 0 and lim sup / Vx| 2% e 4 / hplx|%en | = 27 (33)
n—>+oc \JBJ, (m) Ls[yn| (n)

for V6 > 0. Our next task is to obtain the second sequence x2 , for gy € (0, %). In this
direction, we consider

sup  {up(x) + (@ + 1) log |x|}. (34)
B} Bt
2601y VBxy |
2¢0

If (34) is uniformly bounded for any gy € (0, %) then we would let x; , = y, and adjust

according &g in order to ensure (30) with j = 1. Otherwise we would replace y, with a
new sequence y, which have the same properties (32) and (33), but g—’i: — 0, asn — oo.
Moreover each time when such a new sequences exist, we at least contribute an amount of
27 to the blow-up value m(0). So making the same alternative for such new sequence, this
procedure must stop a number of steps. And we arrive to one for which (34) is uniformly
bounded for every gy € (0, %). Such sequence will define x; ,. So we obtain the desired
proproties (29) (30) for j = 1 by adjust g9 € (0, %). At this point we iterate the argument
above by replacing x; ,, with the new sequence x3 .

Either (28) (29) (30) hold for m = 2, or we obtain a third sequence for which we can
verify (29) (30) for j = 1, 2. Since the blow-up value m(0) is finite, so only a finite number
of sequence x; , satisfying (29) (30) are allowed. Then after a finite number of steps we

arrive to the desired conclusion. O

4 A version of “sup + inf” type inequality
In this section we will show a version of “sup + inf” type inequality for Liouville equation

under the Neumann boundary condition. This inequality concerns the case where the sequence
u, is subject to alternative (ii) of Proposition 3.4. It is the key part for the proof of Theorem 1.2.
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Proposition 4.1 Assume that {u} is a sequence of solutionsto (1) with R = 1which satisfying
(2) and (3). Suppose that there exists ¢y > 0 and a sequence {x,} C Bl+ such that

1) xp — 0, up(x,) + (o + 1) log x| — +o00;
(i) sup {up(x)+ (@ + Dloglx|} < C;
n+

BZEo\XnI
Set v, (x) = up(|x,1x) + (¢ + 1) log |x,|. Then passing to a subsequence, we have

either (a) Max v, — —00 and ipf u, < max v, + (¢ + 1) log |x,| + C,
Bso Bl

Byl

or(b) v,(0) - 400 and ipfun < —u,(0)+C.
Bl

for suitable constant ry > O.

Proof We use a moving plane technique to obtain our conclusion. Similar arguments also
be used in [1,13]. As usual we identify x = (x1, x2) € R2 and x; + ixy € C, where C is
complex plane. Recalling (2), without loss of generality, suppose A > B and a < b.

In polar coordinates, define

. A
on(t,0) = up (') + (@ + Dt — =¢' (35)
a
for (t,0) € Q = (—o0, 0] x [0, 7]. A simple calculation shows that
—Awy = Vy(t,0)e*n + 4el|

0 -
O gm0 = Fin(2, 0)en©-0 (36)

v .
8 g = B (t, 7))

where V, (7, ) = Vy (e'+0)e 5 and fiy (1, 0) = hy (' T10)ea® .
Since for fixed n
wn 2 —1,0) — w,(t, 0)
2u—t+if A 2pu—t t+i6 A t
=up (e )+2(0l+1)(li—f)—g€ —un(e )+;€,
we have
wp(Qu —1,0) —wp(t,0) < (@+ Du+ C(n),Vt € [%,0],9 € [0, 7]

Furthermore,

3
—on(t,0) = @+ 1) - Cn)e Vi < % 6 <0, 7].

for suitable C (n) > 0 depending on n. Thus we can choose X sufficiently negative (depending
on n) such that Vu < A:

(2t —1,60) — wn(1,0) < Ofort e [%,0],9 € [0, 7]

9
S-on(t.6) > Ofort < %,9 [0, 7].

Therefore we get, for fixed n, there exists A < O(depending on n) such that

Vi < A, 0, Qu —1t,60) —w,(t,0) <0, foru <t <0and b € [0, 7]. (37)
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Consequently we can define
An = sup{r < 0:(37) holds }.

We claim that
min w,(0,0) < max w,(2A,,0). (38)
0el0,7] 0el0,m]

To prove the claim, we let ¥, (t,0) = w,(2A, —t,0) — w,(t, ). Hence by (37) we get
¥, < 0. By using assumption (2) we obtain

a ~ e Ay 0 - £
—(Vu(t,0)e" + —e€') > 0and —(h,(2,0)e°) > 0, (39)
at a at
for V&€ € R. By virtue of (39) we have
Ayn =0,
Yy
; lo=0 < 0, (40)
31%))” |6=rr <0,

for (¢, 0) € [1,, 0] x [0, 7]. Suppose by the contradiction that

max w,(2A,,0) < min w,(0,0).
max. n(2An, 0) pmin (0, 0)

By the strong maximum principle, Hopf Lemma and a result in Appendix we have ¥, (¢, ) <
0in (A, 0) x [0, 7] and 22D, 5 © < 0 for § € [0, 7]. On the other hand, from the
definition of 1,, there exists a sequence A, y — XA,, as k — —+00, such that

2k —1,0) —w,(t,0 0.
o Bt 1B =10 = n 060>

Set xi is the maximum point of w, 2A, x — t,0) — w,(t,0) in [Ay, 0] x [0, 7]. From
continuity, we have x; — xo and xo lies on {1,} x [0, 7]. In addition, we have 22|, "— 0.
Thus we get a contradiction. So we arrive to the conclusion (38).

Next we want to estimate A,. To this purpose, let us note that v,, satisfies

—Av, = Vn(|xn|x)|x|2aezv” in B

2¢e0°
0 41
(bl on Lo, @D
v
and
sup{v, (x) + (@ + 1) log |x]} < C, 42)
BZO
and

f . Vol e < C, / B (Ixal0)]x|% e < C.
L

B 2¢e( 2e()

Thus in view of (42) and Lemma 3.2 we have

either v,(0) = max vy + O(1) > 400, asn — +00; (43)
BZSO
or maxv, < 40o0. (44)
B;;O

In order to proceed further, we distinguish two cases.
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Case 1. (43) holds, and necessarily u, (0) — +oo.
In this case, we set
_up(0) | | vn (0)

gp=e ofl — Qand — = eetl — +o00.
&n

We also set &, (x) = u,(e,x) + (@ + 1) loge,. Then in B M , &, satisfies

—A§, = Vn(enx)|x|2a % in B+

\Xn| ’

98,
= hy(enx)|x|%e5  on Lyeytal
and &,(0) = 0. In addition, in view of (43), we have
_max & = max iy + (¢ + 1) loge,
290 |:;:\ 290|z\'n\

= max v, — (¢ + 1) log|xp| + (¢ + 1) loge,

2¢()
= 1,(0) — (@ + Dloglx,| + (& + 1) loge, + O(1)
=&0)+00) =00).

Therefore we argue as in Lemma 3.2 and Remark 3.3 to conclude that

En(x) =up(enx) + (@ + 1)loge, — & (45)

uniformly in C l e (]R n Cl oc \{0}) N Cl o (]R ), where & takes the form (26) and satisfies
§(0) =0.
Claim.
An <loge, + O(1) (46)
. __Un )
with g, = ¢~ @+T and
ipf up < —un(0) + O(1) 47)

Bl
as n — +00, and then we obtain part (b) of our Proposition.
To establish this Claim, recalling (45), we may use Case (1) to obtain

2(a + 1)ale+D
|xa+1 _ y0|2 + A2+’

En(x) = up(enx) + (@ + 1) loge, — & =1lo (48)

uniformly in C7,.(R%) N C}

1)}\0{-5-1 |y0|2 +}\2(Ot+l)
For (¢,0) € Q, let

R2\(0}) N €2 (R2), with % > 0, yo € C such that 2(a +

lac loc

2(05 4 l)k(a+1)€(a+l)t
|x0‘+1 _ y0|2 + A2+’

w(t,0) = £ %) + (@ + 1)1 = log (49)

Set yo = (|yol cos 8o, |yo| sinbp) and T = . Since

(2(01—}—1))»‘“'1) +
1
62(0‘+1)10g VTo— |y0|2 _'_)\’2(01+1) — z(a + 1))\’(¥+1’
we have

. .
e2(a+1)l . ez(a+l)logﬁ +2((X + 1))\’01-‘1-1 — 2(Ol + 1))\0(—}—1 . e2(a+1)l _’_62(a+1)10g «/?’
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and further have

2(a+1)(log = 2(a+1) log 1=
¢ (a+1)(log ﬁ+t) + |y0|2 +)L2(a+1) —¢ (e +1) 0g = +e2(a+l)t(|y0|2 _’_)LZ((H—I)).

Then by a direct computation we can obtain
1 1

1 . = 1 N .
ez(a+l)t(|62(a+l)(log f—r+19) . y0|2 + )LZ(OH—I)) |62(o{+1)(log f+t+19) . y0|2 + A2(e+1)

This implies w (lo L, 0) = w(lo L4y, 0)for(t,0) € Qandw(t, 0) is symmetric with
p g NG g NG Y

1
)+, On the other hand, if we let #; < £, < log %,

=logL, ¢t=(-—L _
respecttor = log NG T = (2(a+1))»°‘+

then we have

I+ o L2+Dn _ (etDn | (atDn

Furthermore we have
T—(1+a) . e(a+1)t1 + e(a+1)t1 . e2(a+1)t2

< (40 ki | et ethn

and
@t | 2(+hn +62(“H)”(|yo|2 +)L2(a+l))
< et 2 +Dn +e2(a+1)zz(|y0|2 +A2(a+1))'

Then by a direct calculation we can get

elat+Di ela+Di

2@ D1+ — 312 4 320+ = |2t D)2 Hi0) — 312 4 320@+D)

This implies that w(¢, 6) is increasing for t < log \iﬁ and then attain its maximum at t =
log \%
By the definition of w(z, 8), we have
w(t,0) < (a+ Dt +C. (50)
In addition, by (35),

. A
wn(t +1ogen, 0) = uy (e 12T 4 (0 4+ 1)(1 + loge,) — e —e'
a

AI
=$n+(0!+1)t—8ng€-

Then in view of (48), (49), for every fixed s € R we have

sup  |wy,(t +loge,, 0) —w(t,0)] — 0, asn — 4o00. (28]
t<s,0€l0,7]
From (51) and w(¢, #) attain its maximum at ¢ = log %, for large n, we have
sup lw, (t +1ogen, 0) —w(1,0)] <1, (52)
t<4-+log -=,0€[0,7]
and , 1
wy (4 + log ﬁ + log ey, ) < w,(log % + logey, 0),V0 € [0, m]. (53)
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By (53), we see that for large n, if we set A = log &, +1og % +2andt = loge, +log % +4,
(37) fails to hold. As a consequence, (46) follows. Hence using (46), (50), (52) for large n,
we can estimate

@ (2hn, 0) < w(2A, —loge,, 0) +1 < (a + 1)(24, — loge,) + C
< (a+ Dloge, + O(1) = —u,(0) + O(1).

Then in view of (35), (38), we have

IA

A
inf u, = infu, = min w,(0,60)+ — max w,(2A,,0) + —
0€l0,7] a ~ 0el0,7] a

B sf

IA

—un(0) + O(D).

Case 2. (44) holds.
In this case, duo to the assumption (i) we have firstly

vn( "y > 400, asn — +oo.
[xn |
Suppose that along a subsequence,

X .
LN xp, with |xo| = 1.

|5 |

Therefore v, admits a blow-up point xo. Then we apply Theorem 1.1 to v, to get that v,
must verify alternative (iii) in Theorem 1.1. Moreover by (44), 0 ¢ S. Consequently,

max v, — —00, asn — —+00. (54)
B4
0

We choose so small enough such that xq is an only blow-up point for v, in By, (x9) N Rz
If xo € R2, we can choose 5o small enough such that By, (xo) C ]R2 Lety, € BAO (xo)

and v, (y;) = max v,. Then y, — xo and v, (y,) — +00. Set
By (x0)
Sn=e O — 0, &,(x) = vy(yn + 8ux) + log sy,
Then we have
— A&, = Uye¥n in B ,
max &, = £,(0) =0, (33)
g

with the energy condition

/ Unezgn <C,
B s

26n

where U, (x) = |y, + Spx |2 Vi (|xnyn + 1%n18,x) — 1in B (0) for all L > 0. Then along
a subsequence, by the classification results in [6] we have

£,(x) — £(x) = log uniformly in C7,.(R?). (56)

1
(1 + glzI??

Now we need consider the following two situations.
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If xo € 9RZ, then B, (x0) N R2 = B;g(xo). Let y, € E’;g(xo), and v, (y,) = max vy.

B} (x0)
0
Denote y, = (Yn,1. yn,2)- Then y, — x¢ and v, (y,) — +o00. Set
8y =e """ 0, £ (x) = vy + 8ax) + log .
Then we have
— A&, = Uye¥n in B% N{t> —yg';z},
38, '
i En S — _In2
™ H,e on Bﬁ N{t 5 IR (57)
m_flx éjn = ‘i:n(o) = 0,
50
e

with the energy coniditions

[ uessc | et <.
B sy N{r>—22), B sy N{r=—"22)

250 on 28 on

where Up(x) = |y + 8,x**V,(IXplyn + |xnl8,x) — 1in BY and H,(x) = |y, +
Snx|%hy (|xn|yn + |xn18nx) — 1 on Lg for all S > 0. Now we need consider the following
two situations.

(1): % — 4-00. Then along a subsequence, by the classification results in [6] we have

E,(x) > E(x) =1lo uniformly in C7 (R?), (58)

1
oL
(1+ §lz1%)?
with £(0) = max & = 0.
RZ

2): % — A < +00. Also by the classification results in [11] we have

2\
x)— &(x) =1lo
£0(6) > () = log 5 s
uniformly in C7,.(R%, N CL (R%,), (59)
with £(0) = max & = 0.
R2
Claim.

Ap <log|x,| + O(1), asn — +o0. (60)

To establish this claim, we first notice that (54). By using the convergence properties (56),
(58) and (59), we have for suitable small o > 0 and n large,

1 _
U+ 80) < v (o) = 20,V : (5 < x| < 3} R2 4. (61)
Let p, € (0, +00) and 6, € [0, 27r] be the polar coordinate for y,, i.e.
Pnefn = y,.
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Since y, — xo and |xg| = 1, we have p, — 1 as n — +00. Recalling the definition of wj,,
we have forall s > 0

a)n(log |xn| + 10g Pn t+ 210g(1 + S), en)
. A
= 1, (Xl on (1 + $)%€) + (@ + 1) log[|x | o (1 + 5)*] — —lxnlpn (1 + 5)?

=0, (14 $)%y,) + (@ + D loglp, (1 + )% — §|xn|pn<1 +5)%.
Thus we obtain
wy (log |x,| + log pp + 21og(1 + 8,), 6n)
= 0, (1 + 8,)%yn) + (@ + D log[pa (1 +8,)%] — §|xn|pn(1 + 87,

and
A
wy(log |x,| +10g py), 0p) = vy (yn) + (o + 1) log p, — g|xn|pn-

Since §,, — 0, then for n large, we can use (61) to obtain

wy (log |x,| +log p, + 21og(l + 8,), 6,) — wy(log |x,| +1og pp, On)
=V (Yn + 8, 2yn + 81 yn)) — Va(yn) + (@ + 1) log(l + 5n)2

A 2
_E|xn|pn[(1 +8) = 1] < —o. (62)

Consequently, for 6 = 6,, when A = log |x,| + log p, + log(1 + §,) and ¢ = log |x,| +
log p,, + 21log(1 + 8,), (37) fails to hold. And (60) is established.
From (38), (60) we have

A
inf u, =infu, = min ©,(0,60)+ — < max w,(2Ar,,0)+ —
Bf 57 0€[0,7] a ~ 0€l0,x] a
o2 +ib

A

< max uvp( )+ (@ + D2ry —loglxn]) + —

0el0,7] [ x5 | a
< max vy + (@ + 1) log|x,| + C

rolxn|

for suitable constant ro > 0. The Proposition is completely established. O
We shall need the following version of Proposition 4.1.

Corollary 4.2 Under the assumptions of Proposition 4.1, for every r € (0, 1], we have

either (a) max v, — —00 and ipf U, < max v, + (@ + 1) log|x,| —2(a + ) logr + C,
B/

B B bl

or (b) v,(0) — +o0 and ipfun < —up(0) —2(¢+ )logr + C,
B;

for suitable ry > 0 and C.

Proof Forr € (0, 1), in Bir we define

r

Up,r(x) =up(rx) + (¢ +1)logr. (63)
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Then u, , satisfies

3”11,r
av
where V, ,(x) = V,(rx) and h, ,(x) = h, (rx). Notice that

—Autyy = Vi (X)|x[*e?nr in B},
= hyr(x)|x|%e"r on Ly,
1 1
un,r(;x,,) +(x+1) log(;x”) = u,(x,) + (@ + 1) log |x,| = +o0,

and V,, - (x) and hj, - (x) still satisfy (2) in 1§1+. If we set x,,, = XT" and
U (x) = un,r(lxn,r|x) + (@ + 1) log |xn,r| = v, (x),

then by applying Proposition 4.1 to u, ,(x) and v, ,(x) we conclude that

| |

either (a) max v, — —00, and ipf Upr < max vy + (¢ + 1) log + C,
B

€0 1 Bl

or (b) v,(0) — 400 and ipf Unr < —utyr0)+C.
B

1

So when case (a) holds, we have

ip+fun < max v, + (¢ + 1)log |x,| —2(a + 1) logr + C.
Br

r0|«\'n\

When case (b) holds, then
ip+f uy < —uy(0) —2(a+ 1) logr + C.
B

r

[m}

As already mentioned, Proposition 4.1 play a crucial role in proving Theorem 1.2 as it
also implies the following result.

Corollary 4.3 In addition to the assumptions of Proposition 4.1, we suppose further that
sup  (un(x) + (@ + Dloglx]) = C, (64)
B;ll \Ejs;l
7
with
VIxal <6p <rp < 7

for y > 0 suitable constant. Then along a subsequence,
/ V| x |2 e +/ hplx|%e" — 0, asn — +oo.
B} \Bj rm \Lsy,

Proof For given r € (8,, ry), define u,, , as in (63). So

Aty = Vo(rx)|x|?e?nr == f,, in B \B],
2

8”’“’ o Hlpr .
5y = h,(rx)|x|%e""r :=g,, on Lz\L%, (65)
sup u,, < C.
BY\B}
2
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And by (64) we have

”fn,r”Loo BH\BT < C and ”gl’l,r”LOO(Lz\Ll) E( .
(By'\B7)

2 2

2

Thus we can use Harnack inequality to conclude that there exists a constant 8 € (0, 1) such

that
supu, < pBinfu, + @+ 1)(B—1)logr +C.
st s
According to Corollary 4.2, we must treat two situations.
For case (54), i.e.
max v, — —oo,

Biy

and Corollary 4.2 implies that

inf u, = inf u, < max vy + (¢ + 1)log|x;| —2(e¢ + 1) logr + C.

st B BT
rolxn|
Hence if we insert (68) in (66) we obtain

28 max vy, 1 1

20 2uy B, 2(a+1)p
< 0 —
/B+\35+ Valx|Tem™ = Ce lenl s2@tDf — 20+Dp
n n n n

28 max v,

< Cy2thb, — 0, asn — +oo.

Similarly,
B max v,

¥ 1 1
halx|®e" < Ce ™0 |x,|FDP -7
/;rn\Lén 5,(,a+l)ﬁ r}goﬂrl)ﬁ

ﬂﬂ}ixvn
<Cy~@DBe P 50, asn — +o0.

In case (43), we have
v, (0) = +o0,

and Corollary 4.2 implies that
in+fun < —u,(0) —2(a¢ + D logr + C.
S5

r

Inserting (70) in (66), we obtain

1 1
v |x|2a62un < CePun) _
/;gjn\B;n n (S,%(DH_I)'B rr%(ol—&-l)ﬂ

< Cy 2@tDB =P _ 0 aspn — +oo.

Similarly,

1 1
halx|®e < Ce PO [~
/Ln, \Lsy, ! 5r(1a+1)ﬁ Vr(laﬂ)ﬂ

< Cy @DB=Fu® _ 0 asn — +oo.

Thus we achieve the proof of this Corollary.
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5 Proof of Theorem 1.2

Now we come to prove Theorem 1.2.

Proof of theorem 1.2 We will consider separately alternatives (i) and (ii) for u,, in Proposi-
tion 3.4. Firstly we consider the case where alternative (i) holds in Proposition 3.4. We have
the following Claim.

Claim 1 If (27) holds, then m(0) = 27 (1 + «).
Note that by Lemma 3.2, the validity of (27) implies

u,(0) = max i, + O(1), asn — +oo0.
2¢0

So we set
_un(0)
gp=e ol — (0, asn — +00,

and as in Lemma 3.2 and Remark 3.3, along a subsequence,
£4(X) = Un(xx) + (@ + 1) log e, — & uniformly in C7,.(R2)NCL (RI\{0) N CP.(RY),

here & described in (26).
Since

/ V(0)]x|** e +/ h(0)|x|*ef =27(1 + @),
R2 R2

+ aRY

we can find R, — +o0 such that, along a subsequence,

Vo |x|?% 2 +/ hylx|%e" — 27 (1 +a), asn — —+oo.

BRn en LRyen

For every r € (Ry€,, €0), we can also apply Harnack inequality as in the proof of Corollary
4.3 to derive

sup uy §ﬂin+fun+(a+1)(/3—l)logr—|—c (71)
st Sy

with 8 € (0, 1).
Moreover by the alternative (b) in Proposition 4.1 and Corollary 4.2 we derive that

inf u,, = ip+f uy, < —uy(0) —2(a+ 1)logr + C. (72)
B;

st
Combine (72) with (71), we get the estimate

e~ Bun(0) e~ Bun(0)

F2atDpt2 and h,|x|%e" < C ——— 73)

2a 2uy, <
Valx[Tem = € = @t
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on S;". Consequently,

1 1
V |x|2a62un E Ce—ﬂun(O) _
/]‘%\B+ n (Rye)2FDF 20t Df

Rnen

EW_)O’ asn — +o0o.
n

1 1
—Bu, (0) —
Ce <(Rn8n)(a+1),8 8(()0t+])ﬂ)

/ hn|x|aeu" =
Leg\LRyey,
< ¢ 0
< W — 0, asn — 4o00.
n

So we have

/ L Valx e 4 / x| e
B L

€0 €0

=/+ V| x| 2% % +/ hnlx|%e" + o(1)
L

Rnen Rnen

=2rn(1+a)+o(1).

Hence by (4), letting n — 400, the desired conclusion follows.
We are left to treat the case where alternative (ii) holds in Proposition 3.4. In this case, we
can apply Corollary 4.3 and derive

/+ N Vi |x| 2% % —i—/ hylx|%e" — 0, asn — +o0.
BI \Bilxm nl AL [xm,n
2¢0 ’ 2e0

And similarly for m > 2,

V| x |2 e?n +/ hnlx|%e" — 0
B BT Loeo|x; L
26014101\ ﬁ‘*‘/ﬂn' 2600 j41,n1\ ﬁolxj-_nl
asn — +oofor j =1,...,m — 1. Consequently,

/ Vn|x|2a62un+/ hn|x|aeun
B L

= /+ Violx |2 e + 27'=1/+ N Vi |x| 2% %
By . B B )
26011 ﬁ“‘j.n‘\ 2e1x;
+ / halx|%e" + 27, / halx|%e +o(1)  (74)
Lagglxy L!TO\»*j,n\\LQSU‘XJ""‘

asn — +o00. Set
Do =B, \Bj, .
2e0)
And set

Vjn(X) = un(|xjnlx) + (@ + Dlogl|xjnl. j=1,....,m.
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Then we see that
—Avj, = Vje?in in B \BJ, ,

2¢y
S0 . ° 5)
=hjue’"  on L%\ngo,
€0

with the energy conditions

/ Vj,nezvj’" <C, / hj,nevj'” <C,
BJr \szo ZL\LZS()

Zx()
where V; ,(x) = |x|2“ Vu(xjnlx) and hj ,(x) = |x]|*h, (x4 |x) satisfy

O<a1§Vj_ C|VVJ,,|<A10<b1<hjn_C|thn|<BllnD()

Now we set
Bo = lim / Vl,nezv‘»" +/ hine’ ),
n—+4o00 B;so L,
n—-+oo * \BZEO L \Ly,
To %0
So that by (74), we have

m(0) = o + Z7_, B;.

Claim 2 Either 8o = 0 or By = 27 (1 + «).

In fact, by Proposition 4.1, we see that either max vy, — —oo or vy ,(0) — +oo. If

BZSO
max vy, — —oo, then Bo = O in this case. If v; ,(0) — 400, we see that 0 is the only
8250
blow-up point of vy ,, in Bzg since sup{v , + (o + 1) log |x|} < C. We can apply Theorem
BZE‘O
. 2 N n _ .

1.1 and conclude that nl:Too(ftho Vi ne*tn + szeo hine’'n) = By. Furthermore, since
sup{vy »+(a+1)log |x|} < C we canuse Claim 1 above for v}, and obtain By = 27 (1+«)
R+

B 2e()
in this case.

Claim3 g; e 27N, j=1,2,...,m
In fact, (28) implies

Xj’n
Vjn — 400, asn — +0o0.
|xj,n|

And by (29)(30) we have
max vjin <C.

Do\{B™ \Bj, )}
2e0

Therefore, the blow-up set S; of v; ,, is nonempty and satisfy:

S; CB \BZE CC Dy.
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At this point, we are in position to apply Li—Shafrir and Zhang—Zhou—Zhou (see [10,18])
results around each point S; and derive 8; € 27N, Vj =1,...,m.
Thus by the Claims above, Theorem 1.2 is completely established. O

6 Proof of Theorem 1.3

In this section, we will obtain the precise blow-up value at the singular blow-up point when
u, have the following mild boundary condition:

max u, —minu, < C. (76)
N i

As we shall see, the behavior of u,, around the blow-up point O is very seriously affected by
the validity of (76). Now we give the proof of Theorem 1.3.

Proof of Theorem 1.3 Let p,, satisfy

—Ap, =0 in B,
9 pn
9 = on Ll, (77)

Pn = Up —minu,, on S{".
st

From (76), the maximum principle and Hopf Lemma we have
||Pn||L00(§l+) <C.

Set w, = u, — mi+n u, — pn, then w, satisfies
Sl

—Aw, = W,|x|**e?¥ in B,

Jw
0~ Gylxle™  on Ly, (78)
v
w, =0, on Sl+,
min 2u, +2py min u,+py,
where W, (x) = eI and G, (x) = e’ . In addition, by (4) we have

/ W,,(x)|x|2°‘ezw”¢+/ Gn(x)|x|%e"" ¢ — m(0)p(0), forevery ¢ € C°(B;). (79)
Bf Ly

By Green’s representation formula,

wy ()
1

1 1
L m L wapyemay + L f R(x. y) W () |y [2ePndy
7 Jgr X =yl 7 Jp}

1 1 o W, 1 o W
+— [ In——G,WMIyl"e™dy +— | Rx,y)G,(M|y|"e™dy,  (80)
7 Jr, o e =yl T JL

where R(x, y) is the regular part of the Green function. Passing to the limit in (80), we have

m(0)

wy (x) —

ln%—i—m(O)R(x,O). (81)
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Set g(x) = BR(x,0) € C'(B]") and

0 1
wo(x) = ? In m + g(x). (82)

By the Pohozaev identity for w, in B;', we have

9 I
r/ 1202 _ i vw, ) do
ST av 2

= +a) /+ Walx|?2e®rdx + (1+a) | Gulx|%e“"do
By L,

r 1
—f/ Wy lx|**e*ndo +
2 S,Jr

5 /+ Ix|2% e (x - VW,)dx
B;

_ " 9G,(x1,0
—G(xq, 0)|x1[* xp e @10 |§};’_,+/ ﬂun“mewﬂﬂmdu (83)

_r dax1

Let n — oo in (83), and using (79) and (81) we find the identity:

r/ (|M|2 - l|Vwo|2> do = m(0)(1 + a) + o,(1). (84)
S av 2

Inserting (82) into (84), we obtain

dwo , 1 5 _ m(0)?
r/;;('fivl = 5IVuol* Jdo = =—+o,().

Letting r — 0, then we have m(0) = 27 (1 4 o). O

Appendix
Identifying x = (x1, x2) € R2. Suppose Q = (a,0) x (0, b) witha < 0, b > 0 is an open
rectangle in R?. Let xo = (a, b). Suppose u satisfy
Au > 0, in €,
d
au <0, on xp =b,
av
u(x) =0, on ia} x [0, b],
ux) <0 in Q
u(x) < 0, on {0} x [0, b],

du
Then we have 7=y, < 0.

Proof Firstly we choose a point y € (a,0) x {b} which is the center of the circle whose
radius is [xg — y| = R. And let R < min{b, M}. Set BR(y) N2 = By (y).For0 < p < R,
we introduce an auxiliary function v by defining

2 . p2
v(x) =e VT — VR

where r = |x — y| > p and y is a positive constant yet to be determined. Direct calculation
gives

Av(x) = e (4y%r? —2y).
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Hence y may be chosen large enough so that Av > 0 throughout the annular region A =

Bp(y) — B, (y). By the strong maximum principle and Hopf Lemma we have u(x) < 0 in

Qand u(x) < 0in (a, 0) x {b}. Since u — u(xg) < 0 on 9B, (y)N {0 < xo < b}, thereisa

constant ¢ > 0 small enough for which # — u(xg) + v < 0on BB; () N{0 < xp < b}. This

inequality is also satisfied on 9By (y) N {0 < x2 < b}. Suppose there exists a point y; on

B (M\IB, (y) N {xo = b} satisfies u(y;) — u(xp) + ev(yy) = max (u —
dBx (M\3B), (»)N{x2=b}

u(xg) + ev). Since A(u — u(xg) + cv) > 01in A, so we have lel > 0 by Hopf

Lemma. But since 2% |,,_, = O then we have 2U=1&0+ev)| " < ( which is the desired
. . axz 2 . . . . . axz 2
contradiction. The weak maximum principle implies that u — u(xg) + ev < 0 throughout A.
Then we have
ou

v
—lxg < —&—|x, = 2¢eyae
8x1 o 3X1 o

2.2
—v@+b%) _ .
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