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Abstract
We prove that the Levy–Lieb density functional Gamma-converges to the Thomas–Fermi
functional in the semiclassical mean-field limit. In particular, this aides an easy alternative
proof of the validity of the atomic Thomas–Fermi theory which was first established by Lieb
and Simon.
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1 Introduction

From first principles of quantum mechanics, the total energy of N identical fermions in R
d

with spin q � 1 can be described by a Hamiltonian HN in the Hilbert space

HN
a = L2

a

(
(Rd × {1, 2, . . . , q})N ;C

)
,
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which contains wave functions which are anti-symmetric under the permutations of space-
spin variables:

�N (. . . , (xi , σi ), . . . , (x j , σ j ), . . .) = −�N (. . . , (xi , σi ), . . . , (x j , σ j ), . . .).

In particular, the ground state energy of the system is

EQM
N = inf {〈�N , HN�N 〉 : �N ∈ SN } , (1)

where SN is the set of all (normalized) wave functions in the quadratic form domain of HN .
Although the abovemicroscopic theory is very precise, it usually becomes too complicated

for practical calculations when N is large. Therefore, it is desirable to develop effective
theories which depend on less variables but still capture some collective properties of the
system in certain regimes.

1.1 Levy–Lieb and Thomas–Fermi density functionals

In density functional theory, instead of considering a complicated wave function �N ∈ SN
one simply looks at its one-body density

ρ�N (x) = N
∑

σ1,...,σN∈{1,...,q}

∫

(Rd )N−1
|�N ((x, σ1), (x2, σ2), . . . , (xN , σN ))|2dx2 . . . dxN ,

which satisfies the simple constraints

ρ�N (x) � 0,
∫

Rd
ρ�N (x)dx = N .

The idea of describing a quantum state using its one-body density goes back to Thomas
[34] and Fermi [9] in 1927. It was conceptually pushed forward by a variational principle of
Hohenberg and Kohn [17] in 1964, and since then many variations have been proposed.

In this paper, we are interested in the Levy–Lieb density functional [20,22]

LN (ρ) = inf
{〈�N , HN�N 〉 : �N ∈ SN , ρ�N = ρ

}
. (2)

This is nicely related to the ground state problem via the identity

EQM
N = inf

{
LN (ρ) : ρ � 0,

∫

Rd
ρ = N

}
, (3)

but we will consider (5) in a general context (without limiting to the ground state problem).
The complication of the many-body problem is now hidden in the determination of LN , and
finding a good approximation is desirable.

In this paper, we will focus on the typical situation when the particles are governed by the
non-relativistic kinetic operator, an external potential and a pair-interaction potential, namely
the Hamiltonian of the system reads (in appropriate units)

HN =
N∑
i=1

(
− h2�xi + V (xi )

)
+ λ

∑
1�i< j�N

w(xi − x j ). (4)

Here h > 0 plays the role of Planck’s constant, and λ > 0 corresponds to the strength of the
interaction. The Thomas–Fermi approximation [9,34] suggests that

LN (ρ) ≈ Kclh
2
∫

Rd
ρ1+2/d +

∫

Rd
Vρ + λ

2

∫∫

Rd×Rd
ρ(x)ρ(y)w(x − y)dxdy (5)
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where

Kcl = d

d + 2
· (2π)2

(q|BRd (0, 1)|)2/d .

Historically, the Thomas–Fermi approximation was proposed for the atomic Hamiltonian,
when V andw are Coulomb potentials inR3, but wemay expect that it holds in amore general
context. In this paper, we aim at giving rigorous justifications for (5) in the semiclassical
mean-field regime

N → ∞, h ∼ N−1/d , λ ∼ N−1,

which is natural to make all three terms on the right side of (5) comparable.
To formulate our statements precisely, let us denote ρ = N f and rewrite (5) as

EN ( f ) ≈ ETF( f ) (6)

where

EN ( f ) = N−1LN (N f ) = inf
{
N−1〈�N , HN�N 〉 : �N ∈ SN , ρ�N = N f

}
,

ETF( f ) = Kcl

∫

Rd
f 1+2/d +

∫

Rd
V f + 1

2

∫∫

Rd×Rd
f (x) f (y)w(x − y)dxdy. (7)

1.2 An open problem

We expect that (6) holds for a very large class of potentials. However, to make the discussion
concrete, let us assume the following conditions in the rest of the paper.
Conditions on potentials The potentials V , w : Rd → R belong to L p(Rd) + Lq(Rd) with
p, q ∈ [1 + d/2,∞). Moreover, w admits the decomposition

w(x) =
∫ ∞

0
(χr ∗ χr )(x)dr , (8)

for a family of radial functions 0 � χr ∈ L p(Rd) + Lq(Rd) with p, q ∈ [2 + d,∞)

These assumptions hold for the Coulomb potentials in R
3; in particular we have the

Fefferman-de la Llave formula [11]

1

|x | = 1

π

∫ ∞

0

1

r5
(1Br ∗ 1Br )(x)dr

where 1Br is the characteristic function of the ball B(0, r) in R3. In fact, (8) holds true for a
large class of radial positive functions; see [15] for details.

Recall EN and ETF in (7). We expect that the following holds true.

Conjecture 1 (Semiclassical mean-field limit of Levy–Lieb functional) For all d � 1, in the
limit N → ∞, hN 1/d → 1, λN → 1, we have

EN ( f ) → ETF( f ) (9)

for every function f satisfying f � 0,
√

f ∈ H1(Rd) and
∫
Rd f = 1.

Here are some immediate remarks on Conjecture 1.
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(1) By the Hoffmann-Ostenhof inequality [16]
〈
�N ,

N∑
i=1

(−�xi )�N

〉
�
∫

Rd
|∇√

ρ�N |2, (10)

the condition
√

f ∈ H1(Rd) in Conjecture 1 is necessary to ensure that EN ( f ) < ∞.
(2) In the ideal Fermi gas (i.e. V = w = 0), the Levy–Lieb functional boils down to the
kinetic density functional

KN ( f ) := inf

{
N−1−2/d

〈
�N ,

N∑
i=1

(−�xi )�N

〉
: �N ∈ SN , ρ�N = N f

}
. (11)

Conjecture 1 for the ideal Fermi gas states that, for all d � 1,

KN ( f ) → Kcl

∫

Rd
f 1+2/d . (12)

In fact, the following stronger, quantitative bounds are expected to hold [22,28,32]

Kcl

∫

Rd
f 1+2/d � KN ( f ) � Kcl

∫

Rd
f 1+2/d + N−2/d

∫

Rd
|∇√ f |2, (13)

for all d � 1 for the upper bound and all d � 3 for the lower bound.
The upper bound in (13) was proposed by March and Young in 1958 [32]. Their proof

works for d = 1, but fails in higher dimensions (see [22] for a discussion, and see [1,13] for
numerical investigations in d = 3).

The lower bound in (13) was conjectured by Lieb and Thirring in 1975 [28,29] and they
proved the bound with a universal constant (different from Kcl). Note that in d = 1, the
sharp constant in the lower bound in (13) is known to be smaller than Kcl (it is conjectured to
be the optimal constant in a Sobolev–Gagliardo–Nirenberg inequality [29]). Despite several
improvements over the constant (see [6] for the best known result), the sharp constant in the
lower bound in (13) is still open in all d � 1. On the other hand, recently we proved that [33]

KN ( f ) � (Kcl − ε)

∫

Rd
f 1+2/d − CεN

−2/d
∫

Rd
|∇√ f |2 (14)

for all d � 1 and all ε > 0. This implies the lower bound in (12). The upper bound in (12)
is open for all d � 2.
(3) If we ignore the kinetic part, the Levy–Lieb functional reduces to the classical interaction
functional

IN ( f ) := inf

⎧⎨
⎩N

−2

〈
�N ,

∑
1�i< j�N

w(xi − x j )�N

〉
: �N ∈ SN , ρ�N = N f

⎫⎬
⎭ . (15)

Conjecture 1 becomes

lim
N→∞ IN ( f ) = 1

2

∫∫

Rd×Rd
f (x) f (y)w(x − y)dxdy, (16)

which can be proved rigorously. In fact, when w is the Coulomb potential in R
3, the lower

bound in (16) is a direct consequence of the Lieb–Oxford inequality [23]

IN ( f ) � 1

2

∫∫

R3×R3
f (x) f (y)|x − y|−1dxdy − 1.68N−2/3

∫

R3
f 4/3 (17)
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and the upper bound in (16) can be achieved easily by choosing a Slater determinant (a wave
function of the form �N = u1 ∧ u2 ∧ . . . ∧ uN ) with the density N f . The proof of (16) for
more general w can be extracted from the proof of our main result below. Other approaches
to (16) based on the optimal transportation have recently attracted a lot of attention, see
[3–5,8,10].

If we do not completely ignore the kinetic part, but take h → 0 and fix N , then the
Levy–Lieb functional functional EN ( f ) converges to the interaction functional IN ( f ) in
(15). Results of this kind can be found in remarkable recent works [2,4,18].

The significance of Conjecture 1, as well as our main result below, is the fact that we take
the proper semiclassical limit h ∼ N−1/d as N → ∞, which is crucial to obtain the full
Thomas–Fermi functional.

1.3 Main result

While we could not prove the pointwise-type convergence in Conjecture 1, we will provide
another justification for the Thomas–Fermi functional from the Levy–Lieb functional in the
sense of the Gamma-Convergence.

Recall that EN and ETF are defined in (7). We have

Theorem 2 (Gamma convergence from Levy–Lieb to Thomas–Fermi functional) For all
d � 1, in the limit N → ∞, hN 1/d → 1, λN → 1, the Levy–Lieb functional EN Gamma-
converges to the Thomas–Fermi functional ETF in

B =
{
0 � f ∈ L1(Rd) ∩ L1+2/d(Rd),

∫

Rd
f = 1

}
. (18)

More precisely, we have

(i) (Lower bound) For every sequence fN ∈ B such that fN⇀ f weakly in L1+2/d(Rd),
then

lim inf
N→∞ EN ( fN ) � ETF( f ). (19)

(ii) (Upper bound)For every f ∈ B, there exists a sequence of Slater determinants�N ∈ SN
such that fN = N−1ρ�N → f strongly in L1(Rd) ∩ L1+2/d(Rd), and

lim sup
N→∞

EN ( fN ) � ETF( f ). (20)

The notion of Gamma convergence is sufficient for many applications. In particular, we
can come back to the ground state problem and immediately obtain

Corollary 3 (Convergence of ground state energy and ground states) For all d � 1, in the
limit N → ∞, hN 1/d → 1, λN → 1, the ground state energy EQM

N of HN converges to the
Thomas–Fermi energy:

lim
N→∞

EQM
N

N
= ETF = inf

{ETF( f ) : f ∈ B} . (21)

Moreover, if �N is a ground state for EQM
N and if f TF is a Thomas–Fermi minimizer, then

N−1ρ�N ⇀ f TF weakly in L1+2/d(Rd).
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Corollary 3 covers the seminal result of Lieb and Simon [27] on the validity of Thomas–
Fermi in the atomic case (when V , w are Coulomb potentials in R

3).
More general results on the ground state problem have been achieved recently by Fournais,

Lewin and Solovej [12] by means of other techniques. Their method is based on a fermionic
version of the de Finetti–Hewitt–Savage theorem for classical measures (which should be
compared to a weak quantum de Finetti theorem for bosons [19], although the classical
version is sufficient for fermions). Consequently, they can treat a very large class of interaction
potentials; in particular no form of positivity, e.g. (8), is needed. In fact, negative interaction
potentials can be handled by a clever technique of interchanging two-body to one-body
potentials. The latter technique goes back to [7,21,30,31] and seems rather specific for the
ground state problem.

In contrast, our Theorem 2 applies to a more restrictive class of interaction potentials, but
it is not limited to ground states (it can be applied to excited, or high energy states as well).

The rest of the paper is devoted to the proof of our main result. First, we will study the
ideal gas separately in Sect. 2. Then the proof of Theorem 2 and Corollary 3 are given in
Sect. 3.

In the following proof, we consider spinless particles for simplicity (adding a fixed spin
q � 1 requires only straightforward modifications).

2 Kinetic density functional

In this section we prove Theorem 2 in the special case of the ideal Fermi gas, which has its
own interest. Recall the kinetic density functional in (11)

KN ( f ) = inf

{
1

N 1+2/d

〈
�N ,

N∑
i=1

(−�xi )�N

〉
: �N ∈ SN , ρ�N = N f

}

and

B =
{
0 � f ∈ L1(Rd) ∩ L1+2/d(Rd),

∫

Rd
f = 1

}
.

We will prove

Theorem 4 (Gamma convergence of kinetic density functional) For all d � 1, the following
convergences hold when N → ∞.

(i) (Lower bound) If fN ∈ B and fN⇀ f weakly in L1+2/d(Rd), then

lim inf
N→∞ KN ( fN ) � Kcl

∫

Rd
f 1+2/d . (22)

(ii) (Upper bound)For every f ∈ B, there exists a sequence of Slater determinants�N ∈ SN
such that fN = N−1ρ�N → f strongly in L1(Rd) ∩ L1+2/d(Rd), and

lim sup
N→∞

KN ( fN ) � lim sup
N→∞

1

N 1+2/d

〈
�N ,

N∑
i=1

−�xi �N

〉
� Kcl

∫

Rd
f 1+2/d . (23)

Proof Lower bound The lower bound (22) is a consequence of Weyl’s law for Schrödinger
eigenvalues. Let �N be a N -body wave function with density ρ�N = N fN . We can define
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the one-body density matrix γ�N as a trace class operator on L2(Rd) with kernel

γ
(1)
�N

(x, y) =
∫

(Rd )N−1
�N (x, x2, . . . , xN )�N (y, x2, . . . , xN )dx2 . . . dxN . (24)

Then for every function 0 � U ∈ C∞
c (Rd), we can write

h2
〈
�N ,

N∑
i=1

−�xi �N

〉
= Tr

[
(−h2� −U )γ

(1)
�N

]
+ N
∫

Rd
U fN . (25)

On the other hand, the anti-symmetry of�N implies Pauli’s exclusion principle [26, Theorem
3.2]

0 � γ
(1)
�N

� 1. (26)

Consequently, by the min-max principle [25, Theorem 12.1] and Weyl’s law on the sum of
negative eigenvalues of Schrödinger operators [25, Theorem 12.12] we can estimate

Tr
[
(−N−2/d� −U )γ

(1)
�N

]
� Tr[−N−2/d� −U ]−

= −N
|BRd (0, 1)|

(2π)d(1 + d/2)

[∫

Rd
U 1+d/2 + o(1)N→∞

]
. (27)

From (25) and (27) we deduce that

lim inf
N→∞ KN ( fN ) � − |BRd (0, 1)|

(2π)d(1 + d/2)

∫

Rd
U 1+d/2 +

∫

Rd
U f .

Optimizing over U leads to the desired lower bound (22).
Upper bound We can follow the coherent state approach in the proof of Weyl’s law [25,
Theorem 12.12] to deduce the upper bound (23), but the important conclusion that the density
N fN comes from a Slater determinant is not easily achieved in this way. In the following,
we will provide a direct proof of the upper bound in Theorem 4, using explicit computations
of the ground states of the ideal Fermi gas in cubes. This idea goes back to the heuristic
argument of Thomas–Fermi [9,34] and March-Young [32] (the same argument can be used
to give a direct proof of the lower bound (22); see [14] for details).
Step 1 (Slater determinants with step-function densities) Recall that that the Dirichlet Lapla-
cian −� on the cube Q = [0, L]d has eigenvalues |πk/L|2, k ∈ N

d , with eigenfunctions

uk(x) =
d∏

i=1

[√
2

L
sin

(
πki xi

L

)]
, k = (ki )di=1, x = (xi )di=1 ∈ R

d .

The ground state of the M-body kinetic operator
∑M

j=1(−�x j ) is the Slater determinant�S
M

made of the first M eigenfunctions {uk}. It is straightforward to see that when M → ∞,

1

M
ρ�S

M
= 1

M

∑
k∈SM

|uk |2 → 1Q

|Q| (28)

strongly in L p(Q) for all 1 � p < ∞, and

1

M1+2/d

〈
�S

M ,

M∑
i=1

(−�xi )�
S
M

〉
= 1

M1+2/d

∑
k∈SM

∣∣∣∣
πk

L

∣∣∣∣
2

→ Kcl

|Q|2/d . (29)
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Now let f ∈ B. Let {Q} be a finite family of disjoint cubes, whose construction will be
specified in the next step. In the following we only consider cubes Q such that

f
Q := 1

|Q|
∫

Q
f > 0, .

We can find an integer number MQ ∈ (N |Q| f Q − 1, N |Q| f Q + 1] such that

∑
Q

MQ =
∑
Q

N |Q| f Q = N
∫

Rd
f = 1.

Now for every Q, consider the firstMQ eigenfunctions {uQ
j }MQ

j=1 of the Dirichlet Laplacian−� on Q. These functions can be trivially extended to zero outside Q to become a function

in H1
0 (Q0). Since {uQ

j }MQ
j=1 are orthogonal for every Q and the subcubes {Q} are disjoint, the

collection
⋃

Q{uQ
j }MQ

j=1 is an orthonormal family of N functions in H1
0 (Q0). Let �S

N ∈ SN
be the Slater determinant made of this orthogonal family. Then in the limit N → ∞, using

the fact that MQ/N → |Q| f Q > 0 and (28), (29), we get the following

1

N
ρ�S

N
=
∑
Q

MQ∑
i=1

|uQ
i |2
MQ

· MQ

N
→
∑
Q

1Q

|Q| · |Q| f Q =
∑
Q

1Q f
Q

(30)

strongly in L p(Rd) for all 1 � p < ∞, and

1

N 1+2/d

〈
�S

N ,

N∑
i=1

−�xi �
S
N

〉
= 1

N 1+2/d

∑
Q

MQ∑
i=1

‖∇uQ
i ‖2

=
∑
Q

⎡
⎣ 1

M1+2/d
Q

MQ∑
i=1

‖∇uQ
i ‖2
⎤
⎦
∣∣∣∣
MQ

N

∣∣∣∣
1+2/d

→
∑
Q

Kcl

|Q|2/d ·
∣∣∣|Q| f Q

∣∣∣
1+2/d

= Kcl

∫

Rd

∣∣∣
∑
Q

1Q f
Q
∣∣∣
1+2/d

� Kcl

∫

Rd
f 1+2/d . (31)

Step 2 (Approximating f by step functions and concluding) Since 0 � f ∈ L1(Rd) ∩
L1+2/d(Rd), for every k � 1 we can find a finite family of disjoint cubes {Q} such that

∥∥∥∥∥∥
f −
∑
Q

1Q f
Q

∥∥∥∥∥∥
L1

+
∥∥∥∥∥∥
f −
∑
Q

1Q f
Q

∥∥∥∥∥∥
L1+2/d

� k−1. (32)

Using this collection of cubes, for every N � 1 we can construct a Slater determinant
�ε

N ∈ SN as in Step 2. From the convergence (30), (31), we deduce that there exists Mk > 0
such that for every N � Mk ,

1

N 1+2/d

〈
�k

N ,

N∑
i=1

−�xi �
k
N

〉
� Kcl

∫

Rd
f 1+2/d + k−1 (33)

and ∥∥∥∥∥∥
1

N
ρ�k

N
−
∑
Q

1Q f
Q

∥∥∥∥∥∥
L1

+
∥∥∥∥∥∥
1

N
ρ�k

N
−
∑
Q

1Q f
Q

∥∥∥∥∥∥
L1+2/d

� k−1.
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The latter estimate and (32) imply that for every N � Mk ,
∥∥∥∥
1

N
ρ�k

N
− f

∥∥∥∥
L1

+
∥∥∥∥
1

N
ρ�k

N
− f

∥∥∥∥
L1+2/d

� 2k−1. (34)

Now we conclude using a standard diagonal argument. By induction we can choose the
above sequence Mk such that Mk+1 � Mk + 1. Now for every N ∈ N, we take k = kN the
smallest number such that N � Mk . Obviously we have kN → ∞ as N → ∞. Moreover,
we can choose the Slater determinant �N = �

kN
N ∈ SN as above, and obtain from (33), (34)

that

1

N 1+2/d

〈
�N ,

N∑
i=1

−�xi �N

〉
� Kcl

∫

Rd
f 1+2/d + k−1

N → Kcl

∫

Rd
f 1+2/d

and
∥∥∥∥
1

N
ρ�N − f

∥∥∥∥
L1

+
∥∥∥∥
1

N
ρ�N − f

∥∥∥∥
L1+2/d

� 2k−1
N → 0

when N → ∞. This completes the proof of Theorem 4. ��

3 Full density functional

In this section we prove our main result.

Proof of Theorem 2 Lower bound Let �N ∈ SN such that ρ�N = N fN and fN⇀ f weakly
in L1+2/d(Rd). By Theorem 4, we have

lim inf
N→∞ N−1−2/d N 2/dh2

〈
�N ,

N∑
i=1

−�xi �N

〉
� Kcl

∫

Rd
f 1+2/d . (35)

Moreover, since fN⇀ f weakly in L1+2/d(Rd) and ‖ fN‖L1 = 1, by interpolationwe have
fN⇀ f weakly in Lr (Rd) for all r ∈ (1, 1+2/d]. Under the conditionV ∈ L p(Rd)+Lq(Rd)

with p, q ∈ [1 + d/2,∞), we deduce that

lim
N→∞ N−1

〈
�N ,

N∑
i=1

V (xi )�N

〉
= lim

N→∞

∫

Rd
V fN =

∫

Rd
V f . (36)

It remains to consider the interaction terms. We will use an idea of Lieb, Solovej and
Yngvason [24],which has been used to give an alternative proof of theLieb-Oxford inequality.
From the Fefferman-de la Llave type decomposition (8), we can write

w(x − y) =
∫ ∞

0
dr
∫

Rd
dzχr (x − z)χr (y − z)dz (37)

and hence
〈
�N ,

∑
1�i< j�N

w(xi − x j )�N

〉
=
∫ ∞

0
dr
∫

Rd
dz

〈
�N ,

∑
1�i< j�N

χr (xi − z)χr (x j − z)�N

〉
.
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By the Cauchy–Schwarz inequality we get
〈
�N ,

∑
1�i< j�N

χr (xi − z)χr (x j − z)�N

〉

=
⎡
⎣1
2

〈
�N ,

(
N∑
i=1

χr (xi − z)

)2
�N

〉
−
〈
�N ,

N∑
i=1

χ2
r (xi − z)�N

〉⎤
⎦

+

�

⎡
⎣1
2

〈
�N ,

N∑
i=1

χr (xi − z)�N

〉2
−
〈
�N ,

N∑
i=1

χ2
r (xi − z)�N

〉⎤
⎦

+

=
[
N 2

2
( fN ∗ χr )

2(z) − N ( fN ∗ χ2
r )(z)

]

+
.

For every fixed r > 0 and z ∈ R, since fN⇀ f weakly in Lr (Rd) for all 1 < r � 1 + 2/d ,
and χr , χ

2
r ∈ L p(Rd) + Lq(Rd) with p, q ∈ [1 + d/2,∞), we find that

lim
N→∞( fN ∗ χr )(z) = ( f ∗ χr )(z),

lim
N→∞( fN ∗ χ2

r )(z) = ( f ∗ χ2
r )(z),

and hence

lim
N→∞ N−2λN

[
N 2

2
( fN ∗ χr )

2(z) − N ( fN ∗ χ2
r )(z)

]

+
= 1

2
( f ∗ χr )

2(z)

for every z ∈ R
d . Therefore, by Fatou’s lemma,

lim inf
N→∞ N−2λN

〈
�N ,

∑
1�i< j�N

w(xi − x j )�N

〉

= lim inf
N→∞

∫ ∞

0
dr
∫

Rd
dzN−2λN

[
N 2

2
( fN ∗ χr )

2(z) − N ( fN ∗ χ2
r )(z)

]

+

�
∫ ∞

0
dr
∫

Rd
dz

1

2
( f ∗ χr )

2(z) = 1

2

∫∫

Rd×Rd
f (x) f (y)w(x − y)dxdy. (38)

Here in the last identity we have used (8) again.
Putting (35), (36) and (38) together, we conclude that

lim inf
N→∞ N−1〈�N , HN�N 〉 � ETF( f ).

Since �N ∈ SN can be chosen arbitrarily under the sole condition ρ�N = N fN , this leads
the desired lower bond

lim inf
N→∞ EN ( fN ) � ETF( f ).

Upper bound Let 0 � f ∈ L1(Rd)∩ L1+2/d(Rd) with
∫
Rd f = 1. Then by Theorem 4 there

exists a sequence of Slater determinants �N ∈ SN , such that fN := N−1ρ�N → f strongly
in L1(Rd) ∩ L1+2/d(Rd) and

lim sup
N→∞

N−1−2/d N 2/dh2
〈
�N ,

N∑
i=1

(−�xi )�N

〉
� Kcl

∫

Rd
f 1+2/d . (39)
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Since fN → f in Lr (Rd) for all r ∈ [1, 1 + 2/d] and V ∈ L p(Rd) + Lq(Rd) with
p, q ∈ [1 + d/2,∞), we have

lim
N→∞ N−1

〈
�N ,

N∑
i=1

V (xi )�N

〉
= lim

N→∞

∫

Rd
V fN =

∫

Rd
V f . (40)

Finally, for the interaction terms, since�N is a Slater determinants andw is non-negative,
an explicit computation shows that

N−2λN

〈
�N ,

∑
1�i< j�N

w(xi − x j )�N

〉
� 1

2
λN
∫∫

Rd×Rd
fN (x) fN (y)w(x − y)dxdy.

(41)

Here since w � 0 we can simply ignored the exchange term in the Hartree–Fock functional
to get an upper bound (see e.g. [22, Section 5A] for details). The convergence fN → f in
L1(Rd)∩L1+2/d(Rd) and the assumptionw ∈ L p(Rd)+Lq(Rd) imply that fN ∗w → f ∗w

strongly in L∞(Rd), and hence

1

2
λN
∫∫

Rd×Rd
fN (x) fN (y)w(x − y)dxdy = 1

2
λN
∫

Rd
fN ( fN ∗ w)

→ 1

2

∫

Rd
f ( f ∗ w) = 1

2

∫∫

Rd×Rd
f (x) f (y)w(x − y)dxdy.

Putting this together with (39), (40) and (41) we obtain the desired upper bound

lim sup
N→∞

N−1〈�N , HN�N 〉 � ETF( f ),

��

Proof of Corollary 3 The upper bound in (21), N−1EQM
N � ETF + o(1)N→∞, follows imme-

diately from Theorem 2 (upper bound) and optimizing over f in (20).
To see the lower bound in (21), we take arbitrarily a N -body wave function �N such that

N−1〈�N , HN�N 〉 = N−1EQM
N + o(1)N→∞ � ETF + o(1)N→∞. (42)

Denote ρ�N = N fN . Using w � 0, the Lieb-Thirring inequality for the kinetic energy [29],
Hölder’s inequality and the assumption V ∈ L p(Rd) + Lq(Rd) with p, q ∈ [1 + d/2,∞)

we can estimate

N−1〈�N , HN�N 〉 � N−1〈�N ,

N∑
i=1

(−�xi + V (xi ))�N 〉

� K
∫

Rd
f 1+2/d
N −

∫

Rd
V fN � (K/2)

∫

Rd
f 1+2/d
N − C

where K ,C > 0 are constants independent of fN . Thus from (42) deduce that fN is bounded
in L1+2/d(Rd).

Up to a subsequence, fN⇀ f in L1+2/d(Rd), and hence Theorem 2 (lower bound) implies
that

N−1〈�N , HN�N 〉 � EN ( fN ) � ETF( f ) + o(1)N→∞. (43)
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Next, let us show that

ETF = inf

{
ETF(g) : 0 � g ∈ L1(Rd) ∩ L1+2/d(Rd),

∫

Rd
g � 1

}
. (44)

This follows from a standard argument. If
∫
Rd g � 1, we can take a function

0 � ϕ ∈ C∞
c (Rd),

∫

Rd
ϕ +
∫

Rd
g = 1.

Take a sequence {Rk} ⊂ R
d , |Rk | → ∞. By the variational principle

ETF � lim
k→∞ ETF(g + ϕ(· + Rk))

= ETF(g) + Kcl

∫

Rd
|ϕ|1+2/d + 1

2

∫∫

Rd
ϕ(x)ϕ(y)w(x − y)dxdy

� ETF(g) + Kcl

∫

Rd
|ϕ|1+2/d + C(‖ϕ‖2Lr + ‖ϕ‖2Ls ).

In the last estimate we have used Young’s inequality [25, Theorem 4.2] and the assumption
w ∈ L p(Rd) + Lq(Rd) with p, q ∈ [1 + d/2,∞). Here the parameters r , s > 1 are
determined by

1

p
+ 2

r
= 2 = 1

q
+ 2

s

and the constant C > 0 depends only on w. By scaling ϕ �→ dϕ(·) with  → 0, we
conclude that ETF � ETF(g). Thus (44) holds.

Note that theweak convergence fN⇀ f implies that
∫
Rd f � 1.Therefore, combining (43)

and (44) we arrive at

N−1〈�N , HN�N 〉 � EN ( fN ) � ETF( f ) + o(1)N→∞ � ETF + o(1)N→∞.

Thanks to (42), we obtain the convergence (21) and that ETF( f ) = ETF.
Finally, note that ETF(g) is strictly convex in g. This can be seen from the strict convexity

of the kinetic term g �→ Kcl
∫
Rd g1+2/d and the convexity of the interaction term

g �→ 1

2

∫∫

Rd×Rd
g(x)g(y)w(x − y)dxdy = 1

2

∫ ∞

0

[∫

Rd
|(g ∗ χt )(z)|2dz

]
dt .

Here we have used again the Fefferman-de la Llave formula (8). Consequently, if ETF has
a minimizer f TF, then using ETF( f ) = ETF = ETF( f TF), the strict convexity and (44), we
conclude that f = f TF. Thus fN = N−1ρ�N ⇀ f TF weakly in L1+2/d(Rd), for every wave
function �N satisfying (42) (not necessarily a ground state of HN ). ��
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