
Calc. Var. (2018) 57:148
https://doi.org/10.1007/s00526-018-1424-9 Calculus of Variations

Mean curvature flow of arbitrary co-dimensional Reifenberg
sets

Or Hershkovits1

Received: 13 December 2017 / Accepted: 7 September 2018 / Published online: 26 September 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
We study the existence and uniqueness of smoothmean curvature flow, in arbitrary dimension
and co-dimension, emanating from so called k-dimensional (ε, R) Reifenberg flat sets inRn .
The Reifenberg condition, roughly speaking, says that the set has a weak metric notion
of a k-dimensional tangent plane at every point and scale, but those tangents are allowed
to tilt as the scales vary. We show that if the Reifenberg parameter ε is small enough, the
(arbitrary co-dimensional) level set flow (in the sense ofAmbrosio and Soner in JDifferGeom
43(4):694–737, 1996) is non fattening, smooth and attains the initial value in the Hausdorff
sense. Our results generalize the ones fromHershkovits (Geom Topol 21(1):441–484, 2017),
in which the co-dimension one case was studied.We also prove a general (short time) smooth
uniqueness result, generalizing the one for evolution of smooth submanifolds, which may be
of independent interest, even in co-dimension one.

Mathematics Subject Classification 53C44

1 Introduction

For a k-dimensional manifold Mk , a family of smooth embeddings φt : Mk → R
n for

t ∈ (a, b) is said to evolve bymean curvature if it satisfies the equation d
dt φt (x) = �H(φt (x)),

where �H is the mean curvature vector. If a compact submanifold M ⊆ R
n is of type C2, it

follows from standard parabolic PDE theory that there exists a unique mean curvature flow
starting from M for some finite maximal time T .

The question of mean curvature flow (and geometric flows in general) with rough initial
data, i.e. when the C2 assumption is weakened, has been researched extensively (see e.g.
[4,5,7,13,14,18,20]). For the co-dimension one, arbitrary dimensional mean curvature flow,
two results form the forefront in that regard: In the case thatM is merely Lipschitz, short time
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existence was proved by Ecker and Huisken in the celebrated paper [5]. More recently, under
the assumption that the initial set is (n−1)-dimensional (ε, R)Reifenberg flat (see Definition
1.3) with ε sufficiently small, short time existence and uniqueness was shown in [7] (see also
Theorem 1.5). Those two results are very different in nature; The result in [5] allows any
Lipschitz submanifold as an input, by that also dictating a local graph structure and a finite
local area. The result in [7] allows some higher Hausdorff dimensional sets which are not
graphical at any scale (such as variants of the Koch-snowflake) to be taken as inputs, but it
requires ε to be small. Note however that the Lipschitz assumption implies the Reifenberg
property, the Reifenberg parameter ε being the Lipschitz constant.

In the high co-dimensional case, the optimal result in the literature, which is due to Wang,
speaks about the same objects as Ecker–Huisken’s result, but has the smallness character of
the result in [7]. More precisely, it was shown in [20] that there exists some ε0 such that if
M is uniformly locally Lipschitz k-dimensional submanifold of Rn , with Lipschitz constant
less than ε0 (i.e. there exists some R > 0 such that every point has a ball of radius R around
it on which the submanifold is an ε0-Lipschitz graph) then there exists a mean curvature
flow emanating from it (in light of the example in [15], the smallness assumption in high
co-dimension is necessary). By the discussion above, the high co-dimensional generalization
of the result in [7], which will be stated shortly, will form a full (qualitative) generalization
of the result in [20].

Remark 1.1 Although not appearing in the literature, White’s local regularity theorem [21,
Theorem 3.1], along with an approximation scheme can also be used to show smoothing. To
be more precise, for ε > 0 sufficiently small, if X is k-rectifiable and satisfies

�(p, r) := 1

(4πr2)k/2

∫
X
e−|y−p|2/4r2dHk(y) ≤ 1 + ε (1.2)

for every y ∈ R
n and r < R, and if X can be shown to be approximated by smooth k-

submanifoldsM (in the Hausdorff andmultiplicity one varifolds senses), then it follows from
short time existence (for smooth initial data) and [21, Theorem 3.1] that there exists a smooth
MCF emanating from X for time proportional to r2. The proof follows from the scheme of
the proof of the main result of this work, utilizing [21, Theorem 3.1] and monotonicity. This
result also has the “smallness” character that was described above. As will be remarked upon
shortly, this will also be generalized (qualitatively) by the main result of this work.

To state our main result, we first need to define the objects to which it applies.

Definition 1.3 ([17]) Given ε > 0, R > 0 and k ∈ N, a compact connected set X ⊆ R
n is

called k-dimensional (ε, R) Reifenberg flat if for every x ∈ X and r < R there exists a
k-dimensional plane Px,r passing through x such that

dH (B(x, r) ∩ Px,r , B(x, r) ∩ X) ≤ εr . (1.4)

Here dH is the Hausdorff distance and B(x, r) is a closed ball.

Any C2 k-submanifold is easily seen to be k-dimensional (ε, R) Reifenberg flat for some
ε, R > 0. Every uniformly locally Lipschitz k-submanifold of Rn is trivially k-dimensional
(ε, R)Reifenberg flat aswell. TheReifenberg condition is however general enough to include
some sets with Hausdorff dimension larger than k (see [7,19]).

Another notion that one needs in order to discuss evolution of non smooth initial data is
that of a weak solution to the k-dimensional mean curvature flow. This weak mean curvature
flow is called the level set flow, as its original definition, due to Evans and Spruck [6] and
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Chen–Giga–Goto [3] (in the co-dimension one case), was via viscosity solutions for the
equation of a level set of a function evolving by mean curvature. In co-dimension one, a
geometric, avoidance principle based, equivalent definition was given in [9]. In high co-
dimension, while a viscosity solution based definition was given in [1], there is no effective
geometric definition of weak mean curvature flow (of arbitrary sets), as even smooth flows
cease to satisfy avoidance. The definition of the level set flow in [1] is technical, and will thus
be postponed to Sect. 3. For now, it suffices to know that the k-dimensional level set flow is a
semi-group action of R+ (time) on compact sets X ⊆ R

n , (t, X) �→ Xt which, starting from
an initial k-dimensional submanifold, coincides with smooth k-dimensional mean curvature
flow, for as long as the latter is defined. Up to the specificities of this association, which will
be defined formally (and further investigated) in Sect. 3, we can now state our main theorem.

Theorem 1.5 There exist some ε0, c0 > 0 such that if X is k-dimensional (ε, R) Reifenberg
flat inRn for 0 < ε < ε0 then the k-dimensional level set flow (in the sense of [1]) emanating
from X, (Xt )t∈(0,c0R2), is a smooth k-dimensional mean curvature flow, which further attains
the initial value X in the following sense:

lim
t→0

dH (X , Xt ) = 0. (1.6)

In fact, there exist some c1, c2 > 0 with c21 < 1
8 and 1

4c1
− c2 >

√
2k such that the following

estimates on the evolution hold:

(i) |A(t)| ≤ c1√
t
.

(ii) dH (Xt , X) ≤ c2
√
t .

(iii) Xt has a tubular neighborhood of size
√
t

4c1
.

Remark 1.7 Recall that level set flow should be thought of as (and in some regards is) “the
set of all possible evolutions” (see [10, Sect. 10] and [1, Theorem 5.4]). Thus, in addition
to existence of a smooth mean curvature flow emanating from k-dimensional Reifenberg
sufficiently flat sets, we get uniqueness in the strongest possible sense.

Remark 1.8 In light of the discussion preceding the statement of the theorem, this qualitatively
generalizes the result from [20]. As the ε0 of Theorem 1.5 is smaller than the one from [20],
the generalization is only qualitative, i.e. there are still initial submanifolds for which the
result in [20] is applicable while Theorem 1.5 is not.

Remark 1.9 For every δ > 0, if X satisfies the conditions of Remark 1.1 for ε suffi-
ciently small, then X is also (δ, R) Reifenberg flat. This can be seen as follows: By
upper-semicontinuity of � and approximation, it suffices to show this for smooth X . Let
Xi be smooth sets with �Xi (p, r) ≤ 1 + 1

i for every r < R, p ∈ R
n , but such that

dH
(
B(xi , ri ) ∩ Xi , P ∩ B(xi , ri )

) ≥ δri for every k-plane P . Shifting xi to the origin and
rescaling ri to size 1 (and still calling those sets Xi ), it follows from the result of [21] that
Xi sub-converge in the Hausdorff sense to a k-plane1, which is at least δ far in B(0, 1) from
any k-plane, a contradiction.
Thus, the existence part of Theorem 1.5 is (qualitatively) stronger than the (unpublished) one
alluded to in Remark 1.1.

1 By Proposition 2.8 and Theorem 3.1 of [21] it follows that Xi
t sub-converge smoothly to a plane for every

t > 0. By integrating over time the curvature bounds of [21, Theorem 3.1] for Xi
t , we get the X

i converges to
the same plane in the Hausdorff sense.
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The proof of Theorem 1.5 is naturally divided into two parts: existence, in which we will
construct a mean curvature flow satisfying estimates (i)–(iii) of Theorem 1.5 and uniqueness,
in which we will show that the resulted flow is actually the level set flow. The proof of the
existence part goes along the same lines as the existence part of the main theorem in [7] and
will be described in Sect. 2, where the parts that are identical will only be stated, referring to
[7] for the proof. The parts which require additional work to the one done in the co-dimension
one casewill be treated in full. The proof of the uniqueness part, whichwill be given in Sect. 3,
is completely different from the one in [7]. Back there, one could work almost entirely in the
realm of smooth solution, utilizing inward and outward approximations [7, Corollary 2.11]
and Ilmanen’s avoidance based definition of the level set flow [9]. The uniform estimates on
the evolution of the approximations (see [7, Theorem 1.16] and Theorem 2.26) coupled with
a separation estimate [7, Theorem 1.22] were then used to show that the flows emanating
from the inward and outward approximations remain very close, providing barriers to the
level set flow. In high co-dimension there is no notion of “inside” and “outside”, and, as
discussed above, there is no avoidance based definition of the level set flow. In order to show
uniqueness (and in fact, even define it) we will therefore have to revert to work entirely in
the viscosity solution realm. While in co-dimension one the viscosity solution definition of
the level set flow is very well known and standard, the high co-dimensional analogue of it,
introduced in [1] is far less known. Some part of our work will consist of exploring it a bit
further than what was done in [1].

The short time uniqueness of the flow is an immediate corollary of the existence part of
Theorem 1.5 and the following general strong smooth uniqueness criterion for the level set
flow, which is of interest by its own right.

Theorem 1.10 Let X ⊂ R
n be a connected compact set, let c1, c2 > 0 be constants and let

(Xt )t∈(0,T ] be a smooth k-dimensional mean curvature flow, satisfying

(i) |A(t)| ≤ c1√
t
.

(ii) dH (Xt , X) ≤ c2
√
t .

(iii) Xt has a tubular neighborhood of size
√
t

4c1
.

Assume further that c21 ≤ 1
8 and 1

4c1
− c2 >

√
2k. Then Xt is the level set flow of X.

Theorem 1.10 is a quantitative generalization of the fact that, starting from a smooth
submanifold, the level set flow coincides with smooth mean curvature flow. As in the smooth
case (see [1, Sect. 3]), the idea is to use the distance to Xt to construct non-negative lower
barriers to the level set equation. As conditions (i)–(iii) are more precise than a smoothness
assumption, this should be made more quantitatively; The construction of the sub-solution,
as well as the choice of the parabolic neighborhood along the boundary of which the barrier
can be seen to be smaller than the solution, should reflect estimates (i)–(iii). In terms of the
proof, this means that as opposed to the smooth case, where one could get along by some
continuity based arguments, in our case we will be forced to compute some quantities more
explicitly, and to use avoidance of balls [which is true in arbitrary co-dimension (see Lemma
3.17)] to get some initial estimates on the behavior of the level set equation (with the right
initial data).

Remark 1.11 As a flow satisfying (i)–(iii) provides approximations at different scales to X ,
having such smooth flow implies some regularity of X . This regularity is far weaker than the
one assumed in Theorem 1.5 (c.f. Theorem 2.1), so we expect Theorem 1.10 to be applicable
in other situations as well.
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2 Existence

The proof of the existence of a flow (Xt )t∈(0,c0R2) satisfying estimates (i)–(iii) of Theorem
1.5 is divided, as in the co-dimension one case of [7], into three steps: construction of approx-
imations at different scales (Sect. 2.1), obtaining uniform estimates on the flows emanating
from them, and passage to a limit (Sect. 2.4). The proof of the uniform estimates in turn,
consists of three major ingredients: estimates for graphical mean curvature with small initial
data on thick cylinders (Sect. 2.2), an interpolation lemma (Sect. 2.3), and an iteration scheme
(Sect. 2.4). As stated in the introduction, in this section we will address in full the parts that
require different treatment than the one in [7] and mention the parts that remain the same.

2.1 Approximation

A guideline to proving estimates on a class of weak objects is to first approximate them by
smooth objects, then derive estimates that depend only on quantities that are expressible for
the weak objects as well, and finally pass to a limit. The first step in our case is the following
approximation theorem, which is essentially from [12, Appendix B], where the hypothesis
used are different, but the construction remains the same.

Theorem 2.1 ([12]) For every δ > 0 there exists ε > 0 such that if X ⊆ R
n is k-dimensional

(ε, R)Reifenberg flat, then for every 0 < r < R/10 there exists a k-dimensional submanifold
Xr such that

1. dH (X , Xr ) ≤ δr .
2. |Ar | ≤ δ

r .
3. For every x ∈ X, Xr ∩ B(x, r) = G ∪ B where G is connected and B ⊆ B(x, r) −

B(x, (1 − δ)r).

Remark 2.2 In [7] we utilized a stronger global approximation result from [8], but its proof
depended on mollifying the characteristic function of the domain bounded by X , which only
works in co-dimension one.

Remark 2.3 Reifenberg’s topological disk theorem [17] follows easily from Theorem 2.1;
The approximations at comparable scales are graphical above one another, and composing
those graphical representations yields the bi-Hölder parametrization (c.f. proof of Corollary
2.6).

Remark 2.4 While the “approximate tangents” of a k-dimensional (ε, R) Reifenberg flat set
vary with point and scales, comparable scales and nearby points have very close approximat-
ing tangents.More precisely, for every δ > 0 there exists ε > 0 such that if X is k-dimensional
(ε, R) Reifenberg flat, then for every r < R/10 and x1, x2 ∈ X with d(x1, x2) < r , both
||Px1,r − Px2,r || < δ and ||Px1,r − Px1,10r || < δ. Here Px1,r is as in Definition 1.3, || − || is
the operator norm and we use the standard identification of a k-subspace with the projection
operator to it. This elementary observation is the key property of Reifenberg flat sets that
leads to Theorem 2.1.

Proof of Theorem 2.1 Fix some r < R/10. By scaling, we may assume that r = 1, and
that R ≥ 10. Let φ : [0,∞) → R+ be a smooth function such that φ|[0,1] = 1 and
φ|[2,∞) = 0. Let G(n − k, n) be the (n − k)-dimensional Grassmannian and E(n − k, n)

be the total space of the tautological vector bundle over G(n − k, n). Let p1, . . . , pL ∈ X
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be a maximal collection of points such that the balls B(pi , 1/6) are disjoint. In particular
N (X , 1) := {y ∈ R

n s.t d(y, X) < 1} ⊆ ⋃
B(pi , 2). For every i ∈ {1, . . . L}fixan (n−k)-

dimensional plane Qi = P⊥
pi ,1

where Ppi ,1 is as in the definition of a Reifenberg flat set, and

set φi (y) = φ(|y − pi |/2). Now, for every y ∈ N (X , 1) define Oy =
∑L

i=1 φi (y)Qi∑L
i=1 φi (y)

and note

that there exists some universal I , depending only on n, such that for every y ∈ N (X , 1), at
most I of the summands in the numerator are non zero. Fixing x ∈ X and letting Qx = P⊥

x,1,
we note that for every y ∈ B(x, 2), all the contributors to Oy are in B(x, 6). Thus, by Remark
2.4, ||Oy − Qx ||C3(B(x,2)) ≤ α(ε), where limε→0 α(ε) = 0. As Oy is symmetric and very

close to Qx , if we let Q̃y be the orthonormal projection to the span of the (n−k) eigenvectors
of Oy with eigenvalues close to 1, we also have

||Q̃y − Qx ||C3(B(x,2)) ≤ α(ε). (2.5)

Finally, set η(y) =
∑L

i=1 φi (y)Q̃y(y−pi )∑L
i=1 φi (y)

and define π : N (X , 1) → E(n − k, n) by π(y) =
(π1(y), π2(y)) = (Q̃y, η(y)). We let X1 be the inverse image of the zero section ξ in
E(n − k, n).

Let us verify that X1 indeed satisfies the desired properties. First observe that if π2(y) = 0
then y ∈ N (X , δ(ε)) where limε→0 δ(ε) = 0. Indeed, let x ∈ X be the closest point
to y and observe, as before, that if pi provides a non zero contribution to Oy then pi ∈
B(x, 6) and so by the Reifenberg property at scales 1 and 10, |Qx (pi )| < δ(ε) and so
|Qx (y)| < δ(ε) by (2.5). Thus d(x + Px,1(y), y) < δ(ε) and by the Reifenberg property
d(X , y) < δ(ε). Moreover, as π(N (X , 1)) is transversal to ξ [again, by (2.5)], X1 is a k-
dimensional submanifold. Fixing x ∈ X we have that |π2(x)| < δ(ε) and so by (2.5) again,
there is y ∈ R

n with d(y, x) < δ(ε) such that π2(y) = 0. Thus, we have established that X1

is a submanifold that satisfies condition 1.
Take x ∈ X and assume w.l.g. that x = 0. If x ′ ∈ P0,1 ∩ B(0, 1) we see that ||π2|x ′+Qx −

I d||C3(B(x ′,3)) < δ(ε) and so by the quantitative version of the inverse function theorem, there
exists a unique point y ∈ (x ′ + Qx ) ∩ B(0, 2) with π2(y) = 0. Thus X1 ∩ {y | |P0,1(y)| <

1}∩B(0, 2) is a graph of a function f over P0,1∩B(0, 1)with || f (x1, . . . , xk)||C3(Bk (0,1)) =
||Qx (x1, . . . , xk, f (x1, . . . , xk))||C3(Bk (0,1)) < δ(ε). This completes the proof. ��
Corollary 2.6 For every δ > 0 there exists ε > 0 such that if X ⊆ R

n is k-dimensional
(ε, R) Reifenberg flat set then in addition to 1–3 of Theorem 2.1, for every x ∈ X and
s ∈ (r , R/10), Xr ∩ B(x, s) can be expressed as Xr ∩ B(x, s) = G ∪ B where G is
connected and B ⊆ B(x, s) − B(x, (1 − 5δ)s).

Proof Just like in [7, Lemmas 4.4 and 4.9] (see also Lemma 2.23), conditions (1)–(3) of
Theorem 2.1 imply that for ε > 0 sufficiently small, Xs has a tubular neighborhood of
radius s/4 and that Xs/4 is a graph of a function fs over Xs with | fs(x)| ≤ 2δs. Defining
f : Xs → X4−k s by f (y) = f4−k+1s ◦ f4−k+2s ◦ . . . ◦ fs(y) we see that for every y ∈ Xs ,
d( f (y), y) < 4δs. This, together with property (3) for Xs completes the proof. ��

2.2 Estimates for graphical mean curvature flowwith small initial data on thick
cylinders

In this section, we will generalize the proof of the main estimate for graphical mean curvature
flowwith small initial data on thick cylinders [7, Theorem5.1] to the arbitrary co-dimensional
setting.
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Theorem 2.7 There exist some c > 0 such that for every δ > 0 and M > 0, there exist
positive τ0 = τ0(M, δ) � 1 and λ0 = λ0(M, δ) � 1 such that for every 0 < λ < λ0 there
exists some ε0 = ε0(δ, M, λ) such that for every 0 < τ < τ0 and ε < ε0 the following holds:
If u : Bk(p, r) × [0, τr2] → R

n−k is a graph moving by mean curvature such that:

1. For every (x, t) ∈ B(p, r) × [0, τr2]
|∇u(x, t)| ≤ Mε, |u(x, t)| ≤ M2β. (2.8)

2. For every x ∈ B(p, r) we have

|∇u(x, λτr2)| ≤ ε, |u(x, λτr2)| ≤ β. (2.9)

Then: ∣∣A(p, τr2)
∣∣ ≤ (c + δ)

ε√
τr

,
∣∣A(p, τr2)

∣∣ ≤ c
β

τr2
+ δ

ε√
τr

. (2.10)

As in the proof of the co-dimension one case, the idea is to regard the graphicalmean curvature
flow equation as a non-homogeneous heat equation. The controlled growth of the function
and its gradient (condition 1 in Theorem 2.7), and the thickness of the cylinder (τ(M) � 1)
allows one to derive a Schauder type estimate for the non-homogeneous heat equation [7,
Theorem 5.12] for which the homogeneous part “does not see the boundary” and depends
only on the initial slice (i.e. on ε, β, but not on M). In that regard, the estimate one gets for
the homogeneous part are (up to a multiplicative constant) like the ones obtained for physical
solutions to the heat equation on the full space. Proving Theorem 2.7 then reduces to showing
that the Hölder norm of the non-linearity behaves sub-linearly.

In the co-dimension one case, the major step towards obtaining those estimates was a
Hölder gradient estimate for u, which was proved by tracing the dependences of the constants
in the proof of Hölder gradient regularity for parabolic quasilinear equations of general type
[16]. This led to showing that some Hölder norm of ∇u is at most linear in the C0 norm of
∇u (when the latter is small). Such argument is not valid in the high co-dimensional case (as
there is no such general Hölder gradient estimate), but by virtue of a compactness argument,
one gets a weaker result, which will nevertheless suffice for our purposes.

Theorem 2.11 There exists some τ0 > 0 such that for every δ > 0 there exists ε > 0 such
that for every 0 < τ < τ0 the following holds: If u : Bk(p, r) × [0, τr2] → R

n−k is a
solution to the graphical mean curvature flow with ||Du|| < ε then, setting Bτ (p, r) =
B(p, (1 − 1000

√
τ0)r) × [0, τr2],

sup
z1,z2∈Bτ (p,r)

dα
z1,z2

||Du(z1) − Du(z2)||
d(z1, z2)α

< δ, sup
z∈Bτ (p,r)

dz ||D2u(z)|| < δ. (2.12)

Here
d((x1, t1), (x2, t2)) =

√
|x1 − x2|2 + |t1 − t2|, (2.13)

dz1 = d(z1, ∂(B(p, r) × [0, τr2])) [note that this is not the distance to the boundary of
Bτ (p, r)] and dz1,z2 = min(dz1 , dz2).

Proof We argue by contradiction. Assume w.l.g. that r = 1 and p = 0 and note that the
first inequality is trivial when d(z1, z2) ≥ dz1,z2 and follows by integration from the second
inequality otherwise. Suppose that there exist some δ such that for every m we can find
τm < τ0 and a solution of the graphical MCF um : Bk(0, 1) × [0, τm] → R

n−k with
||Dum || < 1/m and zm ∈ Bτm (0, 1) such that

dzm ||D2um(zm)|| ≥ δ. (2.14)
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Setting zm = (xm, tm), the closest boundary point to zm is (xm, 0). Let λm =
√

τ0
tm

≥ 1 and

define
vm(y, s) = λm

[
um(xm + y/λm, s/λ2m) − um(xm, 0)

]
. (2.15)

Note that vm(0, 0) = 0 and set ξm = (ym, sm) = (0, τ0). By the definition of Bτm (0, 1),
we conclude that vm is defined (at least) on B(0, 1000

√
τ0) × [0, τ0], satisfies the graphical

mean curvature flow equation, and while ||Dvm || ≤ 1/m, for ξm = (0, τ0) we have

||D2vm(ξm)|| ≥ δ/
√

τ0. (2.16)

On the other hand, by the estimate from [20], the sequence sub-converges to a solution
of the graphical mean curvature flow which is on one hand constant and on the other, has
non-vanishing second derivative. ��

Now, the graphical mean curvature flow equation has the form

∂t u − �u = ai j
∂2u

∂xi∂x j
= N (Du, D2u) (2.17)

where

ai j =
[(

δkl +
〈

∂u

∂xk
,

∂u

∂xl

〉)−1
]i j

− δi j . (2.18)

Note that ai j is a rational function in the gradient of u, where the numerator P(Du) has
neither free coefficients, nor terms that are linear in Du. Thus, by Theorem 2.11 (and the
estimates from [20]), for every δ there exists ε0 > 0 such that for every τ < τ0, for every
solution of the graphical MCF on B(p, r) × [0, τr2] with ||Du|| < ε we have, for every
x, y ∈ Bτ (p, r)

dx |N (x)| ≤ δε, d1+α
x,y

|N (x) − N (y)|
d(x, y)α

≤ δε. (2.19)

As discussed above, those estimates for the non-linearity, together with [7, Theorem 5.12]
imply Theorem 2.7.

2.3 Extension and interpolation

In this section we include two very simple results. The first regards the extension of cur-
vature bounds forward in time for arbitrary compact submanifolds, while the second is an
interpolation result, at the presence of curvature bounds and Hausdorff bounds.

By [20, Lemma 2.1], the evolution of the second fundamental form in arbitrary co-
dimension satisfies the inequality

d

dt
|A|2 ≤ �|A|2 + C(k, n)|A|4. (2.20)

Thus, by the maximum principle, and the fact that the curvature must blow up at a singularity,
one has the following extension lemma:

Lemma 2.21 If M is a compact k-dimensional submanifold of Rn with |A| ≤ α then there
exists a mean curvature flow Mt starting from M that exists for (at least) 0 ≤ t ≤ 1

C(k,n)α2 ,
such that the norm of the second fundamental form satisfies the estimate

|A(t)| ≤ α√
1 − C(k, n)α2t

. (2.22)
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The following elementary interpolation is central in our argument:

Lemma 2.23 (Interpolation) Fix δ > 0, α > 0. There exists β0 > 0 such that for every
β < β0 the following holds: Assume p ∈ X ⊆ Bn(p, r) where X is a k-submanifold with

1. |A| ≤ α
r .

2. dH (P ∩ Bn(p, r), X ∩ Bn(p, r)) ≤ βr for P = span{e1, . . . , ek}.
Then inside the cylinder Cδ,β = Bk(p, (1− δ)r)×[−βr , βr ]n−k , the connected component
of p is a graph of a function u over P and we have the estimate

|∇u| ≤ √
3αβ (2.24)

(and |u| ≤ βr).

Proof Assumew.l.g. r = 1 and p = 0 and denote Q = P⊥. Forβ sufficiently smallCδ/4,β ⊆
B(0, 1) andαβ < 1. Now, let x ∈ Cδ/2,β and let γ (t) be a unit speed geodesic with γ (0) = p.
We may assume w.l.g., by possibly changing the parametrization according to t �→ −t , that〈
γ ′(0), en

〉 = maxv∈Q, ||v||=1
〈
γ ′(0), v

〉
and that xn(γ (t)) ≥ 0. Letting f (t) = xn(γ (t))

we find f ′(t) = 〈
γ ′(t), en

〉
and f ′′(t) = 〈

γ ′′(t), en
〉 = 〈

γ ′′(t), en − 〈
γ ′(t), en

〉
γ ′(t)

〉 ≥
−α

√
1 − f ′(t)2. The equality case of the above ODE for f ′(t) corresponds to a circle of

radius 1
α
. Letting μ(t) : R → R

2 be a clockwise and unit speed parametrized circle of radius
1
α
with μ(0) = (0, 0) and

〈
μ′(0), e2

〉 = f ′(0), we see that as long as x2(μ(t)) is increasing,
and as long as γ (t) ∈ Cδ/2,β , xn(γ (t)) ≥ x2(μ(t)). For β sufficiently small (depending
on α, δ) x2(μ(t)) will reach its maximum at time 0 < T < δ/4 so the extra condition
γ (t) ∈ Cδ/2,β is redundant. Thus x2(μ(t)) ≤ xn(γ (t)) ≤ β, and an easy calculation for
circles in the plane gives the bound

tan∠(Tx X , P) ≤
√
2βα − α2β2

1 − αβ
≤ √

3αβ (2.25)

for β sufficiently small.
What remains to be shown is that the connected component of p is indeed a graph. Assume

there exist x1, x2 ∈ X ∩ Cδ,β with x1 �= x2 but P(x1) = P(x2). Observe that by (2.25),
X ∩ Cδ,β is a submanifold with boundary. Let γ : [0, a] → X ∩ Cδ,β be a minimizing
geodesic between x1 and x2. Such a geodesic is always C1 and is smooth for as long γ (t)
is away from the boundary. For such t however ||P(γ ′′(t))|| ≤ √

3αβα by (2.25) and so for
β sufficiently small, and as γ ′(0) is almost parallel to P , P(γ (t))) is almost a straight line
until it hits the boundary (at some t < 4). Since γ (t) is C1, and intersects the boundary with
an exterior normal component, this is a contradiction.

To see that for every y ∈ Bn(0, 1 − δ) there is some x ∈ X with P(x) = y, note that by
the Hausdorff condition, we can find x̄ ∈ X ∩ B(0, (1 − δ/2)) with d(x̄, y) ≤ β (when β is
small). Taking ȳ = P(x̄) we see, again, by (2.25) for x̄ , and the fact that the curvature scale
1
α
is far bigger than β, that there will exist a point over y as well. ��

2.4 Construction of a flow

For ε sufficiently small, if X is k-dimensional (ε, R)Reifenberg flat, Theorem 2.1 and Corol-
lary 2.6 provide uswith smooth approximations to X at different scales. The extension lemma,
Lemma 2.21, the interpolation lemma, Lemma 2.23, and the a-priori estimate, Theorem 2.7
can substitute the corresponding result of [7] in the iteration scheme of [7, Sects. 3.2, 3.3].
Thus, just like there we obtain the following uniform estimates.
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Theorem 2.26 (Uniform estimates) There exist some ε and c0, c1, c2, c3 such that if X is
k-dimensional (ε, R) Reifenberg flat, and considering the approximating surfaces Xr from
Theorem 2.1 and Corollary 2.6, each Xr flows smoothly by k-dimensional mean curvature
for time t ∈ [0, c0R2] and for every t ∈ [c3r2, c0R2] we have: (1) |Ar (t)| ≤ c1√

t
where

Ar (t) the second fundamental form of Xr
t . (2) dH (Xr

t , X) ≤ c2
√
t . (3) For every x ∈ X and

s ∈ (
√
t

c1
, R/4) we have

B(x, s) ∩ Xr
t = G ∪ B (2.27)

where G is connected and B ∩ B(x, 9
10 s) = ∅. Moreover, the constants c1, c2 satisfy c21 ≤ 1

8
and 1

4c1
− c2 >

√
2k.

By the uniform estimates one can pass to a sub-limit flow Xt as in Theorem 1.5. Note that
the condition (iii) of Theorem 1.5 follows easily from 1 to 3 of Theorem 2.26 (see [7, Lem
4.4]).

3 Uniqueness

In this section,wewill proveTheorem1.10which, togetherwith the existence part ofTheorem
1.5, imply the full Theorem 1.5. In Sect. 3.1 we will recall the definition and some properties
of the high co-dimensional level set flow from [1]. In Sect. 3.2 we will recall and further
explore the behavior of the associated level set operator on distance functions from smooth
evolutions by mean curvature. Section 3.3 will be devoted to the proof of Theorem 1.10.

3.1 Preliminaries

Let us start by introducing some notations. For every 0 �= p ∈ R
n define Pp to be the

projection to the orthogonal complement of p. Given an n × n symmetric matrix A and
such p, let X = Pp APp . If we denote the eigenvalues of X corresponding to eigenvectors
orthogonal to p by λ1(X) ≤ . . . ≤ λn−1(X), define

F(p, A) =
k∑

i=1

λi (X). (3.1)

In [1], the level sets of positive viscosity solution to the equation

d

dt
u = F(∇u,∇2u) (3.2)

were used to give a definition for weak mean curvature flow. Before diving into formalities,
we will try to convince the reader that this approach is plausible. Let (Mt )t∈[0,T ] be a smooth
family of k-dimensional submanifolds ofRn . Let u : Rn×[0, T ] → R+ be a smooth function
such that for every t ∈ [0, T ], Mt = {x ∈ R

n s.t. u(x, t) = 0} and such that ∇u �= 0
on a neighborhood of Mt (away from Mt ), and u ≥ δ0 > 0 outside that neighborhood.
For ε sufficiently small, Mε

t = {x ∈ R
n s.t. u(x, t) = ε} would be a smooth “tubular”

hypersurface around Mt . We would expect it to have (n− k−1) principal curvatures that are
very large, corresponding to ellipsoids in the orthogonal complement of TpMt for p ∈ Mt .
The other k principal curvatures should be very close to the ones of Mt w.r.t. the normal of
Mε

t , as for every geodesics γ (s) of Mt and every point on x ∈ Mε
t which is closest to γ (0),

there should be an almost geodesic curve in Mε
t which is orthogonal to the above mentioned
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ellipsoids which “traces γ ”. The second fundamental form of Mε
t at x ∈ Mε

t is given by
A(x, t) = 1

||∇u|| P∇u(x,t)∇2u(x, t)P∇u(x,t), so we expect 1
||∇u|| F(∇u,∇2u) to be very close

to − �H(π(x), t) · ∇u
||∇u|| , where �H(π(x), t) is the mean curvature of Mt at the point closest to

x . On the other hand, the normal velocity of Mε
t at x is given by −ut/||∇u|| and so equation

(3.2) tells us that, parameterizing the flow of Mε
t by φε(x, t) and letting ν(x, t) be the normal

to Mε
t at x , we have

d

dt
φε(x, t) · ν = �H(π(x), t) · ν + O(ε). (3.3)

Thus, the entire ellipsoid around π(x) moves approximately by �H(π(x)), which would
correspond to a motion of Mt by k-dimensional mean curvature flow.

We proceed by defining the level set flow and by collecting some of its properties from [1].
Let u0 be a non-negative, uniformly continuous function. Theorem 2.4 in [1] states that there
exists a unique uniformly continuous, positive viscosity solution to Eq. (3.2) u : Rn ×[0,∞)

such that u(−, 0) = u0 (for the definition of viscosity solution, see [1, Definition 2.1]).

Definition 3.4 [1, Definition 2.6] Let X ⊆ R
n be a closed set. Let u0 be a non-negative,

uniformly continuous function such that X = {x ∈ R
n s.t. u0(x) = 0}. Letting u be the

solution of the IVP of equation (3.2) with u(x, 0) = u0(x), the k-dimensional level set flow
of X is defined to be Xt = {x ∈ R

n s.t. u(x, t) = 0}.
A-priori, this definition may depend on the choice of u0, but Theorem 2.5 of [1] shows that
different choices yield the same result.

The following three properties of the level set flow and the level set equation would be of
importance to us.

Property A If X is a compact smooth k-dimensional submanifolds of Rn and the smooth
mean curvature flow (Xt )t∈[0,T ] is defined for all t ∈ [0, T ] then Xt is also the level set flow
of X (see [1, Corollary 3.9]).

Property B If u, v : Rn×[0, T ] → R+ are two non-negative, uniformly continuous solutions
to (3.2) then ||u − v||L∞(Rn×[0,T ]) ≤ ||u − v||L∞(Rn×{0}) (see [1, Theorem 2.2]).

Property C Let � ⊆ R
n × [0, T ] be a bounded domain, and let v, u be non-negative, uni-

formly continuous functions on Rn × [0, T ] such that v is a sub-solution to (3.2) in � and u
is a solution of (3.2) in �. If v ≤ u on ∂par� then v ≤ u on �. Here ∂par� is the parabolic
boundary of � (see remark below).

Remark 3.5 In [1, Theorem2.2] it was shown that F satisfies the assumptions of [11, Theorem
2.1], and of Theorem 4.1 of [3], both of which imply Property C for domains of the form
� = D×[0, T ]where D ⊆ R

n is a compact domain. The proof of Theorem 4.1 in [3] works
just as well for an arbitrary bounded domain �, while compactness also gives Proposition
2.3 of [11], from which point the proof of Theorem 2.1 of [11] works for arbitrary such � as
well. This is, of course, not surprising at all, as the weak maximum principle is a statement
about the interior.

3.2 Evolution of distances

Let (Mt )t∈[0,T ] be a family of compact k-submanifolds evolving by smooth mean curvature
flow. For each 0 ≤ t ≤ T , Mt has a tubular neighborhood at which the distance function
from Mt , rt is smooth (away from Mt ). Studying the properties of F(∇rt ,∇2rt ) and of
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d
dt rt − F(∇rt ,∇2rt ) will occupy the first part of this section. In the second part, we will give
a simple lower bound, which is based on avoidance of balls, for the solution of the level set
equation starting from a distance function from an arbitrary set.

Lemma 3.6 Let M be a compact smooth, k-dimensional submanifold in R
n with normal

injectivity radius ρ and let r be the distance function from M. For every 0 < s ≤ ρ, let Ms

be the smooth co-dimension 1 level set Ms = {y ∈ R
n s.t r(y) = s} and let As be the

second fundamental form of Ms with respect to the interior normal. Let x ∈ M, ν ∈ SNxM
(the unit normal space to M at x), P = TxM and Q = (P ⊕ ν)⊥. The following hold:

1. for every 0 < s < ρ the principal directions of Ms at x + sν are independent of s and
split according to P and Q.

2. As |Q = 1
s I d while As |P is bounded inside the tubular neighborhood, and if v1, . . . vk ∈

P are the principal directions of A−ν(; ) = 〈A(; ),−ν〉with eigenvalues β1, . . . , βk then

As |P (vi , vi ) = βi

1 + sβi
, (3.7)

and As |P (v, v) < 1
s for every v ∈ P with ||v|| = 1.

Remark 3.8 Most of the above lemma is stated and proved in [1, Theorem 3.2]. Equation
(3.7) was proved for some constants βi , without identifying them as the principal directions
of −A(; ) · ν. This fact was not needed for the applications therein, and was stated there as a
conjecture (which the authors did not care much about).

Proof of Lemma 3.6 (x + P⊥)∩ Ms consist of a sphere of radius s in x + P⊥, whose normal
at x + sν is −ν, so As |Q = 1

s as stated. Fix v = ∑
aivi ∈ P , and let γ (t) be a unit speed

geodesic in M with γ (0) = x and γ̇ (0) = v, and let ν(t) be a normal field along γ (t), which
solves the linear system of ODEs ν(0) = ν and Nγ (t)M(ν̇(t)) = 0 in the normal bundle to
M . In particular ||ν(t)|| = ||ν(0)|| = 1, so μ(t) := γ (t) + sν(t) is a curve in Ms such that

||μ̇(0)||2 = ||v + s A−ν(v, vi )vi ||2 =
∑

(ai (1 + sβi ))
2 (3.9)

and

As(μ̇(0), μ̇(0)) = 〈μ̈(0),−ν〉 = A−ν(v, v) + s||ν̇(0)||2 =
∑

a2i βi + s
∑

(aiβi )
2.

(3.10)

As s < ρ < 1
|βi | , 1 + sβi > 0 and so

∑
a2i βi + s

∑
(aiβi )2∑

(ai (1 + sβi ))2
<

1

s
(3.11)

holds. Additionally,

As(vi , vi ) = βi + sβ2
i

(1 + sβi )2
= βi

1 + sβi
. (3.12)

��

Lemma 3.13 Let Nt be a tubular neighborhood of a compact smooth k-dimensional mean
curvature flow Mt , r(x, t) be the distance function from Mt and v1(x, t), . . . , vk(x, t) be the
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principal directions of Mt at π(x, t) ∈ Mt w.r.t. the normal −∇r(x) (where π(x, t) is the
nearest point projection to Mt ). Then

d

dt
r − F(∇r ,∇2r) =

(
k∑

i=1

〈A(vi , vi ),−∇r〉2
1 + r 〈A(vi , vi ),−∇r〉

)
r (3.14)

on Nt − Mt .

Proof Fix t , x ∈ Nt − Mt and let p = π(x, t). By the definition of F and the fact that
||∇r || = 1, F(∇r(x, t),∇2r(x, t)) is the sum of the k smallest principal curvatures of Mr

t
at x . By Lemma 3.6, those principal curvatures correspond to vectors in TpMt , so since the
trace of a matrix is independent of the basis we get, again by Lemma 3.6,

F(∇r ,∇2r) =
k∑

i=1

〈A(vi , vi ),−∇r〉
1 + r 〈A(vi , vi ),−∇r〉 . (3.15)

On the other hand, since Mt moves by mean curvature, by the first variation of length we get

d

dt
r(x, t) =

〈 �H(p, t),−∇r
〉
=

k∑
i=1

〈A(vi , vi ),−∇r〉 . (3.16)

The result follows. ��
The following lower bound on the solution of the level set flow starting from a distance

function from a set will be used in the proof of Theorem 1.10. As discussed above, it is
based on the fact that although arbitrary co-dimensional mean curvature flow does not satisfy
avoidance, it does satisfy it w.r.t. (co-dimension one) balls, moving according to the sum
of their lowest k principal curvatures (which for balls are, of course, the same). For Brakke
flows, this fact was already observed in Brakke’s original manuscript [2]. In a sense, the
following lemma shows it for the Ambrosio–Soner level set flow.

Lemma 3.17 Let X be a closed set and let p be a point with d(X , p) = R. Let g be the
distance function from X and consider the level set flow u starting from g. If R2 > 2kt then

u(p, t) ≥ R − √
2kt . (3.18)

Proof Let g̃(y) be a functionwhich equalsmin{d(X , y), R−√
2kt} onRn−B(p,

√
2kt) and

R−d(p, y) on B(p,
√
2kt). Letting ũ be the solutions to the level set equation corresponding

to g̃, for every 0 ≤ c < R − √
2kt , {x | u(x, t) = c} = {x | ũ(x, t) = c} while by

continuity and by the known evolution of spheres ũ(p, t) = R − √
2kt . Thus u(p, t) ≥

R − √
2kt . ��

3.3 Conclusion

Proof of Theorem 1.10 Set X0 = X , consider the functions r(x, t) = dist(x, Xt ) and
v(x, t) = r2(x, t)/

√
t and let N = {(x, t) ∈ R

n × [0, T ] | r(x, t) <
√
t

4c1
} and

Nt = N ∩ (Rn × {t}). v is smooth in N and by Lemma 3.13

d

dt
v − F(∇v,∇2v) = 2

(
k∑

i=1

〈A(vi , vi ),−∇r〉2
1 + r 〈A(vi , vi ),−∇r〉 − 1

4t

)
v (3.19)
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where vi are the principal directions of Xt w.r.t. the normal −∇r(x). Furthermore by the
assumptions of the theorem, for every (x, t) ∈ N we have

|r 〈A(vi , vi ),−∇r〉| ≤ c1√
t

·
√
t

4c1
<

1

2
,

k∑
i=1

〈A(vi , vi ),−∇r〉2 ≤ c21
t

, (3.20)

and since c21 ≤ 1/8 we find that v is a sub-solution to equation (3.2) in N .
Let d(x) be the distance function from X = X0 and let u be the solution to (3.2) with the

initial data d . For (x, t) ∈ ∂parN we have

d(x) ≥ r(x, t) − dH (X , Xt ) ≥
(

1

4c1
− c2

) √
t >

√
2kt (3.21)

so by Lemma 3.17

u(x, t) ≥
(

1

4c1
− c2 − √

2k

) √
t ≥ αv(x, t) (3.22)

for α = 16c21

(
1
4c1

− c2 − √
2k

)
> 0. Thus, by Property C, u ≥ αv on N . The first part of

the above argument also shows that u > 0 outside of N . In particular, as the level set flow
of X , X̃t , is defined to be the zero set of u, and as u > 0 on R

n − Nt and u ≥ αv > 0 on
Nt − Xt we see that X̃t ⊆ Xt .

The inclusion Xt ⊆ X̃t is simpler (and in the co-dimension one case, follows immediately
from Ilmanen’s definition). Suppose u(x0, t0) = δ > 0 for some 0 ≤ t0 ≤ T and x0 ∈ Xt0 .
For every s < t0, the distance function from Xs , ds(x) = r(x, s) satisfies ||ds −d||L∞(Rn) ≤
c2

√
s. Denote by us the solution for the level set equation emanating from ds . Then

0 < δ = u(x0, t0) ≤ |u(x0, t0)−u(x0, t0 − s)|+ |u(x0, t0 − s)−us(x0, t0 − s)| (3.23)

where we have used the fact that us(x0, t0 − s) = 0 by Property A. The first term of the right
hand side goes to zero as s → 0 since u is continuous, while the second term also goes to
zero since ||us − u||L∞(Rn×[0,T ]) ≤ ||ds − d||L∞(Rn) by Property B. This is a contradiction,
so if x0 ∈ Xt0 we must have u(x0, t0) = 0, i.e. x0 ∈ X̃t0 . ��
Acknowledgements The author would like to thank the anonymous referee for his careful read, as well as his
many suggestions which have greatly improved the readability of this work.
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