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Abstract
In this paper, we give a complete classification of the global dynamics of two-species Lotka–
Volterra competition models with nonlocal dispersals:

⎧
⎪⎨

⎪⎩

ut = dK[u] + u(m(x) − u − cv) in � × [0,∞),

vt = DP[v] + v(M(x) − bu − v) in � × [0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �,

where K, P represent nonlocal operators, under the assumptions that the nonlocal operators
are symmetric, the models admit two semi-trivial steady states and 0 < bc ≤ 1. In particular,
when both semi-trivial steady states are locally stable, it is proved that there exist infinitely
many steady states and the solution with nonnegative and nontrivial initial data converges to
some steady state in C(�̄) ×C(�̄). Furthermore, we generalize these results to the case that
competition coefficients are location-dependent and dispersal strategies are mixture of local
and nonlocal dispersals.
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1 Introduction

Dispersal is an important feature of life histories of many organisms and thus has been
a central topic in ecology. In 1951, random diffusion was introduced to model dispersal
strategies [52] and there are tremendous studies in this direction, see the books [14,48].
However, in ecology, in many situations (e.g. [10–12,51]), dispersal is better described as
a long range process rather than as a local one, and integral operators appear as a natural
choice. A commonly used form that integrates such long range dispersal is the following
nonlocal diffusion operator:

Lu :=
∫

�

k(x, y)u(y)dy − a(x)u(x),

where the dispersal kernel k(x, y) ≥ 0 describes the probability to jump from one location
to another. This nonlocal diffusion operator appears commonly in different types of models
in ecology. See [4,23,30,32,40,42,43,45,49] and the references therein.

It is also worth mentioning that the nonlocal operators have been used to model many
other applied situations beyond ecology, for example in image processing [18,28], particle
systems [9], coagulation models [17], nonlocal anisotropic models for phase transition [2,3],
mathematical finances using optimal control theory [8,24] etc. We refer the book [5] and
references therein for more details.

The purpose of this paper is to understand the role played by spatial heterogeneity and
nonlocal dispersals in the ecology of competing species by classifying the global dynamics
of the following model

⎧
⎪⎨

⎪⎩

ut = dK[u] + u(m(x) − u − cv) in � × [0,∞),

vt = DP[v] + v(M(x) − bu − v) in � × [0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �,

(1.1)

where � is a bounded domain in R
n , n ≥ 1 and K, P represent nonlocal operators. In this

model, u(x, t), v(x, t) are the population densities of two competing species, d, D > 0 are
their dispersal rates respectively. The functions m(x), M(x) represent their intrinsic growth
rates, b, c > 0 in �̄ are interspecific competition coefficients.

This paper continues the studies in [6,34], where a type of simplified nonlocal operator is
considered.

1.1 Background andmotivations

The model (1.1) is a Lotka–Volterra type model which can be traced back to the works
of Lotka and Volterra [39,53]. Such models are widely used to describe the dynamics of
biological systems in which two species interact, where predator–prey and competition are
two typical situations, and play an important role in mathematical biology. To avoid being
too lengthy, we restrict our discussions to models related to the model (1.1) only.

Let us begin with the the simple Lotka–Volterra ODE model (which can be considered as
a special case of (1.1): d = D = 0 and M = m, u0, v0 are positive constants)

⎧
⎪⎨

⎪⎩

u′(t) = u(m − u − cv) in [0,∞),

v′(t) = v(m − bu − v) in [0,∞),

u(0) = u0, v(0) = v0.

(1.2)
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The following results about the global dynamics of (1.2) are well known:

(i) If b, c < 1 then ( 1−c
1−bcm, 1−b

1−bcm) is the global attractor;
(ii) If b ≤ 1 ≤ c (or c ≤ 1 ≤ b) and (b− 1)2 + (c− 1)2 �= 0, then (0,m) (or (m, 0)) is the

global attractor;
(iii) If b = c = 1, for any initial data (u0, v0), there exists s ∈ [0, 1] such that the solution

of (1.2) converges to (sm, (1 − s)m);
(iv) If b, c > 1, the solution (u, v)will converge to (m, 0), (0,m) or ( 1−c

1−bcm, 1−b
1−bcm) under

the condition v0 < 1−b
1−c u0, v0 > 1−b

1−c u0 or v0 = 1−b
1−c u0 respectively.

Considering the importance of dispersal strategies for species, natually, the next step is
to take the diffusion of the species into consideration. If each individual moves randomly, it
leads to the following model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = d�u + u(m − u − cv) in � × [0,∞),

vt = D�v + v(m − bu − v) in � × [0,∞),
∂v
∂γ

= ∂v
∂γ

= 0 on ∂� × [0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �,

(1.3)

where γ denotes the unit outer normal vector on ∂�. It turns out that for the first three cases,
systems (1.2) and (1.3) share lots of similarity, while the case (iv) is more delicate. More
specifically, in the cases of (i), (ii) and (iii), the globally stable equilibriumof (1.2) given above
is also globally stable as a solution of (1.3) [1,16]. In other words, the global dynamics of
the PDE model (1.3) is independent of the initial distributions of the two species. However,
for the case (iv), some different and interesting phenomena happen due to the interaction
between random diffusion and shape of habitat. If � is convex, except for (m, 0) and (0,m),
there are no stable equilibria [29]. But, if � is not convex, the system (1.3) may have a
stable spatially inhomogeneous equilibrium which corresponds to the habitat segregation
phenomenon [25,41,44].

Later, to understand the effect of migration and spatial heterogeneity of resources, the
global dynamics of the following model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = d�u + u(m(x) − u − cv) in � × [0,∞),

vt = D�v + v(m(x) − bu − v) in � × [0,∞),
∂v
∂γ

= ∂v
∂γ

= 0 on ∂� × [0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �,

(1.4)

where m(x) is nonconstant, has received extensive studies in the last two decades. See [13,
19,31,36,37] and the references therein. For 0 < b, c < 1, an insightful conjecture was
proposed and partially verified in [37]:

Conjecture The locally stable steady state is globally asymptotically stable.

Recently, this conjecture has been completely resolved in [19] provided that 0 < bc ≤ 1.
Indeed, the appearance of spatial heterogeneity greatly increases the complexity of the global
dynamics of the system (1.4). For example, when 0 < b, c < 1, both coexistence and
extinction phenomena happen in (1.4) depending on the choice of competition coefficients
b, c and diffusion coefficients d, D. According to previous discussions, this is dramatically
different from both the ODE system (1.2) and the PDE system (1.3), where the distribution
of resources is assumed to be constant. Another observation is also worth mentioning. If in
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addition, set d = D = 0, then (1.4) becomes a system of two ordinary differential equations,
whose solutions converge to

(
1 − b

1 − bc
m+(x),

1 − c

1 − bc
m+(x)

)

for every x ∈ �,

where m+(x) = max{m(x), 0}, among all positive continuous initial data. Thus, the intro-
duction ofmigration is also crucial.Moreover, when bc > 1, except for very special situations
mentioned in [19], the global dynamics of the system (1.4) is far from being understood. In
particular, to the best of our knowledge, there is no progress for the case (iv), i.e. b, c > 1.

Based on the importance of nonlocal dispersals, it is natural to consider the system (1.4)
with random diffusion replaced by nonlocal versions. Till now the studies for the correspond-
ing nonlocal models are quite limited. See [6,20,34] and the references therein.

1.2 Statements of main results

For clarity, in the statements of main results, we only focus on no flux boundary conditions
for both local and nonlocal operators. Indeed, these results can be extended to models with
homogeneous Dirichlet boundary conditions and space-periodic boundary conditions. See
Sect. 6 for further discussions.

1.2.1 Main results: nonlocal dispersal strategies

Denote X = C(�̄), X+ = {u ∈ X | u ≥ 0}, X++ = X+ \ {0}. For φ ∈ X, define

(N) K[φ] =
∫

�

k(x, y)φ(y)dy −
∫

�

k(y, x)dyφ(x),P[φ] =
∫

�

p(x, y)φ(y)dy −
∫

�

p(y, x)dyφ(x), where the kernels k(x, y), p(x, y) describe the rate at which organ-

isms move from point y to point x . Nonlocal operators in hostile surroundings or periodic
environments will be discussed in Sect. 6. See [23] for the derivation of different types of
nonlocal operators.

Throughout this paper, unless designated otherwise, we assume that

(C1) m(x), M(x) ∈ X are nonconstant.
(C2) k(x, y), p(x, y) ∈ C(Rn × R

n) are nonnegative and k(x, x), p(x, x) > 0
in R

n . Moreover,
∫

Rn k(x, y)dy = ∫

Rn k(y, x)dy = 1 and
∫

Rn p(x, y)dy =∫

Rn p(y, x)dy = 1.
(C3) k(x, y), p(x, y) are symmetric, i.e., k(x, y) = k(y, x), p(x, y) = p(y, x).

Remark 1.1 The assumption k(x, x), p(x, x) > 0 corresponds to the strict ellipticity condi-
tion for differential operators, which guarantees strong maximum principle.

To better demonstrate our main results and techniques, some explanations are in place.
Let (U (x), V (x)) denote a nonnegative steady state of (1.1), then there are at most three
possibilities:

• (U , V ) = (0, 0) is called a trivial steady state;
• (U , V ) = (ud , 0) or (U , V ) = (0, vD) is called a semi-trivial steady state, where ud , vD

are the positive solutions to single-species models

dK[U ] +U (m(x) −U ) = 0, (1.5)
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and
DP[V ] + V (M(x) − V ) = 0 (1.6)

respectively.
• U > 0, V > 0, and we call (U , V ) a coexistence/positive steady state.

The first main result in this paper gives a complete classification of the global dynamics
to the competition system (1.1) provided that at least one semi-trivial steady state is locally
unstable.

Theorem 1.1 Assume that (C1)–(C3) hold and 0 < bc ≤ 1. Also assume that (1.1) admits
two semi-trivial steady states (ud , 0) and (0, vD). Then for the global dynamics of the system
(1.1) with nonlocal operators defined in (N), we have the following statements:

(i) If both (ud , 0) and (0, vD) are locally unstable, then the system (1.1) admits a unique
positive steady state, which is globally asymptotically stable relative to X++ × X++;

(ii) If (ud , 0) is locally unstable and (0, vD) is locally stable or neutrally stable, then (0, vD)

is globally asymptotically stable relative to X++ × X++;
(iii) If (ud , 0) is locally stable or neutrally stable and (0, vD) is locally unstable, then (ud , 0)

is globally asymptotically stable relative to X++ × X++.

For competition models with local dispersals, it is known that to show global dynamics,
it suffices to demonstrate that every positive steady state is locally stable. See [22] and
references therein, where the compactness of solutions orbits is a necessary condition. This
is not satisfied in the nonlocal model (1.1) due to lack of regularity.

Moreover, in handling the local model (1.4), the key contribution in [19] is the discovery
of an intrinsic relation between a positive steady state and a principal eigenfunction of the
linearized problem at this steady state. However, in nonlocal models, there are difficulties
determining the local stability by linearized analysis, since principal eigenvalue might not
exist. For single-species models or semi-trivial steady states of competition models, it is
known that this issue can be resolved by perturbation arguments and spectral analysis. See
[7,23] and so on. Unfortunately, as far as we are concerned, there is no progress in the studies
of linearized problem at positive steady states. Hence, we have to avoid analyzing local
stability of positive steady state.

Fortunately, two-species competition models with nonlocal dispersals still have the fol-
lowing solution structure:

• if one semi-trivial steady state is locally stable while the other one is locally unstable,
and there is no positive steady state, then the stable one is globally asymptotically stable;

• if two semi-trivial steady states are both locally unstable, then there exists at least one
stable positive steady state and moreover the uniqueness of positive steady state global
implies asymptotic stability.

Thus, to prove Theorem 1.1, we turn our attention back to the solution structure and verify
either the nonexistence or uniqueness of positive steady state directly based on characteristics
of nonlocal operators and arguments by contradiction.

The second main result concerns the global dynamics to the competition system (1.1)
when both semi-trivial steady states are stable.

Theorem 1.2 Assume that (C1)–(C3) hold and 0 < bc ≤ 1. Also assume that (1.1) admits two
semi-trivial steady states (ud , 0) and (0, vD). For the system (1.1) with nonlocal operators
defined in (N), if both (ud , 0) and (0, vD) are locally stable or neutrally stable, then bc = 1,
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bud = vD and the system (1.1) has a continuum of steady states {(sud , (1− s)vD), 0 ≤ s ≤
1}, which are locally stable except for s = 0 and s = 1. Moreover, the solution of (1.1) with
(u0, v0) ∈ X+ × X+ \ {0} approaches to a steady state in {(sud , (1− s)vD), 0 ≤ s ≤ 1} in
X × X.

Notice that the solution orbits of the system (1.1) are uniformly bounded, but not precom-
pact in X × X due to lack of regularity. Thus when there are infinitely many steady states,
it is highly nontrivial to demonstrate the global convergence of solutions of the system (1.1)
in X × X. Indeed, the approaches developed in the proof of Theorem 1.2, which relies on
energy estimates and the repeated applications of comparison principle, are original and quite
involved. Roughly speaking, the key part of the proof consists of the following steps:

• Prove that there exists T > 0 such that the solution (u(x, t), v(x, t)) of (1.1) satisfies
u(x, t) > 0, 0 < v(x, t) < vD(x) or 0 < u(x, t) < ud(x), v(x, t) > 0 in �̄ for t ≥ T .

• Make use of energy estimates to prove that a subsequence of (u(·, t), v(·, t)) converges
in L2(�) × L2(�) to a steady state in {(sud , (1 − s)vD), 0 ≤ s ≤ 1}.

• Improve the convergence of a subsequence to the convergence of (u(·, t), v(·, t)) in
L2(�) × L2(�) as t → ∞.

• Improve the convergence of (u(·, t), v(·, t)) in L2(�) × L2(�) as t → ∞ to that in
X × X, which is clearly optimal for the system (1.1).

Our arguments thoroughly employ the structure of monotone systems and the characteristics
of nonlocal operators. We strongly believe that this approach can be generalized to handle
monotone system without compactness of solution orbits. We will turn to this topic in future
work.

1.2.2 Main results: mixed dispersal strategies, location-dependent competition
coefficients and self-regulations

In many species, dispersal includes both local migration and a small proportion of long-
distance migration. See [50] and the references therein. For example, in genetic model with
partial panmixia, the diffusion term is a combination of local and nonlocal dispersals, where
the nonlocal term gives the approximation for long-distance migration. See [35,38,46,47] for
modeling and related studies. Moreover, in [26,27], to understand the competitive advantage
among different types of dispersal strategies, the authors study the competition systemwhere
the movement of one species is purely by random walk while the other species adopts a non-
local dispersal strategy.

These works motivate our studies of competing species with mixed dispersal strategies as
well as location-dependent competition coefficients and self-regulations. To be more precise,
we will study models with no flux boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = d {αK[u] + (1 − α)�u} + u(m(x) − b1(x)u − c1(x)v) in � × [0,∞),

vt = D {βP[v] + (1 − β)�v} + v(M(x) − b2(x)u − c2(x)v) in � × [0,∞),

(1 − α)∂u/∂γ = (1 − β)∂v/∂γ = 0 on ∂�,

u(x, 0) = u0(x), v(x, 0) = v0(x) in �,

(1.7)

whereK,P are defined in (N), b1, c2 represent self-regulations, and 0 ≤ α, β ≤ 1.Moreover,
assume that

(C4) b1(x), c1(x), b2(x), c2(x) ∈ X, b1(x), c1(x), b2(x), c2(x) > 0 in �̄.
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Equipped with the techniques developed in the study of the system (1.1), we manage to
derive the third main result in this paper, which completely classifies the global dynamics of
the system (1.7) provided that

max
�̄

b2(x) · max
�̄

c1(x) ≤ min
�̄

b1(x) · min
�̄

c2(x). (1.8)

Theorem 1.3 Assume that (C1)–(C4) hold and (1.8) is valid. Also assume that (1.7) admits
two semi-trivial steady states (ûd , 0) and (0, v̂D). Then there are exactly four cases:

(i) If both (ûd , 0) and (0, v̂D) are locally unstable, then the system (1.7) admits a unique
positive steady state, which is globally asymptotically stable relative to X++ × X++;

(ii) If (ûd , 0) is locally unstable and (0, v̂D) is locally stable or neutrally stable, then (0, v̂D)

is globally asymptotically stable relative to X++ × X++;
(iii) If (ûd , 0) is locally stable or neutrally stable and (0, v̂D) is locally unstable, then (ûd , 0)

is globally asymptotically stable relative to X++ × X++;
(iv) If both (ûd , 0)and (0, v̂D)are locally stable or neutrally stable, thenb1(x), c2(x), b2(x),

c2(x) must be constants, b2c1 = b1c2, b2ûd = c2v̂D and the system (1.7) has a contin-
uum of steady states {(sûd , (1−s)v̂D), 0 ≤ s ≤ 1}. Moreover, the solution of (1.7) with
(u0, v0) ∈ X+×X+\{0} approaches to a steady state in {(sûd , (1−s)v̂D), 0 ≤ s ≤ 1}
in X × X.

Weremark that in [20], the global dynamics of the system (1.7)withα = β = 1 andK = P
can be determined provided that certain restrictive conditions are imposed on the diffusion
rates, intrinsic growth rates, competition coefficients and self-regulations simultaneously.
However, in Theorem 1.3, we manage to classify the global dynamics of the solutions to the
system (1.7), regardless of intrinsic growth rates and competition coefficients.

For the proof of Theorem1.3(i)–(iii), ifα, β ∈ [0, 1), i.e., local dispersal is at least partially
adopted for both species, the method in [19] can be applied since solution orbits still admit
compactness. But the situation is different if at least one of α, β is equal to 1. However, the
approach developed in the proof of Theorem 1.1 can be employed to handle α, β ∈ [0, 1] all
at once.

In the proof of Theorem1.3(iv), extra care is neededwhen eitherα = 1 orβ = 1. The proof
of this case mainly follows from that of the approach in handling the case that α = β = 1,
which has been proved in Theorem 1.2. However, some modifications are necessary due to
the essential difference between local and nonlocal diffusion.Wewill emphasize the different
parts and the corresponding adjustments in the proof. Moreover, when α, β ∈ [0, 1), thanks
to the compactness of solution orbits, the convergence of solutions is known [21].

At the end, we emphasize that compared with local models, lack of regularity is the
key issue in the studies of models with nonlocal dispersals. The approaches and techniques
developed in this paper to overcome the difficulties caused by this issue aremain contributions
of our work.

This paper is organized as follows. Section 2 provides some background properties and
a general result concerning global dynamics of two-species competition models, regardless
of whether the dispersal kernels are symmetric or not. Sections 3 and 4 are devoted to the
proofs of Theorems 1.1 and 1.2 respectively. The proof of Theorem 1.3 is included in Sect. 5.
At the end, other types of nonlocal dispersal strategies will be discussed in Sect. 6.
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2 Preliminaries

In this section, we prepare some background results and describe the scheme of proofs of
main results. It is worth pointing out that throughout this section, assumption (C3) is not
imposed, i.e., the nonlocal operators can be nonsymmetric.

2.1 Single-species model

For the convenience of readers, we include a general result concerning single-species models
with nonlocal operators. To be more specific, we consider a more general problem, which
obviously covers (1.5) and (1.6), as follows:

ut (x, t) = L[u] + f (x, u)
.= d

∫

�

k(x, y)u(y, t)dy + f (x, u), (2.1)

where k(x, y) satisfies (C2) and f (x, u) satisfies

(f1) f ∈ C(�̄ × R
+, R), f is C1 continuous in u and f (x, 0) = 0;

(f2) For u > 0, f (x, u)/u is strictly decreasing in u;
(f3) There exists C1 > 0 such that d

∫

�
k(x, y)dy + f (x,C1)/C1 ≤ 0 for all x ∈ �.

To study the existence of positive steady state of (2.1), it is natural to consider the local
stability of the trivial solution u ≡ 0, which is determined by the signs of

λ∗ = sup {Re λ | λ ∈ σ(L + fu(x, 0)} ,

where we think of L + fu(x, 0) as an operator from X to X. Also, if λ is an eigenvalue of
this operator with a continuous and positive eigenfunction, we call λ principal eigenvalue.

Theorem 2.1 Under the assumptions (C2) and (f1)–(f3), the problem (2.1) admits a unique
positive steady state in X if and only if λ∗ > 0. Moreover, the unique positive steady state,
whenever it exists, is globally asymptotically stable relative to X++, otherwise, u ≡ 0 is
globally asymptotically stable relative to X++.

Theorem 2.1 has been obtained in [7] for symmetric operators in the one dimensional case
and partially obtained in [15] for nonsymmetric operators of special type. More precisely, in
[15], the author only derives the pointwise convergence of the unique positive steady state in
L∞(�). Since the spectrum of the operatorL+ fu(x, 0) has been thoroughly studied in [33],
the arguments in [7] and [15, Section 6] can be applied. Moreover, thanks to Dini’s theorem,
the pointwise convergence can be improved to the desired convergence in X. The details are
omitted.

2.2 Competitionmodels

From now on, for convenience, we rewrite the nonlocal operators defined in (N) as follows

K[u] =
∫

�

k(x, y)u(y)dy − ad(x)u(x), (2.2)

P[v] =
∫

�

p(x, y)v(y)dy − aD(x)v(x), (2.3)

where ad(x) = ∫

�
k(y, x)dy, aD(x) = ∫

�
p(y, x)dy.
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For clarity, we will focus on competition model (1.1) and always assume that there exist
two semi-trivial steady states (ud , 0) and (0, vD).

First of all, the linearized operator of (1.1) at (ud , 0) is

L(ud ,0)

(
φ

ψ

)

=
(
dK[φ] + [m(x) − 2ud ]φ − cudψ

DP[ψ] + [M(x) − bud ]ψ
)

. (2.4)

Also, the linearized operator of (1.1) at (0, vD) is

L(0,vD)

(
φ

ψ

)

=
(

dK[φ] + [m(x) − cvD]φ
DP[ψ] + [M(x) − 2vD]ψ − bvDφ

)

. (2.5)

Denote

μ(ud ,0) = sup {Re λ | λ ∈ σ(DP + [M(x) − bud ])} (2.6)

ν(0,vD) = sup {Re λ | λ ∈ σ(dK + [m(x) − cvD])} .

It is known that the signs of μ(ud ,0) and ν(0,vD) determine the local stability/instability of
(ud , 0) and (0, vD) respectively. This is explicitly stated as follows and the proof is omitted
since it is standard.

Lemma 2.2 Assume that the assumptions (C1), (C2) hold. Then

(i) (ud , 0) is locally unstable if μ(ud ,0) > 0; (ud , 0) is locally stable if μ(ud ,0) < 0; (ud , 0)
is neutrally stable if μ(ud ,0) = 0.

(ii) (0, vD) is locally unstable if ν(0,vD) > 0; (0, vD) is locally stable if ν(0,vD) < 0; (0, vD)

is neutrally stable if ν(0,vD) = 0.

Remark that as explained in Sect. 2.1, in generalμ(ud ,0) and ν(0,vD) might not be principal
eigenvalues of the corresponding linearized operators. See [33] and its references for more
discussions.

Next, some definitions and basic properties are included since they will be useful in the
proof of main results.

Definition 2.1 Define the competitive order inX×X: (u1, v1) ≤c (<c)(u2, v2) ifu1 ≤ (<)u2
and v1 ≥ (>)v2.

Definition 2.2 We say (u, v) ∈ X × X is a lower(upper) solution of the system (1.1) if
{
0 ≤ (≥)dK[u] + u(m(x) − u − cv) in �,

0 ≥ (≤)DP[v] + v(M(x) − bu − v) in �.

Lemma 2.3 Assume that (ũ, ṽ) and (u, v) are upper and lower solutions of the system (1.1)
respectively with ũ, u, ṽ, v > 0. Then

(i) The solution of (1.1) with initial value (ũ, ṽ) is decreasing in t under the competitive
order.

(ii) The solution of (1.1) with initial value (u, v) is increasing in t under the competitive
order.

Lemma 2.4 Assume that the assumptions (C1), (C2) hold. Also assume that system (1.1)
admits two semi-trivial steady states (ud , 0) and (0, vD).

(i) If μ(ud ,0) > 0, then there exists ε1 > 0 such that for any 0 < ε ≤ ε1 and 0 < δ ≤ ε1,
there exists an upper solution (ũ, ṽ) of (1.1) satisfying

ũ = (1 + δ)ud(x), 0 < ṽ < ε.
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(ii) If ν(0,vD) > 0, then there exists ε2 > 0 such that for any 0 < ε ≤ ε2 and 0 < δ ≤ ε2,
there exists a lower solution (u, v) of (1.1) satisfying

0 < u < ε, v = (1 + δ)vD(x).

The proof of Lemma 2.4 is similar to that of [6, Lemmas 2.3 and 2.5] and thus the details
are omitted.

The following result explains how to characterize the global dynamics of the competition
model (1.1) with two semi-trivial steady states.

Theorem 2.5 Assume that the assumptions (C1), (C2) hold. Also assume that system (1.1)
admits two semi-trivial steady states (ud , 0) and (0, vD). We have the following three possi-
bilities:

(i) If both μ(ud ,0) and ν(0,vD), defined in (2.6), are positive, the system (1.1) at least has
one positive steady state in L∞(�) × L∞(�). If in addition, assume that the system
(1.1) has a unique positive steady state in X × X, then it is globally asymptotically
stable relative to X++ × X++.

(ii) If μ(ud ,0) defined in (2.6) is positive and no positive steady states of the system (1.1)
exist, then the semi-trivial steady state (0, vD) is globally asymptotically stable relative
to X++ × X++.

(iii) If ν(0,vD) defined in (2.6) is positive and the system (1.1) does not admit positive steady
states, then the semi-trivial steady state (ud , 0) is globally asymptotically stable relative
to X++ × X++.

Proof The arguments are almost the same as that of [6, Theorem 2.1], where a simplified
nonlocal operator is considered. ��

It is routine to verify that Theorem 2.5 also holds for the system (1.7). Indeed, one sees
from the proof of Theorem 2.5 that for models with only nonlocal dispersals, μ(ud ,0) and
ν(0,vD) might not be principal eigenvalues, thus the constructions of upper/lower solutions
rely on the principal eigenfunctions of suitably perturbed eigenvalue problems which admit
principal eigenvalues. However, when local diffusion is incorporated, the existence of prin-
cipal eigenvalues is always guaranteed, which makes the arguments standard.

It is worth pointing out that the proof of Theorem 2.5(i) relies on the upper/lower solution
method and this method can only indicate the existence of positive steady state, denoted by
(u, v), in L∞(�) × L∞(�). However, according to the assumptions (C1), (C2), the optimal
regularity should be (u, v) ∈ X × X. A natural question is when this could be true. The
following lemma provides a partial answer, which is important for this paper.

Lemma 2.6 Assume that the assumptions (C1), (C2) hold. If bc ≤ 1, then any positive steady
state of (1.1) in L∞(�) × L∞(�) belongs to X × X.

Proof It follows from the proof of [20, Lemma 4.1]. Note that in [20, Lemma 4.1], it is
assumed that bc < 1. However, bc = 1 can be handled similarly. ��

3 Proof of Theorem 1.1

To better demonstrate the proof of Theorem1.1, some properties of local stability and positive
steady states of (1.1) will be analyzed first.

The following result is about the classification of local stability.
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Proposition 3.1 Assume that (C1)–(C3) hold and 0 < bc ≤ 1. Then there exist exactly four
alternatives as follows.

(i) μ(ud ,0) > 0, ν(0,vD) > 0;
(ii) μ(ud ,0) > 0, ν(0,vD) ≤ 0;
(iii) μ(ud ,0) ≤ 0, ν(0,vD) > 0;
(iv) μ(ud ,0) = ν(0,vD) = 0.

Moreover, (iv) holds if and only if bc = 1 and bud = vD.

Proof It suffice to show that when μ(ud ,0) ≤ 0, ν(0,vD) ≤ 0, that is, none of (i)–(iii) is valid,
we have μ(ud ,0) = ν(0,vD) = 0, and furthermore bc = 1 and bud = vD .

Note that

μ(ud ,0) = sup
0 �=ψ∈L2

∫

�

(
DψP[ψ] + [M(x) − bud ]ψ2

)
dx

∫

�
ψ2dx

≤ 0.

Thus one sees that
∫

�

(
DvDP[vD] + [M(x) − bud ]v2D

)
dx

∫

�
v2Ddx

≤ μ(ud ,0) ≤ 0,

and thus, due to (1.6), it follows that
∫

�

(
v3D − budv

2
D

)
dx ≤ 0. (3.1)

Similarly, ν(0,vD) ≤ 0 and (1.5) give that
∫

�

(
u3d − cvDu

2
d

)
dx ≤ 0. (3.2)

Now by multiplying (3.2) by b3 and using the condition 0 < bc ≤ 1, we have
∫

�

(
(bud)

3 − vD(bud)
2) dx ≤

∫

�

(
(bud)

3 − bcvD(bud)
2) dx

=
∫

�

b3
(
u3d − cvDu

2
d

)
dx ≤ 0,

which, together with (3.1), implies that
∫

�

(bud − vD)2(bud + vD)dx ≤ 0. (3.3)

Therefore, all previous inequalities should be equalities. Hence it is obvious that μ(ud ,0) =
ν(0,vD) = 0, bc = 1 and bud = vD .

At the end, if bc = 1 and bud = vD , then it is easy to check thatμ(ud ,0) = ν(0,vD) = 0. ��
The next result indicates that whenever there exist two ordered positive steady states, there

are infinitely many positive steady states. Our arguments rely on exploring characteristics of
nonlocal operators, as well as some integral relations inspired by [19].

Proposition 3.2 Assume that (C1)–(C3) hold and 0 < bc ≤ 1. Then (1.1) admits two strictly
ordered continuous positive steady states (u, v) and (u∗, v∗) (that iswithout loss of generality,
u > u∗, v < v∗) if and only if bc = 1, bud = vD. Moreover, all the positive steady states of
(1.1) consist of (sud , (1 − s)vD), 0 < s < 1.
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Proof If bc = 1, bud = vD , it is routine to check that all the positive steady states of (1.1)
consist of (sud , (1 − s)vD), 0 < s < 1, which implies (1.1) admits two strictly ordered
continuous positive steady states.

Now suppose that (1.1) admits two different positive steady states (u, v) and (u∗, v∗),
without loss of generality, u > u∗, v < v∗. We will show that bc = 1, bud = vD is valid.

First, set w = u − u∗ > 0 and z = v − v∗ < 0 and it is standard to check that
{
dK[w] + (m − u − cv)w − u∗w − cu∗z = 0,

DP[z] + (M − bu − v)z − bv∗w − v∗z = 0.
(3.4)

Using the equation satisfied by u, one has

d (uK[w] − wK[u]) = uu∗(w + cz).

This yields that

d
∫

�

(−uK[u∗] + u∗K[u]) w2

uu∗ dx =
∫

�

(w + cz)w2dx . (3.5)

We claim that
∫

�
(w + cz)w2dx ≤ 0.

To prove this claim, let us calculate the left hand side of (3.5). Applying the assumption
(C3), we have that

d
∫

�

(−uK[u∗] + u∗K[u]) w2

uu∗ dx

= d
∫

�

∫

�

k(x, y)
[
u∗(x)u(y) − u(x)u∗(y)

] (u(x) − u∗(x))2

u(x)u∗(x)
dydx

= d
∫

�

∫

�

k(x, y)
[
u∗(x)u(y) − u(x)u∗(y)

]
(

u(x)

u∗(x)
+ u∗(x)

u(x)

)

dydx, (3.6)

where
∫

�

∫

�
k(x, y)

[
u∗(x)u(y) − u(x)u∗(y)

]
dydx = 0 is used. By exchanging x and y,

we have

d
∫

�

(−uK[u∗] + u∗K[u]) w2

uu∗ dx

= d
∫

�

∫

�

k(y, x)
[
u∗(y)u(x) − u(y)u∗(x)

]
(

u(y)

u∗(y)
+ u∗(y)

u(y)

)

dydx . (3.7)

Due to (3.6) and (3.7), one sees that

d
∫

�

(−uK[u∗] + u∗K[u]) w2

uu∗ dx

= d

2

∫

�

∫

�

k(x, y)
[
u∗(x)u(y) − u(x)u∗(y)

]
(

u(x)

u∗(x)
+ u∗(x)

u(x)
− u(y)

u∗(y)
− u∗(y)

u(y)

)

dydx

= d

2

∫

�

∫

�

k(x, y)
[
u∗(x)u(y) − u(x)u∗(y)

]2
(

1

u(x)u(y)
− 1

u∗(x)u∗(y)

)

dydx

≤ 0

since u > u∗. The claim is proved, i.e.,
∫

�
(w + cz)w2dx ≤ 0.

Similarly, using (3.4) and the equation satisfied by v, we have

D (vP[z] − zP[v]) = vv∗(bw + z),
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which gives that

D
∫

�

(−vP[v∗] + v∗P[v]) z2

vv∗ dx =
∫

�

(bw + z)z2dx .

Similar to the proof of the previous claim, we obtain
∫

�

(bw + z)z2dx

= D
∫

�

(−vP[v∗] + v∗P[v]) z2

vv∗ dx

= D

2

∫

�

∫

�

p(x, y)
[
v∗(x)v(y) − v(x)v∗(y)

]2
(

1

v(x)v(y)
− 1

v∗(x)v∗(y)

)

dydx

≥ 0 (3.8)

since v < v∗.
Now we have derived two important inequalities:

∫

�

(w + cz)w2dx ≤ 0,
∫

�

(bw + z)z2dx ≥ 0. (3.9)

Multiplying the second one by c3 and subtracting the first one, it follows that

0 ≤
∫

�

(cbw + cz)(cz)2dx −
∫

�

(w + cz)w2dx

≤
∫

�

(w + cz)(cz)2dx −
∫

�

(w + cz)w2dx

=
∫

�

(w + cz)2(cz − w)dx, (3.10)

where bc ≤ 1 is used in the second inequality. The assumption w = u − u∗ > 0 and
z = v − v∗ < 0 indicates that w + cz = 0 in �̄ and all the previous inequalities should be
equalities. Hence we also have bc = 1 and bw + z = 0 (i.e., w + cz = 0) in �̄.

Moreover, note that w + cz = 0 is equivalent to u + cv = u∗ + cv∗. Denote R(x) =
u + cv = u∗ + cv∗ for convenience. According to the equation satisfied by u, u∗, one sees
that both u and u∗ are solutions of the same linear equation

dK[U ] + (m(x) − R(x))U = 0.

Since both u and u∗ are positive functions in in X, u and u∗ can be regarded as the principal
eigenfunctions of the nonlocal eigenvalue problem

dK[φ] + (m(x) − R(x))φ = λφ

with the principal eigenvalue being zero. It is proved in [33] that the principal eigenvalue
is algebraically simple whenever it exists, which implies that u∗ = αu, where 0 < α < 1.
Similarly, it can be verified that v∗ = βv, where β > 1. Then using u + cv = u∗ + cv∗
again, we have

u = c
β − 1

1 − α
v.
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Substitute this relation into the system satisfied by (u, v), we have
⎧
⎨

⎩

dK[v] + v
(
m(x) − c β−α

1−α
v
)

= 0,

DP[v] + v
(
M(x) − β−α

1−α
v
)

= 0,

where bc = 1 is used. The uniqueness of positive steady state to single-species models (1.5)
and (1.6) implies that

ud = c
β − α

1 − α
v, vD = β − α

1 − α
v.

Therefore, bc = 1, bud = vD and all the positive steady states of (1.1) consist of (sud , (1−
s)vD), 0 < s < 1. ��

Now we complete the proof of Theorem 1.1 on the basis of Propositions 3.1 and 3.2.

Proof of Theorem 1.1 (i) According to Lemma 2.2, in this case, μ(ud ,0) > 0, ν(0,vD) > 0.
Thus thanks to Theorem 2.5 and Lemma 2.6, one sees that the system (1.1) admits a positive
steady state (u, v) ∈ X × X.

Again due to Theorem 2.5, it suffices to verify the uniqueness of positive steady states.
Suppose that this is not true. Let (u∗, v∗) denote a positive steady state of (1.1) different from
(u, v). By Lemma 2.4, there exist an upper solution (ũ0, ṽ0) and a lower solution (u0, v0) of
(1.1) such that

(u0, v0) <c (u, v), (u∗, v∗) <c (ũ0, ṽ0).

Then according to Lemma 2.3, one sees that the solution of (1.1) with initial value (u0, v0)
increases to a positive steady state of (1.1) in L∞(�) × L∞(�), denoted by (u1, v1), while
the solution of (1.1) with initial value (ũ0, ṽ0) decreases to a positive steady state of (1.1) in
L∞(�) × L∞(�), denoted by (u2, v2). Thanks to Lemma 2.6, one has (u1, v1), (u2, v2) ∈
X × X. Moreover, by comparison principle, it is routine to show that

(u1, v1) ≤c (u, v), (u∗, v∗) ≤c (u2, v2).

Therefore, Propositions 3.1 and 3.2 indicate that

(u1, v1) = (u, v) = (u∗, v∗) = (u2, v2).

This is a contradiction.
(ii) According to Theorem 2.5, to prove that (0, vD) is globally asymptotically stable,

it suffices to show that (1.1) admits no positive steady states. Suppose that (1.1) admits a
positive steady state (u, v), i.e., (u, v) satisfies

{
dK[u] + u(m(x) − u − cv) = 0,

DP[v] + v(M(x) − bu − v) = 0.

Denote (u∗, v∗) = (0, vD) and set w = u − u∗ = u > 0, z = v − v∗ < 0. Similar to the
computation of (3.8), one has

∫

�

(bu + z)z2dx =
∫

�

(bw + z)z2dx

= D

2

∫

�

∫

�

p(x, y)
[
v∗(x)v(y) − v(x)v∗(y)

]2
(

1

v(x)v(y)
− 1

v∗(x)v∗(y)

)

dydx ≥ 0.
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However,

0 ≥ ν(0,vD) = sup
0 �=φ∈L2

∫

�

(
dφK[φ] + [m(x) − cvD]φ2

)
dx

∫

�
φ2dx

≥
∫

�

(
duK[u] + [m(x) − cvD]u2) dx

∫

�
u2dx

=
∫

�

(−[m(x) − u − cv]u2 + [m(x) − cvD]u2) dx
∫

�
u2dx

=
∫

�
(u + cz)u2dx
∫

�
u2dx

.

Putting together the above two inequalities:
∫

�

(bu + z)z2dx ≥ 0,
∫

�

(u + cz)u2dx ≤ 0. (3.11)

Similar to (3.10), we obtain
∫

�

(u + cz)2(cz − u)dx ≥ 0,

where 0 < bc ≤ 1 is used. Hence u + cz = 0 in �̄ and all the previous inequalities
should be equalities. In particular, bc = 1 and bu + z = 0. Note that bu + z = 0 means
bu + v = vD . Then based on the equations satisfied by v and vD respectively, it is routine to
show that v = αvD , where 0 < α < 1. Thus, u = c(1− α)vD . Then plugging v = αvD and
u = c(1 − α)vD into the equation satisfied by u, we have

dc(1 − α)K[vD] + c(1 − α)vD(m(x) − cvD) = 0,

which indicates that ud = cvD , i.e., bud = vD . This yields a contradiction due to Proposi-
tion 3.1.

(iii) is similar to the proof of case (ii), thus the details are omitted. ��

4 Proof of Theorem 1.2

Throughout this section, let (u(x, t), v(x, t)) denote a solution of the system (1.1). First of
all, thanks to Proposition 3.1, if both (ud , 0) and (0, vD) are locally stable or neutrally stable,
then bc = 1, bud = vD and thus it is routine to verify that (1.1) has a continuum of steady
states {(sud , (1 − s)vD), 0 ≤ s ≤ 1}. Moreover, fix 0 < s < 1. For any ε > 0, choose
τ > 0 such that

τ < min

{
1

2
s,

1

2
(1 − s)

}

, τ max
�̄

ud <
ε

2
, τ max

�̄
vD <

ε

2
.

Set

δ = min

{

τ min
�̄

ud , τ min
�̄

vD

}

.

Then we claim that for any (u0, v0) ∈ X × X, if

‖u0 − sud‖X + ‖v0 − (1 − s)vD‖X < δ, (4.1)
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then the solution of (1.1)satisfies

‖u(·, t) − sud‖X + ‖v(·, t) − (1 − s)vD‖X < ε

for any t > 0. Notice that (4.1) indicates that

u0 < sud + δ ≤ sud + τ min
�̄

ud ≤ (s + τ)ud < ud in �̄

and

v0 > (1 − s)vD − δ ≥ (1 − s)vD − τ min
�̄

vD ≥ (1 − s − τ)vD > 0 in �̄.

By comparison principle, it follows that for t > 0

u(x, t) < (s + τ)ud , v(x, t) > (1 − s − τ)vD in �̄.

Similarly, we can derive that

u(x, t) > (s − τ)ud , v(x, t) < (1 − s + τ)vD in �̄.

Hence according to the choice of τ , one sees that

‖u(·, t) − sud‖X + ‖v(·, t) − (1 − s)vD‖X ≤ ‖τud‖X + ‖τvD‖X < ε.

The claim is proved and thus (sud , (1 − s)vD) is locally stable for any 0 < s < 1.
Now it remains to demonstrate the global convergence of solutions to the system (1.1) for

any nonnegative initial data (u0, v0) �≡ (0, 0). The proof of this part is quite involved and
complicated.

Let us add some explanations here for the convenience of readers. If either u0 ≡ 0
or v0 ≡ 0, then (1.1) is reduced to a single-species model and thus it follows that the
corresponding solution (u(x, t), v(x, t)) approaches to (0, vD) or (ud , 0) respectively in
X × X. Now only consider initial data (u0, v0) ∈ X++ × X++. By comparison principle, we
have u(x, t) > 0 and v(x, t) > 0 in �̄ for t > 0. Hence, for the rest of the proof, assume
that u0 > 0, v0 > 0 in �̄ and consider three cases separately:

Case I u(x, t) does not weakly converge to zero in L2(�);
Case II v(x, t) does not weakly converge to zero in L2(�);
Case III both u(x, t) and v(x, t) weakly converge to zero in L2(�).

The following property indicates how to initiate the proofs of Cases I and II.

Proposition 4.1 Assume that (C1)–(C3) hold.

(i) If Case I holds, then there exists T1 > 0 such that v(x, t) < vD(x) in �̄ for t ≥ T1.
(ii) If Case II holds, then there exists T2 > 0 such that u(x, t) < ud(x) in �̄ for t ≥ T2.

We prepare a lemma first, which is crucial in the proof of Proposition 4.1.

Lemma 4.2 Let � denote a bounded domain in R
n. Assume that u(·, t) ∈ L∞(�), t ≥ 0

satisfies

ut (x, t) ≥ δ

∫

�∩Br (x)
u(y, t)dy, and u(x, t) ≥ 0 for t ≥ 0,

where r > 0, δ > 0. Then for any t0 ≥ 0, 0 < t < 1, there exist α > 0 and A0 = A0(�)

such that

u(x, t0 + t) ≥ A0t
α

∫

�

u(x, t0)dx in �.
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Proof Without loss of generality, assume that t0 = 0. Note that it is obvious if u(x, 0) ≡ 0.
Now suppose that u(x, 0) �≡ 0 and let a = ∫

�
u(x, 0)dx > 0. Since � is bounded, there

exist x j ∈ R
n , 1 ≤ j ≤ J such that

� ⊂⊂
⋃

1≤ j≤J

B j , with Bj � Br/4(x j ) = {x ∈ R
n, |x − x j | < r/4}.

Without loss of generality, assume σ = min{|Bj
⋂

�|, 1 ≤ j ≤ J } > 0,
∫

�
⋂

B1
u(y, t)dy ≥ a/J , and Bj+1

⋂
Bj �= ∅, 1 ≤ j ≤ J − 1.

Now first for any x ∈ B1,

ut (x, t) ≥ δ

∫

�
⋂

Br (x)
u(y, t)dy ≥ δ

∫

�
⋂

B1
u(y, t)dy ≥ δ

a

J
.

Thus for x ∈ B1, t > 0,

u(x, t) ≥ δ
a

J
t . (4.2)

Secondly, for any x ∈ B2, it follows that

ut (x, t) ≥ δ

∫

�
⋂

Br (x)
u(y, t)dy ≥ δ

∫

�
⋂

B1
u(y, t)dy ≥ δ

a

J
.

Thus for x ∈ B2, t > 0,

u(x, t) ≥ δ
a

J
t . (4.3)

Next, for any x ∈ B3, by (4.3), one sees that

ut (x, t) ≥ δ

∫

�
⋂

Br (x)
u(y, t)dy ≥ δ

∫

�
⋂

B2
u(y, t)dy

≥ δσδ
a

J
t = σδ2

a

J
t .

Hence for x ∈ B3, t > 0,

u(x, t) ≥ σδ2
a

J

t2

2
.

This step can be repeated and we have, for x ∈ Bj , 3 ≤ j ≤ J , t > 0,

u(x, t) ≥ σ j−2δ j−1 a

J

t j−1

( j − 1)! .

Therefore, together with (4.2) and (4.3), one sees that, for x ∈ �̄, 0 < t < 1

u(x, t) ≥ A0t
J−1

∫

�

u(x, 0)dx,

where

A0 = min
{
1, σ, σ J−2

}
min

{
δ, δ J−1

} 1

J ! .

The lemma is proved by choosing α = J − 1. ��
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Proof of Proposition 4.1 Assume that Case I happens, i.e., u(·, t) �⇀0 in L2(�) as t → ∞,
then there exist a constant a0 > 0 and a sequence {t j } j≥1 with t j → ∞ as j → ∞ such that

∫

�

u(x, t j )dx > a0 for all j ≥ 1. (4.4)

First of all, wewill derive an uniform lower bound for u in certain time intervals.According
to assumption (C2), there exist r1 > 0, δ1 > 0 such that k(x, y) ≥ δ1 if |x − y| ≤ r1. Then
one sees that

ut = d
∫

�

k(x, y)u(y, t)dy + u(m(x) − dad(x) − u − cv)

≥ dδ1

∫

�
⋂

Br1 (x)
u(y, t)dy − A1u, (4.5)

where
A1 = sup

x∈�, t>0
|m(x) − dad(x) − u(x, t) − cv(x, t)| . (4.6)

Let U = eA1t u and it follows that

Ut ≥ dδ1

∫

�
⋂

Br1 (x)
U (y, t)dy.

Thus Lemma 4.2 can be applied to induce that there exist α > 0, A0 = A0(�) such that

U

(

x, t j + 1

2

)

≥ A0

(
1

2

)α ∫

�

U (x, t j )dx in �̄, j ≥ 1,

which, by (4.4), implies a crucial estimate:

u

(

x, t j + 1

2

)

≥ A0e
− 1

2 A1

(
1

2

)α ∫

�

u(x, t j )dx

≥ A0e
− 1

2 A1

(
1

2

)α

a0
.= A2 in �̄, j ≥ 1. (4.7)

Thus, thanks to (4.7), we have the following estimate for t > t j + 1
2

d
∫

�

k(x, y)u(y, t)dy

= d
∫

�

k(x, y)
∫ t

t j+ 1
2

uτ (y, τ )dτdy + d
∫

�

k(x, y)u

(

y, t j + 1

2

)

dy

≥ −d

∥
∥
∥
∥

∫

�

k(·, y)dy
∥
∥
∥
∥
L∞(�)

‖ut (·, t)‖L∞(�)

(

t − t j − 1

2

)

+ d A2

∫

�

k(x, y)dy.

It is easy to see that minx∈�̄

∫

�
k(x, y)dy > 0 since

∫

�
k(x, y)dy ∈ X. Denote

δ2 = d A2 min
x∈�̄

∫

�

k(x, y)dy.

Also, it is easy to verify that ‖ut (·, t)‖L∞(�) has an upper bound independent of t ≥ 0.
Hence, there exists ε1 > 0 such that for j ≥ 1 and 0 < t − t j − 1

2 < ε1, it holds that

d
∫

�

k(x, y)u(y, t)dy ≥ δ2/2 in �̄,
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which yields that for t ∈ [t j + 1
2 , t j + 1

2 + ε1], x ∈ �̄, j ≥ 1,

ut (x, t) = d
∫

�

k(x, y)u(y, t)dy + u(m(x) − ad(x) − u − cv) ≥ δ2/2 − A1u(x, t),

where A1 is determined in (4.6). Direct computation gives that

u(x, t) ≥ δ2

2A1

(
1 − e−A1(t−t j− 1

2 )
)

for x ∈ �̄, t ∈
[

t j + 1

2
, t j + 1

2
+ ε1

]

, j ≥ 1.

Therefore, we reach the conclusion that

u(x, t) ≥ A3 for x ∈ �̄, t ∈
[

t j + 1

2
+ ε1

2
, t j + 1

2
+ ε1

]

, j ≥ 1, (4.8)

where

A3 = δ2

2A1

(
1 − e−A1ε1/2

)
> 0.

Now we are ready to derive the desired estimates for v(x, t). Note that for single-species
model (1.6), for any given initial data in X++, the corresponding solution V (·, t) → vD in
X as t → ∞. Thus, thanks to comparison principle, it is routine to verify that there exists a
sequence {h j } j≥1 with h j > 0, and lim j→∞ h j = 0 such that

v(x, t) ≤ (1 + h j )vD(x) in �̄ for t ≥ t j . (4.9)

Notice that to complete the proof, by comparison principle, it suffices to show the existence
of T1 such that v(x, t) < vD(x) in �̄ at t = T1. Indeed we will prove that v(x, t j + 1

2 +ε1) <

vD(x) in �̄ for j large.
First, we show that if j is sufficiently large, then for each x ∈ �̄, there exists s = s(x) ∈

[t j + 1
2 + ε1

2 , t j + 1
2 + ε1] such that v(x, s) < vD(x).

Fix x ∈ �̄ and suppose that

v(x, t) ≥ vD(x) for t ∈
[

t j + 1

2
+ ε1

2
, t j + 1

2
+ ε1

]

, (4.10)

which, by (4.8) and (4.9), yields that for t ∈ [t j + 1
2 + ε1

2 , t j + 1
2 + ε1]

vt (x, t) = D
∫

�

p(x, y)v(y, t)dy + v(x, t)(M(x) − DaD(x) − bu(x, t) − v(x, t))

≤ D
∫

�

p(x, y)v(y, t)dy + v(x, t)(M(x) − DaD(x) − bu(x, t) − vD(x))

≤ D
∫

�

p(x, y)(1 + h j )vD(y)dy + vD(x)(M(x) − DaD(x) − vD(x))

+ (v(x, t) − vD(x))(M(x) − DaD(x) − bu(x, t) − vD(x)) − bu(x, t)vD(x)

≤ O(h j ) − bA3vD(x). (4.11)

Thus there exists K1 > 0, independent of x , such that for j ≥ K1,

vt (x, t) ≤ −A4,

where

A4 = 1

2
bA3 min

�̄
vD > 0.
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Hence

v

(

x, t j + 1

2
+ ε1

)

≤ v

(

x, t j + 1

2
+ ε1

2

)

− 1

2
ε1A4 ≤ (1 + h j )vD(x) − 1

2
ε1A4,

which implies that there exists K2 ≥ K1, independent of x , such that for j ≥ K2,

v

(

x, t j + 1

2
+ ε1

)

< vD(x).

This contradicts to (4.10).
Therefore, if j ≥ K2, there exists s = s(x) ∈ [t j + 1

2 + ε1
2 , t j + 1

2 + ε1] such that
v(x, s) < vD(x). Note that s depends on the choice of x and in fact we need to find a
moment which is independent of x ∈ �̄.

To be more specific, we will show that if j is large enough, v(x, t) < vD(x) for t ∈
[s(x), t j + 1

2 + ε1].Otherwise, there exists t̃ = t̃(x) ∈ (s(x), t j + 1
2 + ε1] such that v(x, t̃) =

vD(x) and v(x, t) < vD(x) for t ∈ (s(x), t̃). Then, by (4.8) and (4.9), it follows that

0 ≤ vt (x, t̃) = D
∫

�

p(x, y)v(y, t̃)dy + v(x, t̃)(M(x) − DaD(x) − bu(x, t̃) − v(x, t̃))

≤ D
∫

�

p(x, y)(1 + h j )vD(y)dy + vD(x)(M(x) − DaD(x) − bA3 − vD(x))

= h j D
∫

�

p(x, y)vD(y)dy − bA3vD(x). (4.12)

Then there exists K3 ≥ K2, independent of x , such that for j ≥ K3, vt (x, t̃) < 0, which is a
contradiction. Hence, in particular, v(x, t j + 1

2 + ε1) < vD(x) for j ≥ K3.
The proof of (i) is complete and (ii) can be proved in the same way. ��
Now, we continue the proof for Case I. With the help of Proposition 4.1(i), without loss

of generality, we could assume that u0 > 0, 0 < v0 < vD in �̄. Define

θ(t) = sup{θ | u(x, t) > θud(x), v(x, t) < (1 − θ)vD(x) in �̄}.
It is obvious that 0 < θ(0) < 1, θ(t) is increasing in t due to comparison principle. Denote

0 < θ∗ = lim
t→∞ θ(t) ≤ 1.

Assume that θ∗ = 1. For v(x, t), since v(x, t) ≤ (1− θ(t))vD(x) in �̄, it is obvious that

v(·, t) → 0 in X as t → ∞.

For u(x, t), compared with the solution U (x, t) of single-species model (1.5) with initial
data u0 ∈ X++, one sees that u(x, t) ≤ U (x, t). Thus it follows from Theorem 2.1 and the
definition of θ(t) that

u(·, t) → ud(·) in X as t → ∞,

It remains to consider 0 < θ∗ < 1. For clarity, the proof of this situation will be divided
into three steps.
Step 1 We claim that there exists a subsequence of (u(·, t), v(·, t)), which converges to
(α1ud , (1 − α1)vD) in L2(�) × L2(�), where α1 ∈ [0, 1] .

Fix 0 < s1 < θ(0), let (u∗, v∗) = (s1ud , (1 − s1)vD) and set

w(x, t) = u(x, t) − u∗(x), z(x, t) = v(x, t) − v∗(x).
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Recall that (u, v) satisfies

{
ut = dK[u] + u(m(x) − u − cv) in � × [0,∞),

vt = DP[v] + v(M(x) − bu − v) in � × [0,∞),

and (u∗, v∗) satisfies
{
dK[u∗] + u∗(m(x) − u∗ − cv∗) = 0,

DP[v∗] + v∗(M(x) − bu∗ − v∗) = 0.

Thus using the equations satisfied by u and u∗, one has

d
(
u∗K[u] − uK[u∗]) = u∗ut + uu∗(w + cz).

This yields that

d
∫

�

(−uK[u∗] + u∗K[u]) w2

uu∗ dx =
∫

�

(ut
u

w2 + (w + cz)w2
)
dx .

Applying the same estimates as that of the left hand side of (3.5) in the proof of Proposition 3.2,
we have ∫

�

(ut
u

w2 + (w + cz)w2
)
dx ≤ 0. (4.13)

Similarly, using the equations satisfied by v and v∗, we obtain
∫

�

(vt

v
z2 + (bw + z)z2

)
dx ≥ 0. (4.14)

Then (4.13), (4.14) and bc = 1 imply that

c3
∫

�

vt

v
z2dx −

∫

�

ut
u

w2dx ≥
∫

�

[−c3(bw + z)z2 + (w + cz)w2] dx

=
∫

�

(w + cz)2(w − cz)dx . (4.15)

Note that

w − cz = u − u∗ − c(v − v∗) ≥ (θ(t) − s1)ud + c(θ(t) − s1)vD = 2(θ(t) − s1)ud ,

since bc = 1 and bud = vD . Denote C0 = 2(θ(0) − s1)min�̄ ud . Hence (4.15) implies

∫

�

(w + cz)2dx

≤ 1

C0

(

c3
∫

�

vt

v
z2dx −

∫

�

ut
u

w2dx

)

= 1

C0

(

c3
∫

�

(
vvt − 2v∗vt + (v∗)2 vt

v

)
dx −

∫

�

(
uut − 2u∗ut + (u∗)2 ut

u

)
dx

)

.
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Thus for any T > 0,
∫ T

0

∫

�

(w + cz)2dxdt

≤ c3

C0

∫

�

(
1

2
v2(x, T ) − 2v∗(x)v(x, T ) + (v∗(x))2 ln v(x, T )

)

dx

− c3

C0

∫

�

(
1

2
v20(x) − 2v∗(x)v0(x) + (v∗(x))2 ln v0(x)

)

dx

− 1

C0

∫

�

(
1

2
u2(x, T ) − 2u∗(x)u(x, T ) + (u∗(x))2 ln u(x, T )

)

dx

+ 1

C0

∫

�

(
1

2
u20(x) − 2u∗(x)u0(x) + (u∗(x))2 ln u0(x)

)

dx .

Notice that in this case, u(x, t) ≥ θ(0)ud and θ(0) > 0, hence
∫ ∞

0

∫

�

(w + cz)2dxdt < ∞. (4.16)

Moreover, it is routine to verify that
∫

�
(w + cz)2dx is uniformly continuous in t . This,

together with (4.16), yields that

lim
t→∞

∫

�

(w + cz)2dx = 0. (4.17)

Again since bc = 1 and bud = vD , w + cz = u + cv − s1ud − c(1− s1)vD = u + cv − ud .
Hence (4.17) tells us that

u(·, t) + cv(·, t) → ud(·) in L2(�) as t → ∞. (4.18)

Next estimate
∫

�
u2t dx as follows.

∫

�

u2t dx =
∫

�

(dK[u]ut + u(m(x) − u − cv)ut ) dx

= d

dt

∫

�

(
1

2
dK[u]u + 1

2
(m − ud )u

2
)

dx +
∫

�

(ud − u − cv)uutdx

≤ d

dt

∫

�

(
1

2
dK[u]u + 1

2
(m − ud )u

2
)

dx + 1

2

∫

�

(ud − u − cv)2u2dx + 1

2

∫

�

u2t dx,

which gives that
∫ ∞

0

∫

�

u2t dxdt

≤
∫ ∞

0

d

dt

∫

�

(
dK[u]u + (m − ud)u

2) dxdt +
∫ ∞

0

∫

�

(ud − u − cv)2u2dxdt

< ∞
thanks to (4.16). Moreover,

∫

�
u2t dx is uniformly continuous in t . Thus we obtain that

lim
t→∞

∫

�

u2t dx = 0. (4.19)

Furthermore, by the equation satisfied by u:

ut = d
∫

�

k(x, y)u(y, t)dy + u(m(x) − dad(x) − u − cv),
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one has

u(x, t) = ut − d
∫

�
k(x, y)u(y, t)dy

m(x) − dad(x) − ud
− u(ud − u − cv)

m(x) − dad(x) − ud
, (4.20)

where, by the equation satisfied by ud ,

m(x) − dad(x) − ud = −d
∫

�
k(x, y)ud(y)dy

ud(x)
< 0 in �̄.

Also, notice that for φ ∈ X, the mapping φ → ∫

�
k(x, y)φ(y)dy is compact from X to X.

Thus, there exist a subsequence {u(·, t j )}, j ≥ 1, and � ∈ X such that, as j → ∞,
∫

�

k(x, y)u(y, t j )dy → � in X. (4.21)

This, together with (4.18), (4.19) and (4.20), implies that

u(·, t j ) → −d�(·)
m(·) − dad(·) − ud(·) in L2(�) as j → ∞. (4.22)

Denote

ũ = −d�

m − dad − ud
∈ X.

By (4.21) and (4.22), we have

dK[ũ] + ũ(m − ud) = 0,

which implies that there exists α1 ≥ 0 such that ũ = α1ud since both ũ and ud can be
regarded as the eigenfunctions to the principal eigenvalue zero of the eigenvalue problem
dK[φ] + (m − ud)φ = μφ. Thus (4.22) becomes

u(·, t j ) → α1ud in L2(�) as j → ∞.

At the end, according to bc = 1, bud = vD and (4.18), it is routine to check that α1 ∈ [0, 1]
and v(·, t j ) → (1 − α1)vD in L2(�) as j → ∞.

The claim is proved.
Step 2 In this step, wewill prove that (u(·, t), v(·, t)) converges in L2(�)×L2(�) as t → ∞.
Based on the proof in Step 1, it suffices to show θ∗ = α1. Obviously, θ∗ ≤ α1. Now suppose
that θ∗ < α1 and a contradiction will be derived.

According to the definition of θ∗, for any δ > 0, there exists tδ > 0 such that for t ≥ tδ ,

u(x, t) > (θ∗ − δ)ud(x), v(x, t) < (1 − θ∗ + δ)vD(x) in �̄. (4.23)

We claim that there exist ε0 > 0, δ0 > 0 and j0 ≥ 1 such that for j ≥ j0,

u(x, t j + ε0) > (θ∗ + δ0)ud(x), v(x, t j + ε0) < (1 − θ∗ − δ0)vD(x) in �̄. (4.24)

Since u(·, t j ) → α1ud(·) in L2(�) as j → ∞, it is standard to check that

d
∫

�

k(x, y)u(y, t j )dy → d
∫

�

k(x, y)α1ud(y)dy in X as j → ∞.

Thus θ∗ < α1 implies that there exist �1 > 0 and j1 ≥ 1 such that for j ≥ j1,

d
∫

�

k(x, y)u(y, t j )dy > d
∫

�

k(x, y)θ∗ud(y)dy + 3�1 in �̄. (4.25)
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Also, note that ‖ut (·, t)‖L∞(�) is uniformly bounded in t due to the boundedness of solutions.
It follows from (4.25) that there exists ε1 > 0, independent of j ≥ j1, such that for t ∈
[t j , t j + ε1], j ≥ j1,

d
∫

�

k(x, y)u(y, t)dy > d
∫

�

k(x, y)θ∗ud(y)dy + 2�1 in �̄. (4.26)

Note that ε1 could be smaller if necessary.
Moreover, there exists δ1 > 0 such that for any 0 < δ < δ1, x ∈ �̄

�1 + u(m − dad − u − cv) > θ∗ud (m − dad − θ∗ud − c(1 − θ∗)vD) , (4.27)

as long as u ∈ [(θ∗ − δ)ud(x), (θ∗ + δ)ud(x)], v ∈ (0, (1 − θ∗ + δ)vD(x)].
Fix x ∈ �̄ and 0 < δ < δ1. Suppose that if j ≥ j1, t j ≥ tδ , for any t ∈ [t j , t j + ε1],

u(x, t) ≤ (θ∗ + δ)ud(x). Then by (4.23), (4.26) and (4.27),

ut (x, t) = d
∫

�

k(x, y)u(y, t)dy + u(m(x) − dad(x) − u − cv)

> d
∫

�

k(x, y)θ∗ud(y)dy + 2�1

+θ∗ud (m − dad − θ∗ud − c(1 − θ∗)vD) − �1

= �1 > 0, (4.28)

which yields that

u(x, t j + ε1) > u(x, t j ) + �1ε1 > (θ∗ − δ)ud(x) + �1ε1 ≥ (θ∗ + δ)ud(x)

provided that

δ ≤ �1ε1

2max�̄ ud
.

This is impossible. Therefore, given

x ∈ �̄, 0 < δ < min

{

δ1,
�1ε1

2max�̄ ud

}

,

if j ≥ j1, t j ≥ tδ , there exists t̂ j = t̂ j (x) ∈ [t j , t j + ε1] such that u(x, t̂ j ) > (θ∗ + δ)ud(x).
Note that indeed t̂ j depends on x .

Next we will show that for all t ∈ [t̂ j (x), t j + ε1], u(x, t) > (θ∗ + δ)ud(x) for any x
in �̄. Otherwise, if there exist x∗ ∈ �̄ and t∗j ∈ (t̂ j (x∗), t j + ε1] such that u(x∗, t∗j ) =
(θ∗ + δ)ud(x∗) and u(x∗, t) > (θ∗ + δ)ud(x∗) for t ∈ (t̂ j (x∗), t∗j ), then due to (4.23), (4.26)
and (4.27), we derive that

0 ≥ ut (x
∗, t∗j )

= d
∫

�

k(x, y)u(y, t)dy + u(m(x) − dad(x) − u − cv)

∣
∣
∣
(x,t)=(x∗,t∗j )

> d
∫

�

k(x, y)θ∗ud(y)dy + 2�1

+ u(m(x) − dad(x) − u − c(1 − θ∗ + δ)vD)

∣
∣
∣
(x,t)=(x∗,t∗j )

> d
∫

�

k(x, y)θ∗ud(y)dy + 2�1 + θ∗ud (m − dad − θ∗ud − c(1 − θ∗)vD) − �1

= �1 > 0, (4.29)
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which is a contradiction.
Thus we have proved that there exist �1 > 0, j1 ≥ 1, ε1 > 0 and δ1 > 0 such that

u(x, t j + ε1) > (θ∗ + δ)ud(x) in �̄,

provided that

0 < δ < min

{

δ1,
�1ε1

2max�̄ ud

}

, j ≥ j1, t j ≥ tδ.

Similarly, there exist �2 > 0, j2 ≥ 1, ε2 > 0 and δ2 > 0 such that

v(x, t j + ε2) < (1 − θ∗ − δ)vD(x) in �̄,

provided that

0 < δ < min

{

δ2,
�2ε2

2max�̄ vD

}

, j ≥ j2, t j ≥ tδ.

Also ε2 could be smaller if necessary.
In summary, choose ε0 = min{ε1, ε2} and fix

0 < δ0 < min

{

δ1,
�1ε0

2max�̄ ud
, δ2,

�2ε0

2max�̄ vD

}

and j0 large enough such that for j ≥ j0, t j ≥ tδ0 , then for j ≥ j0,

u(x, t j + ε0) > (θ∗ + δ0)ud(x), v(x, t j + ε0) < (1 − θ∗ − δ0)vD(x) in �̄,

i.e., (4.24) is proved. This is a contradiction to the definition of θ∗.
Therefore, θ∗ = α1 and it follows that (u(·, t), v(·, t)) converges to (α1ud , (1 − α1)vD)

in L2(�) × L2(�) as t → ∞.
Step 3. We will improve the L2(�) × L2(�)−convergence to X × X−convergence in this
step. Define

η(t) = inf{η | u(x, t) < ηud(x), v(x, t) > (1 − η)vD(x) in �̄}.
Obviously, η(t) is decreasing in t due to comparison principle. Denote η∗ = limt→∞ η(t).

Notice that θ∗ = α1 < 1 immediately yields that v(x, t) does not weakly converge to zero
in L2(�). Due to Proposition 4.1(ii), there exists T2 > 0 such that u(x, t) < ud(x) in �̄ for
t ≥ T2. Hence, for Case I, without loss of generality, assume that

0 < u0 < ud , 0 < v0 < vD in �̄.

This indicates that 0 < θ(0), η(0) < 1.
According to the definitions of θ∗, η∗ and α1, it is obvious that

0 < θ(0) ≤ θ∗ ≤ α1 ≤ η∗ ≤ η(0) < 1.

By Steps 1 and 2, θ(0) > 0 and θ∗ < 1 yield that θ∗ = α1. Similarly, it can be proved
that η(0) < 1 and η∗ > 0 imply that η∗ = α1. Hence θ∗ = η∗ = α1 ∈ (0, 1) and thus
(u(·, t), v(·, t)) converges to (α1ud , (1 − α1)vD) in X × X as t → ∞. Therefore, the proof
of Case I is complete. Obviously, Case II can be proved in the same way.

At the end, let us handle Case III when both u(x, t) and v(x, t) weakly converge to
zero in L2(�). Indeed we will show that Case III cannot happen. We prepare the following
proposition first.
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Proposition 4.3 Assume that (C1)–(C3) hold.

(i) If u(·, t)⇀0 in L2(�) as t → ∞, then there exists T3 > 0 such that u(x, t) < ud(x) in
�̄ for t ≥ T3.

(ii) If v(·, t)⇀0 in L2(�) as t → ∞, then there exists T4 > 0 such that v(x, t) < vD(x) in
�̄ for t ≥ T4.

Proof (i) Choose

0 < � ≤ 1

2
min

{

min
�̄

d
∫

�
k(x, y)ud(y)dy

ud(x)
, min

�̄
ud

}

.

It follows from the equations satisfied by u and ud that

ut (x, t) = d
∫

�

k(x, y)u(y, t)dy + u(m(x) − dad(x) − u − cv)

= d
∫

�

k(x, y)u(y, t)dy + u

(

ud − d
∫

�
k(x, y)ud(y)dy

ud(x)
− u − cv

)

≤ d
∫

�

k(x, y)u(y, t)dy + u(ud − 2� − u). (4.30)

Note that if u(·, t)⇀0 in L2(�) as t → ∞, then it is routine to check that as t → ∞,

d
∫

�

k(·, y)u(y, t)dy → 0 in L∞(�).

Denote ε = �
4 min�̄ ud . There exists T0 > 0 such that for t ≥ T0,

d
∫

�

k(x, y)u(y, t)dy ≤ ε in �̄. (4.31)

Denote C1 = ‖u(x, t)‖L∞(�̄×[0,∞)) < ∞. We claim that u(x, t) < ud(x) − � in �̄ for
t ≥ T0 + C1/ε.

Suppose that the claim is not true, i.e., there exist x̂ ∈ �̄ and t̂ ≥ T0 + C1/ε such that
u(x̂, t̂) ≥ ud(x̂) − �.

First, fix x ∈ �̄, we show that if for some t0 ≥ T0, u(x, t0) < ud(x) − �, then u(x, t) <

ud(x) − � for t ≥ t0. Otherwise, if there exists t1 > t0 such that u(x, t1) = ud(x) − � and
u(x, t) < ud(x) − � for t0 < t < t1, then by (4.30) and (4.31),

0 ≤ ut (x, t1) = ≤ d
∫

�

k(x, y)u(y, t1)dy + u(x, t1)(ud − 2� − u(x, t1))

≤ ε − �(ud(x) − �) ≤ �

4
min
�̄

ud − �

2
min
�̄

ud = −ε < 0,

which is impossible.
Now one sees that for any t ∈ [T0, T0 + C1/ε], u(x̂, t) ≥ ud(x̂) − �. Then by (4.30) and

(4.31), when t ∈ [T0, T0 + C1/ε],

ut (x̂, t) ≤ d
∫

�

k(x̂, y)u(y, t)dy + u(x̂, t)(ud(x̂) − 2� − u(x̂, t))

≤ �

4
min
�̄

ud − �u(x̂, t) ≤ �

4
min
�̄

ud − �(ud(x̂) − �) ≤ −ε.
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This gives that

u(x̂, T0 + C1/ε) ≤ u(x̂, T0) − εC1/ε ≤ 0,

which contradicts to the positivity of u. The claim is proved and (i) follows.
Obviously, (ii) can be proved similarly. ��

Thanks to Proposition 4.3, without loss of generality, assume that

0 < u0 < ud , 0 < v0 < vD in �̄.

and Steps 1, 2 and 3 in the proof of Case I can be repeated. Thus the solution (u, v) of (1.1)
approaches to a steady state in {(sud , (1 − s)vD), 0 ≤ s ≤ 1} in X × X. This is impossible
since u(·, t)⇀0 and v(·, t)⇀0 in L2(�) as t → ∞. Therefore, Case III cannot happen.

5 Models withmixed dispersal strategies

This section is devoted to the proof of Theorem 1.3, which is about the system (1.7). The
general approaches in handling Theorem 1.3(i)–(iii) are similar to that of Theorem 1.1, we
only emphasize the places which are different. If both equations in (1.7) have local dispersals,
then the solution orbits are precompact and thus Theorem 1.3(iv) has been established in
[21]. However, if local dispersal is only incorporated into one equations in (1.7), additional
techniques and adjustments are needed on the basis of the proof of Theorem 1.2.

First of all, consider the linearized operators of (1.7) at (ûd , 0) and (0, v̂D). If β = 1,
μ(ûd ,0) is defined in the same way as in (2.6). If 0 ≤ β < 1, μ(ûd ,0) denotes the principal
eigenvalue of the eigenvalue problem

{
D {βP[ψ] + (1 − β)�ψ} + [M(x) − b2ûd ]ψ = μψ in �̄,

∂ψ/∂γ = 0 on ∂�.

The definition for ν(0,v̂D) is similar. Propositions 3.1 and 3.2 still hold for the system (1.7).

Proposition 5.1 Assume that (C1)–(C4) hold and (1.8) is valid. Then there exist exactly four
alternatives as follows.

(i) μ(ûd ,0) > 0, ν(0,v̂D) > 0;
(ii) μ(ûd ,0) > 0, ν(0,v̂D) ≤ 0;
(iii) μ(ûd ,0) ≤ 0, ν(0,v̂D) > 0;
(iv) μ(ûd ,0) = ν(0,v̂D) = 0.

Moreover, (iv) holds if and only if b1(x), c1(x), b2(x), c2(x) are constants, b2c1 = b1c2 and
b2ûd = c2v̂D.

The proof of Proposition 5.1 is the same as that of Proposition 3.1 and thus we omit the
details.

Proposition 5.2 Assume that (C1)–(C4) hold and (1.8) is valid. Then the system (1.7) admits
two strictly ordered continuous positive steady states (u, v) and (u∗, v∗) (that is without loss
of generality, u > u∗, v < v∗) if and only if b2c1 = b1c2, b2ûd = c2v̂D. Moreover, all the
positive steady states of (1.7) consist of (sûd , (1 − s)v̂D), 0 < s < 1.
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Proof Set w = u − u∗ > 0 and z = v − v∗ < 0. Following the proof of Proposition 3.2, we
only explain how to obtain the following two important inequalities:

∫

�

(b1(x)w + c1(x)z) w2dx ≤ 0,
∫

�

(b2(x)w + c2(x)z) z
2dx ≥ 0. (5.1)

For this purpose, first, similar to (3.5), it is routine to check that

d
∫

�

(−u
{
αK[u∗] + (1 − α)�u∗} + u∗ {αK[u] + (1 − α)�u}) w2

uu∗ dx

=
∫

�

(b1(x)w + c1(x)z)w
2dx . (5.2)

Then due to (C3), the left hand side of (5.2) is calculated as follows

d
∫

�

(−u
{
αK[u∗] + (1 − α)�u∗} + u∗ {αK[u] + (1 − α)�u}) w2

uu∗ dx

= dα

∫

�

∫

�

k(x, y)
[
u∗(x)u(y) − u(x)u∗(y)

] (u(x) − u∗(x))2

u(x)u∗(x)
dydx

+ d(1 − α)

∫

�

(−u�u∗ + u∗�u
) (u(x) − u∗(x))2

u(x)u∗(x)
dx

= d

2

∫

�

∫

�

k(x, y)
[
u∗(x)u(y) − u(x)u∗(y)

]2
(

1

u(x)u(y)
− 1

u∗(x)u∗(y)

)

dydx

+ d(1 − α)

∫

�

|u(x)∇u∗(x) − u∗(x)∇u(x)|2
(

1

u2(x)
− 1

(u∗)2(x)

)

dx

≤ 0.

Thus
∫

�

(b1(x)w + c1(x)z) w2dx ≤ 0,

while the other inequality in (5.1) can be handled similarly.
Obviously, since w > 0 and z < 0, (5.1) implies that

∫

�

([

min
�̄

b1

]

w +
[

max
�̄

c1

]

z

)

w2dx ≤ 0,
∫

�

([

max
�̄

b2

]

w +
[

min
�̄

c2

]

z

)

z2dx ≥ 0.

(5.3)
Now the arguments after (3.9) can be applied to show that b1(x), c1(x), b2(x), c2(x) must
be constants, b2c1 = b1c2 and b2u∗

d = c2v∗
D . ��

Nowwe are ready to continue the proof of Theorem 1.3. First, Theorem 1.3(i)–(iii) can be
handled by the same approach employed in the proof of Theorem 1.1. Secondly, according to
Proposition 5.1(iv), when both (ûd , 0) and (0, v̂D) are locally stable or neutrally stable, then
b1(x), c1(x), b2(x), c2(x) must be constants, b2c1 = b1c2, b2ûd = c2v̂D and the system
(1.7) has a continuum of steady states {(sûd , (1 − s)v̂D), 0 ≤ s ≤ 1}. It remains to verify
the global convergence of solutions of (1.7).

For clarity, we divide it into three cases.
Case 1 α = β = 1. This corresponds to the system (1.1) and has been proved in Theorem 1.2
already.
Case 2 0 ≤ α, β < 1, i.e, local dispersals are incorporated into both equations of the system
(1.7). Then the solution orbit {(u(·, t), v(·, t)) | t ≥ 0} is precompact in L∞(�) × L∞(�).
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Moreover, it is standard to verify that (0, 0) is locally unstable due to the existence of ûd and
v̂D . Therefore, the conclusion follows from the arguments in the proof of [21, Theorem 3].
Case 3 α = 1, 0 ≤ β < 1 or 0 ≤ α < 1, β = 1, i.e. local dispersal is only incorporated into
one equation of the system (1.7). We only prove the case α = 1, 0 ≤ β < 1, since the other
one can be handled in the same way.

The rest of this section is devoted to the proof of Case 3. We will mainly follow the
scheme of the proof of Theorem 1.2. However, the introduction of local dispersal to only one
equation causes extra obstacles and some new ideas are needed to overcome these difficulties.
For clarity, we focus on the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = dK[u] + u(m(x) − b1u − c1v) in � × [0,∞),

vt = DPβ [v] + v(M(x) − b2u − c2v) in � × [0,∞),

∂v/∂γ = 0 on ∂�,

u(x, 0) = u0(x), v(x, 0) = v0(x) in �,

(5.4)

where Pβ [v] = βP[v] + (1 − β)�v. Also, let (u(x, t), v(x, t)) denote the corresponding
solution.

First of all, assume that u(x, t) does not weakly converge to zero in L2(�) and prepare
the following proposition for system (5.4), which is parallel to Proposition 4.1(i). But the
proof has to be modified since v satisfies an equation with local dispersal now. To be more
specific, the inequalities (4.11) and (4.12) do not hold when local dispersal is incorporated.

Proposition 5.3 Assume that (C1)–(C3) hold. If u(x, t) does not weakly converge to zero in
L2(�), then there exists T1 > 0 such that v(x, t) < v̂D(x) in �̄ for t ≥ T1.

Proof Since u(·, t) �⇀0 in L2(�) as t → ∞ and u(x, t) satisfies the equation with nonlocal
dispersal only, the arguments in deriving (4.8) can be applied word by word to indicate that
there exist a constant B1 > 0, ε1 > 0 and a sequence {τ j } j≥1 with τ j → ∞ as j → ∞ such
that

u(x, t) ≥ B1 for x ∈ �̄, t ∈
[

τ j + 1

2
+ ε1

2
, τ j + 1

2
+ ε1

]

, j ≥ 1. (5.5)

Moreover, comparison principle implies that there exists a sequence {h j } j≥1 with h j > 0
and lim j→∞ h j = 0 such that

v(x, t) ≤ (1 + h j )v̂D(x) in �̄ for t ≥ τ j . (5.6)

Define

V1(x, t) =
(

1 − σ

(

t − τ j − 1

2
− ε1

2

))

(1 + h j )v̂D(x),

where σ > 0 is to be determined later.
For x ∈ �̄, t ∈ [τ j + 1

2 + ε1
2 , τ j + 1

2 + ε1], j ≥ 1, direct computation gives that

DPβ [V1] + V1(M(x) − b2u − c2V1) − ∂V1
∂t

≤
(

1 − σ

(

t − τ j − 1

2
− ε1

2

))

(1 + h j )
(
DPβ [v̂D] + v̂D(M(x) − b2B1 − c2V1)

)

+σ(1 + h j )v̂D

≤ (1 − O(σε1)) (1 + h j )v̂D
(−b2B1 + O(h j ) + O(σε1) + O(σh jε1)

) + σ(1 + h j )v̂D

< 0
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if σ is chosen to be small enough and j is large enough. Note that σ is fixed now and we still
have the freedom for the choice of j . Moreover, it is obvious that (5.6) implies that

v

(

x, τ j + 1

2
+ ε1

2

)

≤ V1

(

x, τ j + 1

2
+ ε1

2

)

in �̄.

Then thanks to comparison principle, it follows that

v

(

x, τ j + 1

2
+ ε1

)

≤ V1

(

x, τ j + 1

2
+ ε1

)

in �̄.

Furthermore, it is routine to check that

V1

(

x, τ j + 1

2
+ ε1

)

=
(
1 − σ

ε1

2

)
(1 + h j )v̂D(x)

≤
(
1 − σ

ε1

2
+ h j − σ

ε1

2
h j

)
v̂D(x) ≤

(

1 − 1

2
σ

ε1

2

)

v̂D(x) in �̄

for j sufficiently large.
The proof is complete. ��
Now thanks to Proposition 5.3, without loss of generality, we could assume that u0 > 0,

0 < v0 < v̂D in �̄ and define

θ̂ (t) = sup{θ | u(x, t) > θ ûd(x), v(x, t) < (1 − θ)v̂D(x) in �̄}.
Moreover, 0 < θ̂(0) < 1, θ̂ (t) is increasing in t due to comparison principle and denote

0 < θ̂∗ = lim
t→∞ θ̂ (t) ≤ 1.

As explained before Step 1 in Sect. 4, when θ̂∗ = 1, one has

lim
t→∞(u(·, t), v(·, t)) = (ûd , 0) in X × X.

Let us restrict to the case that 0 < θ̂∗ < 1. To make the arguments transparent, we discuss
it step by step.
Step 1’ Considering how (5.1) is verified, similar to the arguments in Step 1 in Sect. 4, we
obtain that there exists a subsequence {τ j } j≥1 with τ j → ∞ as j → ∞ and α̂1 ∈ [0, 1] such
that

lim
j→∞(u(·, τ j ), v(·, τ j )) = (α̂1ûd , (1 − α̂1)v̂D) in L2(�) × L2(�).

Step 2’.Similar to Step 2 in Sect. 4, to prove that (u(·, t), v(·, t)) converges in L2(�)×L2(�),
one needs to show that θ̂∗ = α̂1. Obviously θ̂∗ ≤ α̂1. Now suppose that θ̂∗ < α̂1 and a
contradiction will be derived.

According to the definition of θ̂∗, for any δ > 0, there exists τδ > 0 such that for t ≥ τδ ,

u(x, t) > (θ̂∗ − δ)ûd(x), v(x, t) < (1 − θ̂∗ + δ)v̂D(x) in �̄. (5.7)

We claim that there exist ε̂ > 0, δ̂ > 0 and ĵ ≥ 1 such that for j ≥ ĵ ,

u(x, τ j + ε̂) > (θ̂∗ + δ̂)ûd(x), v(x, τ j + ε̂) < (1 − θ̂∗ − δ̂)v̂D(x) in �̄. (5.8)

Obviously, for u(x, t) in (5.4), the same arguments in Step 2 in Sect. 4 can be applied to
show that there exist �1 > 0, j1 ≥ 1, ε1 > 0 and δ1 > 0 such that

u(x, τ j + ε1) > (θ̂∗ + δ)ûd(x) in �̄,
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provided that

0 < δ < min

{

δ1,
�1ε1

2max�̄ ûd

}

, j ≥ j1, τ j ≥ τδ.

Here fix δ = δ2 > 0 satisfying the above inequality.
However, the arguments for u(x, t) can not be applied to handle v(x, t), since (4.25),

(4.26), (4.28) and (4.29) are not valid when local dispersal is incorporated. The idea in the
proof of Proposition 5.3 is borrowed here. We include the details for the convenience of
readers.

Notice that ‖ut (·, t)‖L∞(�) has an upper bound independent of t ≥ 0, thus there exists
ε2 > 0 such that for t ∈ [τ j + ε1, τ j + ε1 + ε2], τ j ≥ τδ2

u(x, t) >

(

θ̂∗ + δ2

2

)

ûd(x) in �̄.

Define

V2(x, t) = (
1 − σ1(t − τ j − ε1)

)
(1 − θ̂∗ + δ)v̂D(x),

where σ1 and δ are to be determined later. For x ∈ �̄, t ∈ [τ j + ε1, τ j + ε1 + ε2], τ j ≥ τδ ,
direct computation gives that

DPβ [V2] + V2(M(x) − b2u − c2V2) − ∂V2
∂t

≤ (
1 − σ1(t − τ j − ε1)

)
(1 − θ̂∗ + δ)

(

DPβ [v̂D] + v̂D

(

M(x) − b2

(

θ̂∗ + δ2

2

)

ûd − c2V2

))

+ σ1(1 − θ̂∗ + δ)v̂D

≤ (1 − O(σ1ε2)) (1 − θ̂∗ + δ)c2v̂D

(

− δ2

2
− δ + σ1(t − τ j − ε1)(1 − θ̂∗ + δ)

)

v̂D

+ σ1(1 − θ̂∗ + δ)v̂D

< 0

provided thatσ1 > 0 is sufficiently small andfixed.Moreover, (5.7) indicates that for τ j ≥ τδ ,

v(x, τ j + ε1) ≤ V2(x, τ j + ε1) in �̄.

Then, due to comparison principle, we have

v(x, τ j + ε1 + ε2) ≤ V2(x, τ j + ε1 + ε2)

=
(
1 − θ̂∗ − σ1ε2(1 − θ̂∗) + δ − σ1ε2δ

)
v̂D(x)

≤
(

1 − θ̂∗ − 1

2
σ1ε2(1 − θ̂∗)

)

v̂D(x)

by choosing δ ≤ 1
2σ1ε2(1 − θ̂∗).

In summary, set

ε̂ = ε1 + ε2, δ̂ = min

{
δ2

2
,
1

2
σ1ε2(1 − θ̂∗)

}

and choose ĵ such that for j ≥ ĵ , τ j ≥ τ
δ̂
. The claim is proved. This contradicts to the

definition of θ̂∗. Therefore, θ̂∗ = α̂1 and thus

lim
t→∞(u(·, t), v(·, t)) = (α̂1ûd , (1 − α̂1)v̂D) in L2(�) × L2(�). (5.9)
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Step 3’. Similar to Step 3 in Sect. 4, we improve the L2(�) × L2(�)−convergence to
X × X−convergence here. Define

η̂(t) = inf{η | u(x, t) < ηûd(x), v(x, t) > (1 − η)v̂D(x) in �̄}.
Denote η̂∗ = limt→∞ η̂(t), where η̂(t) is decreasing in t due to comparison principle.

Since {v(·, t) | t ≥ 0} is precompact in X, it follows immediately from (5.9) that

lim
t→∞ v(·, t) = (1 − α̂1)v̂D in X. (5.10)

Recall that θ̂∗ = α̂1 < 1, hence we have the lower bound for v(x, t) when t is large.
Then the arguments after (4.8) in the proof of Proposition 4.1 can borrowed to show that
u(x, t) < ûd(x) in �̄ for large time. Therefore, without loss of generality, we assume that

0 < u0 < ûd , 0 < v0 < v̂D in �̄.

Then 0 < θ̂(0), η̂(0) < 1.
According to the definitions of θ̂∗, η̂∗ and α̂1, it is obvious that

0 < θ̂(0) ≤ θ̂∗ ≤ α̂1 ≤ η̂∗ ≤ η̂(0) < 1.

To obtain the X × X−convergence of (u, v), it suffices to show θ̂∗ = η̂∗. θ̂∗ = α̂1 has been
proved in Step 2’ and we only need demonstrate that α̂1 = η̂∗ as follows.

Suppose that α̂1 < η̂∗. Then (5.10) implies that there exists T1 > 0 such that for t ≥ T1,

v(x, t) >

(

1 − η̂∗ + η̂∗ − α̂1

2

)

v̂D(x) in �̄.

Then for t ≥ T1,

ut = dK[u] + u(m(x) − b1u − c1v)

≤ K[u] + u

(

m(x) − b1u − c1

(

1 − η̂∗ + η̂∗ − α̂1

2

)

v̂D(x)

)

.

Recall that b1ûd = c1v̂D . Then it is easy to check that

(

η̂∗ − η̂∗ − α̂1

2

)

ûd satisfies

K[u] + u

(

m(x) − b1u − c1

(

1 − η̂∗ + η̂∗ − α̂1

2

)

v̂D(x)

)

= 0.

Then it follows from Theorem 2.1 and comparison principle that there exists T2 ≥ T1 > 0
and 0 < δ̃ < (η̂∗ − α̂1)/2 such that

u(x, T2) < (η̂∗ − δ̃)ûd(x) in �̄.

The above two inequalities contradict to the definition of η̂∗. Hence α̂1 = η̂∗.
So far, we have proved the convergence of (u(x, t), v(x, t)) in X × X when u(x, t) does

not weakly converge to zero in L2(�).
At the end, assume that u(x, t) weakly converges to zero in L2(�) as t → ∞. It follows

from Proposition 4.3 that u(x, t) < ûd(x) in �̄ for large time. Without loss of generality,
assume that

0 < u0 < ûd , v0 > 0 in �̄.

Thus η̂∗ ≤ η̂(0) < 1.
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By similar arguments in Step 1 in Sect. 4, we obtain that there exists a subsequence {s j } j≥1

with s j → ∞ as j → ∞ and α̂1 ∈ [0, 1] such that
lim
j→∞(u(·, s j ), v(·, s j )) = (α̂1ûd , (1 − α̂1)v̂D) in L2(�) × L2(�).

This implies that α̂1 = 0 since u(x, t) weakly converges to zero in L2(�) as t → ∞. Then
it follows that

lim
t→∞(u(·, t), v(·, t)) = (0, v̂D) in L2(�) × L2(�).

Moreover, since {v(·, t) | t ≥ 0} is precompact in X, one has

lim
t→∞ v(·, t) = v̂D in X.

Then it is standard to show that

lim
t→∞ u(·, t) = 0 in X.

This completes the proof of Theorem 1.3.

6 Other types of nonlocal dispersal strategies

Theorems 1.1, 1.2 and 1.3 are about environments with no flux boundary condition. In
this section, we briefly explain how to extend these results to nonlocal operators in hostile
surroundings or periodic environments.

• Hostile surroundings For φ ∈ X, the nonlocal operator in hostile surroundings is defined
as follows:

(D) K[φ] =
∫

�

k(x, y)φ(y)dy − φ(x).

• Periodic environments First set Xp = {φ ∈ C(Rn) | φ(x + l j e j ) = φ(x), 1 ≤ j ≤ n},
where l j > 0, e j = (e j1, e j2, . . . , e jn) with e ji = 1 if j = i and e ji = 0 if j �= i . For
k(x, y) : R

n × R
n → R+, assume that

(Cp) k(x + l j e j , y) = k(x, y − l j e j ), 1 ≤ j ≤ n.

Now, for φ ∈ Xp and k(x, y) satisfies (C1), (C2) and (Cp), the nonlocal operator in
periodic environments is defined as follows:

(P) K[φ] =
∫

Rn
k(x, y)φ(y)dy − φ(x).

Denote �p = [0, l1] × [0, l2] × · · · × [0, ln]. Then

K[φ] =
∫

Rn
k(x, y)φ(y)dy − φ(x)

=
∫

�p

n∑

j=1

∞∑

m=−∞
k(x, y + ml j e j )φ(y)dy − φ(x). (6.1)
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Recall that when studying nonlocal operators defined in (N), in fact we consider the
operators defined in (2.2) and (2.3). Therefore, it is easy to see that Theorems 1.1 and 1.2
still hold for the system (1.1) with nonlocal operators in hostile surroundings or periodic
environments.

At the end, when local dispersals are incorporated, for hostile surroundings, homogeneous
Dirichlet boundary conditions should be imposed. The proof of this case is almost the same as
that ofTheorem1.3. Theonly different part is in the verification of (5.1),whereHopf boundary
lemma is needed for Dirichlet boundary conditions. Moreover, for periodic environments,
it is natural to impose periodic boundary conditions when local dispersals are incorporated.
Due to (6.1), the proof of this case follows from that of Theorem 1.3 word by word.
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