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Abstract
We prove the existence of infinitely many solutions for

—Au+V@u=fu inRY, ueH'RY),
where V (x) satisfies lim|y|— 00 V(x) = Voo > 0 and some conditions. We require conditions

on f(u) only around 0 and at co.

Mathematics Subject Classification 35J60 - 35J20 - 47J30 - 58E05

1 Introduction

In this paper, we consider the following nonlinear Schrédinger equation:
—Au+V@u=fw nRY, uweH'RY). (1.1)

Here N > 3 and we assume that the potential function V (x) satisfies the following:

(V.1) V e CLRY, (0, 0)).

(V.2) limjyjso0o V(X) = Voo > 0.
(V.3) There exists n € LZ(RY) N WH2°(RN) such that

(x-VV(x) <n(x)* forallx e RV,
(V.4) There exists p € (0, 1) such that, for any & > O,
lim  inf  (x- VV()) e = 0.

|x|—00 yeB(x,plx])
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Here B(x,r) = [y GRNHy—x‘ <r}f0rx eRN,r>0.
We assume that the nonlinearity f(u) satisfies the following:

(f.1) f e C'®R,R)and f(—s) = — f(s).

(f2) f/(0)=0.

(f.3) There exists p € (1, (N +2)/(N — 2)) such that limy_.o f'(s)/s?~! = 0.
(f4) limg_ o f(s5)/s = 00.

Under the assumptions (V.1)—(V.2), (f.1)—(f.3), the solutions of (1.1) are the critical points
of the functional I € C2(H'(RY), R) defined by

I(u) = 1/ |Vu|2+V(x)u2dx—/ F(u)dx,
2 JrN RN

where F(u) = [ f(s)ds.

Many researchers have studied (1.1) under the assumption (V.2) for f(u) = |u|? 1y or
more general f(u) (cf. [1-6,11,13,14,16,17], and their references). When we look for critical
points of /(1) by variational approach, we generally need the compactness of Palais—Smale
sequences (we denote (PS)-sequences in short) for 7 (u). If V(x) < Vs (# Vo), then, by
the concentration compactness arguments, we obtain the compactness of (PS)-sequences at a
mountain pass level (cf. [13,14,17]). However, for (PS)-sequences at higher energy levels, it is
not easy to get the compactness. To get the compactness, in the case f(u) = |u|?~'u, Cerami—
Devillanova—Solimini [3] introduced assumptions such as (V.4) (also see Remark 1.2) and
balanced sequences which are sequences of solutions of the following equation on a ball:

—Au+V@u=f@) inB©On), ueH (BOn). (1.2)

The balanced sequences are not (PS)-sequences for /(u) but play a similar role to the
(PS)-sequences. In fact, the balanced sequences also satisfy concentration-compactness type
properties. Moreover, under the assumption (V.4), every balanced sequence is relatively
compact (cf. [3, Proposition 2.1]). Consequently, they succeeded to obtain the existence of
infinitely many solutions of (1.1).

On the other hand, in the procedure for getting the compactness of (PS)-sequence, in
almost all cases, we need the H!(RY)-boundedness of (PS)-sequence. For general f(u)
as (f.1)—(f.4), it is a problem how to get the bounded (PS)-sequence. As an assumption
guaranteeing the boundedness of any (PS)-sequences, the following Ambrosetti-Rabinowitz
condition (AR) is well-known.

(AR) There exists u > 2 such that uF(u) < f(u)u forall u € R.

There are many researches to obtain the bounded (PS)-sequence under weaker conditions than
(AR) (cf. [9-12,16,19], and their references). In our knowledge, one of the weakest assump-
tions is (V.3) and (f.4) which were introduced by Jeanjean—Tanaka [11]. By the monotonicity
trick, they obtained a (PS)-sequence which is a sequence of solutions of

—Au+V@u=rf@w) inRY, —ueH ®RY), (1.3)

where A, — 1 —0 (n — o0). To get the H'(R")-boundedness of this (PS)-sequence,
they used (V.3), (f.4), and the Pohozaev identity for the solutions of (1.3). Consequently,
for N > 2, they obtained a positive solution of (1.1) under the conditions (V.1)—(V.3),
V(x) < Voo (# Voo), and

(f.1) f € C([0, 00), R).
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(£2') limy— 40 f(s)/s = 0.

(f.3’) There exists p € (1, (N +2)/(N —=2))if N > 3, p € (1,00) if N = 2 such that
limg—, o0 f(s)/s? = 0.

(f.4) lims_ 00 f(5)/5 = 00.

The main result of this paper is the following theorem which is considered as a development
from [3] and [11].

Theorem 1.1 Assume N > 3, (V.1)=(V.4) and (f.1)—~(f.4). Then (1.1) have infinitely many
solutions.

Remark 1.2 If V (x) satisfies the following (i)—(ii), V (x) satisfies (V.3)—(V.4).
(1) There exist cq, c1, 71 > 0and £o > £; > N such that
colx| 7 < (x - VV() < elx|™Y forall x| > ry.

(ii) There exist ¢, rp > 0 such that

§
(&)

The radial functions V' always satisfy (ii). Cerami—Devillanova—Solimini [3] assumed (ii)
and

<o <|i| : VV(x)) for all |x| > r» and £ with (£ - x) = 0.
X

lim (x - VV(x)) ¥l =00 foranya > 0 (1.4)
|x|—>o00
instead of (V.4). (V.4) follows from (ii) and (1.4). In fact, for y € B(x, p|x|) (p € (0, 1)),

weseté = x — (lyy'lj;)y. Then x = (lyy"};)y + & e (span{y}) @ (span{y})*. Moreover, since

ly — x| < plx|and (1 — p)lx| < |y| < (1 + p)|x|, we have

1 5 1 5 P
— <O-x) < —, < —l
e R e M et

From (ii), for y € B(x, p|x|) and |y| > r2,

(x-VV(y) = (T§|§) (- VV() + IE] (% : vvm)
(y-x) y
-VV - —.VV
= 2 (Vo) 02|E|<|y| (y))

1 o
z(m—c l_p>(y-VV(y)).

Thus, choosing p € (0, 1) such that ﬁ — cz% > 0, from (1.4), we obtain (V.4).

Here we emphasize that we can not prove Theorem 1.1 by only combining the methods
of [3] and [11]. In fact, if we use a balanced sequence which is a sequence of solutions of
(1.2), then we don’t know the boundedness of that sequence. On the other hand, we can
not obtain infinitely many solutions of (1.3) because of the compactness problem. Therefore
the sequences of solutions of (1.2) or (1.3) are not proper to show Theorem 1.1. From
those reasons, we need introduce another sequence which satisfies both boundedness and
compactness. Just to state only conclusions, this sequence is obtained as a sequence of
solutions of

— AU+ VU= f)+ (g — 1) gw) inBO,n), ueH](BO,n), (15
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where A, — 1+ 0 (n — o00). Here g(u) is an auxiliary function which is defined in
Sect. 2. We obtain a solution of (1.5) as a critical point of a functional which is modified
in the quadratic term of |, L (B(O.)) (u). Thanks to this modification, we can guarantee both
boundedness and compactness of the sequence of solutions. This modification is an important
idea in this paper.

We also obtain the following two results as by-products of Theorem 1.1.

Theorem 1.3 Assume N > 3, (V.1)~(V.4), (£.1)~(£.3"), and (f.4). Then (1.1) has a positive
solution.

Next, we assume that  C RY satisfies the following condition.

() € c RY is a bounded domain with smooth boundary, 0 € €, and (x - v(x)) > 0 for all
x € 02, where v(x) is the outward unit normal vector at x € 9€2.

WesetQR:[xeRN|R_1xe§2]forRzl.

Theorem 1.4 Assume N > 3, (V.1)=(V.4), (f.1)—(f.4), and (2). For any k € N, there exists
Ro = Ro(k) > O such that if R > Ro, then

—Au+V@u=f) inQr, ueH(QR) (1.6)
has at least k distinct pairs of nontrivial solutions *u; (j =1, ...,k).

This paper consists as follows: In Sect. 2, we modify the functional /(x) and define
balanced sequences as sequences of critical points of modified functional. We also present
propositions which bring the boundedness and compactness to balanced sequences. Those
propositions are proved in Sects. 4-6. In Sect. 3, we prove Theorems 1.1 and 1.3. In Sect. 4,

we prove a proposition about the boundedness. Through Sects. 5 and 6, we prove propositions
about the compactness. In Sect. 6, we also prove Theorem 1.4.

2 Preliminaries

In this section, through several subsections, we give balanced sequences which satisfy the
boundedness and compactness. In Sect. 2.1, we define notations and a modified functional. In
Sect. 2.2, we show properties of the modified functional. In Sect. 2.3, we state propositions
about H'(RM)-boundedness. In Sect. 2.4, we construct balanced sequences as sequences
of critical points of the modified functional. We also state about the compactness for the
balanced sequences.

2.1 Notation and modified functional

We use the following notations:

<u,v>=/ Vi Vot Veouvds, full = . u)'’?,
RN

1/r
||u||r=(/ |u|*dx> for r € [1,00), [lufloc = ess sup u(x)],
RN

xeRN

B(x,R) = [yeRN||y—x| <R], B = B(0, R).
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We remark that Boo = RY and we regard u € HOI(BR) asu € HY(RY) by expanding u = 0
on RN\ Bg. Then we also regard || - || and || - || as norm on HO1 (Bg) and L" (BR), respectively.
We set

Vo= inf V(x), Vi= sup V(x).

N
xeR xeRN

0 < Vo < Vs < V| < o0 follows from the assumptions (V.1) and (V.2). Then we have

1
2
llullz = —-

2 1 1N
Vx)u“dx < |lu||= forallu € H* (R™). 2.1
Vo Jry Vo

We take an auxiliary function g(s) which satisfies

(g.1) g€ C'R,R), g(s) > 0foralls > 0, and g(—s) = —g(s) forall s € R.

(g2) ¢'(0) =0.
(g.3) There exists so > 0 such that g(s) = 0 for all s > sg.
(g4) f(s)+g(s) >O0foralls > 0.

Remark 2.1 1f f(s) > Oforall s > 0, then g(s) = O satisfies (g.1)—(g.4). Otherwise, we can
construct g(s) as follows. We define g(s) by

g(s) = /S (=f'®), dr+sP foralls > 0.
0
Then g € C1([0, 00), [0, 0)) and §(0) = 2"(0) = 0. Since
g(s) > /S(—f/(t))dt +sP =—f(s)+sP foralls >0,
0

we have f(s) + g(s) > 0 for all s > 0. From (f.4), there exists so > 1 such that f(s) > 0
for all s > so — 1. Thus we take an odd function g € C!(R, R) satisfying

g(s) for0<s <s9—1,
g(s) =
0 for sg < s,

g(s) >0 forsp—1<s <sp.
Then, g(s) satisfies (g.1)—(g.4).
Forg =2*=2N/(N —2) > 2and L > 1, we define
ap(s)y =s — (s — L)i forall s > 0.
By usingay (s), we modify the quadratic term of / () as follows. For L > 1 andu € HYRM),
we define J; € C2(H'(RY), R) by
1
Jr(u) =ar <f||u||2 +/ G(u) dx) — / F(u) + G(u)dx,
2 RN RN

where G (1) = f(;‘ g(s)ds. We remark that Jy (u) is written as

J()—l 2 (1 2+/ G(u)dx — L
L(u —2||M|| - 2IIMII o u)dx — )

Therefore Jy (u) satisfies

q

—/ F(u)dx. (2.2)
RN

+

1
I = 1) if f||u||2+/ Gwdx < L,
2 RN

Jr(u) < I(w) forallu e H'(RV).
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Our required sequence satisfying the H'(RV)-boundedness and the compactness will given
as a sequence of critical points of Jr, : HO1 (Bg,) = R (R, — 00).
At the end of this subsection, we state properties of ay, (s) which are used later.

Lemma2.2 ay(s) € C3([0, 00), R) satisfies the following:

(i) aj(s) < 1foralls > 0.
(i) Ifaj(s1) =0, thenar(sy) > L.

Proof (i) follows from aj (s) = 1 —q(s — L)Z__l. We show (ii). Let s; > 0 satisfy a} (s1) =
1 —q(s1 — L)f’[l = 0. Then, we see that s; > L and

O
Thus
1 1
atp=si =G -Df=si=r-D=(1-_Jes-D+L>L

Hence, (ii) holds. o

2.2 The properties of modified functional

In this section, we state some properties of Jy, (u). First, thanks to the modification, we can
easily obtain the boundedness of {u € H'®RNY | Jp(w) > 0}.

Lemma 2.3 Assume L > 1. There exists a constant Co = Co(L) > 0 such that

lull < Co forallu € H' (RY) with J; (u) > 0.

Proof From (f.1)—(f.3), there exists a constant ¢; > 0 such that | F (s)| < % Is|>+ ﬁ |s|PH!
for all s € R. Then, from (2.1), for some ¢, > 0, we have

+1 1
/RN Fydx| < 20 ullypr < fuun +callull Pt
Thus, from (2.2), we get
! 1
Jo() < flu|? ( llull® + G(u)dx—L) + colu||PF
+
2 2 p+1 _
< lull ( flull® — ) + c2llull”™ = h(|lulD). (23)

q . . .
Here we set hi(s) = s2 — (%sz — L) + ¢sPt! . Since limg_, o0 A(s) = —00, there exists a

constant Co = Co(L) > 0 such that
h(t) <0 forallt € [Cp, 00). 2.4)

From (2.3) and (2.4), J7 () > 0 implies |ju|| < Cp. ]

@ Springer



Infinitely many solutions for a nonlinear Schrodinger. .. Page70of31 137

For R > 1, we also consider functional J, : HO1 (Br) — R that is restricted on HOl (BR).
(We use same notation Jy.) We see that J; € CZ(HO1 (Br),R) and

1
W = d, (2||u||2+ /B G(u)dx) <<u,<p>+ fB g(u)sodX)

— | fwe+gwypdx forallg € Hy(Bg).
Br

Thus, if u is a critical point of Jy, : HOl (Br) — R, then u is a solution of
ay(B) (—Au+Vxu) = fu)+ (1 —ap(B)gu) inBr, uc Hy (Bg),

where B = 3ul® + 5, Gw) dx.
Moreover Jy (u) satisfies the Palais—Smale condition.

Lemma 2.4 Assume L > 1 and R € [1, 00). Then, for any ¢ € (0, L], Jr. : HOI(BR) —- R
satisfies (PS)q-condition, that is, every (PS)-sequence of Ji at level ¢ has a convergent
subsequence.

Proof Let (u,)°, C HO] (BR) satisfy
*
J, (y) > 0 in (HOI(BR)) . Ji(un) — c € (0, L.

From Lemma 2.3, since |u,|| is bounded, there exist a subsequence (u,,);,2; (we use same
notation), & > 0, and ug € HO1 (BR) such that

lunll — «, (2.5)
u, — up weakly in HO1 (BR) and strongly in LP'H(BR). (2.6)

From J; (u,)up — 0, we have

1
Jp (up)uo = aj, (2||un||2+ /B G(unmx) <<un,uo>+ /B g(unmodx)
R R

- 5 Sun)ug + g(up)uo dx

S d) (nuon2 + /B g (oo dx) - /B F oo + gluouo dx = 0,
2.7)

Here we set ]
B=-a> +/ G(up) dx. (2.8)
2 Br

Also, from J; (u,)u, — 0, we have

, 1
J] )y = aj, <2||un||2+ / G(un)dx) (||un||2+ / g(un)ty dx)
BR BR

- S un)uy + g(un)uy dx
Br

— ap(B) (Ot2 +/ g(uo)ug dx) —/ Sfuo)ug + gup)updx =0. (2.9)
Bgr Br
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Thus, subtracting (2.9) from (2.7), we get
ap (B (Jluol> —a?) = 0.

If a’L (B) # 0, then we have ||uo||2 = «2. Thus, from (2.5) and (2.6), we see that u, —
ug strongly in HO1 (Bg) and the proof is completed. Therefore we show aj (8) # 0 by
contradiction, and suppose a}‘ (B) = 0. From (2.7), we have

fwo)uo + g(ug)uodx = 0.
Bpr

Since f(s)s 4+ g(s)s > 0 (s # 0) from (g.1) and (g.4), we see that ug = 0. From Jr (u,) —
c € (0, L] and (2.6), we have

1 1

JrGun) = ap | 5 llunl? +/ G(up) dx —/ F(un) + Gup)dx — ar, <,a2> =c<L.
2 Bg Bg 2

(2.10)

On the other hand, (2.8) implies a} (8) = d} (%az) = 0. Thus, by (ii) of Lemma 2.2,

ar (%oﬂ) > L. This contradicts (2.10). Thus, a’L (B) # 0, and the proof was finished. O

Moreover Jg, : H(} (Br) — R has a mountain pass geometry which does not depend on
L>1andR €1, c0].

Lemma25 For L > 1and R € [1,00], JL : H(} (BRr) — R satisfies the following:

(i) JL(0) =0.
(ii) There exist § > 0 and p > 0 which are independent of L > 1 and R € [1, oo] such
that

Jr(u) =38 forallu e Hol(BR) with ||lul| = p.

(iii) For any k € N, there exist subspace E C HO1 (By) C HO1 (BR) and ry > 0 which are
independent of L > 1 and R € [1, oo] such that Ex C E4+1 and

Jr(u) <0 forallu € Ey with ||u]| > r.
Proof Since the oddness of f and g implies f(0) = g(0) = 0, (i) is trivial. From (g.1)—(g.3),

for some ¢; > 0, we have |G (s)| < c1|s|2 for all s € R. Thus, there is a constant ¢c; > 0
such that

1 4 1 q
<5||u||2+f G(u)dx—L) s<—||u||2+f G(u)dx) <olul®. @11
RN + 2 RN

From (f.1)—(f.3), for some c¢3 > 0, we have | F(s)| < %|s|2 + ¢3]s|PT! for all s € R. Thus,
from (2.1), there is a constant ¢4 > 0 such that

1
/ Fluydx < ~lull® + callul P+, 2.12)
RN 4
From (2.2) and (2.11)—(2.12), we have

1
2 2 1
Jo() = llull” = cofju] @ — cqllul P
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Since 2 < p 4+ 1 < 2¢g, by Young’s inequality, for some ¢5 > 0,

1 1 _
Iy = gl = eslul = 2l (1= 8eshul ™).

1

1 1
Thus, setting p = (ﬁ) S 0and 8 = % (ﬁ) ! > 0, we get (ii). Next, we show

(iii). We choose wy, ..., wr € C°(B1) \ {0} such that supp w; Nsuppw; = @ fori # j,
and set

Ey =span{wi, ..., wi}.

From (2.2), for any w € Ej with ||w| = 1, we have

1 1 F(t

Jo(tw) < —1?|w]? —f F(tw)dx <t*| = —f ( wz) w?dx | .

2 B 2 B (tw)

From (f.1) and (f.4), we have
F(t
lim / ( w2) w? dx = oo,
[t]—>0c0 J g, (tw)

where the above limit is uniformly with respect to w € Ej with ||w|| = 1. Thus we see that
(iii) holds. O

For the critical points of Jy, : HO1 (Br) — R, we have the following.

Proposition 2.6 Assume L > 1 and R € [1,00]. Ifu € HO1 (BR) satisfies Ji(u) =0in
(HOl (BR))*, then it holds that

1
ay <§||u||2 + fRN G(u)dx) € (0,1].

-1
Moreover, for A = a/L (%llu”2 + fRN G(u) dx) > 1, u is a solution of

—Au+V(x)u=Arfu) +G—1gw) inBg, ue H)(Bg). (2.13)

Proof We set 8 = %llull2 + fRN G(u)dx > 0. Then (i) of Lemma 2.2 asserts a (8) < I.
Since u € HO1 (Bg) satisfies J; (u)u = 0, we have

aj (ﬂ)/B [Vul?> + V()u? + gwudx = /B Fwu + gu)udx. (2.14)
R R

Since f(s)s +g(s)s > 0and g(s)s > 0 from (g.1) and (g.4), we get a’L (B) = 0. We suppose
ajy (B) = 0 by contradiction to show a (8) > 0. Then, from (2.14), we have

fwu+ gw)udx =0.
Br
Since f(s)s+g(s)s > 0 (s # 0), we getu = 0. Thisimplies 8 = %||u||2+fBR Gu)dx = 0.
Thus, az () = 0 holds. On the other hand, by (ii) of Lemma 2.2, a; (8) = 0 implies
ar(B) > L. This contradicts az (B) = 0. Therefore a; (8) € (0, 1]. Set A = a}‘(ﬂ)_l > 1.
For any ¢ € H(} (BR), it holds that

1
Jpwe = X/B Vu - Vo + V(x)up + gu)pdx — /B Fwe +guwedx =0.

This means that u is a solution of (2.13). ]
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2.3 H'(RM)-boundedness for modified functional on RV

In our approach, we have to invalidate the modification finally. Therefore we require apriori
estimate for critical points of J;, : H L(R¥) — R and this estimate must be independent of
large L > 0. For the original functional / : H'(R"Y) — R, Jeanjean-Tanaka [11] had gotten
apriori estimate as follows.

Proposition 2.7 (cf. [11, Proposition 4.2]) Assume (f.1)~(f.4) and (V.1)-(V.3). If (u,)52 | C
HY(RY) satisfies lim,_ o0 I (1ty) < 00 and I'(u,) = 0 in (H'(RN))*, then (up)p2, is
bounded in H' (RM).
Proof This follows from [11, Proposition 4.2] and its proofs. We can apply the almost same
proofs of [11, Proposition 4.2] to (un)ff’:1 C HI(RN) satisfying limy,— o0 I () < 00 and
I'(u,) = 0in (H'(RM))*. We remark that [11, Proposition 4.2] required that V satisfies
sup,cry V(x) < V. However, this assumption is not essential and we can easily remove
it. O
We discuss similar argument of Proposition 2.7 to modified functional J;, : H'(RY) — R
in next proposition. For J;,, we also obtain the following apriori estimate which is independent

of large L > 0.

Proposition 2.8 Assume (f.1)—-(f.4) and (V.1)-(V.3). For any b > 0, there exist constants
C1 =C1(b) > 0and L1 = L1(b) > b such that, for any L > L1, we have

1
—ull? +/ Gu)dx <Cy forallu € K p,
2 RN

where K1 = [ ue H'®[0 < Jp(w) < b, Jj () =0in (H RV))* } .

Remark 2.9 In the proofs of Propositions 2.7 and 2.8 , we don’tuse f,g € C I(R, R) but
use only f, g € C(R,R) (see Sect. 4). Thus, under the assumptions (f.1))—(f.3), (f.4), and
(V.1)—~(V.3), Propositions 2.7 and 2.8 still hold.

We prove Proposition 2.8 in Sect. 4. As a corollary of Proposition 2.8, we obtain the
following.

Corollary 2.10 For any b > 0, there exists a constant Ly = Lo(b) > b such that, for any
L > Ly, ifu € K1 p, then we have

0<Iw =Jyw)<b, I'W)=0 in (HI(RN)>*.

Proof We set £, = max {£, C; + 1} where £ and C; are constants which were given in
Proposition 2.8. For any L > £, if u € Ky j, then we have

1
5||u||2+/NG<u)dxsc1 <L-1<L-1.
R

Therefore, we see that J; = I in a neighborhood of u and we get the conclusion. O
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2.4 Balanced sequence and the compactness

In this section, we consider about balanced sequences and the compactness.

Definition 2.11 Suppose 7 € C'(H (RN) R). If u, € H}(Bg,) (R, — o0) satisfies
SUP,eN ‘I(u”)’ <ooandZ'(u,) = 0in (H0 (BR,))*, then we say that (u,);2 ; is a balanced
sequence for Z.

We construct balanced sequences for J; : H'(RV) — R. For any k € N, let subspace
E; C HOI(B1) and r;y > 0 be as in (iii) of Lemma 2.5. For L > 1 and R € [1, oo], we define
minimax values as follows:

DM ={u e Ex | llull <},

y(—u) = —y(u) forallu € Dk,
rk=1yec (Dk, H(}(BR)) X
y(m) =uforallu € 9D

bf g = inf max Ji(y (). (2.15)
’ yelrk ueDk

bl = inf max I(y (). (2.16)
)/EF ueDk

Lemma2.12 Fork € N, L > 1, and R € [1, 00), we have the following:

(i) bf <Dk <bf.
(ii) b5 g isa critical value of Ji, : H}(Bg) — Rif b} » < L.

Proof Since Fk c 'k, we have bk < bk Also, since Jy (1) < I(u), we have bk < bk
Thus, we get (i). From Lemmas 2.4 and 2.5 , by a standard method, we see that b Trisa
critical value of Jr : H0 (Br) — R. ]

Then there exist critical points having the estimates from the below of the Morse indexes.
Lemma2.13 Fork e N, L > b* and R € [1, 00), there exists w]Z,R € HO1 (BR) such that
0<JL(wLR) < bl x < bf,
Ji (wh x) =0 (HO (Br),
indexg J; (wL R) >k
where

H C HO1 (BR) is a subspace such that

indexo J; (% () = max { dim H . 1
’ J/(w} p)(h,h) <0 forh € Hy(Bg)

Proof This follows from [18, Theorem B]. We remark that [18, Theorem B] is true, if we
replace the assumption (I4) in [18] to the following (I4)’.

(I4)" For any u with I'(u) = 0, I"(u) is represented as 1" (u) = a,id + K,, where a, > 0
and K, is a compact operator.
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In fact, in the proof of [ 18, Theorem B], we use only (I4)'. Jy (u) satisfies (I4)’ because J; (u) is
writtenas (J;' ()p, ¥) = {(aj (P ()@, ¥)+(K,@, V), where P(u) = %||M||2+fBR G(u)dx

and
(Kup, V) = a] (Pw) P'(weP (u)y

-/ f’(u)wdx—(l—a; (P(u)))/ ¢ Wy dx.

Br

From Proposition 2.6, J; (u) = 0 implies a; (P (1)) > 0. We can find that K, : HO1 (BR) —
H(; (BR) is a compact operator. Thus we get Lemma 2.13. O

The following proposition guarantees the compactness of (w]z’ RIR=1-

Proposition 2.14 We assume (f.1)—(f.4), (V.1), (V.2), and (V.4). Let u, € HOI(BRH) (R, —
o) satisfy

*
0<Ji(un) <L, J} () =0 in (Hol(BRn)> . 2.17)
Then there exist a subsequence (u,)52 | (we use same notation) and ug € H LRNY such that
1Ny "
lin —uoll = O and J}(uo) =0 in (H ®Y))".
For the original functional 7 (), the following similar compactness holds.

Proposition 2.15 We assume (f.1)—(f.4), (V.1), (V.2), and (V.4). Let u,, € H(; (Br,) (R, —
00) be bounded in H' (RN) and satisfy

[r— *
im I(u,) < oo and I'(uy) =0 in (Hg(BRn)) .
n—0o0

oo

Then there exist a subsequence (uy).> | (we use same notation) and ug € H LRNY such that

*
lin —uoll = O and I'(ug) =0 in (HI(RN)) .

Proof The proof is almost same as the proof of Proposition 2.14. Thus we omit it. O

Remark 2.16 In the proofs of Propositions 2.14 and 2.15 , we don’t use differentiability of
f or g (see Sects. 5 and 6). Thus, under the assumptions (f.1")—(f.3'), (f.4), (V.1)~(V.2), and
(V.4), Propositions 2.14 and 2.15 still hold.

In order to prove Proposition 2.14, we use the concentration compactness arguments. The
key of getting the compactness is the assumption (V.4). We argue with the concentration
compactness in Sect. 5 and prove Proposition 2.14 in Sect. 6.

3 Proof of main theorems

First, we give a proof of Theorem 1.1. We need the following lemma which is similar with
[3, Lemma A.1].

Lemma3.1 If w € H'(RN) satisfies I'(w) = 0, then there exists a finite dimensional
subspace M C H LRN)Y such that

1
I"(w)(h, h) > 5||h||2 forallh € M™*.
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Proof We suppose, by contradiction, that there exists a sequence (h,);2; C H LRN)Y such
that

1
(h, hp) = 8pns 17 (W) (hy, hy) < §||hn||2 forall m,n € N. 3.1
Here we have

1)) = Ul = [ i dx

> 2l + / (1V<x)—f’<w))h3dx- 3.2)
4 RN 4
From (3.1)-(3.2), we have
Loy 2 LT R
/RN (4V(x) f(w))hndx< 4||h,,|| =-7 (3.3)

Since |w| satisfies —A|w| + V(x)|w| < f(w|) in RV, by a subsolution estimate (cf.
Lemma 6.1), [wllpp+1mv\gg) — 0 (R — o0) implies [[wl|poomiy\ gy — 0 (R — 00).
Thus, there exists » > 0 such that

1
ZV(x) — fl(w) >0 if|x|>r.
Therefore, there exists c(x) € Cgo(B,) such that
1 1 : N
ZV(X) — ff(w) > c(x) imR™. 3.4

From (3.3)—(3.4), we have

/ c(x)h2 dx 5/ (1V(x) - f/(w)) h2 dx < b (3.5)
RN 4 4

r

On the other hand, since , — 0 weakly in H!(R"), we have h,, — 0in L*>(B,) and

/c(x)h%dx—>0 asn — oQ.

r

This contradicts (3.5). Thus we get the conclusion. O
Now we prove Theorem 1.1.

Proof of Theorem 1.1 For any k € N, we define a minimax value bll‘ as (2.16). We choose
and fix LK = £ (bll‘) > 0 in Corollary 2.10. We consider the modified functional Jj« (u)

and define minimax values blzk R3S (2.15). From Lemma 2.13, for R € [1, 00), there exists

W) p € Hy (Bg) such that
0 = JLk (wlzk7R> = bik,R = bk7
P
T (whe ) =0 in (HSBR)
indexo J (wlzk’R> > k.

Here we set

bk = Rli_>7rrcl>o JLk (wik,R) .
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From Proposition 2.14, there exist a subsequence (wik,R,, )od, (R, — o0) and wlzk €
HY(RN) such that

lezk R, wlzk — 0,
Jik ( ) = bk,
Ty (wh) =0 in (H'®Y)". (3.6)

From the choice of L¥ = £, (bk) in Corollary 2.10, wk 1k satisfies

1 2
Elezk —l—/NG(a)]zk) dx < LF—1
R

bk =7 (wik) = JLk (w]ik) < blf,

I (w]Zk> =7, (wlik) =0 in (HI(RN))*. 3.7)

is a critical point of I(u). If we get b* — o0 as k — oo, then the proof of

Thus ka

Theorem 1.1 is finished. To show b — 0o by contradiction, suppose that there exists b > 0
such that B
b <b forallk e N.

Then, from Proposition 2.7, (wlzk),fil is bounded in H'(R"). Furthermore, from Proposi-

tion 2.15, there exist a subsequence (wik),fi] (we use same notation) and w € H'(RY) such
that

- Fe\ 1Ny )
Wy —w —0ask —>o00, I'(w)=0in (H ' (RY)) .
From Lemma 3.1, there exists a finite dimensional subspace M C H L(RM) such that
I 1 2 1
I"(w)(h, h) > §||h|| forallh e M—. (3.8)
We set ko = dim M. Since I is C2, there exists k| > ko such that

|- (ufi)] < 5

From (3.6), there exists R;,, > 0 such that

’1//( Lkl) _I//( Lkl Rn)H < g 1ndex01 ( Lkl R, ) > k.

From the definition of indexg, there exists a finite dimensional subspace Mc Ho (Bg) with
dim M = k1 such that

1" (why o)) =0 forallh e M,
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Since dim M = ko < ki = dim M, there exists 7 € M+ N M with ||2]| = 1. From (3.8), we
have

1 2 1 p—
EHhII = I"(w)(h, h)

_ [(mw) _1~ (wf;kl )+ (1 (vh) (081 )) 7 (o8 )} 1)

1
” " 2 2
1 (wit, ) = 1" (v ) H I

This is a contradiction. Thus we get b¥ — oo and the proof was finished. O

1@ = 1" (wh, ) H 112 +

Remark 3.2 In the above proof, from (3.6)—(3.7), there exists R* > 0 such that, for any
R > R, DK —1 < Jpi(of, ) and

Ly & 2 X 1
S ok ]+ G (b g) dx < Li— 5. (3.9)
Indeed, if (3.9) does not hold, there exists (R,);> | with R, — oo such that
Ly & 2 r 1
S ek n |+ N G (i g, ) dx = Li— 3. (3.10)

On the other hand, similarly as in the proof of Theorem 1.1, taking a subsequence if necessary,
there exists wf, € H'(RY) such that (3.6) and (3.7) hold. Taking n — 00 in (3.10), we have

? G(or,)dx>L :
> Ly — —.
+[l‘gN (ka) * = Sk 2

This contradicts (3.7). From (3.9), w*

1
5 |k

1t R satisfies

o= 1 (wh ) = I (whs ) < bhi g = b,
1 (whe ) = jx (whie ) =0 in (H3 (B

Thus w]’ik R (R > R¥) is a solution of (1.6) with Qz = Bg. Since limy_, o b¥ = o0, we
obtain Theorem 1.4 for the case 2 = Bjp.

As a by-product of Theorem 1.1, we can obtain Theorem 1.3. We state only outline of the
proof.

Outline of proof of Theorem 1.3 We can show Theorem 1.3 as a similar way to the proof of
Theorem 1.1. To obtain positive solutions, we put f = 0 on (—o0, 0). Under (f.1))—(f.3), we
take an auxiliary function g(s) = (— f(s))+ + |s|”‘1s near s = 0. We also define J; (u) as
in (2.2). We note that Lemmas 2.2, 2.4, 2.5, Propositions 2.6, 2.8, and 2.14 still hold. Indeed,
in this setting, (g.4) does not hold. However, we have f(s)s + g(s)s > 0 for any s € R and
s = 0 is an isolated solution of f(s)s + g(s)s = 0. Thus fBR fuw)u + gw)udx = 0 and
u e HO1 (Bg) imply u = 0 in Bg. Hence these lemmas and propositions hold. We define the
following minimax value

b = inf J
L,R y‘éer Ir}gx L(y ),

Ik {y e € (10,11, Hy(Br) ) [y @ =0, y(1) =e}.
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Here we choose e € Hol(Bl) satisfying Jp(e) < 0. Let wp g € HO1 (BR) be a critical point
for by r. By the similar way to the proof of Theorem 1.1, for R, — oo, (wr g,);2; is a
balanced sequence and, after extracting a subsequence (we use same notation), we can show
that (wz g,)52, converges to a nontrivial critical point w; € H'(RN) of I(u). Moreover,
by the maximum principle, we see that wy g, > 0. Thus we got a positive solution of (1.1).

O
4 Apriori estimate for critical points of J;

In this section, we prove Proposition 2.8. The fundamental idea of the proof comes from [11,
Proposition 4.2]. First, we show the following.

Lemma4.1l Letu € H'(RY) satisfy J; (u) = 0 in (H'(RN))*. Then

1 q-1 1
NL <f||u||2+/ Gu)dx —L) + IVull3 < NJL @) + 7/ Wn?dx.  (4.1)
2 RN 4 2 RN
Here n € L2(RN) N WL (RY) is the function in (V.3).

Proof From Proposition 2.6, u is a solution of

—Au+V@u=xrfw)+*x—Dgw) mRY, ueH'RY),

-1
where 1 = a) (%||u||2 + fRN G(u) dx) > 1. Thus u satisfies the following Pohozaev
identity;

(l_ f) I u||§+1/ V(x)u dx+—/ (x - VV(x)u’ dx
2 2 JrN
= / AFu) + (L — DG ) dx. 4.2)
RN
Set B = %||u||2 + [gn G(u)dx. (4.2) is written as

1 1
ay (B) (ﬂ - NHVMII% + N AN(JC . VV(x))uzdx> = /]RN F(u)+Gu)ydx. (4.3)
From (4.3), we have
J(u) =ar(B) — /RN Fu) +Gu)dx
= ’ Ly 4 2 \A% 2d
= a(B) — a(B) (ﬁ— 5! ”””ﬁfm (x-VV@)u x).

From 0 < a’(B) < 1 and the definition of 1, we have

L(,B)

1
ar(B) —ar(B) (ﬂ - NIIVMH%) =Jo(u) + / (x - VV(x)u’ dx

1 2.2
< + — . 4.4
< Jr(u) N /RNM n-dx 4.4)
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Now we calculate the left hand side of (4.4).

ar(B) —ay,(B) (B~ IVuId) = B~ (B~ L% - (1-a-0%") (8- Va3

L N 2 + + N 2
1 - q
= annﬁﬂﬂ -0 (—ﬂ+L+qﬂ - ﬁnwn%).
Recalling 8 = %||u||2 + fRN G (u) dx, we have
q
—B+L+agB—IVul3

_(¥=2 1N vu+L (g—1) 1 V(xutd Gu)d
=5y 45 )IVulz+ L+~ 2/RN x)u er/RN u) dx
> L. 4.5)

Combining (4.4) and (4.5), we get

JL(u)+i W’n?dx > i||W||§+L(ﬁ—L)q*‘.
2N Jrw - N +
Thus we got (4.1). O

Next we show the following lemma by the argument in [11, Proposition 4.2].

Lemma4.2 Forany b > 0, there exists a constant C; = C(b) > 0 such that

/ u2n2 dx < Cy forallu € Ky,
RN

where K| p is defined in Proposition 2.8.

—1
Proof Letu € K . Weset) = d}, (%uun2 + fon G(u)dx) > 1. From J (u)(un?) = 0,
it holds that

[, v vt s vt ar =i [ (w+ gt~ [ g’ ds
RN RV RV
> [+ g dx - [ gtour? dx
RN RN
:f fun®dx. (4.6)
RN
Here we used (f(s) + g(s))s > 0 and A > 1. From (f.1) and (f.4), for any M > 0, there

exists ¢y > 0 such that
f(s)s = Ms*> —cy foralls € R.

Thus we have
f Faun®dx = M / uPn dx — ey linl3. @)
RN RN

On the other hand, we have

/RN V(x)uzr]2 dx <V, /RN u2n2 dx 4.8)
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and

/ Vu«V(urf)dxg/ |Vu|2n2dx+/ 2\Vul |V |lun| dx
RN RN RN

5/ Vu|? (n2+|vn|2) dx+/ u*n? dx
RN RN

< (e + 192 ) Va3 + [ wntdx. 49
From (4.1) and Jr (1) < b, we have
1
[Vul3 < Nb+ f/ u’n®dx. (4.10)
2 JrN

Combining (4.6), (4.7), (4.8), (4.9), and (4.10), we get

Mf wn dx — ey lnli3 §V1/ wiidx + (Il + 1Vnl% ) Nb
RN RN

(W1 + 19m1%)
+ = = / uznzdx-l—/ uznzdx.
2 RN RN

Thus we have

Inli2 + 1V nl2
(M ~ Vi1 et ) | < (Il + 191 ) Nb -+ el

Since M > 0 is arbitrary, we set M = V| +2 + (Ilnllgo + IIVn||§o> /2. Then
[ s = (IniZ + 19nI) b+ curln
Thus we get the conclusion. O

Here we observe that, when L is large, A is restricted.

Lemma4.3 For any b > 0, there exists a constant L1 = L1(b) > b such that, for any
L=>7L, 1
r=aj (ﬂ)_ €[1,2] forallu e Ky p,

where B = 3 |lull® + [ G(u) dx.
Proof We set L1 = 2¢q (b + 2%) From (4.1) and Lemma 4.2, we have
1
LB-L)" " <b —/ 2Pdx <b+— =<
(B—L)} _+2N RNun x<b+ <

Thus @} (B) =1 —q(B— L)% " >1— 3L = § holds. o

(S]]

Next we show the boundedness for ||u]|.

Lemma4.4 For any b > O, there exists a constant C3 = C3(b) > 0 such that, for any
L=>17Ly,
lull < C3 forallu € K p.
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Proof From (f.1)—(f.3) and (g.1)—(g.3), for any € > 0, there exists ¢. > 0 such that
£, 1g()] < els] + cels| 72 foralls € R.

—1
Letu € Ky pand L > £;. Then A = a, (%nun2 + fon G(u)dx) € [1,2] by Lemma4.3.

From J; (u)u = 0, we have
lul|* = /RN Af (e + (= 1)gu)u dx
5 2N
<3 <€||M||2 + Ce||u||ﬁ)
N-2
5 2N
<3 <€||M||2 + CeC||VM||£V_2> .
From Lemmas 4.1 and 4.2 ,
2 &)
Vul5 < Nb+ BB
Thus we see that ||u]| is bounded. m]

Finally, we prove Proposition 2.8.

Proof of Proposition 2.8 From (g.1)—(g.3), there exists ¢ > 0 such that G(s) < cs? for all
s € R. Thus we have

L2 L2 2
5 ™+ o G dx = —full” + cllull3.

From Lemma 4.4, we obtain Proposition 2.8. O

5 Concentration compactness

In this section, in order to prove Proposition 2.14, we argue about the concentration com-
pactness for balanced sequences. We assume that (u,)52 ; with u, € HOl (Bg,) is a balanced
sequence which satisfies

0<Jr(up) <L, JiGutn)=0in (HOI(BR”))*. (5.1)

Then, from Lemma 2.3 and (5.1), (u,)52 , is bounded in H I(RY) and from Proposition 2.6,
u, satisfies
(@) Jp(uy) < L.
(b) J; (un)p =0 forall g € Hj (Bg,).
1
(© 0<aj <f||un||2 +/ G(un)dx> <L
2 RN
The main theorem of this section is the following.

Theorem 5.1 We assume (f.1)—(f.4), (V.1), and (V.2). Let (u,)°° , with u, € HO1 (Bg,) bea

n=1

bounded sequence in H LRNYand satisfy (a)—(c). Then, there exist a subsequence (u,)52 | (we
use same notation), £ € NU{0}, ug € H'(RM), o', ..., w* € H'@®RN)\ {0}, (Zﬁ);';l C RN
with zﬁ € Bg,, Izﬁl —ook=1,...,0) and Izﬁ — zﬁll — oo (k £ k'), and Ay > 1 such

that
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() [un — o — Yk_ 0" (- + 25| = 0.

(ii) ug is a solution of

—Au+V@u=rfw+ *o—Dgw)inRY, ue H'RY). (5.2)
(iii) o* (k =1,...,¢) are solutions of
— A+ Voot = o f ) + (ho — Dgu) inRY, ue H'(RN). (5.3)
In particular, when € = 0, we have ||u, — ug|| — 0 and JI"(uo) =0.

We state some lemmas which are repeatedly used.

Lemma5.2 Let (uy);2, and (vy)52 | be bounded in HY(RN) and

vy — 0 strongly in LPYT(RV). (5.4)

Then we have

/ fup)v, dx — 0, / guv,dx - 0  (n — 00). (5.5)
RN RN

Proof Since (u,);° | and (v,)72 , are bounded in H I(RM), there exists M > 0 such that
lunll =< M, Nunllp+1 = M, lvall < M.

From (f.1)—(f.3) and (g.1)—(g.3), for any € > 0, there exists ¢ > 0 such that
()], 1g(s)] < é€ls| +cels|P foralls € R.

Thus we have

‘/ f (un)vy dx
RN

56/ |un||vn|dx+ce/ 1P o] dx
RN RN

< ellunll2llvnllz + cellunllyy 1vall p+1

2
<eM +C5Mp||vn||p+1-

, '/ gup)v, dx
]RN

From (5.4), we see that

lim ‘/ fu)vedx|, lim ‘/ gup)v, dx| < eM?.
n—o0 RN n—oo RN
Since € > 0 is arbitrary, we get (5.5). O

Lemma5.3 ([13, Lemma 1.1]) Assume p € (1, (N +2)/(N —2))if N >3, p € (1,0) if
N =1,2. Let (up)>®, C H! (RN) be bounded in H! (RN) and satisfy

n=1

sup / lun|Phdx > 0 (n —> o0).
B(z1)

zeRN

Then we have |uy| p+1 — 0asn — oo.
Proof This follows from [13, Lemma 1.1]. ]

We prove Theorem 5.1 through several steps.
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Proof of Theorem 5.1 Let (u,); | be a sequence satisfying the assumption of Theorem 5.1. In

this proof, we repeatedly choose subsequence of (u,)5> . Thus, for simplicity, we use same

notation for subsequence. Since (u,,)5> | is bounded in H I(RN), there exist a subsequence

)2, up € H'(RY), and B > 0 such that
u, — uog weakly in Hl(RN),

1
§||un||2+f G(uy) — B. (5.6)
RN

Here we define functionals @ (1) and W (1) as follows:
1
() =ay (B) <§||u||2 —/ G(u)dx) —/ F(u) + G(u)dx,
RV RN
W) = aj (B) (1/ [Vu|?> 4+ Voou? dx —/ G(u)dx) —/ F(u) + G (u) dx.
2 RN RN RN

Step 1 Then we have
0<ap(B) <1, (5.7
® (ug)p =0 forall p € HI(RN). (5.8)

Proofof Step 1 Since a}‘ is continuous, (5.7) follows from (c). From (b), for any ¢ €
C(RY), we have

1
T (un)e = d (5||un||2 + /R ) G(unmx) <<un, o) + /R ) g(un)de>

_/ Swn)e + glun)p dx
RN

— ay (B) <<u0, @) +/ g(uo)y dX) —/ S uo)p + g(uo)p dx
RN RN
— ' (ug)p = 0.
Thus we get (5.8). O

Step 2 We set v,ll = u, — ug. Then, either (A) or (B) holds.
(A) (v,i)zo | satisfies

sup f |v,11|p+1dx—>0 (n — 00).
zeRN JB(z,1)

Then, we have

0<ap(B) <1, (5.9)
u, — uy stronglyin H](]RN),
J] (o) =0 forallp € H'(RY). (5.10)

In particular, for Lo = aj, (B)~! = 1, ug is a solution of (5.2).
(B) There exist a subsequence (v,ll)flo:1 and a sequence (2;11 >, C RN with 1;11 € Bg, for
each n such that

WhPtldx - di >0  (n — o). (5.11)
B(z},1)
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Then, after extracting a subsequence, there exists ' € H'(RN) \ {0} such that

lz}| = oo, (5.12)
(- +23) = o' weakly in H'(RY) and ||o" |1} > di. (5.13)
V(whYe =0 forallg e H'(RY), (5.14)
0<ap(B) <1 (5.15)

In particular, for Lo = aj (B)~! = 1, ug is a solution of (5.2) and ' is a solution of (5.3).
Proof of Case (A) of Step 2. From Lemma 5.3, we have

losllps1 =0 (n = 00). (5.16)
We suppose by contradiction that a’L (B) = 0. From (5.8), we have

0 = @' (up)uo

=a2(/3)<lluo||2+ f g(uo)uodx> - / f(wo)uo + g(ug)uo dx
RN RN

= —/ S (uo)uo + g(uo)updx.
]RN

Since (f(s) + g(s))s > 0 (s # 0) from (g.1) and (g.4), we see that ug = 0 in R¥. Since
v,i =u, — up = Uy, (5.16) implies

lupllpr1 — 0  (n — 00). (5.17)

From (a), we have

Jr(up) =ar (%Ilunll2 + /1.@ G(un)dX) - A@N F(up) + Gup)dx < L.

Since lim f F(un) + G(up) dx = 0 by (5.17), we get ay, (B) < L. However a (8) =0
RN

n—oo

implies ar, (ﬁ) > L by (ii) of Lemma 2.2. This is a contradiction. Thus (5.9) holds. Next,
we show (5.10). By Lemma 5.2, we have

1
J] (v} = df (Enunnz + /N G(uy) dx) (n, v}y + o(1),
R

@' (uo)v, = ay (B) (uo, vy) + o(1),
where o(1) — 0 asn — oo. Thus
T} (un)vy — @' (uo)v,

7 112 / 1 2 / 1

=a;(B)llv,II” + {GL <E””n -+ /RN G(un)dx> - aL(ﬂ)} (un, vy,) +o(1).
From (b) and (5.8), we see that J; (u,,)v,ll - d>’(u0)v)l — 0. Consequently, we obtain

. / 142 _
HILIT;OGL(/‘J’)||U"|| =0.

Since aj (B) > 0, we get (5.10) which implies a (8) = a} <%||u0|| + fzn G(uo) a’x). Thus,
we have J] (ug) = ®'(ug). From (5.8), we get J; (ug) = 0. From (5.9), u is a solution of

(5.2) with xg = ar(8)~! > 1. o
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Proof of Case (B) of Step 2. First, we show (5.12). From (5.6), v,i = u, —ug — 0 weakly
in H'(RV). Thus

1 _ . P+l N
v, =u, —ug— 0 stronglyin L; = (R™). (5.18)

n loc

If (z,ll)flo | is bounded, then (5.11) and (5.18) contradict each other. Thus (5.12) holds. Since

(v,l, -+ z,ll))flo= | is bounded in H LRN), after extracting a subsequence, there exists ol e
H'(RN)\ {0} such that
op (- +2h) > o weakly in ' ®Y) and [lo' 1] = d.
Thus we have
1 _ 1 1 1 1 : 1 N

Un ( —l—z,,) =, ( +z,,) + ug ( +zn) — o weakly in H (R™),

and (5.13) holds. Here we show that (z,ll)fl":1 satisfies
dist (z,],, 8BR”) — 0. (5.19)

By a contrary, we assume lim,___ dist(z), dBg,) =: r! < oo. We may also assume

1
limy,— 00 é—ll =: ¢l € RV.Set H = {x € RV | (x-e') < r!'}. Then H; is a half space

in RY. Forany ¢ € CSP(HY), o(- — z,ll) € Cy°(Bg,) for large n. From (b), we have

Ty (=2}

1
o (2””” "+ fB G(””)dx> <<””’ o(-a) +/B g (-~ 2) dx)
Rn Rn

- S un)e ( —z},) + gun)g ( —z},) dx

Bg,

—da (;nunn%/B
([ o5 o e oo [ 1))
(o) Jo (o (5o

— aj (B) (/ Vo' Ve + Vooa)lqodx+/
H,

G(u,,)dx)

g(ohe dx)

H;

-/ F@hHe + g@whpdx
1
=0. (5.20)

Ifa; (B) = 0, then le flhHo' + g(Ho' dx = 0 that implies ' = 0. This is a contra-
diction. Thus @ (B) > 0 and w' is a non-trivial solution of

— A+ Voout = Ao f () + (ko — Dg(u) in Hy ue H}(H)) (5.21)

where Ao = a} (8)~! > 1. However, since (5.21) has only a trivial solution by [7], this is a
contradiction. Thus (5.19) holds. From (5.19), for any ¢ € Cg° ®RV), (- +2z)) € C3°(Bgr,)
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for large n. By similar calculations to (5.20), we find that
Tpwnge (- =) = ¥@He =0

and a’L (8) > 0. Thus (5.14) and (5.15) hold. From (5.8), (5.14), and (5.15), ug and o' are
solutions of (5.2) and (5.3) respectively. ]

In Step 2, if the case (A) occurs, Theorem 5.1 holds as £ = 0. If the case (B) occurs, we
proceed next step.

Step 3 We set
v,%:v,i—a)l <~—z,1l):u,,—u0—a)l (—z,ll)

Then, either (A) or (B) holds.
(A) (v)%°, satisfies

sup / W2 Pldx - 0 (n — o0). (5.22)
B(z,1)

zeRN

Then, we have ||U,%|| — 0.
(B) There exist a subsequence (v%)‘;ozl and a sequence (zﬁ)flozl c RN with z% € Bg, for
each n such that

WP dx - dy >0 (n— o0). (5.23)
B(z,1)

Then, after extracting a subsequence, there exists > € H'(RN) \ {0} such that

22| = 00, |22 —z}| — oo, (5.24)
un(- +22) = w0 weakly in H'(RY) and || |1} > db, (5.25)
V(e =0 forallp € H (RV). (5.26)

In particular, w* is a solution of (5.3) with Ay = ajy B =1

Proof of Case (A) of Step 3. From (5.22) and Lemma 5.3, we see that ||v,%||p+1 — 0 as
n — oo. By Lemma 5.2, we have

/ 2 / 1 2 2
Jp (un)vy, = ay <7||un|| +/ G(un) dx) (un, vy) +o(1),
2 RN
@ (uo)vy = ay (B) (uo. vy) + o(1),

v <u)1 (- z},)) w2 = d} (B) fRN Vo' (= zb) Vol + Vol (- —2}) 2 dx + (D),

where o(1) — 0 as n — oo. Thus
J] (up) v} — @' (up)v: — v’ (wl < — Z;)) v?
1
= a Bl + {a’L (Enunn2 + fR G(un)dx) - a’L(m} {ttn, v3)
+ay (B) /N (V(x) = Vo) @' (- — z))v} dx + o(1).
R
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From (b) and (5.13),

Jf ) 0} = T} )t = Iy o = I (oo’ (- = 2})

= —J] (up)ug — Jj| <u,, ( + Z,i)) o'

- 0—V(w)w; =0 (n— o00).

Since J; (un)vZ — @' (uo)vZ — ¥ (' (- — z1))v2 — 0, we obtain lim,—, « a} (B)||v2]|* = 0.
Thus we get |Iv5|| — 0. O
Proof of Case (B) of Step 3. First, we show (5.24). From (5.6) and (5.13), we see that

vg = u, — uUo —a)l(- —z,ll) — 0 weakly in HI(RN),
va(-+2)) = un(- +20) —uo(- +z) —w' - 0 weakly in H'(RY).

Thus we have

v,zl — 0 strongly in Lﬁjl RY), (5.27)
v2(-+2)) —> 0 strongly in LIT' ®RY). (5.28)

If (z%);’f;l is bounded, then (5.23) and (5.27) contradict each other. If (z% — z,l,);’lo | is bounded,

then (5.23) and (5.28) contradict each other. Thus (5.24) holds. Since (v,zl(~ + z,zl))flo=1 is
bounded in H'(R¥), after extracting a subsequence, there exists w> € H'(RV) \ {0} such
that

V2 ( +zﬁ) — o weaklyin H'(R") and [0*7]] = db.

Then (5.25) follows from
Uy ( +z,2l) =v2 ( +z,%) + ug ( +z£) - o' ( +22 - z,1,> — w®  weakly in H'(RV).
Also, by similar calculations to (5.19), we get lim,_, o dist(z%, 0Bg,) = oo. Thus, for any
@ € C°(RN), we obtain

Ji (un) @ ( - Zﬁ) - v (wz) ¢ =0.

Thus (5.26) holds. o
In Step 3, if the case (A) occurs, Theorem 5.1 holds as £ = 1. If the case (B) occurs, we
repeat similar arguments. That is, the following induction holds.

Step 4 We suppose that there exist a subsequence of (u,)° , m € NU {0}, ug € HYRN),

n=1’
ol ™ e HYRM)\ (0}, (6%, c RN with 2k € B, |25 — 0o (k =1, ..., m) and

n=1

|2k — Zf,/l — 00 (k # k') such that
u, — ug weakly in H'(RY),
un(- + 25) — o* weakly in H'(R") and ||a)"||§j{ >dy>0 (k=1,...,m),
@ (ug)p = 0 and V' (g =0 forallg € H'RY) (k=1,...,m).

We set "
vt =, —ug — Zwk ( —zﬁ) .
k=1
Then, either (A) or (B) holds.
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(A) (v”’“)n | satisfies

sup f
zeRN JB(z,1)

Then, we have v+ — 0.
(B) There exist a subsequence (v

P+l
v,ﬁ"“‘ dx -0 (n—> ).

m+1) | and a sequence (Z1)%° € RN such that

m+1 p+l
’vn ‘ dx > dpt1 >0  (n— 00).
B(Zm+l 1)

Then, after extracting a subsequence, there exists o™+ € H'(RV) \ {0} such that

7t MKl S0 (k=1,...,m),

( — oo,
m+1 m-+1 ol N mt1]PT!
n(--i—zn )—>w weakly in H* (R"™) and Ha) ” 1 >dpyy1 >0,
p+
v’ (w’"“) 0=0 forallg e H'®RY).
In particular, o™+ is a solution of (5.3) with Ao = ajy B'=1

Since the proof of Step 4 is almost same as Step 3, we omit it.

As long as the case (B) occurs, we repeat Step 4. If the case (A) occurs, Theorem 5.1
holds as £ = m. Finally, after repeating Step 4 a finite times, we observe that the case (A)
always occurs.

Step 5 When Step 4 is repeated a finite times, the case (A) occurs.

Proof of Step 5 We suppose, by contradiction, that the case (B) of Step 4 repeated infinite
time. Then, there exist a subsequence (u,)"2 |, uo e HYRM), (a)k)k | CH LRN) \ {0},

(z Do C RN with |zn| — 00 (k € N) and |zn —zn | — 00 (k # k') such that
un — ug weakly in H'(RV), (5.29)

k k . ek
up |-+ 2,) - o weaklyin H (R") and || lZalk>0 (k € N),
p+

@ (1g)p = 0 and W’ (a)k) o =0forallg € H'RY) (k eN). (5.30)
From (5.29) and (5.30), for any m € N, we see that
m—1 2
— o k(. _ ok
T T S
k=1 HI@®Y)
m—1
= Tim {31y — N0l 3 oy = D 10 I3 v
k=1
where ||u||H1(RN) ||Vu||§ + ||u||§ which is equivalent to || - ||. Thus we have
o.¢]
DN 15 gy = Tl gy = llol3 vy < 00
k=1
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On the other hand, from (f.2) and (g.2), O is an isolated critical point of W (u). Thus there
exists §g > 0 such that k| = dp (k € N). This is a contradiction. Thus (B) of Step 4 is not
repeated infinite time. O

Through Step 1 to Step 5, the proof of Theorem 5.1 was completed. O
Remark 5.4 In Theorem 5.1, we also have Jy (1) — ®(uo) + Z,l;:l W (o).

6 The compactness for balanced sequence

In this section, we prove Proposition 2.14. The fundamental idea of the proof comes from
[3, Proposition 4.1].

Proof of Proposition 2.14 Let u, € H& (Bg,) satisty (2.17). Then, (u,)52, satisfies the
assumptions of Theorem 5.1. It is sufficient to show that, adding assumption (V.4) to Theo-
rem 5.1, then only ¢ = 0 occurs. Suppose, by contradiction, that Theorem 5.1 holds for £ > 1.
Sinceu, = 0in RN \ B R, » choosing a subsequence (we use same notation) and replacing the
order k =1, ..., ¢, we may assume Iz,lll < Iz,%l <..-< Izﬁl < R,,. Furthermore, choosing
a subsequence, we can also assume that there exist di € [0, co] with

e
lim — =d (k=1,2,...,0).
n—o00 |Z}l’

We set r, and d > 0 such that
1r, = |2}, d:min{ 1, 11p/6, dydy > 0}.

Here p is a constant defined by (V.4). Then, for large n, it holds the following.

(i) If dy = 0, then B(zX, dry) C B(z), 2dry).
(i) If d > 0, then B(zX, dr,) C RN \ B(z), 9dr,).

From (i) of Theorem 5.1, we see that
lenll Lo+ (B} 9dr 0B} 2dry) = O- (6.1)
Since u, € HO1 (BRg,) is a solution of
—Auy + V(X)up = ro f(un) + (ho — Dg(un) in Bg,,
lun] € H'(RV) (expanding 0 on RN \ Bg,) is a subsolution of
= Dty + V)it = Ao f (un) + (ko — Dg(un) inRY. (6.2)

Here we use the subsolution estimate below.
p+l

Lemma 6.1 Let 2 be a domain and V € L~ (). Suppose that u € H'(Q) satisfies

loc
/ Vu-Vodx — V(x)updx <0 forall g € H}(RQ) withg > 0.
Q

Then, for any B(xq, 2r) C 2, there exist constants C = C(p, N,r) > 0ando = o(p, N) >
0 such that

lugllzoeBaory < C L1+ NVl pu lut Il p+1 (B(xg.20)) -
LP=1(B(x0,2r))
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Proof This was shown in [15, Theorem 2.26]. (Also see [8, Theorem 8.15].) O
From (6.1) and Lemma 6.1, we see that

lunllpoo (B} 8dry)\B(L 3dry)) —> O- (6.3)

Since |u,| is a subsolution of (6.2), from (6.3), (f.2), and (g.2), by the comparison theorem,
there exist constants C > 0 and u > 0 such that

et | Loo (B2} 7ara\ B} 4dryy < €T (6.4)
Furthermore, replacing C > 0 and © > 0, we also have

letn | 28} 7ar B ddryy < €T (6.5)

lnll Lo+t (BL Tdro\B () 4dryyy < CeHM (6.6)
Lemma 6.2 There exist constants C' > 0 and ' > 0 such that

HV|u,,| H < Cle™Wmn,

L2(B(z},6dry)\B(z},5dry)) —
Proof From (f.1)—(f.3) and (g.1)—(g.3), there exists ¢; > 0 such that
Mo f ) + (Ao — Dg@)| < |u| +ciu|? forallu € R. (6.7)
We take a cut-off function v, € C§°(R", [0, 1]) satisfying
Ya(x) =1 forx € B(z}, 6dry) \ B(z), 5dry),
Yn(x) =0 forx ¢ B(z),7dry) \ B(z), 4dr,),
IVy(x)| <1 forx e RV,

Since |uy,| is a subsolution of (6.2), for any ¢ € H"RN) with ¢ > 0, we have

/RN V0itn] - Vo + V) lutnlg — Ao f un)p — (ho — Dglun)gdx < 0.
Setting ¢ = |u, |y, in the above, from (6.7), we have

/ IV 1unl PV + (Vidal - V) [tn] — V@) lun|* P dx
B(z),7dr,)\B(z) . 4dry)

2 1
= [ty Wn+61lunlp+ Yndx.

/B(z,g,mrn)\B(z,',,ztdr,,)
Thus we get

IV i dx 5/ IVt P dx

/B(z,‘, ,6dr,)\B(z},5dr,) B(z),7dr,)\B(z} . 4dr,)

< WVlunlll2sz) 7ar\B ) adroy 1Unll 2B 7dn\ B 4dr,))

2 p+1
+ (” V”OO + 1) ”un”LZ(B(Z,I,,7drn)\B(Z},,4drn)) + C1 ”un”LP'H(B(Z,],,7dr,,)\B(Z,ll,4dr,,)).

Lemma 6.2 follows from (6.5) and (6.6). ]
Lemma 6.3 There exist constants C" > 0, u” > 0, and s,, € (5dry,, 6dr,) such that

”vunHLz(aB(zr]“sn)) = ”v|un|”L2(aB(Z,l,,s,,)) = CU@iM fn, (68)
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Proof From Lemma 6.2, it holds that

2 oy 2
(C') e = ||V|”n|HL2(B(z},,6dr,,)\3(z,1,,5dr,,))

2
= / [Viun|l”dx
5dr,,§|x—z,£|§6drn

6dry,
:/ / IV0un|>do | dr
Sdry |x—z}|=r

6an 2
- / ||V|un|||L2(BB(Z,],J)) dr.

dry

Since r = [[V]ua| 125 B(zL.r)) is continuous, by the mean value theorem for integration,
there exists s, € (5dry, 6dr,) such that

(6drn = 5dra) [VIunllF2yp et gy < (€27,

Thus we see that Lemma 6.3 holds. ]

Here, we use the following local Pohozaev identity.

Lemma 6.4 ([3]) Let Q@ C RN be a bounded domain with piecewise smooth boundary and
v € RN be the outward unit normal vector on 9S2. We suppose that V € C@RN,R) and
h e CR,R). Ifu € C*() N CY(RQ) satisfies

—Au+V&xu=nh(u) inQ, (6.9)

then, for any & € RV, it holds that

1 2 1 2
7/ (S«VV(x))u dx = f/ & -v)|Vu|“do —/ (Vu -v)(& -Vu)do
2 Jo 2 Jag Fle

2
—/ (& - v) (V(x)” - H(u)) do, (6.10)
a0 2

where H(u) = fou h(t)dr.

Proof Multiplying (£ - Vu) to the both sides of (6.9), integrating over €2, we get (6.10). (Also
see [3, Lemma 4.1].) ]

Applying Lemma 6.4 to u,, as Q = B(z,ll, $n) N BRr,, h(u) = Ao f(u) + (Ao — 1)g(u), and

&= Z,ll, we calculate as below.
1

5/ (z,ll . VV(x)) uﬁ dx
B(z}.52)NBg,

1
. f/ (z}, : v) \Vu,|? do —/ (Viy - v) (z}, : w,,) do
2 rur, rur;

2
—f (z,i : v) (wx)”" — M F () — (Ao — 1>G<un)> do
Iury 2

= | (hdo+ | (Ddo, (6.11)
I I
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where '] = (8B(z,1l, sp)) N Bg,, 'y = B(z,ll, sp) N (0Bg,). We note s, < 6dr, < 11r, =
|z,£| < R,. Since v = v(x) € R" is the outward unit normal vector at x € 92, v(x) = x on
I'>. Thus we have

(z,l, . v(x)) >0 forallx € I',. (6.12)

; v
Moreover, since u, = 0 and v = _#

v ©on I, we see that

n

_ _1 1 2
(Il)do = Z, V) |Vuy|do <0.
T 2 Jr,

From (6.4) and (6.8), for 110 € (0, 2min {x, 11”'}), we see that

lim e x

/ (Ddo| < o0.
n—oo rl
Thus we have
im eWn/ (z,ll : VV(x)) U2 dx < oo. (6.13)
=00 B(z}.s0)NBg,
On the other hand, from (i) of Theorem 5.1, we have
lim ty dx = o' | 2w > 0.

n—00 J B(z},5,)NBg,

From (V.4) and 5, < 6dr, < ,0|z,ll |, the left hand side of (6.11) satisfies

1
s /B( Ls)NB (Z']’ ' VV(x)) ty dx
ZpsSn Rp

1
> Zpholzl/1 inf <2,11 . VV(x)) / u? dx
2 x€B(z}.plz}l) B(z!.s)NBk,

—> 00 (n— 00).

This contradicts (6.13). Consequently, we see that £ = 0, and Proposition 2.14 was proved.
O
At the last, we give outline of the proof of Theorem 1.4.

Outline of proof of Theorem 1.4 In order to prove Theorem 1.1, we used the approximating
problem on Bg. But, even if we approximate by a problem on Q, the proof of Theorem 1.1
is exactly the same if (6.12) hold. Moreover, (6.12) holds by the assumption (£2). Indeed, by
(£2), there exist §, C > 0 such that

QCBc and y-vg(x)>O0forx €92, |x —y| <34, (6.14)

where v (x) is the outward unit normal vector of €2 at x. We take d with Cd < §. Since
ZJ, € Bcg,, we obtain

82,

Sy < 6dr, < <R,.

Thus, for x € 'y = B(z), 5,) N 3Qk,, we have

1 1 lez X
—zy v X)) == -vol|—=—),
R (zn Qp, ( )) r, "\ &,

g x

R, R,
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(6.12) follows from (6.14) and (6.15). Thus, we can prove Theorem 1.4 in the same way as
Remark 3.2. ]
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