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Abstract
We prove the existence of infinitely many solutions for

−�u + V (x)u = f (u) in R
N , u ∈ H1(RN ),

where V (x) satisfies lim|x |→∞ V (x) = V∞ > 0 and some conditions. We require conditions
on f (u) only around 0 and at ∞.

Mathematics Subject Classification 35J60 · 35J20 · 47J30 · 58E05

1 Introduction

In this paper, we consider the following nonlinear Schrödinger equation:

− �u + V (x)u = f (u) in R
N , u ∈ H1(RN ). (1.1)

Here N ≥ 3 and we assume that the potential function V (x) satisfies the following:

(V.1) V ∈ C1(RN , (0,∞)).
(V.2) lim|x |→∞ V (x) = V∞ > 0.
(V.3) There exists η ∈ L2(RN ) ∩ W 1,∞(RN ) such that

(
x · ∇V (x)

) ≤ η(x)2 for all x ∈ R
N .

(V.4) There exists ρ ∈ (0, 1) such that, for any α > 0,

lim|x |→∞ inf
y∈B(x,ρ|x |)

(
x · ∇V (y)

)
eα|x | = ∞.
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Here B(x, r) =
{
y ∈ R

N
∣
∣
∣
∣y − x
∣
∣ < r
}
for x ∈ R

N , r > 0.

We assume that the nonlinearity f (u) satisfies the following:

(f.1) f ∈ C1(R,R) and f (−s) = − f (s).
(f.2) f ′(0) = 0.
(f.3) There exists p ∈ (1, (N + 2)/(N − 2)) such that lims→∞ f ′(s)/s p−1 = 0.
(f.4) lims→∞ f (s)/s = ∞.

Under the assumptions (V.1)–(V.2), (f.1)–(f.3), the solutions of (1.1) are the critical points
of the functional I ∈ C2(H1(RN ),R) defined by

I (u) = 1

2

∫

RN
|∇u|2 + V (x)u2 dx −

∫

RN
F(u) dx,

where F(u) = ∫ u0 f (s) ds.
Many researchers have studied (1.1) under the assumption (V.2) for f (u) = |u|p−1u or

more general f (u) (cf. [1–6,11,13,14,16,17], and their references). When we look for critical
points of I (u) by variational approach, we generally need the compactness of Palais–Smale
sequences (we denote (PS)-sequences in short) for I (u). If V (x) ≤ V∞ (
≡ V∞), then, by
the concentration compactness arguments, we obtain the compactness of (PS)-sequences at a
mountain pass level (cf. [13,14,17]). However, for (PS)-sequences at higher energy levels, it is
not easy to get the compactness. To get the compactness, in the case f (u) = |u|p−1u, Cerami–
Devillanova–Solimini [3] introduced assumptions such as (V.4) (also see Remark 1.2) and
balanced sequences which are sequences of solutions of the following equation on a ball:

− �u + V (x)u = f (u) in B (0, n) , u ∈ H1
0

(
B(0, n)

)
. (1.2)

The balanced sequences are not (PS)-sequences for I (u) but play a similar role to the
(PS)-sequences. In fact, the balanced sequences also satisfy concentration-compactness type
properties. Moreover, under the assumption (V.4), every balanced sequence is relatively
compact (cf. [3, Proposition 2.1]). Consequently, they succeeded to obtain the existence of
infinitely many solutions of (1.1).

On the other hand, in the procedure for getting the compactness of (PS)-sequence, in
almost all cases, we need the H1(RN )-boundedness of (PS)-sequence. For general f (u)

as (f.1)–(f.4), it is a problem how to get the bounded (PS)-sequence. As an assumption
guaranteeing the boundedness of any (PS)-sequences, the following Ambrosetti-Rabinowitz
condition (AR) is well-known.

(AR) There exists μ > 2 such that μF(u) ≤ f (u)u for all u ∈ R.

There aremany researches to obtain the bounded (PS)-sequence underweaker conditions than
(AR) (cf. [9–12,16,19], and their references). In our knowledge, one of the weakest assump-
tions is (V.3) and (f.4) which were introduced by Jeanjean–Tanaka [11]. By the monotonicity
trick, they obtained a (PS)-sequence which is a sequence of solutions of

− �u + V (x)u = λn f (u) in R
N , u ∈ H1(RN ), (1.3)

where λn → 1 − 0 (n → ∞). To get the H1(RN )-boundedness of this (PS)-sequence,
they used (V.3), (f.4), and the Pohozaev identity for the solutions of (1.3). Consequently,
for N ≥ 2, they obtained a positive solution of (1.1) under the conditions (V.1)–(V.3),
V (x) ≤ V∞ (
≡ V∞), and

(f.1′) f ∈ C([0,∞),R).
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Infinitely many solutions for a nonlinear Schrödinger… Page 3 of 31 137

(f.2′) lims→+0 f (s)/s = 0.
(f.3′) There exists p ∈ (1, (N + 2)/(N − 2)) if N ≥ 3, p ∈ (1,∞) if N = 2 such that

lims→∞ f (s)/s p = 0.
(f.4) lims→∞ f (s)/s = ∞.

Themain result of this paper is the following theoremwhich is considered as a development
from [3] and [11].

Theorem 1.1 Assume N ≥ 3, (V.1)–(V.4) and (f.1)–(f.4). Then (1.1) have infinitely many
solutions.

Remark 1.2 If V (x) satisfies the following (i)–(ii), V (x) satisfies (V.3)–(V.4).

(i) There exist c0, c1, r1 > 0 and �0 ≥ �1 > N such that

c0|x |−�0 ≤ (x · ∇V (x)
) ≤ c1|x |−�1 for all |x | ≥ r1.

(ii) There exist c2, r2 > 0 such that
∣∣
∣
∣∣

(
ξ

|ξ | · ∇V (x)

)∣∣
∣
∣∣
≤ c2

(
x

|x | · ∇V (x)

)
for all |x | ≥ r2 and ξ with (ξ · x) = 0.

The radial functions V always satisfy (ii). Cerami–Devillanova–Solimini [3] assumed (ii)
and

lim|x |→∞
(
x · ∇V (x)

)
eα|x | = ∞ for any α > 0 (1.4)

instead of (V.4). (V.4) follows from (ii) and (1.4). In fact, for y ∈ B(x, ρ|x |) (ρ ∈ (0, 1)),
we set ξ = x − (y·x)

|y|2 y. Then x = (y·x)
|y|2 y + ξ ∈ (span{y}) ⊕ (span{y})⊥. Moreover, since

|y − x | ≤ ρ|x | and (1 − ρ)|x | ≤ |y| ≤ (1 + ρ)|x |, we have
1

1 + ρ
|y|2 ≤ (y · x) ≤ 1

1 − ρ
|y|2, |ξ | ≤ ρ

1 − ρ
|y|.

From (ii), for y ∈ B(x, ρ|x |) and |y| ≥ r2,

(
x · ∇V (y)

) = (y · x)
|y|2
(
y · ∇V (y)

)+ |ξ |
(

ξ

|ξ | · ∇V (y)

)

≥ (y · x)
|y|2
(
y · ∇V (y)

)− c2|ξ |
(

y

|y| · ∇V (y)

)

≥
(

1

1 + ρ
− c2

ρ

1 − ρ

) (
y · ∇V (y)

)
.

Thus, choosing ρ ∈ (0, 1) such that 1
1+ρ

− c2
ρ

1−ρ
> 0, from (1.4), we obtain (V.4).

Here we emphasize that we can not prove Theorem 1.1 by only combining the methods
of [3] and [11]. In fact, if we use a balanced sequence which is a sequence of solutions of
(1.2), then we don’t know the boundedness of that sequence. On the other hand, we can
not obtain infinitely many solutions of (1.3) because of the compactness problem. Therefore
the sequences of solutions of (1.2) or (1.3) are not proper to show Theorem 1.1. From
those reasons, we need introduce another sequence which satisfies both boundedness and
compactness. Just to state only conclusions, this sequence is obtained as a sequence of
solutions of

− �u + V (x)u = λn f (u) + (λn − 1) g(u) in B(0, n), u ∈ H1
0

(
B(0, n)

)
, (1.5)
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137 Page 4 of 31 Y. Sato, M. Shibata

where λn → 1 + 0 (n → ∞). Here g(u) is an auxiliary function which is defined in
Sect. 2. We obtain a solution of (1.5) as a critical point of a functional which is modified
in the quadratic term of I |H1

0 (B(0,n))(u). Thanks to this modification, we can guarantee both
boundedness and compactness of the sequence of solutions. Thismodification is an important
idea in this paper.

We also obtain the following two results as by-products of Theorem 1.1.

Theorem 1.3 Assume N ≥ 3, (V.1)–(V.4), (f.1′)–(f.3′), and (f.4). Then (1.1) has a positive
solution.

Next, we assume that 	 ⊂ R
N satisfies the following condition.

(	) 	 ⊂ R
N is a bounded domain with smooth boundary, 0 ∈ 	, and (x · ν(x)) > 0 for all

x ∈ ∂	, where ν(x) is the outward unit normal vector at x ∈ ∂	.

We set 	R =
{
x ∈ R

N
∣
∣R−1x ∈ 	

}
for R ≥ 1.

Theorem 1.4 Assume N ≥ 3, (V.1)–(V.4), (f.1)–(f.4), and (	). For any k ∈ N, there exists
R0 = R0(k) > 0 such that if R > R0, then

− �u + V (x)u = f (u) in 	R, u ∈ H1
0 (	R) (1.6)

has at least k distinct pairs of nontrivial solutions ±u j ( j = 1, . . . , k).

This paper consists as follows: In Sect. 2, we modify the functional I (u) and define
balanced sequences as sequences of critical points of modified functional. We also present
propositions which bring the boundedness and compactness to balanced sequences. Those
propositions are proved in Sects. 4–6. In Sect. 3, we prove Theorems 1.1 and 1.3. In Sect. 4,
we prove a proposition about the boundedness. Through Sects. 5 and 6 ,we prove propositions
about the compactness. In Sect. 6, we also prove Theorem 1.4.

2 Preliminaries

In this section, through several subsections, we give balanced sequences which satisfy the
boundedness and compactness. In Sect. 2.1, we define notations and amodified functional. In
Sect. 2.2, we show properties of the modified functional. In Sect. 2.3, we state propositions
about H1(RN )-boundedness. In Sect. 2.4, we construct balanced sequences as sequences
of critical points of the modified functional. We also state about the compactness for the
balanced sequences.

2.1 Notation andmodified functional

We use the following notations:

〈u, v〉 =
∫

RN
∇u · ∇v + V (x)uv dx, ‖u‖ = 〈u, u〉1/2,

‖u‖r =
(∫

RN
|u|r dx

)1/r
for r ∈ [1,∞), ‖u‖∞ = ess sup

x∈RN
|u(x)|,

B(x, R) =
{
y ∈ R

N | |y − x | < R
}

, BR = B(0, R).
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We remark that B∞ = R
N and we regard u ∈ H1

0 (BR) as u ∈ H1(RN ) by expanding u = 0
onRN \BR . Then we also regard ‖·‖ and ‖·‖r as norm on H1

0 (BR) and Lr (BR), respectively.
We set

V0 = inf
x∈RN

V (x), V1 = sup
x∈RN

V (x).

0 < V0 ≤ V∞ ≤ V1 < ∞ follows from the assumptions (V.1) and (V.2). Then we have

‖u‖22 ≤ 1

V0

∫

RN
V (x)u2 dx ≤ 1

V0
‖u‖2 for all u ∈ H1(RN ). (2.1)

We take an auxiliary function g(s) which satisfies

(g.1) g ∈ C1(R,R), g(s) ≥ 0 for all s > 0, and g(−s) = −g(s) for all s ∈ R.
(g.2) g′(0) = 0.
(g.3) There exists s0 > 0 such that g(s) = 0 for all s ≥ s0.
(g.4) f (s) + g(s) > 0 for all s > 0.

Remark 2.1 If f (s) > 0 for all s > 0, then g(s) ≡ 0 satisfies (g.1)–(g.4). Otherwise, we can
construct g(s) as follows. We define g̃(s) by

g̃(s) =
∫ s

0

(− f ′(t)
)
+ dt + s p for all s ≥ 0.

Then g̃ ∈ C1([0,∞), [0,∞)) and g̃(0) = g̃′(0) = 0. Since

g̃(s) ≥
∫ s

0
(− f ′(t)) dt + s p = − f (s) + s p for all s ≥ 0,

we have f (s) + g̃(s) > 0 for all s > 0. From (f.4), there exists s0 > 1 such that f (s) > 0
for all s ≥ s0 − 1. Thus we take an odd function g ∈ C1(R,R) satisfying

g(s) =
{
g̃(s) for 0 ≤ s ≤ s0 − 1,

0 for s0 ≤ s,

g(s) ≥ 0 for s0 − 1 ≤ s ≤ s0.

Then, g(s) satisfies (g.1)–(g.4).

For q = 2∗ = 2N/(N − 2) > 2 and L ≥ 1, we define

aL(s) = s − (s − L)
q
+ for all s ≥ 0.

Byusing aL(s), wemodify the quadratic termof I (u) as follows. For L ≥ 1 and u ∈ H1(RN ),
we define JL ∈ C2(H1(RN ),R) by

JL(u) = aL

(
1

2
‖u‖2 +

∫

RN
G(u) dx

)
−
∫

RN
F(u) + G(u) dx,

where G(u) = ∫ u0 g(s) ds. We remark that JL(u) is written as

JL(u) = 1

2
‖u‖2 −

(
1

2
‖u‖2 +

∫

RN
G(u) dx − L

)q

+
−
∫

RN
F(u) dx . (2.2)

Therefore JL(u) satisfies

JL(u) = I (u) if
1

2
‖u‖2 +

∫

RN
G(u) dx ≤ L,

JL(u) ≤ I (u) for all u ∈ H1(RN ).
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Our required sequence satisfying the H1(RN )-boundedness and the compactness will given
as a sequence of critical points of JL : H1

0 (BRn ) → R (Rn → ∞).
At the end of this subsection, we state properties of aL(s) which are used later.

Lemma 2.2 aL(s) ∈ C2([0,∞),R) satisfies the following:

(i) a′
L(s) ≤ 1 for all s ≥ 0.

(ii) If a′
L(s1) = 0, then aL(s1) > L.

Proof (i) follows from a′
L(s) = 1− q(s − L)

q−1
+ . We show (ii). Let s1 > 0 satisfy a′

L(s1) =
1 − q(s1 − L)

q−1
+ = 0. Then, we see that s1 > L and

(s1 − L)
q−1
+ = (s1 − L)q−1 = 1

q
.

Thus

aL(s1) = s1 − (s1 − L)q = s1 − 1

q
(s1 − L) =

(
1 − 1

q

)
(s1 − L) + L > L.

Hence, (ii) holds. ��

2.2 The properties of modified functional

In this section, we state some properties of JL(u). First, thanks to the modification, we can
easily obtain the boundedness of { u ∈ H1(RN ) | JL(u) ≥ 0 }.

Lemma 2.3 Assume L ≥ 1. There exists a constant C0 = C0(L) > 0 such that

‖u‖ ≤ C0 for all u ∈ H1(RN ) with JL(u) ≥ 0.

Proof From (f.1)–(f.3), there exists a constant c1 > 0 such that |F(s)| ≤ V0
2 |s|2+ c1

p+1 |s|p+1

for all s ∈ R. Then, from (2.1), for some c2 > 0, we have
∣∣∣∣

∫

RN
F(u) dx

∣∣∣∣ ≤
V0
2

‖u‖22 + c1
p + 1

‖u‖p+1
p+1 ≤ 1

2
‖u‖2 + c2‖u‖p+1.

Thus, from (2.2), we get

JL(u) ≤ ‖u‖2 −
(
1

2
‖u‖2 +

∫

RN
G(u) dx − L

)q

+
+ c2‖u‖p+1

≤ ‖u‖2 −
(
1

2
‖u‖2 − L

)q

+
+ c2‖u‖p+1 = h(‖u‖). (2.3)

Here we set h(s) = s2 −
(
1
2 s

2 − L
)q

+ + cs p+1. Since lims→∞ h(s) = −∞, there exists a

constant C0 = C0(L) > 0 such that

h(t) < 0 for all t ∈ [C0,∞). (2.4)

From (2.3) and (2.4), JL(u) ≥ 0 implies ‖u‖ ≤ C0. ��

123
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For R ≥ 1, we also consider functional JL : H1
0 (BR) → R that is restricted on H1

0 (BR).
(We use same notation JL .) We see that JL ∈ C2(H1

0 (BR),R) and

J ′
L(u)ϕ = a′

L

(
1

2
‖u‖2 +

∫

BR

G(u) dx

)(

〈u, ϕ〉 +
∫

BR

g(u)ϕ dx

)

−
∫

BR

f (u)ϕ + g(u)ϕ dx for all ϕ ∈ H1
0 (BR).

Thus, if u is a critical point of JL : H1
0 (BR) → R, then u is a solution of

a′
L(β)
(−�u + V (x)u

) = f (u) + (1 − a′
L(β)
)
g(u) in BR, u ∈ H1

0 (BR) ,

where β = 1
2‖u‖2 + ∫BR

G(u) dx .
Moreover JL(u) satisfies the Palais–Smale condition.

Lemma 2.4 Assume L ≥ 1 and R ∈ [1,∞). Then, for any c ∈ (0, L], JL : H1
0 (BR) → R

satisfies (PS)c-condition, that is, every (PS)-sequence of JL at level c has a convergent
subsequence.

Proof Let (un)∞n=1 ⊂ H1
0 (BR) satisfy

J ′
L (un) → 0 in

(
H1
0 (BR)
)∗

, JL(un) → c ∈ (0, L].
From Lemma 2.3, since ‖un‖ is bounded, there exist a subsequence (un)∞n=1 (we use same
notation), α ≥ 0, and u0 ∈ H1

0 (BR) such that

‖un‖ → α, (2.5)

un → u0 weakly in H1
0 (BR) and strongly in L p+1(BR). (2.6)

From J ′
L(un)u0 → 0, we have

J ′
L (un) u0 = a′

L

(
1

2
‖un‖2 +

∫

BR

G(un) dx

)(

〈un, u0〉 +
∫

BR

g(un)u0 dx

)

−
∫

BR

f (un)u0 + g(un)u0 dx

→ a′
L(β)

(

‖u0‖2 +
∫

BR

g(u0)u0 dx

)

−
∫

BR

f (u0)u0 + g(u0)u0 dx = 0.

(2.7)

Here we set

β = 1

2
α2 +
∫

BR

G(u0) dx . (2.8)

Also, from J ′
L(un)un → 0, we have

J ′
L(un)un = a′

L

(
1

2
‖un‖2 +

∫

BR

G(un) dx

)(

‖un‖2 +
∫

BR

g(un)un dx

)

−
∫

BR

f (un)un + g(un)un dx

→ a′
L(β)

(

α2 +
∫

BR

g(u0)u0 dx

)

−
∫

BR

f (u0)u0 + g(u0)u0 dx = 0. (2.9)

123
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Thus, subtracting (2.9) from (2.7), we get

a′
L(β)
(
‖u0‖2 − α2

)
= 0.

If a′
L(β) 
= 0, then we have ‖u0‖2 = α2. Thus, from (2.5) and (2.6), we see that un →

u0 strongly in H1
0 (BR) and the proof is completed. Therefore we show a′

L(β) 
= 0 by
contradiction, and suppose a′

L(β) = 0. From (2.7), we have
∫

BR

f (u0)u0 + g(u0)u0 dx = 0.

Since f (s)s + g(s)s > 0 (s 
= 0) from (g.1) and (g.4), we see that u0 = 0. From JL(un) →
c ∈ (0, L] and (2.6), we have

JL (un) = aL

(
1

2
‖un‖2 +

∫

BR

G(un) dx

)

−
∫

BR

F(un) + G(un) dx → aL

(
1

2
α2
)

= c ≤ L.

(2.10)

On the other hand, (2.8) implies a′
L(β) = a′

L

(
1
2α

2
)

= 0. Thus, by (ii) of Lemma 2.2,

aL
(
1
2α

2
)

> L . This contradicts (2.10). Thus, a′
L(β) 
= 0, and the proof was finished. ��

Moreover JL : H1
0 (BR) → R has a mountain pass geometry which does not depend on

L ≥ 1 and R ∈ [1,∞].
Lemma 2.5 For L ≥ 1 and R ∈ [1,∞], JL : H1

0 (BR) → R satisfies the following:

(i) JL(0) = 0.
(ii) There exist δ > 0 and ρ > 0 which are independent of L ≥ 1 and R ∈ [1,∞] such

that
JL(u) ≥ δ for all u ∈ H1

0 (BR) with ‖u‖ = ρ.

(iii) For any k ∈ N, there exist subspace Ek ⊂ H1
0 (B1) ⊂ H1

0 (BR) and rk > 0 which are
independent of L ≥ 1 and R ∈ [1,∞] such that Ek ⊂ Ek+1 and

JL(u) ≤ 0 for all u ∈ Ek with ‖u‖ ≥ rk .

Proof Since the oddness of f and g implies f (0) = g(0) = 0, (i) is trivial. From (g.1)–(g.3),
for some c1 > 0, we have |G(s)| ≤ c1|s|2 for all s ∈ R. Thus, there is a constant c2 > 0
such that
(
1

2
‖u‖2 +

∫

RN
G(u) dx − L

)q

+
≤
(
1

2
‖u‖2 +

∫

RN
G(u) dx

)q
≤ c2‖u‖2q . (2.11)

From (f.1)–(f.3), for some c3 > 0, we have |F(s)| ≤ V0
4 |s|2 + c3|s|p+1 for all s ∈ R. Thus,

from (2.1), there is a constant c4 > 0 such that
∫

RN
F(u) dx ≤ 1

4
‖u‖2 + c4‖u‖p+1. (2.12)

From (2.2) and (2.11)–(2.12), we have

JL(u) ≥ 1

4
‖u‖2 − c2‖u‖2q − c4‖u‖p+1.

123
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Since 2 < p + 1 < 2q , by Young’s inequality, for some c5 > 0,

JL(u) ≥ 1

8
‖u‖2 − c5‖u‖2q = 1

8
‖u‖2
(
1 − 8c5‖u‖2(q−1)

)
.

Thus, setting ρ =
(

1
16c5

) 1
2(q−1)

> 0 and δ = 1
16

(
1

16c5

) 1
q−1

> 0, we get (ii). Next, we show

(iii). We choose w1, . . . , wk ∈ C∞
0 (B1) \ {0} such that suppwi ∩ suppw j = ∅ for i 
= j ,

and set
Ek = span {w1, . . . , wk} .

From (2.2), for any w ∈ Ek with ‖w‖ = 1, we have

JL(tw) ≤ 1

2
t2‖w‖2 −

∫

B1
F(tw) dx ≤ t2

(
1

2
−
∫

B1

F(tw)

(tw)2
w2 dx

)

.

From (f.1) and (f.4), we have

lim|t |→∞

∫

B1

F(tw)

(tw)2
w2 dx = ∞,

where the above limit is uniformly with respect to w ∈ Ek with ‖w‖ = 1. Thus we see that
(iii) holds. ��

For the critical points of JL : H1
0 (BR) → R, we have the following.

Proposition 2.6 Assume L ≥ 1 and R ∈ [1,∞]. If u ∈ H1
0 (BR) satisfies J ′

L(u) = 0 in
(H1

0 (BR))∗, then it holds that

a′
L

(
1

2
‖u‖2 +

∫

RN
G(u) dx

)
∈ (0, 1].

Moreover, for λ = a′
L

(
1
2‖u‖2 + ∫

RN G(u) dx
)−1 ≥ 1, u is a solution of

− �u + V (x)u = λ f (u) + (λ − 1)g(u) in BR, u ∈ H1
0 (BR). (2.13)

Proof We set β = 1
2‖u‖2 + ∫

RN G(u) dx ≥ 0. Then (i) of Lemma 2.2 asserts a′
L(β) ≤ 1.

Since u ∈ H1
0 (BR) satisfies J ′

L(u)u = 0, we have

a′
L

(
β
) ∫

BR

|∇u|2 + V (x)u2 + g(u)u dx =
∫

BR

f (u)u + g(u)u dx . (2.14)

Since f (s)s+ g(s)s ≥ 0 and g(s)s ≥ 0 from (g.1) and (g.4), we get a′
L(β) ≥ 0. We suppose

a′
L(β) = 0 by contradiction to show a′

L(β) > 0. Then, from (2.14), we have
∫

BR

f (u)u + g(u)u dx = 0.

Since f (s)s+g(s)s > 0 (s 
= 0), we get u = 0. This impliesβ = 1
2‖u‖2+∫BR

G(u) dx = 0.
Thus, aL(β) = 0 holds. On the other hand, by (ii) of Lemma 2.2, a′

L(β) = 0 implies
aL(β) > L . This contradicts aL(β) = 0. Therefore a′

L(β) ∈ (0, 1]. Set λ = a′
L(β)−1 ≥ 1.

For any ϕ ∈ H1
0 (BR), it holds that

J ′
L(u)ϕ = 1

λ

∫

BR

∇u · ∇ϕ + V (x)uϕ + g(u)ϕ dx −
∫

BR

f (u)ϕ + g(u)ϕ dx = 0.

This means that u is a solution of (2.13). ��
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2.3 H1(RN)-boundedness for modified functional onRN

In our approach, we have to invalidate the modification finally. Therefore we require apriori
estimate for critical points of JL : H1(RN ) → R and this estimate must be independent of
large L > 0. For the original functional I : H1(RN ) → R, Jeanjean-Tanaka [11] had gotten
apriori estimate as follows.

Proposition 2.7 (cf. [11, Proposition 4.2]) Assume (f.1)–(f.4) and (V.1)–(V.3). If (un)∞n=1 ⊂
H1(RN ) satisfies limn→∞ I (un) < ∞ and I ′(un) = 0 in (H1(RN ))∗, then (un)∞n=1 is
bounded in H1(RN ).

Proof This follows from [11, Proposition 4.2] and its proofs. We can apply the almost same
proofs of [11, Proposition 4.2] to (un)∞n=1 ⊂ H1(RN ) satisfying limn→∞ I (un) < ∞ and
I ′(un) = 0 in (H1(RN ))∗. We remark that [11, Proposition 4.2] required that V satisfies
supx∈RN V (x) ≤ V∞. However, this assumption is not essential and we can easily remove
it. ��

Wediscuss similar argument of Proposition 2.7 tomodified functional JL : H1(RN ) → R

in next proposition. For JL , we also obtain the following apriori estimatewhich is independent
of large L > 0.

Proposition 2.8 Assume (f.1)–(f.4) and (V.1)–(V.3). For any b > 0, there exist constants
C1 = C1(b) > 0 and L1 = L1(b) > b such that, for any L ≥ L1, we have

1

2
‖u‖2 +

∫

RN
G(u) dx ≤ C1 for all u ∈ KL,b,

where KL,b =
{
u ∈ H1(RN )

∣∣0 ≤ JL(u) ≤ b, J ′
L(u) = 0 in (H1(RN ))∗

}
.

Remark 2.9 In the proofs of Propositions 2.7 and 2.8 , we don’t use f , g ∈ C1(R,R) but
use only f , g ∈ C(R,R) (see Sect. 4). Thus, under the assumptions (f.1′)–(f.3′), (f.4), and
(V.1)–(V.3), Propositions 2.7 and 2.8 still hold.

We prove Proposition 2.8 in Sect. 4. As a corollary of Proposition 2.8, we obtain the
following.

Corollary 2.10 For any b > 0, there exists a constant L2 = L2(b) > b such that, for any
L ≥ L2, if u ∈ KL,b, then we have

0 ≤ I (u) = JL(u) ≤ b, I ′(u) = 0 in
(
H1(RN )

)∗
.

Proof We set L2 = max {L1, C1 + 1} where L1 and C1 are constants which were given in
Proposition 2.8. For any L ≥ L2, if u ∈ KL,b, then we have

1

2
‖u‖2 +

∫

RN
G(u) dx ≤ C1 ≤ L2 − 1 ≤ L − 1.

Therefore, we see that JL ≡ I in a neighborhood of u and we get the conclusion. ��
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2.4 Balanced sequence and the compactness

In this section, we consider about balanced sequences and the compactness.

Definition 2.11 Suppose I ∈ C1(H1(RN ),R). If un ∈ H1
0 (BRn ) (Rn → ∞) satisfies

supn∈N
∣
∣I(un)
∣
∣ < ∞ and I ′(un) = 0 in (H1

0 (BRn ))
∗, then we say that (un)∞n=1 is a balanced

sequence for I.

We construct balanced sequences for JL : H1(RN ) → R. For any k ∈ N, let subspace
Ek ⊂ H1

0 (B1) and rk > 0 be as in (iii) of Lemma 2.5. For L ≥ 1 and R ∈ [1,∞], we define
minimax values as follows:

Dk = { u ∈ Ek | ‖u‖ ≤ rk } ,

�k
R =
⎧
⎨

⎩
γ ∈ C
(
Dk, H1

0 (BR)
)
∣
∣
∣∣
∣
γ (−u) = −γ (u) for all u ∈ Dk,

γ (u) = u for all u ∈ ∂Dk

⎫
⎬

⎭
,

bkL,R = inf
γ∈�k

R

max
u∈Dk

JL(γ (u)), (2.15)

bkR = inf
γ∈�k

R

max
u∈Dk

I (γ (u)). (2.16)

Lemma 2.12 For k ∈ N, L ≥ 1, and R ∈ [1,∞), we have the following:

(i) bkL,R ≤ bkR ≤ bk1 .

(ii) bkL,R is a critical value of JL : H1
0 (BR) → R if bkL,R ≤ L.

Proof Since �k
1 ⊂ �k

R , we have b
k
R ≤ bk1. Also, since JL(u) ≤ I (u), we have bkL,R ≤ bkR .

Thus, we get (i). From Lemmas 2.4 and 2.5 , by a standard method, we see that bkL,R is a

critical value of JL : H1
0 (BR) → R. ��

Then there exist critical points having the estimates from the below of the Morse indexes.

Lemma 2.13 For k ∈ N, L ≥ bk1 , and R ∈ [1,∞), there exists wk
L,R ∈ H1

0 (BR) such that

0 ≤ JL
(
wk

L,R

)
≤ bkL,R ≤ bk1,

J ′
L

(
wk

L,R

)
= 0 in

(
H1
0 (BR)
)∗

,

index0 J
′′
L

(
wk

L,R

)
≥ k,

where

index0 J
′′
L (wk

L,R) = max

⎧
⎪⎨

⎪⎩
dim H

∣∣∣∣∣∣

H ⊂ H1
0 (BR) is a subspace such that

J ′′
L (wk

L,R)(h, h) ≤ 0 for h ∈ H1
0 (BR)

⎫
⎪⎬

⎪⎭
.

Proof This follows from [18, Theorem B]. We remark that [18, Theorem B] is true, if we
replace the assumption (I4) in [18] to the following (I4)′.

(I4)′ For any u with I ′(u) = 0, I ′′(u) is represented as I ′′(u) = auid + Ku , where au > 0
and Ku is a compact operator.
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In fact, in the proof of [18, TheoremB],weuse only (I4)′. JL(u) satisfies (I4)′ because J ′′
L (u) is

written as 〈J ′′
L (u)ϕ, ψ〉 = 〈a′

L(P(u))ϕ, ψ〉+〈Kuϕ,ψ〉,where P(u) = 1
2‖u‖2+∫BR

G(u) dx
and

〈Kuϕ,ψ〉 = a′′
L

(
P(u)
)
P ′(u)ϕP ′(u)ψ

−
∫

BR

f ′(u)ϕψ dx −
(
1 − a′

L

(
P(u)
)) ∫

BR

g′(u)ϕψ dx .

From Proposition 2.6, J ′
L(u) = 0 implies a′

L(P(u)) > 0. We can find that Ku : H1
0 (BR) →

H1
0 (BR) is a compact operator. Thus we get Lemma 2.13. ��
The following proposition guarantees the compactness of (wk

L,R)R≥1.

Proposition 2.14 We assume (f.1)–(f.4), (V.1), (V.2), and (V.4). Let un ∈ H1
0 (BRn ) (Rn →

∞) satisfy

0 ≤ JL(un) ≤ L, J ′
L (un) = 0 in

(
H1
0 (BRn )

)∗
. (2.17)

Then there exist a subsequence (un)∞n=1 (we use same notation) and u0 ∈ H1(RN ) such that

‖un − u0‖ → 0 and J ′
L(u0) = 0 in

(
H1(RN )

)∗
.

For the original functional I (u), the following similar compactness holds.

Proposition 2.15 We assume (f.1)–(f.4), (V.1), (V.2), and (V.4). Let un ∈ H1
0 (BRn ) (Rn →

∞) be bounded in H1(RN ) and satisfy

lim
n→∞ I (un) < ∞ and I ′(un) = 0 in

(
H1
0 (BRn )

)∗
.

Then there exist a subsequence (un)∞n=1 (we use same notation) and u0 ∈ H1(RN ) such that

‖un − u0‖ → 0 and I ′(u0) = 0 in
(
H1(RN )

)∗
.

Proof The proof is almost same as the proof of Proposition 2.14. Thus we omit it. ��
Remark 2.16 In the proofs of Propositions 2.14 and 2.15 , we don’t use differentiability of
f or g (see Sects. 5 and 6). Thus, under the assumptions (f.1′)–(f.3′), (f.4), (V.1)–(V.2), and
(V.4), Propositions 2.14 and 2.15 still hold.

In order to prove Proposition 2.14, we use the concentration compactness arguments. The
key of getting the compactness is the assumption (V.4). We argue with the concentration
compactness in Sect. 5 and prove Proposition 2.14 in Sect. 6.

3 Proof of main theorems

First, we give a proof of Theorem 1.1. We need the following lemma which is similar with
[3, Lemma A.1].

Lemma 3.1 If w ∈ H1(RN ) satisfies I ′(w) = 0, then there exists a finite dimensional
subspace M ⊂ H1(RN ) such that

I ′′(w)(h, h) ≥ 1

2
‖h‖2 for all h ∈ M⊥.
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Proof We suppose, by contradiction, that there exists a sequence (hn)∞n=1 ⊂ H1(RN ) such
that

〈hm, hn〉 = δmn, I ′′(w)(hn, hn) <
1

2
‖hn‖2 for all m, n ∈ N. (3.1)

Here we have

I ′′(w)(hn, hn) = ‖hn‖2 −
∫

RN
f ′(w)h2n dx

≥ 3

4
‖hn‖2 +

∫

RN

(
1

4
V (x) − f ′(w)

)
h2n dx . (3.2)

From (3.1)–(3.2), we have
∫

RN

(
1

4
V (x) − f ′(w)

)
h2n dx < −1

4
‖hn‖2 = −1

4
. (3.3)

Since |w| satisfies −�|w| + V (x)|w| ≤ f (|w|) in R
N , by a subsolution estimate (cf.

Lemma 6.1), ‖w‖L p+1(RN \BR) → 0 (R → ∞) implies ‖w‖L∞(RN \BR) → 0 (R → ∞).
Thus, there exists r > 0 such that

1

4
V (x) − f ′(w) > 0 if |x | ≥ r .

Therefore, there exists c(x) ∈ C∞
0 (Br ) such that

1

4
V (x) − f ′(w) ≥ c(x) in R

N . (3.4)

From (3.3)–(3.4), we have
∫

Br
c(x)h2n dx ≤

∫

RN

(
1

4
V (x) − f ′(w)

)
h2n dx < −1

4
. (3.5)

On the other hand, since hn → 0 weakly in H1(RN ), we have hn → 0 in L2(Br ) and
∫

Br
c(x)h2n dx → 0 as n → ∞.

This contradicts (3.5). Thus we get the conclusion. ��
Now we prove Theorem 1.1.

Proof of Theorem 1.1 For any k ∈ N, we define a minimax value bk1 as (2.16). We choose
and fix Lk = L2(bk1) > 0 in Corollary 2.10. We consider the modified functional JLk (u)

and define minimax values bk
Lk ,R

as (2.15). From Lemma 2.13, for R ∈ [1,∞), there exists

wk
Lk ,R

∈ H1
0 (BR) such that

0 ≤ JLk

(
wk

Lk ,R

)
≤ bkLk ,R ≤ bk1,

J ′
Lk

(
wk

Lk ,R

)
= 0 in

(
H1
0 (BR)
)∗

,

index0 J
′′
Lk

(
wk

Lk ,R

)
≥ k.

Here we set
bk = lim

R→∞
JLk

(
wk

Lk ,R

)
.
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From Proposition 2.14, there exist a subsequence (wk
Lk ,Rn

)∞n=1 (Rn → ∞) and wk
Lk ∈

H1(RN ) such that

∥
∥
∥wk

Lk ,Rn
− wk

Lk

∥
∥
∥→ 0,

JLk

(
wk

Lk

)
= bk,

J ′
Lk

(
wk

Lk

)
= 0 in

(
H1(RN )

)∗
. (3.6)

From the choice of Lk = L2(bk1) in Corollary 2.10, wk
Lk satisfies

1

2

∥
∥
∥ωk

Lk

∥
∥
∥
2 +
∫

RN
G
(
ωk
Lk

)
dx < Lk − 1

bk = I
(
wk

Lk

)
= JLk

(
wk

Lk

)
≤ bk1,

I ′ (wk
Lk

)
= J ′

Lk

(
wk

Lk

)
= 0 in

(
H1(RN )

)∗
. (3.7)

Thus wk
Lk is a critical point of I (u). If we get bk → ∞ as k → ∞, then the proof of

Theorem 1.1 is finished. To show bk → ∞ by contradiction, suppose that there exists b > 0
such that

bk ≤ b for all k ∈ N.

Then, from Proposition 2.7, (wk
Lk )

∞
k=1 is bounded in H1(RN ). Furthermore, from Proposi-

tion 2.15, there exist a subsequence (wk
Lk )

∞
k=1 (we use same notation) andw ∈ H1(RN ) such

that ∥∥∥wk
Lk − w

∥∥∥→ 0 as k → ∞, I ′(w) = 0 in
(
H1(RN )

)∗
.

From Lemma 3.1, there exists a finite dimensional subspace M ⊂ H1(RM ) such that

I ′′(w)(h, h) ≥ 1

2
‖h‖2 for all h ∈ M⊥. (3.8)

We set k0 = dim M . Since I is C2, there exists k1 > k0 such that

∥∥∥I ′′(w) − I ′′ (wk1
Lk1

)∥∥∥ ≤ 1

8
.

From (3.6), there exists Rn > 0 such that

∥∥∥I ′′ (wk1
Lk1

)
− I ′′ (wk1

Lk1 ,Rn

)∥∥∥ ≤ 1

8
, index0 I

′′ (wk1
Lk1 ,Rn

)
≥ k1.

From the definition of index0, there exists a finite dimensional subspace M̂ ⊂ H1
0 (BR) with

dim M̂ = k1 such that

I ′′ (wk1
Lk1 ,Rn

)
(h, h) ≤ 0 for all h ∈ M̂ .
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Since dim M = k0 < k1 = dim M̂ , there exists h ∈ M⊥ ∩ M̂ with ‖h‖ = 1. From (3.8), we
have

1

2
‖h‖2 ≤ I ′′(w)(h, h)

=
[(

I ′′(w) − I ′′ (wk1
Lk1

))
+
(
I ′′ (wk1

Lk1

)
− I ′′ (wk1

Lk1 ,Rn

))
+ I ′′ (wk1

Lk1 ,Rn

)
]

(h, h)

≤
∥
∥∥
∥I

′′(w) − I ′′ (wk1
Lk1

)∥∥∥
∥ ‖h‖2 +

∥
∥∥
∥I

′′ (wk1
Lk1

)
− I ′′ (wk1

Lk1 ,Rn

)∥∥∥
∥ ‖h‖2 ≤ 1

4
‖h‖2.

This is a contradiction. Thus we get bk → ∞ and the proof was finished. ��
Remark 3.2 In the above proof, from (3.6)–(3.7), there exists Rk > 0 such that, for any
R > Rk , bk − 1 ≤ JLk (ωk

Lk ,R
) and

1

2

∥∥
∥ωk

Lk ,R

∥∥
∥
2 +
∫

RN
G
(
ωk
Lk ,R

)
dx < Lk − 1

2
. (3.9)

Indeed, if (3.9) does not hold, there exists (Rn)
∞
n=1 with Rn → ∞ such that

1

2

∥∥∥ωk
Lk ,Rn

∥∥∥
2 +
∫

RN
G
(
ωk
Lk ,Rn

)
dx ≥ Lk − 1

2
. (3.10)

On the other hand, similarly as in the proof of Theorem 1.1, taking a subsequence if necessary,
there existswk

Lk ∈ H1(RN ) such that (3.6) and (3.7) hold. Taking n → ∞ in (3.10), we have

1

2

∥∥∥ωk
Lk

∥∥∥
2 +
∫

RN
G
(
ωk
Lk

)
dx ≥ Lk − 1

2
.

This contradicts (3.7). From (3.9), wk
Lk ,R

satisfies

bk − 1 ≤ I
(
wk

Lk ,R

)
= JLk

(
wk

Lk ,R

)
≤ bkLk ,R ≤ bk1,

I ′ (wk
Lk ,R

)
= J ′

Lk

(
wk

Lk ,R

)
= 0 in (H1

0 (BR))∗.

Thus wk
Lk ,R

(R ≥ Rk) is a solution of (1.6) with 	R = BR . Since limk→∞ bk = ∞, we
obtain Theorem 1.4 for the case 	 = BR .

As a by-product of Theorem 1.1, we can obtain Theorem 1.3. We state only outline of the
proof.

Outline of proof of Theorem 1.3 We can show Theorem 1.3 as a similar way to the proof of
Theorem 1.1. To obtain positive solutions, we put f ≡ 0 on (−∞, 0). Under (f.1′)–(f.3′), we
take an auxiliary function g(s) = (− f (s))+ + |s|p−1s near s = 0. We also define JL(u) as
in (2.2). We note that Lemmas 2.2, 2.4, 2.5, Propositions 2.6, 2.8, and 2.14 still hold. Indeed,
in this setting, (g.4) does not hold. However, we have f (s)s + g(s)s ≥ 0 for any s ∈ R and
s = 0 is an isolated solution of f (s)s + g(s)s = 0. Thus

∫
BR

f (u)u + g(u)u dx = 0 and

u ∈ H1
0 (BR) imply u = 0 in BR . Hence these lemmas and propositions hold. We define the

following minimax value

bL,R = inf
γ∈�R

max
u∈[0,1] JL(γ (u)),

�R =
{

γ ∈ C
(
[0, 1], H1

0 (BR)
) ∣∣γ (0) = 0, γ (1) = e

}
.
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Here we choose e ∈ H1
0 (B1) satisfying JL(e) < 0. Let wL,R ∈ H1

0 (BR) be a critical point
for bL,R . By the similar way to the proof of Theorem 1.1, for Rn → ∞, (wL,Rn )

∞
n=1 is a

balanced sequence and, after extracting a subsequence (we use same notation), we can show
that (wL,Rn )

∞
n=1 converges to a nontrivial critical point wL ∈ H1(RN ) of I (u). Moreover,

by the maximum principle, we see that wL,Rn > 0. Thus we got a positive solution of (1.1).
��

4 Apriori estimate for critical points of JL

In this section, we prove Proposition 2.8. The fundamental idea of the proof comes from [11,
Proposition 4.2]. First, we show the following.

Lemma 4.1 Let u ∈ H1(RN ) satisfy J ′
L(u) = 0 in (H1(RN ))∗. Then

N L

(
1

2
‖u‖2 +

∫

RN
G(u) dx − L

)q−1

+
+ ‖∇u‖22 ≤ N JL(u) + 1

2

∫

RN
u2η2 dx . (4.1)

Here η ∈ L2(RN ) ∩ W 1,∞(RN ) is the function in (V.3).

Proof From Proposition 2.6, u is a solution of

−�u + V (x)u = λ f (u) + (λ − 1)g(u) in R
N , u ∈ H1(RN ),

where λ = a′
L

(
1
2‖u‖2 + ∫

RN G(u) dx
)−1 ≥ 1. Thus u satisfies the following Pohozaev

identity;
(
1

2
− 1

N

)
‖∇u‖22 + 1

2

∫

RN
V (x)u2 dx + 1

2N

∫

RN
(x · ∇V (x))u2 dx

=
∫

RN
λF(u) + (λ − 1)G(u) dx . (4.2)

Set β = 1
2‖u‖2 + ∫

RN G(u) dx . (4.2) is written as

a′
L(β)

(
β − 1

N
‖∇u‖22 + 1

2N

∫

RN
(x · ∇V (x))u2 dx

)
=
∫

RN
F(u) + G(u) dx . (4.3)

From (4.3), we have

JL(u) = aL(β) −
∫

RN
F(u) + G(u) dx

= aL(β) − a′
L(β)

(
β − 1

N
‖∇u‖22 + 1

2N

∫

RN

(
x · ∇V (x)

)
u2 dx

)
.

From 0 < a′(β) ≤ 1 and the definition of η, we have

aL(β) − a′
L(β)

(
β − 1

N
‖∇u‖22
)

= JL(u) + a′
L(β)

2N

∫

RN
(x · ∇V (x))u2 dx

≤ JL(u) + 1

2N

∫

RN
u2η2 dx . (4.4)
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Now we calculate the left hand side of (4.4).

aL (β) − a′
L (β)

(
β − 1

N
‖∇u‖22
)

= β − (β − L)
q
+ −
(
1 − q(β − L)

q−1
+
)(

β − 1

N
‖∇u‖22
)

= 1

N
‖∇u‖22 + (β − L)

q−1
+
(

−β + L + qβ − q

N
‖∇u‖22
)

.

Recalling β = 1
2‖u‖2 + ∫

RN G(u) dx , we have

− β + L + qβ − q

N
‖∇u‖22

=
(
N − 2

2N
q − 1

2

)
‖∇u‖22 + L + (q − 1)

(
1

2

∫

RN
V (x)u2 dx +

∫

RN
G(u) dx

)

≥ L. (4.5)

Combining (4.4) and (4.5), we get

JL(u) + 1

2N

∫

RN
u2η2 dx ≥ 1

N
‖∇u‖22 + L(β − L)

q−1
+ .

Thus we got (4.1). ��

Next we show the following lemma by the argument in [11, Proposition 4.2].

Lemma 4.2 For any b > 0, there exists a constant C2 = C2(b) > 0 such that
∫

RN
u2η2 dx ≤ C2 for all u ∈ KL,b,

where KL,b is defined in Proposition 2.8.

Proof Letu ∈ KL,b.We setλ = a′
L

(
1
2‖u‖2 + ∫

RN G(u) dx
)−1 ≥ 1. From J ′

L(u)(uη2) = 0,

it holds that
∫

RN
∇u · ∇(uη2) + V (x)u2η2 dx = λ

∫

RN
( f (u) + g(u))uη2 dx −

∫

RN
g(u)uη2 dx

≥
∫

RN
( f (u) + g(u))uη2 dx −

∫

RN
g(u)uη2 dx

=
∫

RN
f (u)uη2 dx . (4.6)

Here we used ( f (s) + g(s))s ≥ 0 and λ ≥ 1. From (f.1) and (f.4), for any M > 0, there
exists cM > 0 such that

f (s)s ≥ Ms2 − cM for all s ∈ R.

Thus we have ∫

RN
f (u)uη2 dx ≥ M

∫

RN
u2η2 dx − cM‖η‖22. (4.7)

On the other hand, we have
∫

RN
V (x)u2η2 dx ≤ V1

∫

RN
u2η2 dx (4.8)
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and
∫

RN
∇u · ∇(uη2) dx ≤

∫

RN
|∇u|2η2 dx +

∫

RN
2|∇u| |∇η| |uη| dx

≤
∫

RN
|∇u|2
(
η2 + |∇η|2

)
dx +
∫

RN
u2η2 dx

≤
(
‖η‖2∞ + ‖∇η‖2∞

)
‖∇u‖22 +

∫

RN
u2η2 dx . (4.9)

From (4.1) and JL(u) ≤ b, we have

‖∇u‖22 ≤ Nb + 1

2

∫

RN
u2η2 dx . (4.10)

Combining (4.6), (4.7), (4.8), (4.9), and (4.10), we get

M
∫

RN
u2η2 dx − cM‖η‖22 ≤V1

∫

RN
u2η2 dx +

(
‖η‖2∞ + ‖∇η‖2∞

)
Nb

+
(
‖η‖2∞ + ‖∇η‖2∞

)

2

∫

RN
u2η2 dx +

∫

RN
u2η2 dx .

Thus we have
(

M − V1 − 1 − ‖η‖2∞ + ‖∇η‖2∞
2

)∫

RN
u2η2 dx ≤

(
‖η‖2∞ + ‖∇η‖2∞

)
Nb + cM‖η‖22.

Since M > 0 is arbitrary, we set M = V1 + 2 +
(
‖η‖2∞ + ‖∇η‖2∞

)
/2. Then

∫

RN
u2η2 dx ≤

(
‖η‖2∞ + ‖∇η‖2∞

)
Nb + cM‖η‖22.

Thus we get the conclusion. ��
Here we observe that, when L is large, λ is restricted.

Lemma 4.3 For any b > 0, there exists a constant L1 = L1(b) > b such that, for any
L ≥ L1,

λ = a′
L

(
β
)−1 ∈ [1, 2] for all u ∈ KL,b,

where β = 1
2‖u‖2 + ∫

RN G(u) dx.

Proof We set L1 = 2q
(
b + C2

2N

)
. From (4.1) and Lemma 4.2, we have

L(β − L)
q−1
+ ≤ b + 1

2N

∫

RN
u2η2 dx ≤ b + C2

2N
= L1

2q
≤ L

2q
.

Thus a′
L(β) = 1 − q(β − L)

q−1
+ ≥ 1 − q

2q = 1
2 holds. ��

Next we show the boundedness for ‖u‖.
Lemma 4.4 For any b > 0, there exists a constant C3 = C3(b) > 0 such that, for any
L ≥ L1,

‖u‖ ≤ C3 for all u ∈ KL,b.
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Proof From (f.1)–(f.3) and (g.1)–(g.3), for any ε > 0, there exists cε > 0 such that

| f (s)|, |g(s)| ≤ ε|s| + cε |s| N+2
N−2 for all s ∈ R.

Let u ∈ KL,b and L ≥ L1. Then λ = a′
L

(
1
2‖u‖2 + ∫

RN G(u) dx
)−1 ∈ [1, 2] by Lemma 4.3.

From J ′
L(u)u = 0, we have

‖u‖2 =
∫

RN
λ f (u)u + (λ − 1)g(u)u dx

≤ 3

(
ε‖u‖22 + cε‖u‖

2N
N−2
2N
N−2

)

≤ 3

(
ε‖u‖22 + cεC‖∇u‖

2N
N−2
2

)
.

From Lemmas 4.1 and 4.2 ,

‖∇u‖22 ≤ Nb + C2

2
.

Thus we see that ‖u‖ is bounded. ��
Finally, we prove Proposition 2.8.

Proof of Proposition 2.8 From (g.1)–(g.3), there exists c > 0 such that G(s) ≤ cs2 for all
s ∈ R. Thus we have

1

2
‖u‖2 +

∫

RN
G(u) dx ≤ 1

2
‖u‖2 + c‖u‖22.

From Lemma 4.4, we obtain Proposition 2.8. ��

5 Concentration compactness

In this section, in order to prove Proposition 2.14, we argue about the concentration com-
pactness for balanced sequences. We assume that (un)∞n=1 with un ∈ H1

0 (BRn ) is a balanced
sequence which satisfies

0 ≤ JL(un) ≤ L, J ′
L(un) = 0 in

(
H1
0 (BRn )

)∗
. (5.1)

Then, from Lemma 2.3 and (5.1), (un)∞n=1 is bounded in H1(RN ) and from Proposition 2.6,
un satisfies

(a) JL(un) ≤ L .
(b) J ′

L(un)ϕ = 0 for all ϕ ∈ H1
0 (BRn ).

(c) 0 < a′
L

(
1

2
‖un‖2 +

∫

RN
G(un) dx

)
≤ 1.

The main theorem of this section is the following.

Theorem 5.1 We assume (f.1)–(f.4), (V.1), and (V.2). Let (un)∞n=1 with un ∈ H1
0 (BRn ) be a

bounded sequence in H1(RN )and satisfy (a)–(c). Then, there exist a subsequence (un)∞n=1 (we
use same notation), � ∈ N∪{0}, u0 ∈ H1(RN ), ω1, . . . , ω� ∈ H1(RN )\{0}, (zkn)∞n=1 ⊂ R

N

with zkn ∈ BRn , |zkn | → ∞ (k = 1, . . . , �) and |zkn − zk
′

n | → ∞ (k 
= k′), and λ0 ≥ 1 such
that
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(i)
∥
∥
∥un − u0 −∑�

k=1ω
k(· + zkn)

∥
∥
∥→ 0.

(ii) u0 is a solution of

− �u + V (x)u = λ0 f (u) + (λ0 − 1)g(u) in R
N , u ∈ H1(RN ). (5.2)

(iii) ωk (k = 1, . . . , �) are solutions of

− �u + V∞u = λ0 f (u) + (λ0 − 1)g(u) in R
N , u ∈ H1(RN ). (5.3)

In particular, when � = 0, we have ‖un − u0‖ → 0 and J ′
L(u0) = 0.

We state some lemmas which are repeatedly used.

Lemma 5.2 Let (un)∞n=1 and (vn)
∞
n=1 be bounded in H1(RN ) and

vn → 0 strongly in L p+1(RN ). (5.4)

Then we have
∫

RN
f (un)vn dx → 0,

∫

RN
g(un)vn dx → 0 (n → ∞). (5.5)

Proof Since (un)∞n=1 and (vn)
∞
n=1 are bounded in H1(RN ), there exists M > 0 such that

‖un‖ ≤ M, ‖un‖p+1 ≤ M, ‖vn‖ ≤ M .

From (f.1)–(f.3) and (g.1)–(g.3), for any ε > 0, there exists cε > 0 such that

| f (s)|, |g(s)| ≤ ε|s| + cε |s|p for all s ∈ R.

Thus we have
∣∣∣∣

∫

RN
f (un)vn dx

∣∣∣∣ ,
∣∣∣∣

∫

RN
g(un)vn dx

∣∣∣∣ ≤ ε

∫

RN
|un‖vn | dx + cε

∫

RN
|un |p|vn | dx

≤ ε‖un‖2‖vn‖2 + cε‖un‖p
p+1‖vn‖p+1

≤ εM2 + cεM
p‖vn‖p+1.

From (5.4), we see that

lim
n→∞

∣∣∣∣

∫

RN
f (un)vn dx

∣∣∣∣ , lim
n→∞

∣∣∣∣

∫

RN
g(un)vn dx

∣∣∣∣ ≤ εM2.

Since ε > 0 is arbitrary, we get (5.5). ��
Lemma 5.3 ([13, Lemma 1.1]) Assume p ∈ (1, (N + 2)/(N − 2)) if N ≥ 3, p ∈ (1,∞) if
N = 1, 2. Let (un)∞n=1 ⊂ H1(RN ) be bounded in H1(RN ) and satisfy

sup
z∈RN

∫

B(z,1)
|un |p+1 dx → 0 (n → ∞).

Then we have ‖un‖p+1 → 0 as n → ∞.

Proof This follows from [13, Lemma 1.1]. ��
We prove Theorem 5.1 through several steps.
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Proof of Theorem 5.1 Let (un)∞n=1 be a sequence satisfying the assumption of Theorem 5.1. In
this proof, we repeatedly choose subsequence of (un)∞n=1. Thus, for simplicity, we use same
notation for subsequence. Since (un)∞n=1 is bounded in H1(RN ), there exist a subsequence
(un)∞n=1, u0 ∈ H1(RN ), and β ≥ 0 such that

un → u0 weakly in H1(RN ),

1

2
‖un‖2 +

∫

RN
G(un) → β. (5.6)

Here we define functionals �(u) and �(u) as follows:

�(u) = a′
L

(
β
)
(
1

2
‖u‖2 −

∫

RN
G(u) dx

)
−
∫

RN
F(u) + G(u) dx,

�(u) = a′
L

(
β
)
(
1

2

∫

RN
|∇u|2 + V∞u2 dx −

∫

RN
G(u) dx

)
−
∫

RN
F(u) + G(u) dx .

Step 1 Then we have

0 ≤ a′
L(β) ≤ 1, (5.7)

�′(u0)ϕ = 0 for all ϕ ∈ H1(RN ). (5.8)

Proof of Step 1 Since a′
L is continuous, (5.7) follows from (c). From (b), for any ϕ ∈

C∞
0 (RN ), we have

J ′
L(un)ϕ = a′

L

(
1

2
‖un‖2 +

∫

RN
G(un) dx

)(
〈un, ϕ〉 +

∫

RN
g(un)ϕ dx

)

−
∫

RN
f (un)ϕ + g(un)ϕ dx

→ a′
L

(
β
) (〈u0, ϕ〉 +

∫

RN
g(u0)ϕ dx

)
−
∫

RN
f (u0)ϕ + g(u0)ϕ dx

= �′(u0)ϕ = 0.

Thus we get (5.8). ��
Step 2 We set v1n = un − u0. Then, either (A) or (B) holds.
(A) (v1n)

∞
n=1 satisfies

sup
z∈RN

∫

B(z,1)
|v1n |p+1 dx → 0 (n → ∞).

Then, we have

0 < a′
L(β) ≤ 1, (5.9)

un → u0 strongly in H1(RN ),

J ′
L(u0)ϕ = 0 for all ϕ ∈ H1(RN ). (5.10)

In particular, for λ0 = a′
L(β)−1 ≥ 1, u0 is a solution of (5.2).

(B) There exist a subsequence (v1n)
∞
n=1 and a sequence (z1n)

∞
n=1 ⊂ R

N with z1n ∈ BRn for
each n such that ∫

B(z1n ,1)
|v1n |p+1 dx → d1 > 0 (n → ∞). (5.11)
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Then, after extracting a subsequence, there exists ω1 ∈ H1(RN ) \ {0} such that
|z1n | → ∞, (5.12)

un(· + z1n) → ω1 weakly in H1(RN ) and ‖ω1‖p+1
p+1 ≥ d1, (5.13)

� ′(ω1)ϕ = 0 for all ϕ ∈ H1(RN ), (5.14)

0 < a′
L(β) ≤ 1. (5.15)

In particular, for λ0 = a′
L(β)−1 ≥ 1, u0 is a solution of (5.2) and ω1 is a solution of (5.3).

Proof of Case (A) of Step 2. From Lemma 5.3, we have

‖v1n‖p+1 → 0 (n → ∞). (5.16)

We suppose by contradiction that a′
L(β) = 0. From (5.8), we have

0 = �′(u0)u0

= a′
L(β)

(
‖u0‖2 +

∫

RN
g(u0)u0 dx

)
−
∫

RN
f (u0)u0 + g(u0)u0 dx

= −
∫

RN
f (u0)u0 + g(u0)u0 dx .

Since ( f (s) + g(s))s > 0 (s 
= 0) from (g.1) and (g.4), we see that u0 = 0 in R
N . Since

v1n = un − u0 = un , (5.16) implies

‖un‖p+1 → 0 (n → ∞). (5.17)

From (a), we have

JL(un) = aL

(
1

2
‖un‖2 +

∫

RN
G(un) dx

)
−
∫

RN
F(un) + G(un) dx ≤ L.

Since lim
n→∞

∫

RN
F(un) + G(un) dx = 0 by (5.17), we get aL

(
β
) ≤ L . However a′

L(β) = 0

implies aL
(
β
)

> L by (ii) of Lemma 2.2. This is a contradiction. Thus (5.9) holds. Next,
we show (5.10). By Lemma 5.2, we have

J ′
L(un)v

1
n = a′

L

(
1

2
‖un‖2 +

∫

RN
G(un) dx

)
〈un, v1n〉 + o(1),

�′(u0)v1n = a′
L(β) 〈u0, v1n〉 + o(1),

where o(1) → 0 as n → ∞. Thus

J ′
L(un)v

1
n − �′(u0)v1n

= a′
L(β)‖v1n‖2 +

{

a′
L

(
1

2
‖un‖2 +

∫

RN
G(un) dx

)
− a′

L(β)

}

〈un, v1n〉 + o(1).

From (b) and (5.8), we see that J ′
L(un)v1n − �′(u0)v1n → 0. Consequently, we obtain

lim
n→∞ a′

L(β)‖v1n‖2 = 0.

Since a′
L(β) > 0, we get (5.10) which implies a′

L(β) = a′
L

(
1
2‖u0‖ + ∫

RN G(u0) dx
)
. Thus,

we have J ′
L(u0) = �′(u0). From (5.8), we get J ′

L(u0) = 0. From (5.9), u0 is a solution of
(5.2) with λ0 = aL(β)−1 ≥ 1. ��
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Proof of Case (B) of Step 2. First, we show (5.12). From (5.6), v1n = un − u0 → 0 weakly
in H1(RN ). Thus

v1n = un − u0 → 0 strongly in L p+1
loc (RN ). (5.18)

If (z1n)
∞
n=1 is bounded, then (5.11) and (5.18) contradict each other. Thus (5.12) holds. Since

(v1n(· + z1n))
∞
n=1 is bounded in H1(RN ), after extracting a subsequence, there exists ω1 ∈

H1(RN ) \ {0} such that
v1n

(
· + z1n
)

→ ω1 weakly in H1(RN ) and ‖ω1‖p+1
p+1 ≥ d1.

Thus we have

un
(
· + z1n
)

= v1n

(
· + z1n
)

+ u0
(
· + z1n
)

→ ω1 weakly in H1(RN ),

and (5.13) holds. Here we show that (z1n)
∞
n=1 satisfies

dist
(
z1n, ∂BRn

)
→ ∞. (5.19)

By a contrary, we assume limn→∞ dist(z1n, ∂BRn ) =: r1 < ∞. We may also assume

limn→∞ z1n
|z1n | =: e1 ∈ R

N . Set H1 = { x ∈ RN | (x · e1) < r1 }. Then H1 is a half space

in R
N . For any ϕ ∈ C∞

0 (H1), ϕ(· − z1n) ∈ C∞
0 (BRn ) for large n. From (b), we have

J ′
L(un)ϕ

(
· − z1n
)

= a′
L

(
1

2
‖un‖2 +

∫

BRn

G(un) dx

)(

〈un, ϕ
(
· − z1n
)
〉 +
∫

BRn

g(un)ϕ
(
· − z1n
)
dx

)

−
∫

BRn

f (un)ϕ
(
· − z1n
)

+ g(un)ϕ
(
· − z1n
)
dx

= a′
L

(
1

2
‖un‖2 +

∫

BRn

G(un) dx

)

(∫

H1

∇un
(
· + z1n
)

· ∇ϕ + V
(
x + z1n
)
un
(
· + z1n
)

ϕ dx +
∫

H1

g

(
un
(
· + z1n
))

ϕ dx

)

−
∫

H1

f

(
un
(
· + z1n
))

ϕ + g

(
un
(
· + z1n
))

ϕ dx

→ a′
L

(
β
)
(∫

H1

∇ω1 · ∇ϕ + V∞ω1ϕ dx +
∫

H1

g(ω1)ϕ dx

)

−
∫

H1

f (ω1)ϕ + g(ω1)ϕ dx

= 0. (5.20)

If a′
L

(
β
) = 0, then

∫
H1

f (ω1)ω1 + g(ω1)ω1 dx = 0 that implies ω1 = 0. This is a contra-

diction. Thus a′
L

(
β
)

> 0 and ω1 is a non-trivial solution of

− �u + V∞u = λ0 f (u) + (λ0 − 1)g(u) in H1 u ∈ H1
0 (H1) (5.21)

where λ0 = a′
L(β)−1 ≥ 1. However, since (5.21) has only a trivial solution by [7], this is a

contradiction. Thus (5.19) holds. From (5.19), for any ϕ ∈ C∞
0 (RN ), ϕ(· + z1n) ∈ C∞

0 (BRn )
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for large n. By similar calculations to (5.20), we find that

J ′
L(un)ϕ

(
· − z1n
)

→ �(ω1)ϕ = 0

and a′
L(β) > 0. Thus (5.14) and (5.15) hold. From (5.8), (5.14), and (5.15), u0 and ω1 are

solutions of (5.2) and (5.3) respectively. ��
In Step 2, if the case (A) occurs, Theorem 5.1 holds as � = 0. If the case (B) occurs, we

proceed next step.

Step 3 We set

v2n = v1n − ω1
(
· − z1n
)

= un − u0 − ω1
(
· − z1n
)

.

Then, either (A) or (B) holds.
(A) (v2n)

∞
n=1 satisfies

sup
z∈RN

∫

B(z,1)
|v2n |p+1 dx → 0 (n → ∞). (5.22)

Then, we have ‖v2n‖ → 0.
(B) There exist a subsequence (v2n)

∞
n=1 and a sequence (z2n)

∞
n=1 ⊂ R

N with z2n ∈ BRn for
each n such that ∫

B(z2n ,1)
|v2n |p+1 dx → d2 > 0 (n → ∞). (5.23)

Then, after extracting a subsequence, there exists ω2 ∈ H1(RN ) \ {0} such that
|z2n | → ∞, |z2n − z1n | → ∞, (5.24)

un(· + z2n) → ω2 weakly in H1(RN ) and ‖ω2‖p+1
p+1 ≥ d2, (5.25)

� ′(ω2)ϕ = 0 for all ϕ ∈ H1(RN ). (5.26)

In particular, ω2 is a solution of (5.3) with λ0 = a′
L(β)−1 ≥ 1.

Proof of Case (A) of Step 3. From (5.22) and Lemma 5.3, we see that ‖v2n‖p+1 → 0 as
n → ∞. By Lemma 5.2, we have

J ′
L(un)v

2
n = a′

L

(
1

2
‖un‖2 +

∫

RN
G(un) dx

)
〈un, v2n〉 + o(1),

�′(u0)v2n = a′
L(β) 〈u0, v2n〉 + o(1),

� ′
(

ω1
(
· − z1n
))

v2n = a′
L(β)

∫

RN
∇ω1
(
· − z1n
)

· ∇v2n + V∞ω1
(
· − z1n
)

v2n dx + o(1),

where o(1) → 0 as n → ∞. Thus

J ′
L(un)v

2
n − �′(u0)v2n − � ′

(
ω1
(
· − z1n
))

v2n

= a′
L(β)‖v2n‖2 +

{

a′
L

(
1

2
‖un‖2 +

∫

RN
G(un) dx

)
− a′

L(β)

}

〈un, v2n〉

+ a′
L(β)

∫

RN

(
V (x) − V∞

)
ω1(· − z1n)v

2
n dx + o(1).
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From (b) and (5.13),

J ′
L (un) v2n = J ′

L(un)un − J ′
L(un)u0 − J ′

L(un)ω
1
(
· − z1n
)

= −J ′
L(un)u0 − J ′

L

(
un
(
· + z1n
))

ω1

→ 0 − � ′(ω1)ω1 = 0 (n → ∞).

Since J ′
L(un)v2n − �′(u0)v2n − � ′(ω1(· − z1n))v

2
n → 0, we obtain limn→∞ a′

L(β)‖v2n‖2 = 0.
Thus we get ‖v2n‖ → 0. ��
Proof of Case (B) of Step 3. First, we show (5.24). From (5.6) and (5.13), we see that

v2n = un − u0 − ω1(· − z1n) → 0 weakly in H1(RN ),

v2n(· + z1n) = un(· + z1n) − u0(· + z1n) − ω1 → 0 weakly in H1(RN ).

Thus we have

v2n → 0 strongly in L p+1
loc (RN ), (5.27)

v2n(· + z1n) → 0 strongly in L p+1
loc (RN ). (5.28)

If (z2n)
∞
n=1 is bounded, then (5.23) and (5.27) contradict each other. If (z

2
n−z1n)

∞
n=1 is bounded,

then (5.23) and (5.28) contradict each other. Thus (5.24) holds. Since (v2n(· + z2n))
∞
n=1 is

bounded in H1(RN ), after extracting a subsequence, there exists ω2 ∈ H1(RN ) \ {0} such
that

v2n

(
· + z2n
)

→ ω2 weakly in H1(RN ) and ‖ω2‖p+1
p+1 ≥ d2.

Then (5.25) follows from

un
(
· + z2n
)

= v2n

(
· + z2n
)

+ u0
(
· + z2n
)

− ω1
(
· + z2n − z1n

)
→ ω2 weakly in H1(RN ).

Also, by similar calculations to (5.19), we get limn→∞ dist(z2n, ∂BRn ) = ∞. Thus, for any
ϕ ∈ C∞

0 (RN ), we obtain

J ′
L (un) ϕ

(
· − z2n
)

→ � ′ (ω2
)

ϕ = 0.

Thus (5.26) holds. ��
In Step 3, if the case (A) occurs, Theorem 5.1 holds as � = 1. If the case (B) occurs, we

repeat similar arguments. That is, the following induction holds.

Step 4 We suppose that there exist a subsequence of (un)∞n=1, m ∈ N ∪ {0}, u0 ∈ H1(RN ),
ω1, . . . , ωm ∈ H1(RN ) \ {0}, (zkn)∞n=1 ⊂ R

N with zkn ∈ BRn , |zkn | → ∞ (k = 1, . . . ,m) and

|zkn − zk
′

n | → ∞ (k 
= k′) such that

un → u0 weakly in H1(RN ),

un(· + zkn) → ωk weakly in H1(RN ) and ‖ωk‖p+1
p+1 ≥ dk > 0 (k = 1, . . . ,m),

�′(u0)ϕ = 0 and � ′(ωk)ϕ = 0 for all ϕ ∈ H1(RN ) (k = 1, . . . ,m).

We set

vm+1
n = un − u0 −

m∑

k=1

ωk
(
· − zkn
)

.

Then, either (A) or (B) holds.
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(A) (vm+1
n )∞n=1 satisfies

sup
z∈RN

∫

B(z,1)

∣
∣
∣vm+1

n

∣
∣
∣
p+1

dx → 0 (n → ∞).

Then, we have ‖vm+1
n ‖ → 0.

(B) There exist a subsequence (vm+1
n )∞n=1 and a sequence (zm+1

n )∞n=1 ⊂ R
N such that

∫

B(zm+1
n ,1)

∣
∣
∣vm+1

n

∣
∣
∣
p+1

dx → dm+1 > 0 (n → ∞).

Then, after extracting a subsequence, there exists ωm+1 ∈ H1(RN ) \ {0} such that
∣
∣
∣zm+1

n

∣
∣
∣→ ∞,

∣
∣
∣zm+1

n − zkn

∣
∣
∣→ ∞ (k = 1, . . . ,m),

un
(
· + zm+1

n

)
→ ωm+1 weakly in H1(RN ) and

∥
∥
∥ωm+1
∥
∥
∥
p+1

p+1
≥ dm+1 > 0,

� ′ (ωm+1
)

ϕ = 0 for all ϕ ∈ H1(RN ).

In particular, ωm+1 is a solution of (5.3) with λ0 = a′
L(β)−1 ≥ 1.

Since the proof of Step 4 is almost same as Step 3, we omit it.
As long as the case (B) occurs, we repeat Step 4. If the case (A) occurs, Theorem 5.1

holds as � = m. Finally, after repeating Step 4 a finite times, we observe that the case (A)
always occurs.

Step 5 When Step 4 is repeated a finite times, the case (A) occurs.

Proof of Step 5 We suppose, by contradiction, that the case (B) of Step 4 repeated infinite
time. Then, there exist a subsequence (un)∞n=1, u0 ∈ H1(RN ), (ωk)∞k=1 ⊂ H1(RN ) \ {0},
(zkn)

∞
n=1 ⊂ R

N with |zkn | → ∞ (k ∈ N) and |zkn − zk
′

n | → ∞ (k 
= k′) such that

un → u0 weakly in H1(RN ), (5.29)

un
(
· + zkn
)

→ ωk weakly in H1(RN ) and
∥∥∥ωk
∥∥∥
p+1

p+1
≥ dk > 0 (k ∈ N),

�′(u0)ϕ = 0 and � ′ (ωk
)

ϕ = 0 for all ϕ ∈ H1(RN ) (k ∈ N). (5.30)

From (5.29) and (5.30), for any m ∈ N, we see that

0 ≤ lim
n→∞

∥∥∥∥∥∥
un − u0 −

m−1∑

k=1

ωk
(
· − zkn
)
∥∥∥∥∥∥

2

H1(RN )

= lim
n→∞ ‖un‖2H1(RN )

− ‖u0‖2H1(RN )
−

m−1∑

k=1

‖ωk‖2H1(RN )
,

where ‖u‖2
H1(RN )

= ‖∇u‖22 + ‖u‖22 which is equivalent to ‖ · ‖. Thus we have
∞∑

k=1

‖ωk‖2H1(RN )
≤ lim

n→∞ ‖un‖2H1(RN )
− ‖u0‖2H1(RN )

< ∞.
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On the other hand, from (f.2) and (g.2), 0 is an isolated critical point of �(u). Thus there
exists δβ > 0 such that ‖ωk‖ ≥ δβ (k ∈ N). This is a contradiction. Thus (B) of Step 4 is not
repeated infinite time. ��

Through Step 1 to Step 5, the proof of Theorem 5.1 was completed. ��
Remark 5.4 In Theorem 5.1, we also have JL(un) → �(u0) +∑�

k=1 �(ωk).

6 The compactness for balanced sequence

In this section, we prove Proposition 2.14. The fundamental idea of the proof comes from
[3, Proposition 4.1].

Proof of Proposition 2.14 Let un ∈ H1
0 (BRn ) satisfy (2.17). Then, (un)∞n=1 satisfies the

assumptions of Theorem 5.1. It is sufficient to show that, adding assumption (V.4) to Theo-
rem 5.1, then only � = 0 occurs. Suppose, by contradiction, that Theorem 5.1 holds for � ≥ 1.
Since un = 0 inRN \ BRn , choosing a subsequence (we use same notation) and replacing the
order k = 1, . . . , �, we may assume |z1n | ≤ |z2n | ≤ · · · ≤ |z�n | ≤ Rn . Furthermore, choosing
a subsequence, we can also assume that there exist dk ∈ [0,∞] with

lim
n→∞

∣∣∣zkn − z1n

∣∣∣
∣∣z1n
∣∣ = dk (k = 1, 2, . . . , �).

We set rn and d > 0 such that

11rn = |z1n |, d = min
{
1, 11ρ/6, dk

∣∣dk > 0
}

.

Here ρ is a constant defined by (V.4). Then, for large n, it holds the following.

(i) If dk = 0, then B(zkn, drn) ⊂ B(z1n, 2drn).
(ii) If dk > 0, then B(zkn, drn) ⊂ R

N \ B(z1n, 9drn).

From (i) of Theorem 5.1, we see that

‖un‖L p+1(B(z1n ,9drn)\B(z1n ,2drn))
→ 0. (6.1)

Since un ∈ H1
0 (BRn ) is a solution of

−�un + V (x)un = λ0 f (un) + (λ0 − 1)g(un) in BRn ,

|un | ∈ H1(RN ) (expanding 0 on RN \ BRn ) is a subsolution of

− �un + V (x)un = λ0 f (un) + (λ0 − 1)g(un) in R
N . (6.2)

Here we use the subsolution estimate below.

Lemma 6.1 Let 	 be a domain and Ṽ ∈ L
p+1
p−1
loc (	). Suppose that u ∈ H1(	) satisfies

∫

	

∇u · ∇ϕ dx − Ṽ (x)uϕ dx ≤ 0 for all ϕ ∈ H1
0 (	) with ϕ ≥ 0.

Then, for any B(x0, 2r) ⊂ 	, there exist constants C = C(p, N , r) > 0 and σ = σ(p, N ) >

0 such that

‖u+‖L∞(B(x0,r)) ≤ C

(

1 + ‖Ṽ+‖σ

L
p+1
p−1 (B(x0,2r))

)

‖u+‖L p+1(B(x0,2r)).
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Proof This was shown in [15, Theorem 2.26]. (Also see [8, Theorem 8.15].) ��
From (6.1) and Lemma 6.1, we see that

‖un‖L∞(B(z1n ,8drn)\B(z1n ,3drn))
→ 0. (6.3)

Since |un | is a subsolution of (6.2), from (6.3), (f.2), and (g.2), by the comparison theorem,
there exist constants C > 0 and μ > 0 such that

‖un‖L∞(B(z1n ,7drn)\B(z1n ,4drn))
≤ Ce−μrn . (6.4)

Furthermore, replacing C > 0 and μ > 0, we also have

‖un‖L2(B(z1n ,7drn)\B(z1n ,4drn))
≤ Ce−μrn , (6.5)

‖un‖L p+1(B(z1n ,7drn)\B(z1n ,4drn))
≤ Ce−μrn . (6.6)

Lemma 6.2 There exist constants C ′ > 0 and μ′ > 0 such that
∥
∥∇|un |

∥
∥
L2(B(z1n ,6drn)\B(z1n ,5drn))

≤ C ′e−μ′rn .

Proof From (f.1)–(f.3) and (g.1)–(g.3), there exists c1 > 0 such that

|λ0 f (u) + (λ0 − 1)g(u)| ≤ |u| + c1|u|p for all u ∈ R. (6.7)

We take a cut-off function ψn ∈ C∞
0 (Rn, [0, 1]) satisfying

ψn(x) = 1 for x ∈ B(z1n, 6drn) \ B(z1n, 5drn),

ψn(x) = 0 for x /∈ B(z1n, 7drn) \ B(z1n, 4drn),

|∇ψn(x)| ≤ 1 for x ∈ R
N .

Since |un | is a subsolution of (6.2), for any ϕ ∈ H1(RN ) with ϕ ≥ 0, we have
∫

RN
∇|un | · ∇ϕ + V (x)|un |ϕ − λ0 f (un)ϕ − (λ0 − 1)g(un)ϕ dx ≤ 0.

Setting ϕ = |un |ψn in the above, from (6.7), we have
∫

B(z1n ,7drn)\B(z1n ,4drn)
|∇|un||2ψn + (∇|un | · ∇ψn

) |un | − V (x)|un |2ψn dx

≤
∫

B(z1n ,7drn)\B(z1n ,4drn)
|un |2ψn + c1|un |p+1ψn dx .

Thus we get
∫

B(z1n ,6drn)\B(z1n ,5drn)
|∇|un ||2 dx ≤

∫

B(z1n ,7drn)\B(z1n ,4drn)
|∇|un||2ψn dx

≤ ‖∇|un|‖L2(B(z1n ,7drn)\B(z1n ,4drn))
‖un‖L2(B(z1n ,7drn)\B(z1n ,4drn))

+ (‖V ‖∞ + 1
) ‖un‖2L2(B(z1n ,7drn)\B(z1n ,4drn))

+ c1‖un‖p+1
L p+1(B(z1n ,7drn)\B(z1n ,4drn))

.

Lemma 6.2 follows from (6.5) and (6.6). ��
Lemma 6.3 There exist constants C ′′ > 0, μ′′ > 0, and sn ∈ (5drn, 6drn) such that

‖∇un‖L2(∂B(z1n ,sn))
= ∥∥∇|un |

∥∥
L2(∂B(z1n ,sn))

≤ C ′′e−μ′′rn . (6.8)
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Proof From Lemma 6.2, it holds that
(
C ′)2 e−2μ′rn ≥ ∥∥∇|un |

∥
∥2
L2(B(z1n ,6drn)\B(z1n ,5drn))

=
∫

5drn≤|x−z1n |≤6drn
|∇|un ||2 dx

=
∫ 6drn

5drn

(∫

|x−z1n |=r
|∇|un ||2 dσ

)

dr

=
∫ 6drn

5drn
‖∇|un |‖2L2(∂B(z1n ,r))

dr .

Since r �→ ‖∇|un | ‖L2(∂B(z1n ,r))
is continuous, by the mean value theorem for integration,

there exists sn ∈ (5drn, 6drn) such that
(
6drn − 5drn

) ‖∇|un |‖2L2(∂B(z1n ,sn))
≤ (C ′)2e−2μ′rn .

Thus we see that Lemma 6.3 holds. ��
Here, we use the following local Pohozaev identity.

Lemma 6.4 ([3]) Let 	 ⊂ R
N be a bounded domain with piecewise smooth boundary and

ν ∈ R
N be the outward unit normal vector on ∂	. We suppose that V ∈ C(RN ,R) and

h ∈ C(R,R). If u ∈ C2(	) ∩ C1(	) satisfies

− �u + V (x)u = h(u) in 	, (6.9)

then, for any ξ ∈ R
N , it holds that

1

2

∫

	

(
ξ · ∇V (x)

)
u2 dx = 1

2

∫

∂	

(ξ · ν)|∇u|2 dσ −
∫

∂	

(∇u · ν)(ξ · ∇u) dσ

−
∫

∂	

(ξ · ν)

(

V (x)
u2

2
− H(u)

)

dσ, (6.10)

where H(u) = ∫ u0 h(τ ) dτ .

Proof Multiplying (ξ ·∇u) to the both sides of (6.9), integrating over	, we get (6.10). (Also
see [3, Lemma 4.1].) ��

Applying Lemma 6.4 to un as 	 = B(z1n, sn)∩ BRn , h(u) = λ0 f (u)+ (λ0 − 1)g(u), and
ξ = z1n , we calculate as below.

1

2

∫

B(z1n ,sn)∩BRn

(
z1n · ∇V (x)

)
u2n dx

= 1

2

∫

�1∪�2

(
z1n · ν
)

|∇un |2 dσ −
∫

�1∪�2

(∇un · ν)
(
z1n · ∇un

)
dσ

−
∫

�1∪�2

(
z1n · ν
)(

V (x)
u2n
2

− λ0F(un) − (λ0 − 1)G(un)

)

dσ

=:
∫

�1

(I) dσ +
∫

�2

(II) dσ, (6.11)
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where �1 = (∂B(z1n, sn)) ∩ BRn , �2 = B(z1n, sn) ∩ (∂BRn ). We note sn ≤ 6drn < 11rn =
|z1n | ≤ Rn . Since ν = ν(x) ∈ R

N is the outward unit normal vector at x ∈ ∂	, ν(x) = x on
�2. Thus we have (

z1n · ν(x)
)

> 0 for all x ∈ �2. (6.12)

Moreover, since un = 0 and ν = − ∇un|∇un | on �2, we see that
∫

�2

(II) dσ = −1

2

∫

�2

(
z1n · ν
)

|∇un |2 dσ ≤ 0.

From (6.4) and (6.8), for μ0 ∈ (0, 2min
{
μ,μ′′}), we see that

lim
n→∞ eμ0rn ×

∣
∣
∣
∣
∣

∫

�1

(I) dσ

∣
∣
∣
∣
∣
< ∞.

Thus we have

lim
n→∞ eμ0rn

∫

B(z1n ,sn)∩BRn

(
z1n · ∇V (x)

)
u2n dx < ∞. (6.13)

On the other hand, from (i) of Theorem 5.1, we have

lim
n→∞

∫

B(z1n ,sn)∩BRn

u2n dx ≥ ‖ω1‖2L2(RN )
> 0.

From (V.4) and sn < 6drn ≤ ρ|z1n |, the left hand side of (6.11) satisfies

eμ0rn 1

2

∫

B(z1n ,sn)∩BRn

(
z1n · ∇V (x)

)
u2n dx

≥ 1

2
eμ0|z1n |/11

(

inf
x∈B(z1n ,ρ|z1n |)

(
z1n · ∇V (x)

))∫

B(z1n ,sn)∩BRn

u2n dx

→ ∞ (n → ∞).

This contradicts (6.13). Consequently, we see that � = 0, and Proposition 2.14 was proved.
��

At the last, we give outline of the proof of Theorem 1.4.

Outline of proof of Theorem 1.4 In order to prove Theorem 1.1, we used the approximating
problem on BR . But, even if we approximate by a problem on 	R , the proof of Theorem 1.1
is exactly the same if (6.12) hold. Moreover, (6.12) holds by the assumption (	). Indeed, by
(	), there exist δ,C > 0 such that

	 ⊂ BC and y · ν	(x) > 0 for x ∈ ∂	, |x − y| < δ, (6.14)

where ν	(x) is the outward unit normal vector of 	 at x . We take d with Cd < δ. Since
z1n ∈ BCRn , we obtain

sn ≤ 6drn <
δ|z1n |
C

≤ δRn .

Thus, for x ∈ �2 = B(z1n, sn) ∩ ∂	Rn , we have

1

Rn

(
z1n · ν	Rn

(x)
)

= z1n
Rn

· ν	

(
x

Rn

)
,

∣∣∣∣∣
z1n
Rn

− x

Rn

∣∣∣∣∣
≤ sn

Rn
≤ δ. (6.15)
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(6.12) follows from (6.14) and (6.15). Thus, we can prove Theorem 1.4 in the same way as
Remark 3.2. ��
Acknowledgements The authors thank the unknown referees for their valuable comments which improved
this paper. This work was supported by JSPS KAKENHI Grant Number JP15K17567.
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