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Abstract
We show that on a compact Riemannian manifold (M, g), nodal sets of linear combinations
of any p + 1 smooth functions form an admissible p-sweepout provided these linear com-
binations have uniformly bounded vanishing order. This applies in particular to finite linear
combinations of Laplace eigenfunctions. As a result, we obtain a new proof of the Gromov,
Guth, Marques–Neves upper bounds on the min–max p-widths of M . We also prove that
close to a point at which a smooth function on R

n+1 vanishes to order k, its nodal set is
contained in the union of k W 1,p graphs for some p > 1. This implies that the nodal set
is locally countably n-rectifiable and has locally finite Hn measure, facts which also follow
from a previous result of Bär. Finally, we prove the continuity of the Hausdorff measure of
nodal sets under heat flow.

Mathematics Subject Classification 9Q05 · 35P20

1 Introduction

This article concerns the regularity of nodal sets in families of smooth functions with finite
vanishing order.Ourmotivation comes in part from thework ofMarques–Neves [22],who use
admissible p-sweepouts in a compact Riemannian manifold (M, g) to prove the existence
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of infinitely many closed minimal hypersurfaces if M has positive Ricci curvature. Each
admissible p-sweepout is essentially a p-dimensional family of co-dimension 1 cycles in
M (see Sect. 4.1), and the associated min–max p-widths ωp(M) (see Theorem 3) can be
thought of as giving a non-linear version of the spectrum of the Laplacian. An analogy like
this was first proposed by Gromov in [11].

Marques–Neves suggested in [22, Sect. 9] that one might push this analogy further by
considering p-sweepouts formed from the nodal sets of linear combinations of Laplace
eigenfunctions. However, it was not clear at the time that a p-dimensional family of cycles
defined in this way would satisfy the technical conditions needed to be admissible as a
p-sweepout. In Theorem 2 we provide a general construction of admissible p-sweepouts
from the nodal sets of families of smooth functions that have uniformly bounded vanishing
order. Our construction applies in particular to finite linear combinations of eigenfunctions.
Theorem 2 also yields a new proof of the Weyl-type upper bounds on the p-widths ωp(M).

To view a family of nodal sets as an admissible p-sweepout, one must control the extent
to which the nodal sets can concentrate in small balls in M (see Sect. 4.1). Estimates that
provide this control follow both from the new general W 1,p regularity result that we present
here, Theorem 1, and from previous work of Bär [2] (see Proposition 1). Both Theorem 1
and Proposition 1 imply that near a point of finite vanishing order, the nodal set of a smooth
function onRn+1 is countably n-rectifiable and has locally finiteHn measure (see Sects. 2, 3).
They also allow us to study in Sect. 1.3 the evolution of nodal sets for families

{
e−t�g u

}
t≥0 , u ∈ L2(M, g)

under heat flow.

1.1 Regularity andmeasure of nodal sets for families of smooth functions

By a result of Whitney [26], every closed subset of Rn+1 is the nodal set Z f = f −1(0)
of some smooth real-valued function f . This means that, in general, Z f can be arbitrarily
irregular. Constraints on the derivatives of f restrict the possible behavior of Z f , however.
For example, if f (x) = 0 and ∇ f (x) �= 0, then, by the implicit function theorem, Z f is a
smooth manifold near x .

Solutions of elliptic or parabolic PDEs satisfy more sophisticated constraints that allow
for quantitative estimates on Hausdorff measures of nodal and singular sets. Early results in
this setting are due to Carleman [3], who established finite vanishing order for solutions to
second order elliptic equations. His method strongly influenced later work. Further devel-
opments of particular note include the work of Garafalo–Lin [9,10] on elliptic equations
and Lin [16] for parabolic equations, with the strongest quantitative results by Hardt–Simon
[13],Donnelly–Fefferman [4],Naber–Valtorta [24], and recentlyLogunov [19,20], Logunov–
Malinnikova [18].

We are concerned here, however, with what can be about Z f if f vanishes to finite order
but does not necessarily satisfy a PDE. Lin showed in [17] that such functions include finite
linear combinations of Laplace eigenfunctions (alternative proofs were given by Donnelly
[6] and Jerison–Lebeau [15]). Jerison–Kenig [14] also obtained similar statements about
solutions to certain differential inequalities.

Throughout, f is a smooth function. Therefore, it has finite vanishing order in an open set
U ⊆ R

n+1 if for each x ∈ U there exists a multi-index α for which Dα f (x) �= 0. If |α| = γ ,
and Dβ f (x) = 0 for all multi-indices β with |β| < γ , then f is said to have vanishing order
γ at x . The following was shown by Bär:
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Proposition 1 ([2], Lemma 3) Let f : Rn+1 → R be smooth and suppose that f vanishes to
order γ at x0 ∈ R

n+1. Then there is r̄ > 0 and a hyperplane P ⊆ R
n+1 such that Z f ∩Br̄ (x0)

is contained in the union of countably many graphs of smooth real-valued functions from
P ∩ Br̄ (x0) to P⊥. Moreover, we can estimate the Hausdorff measure of the nodal set by

Hn(Z f ∩ Br (x0)) ≤ (n + 1)2nγ rn

for all r < r̄ .

The radius r̄ in Proposition 1 can be chosen uniformly over θ ∈ � for families

f θ (x) := F(x, θ) (1.1)

where F ∈ C∞(U×�), the set� is a finite-dimensional compact smoothmanifold (possibly
with boundary), andU ⊆ R

n+1 is open. Denoting by 	u the graph of a function u,we obtain
the following regularity result.

Theorem 1 Let f θ be as in (1.1) and suppose that the vanishing order of f θ0 at x0 ∈ U is
γ < ∞. Then there is p > 1, a ball Br̄ (x0) about x0, a neighbourhood Vθ0 of θ0, and a
hyperplane P ⊂ R

n+1 such that

{
f θ = 0

} ∩ Br̄ (x0) ⊂
γ⋃

i=1

	 f θ
i

for every θ ∈ Vθ0 ,

where the functions f θ
i belong to W 1,p(P, P⊥) for θ ∈ Vθ0 , i = 1, . . . , γ and

sup
i=1,...,γ,

θ∈Vθ0

∥∥ f θ
i

∥∥
W 1,p < ∞.

Our proof of Theorem 1, which does not rely on Proposition 1, is given in Sect. 2.2. The
main technical input is the work of Parúsinski–Rainer [25, Theorem 3.5] on the regularity
of roots of smooth families of polynomials (see Theorem 5). The W 1,p regularity is optimal
if one is given a continuous parametrization of the nodal set of a smooth function over a
given hyperplane (e.g. f (x, y) = yq − x for some q > 1 and the hyperplane {y = 0}). It is
possible that one could make a ‘good’ choice of hyperplane and establish better regularity
of the functions f θ

i .

1.2 Nodal sets as p-sweepouts

As part of an analogy suggested by Gromov [11] between the min–max p-widthsωp(M) of a
compact Riemannian manifold (M, g) (see [22, Definition 4.3] or [12, Appendix 3]) and the
eigenvalues of the Laplacian �g , Marques and Neves proposed in [22, Section 9] studying
p-sweepouts given by nodal sets of linear combinations of eigenfunctions.We show here that
one can indeed construct admissible p-sweepouts in this way (in the sense of [22, Sect. 4.2]).
In fact, we prove the following stronger result:

Theorem 2 Let (Mn+1, g) be a smooth, compact Riemannian manifold and suppose that
f0, . . . , f p ∈ C∞(M,R) satisfy the following property: There exists γ > 0 such that for
every x0 ∈ M and every (θ0, . . . , θp) ∈ R

p+1\{0}, the vanishing order of θ0 f0 +· · ·+ θp f p
at x0 is at most γ . Then the map


 : RP
p → Zn(M,Z2)

[θ0 : · · · : θp] → ∂{θ0 f0 + · · · + θp f p < 0}
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is an admissible p-sweepout.

Here, Zn(M,Z2) is the space of mod 2 flat n-cycles in M (see [7, p. 423]). For the proof see
Sect. 4.3. Let us write

�gϕ j = λ2jϕ j , 0 = λ0 < λ1 < λ2 ≤ · · · ↗ ∞
for the eigenvalues and eigenfunctions of the Laplacian (with multiplicity). As mentioned
above, that non-zero finite linear combinations of the eigenfunctions have finite vanishing
order was first proved in [17, Theorem 4.2] and later by different methods in [15, Theo-
rem 14.10] and [6, Theorem 4.1]. Thus Theorem 2 applies to linear combinations of the
eigenfunctions ϕ j . In the context of p-sweepouts, it is therefore natural to define

φp(M) := sup
θ∈RPp

M(∂{θ0ϕ0 + · · · + θpϕp < 0}),

where M denotes the mass of an element in Zn(M,Z/2). Combining the Weyl-type lower
bounds on ωp(M) [11, Sect. 4.2], [12, Sect. 3] and Theorem 2 gives

c p
1

n+1 ≤ ωp(M) ≤ φp(M) ≤ sup
θ∈RPp

Hn({θ0ϕ0 + · · · + θpϕp = 0}). (1.2)

To see the last inequality, we use that if f is a function of finite vanishing order, then
M(∂ { f < 0}) is simply the Hausdorff measureHn (∂ { f < 0}) of the topological boundary
of { f < 0} . Notice that the linear combination of eigenfunctions f (x1, x2) = 1 + cos(x1)
on the two-torus T = R

2/(2πZ)2 satisfies

M(∂{ f < 0}) = 0 < H1({ f = 0}) = 2π.

That is, for a general linear combination of eigenfunctions the mass of the associated mod
2 flat chain can be strictly less than the measure of the nodal set because the nodal set can
have a large singular part. However, it is not known if the third inequality in (1.2) can in fact
be strict.

Marques and Neves also raise the question of understanding the exact asymptotic rela-
tionship between ωp(M) and φp(M) as p → ∞. Their “asymptotic optimality” conjecture
is that φp(M)/ωp(M) tends to 1.

In the course of proving Theorem 2, we establish the following:

Corollary 1 Let (Mn+1, g) be a smooth, compact Riemannian manifold and let {ϕ j }∞j=1 be an

orthonormal basis for L2(M, g) consisting of real-valued eigenfunctions of the Laplacian.
The map


 : RP
∞ → Zn(M,Z2)

[θ0 : · · · : θp : 0 : 0 : · · · ] → ∂{θ0ϕ0 + θ1ϕ1 + · · · + θpϕp < 0}
is a weak homotopy equivalence.

Corollary 1 is proved in Sect. 4.4. Finally, we provide a new proof, given in Sect. 4.5, of
theWeyl-type upper bounds on themin–max p-widthsωp(M) of a compact smoothmanifold
M , originally established by Guth in [12, Theorem 1] when M is a closed unit ball and for
more general compact manifolds by Marques–Neves in [22, Theorem 5.1]. Our argument is
similar to the one outlined by Gromov in [11, Sect. 4.2B].
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Theorem 3 [11,12,22] Let M be a compact smooth manifold M without boundary, and define
the min–max p-width ωp(M) by

ωp(M) = inf

∈Pp

sup
x∈X

M(
(x)),

where the infimum is over admissible p-sweepouts 
 : X → Zn(M,Z2). Then,

ωp(M) ≤ C · p 1
n+1 .

1.3 Nodal sets under heat flow

Given a function v ∈ L2(M), write

v =
∞∑

j=0

c jϕ j , c j ∈ l2(N).

For each ε > 0, define Nε(v) : L2(M) → [−∞,∞] by

Nε(v) = log

⎛

⎝
∞∑

j=0

c2j e
ελ j

⎞

⎠ . (1.3)

It follows from both [17, Theorem 4.3] and [15, Theorem 14.10] that if Nε(v) is finite for
some ε > 0, then v has finite vanishing order, bounded by an explicit function of Nε(v).
Therefore, Theorem 1 also applies to certain infinite linear combinations of eigenfunctions.
Let, for instance, u : M × R+ → R solve the heat equation

(
∂t + �g

)
u(x, t) = 0 (1.4)

with initial data u(x, 0) = u0(x) ∈ L2(M). Suppose that Nε(u0) < ∞ for some ε > 0.
Writing ψ = �λk u0 for the first non-zero eigenspace projection of u0, and changing the
time variable from t to θ = 2

π
arctan(t), we define f θ (x) by

f θ (x) :=
{
e−λ2k tan(θπ/2)u (x, tan(θπ/2)) , θ ∈ [0, 1)
ψ(x), θ = 1

.

It follows from writing f θ (x) as a Fourier series that F(x, θ) := f θ (x) ∈ C∞(M × [0, 1]).
Setting � = [0, 1], it is easy to see that f θ (x) satisfies

sup
θ∈�

inf
ε>0

Nε

(
f θ

)
< ∞, (1.5)

since Nε(u0) < ∞ for some ε > 0. Therefore, there exists C > 0 so that

sup
t≥0

Hn({x ∈ M : u(x, t) = 0}) ≤ C . (1.6)

It is natural to compare the nodal set Zθ = {
f θ (x) = 0

}
as θ → 1 with the nodal set of

ψ(x) = limθ→1 f θ (x). We do this with the help of Corollary 2, which follows from either
Theorem 1 or Proposition 1. We write

Sing f := {x ∈ U | f (x) = 0, ∇ f (x) = 0}
for the singular set of a smooth function.
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Corollary 2 Let U be an open subset ofRn+1. Fix f ∈ C∞(U ,R) with finite vanishing order
on U . Suppose F ∈ C∞(U ×[0, 1]) with f θ (·) := F(·, θ) for θ ∈ [0, 1] and f 1 = f . Then,
for any compact K ⊂ U with Hn(K ∩ Sing f ) = 0, we have

lim
θ→1

Hn(Z f θ ∩ K ) = Hn(Z f ∩ K ).

Corollary 2, which we will prove in Sect. 3 follows from the implicit function theorem
if Sing f = ∅ but otherwise is non-trivial. In general, Hn(Z f ) is neither lower nor upper
semi-continuous as a function of f .

Corollary 2 applies to the function u(x, t) satisfying (1.4). Indeed, note that by [13,
Theorem 1.7], since ψ is an eigenfunction, we have Hn−1(Singψ) < ∞. Hence,

lim
t→∞Hn(Zu(·,t)) = Hn(Zψ). (1.7)

2 W1,p regularity for nodal sets

In this section, we prove Theorem 1. We begin by recalling some results and outlining the
proof in Sect. 2.1. We give the full argument in Sect. 2.2.

2.1 Outline of the Proof of Theorem 1 and background

Our proof of Theorem 1 has three steps. The first is to apply the Malgrange preparation
theorem ([21]; or see [23] or [8, Chapter IV Sect. 2] for later proofs).

Theorem 4 (Malgrange; [21])LetU be an open subset inRn+1 and suppose that f ∈ C∞(U )

satisfies
∂ j

∂x j
n+1

f (0) = 0 ∀ j ≤ k − 1 and
∂k

∂xkn+1

f (0) �= 0. (2.1)

Then there exists an open neighborhood Ũ of 0, a non-vanishing smooth function c ∈ C∞(Ũ )

and smooth functions a j ∈ C∞({xn+1 = 0} ∩ Ũ ) for j = 0, . . . , k − 1, such that (writing
x̄ = (x1, . . . , xn, 0)) we have

f (x) = c(x)
(
xkn+1 + ak−1(x̄)x

k−1
n+1 + · · · + a0(x̄)

)
(2.2)

in Ũ .

This theorem (which is also used in the proof of Proposition 1) will allow us to deduce
that close to a point at which a smooth function has finite vanishing order, the nodal set
is described by the real roots of a smooth family of polynomials. The second step in our
proof comes from the work of De Lellis–Grisanti–Tilli [5] about continuous selections of
Q−valued functions:

Proposition 2 (Theorem 1.2 of [5]) Let f : [a, b] → Qq(R
n) be a Ck,α Q-valued function.

Then there exist functions gi : [a, b] → R
n such that gi ∈ Ck,α([a, b]) and the Q−tuple

{ f (x)} coincides with {gi (x)}Qi=1 for every x .

Proposition 3 (Theorem 5.1 of [5]) Let A ⊆ R
m . If f : A → QQ(R) is continuous, then

there exist continuous functions gi : A → R for 1 ≤ i ≤ Q such that f (x) = ∑Q
i=1[[gi (x)]]
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Given such a continuous selection, the third step, which is the key technical ingredient
to our argument, is the recent work [25] of Parusiński and Rainer on the regularity of a
continuous parametrization of the roots for such a family.

Theorem 5 (Theorem 3.5 of [25]) Fix k ∈ N. There exists p = p(k) > 1 such that the
following is true. Let I ⊆ R be a compact interval and let {Paν }ν∈N , for some indexing set
N , denote a family of monic polynomials

Paν (t)(X) := Xk + aν,k−1(t)X
k−1 + · · · + aν,1(t)X + aν,0(t). (2.3)

with aν, j ∈ C∞(I ;C) for all ν ∈ N , j = 0, . . . , k − 1. Let

� := {λν ∈ C0(I ;C) : Paν (λν) = 0 on I for some ν ∈ N }. (2.4)

Then, the distributional derivative of each λ j is a measurable function on I with λ′
j ∈ Lq(I )

for every q ∈ [1, p). and if {aν, j } j=0,...,k−1; ν∈N is bounded inCL(I ;C) for some sufficiently
large L, then � is bounded in W 1,q(I ;C) for every q ∈ [1, p).

2.2 Proof of Theorem 1

The following Lemma reduces Theorem 1 to a local statement in which we can apply the
regularity of roots result given in Theorem 5.

Lemma 1 (Reduction to polynomials with smoothly varying coefficients) Let K ⊆ U be
compact. There exist R, r̄ > 0, finitely many points (xi , θi ) ∈ K × �, as well as coordinate
patches Ui = {y1, . . . , yn, t} and Vi centered at xi , θi with the following property. For every
(x, θ) ∈ K × �, either Z f θ ∩ B(x, r̄) = ∅ for every θ or there exists i so that for every
ρ ∈ (0, r̄)

Bρ(x) ⊆ C, (2.5)

where C = (−R, R)n+1 is an open cube centered at the origin in Ui . Moreover, in each
coordinate patch Ui × Vi , there exists Q ≤ γ and smooth functions aq(y, θ) so that

Z f θ |Ui×Vi = ZPθ

with

Pθ (y, t) = t Q +
Q−1∑

q=0

tqaq(y, θ). (2.6)

Proof Write ZK = {(x, θ) ∈ K × � | f (x, θ) = 0} . For every (x, θ) ∈ ZK , we com-
bine the finite vanishing assumption on f θ with Malgrange preparation (Theorem 4). This
yields the existence of r = r(x, θ) > 0, Q ≤ γ , coordinates patches U = U (x, θ) =
{y1, . . . , yn, t, θ} , V = V (x, θ) centered at x, θ, and smooth functions

aq : (−R, R)n × V → R, c : (−R, R)n+1 × V → R

in these coordinates so that c is non-vanishing and

f (y, t, θ) = c(y, t, θ) · Pθ (y, t) (2.7)

with Pθ as in (2.6). This means that the zero set of f θ restricted to C×V coincides with that
of Pθ . The proof is completed by applying the Lebesgue number lemma to the covering of
π(ZK ) by the collection of coordinate cubes C,where π : ZK → K is the natural projection.

��
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Lemma 1 reduces Theorem 1 to the casewhen f θ = Pθ and the setU is C = (−R, R)n+1.
Let us denote� := C∩{t = 0}. The Q complex roots of a degree Q polynomial depend con-
tinuously on the coefficients, which means that there exists a continuous Q-valued function
R ∈ C0(� × �,AQ(C)) such that

R(y, θ) =
∑

t :P(y,t,θ)=0

�t�. (2.8)

We will write Rθ (y) = R(y, θ) and define Rθ (y) := Re
(
Rθ (y)

)
. By Proposition 3, there

exist continuous single-valued functions Rθ
j (y) : � × � → {t = 0}⊥ � R for 1 ≤ j ≤ Q,

with the property that for every y ∈ � we have Rθ (y) = ∑Q
j=1�Rθ

j (y)�. Hence,

Z f θ ⊆
Q⋃

j=1

	Rθ
j
, (2.9)

where 	g denotes the graph of g. We now check that each Rθ
j belongs to W 1,p(�) for some

p > 1.
To see this, fix i ∈ {1, . . . , n} and let Li denote the set of lines parallel to the yi -axis that

intersect �. Proposition 2 implies that for any line L ∈ Li , there exist continuous functions
Rθ
j,L ∈ C0((L ∩ �) × V ,C) for j = 1, . . . , Q such that for every (y, θ) ∈ (L ∩ �) × V we

have
Q∑

j=1

�Rθ
j,L(y)� =

∑

t :P(y,t,θ)=0

�z�. (2.10)

In order to apply Theorem 5, setN = V ×Li , I := [−R, R] and define ã(θ,L), j ∈ C∞(I ,C)

to be the restriction of a j (·, θ) to L:

ã(θ,L), j (s) = a j (sei , θ),

where ei is the i th standard basis vector. Notice that {ã(θ,L), j }(θ,L)∈N ; j=0,...,Q−1 is bounded
in Ck(I ,C) for every k. Thus by Theorem 5 and the fact that i was arbitrary, there exists
p > 1 and a constant C > 0 such that

sup
1≤i≤n,1≤ j≤Q

θ∈V , L∈Li

∥∥∥∂xi R
θ
j,L

∥∥∥
L p(L∩�)

< C . (2.11)

The same therefore holds with Rθ
j,L replaced by its real part. Hence,

∥∥∥∂xiRθ
j

∥∥∥
L p(L∩�)

≤
Q∑

j=1

∥∥∥∂xiRθ
j

∥∥∥
L p(L∩�)

=
Q∑

j=1

∥∥∥∂xiRe
(
Rθ
j,L

)∥∥∥
L p(L∩�)

(2.12)

since for every y ∈ L ∩ � the Q-tuple
(
Re

(
Rθ
1,L(y)

)
, . . . , Rθ

Q,L(y)
)
is a permutation of

(
Rθ

1(y), . . . , R
θ
Q(y)

)
. Combining this with (2.11) and Fubini’s Theorem, we deduce that

sup
1≤i≤n,1≤ j≤Q

θ∈V

∫

�

∣∣∣∂xiRθ
j (x)

∣∣∣
p
dx < ∞. (2.13)

This shows that Rθ
j ∈ W 1,p(� × �) and completes the proof of Theorem 1. ��
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3 Non-concentration of nodal sets and Proof of Corollary 2

The following result gives an estimate on the extent to which the nodal set of a smooth
function can concentrate near a lower dimensional set.

Proposition 4 Let U be an open subset of Rn+1 and let � be a smooth, compact manifold,
possibly with boundary. Consider F ∈ C∞(U × �), and suppose there exists γ > 0 such
that for every θ ∈ � and x ∈ U, the vanishing order of f θ := F (·, θ) at x is at most γ . Fix
compact sets K ⊂ U and E ⊆ R

n+1 with E being m−rectifiable for some m ≤ n. Write

Lip1 (E, K ) := {
ι(E)

∣∣ ι : E → K is Lipschitz with ‖ι‖Lip ≤ 1
}

and denote by Ar the r−neighborhood of A ⊆ R
n+1. Then there exist r̄ > 0 and C =

C(n) > 0, so that the following non-concentration estimate holds:

sup
E ′∈Lip1(E,K )

θ∈�

Hn (
Z f θ ∩ E ′

r ∩ K
) ≤ Cr−1 · Hn+1(Er ) ∀r ≤ r̄ . (3.1)

Proposition 4 follows easily from Proposition 1 and the fact that for a closedm−rectifiable
E ⊆ R

n+1 we have

lim
r→0

Hn+1 (Er )

rn+1−m
= α(n + 1 − m)

2mα(m)
Hm(E),

where α(l) is the volume of a unit ball in Rl ([7, Theorem 3.2.29]). Using Theorem 1, rather
than Proposition 1, one can prove a weaker version of (3.1) in which the constant C is
allowed to depend on f and the expression (r−1 ·Hn+1(Er )) is raised to some power δ > 0.
Proposition 4 will be used in Sect. 4 to check a non-concentration condition in the definition
of a p-sweepout. We use it now to prove the continuity result in Corollary 2.

3.1 Proof of Corollary 2

Let us write E = Sing f , and let K ⊂ U be a fixed compact set. By the implicit function
theorem, for every compact subset L ⊆ K\E and every ε > 0 there exists η > 0 so that

∣∣Hn (
Z fθ ∩ L

) − Hn(Z f ∩ L)
∣∣ ≤ ε, ∀θ ≥ 1 − η. (3.2)

Moreover, by Proposition 1, for r sufficiently small, we have the estimate

sup
θ∈[1−η,1]

Hn (
Z fθ ∩ Er ∩ K

) ≤ Cr−1 · Hn+1(Er ).

Since E is a closed n−rectifiable set, its n-dimensional Minkowski content is equal to a
constant times its n−dimensional Hausdorff:

lim
r→0

Hn+1(Er )

r
= Hn(E) = 0.

In particular, for r > 0 sufficiently small

sup
θ∈[1−η,1]

Hn (
Z fθ ∩ Er ∩ K

) ≤ ε.

Combining this with the estimate in (3.2) completes the proof of the Corollary. ��
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4 Nodal sets as p-sweepouts

In this section we will prove Theorem 2 and Corollary 1 together with Theorem 3. We will
need the following simple fact.

Lemma 2 Let (Mn+1, g) be a smooth Riemannian manifold without boundary. Suppose that
f ∈ C0(M,R) has Hn+1(Z f ) = 0 and fix ϕ ∈ L∞(M). Then the map

R → Zn(M,Z2)

δ → ∂ |{ f + δφ < 0}|
is continuous at δ = 0 with respect to the flat topology on Zn(M,Z2).

Proof Fix ε > 0 and write F(S, T ) for the distance between S, T ∈ Zn(M,Z2) in the flat
metric (see [7, p. 367]). The definition of the flat metric implies that

F (∂ |{ f + δφ < 0}| , ∂ |{ f < 0}|) ≤ Hn+1({ f < 0 < f + δϕ}). (4.1)

Using the definition of Hausdorff measure, the compactness of Z f and the Lebesgue number
lemma, there exists α0 = α0(ε) > 0 such that

Hn+1 ({x ∈ M : d(x, Z f ) < α}) < ε, ∀α ≤ α0. (4.2)

Since f is uniformly continuous and

{ f < 0 < f + δϕ} ⊂ {| f | ≤ δ ‖ϕ‖L∞(M)}, (4.3)

there exists δ0 = δ0(ε) > 0 such that

{ f < 0 < f + δϕ} ⊂ {x ∈ M : d(x, Z f ) < α0/2}, ∀δ ≤ δ0. (4.4)

Thus choosing δ < δ0 shows that the left-hand side of (4.1) is at most ε, which completes
the proof. ��

4.1 p-Sweepouts

Let us recall the definition of a p-sweepout (see [22, Sects. 3.7, 4.1]). Firstly, a map 
 :
S1 → Zn (M,Z2) is a sweepout if it is continuous in the flat topology and the class [
] ∈
π1(Zn (M,Z2)) is non-zero. If we let X denote a cubical subcomplex of [0, 1]m for some
m, then a continuous map 
 : X → Zn (M,Z2) is an admissible p-sweepout if there exists
λ ∈ H1 (X ,Z2) such that

(i) For any γ : S1 → X we have λ (γ ) �= 0 if and only if 
 ◦ γ : S1 → Zn (M,Z2) is a
sweepout;

(ii) The cup product λp �= 0 ∈ H p (X ,Z2) .

(iii) With Br (p) denoting the ball of radius r centered at p in M, we have

lim sup
r→0+

sup
x∈X , p∈M

‖
(x)‖ (Br (p)) = 0. (4.5)

Remark 1 We recall the content of [22, Remark 4.2] which says that if γ and γ ′ are homotopic
in X , then 
 ◦ γ is a sweepout if and only if 
 ◦ γ ′ is a sweepout.
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4.2 Almgren’s isomorphism

In [1], Almgren constructed an isomorphism between π1(Zn(M,Z2)) and Hn+1(M,Z2).
For the proof of Theorem 2 we will need to know how to use Almgren’s isomorphism to
check when an element of π1(Zn(M,Z2)) is non-zero (so we recall here just the essentials
that are required to do that and refer the reader to [22, Sect. 3] or to the original paper
[1] for more information). Given a continuous map 
 : S1 → Zn(M,Z2), there exist
0 = s0 < s1 < · · · < sK = 2π , a constant ρ = ρ(M) ≥ 1 and A j ∈ Zn+1(M,Z2) for
j = 0, . . . , K − 1 such that

∂A j = 
(s j+1) − 
(s j ), M(A j ) ≤ ρF(
(s j+1),
(s j )),

and such that
[∑K−1

j=0 A j
] ∈ Hn+1(M,Z2) only depends on the homotopy class of 
 (to see

in general that
∑K−1

j=0 A j defines an element of Hn+1(M,Z2), see [7, Sect. 4.4.6]). Thus we
may define

FM (
) :=
[K−1∑

j=0

A j

]
∈ Hn+1(M,Z2). (4.6)

The induced map FM : π1(Zn(M,Z2)) → Hn+1(M,Z2) is well-defined and an isomor-
phism.Moreover, the A j are unique in the following sense: There is a constant ν = ν(M) > 0
such that if Bj ∈ Zn+1(M,Z2) for j = 0, . . . , K − 1 are such that M(Bj ) ≤ ν and
∂Bj = 
(s j+1) − 
(s j ), then A j = Bj .

4.3 Proof of Theorem 2

For θ = [θ0 : · · · : θp] ∈ RP
p and x ∈ M , write f θ (x) = θ0 f0(x) + · · · θp f p(x). By

Theorem 1,

Hn+1(Z f θ ) = 0 ∀θ ∈ RP
p.

Lemma 2 thus implies that 
 is continuous in the flat topology. The non-concentration
estimate in Proposition 4 also shows that
 satisfies (iii).Moreover, since X is homeomorphic
to RP

p in our case, we know that H1(X ,Z2) = H p(X ,Z2) = Z2. This means that the
generator λ of H1(X ,Z2) satisfies λp �= 0 in H p(X ,Z2), which shows that 
 satisfies (ii).
It therefore remains to check (i) for which we need the following:

Claim There exists a generator γ̂ of π1(RP
p) = Z2 for which
◦ γ̂ �= 0 ∈ π1(Zn (M,Z2)).

Assuming this for the moment, we will prove (i). Let γ : S1 → X be a continuous map.
Note that since X is homeomorphic to RP

p , this defines an element [γ ] ∈ π1(RP
p). Now,

if λ(γ ) �= 0, then [γ ] �= 0, which means that [γ ] = [γ̂ ]. Using Remark 1 followed by the
claim, this implies that 
∗([γ ]) = 
∗([γ̂ ]) �= 0, i.e. 
 ◦ γ is a sweepout. Conversely, if

 ◦ γ is a sweepout, then it must be the case that [γ ] �= 0, which implies that λ(γ ) �= 0.

To prove the claim, consider the continuous map γ̂ : S1 → RP
p given by

γ̂ (s) = [cos(s/2), sin(s/2) : 0 : · · · : 0].
Therefore Almgren’s isomorphism (Sect. 4.2) implies that there exist 0 = s0 < s1 < · · · <

sK = 2π such that the class [
 ◦ γ̂ ] is non-zero in π1 (Zn (M,Z2)) if and only if

K−1∑

j=0

[{
p ∈ M\Z f0 : − cot(s j/2) <

f1
f0

< − cot(s j+1/2)

}]
∈ Hn+1 (M,Z2) (4.7)
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Since we know that Hn+1(Z f γ̂ (s) ) = 0 for every s ∈ S1 (by Theorem 1), the sum above is
equal to [M], which generates Hn+1(M,Z2) and is therefore non-zero. This completes the
proof of Theorem 2. ��

4.4 Proof of Corollary 1

It can be shown that RP∞ and Zn(M,Z2) are both weakly homotopically equivalent to the
Eilenberg–MacLane space K (Z2, 1) (this means that they are connected, with π1 � Z2 and
πk = 0 for k > 1). So to establish a weak homotopy equivalence we only need to establish
firstly continuity of the map (which follows from the previous arguments), and secondly that
a generator of π1(RP

∞) is mapped to a generator of π1(Zn(M,Z2)). But this is exactly
what the argument above shows: We can pick γ̂ as our generator of π1(RP

∞) and then using
the Almgren isomorphism we see that its image in π1(Zn(M,Z2)) is non-trivial; and every
non-trivial element is a generator. ��

4.5 Proof of Theorem 3

Fix a compact smooth manifold M . Classical theorems of Whitney [27, Theorems 1, 4]
guarantee the existence of a smooth diffeomorphism J : M → N between M and a real
analytic submanifold N of Euclidean space, which of course admits a real analytic metric.

Denote by Vp the span of the first p + 1 eigenfunctions of the Laplacian for this real
analytic metric on N . By [15, Theorem 14.3],

sup
f ∈Vp\{0}

Hn(Z f ) ≤ Cp
1

n+1 , (4.8)

where C depends only on N . Moreover, Theorem 2 shows that


p : RP
p → Zn(N ,Z2)

[θ0 : · · · : θp] → ∂{θ0ψ0 + · · · + θpψp < 0}
is an admissible p-sweepout for all p. Composing 
p with the pullback J ∗ gives an admis-
sible p-sweepout on M . Since

M (∂{ f < 0}) ≤ Hn(Z f )

for all f ∈ Vp\{0}, the estimate in (4.8) completes the proof of the theorem. ��
Acknowledgements The authors would like to thank Larry Guth for a series of discussions that led them to
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