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Abstract
In this paper, we investigate the structure of local minimizers for the isotropic–nematic
interface based on the Landau-de Gennes energy. In the absence of the anisotropic energy,
the uniaxial solution is the only local minimizer in 1-D. In 3-D, we propose a De Giorgi’s
type conjecture and give an affirmative answer under a mild assumption. In the presence of
the anisotropic energy with L2 > − 1 and homeotropic anchoring, the uniaxial solution is
also the only local minimizer in a class of diagonal form in 1-D.

Mathematics Subject Classification 82D30 · 35J47 · 35J61

1 Introduction

Liquid crystal is a state of matter between liquid and solid, in which molecules tend to align
a preferred direction. One of the most common phases is the nematic phase, in which the
molecules tend to have the same alignment but their positions are not correlated. In physics,
the different order parameters are used to describe the anisotropic behavior of liquid crystals.

The most simple one is the vector theory, which uses a unit vector field n(x) to describe
the locally preferred alignment of liquid crystal molecules near the material point x . Onsager
introduced the molecular theory, in which the orientational distribution function f (x,m) is
introduced to describe the number density of molecules whose orientation is parallel tom at
material point x . The Q-tensor theory uses a symmetric traceless 3× 3 matrixQ to describe
the alignment behaviour of liquid crystals. Physically, Q could be understood as the second
momentum of f :

Q(x) =
∫
S2

(
mm − 1

3
I
)

f (x,m)dm.

Communicated by F. H. Lin.

B Zhifei Zhang
zfzhang@math.pku.edu.cn

Jiajie Chen
cjiajie@pku.edu.cn

Pingwen Zhang
pzhang@pku.edu.cn

1 School of Mathematical Sciences, Peking University, Beijing 100871, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-018-1404-0&domain=pdf


129 Page 2 of 19 J. Chen et al.

We may classify a liquid crystal by the tensor Q: uniaxial if Q has only two distinct eigen-
values;biaxial if Q has three distinct eigenvalues; isotropic if all eigenvalues are zero.

Since the order tensor Q vanishes when f is the probability density 1
4π for the isotropic

phase, the tensor Q measures how the second moments of a given probability density devi-
ates from the isotropic value. Thus, it is convenient to use the Q-tensor theory to model
the isotropic–nematic phase transition problem, which is based on the so-called Landau-de
Gennes energy:

F(Q,∇Q) =
∫

�

⎧⎪⎪⎨
⎪⎪⎩

a

2
TrQ2 − b

3
TrQ3 + c

4
(TrQ2)2

︸ ︷︷ ︸
Fb :bulk energy

+ 1

2

(
L1|∇Q|2 + L2Qi j, j Qik,k + L3Qi j,k Qik, j + L4Qi j Qkl,i Qkl, j

)
︸ ︷︷ ︸

Fe :elastic energy

⎫⎪⎪⎬
⎪⎪⎭
dx .

Here a, b, c are material and temperature dependent nonnegative constants and Li (i =
1, 2, 3, 4) are material dependent elastic constants.We refer the reader to [3] for more details.
As in [2,10], we take L3 = L4 = 0 in the elastic energy Fe. Then the energy functional is
reduced to

F(Q,∇Q) =
∫

�

{1
2

(
L1|∇Q|2 + L2Qi j, j Qik,k

)+ Fb(Q)
}
dx . (1.1)

The bulk energy Fb can characterize the isotropic–nematic phase transition for liquid crystals.
The critical points of the bulk energy are

Q = 0 or s±
(
nn − 1

3
I
)

, (1.2)

where s± are the solutions of 3a − bs + 2cs2 = 0, and n ∈ S
2. In addition, if 0 < a < b2

24c ,
then Q = 0 and Q = s+(nn − 1

3 I) are stable critical points, which correspond to isotropic
phase and nematic phase respectively, and Q = s−(nn − 1

3 I) is unstable. See [14] for the
details. Since we are interested in the stable interface between the two co-existence phases,
we impose the condition b2 = 27ac, which means that the bulk energy at each phase is equal.

In this paper, we are concerned with the structure of the molecular directional field near
the phase transition and the shape of the interface. To this end, we assume that the transition
between 0 and s+ (n ⊗ n − 1

3

)
appears in a thin region of width

√
L1. By a rescaling and

limiting process as in [10], the energy functional (1.1) can be reduced to

F(Q,∇Q) =
∫
R3

{
1

6
|∇Q|2 + L

4
Qi j, j Qik,k + 1

3
Fb(Q)

}
dx . (1.3)

Furthermore, after scaling if necessary, we may take

a = 1, b = 9, c = 3

so that s+ = 1 and s− = 1/2 and Fb(Q) = 0 if Q = 0 or n⊗n− 1
3 I. The energy functional

(1.3) becomes

F(Q,∇Q) =
∫
R3

{
1

6
|∇Q|2 + L

4
Qi j, j Qik,k + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
dx . (1.4)
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Now the isotropic–nematic interface problem is reduced to study the minimizers of (1.4)
in the class so that F(Q,∇Q) is finite and satisfying

Q(x1, x2,+∞) = nn − 1

3
I, Q(x1, x2,−∞) = 0. (1.5)

Let us refer to [6,8,9,11] and references therein for somenumerical results on the isotropic–
nematic interface problem based on the Landau-de Gennes’s framework. Numerical results
show that the ratio of the coefficients in the isotropic and anisotropic energies and different
anchoring condition make an important effect on the structure and stability of minimizers.
To our knowledge, there are few rigorous results on this problem. In [10], the authors made
a first effort to 1-D problem, which will be introduced in next section.

Let us conclude the introduction by introducing the following notations. We define

A =
{
Q ∈ W 1,2(RN , S0) : Q(x1, . . . , xN−1, +∞) = nn − 1

3
I, Q(x1, . . . , xN−1,−∞) = 0

}

so that F(Q,∇Q) is finite for Q ∈ A, where S0 denotes the set of all symmetric traceless
3 × 3 matrices. We take N = 3 or 1 throughout this paper.

Definition 1.1 Q∗ ∈ A is called aglobalminimizer ofF(Q,∇Q) if it satisfiesF(Q∗,∇Q∗) ≤
F(Q,∇Q) for all Q ∈ A; Q∗ ∈ A is called a local minimizer if it satisfies F(Q∗,∇Q∗) ≤
F(Q,∇Q) forQ ∈ A in some open neighbourhood ofQ∗;Q∗ ∈ A is called a stable solution
of the Euler-Lagrange equation associated with F , e.g. (2.1), if it admits a local minimizer
of F .

2 De Giorgi’s type conjecture

Let us first consider the case of L = 0. The associated Euler-Lagrange equation takes

− �Q + Q − 9Q2 + 3|Q|2Q + 3|Q|2I = 0 (2.1)

with boundary condition

Q(x1, x2,+∞) = nn − 1

3
I, Q(x1, x2,−∞) = 0. (2.2)

This system is similar to the Allen-Cahn equation

�u − (1 − u2)u = 0 in RN , (2.3)

which also arises from the phase transition problem. In 1978, De Giorgi made the following
well-known conjecture:

Let u be a bounded solution of (2.3) such that ∂xN u > 0. Then the level sets of u are all
hyperplanes, at least for dimension N ≤ 8.

This conjecture has been solved by Ghoussoub-Gui [7] for N = 2, Ambrosio-Cabré [1]
for N = 4 and Savin [12] for 4 ≤ N ≤ 8. The conjecture is not true for N ≥ 9 [4].

Motivated by De Giorgi’s conjecture, we propose a similar conjecture:
(GDC): Let Q be symmetric, traceless and a bounded solution of (2.1)–(2.2). Let λ3 be

the largest eigenvalue of Q. If ∂x3λ3 > 0, then all level sets {x ∈ R3 : Qi j (x) = s} are
hyperplanes.

Compared with (2.3), this conjecture seems more difficult even in 1-D since (2.1) is a
system with five independent components. In [5], Fazly and Ghoussoub also considered the
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DeGiorgi type conjecture for the elliptic system:�u = ∇ H(u) inRN , where u : RN → Rm

and H ∈ C2(Rm), and proved that the solution u = {ui }m
i=1 is necessarily one-dimensional

under various conditions on the nonlinearity H and some monotonicity assumption on u.
The elliptic system we considered in this paper does not fall into this system due to the
traceless constraint onQ. Even for the results in 1-D to be presented, there are no additional
assumptions on the solution. Let usmention [13], whichmay be the first paper on the vectorial
Allen-Cahn system.

In [10], Park et al. consider the global minimizer of the 1-D total energy functional

F(Q,Q′) =
∫
R

{
1

6
|Q′|2 + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
ds, (2.4)

where
′
denotes d

ds = d
dz . The associated Euler-Lagrange equation becomes

− Q′′ + Q − 9Q2 + 3|Q|2Q + 3|Q|2I = 0 (2.5)

with the boundary condition

Q(+∞) = nn − 1

3
I, Q(−∞) = 0. (2.6)

Theorem 2.1 [10] The global minimizer of (2.4) subject to (2.6) must take the form

Q(s) = 1

2

(
1 + tanh

1

2
(s − t)

)(
nn − 1

3
I
)

, (2.7)

where t is an arbitrary constant due to translation symmetry.

To solve (GDC), a key step is to study the structure of local minimizers in 1-D. Thanks
to Theorem 2.1, it is natural to ask the following question:

Whether the local minimizers of (2.4) subject to (2.6) must take the form (2.7)?
In Sect. 3, we will give an affirmative answer to this question. For the global minimizer,

one can reduce Q to a diagonal form (2.8). For the local minimizer, we have to consider
general Q. To reduce the problem, we used many elegant structures hidden in the system. In
Sect. 4, we will prove the conjecture (GDC) under the mild assumption that the eigenvector
of Q corresponding to the largest eigenvalue is a constant vector.

For the case of L �= 0, the problem becomes more complex. In this case, the direction
vector n on the anchoring condition at +∞ could make a significant effect on the behavior
for theminimizers. There are three different types of the alignment director n on the boundary
as below:

(1) Homeotropic anchoring: n · (0, 0, 1) = 1;
(2) Planar anchoring: n · (0, 0, 1) = 0;
(3) Tilt anchoring: 0 < n · (0, 0, 1) < 1.

For simplicity, we will first seek minimizers of the diagonal form

Q =
⎛
⎝− 1

3 (S + T ) 0 0
0 − 1

3 (S − T ) 0
0 0 2

3 S

⎞
⎠ , (2.8)

which is meaningful due to the rotation invariant of the bulk energy. Then in 1-D, the energy
functional is reduced to

FL (S, T ) = 2

9

∫
R

(
1 + L

2
(S′)2 + 1

6
(T ′)2 + 1

6
(3S2 + T 2) − S(S2 − T 2) + 1

18
(3S2 + T 2)2

)
ds.

(2.9)
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The associated Euler–Lagrange equation of (2.9) takes as follows⎧⎨
⎩

− 1+L
2 S′′ + S

2 − 3S2
2 + T 2

2 + S(3S2+T 2)
3 = 0,

− 1
6T ′′ + T

6 + ST + T (3S2+T 2)
9 = 0.

(2.10)

Here we consider the homeotropic anchoring condition, which leads to the following bound-
ary conditions for (S, T ):

S(+∞) = 1, T (+∞) = S(−∞) = T (−∞) = 0. (2.11)

It is obvious that (2.10)–(2.11) has a uniaxial solution with T = 0 and S(s) solving

− (1 + L)S′′ + S − 3S2 + 2S3 = 0.

That is, an uniaxial equilibrium state takes

Q0(s) = S(s)diag

{
− 1

3
,− 1

3
,
2

3

}
, S(s) = S∗(s/

√
1 + L), (2.12)

where S∗ solves

− S′′ + S − 3S2 + 2S3 = 0, S(−∞) = 0, S(+∞) = 1. (2.13)

In [10], the authors investigate the stability of this solution.

Theorem 2.2 The uniaxial equilibrium stateQ0 is stable for the energy functional (2.4)when
L ≤ 0 and unstable when L > 0.

In Sect. 5, we will prove that all the solutions of (2.10)–(2.11) must take Q0(s) when
L > −1. This in particular implies that the stable equilibrium state for the energy functional
(2.4) cannot be of diagonal form (2.8) when L > 0 and under the homeotropic anchoring
condition.

For L �= 0, the structure of equilibrium solutions with planar and tilt anchoring boundary
conditions is still an open question. In this case, the anisotropic term should play a key role
in the study of the behavior for minimizers near the isotropic–nematic phase transition. See
[8,9] for numerical results and [10] for more discussions and open questions.

3 Local minimizer in 1-D for L = 0

In this section, we study the local minimizer of (2.4) with L = 0.

Theorem 3.1 All the local minimizers of (2.4) subject to (2.6) must take the form

Q(s) = 1

2

(
1 + tanh

1

2
(s − t)

)(
nn − 1

3
I
)

, (3.1)

where t is an arbitrary parameter. In fact, (3.1) gives all solutions of (2.5)–(2.6).

For the global minimizer, the proof relies on the fact that we may assume that Q is the
diagonal form (2.8). Thus, it suffices to consider an ODE system with two components. For
the local minimizer, we have to consider an ODE system with five components. To reduce
the problem, we need the following key lemmas. In what follows, we always assume that Q
is a solution of (2.5)–(2.6). We will often use the following spectral decomposition of Q:

Q = λ1n1n1 + λ2n2n2 + λ3n3n3. (3.2)

123
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Lemma 3.2 It holds that

Tr(Q′)2 =
3∑

i=1

|λ′|2 + 2
∑
i< j

(λi − λ j )
2(n′

i · n j )
2 = Tr(Q2) − 6Tr(Q3) + 3

2
(|Q|2)2.

Moreover, Q(x∗) �= 0 for all finite x∗.

Proof Using (3.2) and the identities like |n′
1|2 = |n′

1 · n2|2 + |n′
1 · n3|2, we obtain

|Q′|2 =
3∑

i=1

|λ′
i |2 + 2

3∑
i=1

λ2i |n′
i |2 + 4

∑
i< j

λiλ j (ni · n′
j )(n j · n′

i )

=
3∑

i=1

|λ′
i |2 + 2

∑
i< j

(
λi (n j · n′

i ) + λ j (ni · n′
j )
)2

=
3∑

i=1

|λ′
i |2 + 2

∑
i< j

(λi − λ j )
2(n j · n′

i )
2,

which gives the first equality.
Using the Eq. (2.5), we have

0 = 〈− Q′′ + Q − 9Q2 + 3|Q|2Q + 3|Q|2 I , 2Q′〉

=
(
Tr
(−Q′2 + Q2 − 6Q3)+ 3

2
(|Q|2)2

)′
,

where
〈
A, B

〉
� T r(AT B) denote the matrix inner product. Therefore, there exists some

constant C0 so that

|Q′|2 = |Q|2 − 6Tr(Q3) + 3

2
(|Q2|)2 + C0, (3.3)

which implies C0 ≥ 0 due toQ(−∞) = 0. Moreover, due to thatQ is a continuous function
and the boundary condition (2.6),Q is bounded, and thus there exists some constant C1 > 0
so that

|Q′|2 ≤ C1. (3.4)

Using (2.5) again, we get by integration by parts and (3.3) that

0 =
∫ x2

x1

〈− Q′′ + Q − 9Q2 + 3|Q|2Q + 3|Q|2 I ,Q
〉
dx

= −Tr(Q′Q)

∣∣∣∣
x2

x1

+
∫ x2

x1
(|Q′|2 + |Q|2 − 9Tr(Q3) + 3(|Q|2)2)dx

= −Tr(Q′Q)

∣∣∣∣
x2

x1

+
∫ x2

x1
(C0 + 2|Q|2 − 15Tr(Q3) + 9

2
(|Q|2)2)dx .

(3.5)

If C0 > 0, due to Q(−∞) = 0, there exists M < 0 sufficiently small so that

C0 + 2|Q|2 − 15Tr(Q3) + 9

2
(|Q|2)2 ≥ C0

2
, |Q|2 ≤ 1 ∀x < M . (3.6)

123
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Choosing x1 < x2 < M , and combining (3.4), (3.5) and (3.6), we deduce that

2
√

C1 ≥ 2
√
Tr(Q′2)Tr(Q2) ≥ Tr(Q′Q)

∣∣∣∣
x2

x1

=
∫ x2

x1
(C0 + 2|Q|2 − 15Tr(Q3) + 9

2
(|Q|2)2)dx ≥ C0

2
(x2 − x1).

Letting x1 → −∞, we get a contradiction, and thusC0 = 0. This proves the second equality.
If Q(x∗) = 0 for some finite x∗, then we have

Tr(Q′2(x∗)) = 0 �⇒ Q′(x∗) = 0.

Due to Q(x∗) = Q′(x∗) = 0, the uniqueness theorem of ODE gives Q(x) ≡ 0, which
contradicts the boundary condition Q(+∞) �= 0 in (2.6). ��

We introduce two important quantities

A(x) = |Q(x)|2, B(x) = |Q′(x)|2.
By Lemma 3.2, we have

Tr(Q3) = A − B

6
+ A2

4
, Q′(±∞) = 0.

By (2.5), we have

0 = 〈− Q′′ + Q − 9Q2 + 3|Q|2Q + 3|Q|2 I ,Q
〉

= − (Tr(Q2))′′ − 2Tr(Q′2)
2

+ |Q|2 − 9Tr(Q3) + 3(|Q|2)2

= − (Tr(Q2))′′ − 2Tr(Q′2)
2

+ |Q|2 − 9

(
A − B

6
+ A2

4

)
+ 3(|Q|2)2

= − A′′ − 2B

2
+ A − 9

(
A − B

6
+ A2

4

)
+ 3A2.

This gives the following useful differential equation

A′′ = − A + 5B + 3

2
A2. (3.7)

Moreover,

B(±∞) = 0, A(−∞) = 0, A(+∞) = 2

3
, A′(±∞) = 0. (3.8)

Lemma 3.3 It holds that

B ≥ A − √
6A3/2 + 3

2
A2.

The equality holds if and only if λi = 2a > 0, λ j = − a, j �= i for some i and a > 0.

Proof By Lemma 3.2, it suffices to prove

Tr(Q3) ≤ 1√
6

A3/2. (3.9)

123
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Thanks to
∑3

i=1 λi = 0, Tr(Q3) = ∑3
i=1 λ3i = 3λ1λ2λ3. If λ1λ2λ3 ≤ 0, then we have

Tr(Q3) ≤ 0 < A3/2/
√
6. Otherwise, we assume λ1, λ2 < 0 without loss of generality.

Obviously,

(Tr(Q3))2 = 9λ21λ
2
2λ

2
3 = 9(λ1λ2)(λ1λ2)(λ1 + λ2)

2

= 36(λ1λ2)(λ1λ2)
(λ1 + λ2)

2

4
≤ 36

(
λ1λ2 + λ1λ2 + (λ1 + λ2)

2/4

3

)3
,

from which and the following fact

λ21 + λ22 + λ1λ2

3
− λ1λ2 + λ1λ2 + (λ1 + λ2)

2/4

3
= 1

4
(λ1 − λ2)

2 ≥ 0,

we infer that

(Tr(Q3))2 ≤ 36

(
λ21 + λ22 + λ1λ2

3

)3

= 36

(
A

6

)3
= A3

6
,

which gives (3.9). The above arguments also show that the equality holds if and only if
λ1 = λ2 = − a, λ3 = 2a for some a > 0. ��
Lemma 3.4 For any x ∈ R, 0 < A(x) < 2

3 and A′(x) > 0.

Proof First of all, A(x) > 0 follows from Lemma 3.2. Next we show that A(x) ≤ 2
3 .

Otherwise, thanks to A(−∞) = −∞ and A(+∞) = 2
3 , A(x) achieves its global maximum

at a finite point x∗ and A(x∗) > 2/3. Then we infer that

A′′(x∗) = − A(x∗) + 5B(x∗) + 3

2
A2(x∗) > 0,

which contradicts with the fact that A(x∗) is the global maximum. Hence, we have A(x) ≤
2/3.

To rule out A(x) = 2/3 for some x , we assume A(x∗) = 2/3. Again, A(x∗) is the global
maximum due to A(x) ≤ 2/3 and it leads to A′′ ≤ 0. Then we have

0 ≥ A′′(x∗) = − A(x∗) + 5B(x∗) + 3

2
A2(x∗) = 5B(x∗).

As B(x∗) is non-negative, we deduce that B(x∗) = Tr(Q′2(x∗)) = 0, hence, Q′(x∗) = 0.
Then it follows from Lemma 3.3 that

0 = B(x∗) ≥
(

A − √
6A3/2 + 3

2
A2
)

(x∗) = 2

3
− 4

3
+ 2

3
= 0.

The equality implies that

λi (x∗) = 2a > 0, λ j (x∗) = −a < 0 for j �= i

for some i and a > 0. Hence, 2/3 = A(x∗) = Tr(Q2)(x∗) = 6a2, then a = 1
3 . Therefore,

Q(x∗) =
3∑

k=1

λknknk
∣∣
x=x∗ = − 1

3

∑
j �=i

njnj + 2

3
nini
∣∣
x=x∗

= − 1

3
(I − nini) + 2

3
nini
∣∣
x=x∗ = nini − 1

3
I
∣∣
x=x∗ .

123
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Let Q̃(x) ≡ ni(x∗)ni(x∗) − 1
3 I. Then Q̃(x) is a solution of (2.5) with

Q̃(x∗) = ni(x∗)ni(x∗) − 1

3
I = Q(x∗), Q̃′(x∗) = 0 = Q′(x∗).

The uniqueness theorem of ODE implies that Q̃(x) ≡ Q(x). However, Q̃(−∞) �= 0 =
Q(−∞) and it leads to a contradiction. This shows that

0 < A(x) <
2

3
∀ x ∈ R.

Finally, we show that A(x) is strictly monotonic. Using (3.7) and Lemma 3.3, we get

A′′(x) = − A+B+ 3

2
A2 ≥ −A+ 3

2
A2+5

(
A − √

6A3/2 + 3

2
A2
)

= 4A−5
√
6A3/2+9A2.

(3.10)
Thanks to A(−∞) = A′(−∞) = 0, we have

A′′(x) ≥ 4A − 5
√
6A3/2 + 9A2 = A(4 − 5

√
6A + 9A) > 0 ∀x < − M

for some large M > 0. Consequently, A(x) is strictly convex and monotonic for x < −M .
We define

x1 = sup
{

x : A′(t) > 0, ∀t ∈ (−∞, x)
}
, J = (−∞, x1).

We aim to prove x1 = +∞. Otherwise, we have A′(x1) = 0. Multiplying 2A′(y) on both
side of (3.10) and then integrating from −∞ to some x ∈ J , we obtain

0 ≤
∫ x

−∞

(
A′′(y) −

(
4A − 5

√
6A3/2 + 9A2

)
(y)
)

· 2A′(y)dy

= (A′2 − (4A2 − 4
√
6A3/2 + 6A3))

∣∣∣∣
x

− ∞
= A′2(x) − (4A2 − 4

√
6A3/2 + 6A3)(x),

which gives

A′(x)2 ≥ (4A2 − 4
√
6A3/2 + 6A3)(x) = A2(2 − √

6A)2(x).

Recall that 0 < A(x) < 2/3 and A′(x) > 0 (x ∈ J ). Thus,

A′(x) ≥ A(2 − √
6A)(x).

Letting x → x1 gives

0 = A′(x1) ≥ A(2 − √
6A)(x1) > 0.

This is a contradiction. Therefore, x1 = +∞ and A′(x) > 0 for x ∈ R. ��
Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1 We infer from Lemma 3.4 and (3.10) that

0 ≤
∫ x

− ∞

(
A′′(y) −

(
4A − 5

√
6A3/2 + 9A2

)
(y)
)

· 2A′(y)dy

= A′(x)2 − A2(2 − √
6A)2(x).

Due to A(+∞) = A′(+∞) = 0, letting x → +∞ gives

0 ≤
∫ + ∞

− ∞

(
A′′(y) −

(
4A − 5

√
6A3/2 + 9A2

)
(y)
)

· 2A′(y)dy = 0,
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which implies that for x ∈ R,

A′′(x) − (4A − 5
√
6A3/2 + 9A2)(x) = 0. (3.11)

Consequently,

A′(x)2 − A2(2 − √
6A)2(x) = 0, i.e. A′(x) = A(2 − √

6A)(x). (3.12)

Using (3.7) and (3.11), we find

− A +5B + 3

2
A2 = A′′ = 4A −5

√
6A3/2 +9A2 �⇒ B = A −√

6A3/2 + 3

2
A2. (3.13)

While, by Lemma 3.3, the equality on B holds if and only if two eigenvalues of Q(x) are
equal and negative for any x ∈ R. As Q(x) �= 0 due to Lemma 3.2, it must hold that

λi (x) = λ j (x) < 0 ∀x ∈ R,

and i �= j are fixed for any x . Therefore, without loss of generality, we assume λ1(x) =
λ2(x) < 0 and denote

λ1(x) = λ2(x) = − S(x)

3
, λ3(x) = 2S(x)

3
, S(x) > 0.

The boundary condition (2.6) implies that S(−∞) = 0, S(+∞) = 1. Consequently, we

get A = Tr(Q2) = 2S2
3 , and then we see from (3.12) that

(
2S2

3

)′
= 2S2

3
(2 − 2S) ⇐⇒ S′ = S(S − 1). (3.14)

With the boundary condition of S, we derive the explicit formula of S, A, λi as follows

S(x) = exp(x − x0)

1 + exp(x − x0)
, (λ1, λ2, λ3) =

(
− S

3
,− S

3
,
2S

3

)
, A = 2S2

3
, (3.15)

where x0 is a parameter due to translation.
By Lemma 3.3, we have

B =
3∑

i=1

|λ′
i |2 + 2

∑
i< j

(λi − λ j )
2(n′

i · n j )
2 = Tr(Q2) − 6Tr(Q3) + 3

2
(|Q|2)2. (3.16)

We infer from (3.14) and (3.15) that

B = 2

3
(S2 − 2S3 + S4), (3.17)

and
3∑

i=1

|λ′
i |2 =

(
1

9
+ 1

9
+ 4

9

)
S′2 = 2

3
S′2 = 2

3
S2(S − 1)2. (3.18)

Combining (3.16), (3.17) and (3.18), we obtain

2
∑
i< j

(λi − λ j )
2(n′

i · n j )
2 = B −

3∑
i=1

|λ′
i |2 = 2

3
(S2 − 2S3 + S4) − 2

3
S2(S − 1)2 = 0.

As λ1, λ2 �= λ3, we deduce

(n′
1 · n3)2 = (n′

2 · n3)2 = 0 �⇒ |n′
3|2 = (n′

1 · n3)2 + (n′
2 · n3)2 = 0 �⇒ n′

3 = 0.
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Hence, n3(x) is a constant vector n. Finally, we obtain

Q(x) =
3∑

i=1

λinini = − S

3
(n1n1 + n2n2) + 2S

3
n3n3 = − S

3
(I − n3n3) + 2S

3
n3n3

= S

(
n3n3 − I

3

)
= S

(
nn − I

3

)
= exp(x − x0)

1 + exp(x − x0)

(
nn − I

3

)
.

This proves Theorem 3.1. ��

4 Local minimizer in 3-D for L = 0

The Landau-de Gennes energy (1.4) without anisotropic term in 3-D takes

F(Q,∇Q) =
∫
R3

{
1

6
|∇Q|2 + 1

6
TrQ2 − TrQ3 + 1

4
(TrQ2)2

}
dx,

and the associated Euler–Lagrange equation takes

− �Q + Q − 9Q2 + 3|Q|2Q + 3|Q|2I = 0 (4.1)

with boundary condition

Q(x1, x2,+∞) = nn − 1

3
I, Q(x1, x2,−∞) = 0. (4.2)

Considering the spectral decomposition of Q:

Q = N3NT = λ1n1n1 + λ2n2n2 + λ3n3n3, N = (n1,n2,n3), 3 = diag(λ1, λ2, λ3).

Then we can reformulate (4.1) as follows

−NT (�Q)N + 3 − 932 + 3|Q|23 + 3|Q|2I = 0,

which gives that for the diagonal elements,

− �λ1 − 2�n1 · n1λ1 − 2λ2|n2 · ∇n1|2 − 2λ3|n3 · ∇n1|2 + λ1 − 9λ21 + 3|Q|2λ1 + 3|Q|2 = 0,

− �λ2 − 2�n2 · n2λ2 − 2λ1|n1 · ∇n2|2 − 2λ3|n3 · ∇n2|2 + λ2 − 9λ22 + 3|Q|2λ2 + 3|Q|2 = 0,

− �λ3 − 2�n3 · n3λ3 − 2λ1|n1 · ∇n3|2 − 2λ2|n2 · ∇n3|2 + λ3 − 9λ23 + 3|Q|2λ3 + 3|Q|2 = 0,

(4.3)

and for the off-diagonal elements,

λ1�n1 · n2 + λ2�n2 · n1 + 2
3∑

k=1

∂k(λ1 − λ2) · (∂kn1 · n2)

+2λ3

3∑
k=1

(∂kn3 · n1)(∂kn3 · n2) = 0,

λ2�n2 · n3 + λ3�n3 · n2 + 2
3∑

k=1

∂k(λ2 − λ3) · (∂kn2 · n3)

+2λ1

3∑
k=1

(∂kn1 · n2)(∂kn1 · n3) = 0,
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λ3�n3 · n1 + λ1�n1 · n3 + 2
3∑

k=1

∂k(λ3 − λ1) · (∂kn3 · n1)

+2λ2

3∑
k=1

(∂kn2 · n3)(∂kn2 · n1) = 0. (4.4)

It follows from (4.2) that{
λi (x1, x2,+∞) = 2

3 , ni (x1, x2,+∞) = n, λ j (x1, x2,+∞) = − 1
3 ∀ j �= i;

λk(x1, x2,−∞) = 0, k = 1, 2, 3
(4.5)

for some i ∈ {1, 2, 3}. Without loss of generality, we assume i = 3.
The system (4.3)–(4.5) are difficult to solve since it is a system with degree of freedom

5. For this, we assume that the eigenvector of Q corresponding to the largest eigenvalue is a
constant vector, and then we can reduce (4.3)–(4.5) to a PDE system with degree of freedom
3. In this case, we give an affirmative answer to (GDC) proposed in Sect. 2.

Theorem 4.1 The level set of global solutions of (4.1)–(4.2) [or (4.3)–(4.5)] satisfying
n3(x1, x2, x3) ≡ n and ∂x3λ3 > 0 are hyperplanes in R3. Moreover, Q(x1, x2, x3) =
S∗(x3)(nn − 1

3 I), where S∗(x3) solves (2.13).

Using identities like −�n1 · n1 = |∇n1|2 = |n2 · ∇n1|2 + |n3 · ∇n1|, we have
− 2�ni · niλi −

∑
j �=i

2λ j |n j · ∇ni |2 = 2|∇ni |2λi −
∑
j �=i

2λ j |n j · ∇ni |2

= 2
∑
j �=i

(λi − λ j )|n j · ∇ni |2.

Thus, under the assumption that n3 is a constant vector, we can reduce (4.3) to

�λ1 = 2(λ1 − λ2)|n2 · ∇n1|2 + λ1 − 9λ21 + 3|Q|2λ1 + 3|Q|2, (4.6)

�λ2 = 2(λ2 − λ1)|n1 · ∇n2|2 + λ2 − 9λ22 + 3|Q|2λ2 + 3|Q|2, (4.7)

�λ3 = λ3 − 9λ23 + 3|Q|2λ3 + 3|Q|2. (4.8)

Yet, the above equations are not independent due to
∑3

i=1 λi = 0. Denote

(λ1, λ2, λ3) =
(

− S + T

3
,− S − T

3
,
2S

3

)
.

Then |Q|2 = 2(3S2 + T 2)/9, and (4.6)–(4.8) are equivalent to

�S = S − 3S2 + T 2 + 2S(3S2 + T 2)

3
, (4.9)

�T = 4|n1 · ∇n2|2 · T + T + 6ST + 2T (3S2 + T 2)

3
, (4.10)

where (4.9) comes from (4.8), and (4.10) comes from subtracting (4.7) by (4.6). Due to (4.5),
the boundary conditions of (S, T ) take

lim
x3→± ∞ T (x1, x2, x3) = lim

x3→− ∞ S(x1, x2, x3) = 0, lim
x3→+ ∞ S(x1, x2, x3) = 1. (4.11)

To prove Theorem 4.1, we need the following lemmas.
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Lemma 4.2 If S ≥ 0 and T is bounded, then T ≡ 0.

Proof Firstly, we apply S ≥ 0 and (4.10) to yield

�T 2 = 2|∇T |2 + 2T 2
(
4|n1 · ∇n2|2 + 1 + 6S + 2S2 + 2T 2

3

)
≥ 0.

That is, T 2 is subharmonic. Define

ϕ(x, r) = −
∫

∂ B(x,r)

T (y)2dy for x ∈ R3, r > 0 and ϕ(x, 0) = T (x)2.

Taking r derivatives on ϕ gives

∂ϕ

∂r
= 2

4πr2

∫
B(x,r)

|∇T |2 + �T · T dy ≥ 2

4πr2

∫
B(x,r)

�T · T dy,

which along with (4.10) gives

∂ϕ

∂r
≥ 2

4πr2

∫
B(x,r)

T 2
(
4|n1 · ∇n2|2 + 1 + 6S + 2S2 + 2T 2

3

)
dy ≥ 2

4πr2

∫
B(x,r)

T 2 dy.

As T 2 is subharmonic, we infer

∂ϕ

∂r
≥ 2

4πr2
· 4πr3

3
T (x)2 = 2r

3
T (x)2.

Since T is bounded and |ϕ(x, r)| ≤ ||T ||2∞, it must hold that T (x) = 0. ��
Lemma 4.3 If 0 ≤ S ≤ M for some M > 0, then T ≡ 0.

Proof By Lemma 4.2, we only need to prove that T is bounded. Define

ψ(x, r) = −
∫

∂ B(x,r)

S(y) dy for x ∈ R3, r > 0; ψ(x, 0) = S(x).

We claim that T 2(x) ≤ 2. Otherwise, there exists x∗ ∈ R3 so that T (x∗)2 > 2. Taking r
derivatives on ψ gives

∂ψ

∂r
= 1

4πr2

∫
B(x∗,r)

�S(y)dy.

Applying (4.9) and the fact that T 2 is subharmonic, we obtain

∂ψ

∂r
= 1

4πr2

∫
B(x∗,r)

(
S − 3S2 + T 2 + 2S(3S2 + T 2)

3

)
dy

≥ 1

4πr2

∫
B(x∗,r)

(T 2 − 1)dy ≥ 1

4πr2
· 4πr3

3
(T (x∗)2 − 1) ≥ r

3
.

Here we used S − 3S2 + 2S3 ≥ −1 and S ≥ 0. As 0 ≤ S ≤ M and |ψ(x, r)| ≤ M , we get

2M ≥ |ψ(x∗, 6M + 2) − ψ(x∗, 2)| = 6M |ψr (x∗, ξ)| ≥ 6M · ξ

3
> 2M

for some ξ ∈ [2, 6M + 2]. This is a contradiction. Hence, T is bounded. ��
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Proof of Theorem 4.1 The monotonic assumption on λ3 = 2S/3 implies ∂x3 S > 0, which
along with the boundary condition

lim
x3→− ∞ S(x1, x2, x3) = 0, lim

x3→+∞ S(x1, x2, x3) = 1.

gives 0 ≤ S ≤ 1. Lemma 4.3 yields T ≡ 0. Consequently, we can reduce (4.9)–(4.11) to

�S = S − 3S2 + 2S3 (4.12)

with the boundary conditions

lim
x3→− ∞ S(x1, x2, x3) = 0, lim

x3→+ ∞ S(x1, x2, x3) = 1,

and yield

Q =
3∑

i=1

λinini = − S

3
n1n1 − S

3
n2n2 + 2S

3
n3n3 = S

(
n3n3 − 1

3
I
)

= S

(
nn − 1

3
I
)

.

Replacing S by (u + 1)/2 and x by x/
√
2, we can reformulate (4.12) as

�u = u3 − u (4.13)

with

∂3u > 0, lim
x3→± ∞ u(x1, x2, x3) = ± 1.

By De Giorgi’s conjecture for (4.13), the level set of u are hyperplanes. As S = (u + 1)/2,
we deduce that the level set of S are hyperplanes. It further implies

S(x, y, z) = S∗(z), Q(x, y, z) = S∗(z)
(
nn − 1

3
I
)

,

where S∗ solves (2.13), and the level set of each component of Q are hyperplanes. ��
Finally, under the assumption that n3 is a constant vector n as Theorem 4.1, we give a

criterion that Q is uniaxial, i.e. Q = S(nn − 1
3 I), which may be independent of interest.

Theorem 4.4 Let

Q = − S + T

3
n1n1 − S − T

3
n2n2 + 2S

3
nn

be the solution of (4.1)–(4.2) [ or equivalently (4.4), (4.9)–(4.11)], where n is a constant
vector. Assume that S ≥ 0 and there exist 0 < α · ln 4 < 1, a constant C and x∗ ∈ R3 so that

|A(r)| ≤ Ceα·ln2(r) for r � 1, (4.14)

where A(r) = −∫ B(x∗,r)
S(y)dy. Then T ≡ 0 and Q = S(nn − 1

3 I), where S solves (4.12)
with boundary condition (4.11).

Remark 4.1 (a) The non-negative assumption on λ3 = 2S/3 is natural since λ3(x, y, z) is
always the largest eigenvalue of Q(x, y, z).

(b) If S is monotonic in x3, then we have 0 ≤ S ≤ 1. The boundedness of S leads to that
A(r) is bounded. Hence, we can apply Theorem 4.1 to yield T ≡ 0.

(c) The condition (4.14) states that T is trivial unless the growth rate of the average of S in
some ball B(x, r) is faster than any polynomial growth.
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Proof By Lemma 4.2, it suffices to prove that T is bounded. Without loss of generality, we
take x∗ = 0. For A > 0 to be determined later, there exists a constant B > 0 so that

S − 3S2 + 2S3 ≥ A · S − B. (4.15)

If T is unbounded, then there exists x0 depending on A such that T (x0)2 > B > 0. As S is
non-negative, T 2 is subharmonic from the proof of Lemma 4.2.

Let ψ(x, r) be as in Lemma 4.3 and D = B(x0, r). Then we get by (4.15) that

∂ψ

∂r

∣∣∣
x=x0

≥ 1

4πr2

∫
D

(
S − 3S2 + T 2 + 2S(3S2 + T 2)

3

)
dy

≥ 1

4πr2

∫
D

(
AS − B + T 2

(
1 + 2S

3

))
dy

≥ 1

4πr2

(∫
D

AS dy +
∫

B(x0,r)

(T 2 − B)dy

)

≥ A

4πr2

∫
D

Sdy + 1

4πr2
4πr3

3
(T (x0)

2 − B)

>
A

4πr2

∫
D

Sdy ≥ 0.

(4.16)

Hence, ψ(x0, r) is strictly monotonic. We drop the notation x0 in ψ for convenience. Note
that ∫

B(x0,r)

S(y) dy =
∫ r

0
4πs2ψ(s) ds,

which along with (4.16) gives

∂ψ

∂r
≥ A

r2

∫ r

0
s2ψ(s) ds for any r > 0. (4.17)

For any r > 0, there exists ξ ∈ [2r , 4r ] so that ψ(4r) − ψ(2r) = 2r · ψr (ξ). As ψ is
monotonic, we infer from (4.17) that

ψ(4r) ≥ ψ(4r) − ψ(2r) = 2r · ψr (ξ) ≥ 2r
A

ξ2

∫ ξ

0
s2ψ(s) ds

≥ 2r
A

ξ2

ξ

2

(
ξ

2

)2
ψ

(
ξ

2

)
≥ Ar2

2
ψ(r), (4.18)

which implies

ψ(4n) ≥
(

A

2

)n

4n(n−1)ψ(1) =
(

A

8

)n

4n2ψ(1).

Define M(x, r) := ∫B(x,r)
S(y) dy. Then

M(x0, 2 · 4n) =
∫ 2·4n

0
4πs2ψ(s) ds > 4π(4n)3ψ(4n) ≥ 4π(8A)n4n2ψ(1).

For sufficiently large n so that |x0| ≤ 2 · 4n , we have

M(0, 4n+1) ≥ M(x0, 2 · 4n) ≥ 4π(8A)n4n2ψ(1).
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Now we choose A > 1 (therefore, x0 can be determined) and combine (4.14) to obtain

eln 4·n2ψ(1) = 4n2ψ(1) < M(0, 4n+1) ≤ C43neα ln2(4n+1) = C43ne(α·ln2 4)(n+1)2 .

Since α · ln 4 < 1, we reach a contradiction as n → +∞. Hence, T is bounded. ��

5 Local minimizer in 1-D for L �= 0

In this section, we study the local minimizer of (2.4) with L �= 0. However, we consider Q
in the diagonal form (2.8) with the homeotropic anchoring. In this case, (S, T ) satisfies the
following Euler–Lagrange equation

{
(1 + L)S′′ = S − 3S2 + T 2 + 2S(3S2+T 2)

3 ,

T ′′ = T + 6ST + 2T (3S2+T 2)
3 ,

(5.1)

with the boundary condition

S(−∞) = T (±∞) = 0, S(+∞) = 1. (5.2)

Theorem 5.1 For all L > −1, the ODE system (5.1) and (5.2) has only one solution T (x) ≡
0, S(x) = S∗( x√

1+L
), where S∗ is the solution of the following equation

− S′′ + S − 3S2 + 2S3 = 0, S(−∞) = 0, S(+∞) = 1. (5.3)

Remark 5.1 For L > 0, the solution (0, S) is unstable by Theorem 2.2. Thus, the stable
equilibriumQ of (2.4) subject to the homeotropic anchoring can not be of the diagonal form
(2.8) when L > 0.

Lemma 5.2 Let (S, T ) be the solution of (5.1)– (5.2). Then S ≤ 1 and S′(+∞) = 0.

Proof We first prove that S ≤ 1. Otherwise, the boundary condition |S(±∞)| ≤ 1 and the
fact that S ∈ C2 implies that there exists a global maximum point x∗ of S. Consequently,
S(x∗) > 1 and S′′(x∗) ≤ 0. Using (5.1), we find

(1 + L)S′′(x∗) =
(

S − 3S2 + 2S3 + T 2
(
1 + 2S

3

))
(x∗) > 0

due to S(x∗) > 1 and S −3S2 +2S3 = S(S −1)(2S −1). This contradicts with S′′(x∗) ≤ 0.
Hence, S ≤ 1.

Next, we show that S′(+∞) = 0. From the boundary condition T (+∞) = 0 and
S(+∞) = 1, there exists M > 0 such that for x > M , S(x) > 2/3, |T (x)| < 1/10,
and 1 + 6S + 2(S2 + T 2/3) > 1.

We claim that there does not exist x1, x2 ∈ [M,+∞) so that sign(T (x1)) �= sign(T (x2)),
i.e sign(T ) is preserved in [M,+∞). Otherwise, assume that sign(T (x1)) �= sign(T (x2))
for M ≤ x1 < x2. Obviously, there exists x0 ∈ (x1, x2) such that T (x0) = 0. As T (x0) =
T (+∞) = 0 and T (x2) �= 0, there exists a critical point x3 of T in the interval (x0,+∞)

with nonzero value. Using (5.1), we have

T ′′(x3) = T (x3)

(
1 + 6S(x3) + 2

(
3S(x3)2 + T (x3)2

)
3

)
,
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which along with the fact 1 + 6S(x3) + 2
(
S(x3)2 + T (x3)2/3

)
> 0 gives

sign(T ′′(x3)) = sign(T (x3)). (5.4)

However, if x3 is a maximum point, then T (x3) > 0 and T ′′(x3) ≤ 0, which contradicts
with (5.4). Similarly, if x3 is a minimum point, then T (x3) < 0 and T ′′(x3) ≥ 0, which also
contradicts with (5.4). Hence, sign(T ) is preserved in [M,+∞).

Without loss of generality, assume T (x) ≥ 0 for x ∈ [M,+∞). Accordingly, T is a
convex function in this interval, and thus T (+∞) = 0 gives T ′(+∞) = 0. Subtracting the
first equation of (5.1) by 1

3 · the second equation of (5.1), we obtain

(
(1 + L)S − T

3

)′′
=
(

S − T

3

)(
1 − 3S − 3T + 2

(
S2 + T 2

3

))
≤ 0

due to 1/10 > T (x) ≥ 0, S(x) ≥ 2/3 for x > M . That is, (1 + L)S − T
3 is concave on

[M,+∞). Consequently, the boundary condition ((1 + L)S − T
3 )(+∞) = 1 + L shows

that ((1 + L)S − T
3 )′(+∞) = 0. Combining it with T ′(+∞) = 0 yields S′(+∞) = 0. ��

Lemma 5.3 If T (x0) = 0, S(x0) = 0 for some −∞ ≤ x0 < +∞ and S(x) ≥ 0 for x > x0,
then x0 = −∞, T ≡ 0 and S(x) = S∗(x/

√
1 + L). Here S∗ is a solution of (5.3).

Proof Firstly, we reformulate the second equation of (5.1) as follows

T ′′ = T

(
1 + 6S + 2

3

(
3S2 + T 2)) .

Due to 1 + 6S + 2/3(3S2 + T 2) > 0, we have

sign(T ′′) = sign(T ) for x > x0.

We claim that T (x) = 0 for x ≥ x0. Otherwise, there exists a local critical point of T with
nonzero value. A similar argument as in (5.4) yields a contradiction. Hence, T (x) = 0 for
x ≥ x0.

Next, we show that x0 = −∞. Actually, if x0 is finite, we have T ′(x0) = 0, and (5.1) can
be reduced to

(1 + L)S′′ = S − 3S2 + 2S3 for x ≥ x0 (5.5)

with S(x0) = 0, S(+∞) = 1. Multiplying 2S′ on both side of (5.5) and then integrating
them on [x0, a] for some finite a > x0, we obtain

(1 + L)[(S′(a))2 − (S′(x0)
2)] = (S2 − 2S3 + S4)(a) − (S2 − 2S3 + S4)(x0)

= (S2 − 2S3 + S4)(a).

Recall that S′(+∞) = 0 due to Lemma 5.2 and S(+∞) = 1. Letting a → +∞ gives
−S′(x0)2 = 0. Thus, we have

S(x0) = T (x0) = S′(x0) = T ′(x0) = 0,

which implies that S, T ≡ 0, which contradicts with (5.2). Hence, x0 = −∞.
Thus, T ≡ 0 and S is a solution of (5.5). By a scaling, we conclude S(x) =

S∗(x/
√
1 + L). ��
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Proof of Theorem 5.1 We only need to prove that T ≡ 0. If S(x) ≥ 0 for x ∈ R, we may take
x0 = −∞ and apply Lemma 5.3 to yield that T ≡ 0.

Otherwise, there exists some x0 such that S(x0) < 0. We aim to derive a contraction. Due
to S(+∞) = 1, we can find some x > x0 so that S(x) = 0. Consequently, we can define
x1 := sup{x : x > x0, S(x) = 0}. Obviously, x0 < x1 < +∞ and

S(x1) = 0, S′(x1) ≥ 0, S(x) ≥ 0 ∀x ≥ x0.

We claim T (x1) �= 0. Otherwise, Lemma 5.3 shows that T ≡ 0 and x1 = −∞, which
contradicts that x1 is finite.

On the other hand, from (5.1), we have

(1 + L)S′′(x1) = T 2(x1) > 0 �⇒ S′′(x1) > 0,

where we used 1 + L > 0. As a result, there exists δ > 0 so that for x ∈ (x1, x1 + δ), we
have S′(x) > S′(x1) ≥ 0.

Let A � {x > x1 : S′(x) = 0}. We then define x2 as follows

x2 �
{

+∞ i f A = ∅;
inf{x ∈ A} otherwise.

Then we have S′(x2) = 0. By definition of δ and x2, we know that x2 ≥ x1 + δ > x1. Next,
we reformulate the first equation of (5.1) as follows

(1 + L)S′′ = S − 3S2 + 2S3 + T 2
(
1 + 2S

3

)
.

Multiplying 2S′ on both sides and then integrating them from x1 to x2 (if x2 = +∞, we first
integrate both side from x1 to a and then let a → +∞), we obtain

∫ x2

x1
2(1 + L)S′S′′dx =

∫ x2

x1
2S′(S − 3S2 + 2S3)dx +

∫ x2

x1
2S′T 2

(
1 + 2S

3

)
dx .

Using S′(x2) = 0 and S(x1) = 0, we obtain

− (1 + L)S′2(x1) = S2(S − 1)2(x2) +
∫ x2

x1
2S′T 2

(
1 + 2S

3

)
dx . (5.6)

By definition of x2, S(x)′ > 0 ∀x ∈ (x1, x2), which further implies that S(x) > S(x1) =
0 ∀x ∈ (x1, x2]. Now, the left hand side of (5.6) is non-positive, the first and second term on
the right hand side are non-negative. Hence, we conclude

S′(x1) = 0, S(x2) = 1, T (x) = 0 ∀x ∈ (x1, x2).

Hence T ′(x) = 0 for x ∈ (x1, x2). The continuity of T , T ′ implies that T ′(x1) = T (x1) = 0.
Therefore

S′(x1) = S(x1) = T ′(x1) = T (x1) = 0.

Thus, S ≡ T ≡ 0, which contradicts with (5.2). ��
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