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Abstract In this paper we study existence and asymptotic behavior of solitary-wave solutions
for the generalized Shrira equation, a two-dimensional model appearing in shear flows. The
method used to show the existence of such special solutions is based on the mountain pass
theorem. One of the main difficulties consists in showing the compact embedding of the
energy space in the Lebesgue spaces; this is dealt with interpolation theory. Regularity and
decay properties of the solitary waves are also established.

Mathematics Subject Classification 35Q35 · 35B65 · 35A15 · 35B40

1 Introduction

Shear flows appear in natural and engineering environments, and in many physical situ-
ations. It is connected with a shear stress in solid mechanics, and with the flow induced
by a force in fluid dynamics, for instance. In this context, the evolution of essentially two-
dimensional weakly long waves is, usually, described by simplified models using the paraxial
approximation. In [30], Shrira described a model for the propagation of nonlinear long-wave
perturbations on the background of a boundary-layer type plane-parallel shear flow without
inflection points. Within the model, the amplitude v of the longitudinal velocity of the fluid
is governed by the equation
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vt + γ vx + αvvx − βQ(vx ) = 0, (1.1)

where α, β, and γ are parameters expressed through a profile of the shear flow and Q is the
Cauchy–Hadamard integral transform given by

Q( f )(x, y) = 1

2π
p.v.

∫
R2

f (z, w)(
(x − z)2 + (y − w)2

)3/2 dzdw.

The model also describes the amplitude of the perturbation of the horizontal velocity compo-
nent of a sheared flow of electrons (see [18]). For additional applications see also [1,26,27].

When considering nearly one-dimensional waves, in the dimensionless formu(x ′, y′, t ′) =
αv(x −γ t,

√
2y, βt)/2β, Eq. (1.1) can be reduced to the so called Shrira equation (see [26])

ut − H �u + 2uux = 0, (1.2)

where we omitted the primes. Here, � denotes the two-dimensional Laplacian operator and
H is the Hilbert transform defined by

H u(x, y, t) = 1

π
p.v.

∫
R

u(z, y, t)

x − z
dz.

In particular, at least from the mathematical viewpoint, Eq. (1.2) can be seen as a two-
dimensional extension of the well-known Benjamin–Ono (BO) equation

ut − H ∂2
x u + 2uux = 0, x, t ∈ R. (1.3)

The study of multi-dimensional extension of BO equation has received considerable attention
in recent years (see e.g., [7,8,14–17,22,25,28], and references therein). However, when a
suitable result is available for (1.3), it is not completely clear how to extend such a result for
(1.2) and, in general, it demands extra efforts.

To the best of our knowledge, not so much is known about Eqs. (1.1) and (1.2) and a few
papers are available in the current literature. In particular, numerical results concerned with
the instability of one-dimensional solitons of the BO equation were presented in [18,26]. It
is to be observed that these equations presents a strong anisotropic character of the dispersive
part, which turns out to be one of the main difficulties to be dealt with.

In this paper we are interested in studying existence, regularity and decay properties of
solitary waves for the generalized two-dimensional Shrira equation, namely,

ut − H �u + ( f (u))x = 0, (1.4)

where u = u(x, y, t), (x, y) ∈ R
2, t ≥ 0, and f is a real-valued continuous function.

Observe that if f (u) = u2 then Eq. (1.4) reduces to (1.2).
For one hand, from the physical point of view, a solitary wave is a wave that propagates

without changing its profile along the temporal evolution, usually it has one global peak
and decays far away from the peak. On the other hand, from the mathematical point of
view, a solitary wave is a special solution of a partial differential equation belonging to a
very particular function space. Nowadays, existence and properties of solitary waves have
become one of the major issues in PDEs. The interested reader will find a large number of
good texts in the current literature, which we refrain from list them at this moment.

The solitary-wave solutions of interest in the context of Eq. (1.4) have the form

u(x, y, t) = ϕ(x − ct, y),
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where c > 0 is the wave speed and ϕ is a real-valued function with a suitable decay at infinity.
Substituting this form into (1.4), it transpires that ϕ must satisfy the nonlinear equation

− cϕx − H �ϕ + ( f (ϕ))x = 0, (1.5)

where we have replaced the variable z = x − ct by x . This last equation can be rewritten in
the following form

− cϕ − H ∂−1
x �ϕ + f (ϕ) = 0. (1.6)

Hence, in order to show the existence of solitary waves, it suffices to show that (1.5), or
equivalently (1.6), has a solution.

Remark 1.1 Note that the wave speed c can be normalized to 1 at least if f is homogeneous
of degree p + 1 such as f (u) = u p+1. Indeed, the scale change

φ(x, y) = aϕ (bx, dy) , (1.7)

transforms (1.5) in ϕ, into the same in φ, but with c = 1, where a = c−1/p and b = d = c−1.

By multiplying (1.6) by ϕ and integrating by parts, one sees that the natural space to study
(1.6) is

Z =
{
u ∈ L2(R2); D1/2

x u, D−1/2
x uy ∈ L2(R2)

}
,

equipped with the norm

‖u‖Z =
(∫

R2
(cu2 + |D1/2

x u|2 + |D−1/2
x uy |2)dx dy

)1/2

,

where c > 0 is a fixed constant and D±1/2
x denotes the fractional derivative operators of order

±1/2 with respect to x , defined via Fourier transform by (D±1/2
x u)∧(ξ, η) = |ξ |±1/2û(ξ, η).

Note that Z is a Hilbert space with the scalar product

(u, v)Z =
∫
R2

(
cuv + D1/2

x uD1/2
x v + D−1/2

x uy D
−1/2
x vy

)
dxdy.

Also, Z is an anisotropic space including fractional negative derivatives, which, for one
hand, brings many difficulties when applying analytical methods.

The paper is organized as follows. We start Sect. 2 by showing a suitable Gagliardo–
Nirenberg-type inequality, which ensures that the space Z is embedded in suitable Lebesgue
spaces. In order to show that indeed we have a compact embedding we use interpolation
theory. Thus, we are able to see Z as an interpolation space between two compatible pairs
of Hilbert spaces containing only integer derivatives. With the compact embedding in hand,
we use the mountain pass theorem without the Palais-Smale condition, in order to show the
existence of at least one nontrivial solution. Variational characterizations of such a solutions
are also provided. In Sect. 3 we study regularity and decay properties of the solitary waves.
Our regularity result is based on the so called Lizorkin lemma, which gives a sufficient
condition to a function be a Fourier multiplier on L p(Rn). The decay properties are obtained
once we write the equation as a convolution equation and get some suitable estimates on
the corresponding kernel. Of course, the anisotropic structure of the kernel also brings many
technical difficulties. Finally, in Sect. 4 we present a nonexistence result of positive solitary
waves.

The issue of orbital stability/instability of solitary waves of (1.4) will be studied in a future
work.
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Notation Otherwise stated, we follow the standard notation in PDEs. In particular, we use
C to denote several positive constants that may vary from line to line. In order to simplify
notation in some places where the constant is not important, if a and b are two positive
numbers, we use a � b to mean that there exists a positive constant C such that a ≤ Cb.
By L p = L p(R2) we denote the standard Lebesgue space. Sometimes we use subscript to
indicate which variable we are concerned with; for instance, L p

x = L p
x (R) means the space

L p(R) with respect to the variable x ; thus given a function f = f (x, y), the notation ‖ f ‖L p
x

means we are taking the L p norm of f only with respect to x . Also, if no confusion is caused,
we use

∫
R2 f instead of

∫
R2 f (x, y)dxdy.

2 Existence of solitary waves

In this section we provide the existence of solitary-wave solutions for (1.4). As we already
said, our main tool in doing so will be the mountain pass theorem.

2.1 A Gagliardo–Nirenberg-type inequality and embeddings

First, we are going to obtain an embedding of the space Z , which is appropriate to study
Eq. (1.6). For the sake of simplicity, in this subsection, we assume that the constant c in the
definition of Z is normalized to 1.

Lemma 2.1 (Gagliardo–Nirenberg-type inequality) Assume 0 ≤ p ≤ 2. Then there is a
constant C > 0 (depending only on p) such that for any ϕ ∈ Z ,

‖ϕ‖p+2
L p+2 ≤ C‖ϕ‖2−p

L2

∥∥∥D−1/2
x ϕy

∥∥∥p/2

L2

∥∥∥D1/2
x ϕ

∥∥∥3p/2

L2
. (2.1)

As a consequence, it follows that there is a constant C > 0 such that for all ϕ ∈ Z ,

‖ϕ‖L p+2 ≤ C‖ϕ‖Z ,

which is to say Z is continuously embedded in L p+2.

Proof It suffices to assume 0 < p ≤ 2. The lemma will be established only for C∞
0 (R2)

functions; a standard limit method then can be used to complete the proof. By the Gagliardo–
Nirenberg inequality (see, for instance, [2,19]), there exists C > 0 such that, for all g ∈
H1/2(R),

‖g‖L p+2(R) ≤ C‖g‖
2

p+2

L2(R)
‖D1/2

x g‖
p

p+2

L2(R)
.

Assume for the moment that 0 < p < 2. Integrating on the y variable, it follows that

‖ϕ‖p+2
L p+2(R2)

≤ C
∫
R

‖ϕ(·, y)‖2
L2(R)

‖D1/2
x ϕ(·, y)‖p

L2(R)
dy

≤ C
∥∥∥‖ϕ(·, y)‖2

L2(R)

∥∥∥
L

2
2−p (R)

‖D1/2
x ϕ‖p

L2(R2)

≤ C‖ϕ‖2−p
L2(R2)

sup
y∈R

‖ϕ(·, y)‖p
L2(R)

‖D1/2
x ϕ‖p

L2(R2)
.

(2.2)
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We now estimate the middle term in (2.2). Fixed y ∈ R, from Hölder’s inequality, we deduce

‖ϕ(·, y)‖2
L2(R)

= 2
∫
R

∫ y

−∞
ϕ(x, z)ϕy(x, z)dzdx

= 2
∫ y

−∞

∫
R

D1/2
x ϕ(x, z)D−1/2

x ϕy(x, z)dxdz

≤ 2
∫
R2

|D1/2
x ϕ(x, y)||D−1/2

x ϕy(x, y)|dxdy

≤ 2‖D1/2
x ϕ‖L2(R2)‖D−1/2

x ϕy‖L2(R2).

(2.3)

As a consequence,

sup
y∈R

‖ϕ(·, y)‖L2(R) ≤ C‖D1/2
x ϕ‖1/2

L2(R2)
‖D−1/2

x ϕy‖1/2
L2(R2)

. (2.4)

A combination of (2.4) with (2.2) yields the first statement if 0 < p < 2. For p = 2, from
the first inequality in (2.2) and (2.4), we deduce

‖ϕ‖4
L4(R2)

≤ C
∫
R

‖ϕ(·, y)‖2
L2(R)

‖D1/2
x ϕ(·, y)‖2

L2(R)
dy

≤ C sup
y∈R

‖ϕ(·, y)‖2
L2(R)

‖D1/2
x ϕ‖2

L2(R2)

≤ C‖D−1/2
x ϕy‖L2(R)‖D1/2

x ϕy‖3
L2(R)

,

which is the desired. The lemma is thus proved. 
�
Remark 2.2 An argument similar to that in Lemma 2.1 gives the continuous embedding
Z ↪→ Lq

y Lr
x (R

2), for any q, r ≥ 2 satisfying 1
q + 1

r ≥ 1
2 .

As is well known in the theory of critical points, in order to rule out the trivial solution, a
compactness result is usually necessary. Here, we will prove the following.

Lemma 2.3 (Compact embedding) If 0 ≤ p < 2 then the embedding Z ↪→ L p+2
loc (R2) is

compact.

Due to the anisotropic property of Z involving negative fractional derivatives, some
difficulties appear in the proof of Lemma 2.3. In particular, we are not able to use truncation
by using a cut-off function as it was performed in [9]. To circumvent this problem, we will
identify Z as an interpolation space by using the real interpolation method and construct a
suitable extension operator.

For any real number s ≥ 0, we introduce the space

Xs :=
{
f ∈ S ′(R2); (1 + |ξ | + |ξ |−1η2)s f̂ ∈ L2(R2)

}
.

The space Xs is a Hilbert space endowed with the scalar product

( f, g)Xs :=
∫
R2

(1 + |ξ | + |ξ |−1η2)2s f̂ (ξ, η) ĝ(ξ, η) dξdη.

In particular, from Plancherel’s theorem we have X0 = L2 and X1/2 = Z . If 0 ≤ s1 ≤ s2

then Xs2 ⊂ Xs1 . The space X1 is a suitable space that involves only integer derivatives and,
moreover, it can be defined as the closure of ∂x (C∞

0 (R2)) for the norm (see [9])

‖ϕx‖X1 = (‖ϕx‖2
L2 + ‖ϕxx‖2

L2 + ‖ϕyy‖2
L2

)1/2
.
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So, our idea is to look Z as an interpolation space between L2 and X1.
In what follows, if (H0, H1) is a compatible pair of Hilbert spaces and θ ∈ (0, 1), we

denote by (H0, H1)θ the space (H0, H1)θ,2. Here, for q ∈ (1,∞), (H0, H1)θ,q denotes the
intermediate space with respect to the couple (H0, H1) using either the J -method or the
K -method (see e.g., [5,21,31]). For our purposes, the following results will be useful.

Lemma 2.4 Let (X0, X1) and (Y0, Y1) be two compatible pairs of Hilbert spaces. Then,
for 0 < θ < 1, ((X0, X1)θ , (Y0, Y1)θ ) is a pair of interpolation spaces with respect to
((X0, X1), (Y0, Y1)), which is exact of exponent θ .

In particular, if A is a bounded linear operator from X0 to Y0 and from X1 to Y1, then it
is also bounded from (X0, X1)θ to (Y0, Y1)θ .

Proof See, for instance, [31, Chapter 1] or [21, Appendix B]. 
�
Lemma 2.5 Let (H0, H1) be a compatible pair ofHilbert spaces, let (X,M, μ) be ameasure
space and let Y denote the set of measurable functions from X to C. Suppose that there exist
a linear map A : H0 + H1 → Y and, for j = 0, 1, functions w j ∈ Y , with w j > 0 almost
everywhere, such that the mappings A : Hj → L2(X,M, w jμ) are unitary isomorphisms.
For θ ∈ (0, 1), define

Hθ =
{
φ ∈ H0 + H1; ‖φ‖Hθ :=

(∫
X

|wθAφ|2 dμ

)1/2

< ∞
}
,

where wθ = w1−θ
0 wθ

1 . Then Hθ = (H0, H1)θ with equality of norms.

Proof See [6, Corollary 3.2]. 
�
As an application of the above lemma, we have.

Lemma 2.6 The space Z is such that

Z = X1/2 = (X1, L2)1/2.

Proof It suffices to apply Lemma 2.5 with X = R
2, w0 = 1, w1 = (1 + |ξ | + |ξ |−1η2), and

A being the Fourier transform. 
�
For any open set � ⊂ R

2 and s ≥ 0, we define

Xs(�) :=
{
u ∈ L2(�); u = f |�, for some f ∈ Xs

}
.

Endowed with the norm

‖u‖Xs (�) := inf
{
‖ f ‖Xs ; u = f |� with f ∈ Xs

}
,

the space Xs(�) is a Hilbert space.
The next step is the construction of an extension operator from X1(�) to X1, where � is

a rectangle. This construction was essentially given in [24], but for the sake of completeness
we bring the details.

Lemma 2.7 Let� = (a, b)×(c, d). Then, there exists a bounded (extension) linear operator,
say, E, from X1(�) to X1 such that, for any u ∈ X1(�), Eu = u in�, ‖Eu‖L2 ≤ C‖u‖L2(�)

and ‖Eu‖X1 ≤ C‖u‖X1(�), where C is a constant depending only on �.
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Proof Take any u ∈ X1(�) and, without loss of generality, assume that u = ∂x f in �, for
some smooth function f ∈ C∞

0 (R2) with ‖∂x f ‖X1 ≤ 2‖u‖X1(�). Define

f0(x, y) = f (x, y) − 1

b − a

∫ b

a
f (x, y) dx .

In � it is clear that u = ∂x f0. From Poincaré’s inequality,

∫ b

a

∣∣∣∣ f (x, y) −
∫ b

a
f (z, y) dz

∣∣∣∣
2

dx ≤ (b − a)2
∫ b

a
|∂x f (x, y)|2 dx .

Hence, integrating with respect to y on (c, d),

‖ f0‖L2(�) ≤ (b − a)‖∂x f ‖L2(�) = (b − a)‖u‖L2(�). (2.5)

Now we extend f0 to the rectangle [2a − b, 2b − a] × [c, d] by using a generalized
reflection argument. Indeed, let

f1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f0(x, y), if x ∈ [a, b],
4∑

i=1

ai f0
( i + 1

i
b − 1

i
x, y

)
, if x ∈ [b, 2b − a],

4∑
i=1

ai f0
( i + 1

i
a − 1

i
x, y

)
, if x ∈ [2a − b, a],

where the coefficients ai are such that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + a2 + a3 + a4 = 1,

a1 + a2

2
+ a3

3
+ a4

4
= −1,

a1 + a2

4
+ a3

9
+ a4

16
= 1,

a1 + a2

8
+ a3

27
+ a4

64
= −1.

It is clear that f1 is a C2 function on (2a − b, 2b − a) × (c, d) with

‖∂α f1‖L2((2a−b,2b−a)×(c,d)) ≤ C‖∂α f0‖L2(�),

for all multi-indices α ∈ N
2 with |α| ≤ 2. By using the same argument we can extend f1 to

the rectangle �̃ = (2a − b, 2b − a) × (2c − d, 2d − c) by defining a C2 function f2 such
that

‖∂α f2‖L2(�̃) ≤ C‖∂α f0‖L2(�), (2.6)

for all multi-indices α ∈ N
2 with |α| ≤ 2.

Now take a smooth function η such that η ≡ 1 on � and η ≡ 0 on R
2\�̃. Finally, define

the extension operator E by setting Eu = ∂x (η f2). Let us estimate Eu in the X1 norm. First
of all, note that from (2.5) and (2.6), we have
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‖Eu‖L2 ≤ C
(
‖ f2‖L2(�̃) + ‖∂x f2‖L2(�̃)

)

≤ C
(
‖ f0‖L2(�) + ‖∂x f0‖L2(�)

)

≤ C‖u‖L2(�).

(2.7)

Also, by using (2.7) and (2.6),

‖∂x Eu‖L2 ≤ C
(
‖ f2‖L2(�̃) + ‖∂x f2‖L2(�̃) + ‖∂2

x f2‖L2(�̃)

)

≤ C
(
‖u‖L2(�) + ‖∂x (∂x f0)‖L2(�)

)

≤ C
(
‖u‖L2(�) + ‖∂xu‖L2(�)

)
.

(2.8)

It remains to estimate ∂−1
x ∂2

y Eu. In this case, we have

‖∂−1
x ∂2

y Eu‖L2 ≤ C
(
‖ f2‖L2(�̃) + ‖∂y f2‖L2(�̃) + ‖∂2

y f2‖L2(�̃)

)

≤ C
(
‖u‖L2(�) + ‖∂y f0‖L2(�) + ‖∂2

y f0‖L2(�)

)

≤ C
(
‖u‖L2(�) + ‖∂y f0‖L2(�) + ‖∂−1

x ∂2
y u‖L2(�)

)
.

(2.9)

Note that

∂y f0(x, y) =
∫ d

c
∂2
y f0(x, z) dz.

Hence, from the Cauchy–Schwarz inequality,

|∂y f0(x, y)|2 ≤ (y − c)
∫ d

c
|∂2

y f0(x, z)|2 dz.

This last inequality now implies

‖∂y f0‖L2(�) ≤ d − c√
2

‖∂2
y f0‖L2(�) ≤ d − c√

2
‖∂−1

x ∂2
y u‖L2(�). (2.10)

Gathering together (2.9) and (2.10), we obtain

‖∂−1
x ∂2

y Eu‖L2 ≤ C
(
‖u‖L2(�) + ‖∂−1

x ∂2
y u‖L2(�)

)
.

The proof of the lemma is thus completed. 
�

Remark 2.8 A simple inspection in the proof of Lemma 2.7 reveals that the positive constant
C depends only on the difference b − a and d − c, but not on the rectangle � itself.

With the extension operator in hand, we can also prove that the space X1/2(�) is also the
interpolation of L2(�) and X1(�). Results of this type are well known in the context of the
standard Sobolev spaces, see, for instance, [6, Lemma 4.2].

Lemma 2.9 Let � = (a, b) × (c, d). Then, X1/2(�) = (L2(�), X1(�))1/2, with equiva-
lence of norms.
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Proof From Lemma 2.6 we know that X1/2 = (X1, L2)1/2. Note that, for any s ≥ 0, the
restriction operator R : Xs → Xs(�) is bounded. Thus, from Lemma 2.4,

X1/2(�) = R(X1/2) ⊂ (L2(�), X1(�))1/2. (2.11)

On the other hand, the extension operator E constructed in Lemma 2.7 is bounded from
L2(�) to L2 and from X1(�) to X1. Thus, another application of Lemma 2.4 gives
E((L2(�), X1(�))1/2) ⊂ (X1, L2)1/2 = X1/2. Hence,

(L2(�), X1(�))1/2 = RE((L2(�), X1(�))1/2) ⊂ R(X1/2) = X1/2(�). (2.12)

A combination of (2.11) and (2.12) yields the desired. 
�
Proposition 2.10 Let {�i }i∈N be a covering of R

2, where �i is an open square with edges
parallel to the coordinate axis and side-length �, and such that each point of R2 is contained
in at most three squares. Then, there exists a constant C > 0, such that

∞∑
i=0

‖u‖2
X1/2(�i )

≤ C‖u‖2
X1/2 ,

for any u ∈ X1/2.

Proof Let Ei be the extension operator from X1(�i ) to X1 as constructed in Lemma 2.7.
Thus, from Lemma 2.7,

‖Eiu‖2
X1 ≤ C

∫
�i

(
|u|2 + |∂xu|2 + |∂−1

x ∂2
y u|2

)
. (2.13)

As observed in Remark 2.8, the constant C in (2.13) depends only on � but not on i ∈ N. By
observing that the restriction operator Ri : X1 → X1(�i ) is bounded with norm 1 and the
composition Ri Ei is the identity operator, we obtain

‖u‖X1(�i )
≤ ‖Eiu‖X1 . (2.14)

Hence, (2.13) and (2.14) imply

∞∑
i=0

‖u‖2
X1(�i )

≤ C
∞∑
i=0

∫
�i

(
|u|2 + |∂xu|2 + |∂−1

x ∂2
y u|2

)
≤ 3C‖u‖2

X1 .

This means that the restriction operator is bounded from X1 to �2(X1(�i )). On the other
hand, the trivial inequality,

∞∑
i=0

‖u‖2
L2(�i )

≤ 3‖u‖2
L2 ,

implies that the restriction operator is also bounded from L2 to �2(L2(�i )). Then, Theorem
1.18.1 in [31] combined with Lemmas 2.4, 2.6, and 2.9 gives that the restriction is bounded
from X1/2 to �2(X1/2(�i )), which is the desired conclusion. 
�

Now we are ready to prove Lemma 2.3.

Proof of Lemma 2.3 Let {ϕn} be a bounded sequence in Z = X1/2 and select a constant
C0 > 0 such that ‖ϕn‖Z ≤ C0. It is sufficient to show that {ϕn} has a convergent subsequence
in L2

loc(R
2), because if this is true then Lemma 2.1 implies that {ϕn} also has a convergent
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subsequence in L p+2
loc (R2), 0 < p < 2. To do that, it suffices to show that {ϕn} converges, up

to a subsequence, in L2(�R), where �R is a square with center at the origin, edges parallel
to the coordinate axis, and side-length R > 0. Let ER be the extension operator constructed
in Lemma 2.7. By construction, if u ∈ X1/2 then ER(u) = u in �R and ER(u) = 0 in
R

2\�3R . Thus, without loss of generality, we can assume that ϕn = ER(ϕn) for all n ∈ N.
Now, since X1/2 is a Hilbert space, there exists ϕ ∈ X1/2 such that ϕn ⇀ ϕ weakly in X1/2.
In addition, replacing ϕn by ϕn − ϕ, if necessary, we can assume ϕ = 0, that is, ϕn ⇀ 0 in
X1/2.

Fixed ρ > 0 to be chosen later, define

Q0 = {(ξ, η) ∈ R
2; |ξ | ≤ ρ, |η| ≤ ρ},

Q1 = {(ξ, η) ∈ R
2; |ξ | ≤ ρ, |η| ≥ ρ},

Q2 = {(ξ, η) ∈ R
2; |ξ | ≥ ρ}.

Plancherel’s identity and the fact that ϕn = 0 outside the square �3R yield

∫
�3R

|ϕn |2 =
∫
R2

|ϕn |2 =
∫
R2

|ϕ̂n |2 =
2∑

i=0

∫
Qi

|ϕ̂n |2. (2.15)

From the definitions of Q1 and Q2, it is clear that
∫
Q1

|ϕ̂n |2 =
∫
Q1

|ξ |
|η|2

∣∣∣∣ ̂
D−1/2
x ∂yϕn

∣∣∣∣
2

≤ 1

ρ

∥∥∥D−1/2
x ∂yϕn

∥∥∥
L2(R2)

≤ C0

ρ

and ∫
Q2

|ϕ̂n |2 =
∫
Q2

1

|ξ |
∣∣∣∣̂D1/2

x ϕn

∣∣∣∣
2

≤ 1

ρ

∥∥∥D1/2
x ϕn

∥∥∥
L2(R2)

≤ C0

ρ
.

Fix ε > 0; then choosing ρ > 0 sufficiently large leads to∫
Q1

|ϕ̂n |2 +
∫
Q2

|ϕ̂n |2 ≤ ε/2.

Since ϕn ⇀ 0 in L2(R2), then ϕ̂n tends to zero as n → ∞ and

|ϕ̂n(ξ, η)| ≤ ‖ϕn‖L1(�3R) ≤ C‖ϕn‖L2 . (2.16)

Lebesgue’s dominated convergence theorem implies that

lim
n→∞

∫
Q0

|ϕ̂n |2 = 0.

Thus we have proved that, up to a subsequence, ϕn → 0 in L2
loc(R

2), which concludes the
proof of the lemma. 
�

We conclude this section by observing that Lemma 2.1 also holds when norms are restricted
to a rectangle.

Lemma 2.11 Assume 0 ≤ p ≤ 2. Let � = (a, b) × (c, d) be a rectangle. There exist a
constant C > 0 such that, for any ϕ ∈ X1/2(�),

‖ϕ‖L p+2(�) ≤ C‖ϕ‖X1/2(�).

Proof From Lemmas 2.7 and 2.4 we know that the extension operator is bounded from
X1/2(�) to X1/2. Now it suffices to note that the identity operator is continuous from X1/2

to L p+2(R2) and the restriction operator is continuous from L p+2(R2) to L p+2(�). 
�
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2.2 Pohojaev-type identities and nonexistence of solitary waves

As usual, let us first to get an insight for which class of nonlinearities, solutions of (1.6) are
expected. This is done with integration by parts.

Theorem 2.12 Assume c > 0. Equation (1.4) does not possess solitary-wave solutions of
the form u(x, y, t) = ϕ(x − ct, t), ϕ ∈ Z , whether

(i)
∫
R2

ϕ f (ϕ) dxdy ≤ 2
∫
R2

F(ϕ) dxdy; or

(ii)
∫
R2

(ϕ f (ϕ) + 2F(ϕ)) dxdy ≤ 0.

Proof Formally, by multiplying Eq. (1.6) by ϕ and yϕy , respectively, and integrating over
R

2, we deduce the identities∫
R2

[
−cϕ2 − ϕH ϕx −

(
D−1/2
x ϕy

)2 + ϕ f (ϕ)

]
dxdy = 0, (2.17)

∫
R2

[
cϕ2 + ϕH ϕx −

(
D−1/2
x ϕy

)2 − 2F(ϕ)

]
dxdy = 0. (2.18)

For smooth functions decaying to 0 at infinity, these formulas follow from integration by parts
together with elementary properties of the Hilbert transform. The identities can be justified
for functions of the minimal regularity required for them to make sense by the truncation
argument put forward in [9]. The proof is completed by subtracting and adding (2.17) and
(2.18). 
�
Remark 2.13 Unfortunately, Theorem 2.12 is not strong enough to rule out the existence
of solitary waves even in the case of a power-law nonlinearity. This is mainly because, in
view of the nonlocal operator H , we are not able to prove a Pohojaev-type identity on the
x-variable for (1.6), i.e., (see [17] for similar calculations)∫

R2

[
cϕ2 + 2

(
D−1/2
x ϕy

)2 − 2F(ϕ)

]
dxdy = 0. (2.19)

Indeed, if (2.19) were valid. Then subtracting (2.19) and (2.18) leads to∫
R2

(
ϕH ϕx − 3

(
D−1/2
x ϕy

)2
)

dxdy = 0. (2.20)

Adding (2.17) and (2.18), there appears∫
R2

(
−2

(
D−1/2
x ϕy

)2 + ϕ f (ϕ) − 2F(ϕ)

)
dxdy = 0. (2.21)

Finally, plugging (2.21) in (2.19), there obtains

c
∫
R2

ϕ2 dxdy =
∫
R2

(4F(ϕ) − ϕ f (ϕ)) dxdy. (2.22)

Therefore, there would exist no nontrivial solitary-wave solutions of (1.4) provided

4
∫
R2

F(ϕ) dxdy ≤
∫
R2

ϕ f (ϕ) dxdy. (2.23)

To fix ideas, if we assume f (ϕ) = ϕ p+1 and that
∫

ϕ p+2 ≥ 0, (2.23) implies that solitary
waves do not exist if p > 4. This seems to be consistent with our embedding in Lemma 2.1.


�
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2.3 Existence of solitary waves

In this subsection we will prove the existence of solution for (1.6) under suitable conditions
on the nonlinearity f . Having in mind Lemma 2.1, we assume the following.

(A1) f : R → R is continuous and f (0) = 0;
(A2) There exists C > 0 such that | f (u)| ≤ C(|u| + |u|p−1), p ∈ (2, 4) and f (u) =
o(|u|) as |u| → 0;
(A3) There exists μ > 2 such that μF(u) ≤ u f (u) for every u ∈ R, where F is the
primitive function of f ;
(A4) There exists ω ∈ Z such that λ−2F(λω) → +∞ as λ → +∞.

The above assumptions are the ones suitable to apply minimax theory (see e.g. [32]).
Probably, assumptions (A1) − (A4) can be weakened to establish the existence of solitary
waves. However, since our main interest is the study of (1.4) with a power-law nonlinearity,
this will be enough to our purposes. Note that, clearly, our original nonlinearity f (u) = u2

given in (1.2) satisfies (A1) − (A4).
We start with the following vanishing property.

Lemma 2.14 If {un} is a bounded sequence in Z and there is r > 0 such that

lim
n→+∞ sup

(x,y)∈R2

∫
Br (x,y)

|un |2dxdy = 0,

then, for 2 < p < 4,

lim
n→∞ ‖un‖L p(R2) = 0,

where Br (x, y) ⊂ R
2 is the open ball centered at (x, y) with radius r .

Proof Let {�i }i∈N be a covering of R
2, where �i is an open square with edges parallel to the

coordinate axis and side-length r , and such that each point of R
2 is contained in at most three

squares. By the Hölder inequality and Lemma 2.11, there holds, for any u ∈ Z = X1/2,

‖u‖3
L3(�i )

≤ ‖u‖L2(�i )
‖u‖2

L4(�i )

� ‖u‖L2(�i )
‖u‖2

X1/2(�i )
.

Thus, in view of Proposition 2.10,

‖un‖3
L3(R2)

�
∞∑
i=0

∫
�i

|un |3dxdy � sup
(x,y)∈R2

‖un‖L2(Br (x,y))‖un‖2
Z .

Since {un} is bounded, the assumption implies that un → 0 in L3(R2). Finally, by interpo-
lation and Lemma 2.1, there are θ1, θ2 ∈ (0, 1), such that

‖un‖L p(R2) ≤ ‖un‖θ1
L2(R2)

‖un‖1−θ1
L3(R2)

� ‖un‖θ1
Z ‖un‖1−θ1

L3(R2)
, p ∈ (2, 3), (2.24)

and

‖un‖L p(R2) ≤ ‖un‖θ2
L4(R2)

‖un‖1−θ2
L3(R2)

� ‖un‖θ2
Z ‖un‖1−θ2

L3(R2)
, p ∈ (3, 4). (2.25)

The fact that un → 0 in L3(R2) and (2.24)–(2.25) then imply that un → 0 in L p(R2), for
all p ∈ (2, 4), and the proof of the lemma is complete. 
�
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Now we are able to prove our main theorem in this section.

Theorem 2.15 (Existence)Assume c > 0. Under assumptions (A1)–(A4), Eq. (1.5)possesses
a nontrivial solution ϕ ∈ Z .

Proof We will use the well known mountain pass lemma without the Palais-Smale condition
(see [3]). Let

S(u) = 1

2
‖u‖2

Z −
∫
R2

F(u) dxdy (2.26)

and note that critical points of S are weak solutions of (1.6).
We claim that, for some constant C0 > 0,

|F(u)| ≤ 1

4
|u|2 + C0|u|p. (2.27)

Indeed, from assumption (A2), there exists ε > 0 such that | f (u)| ≤ 1
2 |u|, when |u| ≤ ε.

Hence, in this case

|F(u)| =
∣∣∣∣
∫ u

0
f (s)ds

∣∣∣∣ ≤ 1

4
|u|2. (2.28)

On the other hand, choose a constant C̃ > 0 such that (1/C̃)1/(p−2) ≤ ε. Thus, if |u| ≥ ε,
we immediately see that |u|2 ≤ C̃ |u|p . Hence, in this case,

|F(u)| =
∣∣∣∣
∫ u

0
f (s)ds

∣∣∣∣ ≤ C(|u|2 + |u|p) ≤ C0|u|p. (2.29)

Collecting (2.28) and (2.29) yield (2.27).
Now, an application of Lemma 2.1 gives, for any u ∈ Z ,

S(u) ≥ 1

2
‖u‖2

Z −
∫
R2

(
1

4
|u|2 + C0|u|p

)
dxdy ≥ 1

4
‖u‖2

Z − C1‖u‖p
Z ,

where C1 > 0. Hence, there are δ > 0, independent of u, and r > 0 small enough with the
property that S(u) ≥ δ if ‖u‖Z = r . On the other hand, it follows from assumption (A4) that
S(λu) → −∞ as λ → +∞. Thus there exists e1 ∈ Z such that ‖e1‖Z > r and S(e1) < 0.

Let d be the mountain-pass level, that is,

d = inf
γ∈�

max
t∈[0,1] S(γ (t)),

where

� = {γ ∈ C([0, 1];Z ); γ (0) = 0, S(γ (1)) < 0}.
Clearly d ≥ inf‖u‖Z =r S(u) > 0. Therefore, from the Mountain-Pass Lemma without the
Palais-Smale condition there is a sequence {un} ⊂ Z such that S′(un) → 0 and S(un) → d ,
as n → +∞ (see e.g. [32, Theorem 2.9]). For n large enough, we obtain from assumption
(A3) that (

1

2
− 1

μ

)
‖un‖2

Z ≤ S(un) − 1

μ
〈S′(un), un〉 ≤ d + o(1) + ‖un‖Z .

Since μ > 2, we obtain that {un} is bounded.
We now claim that there is no r > 0 such that

lim
n→+ ∞ sup

(x,y)∈R2

∫
Br (x,y)

|un |2dxdy → 0. (2.30)

123



102 Page 14 of 33 A. Esfahani, A. Pastor

Indeed, assume the contrary, that is, (2.30) holds for some r ′ > 0. Then, from Lemma 2.14,

‖un‖L p → 0, for p ∈ (2, 4), (2.31)

and there is a sequence εn → 0 such that

d = S(un) − 1

2
〈S′(un), un〉L2 + εn

=
∫
R2

(
1

2
f (un)un − F(un)

)
dxdy + εn

� ‖un‖2
L2 + ‖un‖p

L p .

(2.32)

Since d > 0, taking the limit in (2.32), we get a contradiction with (2.31).
Therefore, by selecting if necessary a subsequence, we can assume that there is a sequence

(xn, yn) ⊂ R
2 such that

‖un‖2
L2(B1(xn ,yn))

≥ �/2 > 0, for all n,

where

� = lim
n→∞ sup

(x,y)∈R2

∫
B1(x,y)

|un |2 dxdy �= 0.

Then the functions ϕn(x, y) = un(x + xn, y + yn) satisfy

‖ϕn‖2
L2(B1(0))

≥ �/2 > 0, (2.33)

and {ϕn} is bounded in Z . Thus, it converges to some ϕ ∈ Z weakly in Z and strongly in
L2

loc(R
2), by Lemma 2.3. From (2.33) it is clear that ϕ �= 0 and for every χ ∈ Z , we have

〈S′(ϕ), χ〉 = lim
n→+∞〈S′(ϕn), χ〉 = 0.

This shows that ϕ is a nontrivial solution of (1.5) and completes the proof of the theorem. 
�
Remark 2.16 To the best of our knowledge, the (non)existence of stationary solutions of
(1.5) when c = 0 and p = 4 remains as an open problem.

2.4 Variational characterization of ground states

In this subsection we will show that the solution obtained in Theorem 2.15 minimizes some
variational problems under the additional assumption:
(A5) For u �= 0, the function t �→ t−1

∫
R2 u f (tu) dxdy is strictly increasing on (0,+∞)

and

lim
t→∞ t−1

∫
R2

u f (tu) dxdy = +∞.

Indeed, let

I (u) = 〈S′(u), u〉 = ‖u‖2
Z −

∫
R2

u f (u) dxdy.

Consider the Nehari manifold

�̃ = {u ∈ Z ; I (u) = 0, u �= 0},
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and the minimization problem
d̃ = inf

u∈�̃

S(u). (2.34)

Also, let d∗ be the minimax value

d∗ = inf
u∈Z sup

t≥0
S(tu), (2.35)

Lemma 2.17 For every u ∈ Z \{0} there exists a unique number tu > 0, such that tuu ∈ �̃

and

S(tuu) = max
t≥0

S(tu).

In addition, the function u �→ tu is continuous and the map u �→ tuu is an homeomorphism
from the unit sphere of Z to �̃.

Proof First we note that since

S(tu) = t2

2
‖u‖2

Z −
∫
R2

F(tu)dxdy

we have

d

dt
S(tu) = t

(
‖u‖2

Z − t−1
∫
R2

u f (tu) dxdy

)
.

Hence, from (A5) the function t �→ d
dt S(tu) =: g(t) vanishes at only one point tu > 0. In

addition, since the function t �→ −t−1
∫
R2 u f (tu) dxdy is strictly decreasing on (0,∞), we

see that g(t) > 0 on (0, tu) and g(t) < 0 on (tu,∞), which means that tu is a maximum
point for S(tu). The rest of the proof runs, for instance, as in [32, Lemma 4.1]); so we omit
the details. 
�
Lemma 2.18 Under the above notation, there hold d = d̃ = d∗.

Proof We divide the proof into some steps.
Step 1. d ≥ d̃ .

First we see that, as in the proof of Theorem 2.15, I (u) > 0 in a neighborhood of the
origin, except at the origin. Also, we have from (A3) that, for v ∈ Z ,

2S(v) = ‖v‖2
Z − 2

∫
R2

F(v) dxdy > ‖v‖2
Z − μ

∫
R2

F(v) dxdy

≥ ‖v‖2
Z −

∫
R2

v f (v) dxdy = I (v).

Now let γ be in �. So I (γ (t)) > 0, for small t and I (γ (1)) < 2S(γ (1)) < 0. By continuity, γ
crosses �̃, that is, there exists t0 ∈ (0, 1) such that γ (t0) ∈ �̃. Consequently, d̃ ≤ S(γ (t0)) ≤
maxt∈[0,1] S(γ (t)) and this proves Step 1.
Step 2. d ≤ d∗.

For any u ∈ Z , from the proof of Lemma 2.17, there exists t0 sufficiently large such that
S(t0u) < 0. By defining γ0(t) = t t0u we immediately see that γ0 ∈ �. Thus,

d ≤ max
t∈[0,1] S(γ0(t)) = max

t∈[0,1] S(t t0u) ≤ max
t≥0

S(tu).

The arbitrariness of u gives Step 2.
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Step 3. d̃ = d∗.
Given any u ∈ Z \{0} we can find tu > 0 such that tuu ∈ �̃ and

d̃ ≤ inf
u∈�̃

S(u) ≤ S(tuu) = max
t≥0

S(tu).

This shows that d̃ ≤ d∗. On the other hand, for any u ∈ �̃, from Lemma 2.17, there is v in
the unit sphere of Z such that u = tvv. Thus,

inf
u∈Z S(tuu) ≤ S(tvv) = S(u),

and, consequently, infu∈Z S(tuu) ≤ d̃. At last, the relation

d∗ = inf
u∈Z max

t≥0
S(tu) = inf

u∈Z S(tuu) ≤ d̃

establishes Step 3.
By combining Steps 1,2, and 3, we have d ≤ d∗ = d̃ ≤ d and the proof is completed. 
�

Definition 2.19 A solution ϕ ∈ Z of (1.5) is called a ground state, if ϕ minimizes the action
S among all solutions of (1.5).

Theorem 2.20 Let (A1)–(A5) hold. There exists a minimizer u ∈ �̃ of problem (2.34). In
addition, u is a ground state solution.

Proof As in the proof of Theorem 2.15, we can take a bounded Palais-Smale sequence
{un} ⊂ Z and a solution u ∈ Z \{0} such that S(un) → d , S′(un) → 0, S′(u) = 0 and
un → u a.e. and in L p

loc(R
2), as n → +∞. This immediately implies that u ∈ �̃ and

d̃ = inf
v∈�̃

S(v) ≤ S(u). (2.36)

On the other hand, because I (un) → 0, Lemma 2.18 and Fatou’s lemma, yield

d̃ = d = lim inf
n→∞

(
S(un) − 1

2
I (un)

)
= lim inf

n→∞

∫
R2

(
1

2
un f (un) − F(un)

)
dxdy

≥
∫
R2

(
1

2
u f (u) − F(u)

)
dxdy = S(u) − 1

2
I (u) = S(u).

(2.37)

From (2.36) and (2.37) we deduce that d̃ = S(u). Finally, if v is any critical point of S, then
v ∈ �̃ and S(u) ≤ S(v), which means that u is a ground state. 
�

Theorem 2.21 Let (A1)–(A5) hold. Suppose also that f ∈ C1(R) and
∫
R2

u f (u) dxdy <

∫
R2

u2 f ′(u) dxdy. (2.38)

Then for any nonzero u ∈ Z , the following assertions are equivalent:

(i) u is a ground state;
(ii) I (u) = 0 and inf{G(v); v ∈ �̃} = d̃ = G(u), where

G(u) =
∫
R2

(
1

2
u f (u) − F(u)

)
dxdy.
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Proof (i) ⇒ (ii). If u is a ground state, we have S′(u) = 0, which implies that I (u) = 0. On
the other hand, for any u ∈ �̃,

S(u) = S(u) − 1

2
I (u) =

∫
R2

(
1

2
u f (u) − F(u)

)
dxdy = G(u). (2.39)

Hence,

d̃ = S(u) = inf
v∈�̃

S(v) = inf
v∈�̃

G(v).

(ii) ⇒ (i). Let u ∈ Z satisfy (ii). Then, by using (2.39), there is a Lagrange multiplier θ

such that θ I ′(u) = S′(u). Therefore,

θ〈I ′(u), u〉 = 〈S′(u), u〉 = I (u) = 0.

But,

〈I ′(u), u〉 = 2‖u‖2
Z −

∫
R2

f ′(u)u2 dxdy −
∫
R2

f (u)u dxdy

= 2I (u) +
∫
R2

f (u)u dxdy −
∫
R2

f ′(u)u2 dxdy

=
∫
R2

f (u)u dxdy −
∫
R2

f ′(u)u2 dxdy

< 0,

where we used (2.38) in the last inequality. Therefore θ = 0 and S′(u) = 0, which implies
that u is a ground state. 
�

3 Regularity and decay

In this section we will discuss some regularity and spatially decay properties of solitary
waves. For simplicity, throughout the section, we assume c = 1 and f satisfies the grow
condition | f (u)| ≤ C |u|p−1, p ∈ (2, 4).

3.1 Regularity

The difficulty in studying regularity properties of the solutions of (1.5) or (1.6), comes
from the fact that the operator H � is nonlocal and non-isotropic. Here, we will adopt the
strategy put forward in [9] (see also [25,33] for applications to multi-dimensional models).
The following Hörmander-Mikhlin type theorem will be useful.

Lemma 3.1 (Lizorkin lemma) Let� : R
n → R be a Cn function for |ξ j | > 0, j = 1, . . . , n.

Assume that there exists a constant M > 0 such that∣∣∣∣∣ξ
k1
1 · · · ξ knn

∂k�(ξ)

∂ξ
k1
1 · · · ∂ξ

kn
n

∣∣∣∣∣ ≤ M,

where ki take the values 0 or 1 and k = k1 + · · · kn = 0, 1, . . . , n. Then � is a Fourier
multiplier on Lq(Rn), 1 < q < ∞.

Proof See [23]. 
�
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Now we can prove the following.

Theorem 3.2 (Regularity) Assume p ∈ (2, 4). Any solitary-wave solution ϕ ∈ Z of (1.4)
belongs to W 1,r (R2), where r ∈ (1,∞). Moreover ϕ ∈ Wm+1,r (R2), for m = 1, 2, if
f ∈ Cm(R). In particular, if f (u) = u2 then ϕ ∈ H∞(R2).

Proof We are left to prove the regularity result for the nonlinear equation

ϕx + H �ϕ = ( f (ϕ))x . (3.1)

Let ϕ ∈ Z be a solution of (3.1). By Lemma 2.1, one has Z ↪→ Lr (R2), r ∈ [2, 4], and

therefore f (ϕ) ∈ L
r

p−1 (R2). It can be easily checked that multipliers |ξ |
|ξ |+ξ2+η2 , ξ |ξ |

|ξ |+ξ2+η2

and |ξ |η
|ξ |+ξ2+η2 satisfy the assumptions in Lemma 3.1. Hence ϕ, ϕx , ϕy ∈ Lq(R2), where

q ∈

⎧⎪⎪⎨
⎪⎪⎩

[
2

p−1 , 4
p−1

]
, p ∈ (2, 3),

(1, 2], p = 3,(
1, 4

p−1

]
, p ∈ (3, 4).

(3.2)

We now divide the proof into three cases.
Case 1. 2 < p < 3. From (3.2) we see, in particular, that ϕ,∇ϕ ∈ L2(R2). In view of
the Sobolev embedding H1(R2) ↪→ Lr (R2), r ∈ [2,∞), we deduce that ϕ ∈ Lr (R2),
r ∈ [ 2

p−1 ,∞). As a consequence, f (ϕ) ∈ Lr (R2), r ∈ [ 2
p−1 ,∞). Thus, we can apply

Lemma 3.1 to conclude that ∇ϕ ∈ Lr (R2), r ∈ [ 2
p−1 ,∞) and, consequently, ϕ ∈ W 1,r with

r ∈ [ 2
p−1 ,∞).

Now, let p0 = 2
p−1 and define p1 = p0

p−1 . It is clear that f (ϕ) ∈ L p1(R2) and p1 ≤ 1 if

and only if p ≥ √
2 + 1. Hence, if p ≥ √

2 + 1 we can apply Lemma 3.1 to conclude that
ϕ,∇ϕ ∈ Lr (R2), r ∈ (1,∞). Assume now p <

√
2 + 1 and define, inductively, pn = pn−1

p−1 .

Note that 0 < pn < pn−1 and pn ≤ 1 if and only if p ≥ 2
1

n+1 + 1. The result then follows,

using Lemma 3.1 because pn → 0 and 2
1

n+1 + 1 → 2, as n → ∞.
Case 2. p = 3. Here we also have ϕ,∇ϕ ∈ L2(R2). So, as in Case 1 we obtain ϕ,∇ϕ ∈
Lr (R2), r ∈ [2,∞), which combined with (3.2) gives the desired.

Case 3. 3 < p < 4. Here we have ϕ, ϕx , ϕy ∈ L
4

p−1 (R2). By using the Gagliardo–Nirenberg
inequality

‖u‖Ls ≤ C‖∇u‖θ
Lr ‖u‖1−θ

Lq ,
1

s
= 1 − θ

q
+ θ

(1

r
− 1

2

)
, θ ∈ [0, 1], (3.3)

with θ = 1 and r = 4
p−1 , we deduce that ϕ ∈ L

4
p−3 (R2) and, consequently, f (ϕ) ∈

L
4

(p−1)(p−3) (R2). An application of Lemma 3.1 yields ϕ,∇ϕ ∈ L
4

(p−1)(p−3) (R2). Now we need
to use an iteration process. Indeed, let p1 be the positive root of the equation (p − 1)(p −
3) − 2 = 0, that is, p1 = 2 + √

3 ∈ (3, 4). Since the function μ1(p) = 4/(p − 1)(p − 3) is
strictly decreasing on the interval (3, 4) and μ1(p1) = 2, we have that μ1(p) ≥ 2 in (3, p1].
Consequently, interpolating between L

4
p−1 and Lμ1(p), p ∈ (3, p1] we obtain ϕ,∇ϕ ∈ L2.

By proceeding as in Case 1 we conclude the result if p ∈ (3, p1].
Assume now p ∈ (p1, 4). Since ϕ,∇ϕ ∈ L

4
(p−1)(p−3) (R2), we can use (3.3) to conclude

that ϕ ∈ L
4

(p−1)(p−3)−2 . It is to be noted that because p ∈ (p1, 4) we have (p − 1)(p −
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3) − 2 > 0. Thus we obtain, f (ϕ) ∈ L
4

(p−1)2(p−3)−2(p−1) . Lemma 3.1 again implies ϕ,∇ϕ ∈
L

4
(p−1)2(p−3)−2(p−1) . Let P2 be the polynomial P2(p) = (p− 1)2(p− 3)− 2(p− 1)− 2. Since

P2(p1) = −2 and P2(4) = 1, it follows that P2 has a root in the interval (p1, 4), which
we shall call p2. Again, since the function μ2(p) = 4/[(p − 1)2(p − 3) − 2(p − 1)] is
strictly decreasing on the interval (p1, 4) and μ2(p2) = 2, we deduce that μ2(p) ≥ 2 on the
interval (p1, p2). Another interpolation gives ϕ,∇ϕ ∈ L2 and the proof is also completed
for p ∈ (p1, p2].

Following this process, we define inductively the polynomial Pn in the following way:
having defined Pn−1, we define Pn by the relation Pn(p) = (p − 1)Pn−1(p) − 2. Precisely,
Pn has the expression

Pn(p) = (p − 1)n(p − 3) − 2(p − 1)n−1 − 2(p − 1)n−2 − · · · − 2(p − 1) − 2.

Also, inductively, if pn−1 is the root of Pn−1 in the interval (3, 4), noting that Pn(pn−1) = −2
and Pn(4) = 1, we define pn to be the root of Pn in the interval (pn−1, 4). Note that {pn} is
increasing and bounded by 4. Thus, in order to complete the proof it suffices to show that the
sequence {pn} converges to 4, as n → ∞. But this follows at once because Pn(p) → −∞
for any p ∈ (0, 4). This completes the proof in Case 3.

Now suppose that f is C1. Then, for all 2 < p < 4, f ′(ϕ)ϕx ∈ Lq(R2), where 1 < q <

∞. On the other hand, (3.1) is equivalent to

−�ϕ = H ( f (ϕ))x − H ϕx .

Thus �ϕ ∈ Lq(R2) by Riesz’s theorem [29] (see also [11]), where 1 < q < ∞. The proof
is now completed by iteration. The case of f ∈ C2 is similar. 
�
Remark 3.3 It can be seen from Theorem 3.2, Sobolev’s embedding W 1,r (R2) ↪→ L∞(R2),
r > 2, and Morrey’s inequality that any solitary wave ϕ ∈ Z of (1.5) indeed belongs to
L∞(R2) ∩ C(R2) and vanishes at infinity.

Next we prove that the high regularity of f is reflected in the analyticity of the traveling
waves.

Theorem 3.4 (Analyticity) Suppose that f ∈ C∞(R) and, for any R > 0, there exists
M > 0 such that

| f (n)(x)| ≤ Mn+1n!, for all |x | < R, n ∈ N.

Then any solitary wave solution ϕ ∈ Z ∩ H∞(R2) of (1.4) is real analytic in R
2.

Proof Fix any (x0, y0) ∈ R
2. To simplify notation, let P = (x, y) and P0 = (x0, y0). By

Taylor’s formula and the smoothness of ϕ, one has for any N ∈ N,

ϕ(P + P0) =
∑

|α|≤N

Pα

α! ∂αϕ(P0) +
∑

|α|=N+1

N + 1

α!
∫ 1

0
(1 − t)N Pα∂αϕ(t P + P0) dt

= I + I I,

where for any α = (α1, α2) ∈ N
2,

∂α = ∂α1+α2

∂
α1
x ∂

α2
y

,
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represents the derivative operator of order |α| = α1 + α2. In order to show the Taylor series
is absolutely convergent one needs to estimate the second term. By using the regularity of ϕ

and the Sobolev embedding H2(R2) ↪→ L∞(R2), one gets, for any N > 2,

|I I | ≤
∑

|α|=N+1

N + 1

α! |P||α|‖∂αϕ‖H2

∫ 1

0
(1 − t)N dt

=
∑

|α|=N+1

1

α! |P||α|‖∂αϕ‖H2 .

We claim that it suffices to show that there are constants C > 0 and A > 0 such that, for any
α ∈ N

2,
‖∂αϕ‖H2 ≤ CA(|α|−1)+(|α| − 2)+!, (3.4)

where (·)+ = max{·, 0}. Indeed, assuming (3.4), we deduce

|I I | ≤ C
∑

|α|=N+1

1

α! |P||αA(|α|−1)+(|α| − 2)+!

= CAN |P|N+1
∑

|α|=N+1

(N − 1)!
α!

Now by using the elementary inequality (see [20, Lemma 4.5])

∑
|α|=N

N !
α! ≤ 2N+1,

one gets

|I I | ≤ 4C |P|
N (N + 1)

(2A|P|)N .

Thus by taking a small enough R such that 2AR < 1, we conclude that I I → 0, as
N → ∞, which shows that the Taylor series is absolutely convergent and ϕ is real analytic
in a neighborhood of P0.

Now it remains to prove (3.4). If |α| ≤ 2, in view of the inequality ‖∂αϕ‖H2 ≤ C‖ϕ‖H4 ,
the proof is direct. For |α| > 2, the proof is by induction on |α|. Assume the statement is
true for all multi-indices α ∈ N

2 such that |α| ≤ n. Then, it suffices to show that (3.4) holds
with ∂αϕ replaced by ∂α∇ϕ. First we recall that Eq. (1.5) is equivalent to

H ϕx − �ϕ + H f (ϕ)x = 0. (3.5)

Then by using the regularity of ϕ, applying the operator ∂α and taking the inner product in
H2(R2) with ∂αϕ in (3.5), one derives the identity

〈H ∂αϕx , ∂
αϕ〉H2 − 〈�∂αϕ, ∂αϕ〉H2 = −〈H ∂α f (ϕ)x , ∂

αϕ〉H2 . (3.6)

Since 〈H ∂αϕx , ∂
αϕ〉H2 = ‖D1/2

x ∂αϕ‖2
H2 and 〈�∂αϕ, ∂αϕ〉H2 = −‖∇∂αϕ‖2

H2 ,we have

‖D1/2
x ∂αϕ‖2

H2 + ‖∇∂αϕ‖2
H2 ≤ ‖∂αH ϕx‖H2‖∂α f (ϕ)‖H2

≤ 1

2
‖D1/2

x ∂αϕ‖2
H2 + 1

2
‖∂α f (ϕ)‖2

H2 .

Hence
‖∇∂αϕ‖H2 � ‖∂α f (ϕ)‖H2 . (3.7)
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Thus, in order to complete the proof one needs to estimate ‖∂α f (ϕ)‖H2 . But, by recalling
the estimate [20, proof of Lemma 4.4]:

‖∂α f (ϕ)‖H2(R2) ≤ CA|α|(|α| − 1)!, (3.8)

we immediately conclude the proof. 
�

Remark 3.5 It is to be observed that (3.8) was obtained in [20] when studying analyticity of
solitary waves for the KP equation. However, a simple inspection in the proof reveals that it
does not depend on the solution itself, but only its smoothness and our assumptions on the
nonlinearity f .

Remark 3.6 A similar result of analyticity was obtained, in [24], when f (u) = u2. Thus
Theorem 3.4 can also be viewed as an extension of that result.

3.2 Decay

This subsection is devoted to the study of decay properties of the solitary waves. Our results
are inspired in those in [4] (see also [10,25,33]). The difficulty here, once again comes from
the fact that the linear part of (1.5) is nonlocal and non-isotropic.

Recall we are assuming c = 1 and a priori f satisfies | f (u)| ≤ C |u|p−1, p ∈ (2, 4).
However, as we will see in the next result, a further restriction on p must be imposed.

Lemma 3.7 Assume that p ∈ (p0, 4) where p0 = (3 + √
5)/2. Then any solitary wave

ϕ ∈ Z of (1.5) satisfies
∫
R2

y2
(
|D1/2

x ϕ|2 + |∇ϕ|2
)
dxdy < ∞.

Proof Let χ0 ∈ C∞
0 (R) be a function such that 0 ≤ χ0 ≤ 1, χ(y) = 1 if |y| ∈ [0, 1] and

χ0(y) = 0 if |y| ≥ 2. Set χn(y) = χ0(
y2

n2 ), n ∈ N. Equation (1.5) is equivalent to

H ϕx − �ϕ + H f (ϕ)x = 0. (3.9)

Multiplying (3.9) by y2χn(y)ϕ and integrating over R
2, we obtain after several integrations

by parts that
∫
R2

H ϕxχn(y)y
2ϕ =

∫
R2

χn(y)y
2|D1/2

x ϕ|2,

−
∫
R2

ϕxxχn(y)y
2ϕ =

∫
R2

χn(y)y
2|ϕx |2,

and

−
∫
R2

ϕyyχn(y)y
2ϕ =

∫
R2

χn(y)(y
2ϕ2

y − ϕ2) −
∫
R2

(2χ ′
n(y)y + 1

2
χ ′′
n (y)y2)ϕ2.

Hence, ∫
R2

y2χn

(
|D1/2

x ϕ|2 + |∇ϕ|2
)

=
∫
R2

χnϕ
2 +

∫
R2

(2yχ ′
n + 1

2
y2χ ′′

n )ϕ2

−
∫
R2

y2χnH ϕ f (ϕ)x .

(3.10)
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Let us estimate the last term on the right-hand side of (3.10). By using Hölder’s inequality
(in the x variable) and the fractional chain rule, we have∣∣∣∣

∫
R2

y2χnH ϕ f (ϕ)x

∣∣∣∣ =
∣∣∣∣
∫
R2

y2χnH ∂xϕ f (ϕ)

∣∣∣∣ =
∣∣∣∣
∫
R2

y2χnD
1/2
x ϕD1/2

x f (ϕ)

∣∣∣∣
≤
∫
R

y2χn‖D1/2
x ϕ‖L2

x
‖D1/2

x f (ϕ)‖L2
x
dy

≤ C
∫
R

y2χn‖D1/2
x ϕ‖L2

x
‖D1/2

x ϕ‖Lm
x
‖ϕ‖p−2

L�(p−2)
x

dy,

where m, � �= ∞ are such that 1/m + 1/� = 1/2. Let θ = 2(p−2)
m(p−1)

, λ = �−2
�(p−1)

and take m
such thatm > max{2, 4(p−2)/(p−1)}. From the fractional Gagliardo–Nirenberg inequality
(see, for instance, [19]), we deduce

‖D1/2
x ϕ‖Lm

x
≤ C‖ϕx‖θ

L2
x
‖ϕ‖1−θ

L2(p−2)
x

, ‖ϕ‖
L�(p−2)
x

≤ C‖ϕx‖λ
L2
x
‖ϕ‖1−λ

L2(p−2)
x

.

Note that if p ∈ [p0, 4) then, from Theorem 3.2, ϕ(·, y) ∈ L2(p−2)
x a.e. y ∈ R. In particular

note that 2(p − 2) ≥ 2/(p − 1) only if p ≥ p0 (here is where the restriction on p appears).
Therefore, ∣∣∣∣

∫
R2

y2χnH ϕ f (ϕ)x

∣∣∣∣ ≤ C
∫
R

y2χn‖D1/2
x ϕ‖L2

x
‖ϕx‖L2

x
‖ϕ‖p−2

L2(p−2)
x

dy.

Let ε ∈ (0, 1) be such that Cε < 1/2. Since ϕ is continuous and tends to zero at infinity,
we choose R > 0 such that ‖ϕ(·, y)‖

L2(p−2)
x

< ε for any |y| > R. Then, there exists a constant
CR > 0 such that∣∣∣∣

∫
R2

y2χnH ϕ f (ϕ)x

∣∣∣∣ ≤ CR + Cε

∫
|y|>R

y2χn‖D1/2ϕ‖L2
x
‖ϕx‖L2

x
dy

≤ CR + Cε‖yχ1/2
n D1/2

x ϕ‖L2‖yχ1/2
n ϕx‖L2

≤ CR + Cε(‖yχ1/2
n D1/2

x ϕ‖2
L2 + ‖yχ1/2

n ϕx‖2
L2)

≤ CR + 1

2

(
‖yχ1/2

n D1/2
x ϕ‖2

L2 + ‖yχ1/2
n ϕx‖2

L2

)
.

(3.11)

By replacing (3.11) into (3.10) we obtain∫
R2

y2χn

(
|D1/2

x ϕ|2 + |∇ϕ|2
)

�
∫
R2

χnϕ
2 +

∫
R2

(2yχ ′
n + 1

2
y2χ ′′

n )ϕ2 + CR . (3.12)

The first term on the right-hand side of (3.12) tends to ‖ϕ‖2
L2 , as n → ∞, by the Lebesgue

theorem. The second term tends to zero by the Lebesgue theorem and the properties of χn .
Therefore ∫

R2
y2χn

(
|D1/2

x ϕ|2 + |∇ϕ|2
)
dxdy

is uniformly bounded in n. By the Fatou lemma, we get our claim. 
�
In view of Lemma 3.7 in what follows, otherwise is stated, we assume p ∈ (p0, 4).

Lemma 3.8 Let � ≥ 0, ν > −3/2 and define hν via its Fourier transform by

ĥν(ξ, η) = |ξ |1+ν

|ξ | + ξ2 + η2 .
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Then,

(i) hν ∈ C∞(R2\{0});
(ii) |y|�hν ∈ Lq(R2), if 1 ≤ q < ∞ and �

3 + 1
q < 2

3ν + 1 and � + 2
q > ν + 1;

(iii) |y|2ν+3hν ∈ L∞(R2).

Proof We observe that for any φ ∈ S(R2) (the Schwartz space)

〈hν, φ〉S,S ′ =
∫
R2

|ξ |1+ν

|ξ | + ξ2 + η2

∫
R2

ei(xξ+yη)φ(x, y) dxdy dξdη

=
∫ + ∞

0

∫
R2

∫
R2

|ξ |νei(xξ+yη)e−t (1+|ξ |+η2/|ξ |)φ(x, y) dξdη dxdy dt

=
∫ + ∞

0

e−t

√
t

∫
R2

∫
R

|ξ |ν+ 1
2 eixξ e−|ξ |(t+y2/t)φ(x, y) dξ dxdy dt

= 2�

(
ν + 3

2

)∫ +∞

0
tν+1e−t

∫
R2

(
t2x2 + (

t2 + y2)2)− 2ν+3
4

× cos

(
(ν + 3

2
) arctan

(
t |x |

t2 + y2

))
φ(x, y) dxdy dt,

where in the last equality we used that ξ �→ |ξ |ν+ 1
2 e−|ξ |(t+y2/t) is an even function and

formula (7) in [12, page 15]. Thus, we deduce that

hν(x, y) = 2�

(
ν + 3

2

)∫ + ∞

0
tν+1e−t

(
t2x2 + (

t2 + y2)2)− 2ν+3
4

× cos

((
ν + 3

2

)
arctan

(
t |x |

t2 + y2

))
dt.

(3.13)

From the above expression, parts (i) and (iii) are obvious. Let us establish (ii). Indeed,

‖|y|�hν‖Lq �
∫ ∞

0
tν+1e−t ‖|y|�

(
t2x2 + (

t2 + y2)2)− 2ν+3
4 ‖Lq

︸ ︷︷ ︸
A

dt. (3.14)

But,

Aq =
∫
R

|y|q�

[∫
R

(
t2x2 + (

t2 + y2)2)− 2ν+3
4 q

dx

]
dy

=
∫
R

|y|q�

⎡
⎣t− 2ν+3

2 q
∫
R

(
x2 +

(
t + y2

t

)2
)− 2ν+3

4 q

dx

⎤
⎦ dy

=
∫
R

|y|q�

⎡
⎣t− 2ν+3

2 q
(
t + y2

t

)1− 2ν+3
2 q ∫

R

(
z2 + 1

)− 2ν+3
4 q

dz

⎤
⎦ dy,

(3.15)

where we used a change of variable. Since ν > −3/2 we have

1

q
<

2

3
ν + 1 − �

3
≤ 2

3
ν + 1 < ν + 3

2
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and the inner integral in (3.15) is finite. Thus,

Aq = Ct−
2ν+3

2 q
∫
R

|y|q�

(
t + y2

t

)1− 2ν+3
2 q

dy

= Ct−1
∫
R

|y|q�
(
t2 + y2)1− 2ν+3

2 q
dy

= Ctq�+2−(2ν+3)q
∫
R

|z|q�
(
1 + z2)1− 2ν+3

2 q
dy.

(3.16)

Since �
3 + 1

q < 2
3ν + 1 this last integral is also finite. Consequently,

‖|y|�hν‖Lq �
∫ ∞

0
tν+1e−t t�+

2
q −(2ν+3)dt.

The assumption � + 2
q > ν + 1 now implies that this last integral is finite and the proof of

the lemma is completed. 
�
Lemma 3.9 Assume f ∈ C1 and p ≥ p0 = (3 + √

5)/2. Let ϕ ∈ Z be any solitary wave
of (1.5). Then |y|ϕ ∈ Lq(R2), for all 3/2 < q ≤ ∞.

Proof First we show yϕ ∈ L∞(R2). Choose β ∈ (0, 3/4) and q1, q2 > 2 satisfying

1

2
= 1

q1
+ 1

q2
,

3

2q1
< β <

2

q1
and (p − 2)q2 > 1, (3.17)

where hβ−1 is as in Lemma 3.8. Then it follows from

|yϕ| � |yhβ−1| ∗ |D1−β
x f (ϕ)| + |hβ−1| ∗ |yD1−β

x f (ϕ)|,
Young’s inequality and the fractional chain rule that

‖yϕ‖L∞ � ‖yhβ−1‖Lq1 ‖D1−β
x ϕ‖L2‖ϕ p−2‖Lq2

+ ‖hβ−1‖Lq1 ‖yD1−β
x ϕ‖L2‖ϕ p−2‖Lq2 .

From (3.17), Lemma 3.8, Theorem 3.2, and the fact that ϕ ∈ Z , the right-hand side of the
above inequality is finite if ‖yD1−β

x ϕ‖L2 < +∞.
We state that ‖yD1−β

x ϕ‖L2 < +∞. Indeed, if ϕ satisfies (1.5), then

D1−β
x ϕ = hβ̃ ∗ D1/2

x f (ϕ),

where β̃ = 1/2 − β. Now we choose q̃1, q̃2, r1 and r2 such that

1 = 1

q̃1
+ 1

q̃2
,

2

q̃1
> β̃ >

3

2q̃1
− 1, q̃1 > 1, (p − 2)̃q2 > 1 (3.18)

and

1 = 1

r1
+ 1

r2
,

1

2

(
3

r1
− 1

)
< 1 + β̃ <

2

r1
, r1 > 1, (p − 2)r2 > 1. (3.19)

Since

|yD1−βϕ| � |yhβ̃ | ∗ |D1/2
x f (ϕ)| + |hβ̃ | ∗ |yD1/2

x f (ϕ)|,
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we have from the fractional chain rule and Young’s inequality

‖yD1−βϕ‖L2 � ‖yhβ̃‖Lq1 ‖D1/2
x ϕ‖L2‖ϕ p−2‖Lq2

+ ‖hβ̃‖Lr1 ‖yD1/2
x ϕ‖L2‖ϕ p−2‖Lr2 < +∞.

Note that since p ≥ p0, Lemma 3.7 implies that ‖yD1/2
x ϕ‖L2 < ∞. Hence, (3.18), (3.19),

Lemma 3.8, Theorem 3.2, and the fact that ϕ ∈ Z , imply that the right-hand side of the
above inequality is finite.

Next we prove that yϕ ∈ Lq(R2), q > 3/2. Because

|yϕ| � |yh0| ∗ | f (ϕ)| + |h0| ∗ |y f (ϕ)|,
by choosing q1 ∈ (1, 2), r1 > 3/2 and r2(p−1), q2(p−2) > 1 satisfying 1+ 1

q = 1
q1

+ 1
q2

=
1
r1

+ 1
r2

, we get from yϕ ∈ L∞ that

‖yϕ‖Lq � ‖yh0‖Lr1 ‖ f (ϕ)‖Lr2 + ‖h0‖Lq1 ‖y f (ϕ)‖Lq2

� ‖ϕ‖p−1
Lr2(p−1) + ‖yϕ‖L∞‖ϕ‖p−2

Lq2(p−2) < +∞,

where we used Lemma 3.8 and Theorem 3.2 again. This completes the proof of the lemma.

�

In view of Lemma 3.9, otherwise stated, we assume that f ∈ C1. As an immediate
consequence we deduce.

Corollary 3.10 Let ϕ ∈ Z be any solitary wave of (1.5) and θ ∈ [0, 1]. Then |y|θϕ ∈
Lq(R2), for all 3/2 < q ≤ ∞.

Proof It suffices to note that∫
R2

|y|θq |ϕ|qdxdy =
∫
R

(∫
|y|≤1

|y|θq |ϕ|qdy
)
dx +

∫
R

(∫
|y|≥1

|y|θq |ϕ|qdy
)
dx

≤
∫
R2

|ϕ|qdxdy +
∫
R2

|y|q |ϕ|qdxdy

and apply Theorem 3.2 and Lemma 3.9. 
�
Next, we observe that Eq. (1.5) may be written in the equivalent form

ϕ = k ∗ f (ϕ), (3.20)

where k = h0 =
( |ξ |

|ξ |+ξ2+η2

)∨
was defined in Lemma 3.8. We will use the properties of the

kernel k to get some decay estimates for the solution ϕ of (1.5). As an immediate consequence
of Lemma 3.8 we have the following.

Lemma 3.11 Let � ∈ [0, 3). Assume that 1 ≤ q < ∞ satisfies 1
q + 1

3� < 1 and 1 < � + 2
q .

Then,

(i) k ∈ C∞(R2\{0});
(ii) |y|�k ∈ Lq(R2);

(iii) |y|3k ∈ L∞(R2).

Concerning decay and integrability with respect to a power of x we have the following
result.
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Lemma 3.12 Let � ∈ [0, 3/2). Assume that 1 ≤ q < ∞ satisfies 1
q + 2

3� < 1 and 1 < �+ 2
q .

Then,

(i) |x |�k ∈ Lq(R2);
(ii) |x |3/2k ∈ L∞(R2).

Proof The proof is very similar to that of Lemma 3.8; so we omit the details. We only
point out that a power |z|q� appears in the inner integral (3.15). Thus, a condition for the
integrability is 3

2q − q� > 1; but this is true because 1
q + 2

3� < 1 and � < 3/2. 
�
The next step is to show that solutions of (1.5) decay to zero at infinity at the same rate

as the kernel k.

Theorem 3.13 (Spatial decay in the y variable) Any solitary wave ϕ ∈ Z of (1.5) satisfies

(i) y3ϕ ∈ L∞(R2); and
(ii) |y|κϕ ∈ L∞(R2), 0 ≤ κ ≤ 3.

Proof It suffices to prove (i), because (ii) follows immediately from (i). First, by using (3.20),
we recall the trivial inequality

|y|�|ϕ| � |y|�|k| ∗ | f (ϕ)| + |k| ∗ ||y|�| f (ϕ)|, (3.21)

which holds for any � ≥ 0. Let γ1 = p − 1.
Claim 1. |y|γ1ϕ ∈ Lr (R2), for any 1 ≤ r ≤ ∞.

Indeed, choose r1, r2, q1, q2 such that 1 + 1
r = 1

r1
+ 1

r2
= 1

q1
+ 1

q2
, r1 ∈ (1, 2), q2γ1 > 1,

r2γ1 > 3
2 and q1 > 3

3−γ1
. From (3.21) with � = γ1 and the Young inequality it follows that

‖|y|γ1ϕ‖Lr � ‖|y|γ1k‖Lq1 ‖ϕ‖γ1
Lq2γ1 + ‖k‖Lr1 ‖yϕ‖γ1

Lr2γ1 .

Thanks to Lemmas 3.11, 3.9, and Theorem 3.2, the right-hand side of the above inequality
is finite and the claim is established.

Next we define γ2 = min{3, (p − 1)2} and divide the proof into two cases.
Case 1. γ2 = (p − 1)2.

Here, we observe the following
Claim 2. |y|γ2ϕ ∈ Lr (R2), for any 3

γ1(3−γ1)
< r ≤ ∞.

In fact, by using (3.21) with � = γ2 and an argument similar to that in Claim 1, we have

‖|y|γ2ϕ‖Lr � ‖|y|γ2k‖Lq1 ‖ϕ‖γ1
Lq2γ1 + ‖k‖Lr1 ‖|y|γ1ϕ‖γ1

Lr2γ1 < +∞,

provided 1 + 1
r = 1

r1
+ 1

r2
= 1

q1
+ 1

q2
, r1 ∈ (1, 2), q2γ1 > 1, r2γ2 > 3

2 and q1 > 3
3−γ2

. Note

we used Claim 1 for the last term. From our choices, 1
q2

< γ1 and 1
q1

<
3−γ2

3 , which implies
1
q1

+ 1
q2

< 1 + γ1(3−γ1)
3 . This forces the restriction r > 3

γ1(3−γ1)
and shows our claim.

Now, since p ≥ p0 = (3 + √
5)/2, we deduce that γ1γ2 > 3 > γ2. Thus,

‖y3ϕ‖L∞ � ‖y3k‖L∞‖ϕ‖γ1
Lγ1 + ‖k‖La‖|y| 3

p−1 ϕ‖γ1

Lbγ1
, (3.22)

where 1 = 1
a + 1

b . From Theorem 3.2 and Lemma 3.11 the first term on the right-hand side
of (3.22) is finite. Also, by choosing a ∈ (0, 1) and b satisfying bγ2 > 3

3−γ1
, we obtain

k ∈ La(R2) and

‖|y| 3
p−1 ϕ‖γ1

Lbγ1
� ‖ϕ‖γ1

Lbγ1
+ ‖|y|γ2ϕ‖γ1

Lbγ1
, (3.23)
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where we used 3
p−1 = 3

γ1
< γ2. The right-hand side of (3.23) is finite thanks to Theorem 3.2

and Claim 2. This proves that the right-hand side of (3.22) is finite and concludes the proof
of the theorem in this case.
Case 2. γ2 = 3.

Here, if 1
a + 1

b = 1, we write

‖y3ϕ‖L∞ � ‖y3k‖L∞‖ϕ‖γ1
Lγ1 + ‖k‖La‖|y|3 f (ϕ)‖Lb

� ‖y3k‖L∞‖ϕ‖γ1
Lγ1 + ‖k‖La

(
‖ϕ‖γ1

Lbγ1
‖|y|γ1ϕ‖γ1

Lbγ1

)

where we used that 3 < (p − 1)2 = γ 2
1 . By choosing a ∈ (0, 1), bγ1 > 1, using Claim 1,

and arguing as in Case 1, we complete the proof of the theorem. 
�
Interest is now turned to the decay with respect to the variable x . Let us start with the

following result.

Lemma 3.14 Let q0 = 2(p− 1). Then, for any q ∈ (q0,∞) and � ≥ 0 satisfying �q < 1/2,
we have |x |�ϕ ∈ Lq(R2).

Before proving Lemma 3.14 we recall the following.

Lemma 3.15 Let j ∈ N. Suppose also that � and m are two constants satisfying 0 < � <

m − j . Then there exists C > 0, depending only on � and m, such that for all ε ∈ (0, 1], we
have ∫

R j

|a|�
(1 + ε|a|)m(1 + |b − a|)m da ≤ C |b|�

(1 + ε|b|)m , ∀ b ∈ R
j , |b| ≥ 1, (3.24)

and ∫
R j

da

(1 + ε|a|)m(1 + |b − a|)m ≤ C

(1 + ε|b|)m , ∀ b ∈ R
j . (3.25)

Proof The proof is quite elementary and it is essentially the same as that of Lemma 3.1.1 in
[4] (see also [13]). 
�
Proof of Lemma 3.14 Fix r ∈ (1, 2) to be chosen later and take s1 ∈ ( 1

r ′ , 3
2r ′ ) and s2 ∈

( 1
r ′ , 3(p − 2)), where r ′ is the Hölder conjugate of r .

We first claim that, for any � ∈ [0, s1 − 1
r ′ ), we have |x |�〈y〉−s2ϕ ∈ Lr ′

(R2). Indeed, for
0 < ε � 1, define gε by

gε(x, y) = |x |�
〈x〉s1

ε 〈y〉s2
ϕ(x, y),

where 〈y〉 = 1 + |y| and 〈x〉ε = 1 + ε|x |. Since ϕ ∈ L∞(R2), from the choices of � and
s j , j = 1, 2, it is easy to see that gε ∈ Lr ′

(R2). Now, given any δ > 0, there exists a constant
N > 1 (depending on δ) such that

〈y〉 s2
p−2 |ϕ| < δ, for |x | > N . (3.26)

To see this, choose a number a ∈ (0, 1) satisfying s2
a(p−2)

< 3 (this is possible because
s2 < 3(p − 2)). Then,

〈y〉 s2
p−2 |ϕ| � |ϕ| + |y| s2

p−2 |ϕ|a |ϕ|1−a ≤ ‖|y| s2
ap−2 ϕ‖aL∞|ϕ|1−a � |ϕ|1−a,
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where we used Theorem 3.13. Since ϕ goes to zero at infinity (see Theorem 3.2 and Remark
3.3), this last inequality implies (3.26).

Now we decompose

R = {|x | > N } ∪ {|x | ≤ N } =: I1 ∪ I2.

Then, by using Eq. (3.20), Hölder’s inequality and Lemma 3.12, we get

∫
I1×R

|gε(x, y)|r ′
dxdy

≤
∫
I1×R

|gε(x, y)|r ′−1 |x |�
〈x〉s1

ε 〈y〉s2
k ∗ f (ϕ)dxdy

≤
∫
I1×R

|gε(x, y)|r ′−1 |x |�
〈x〉s1

ε 〈y〉s2
‖k〈x〉s1‖Lr (R2)‖〈x〉−s1 ∗ f (ϕ)‖Lr ′ (R2)

dxdy

� ‖gε‖r ′−1
Lr ′ (I1×R)

(∫
I1×R

|x |�r ′

〈x〉s1r ′
ε 〈y〉s2r ′ ‖〈x〉−s1 ∗ f (ϕ)‖r ′

Lr ′ (R2)
dxdy

)1/r ′

.

Since gε ∈ Lr ′
(R2), we can divide both sides of the above inequality by ‖gε‖r ′−1

Lr ′ to obtain

∫
I1×R

|gε(x, y)|r ′
dxdy �

∫
I1×R

|x |�r ′

〈x〉s1r ′
ε 〈y〉s2r ′ ‖〈x〉−s1 ∗ f (ϕ)‖r ′

Lr ′ (R2)
dxdy.

By using the definition of convolution, Fubini’s theorem and Lemma 3.15,

∫
I1×R

|gε(x, y)|r ′
dxdy

�
∫
R2

| f (ϕ)(x ′, y′)|r ′
∫
I1×R

|x |�r ′

〈x〉s1r ′
ε 〈y〉s2r ′ 〈x − x ′〉s1r ′ dxdy dx ′dy′

�
∫
I1×R

| f (ϕ)(x ′, y′)|r ′ |x ′|�r ′

〈x ′〉s1r ′
ε

dx ′dy′

+
∫
I2×R

| f (ϕ)(x ′, y′)|r ′
∫
I1×R

|x |�r ′

〈x〉s1r ′
ε 〈y〉s2r ′ 〈x − x ′〉s1r ′ dxdy dx ′dy′

� δr
′(p−2)

∫
I1×R

|ϕ(x ′, y′)|r ′ |x ′|�r ′

〈x ′〉s1r ′
ε 〈y′〉s2r ′ dx

′dy′

+
∫
I2×R

|ϕ(x ′, y′)|r ′(p−1)

∫
R2

(|x | + 2N )�r
′

〈x〉s1r ′ 〈y〉s2r ′ dxdy dx ′dy′

� δr
′(p−2)

∫
I1×R

|gε(x
′, y′)|r ′

dx ′dy′ +
∫
I2×R

|ϕ(x ′, y′)|r ′(p−1)dx ′dy′.

By choosing δ sufficiently small, we deduce that

∫
I1×R

|gε(x, y)|r ′
dxdy ≤ C

∫
I2×R

|ϕ(x ′, y′)|r ′(p−1)dx ′dy′.
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Since the constantC appearing in the right-hand side of the preceding estimate is independent
of ε, an application of Fatou’s lemma gives

∫
I1×R

|x |�r ′

〈y〉s2r ′ |ϕ(x, y)|r ′
dxdy � 1. (3.27)

On the other hand, clearly
∫
I2×R

|x |�r ′

〈y〉s2r ′ |ϕ(x, y)|r ′
dxdy � ‖ϕ‖r ′

Lr ′ (R2)
. (3.28)

A combination of (3.27) and (3.28) then establishes that |x |�〈y〉−s2ϕ ∈ Lr ′
(R2) for any

r ′ ∈ (2,∞), � ∈ [0, s1 − 1/r ′) and s2 ∈ ( 1
r ′ , 3(p − 2)), which is precisely our claim.

In order to complete the proof of the lemma, we fix q0 = 2(p − 1) and take q ∈ (q0,∞).
Let ν = q

p−1 and note that 2 < ν < q . Now, for any � ≥ 0 and s > 0, we infer that

‖|x |�ϕ‖Lq (R2) ≤ ‖|x | q�
ν 〈y〉− s

ν ϕ‖
ν
q

Lν (R2)
‖〈y〉 s

q−ν ϕ‖
q−ν
q

L∞(R2)
. (3.29)

We claim that by choosing s ∈ (1, 3ν(p− 2)), the right-hand side of (3.29) is finite. Indeed,
since the function t �→ t

p−1 − 1
q tends to 0, as t → p−1

q , and to 1
2q as t → 3(p−1)

2q , we can

find a number s1 ∈
(
p−1
q ,

3(p−1)
2q

)
such that

0 ≤ � <
s1

p − 1
− 1

q
.

With this inequality in hand, all assumptions in our claim above hold and the first term in
(3.29) is finite. The second one is also finite thanks to Theorem 3.13. Note that s

q−ν
< 3 in

view of our choices of ν and s. This completes the proof. 
�
Theorem 3.16 (Spatial decay in the x variable) Any nontrivial solitary wave ϕ ∈ Z of (1.5)
satisfies |x |3/2ϕ ∈ L∞(R2).

Proof The proof is analogous to that of Theorem 3.13. We divide it into several steps.
Step 1. First we note from (3.21) that |x |�ϕ ∈ Lq(R2) for any 2 < q ≤ ∞ and 0 ≤
2� < 1

2 + 1
q . In fact, by choosing r1, r2 > 1, q1 ∈ (1, 2) and q2 ∈ (2,∞) such that

1 + 1
q = 1

r1
+ 1

r2
= 1

q1
+ 1

q2
, 2�q2 < 1 and 1

r1
+ 2�

3 < 1 < � + 2
r1

, as in (3.21), we get from
the Young inequality,

‖|x |�ϕ‖Lq � ‖|x |�k‖Lr1 ‖ϕ‖p−1
Lr2(p−1) + ‖k‖Lq1 ‖|x | �

p−1 ϕ‖p−1
Lq2(p−1) < +∞,

where we used Theorem 3.2, Lemmas 3.12, and 3.14. The restrictions on q and � come from

1 + 1

2
> 1 + 1

q
= 1

q1
+ 1

q2
>

1

2
+ 2�, 1 + 1

q
= 1

q1
+ 1

q2
< 1 + 1

2
.

In particular, |x |�ϕ ∈ L∞(R2), if 0 ≤ � < 1/4.
Step 2. We now show that |x |�ϕ ∈ Lq(R2) for any max{1, 2

p−1 } =: q < q ≤ ∞ and

0 ≤ 2� <
p
2 + 1

q . In fact, by choosing r1, r2 > 1, as in Step 1 and q1 ∈ (1, 2) and

q2 ∈ (q,∞) such that 1 + 1
q = 1

q1
+ 1

q2
and 2�

p−1 < 1
2 + 1

q2(p−1)
, we deduce

‖|x |�ϕ‖Lq � ‖|x |�k‖Lr1 ‖ϕ‖p−1
Lr2(p−1) + ‖k‖Lq1 ‖|x | �

p−1 ϕ‖p−1
Lq2(p−1) < +∞,
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where now to see that the last term in the above inequality is finite we used the result in
Step 1. The restrictions on q and � follow as in Step 1. In particular, |x |�ϕ ∈ L∞(R2), if
0 ≤ � < p/4.
Step 3. We claim that if p satisfies p(p − 1) > 5 then |x |3/2ϕ ∈ L∞ and the proof of the
theorem is completed in this case. Indeed, by choosing q1 ∈ (1, 2) and q2 > 2 such that
1 = 1

q1
+ 1

q2
, we write

‖|x |3/2ϕ‖L∞ � ‖|x |3/2k‖L∞‖ϕ‖p−1
L p−1 + ‖k‖Lq1 ‖|x | 3

2(p−1) ϕ‖p−1
Lq2(p−1) < +∞.

The last term in the above inequality is finite in view of Step 2. We point out that conditions
on q and � in Step 2, is equivalent to 0 ≤ 3 <

p(p−1)
2 + 1

q2
, which holds because

3 = 5

2
+ 1

2
<

p(p − 1)

2
+ 1

q2
.

This establishes Step 3.
Assume from now on that p satisfies p0 ≤ p ≤ p1, where p1 is the positive root of

p(p − 1) = 5.
Step 4. We show that |x |�ϕ ∈ Lq(R2) for any 1 < q ≤ ∞ and 0 ≤ 2� < 1

2 + p(p−1)
2 + 1

q .
Indeed, in order to apply the results in Step 2, we choose r1, r2 > 1, as in Step 1 andq1 ∈ (1, 2)

and q2 ∈ (1,∞) such that 1 + 1
q = 1

q1
+ 1

q2
and 2�

p−1 <
p
2 + 1

q2(p−1)
. Consequently,

‖|x |�ϕ‖Lq � ‖|x |�k‖Lr1 ‖ϕ‖p−1
Lr2(p−1) + ‖k‖Lq1 ‖|x | �

p−1 ϕ‖p−1
Lq2(p−1) < +∞.

In particular, |x |�ϕ ∈ L∞(R2), if 0 ≤ � < 1
4 + p(p−1)

4 =: �0. Note that �0 < 3/2, which is
expected at this stage.
Step 5. We finally show that |x |3/2ϕ ∈ L∞(R2) if p ∈ [p0, p1]. In fact, choosing q1 ∈ (1, 2)

and q2 > 2 satisfying 1 = 1
q1

+ 1
q2

, we get

‖|x |3/2ϕ‖L∞ � ‖|x |3/2k‖L∞‖ϕ‖p−1
L p−1 + ‖k‖Lq1 ‖|x | 3

2(p−1) ϕ‖p−1
Lq2(p−1) < +∞.

To use Step 4 in order to see that last term is finite, we need to check that 3 <
p−1

2 +
p(p−2)2

2 + 1
q2

. But note that such a inequality holds trivially if we replace p by p0. Thus the
result follows because p ≥ p0.

The proof of the theorem is thus completed. 
�
Remark 3.17 It is worth noting that the solitary wave solution ϕ ∈ Z cannot belong to
L1(R2), since k̂ is not continuous at the origin (see (3.20)).

We finish this section with an additional decay property.

Theorem 3.18 Any nontrivial solitary wave of (1.5) satisfies ϕ ∈ Lr
y L

q
x (R

2) ∩ Lq
x Lr

y(R
2)

for all 1 ≤ q, r ≤ ∞ satisfying

1

r
+ 1

q
> 1 and

1

r
+ 2

q
< 3. (3.30)

In particular ϕ ∈ Lq
y L1

x (R
2) ∩ L1

x L
q
y(R

2) ∩ Lq
x L1

y(R
2) ∩ L1

y L
q
x (R

2) for any 1 < q ≤ ∞.

Proof The proof is deduced from the fact k ∈ Lr
y L

q
x (R

2) ∩ Lq
x Lr

y(R
2) under conditions

(3.30). 
�
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Fig. 1 The solitary wave of (1.6) and its projection curves for f (u) = u2
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4 Appendix

An important question concerning traveling-wave solutions one can ask is about their pos-
itivity. In this short appendix we verify that under suitable vanishing conditions at infinity,
positive solitary waves do not exist. The numerical result also confirms this fact (see Figure 1).

Proposition 4.1 (Nonexistence of positive solitary waves) Suppose that f does not change
the sign. Then there is no positive solitary-wave solution ϕ of (1.5) satisfying

ϕ → 0, as |(x, y)| → +∞, (4.1)

H ϕx → 0, as |x | → +∞, (4.2)

H ϕ → 0, as |y| → +∞. (4.3)

Proof It is straightforward to see that if ϕ is a nontrivial solution of (1.5) satisfying (4.1)–
(4.3), then ∫

R

H ϕ(x, y) dx = 0. (4.4)
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On the other hand, H ϕ = H k ∗ f (ϕ), where

Ĥ k(ξ, η) = −i
ξ

|ξ | + ξ2 + η2 .

By an argument similar to Lemma 3.8, there holds

H k(x, y) = √
π

∫ + ∞

0
t5/2e−t

(
t2x2 + (

t2 + y2)2)− 3
2

sin

(
3

2
arctan

(
t |x |

t2 + y2

))
dt.

The function H k does not change the sign, since

sin

(
3

2
arctan(x)

)
=

√
2

2

(1 + (1 + x2)1/2)1/2

(1 + x2)3/4

(
2 + (1 + x2)1/2) > 0.

The proof then follows because if ϕ is positive, H ϕ = H k ∗ f (ϕ) has a definite sign,
contradicting (4.4). 
�
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