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Abstract We study global variational properties of the space of solutions to −ε2�u +
W ′(u) = 0 on any closed Riemannian manifold M . Our techniques are inspired by recent
advances in the variational theory of minimal hypersurfaces and extend a well-known analogy
with the theory of phase transitions. First, we show that solutions at the lowest positive energy
level are either stable or obtained by min–max and have index 1. We show that if ε is not
small enough, in terms of the Cheeger constant of M , then there are no interesting solutions.
However, we show that the number of min–max solutions to the equation above goes to
infinity as ε → 0 and their energies have sublinear growth. This result is sharp in the sense
that for generic metrics the number of solutions is finite, for fixed ε, as shown recently by
G. Smith. We also show that the energy of the min–max solutions accumulate, as ε → 0,
around limit-interfaces which are smooth embedded minimal hypersurfaces whose area with
multiplicity grows sublinearly. For generic metrics with RicM > 0, the limit-interface of the
solutions at the lowest positive energy level is an embedded minimal hypersurface of least
area in the sense of Mazet–Rosenberg. Finally, we prove that the min–max energy values are
bounded from below by the widths of the area functional as defined by Marques–Neves.
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1 Introduction

Applications of variational methods to the theory of semilinear elliptic PDE is by now a vast
and well-developed subject. For a large class of nonlinearities, available techniques provide
information such as the number of solutions and some of their properties.

In this article, we discuss the case of nonlinearities given by derivatives of double-well
potentials on closed manifolds. More precisely, we are interested in solutions to the elliptic
Allen–Cahn equation on a closed manifold M , i.e. u : M → R such that

− ε�u +W ′(u)/ε = 0, (1)

where the nonlinearity is assumed to be the derivative of a double-well potential W (e.g.
W (u) = (1 − u2)2/4). This equation arises in the study of phase transition interfaces of
metal alloys [11].

The elliptic Allen–Cahn equation and its parabolic counterpart have been extensibly stud-
ied in the last decades for its connections with the theory of minimal hypersurfaces onRn , with
an important source of motivation being De Giorgi’s conjecture (see [56] and the references
therein).

For compact domains, research have been driven by understanding the limit behavior of the
solutions as ε → 0. Since the late 70’s it was expected that the level sets of the solutions would
resemble minimal hypersurfaces as ε → 0. This is indeed the case in many different situations
some of which we briefly discuss in the next subsection of this Introduction. However, there
are still many natural open questions concerning the properties of the solutions such as its
multiplicity, behavior of its energy values, Morse index, size of the nodal sets, number of
nodal domains, etc.

In the first part of this work we describe solutions at the lowest positive energy level. Later
we show that, although Eq. (1) does not have infinite solutions in general [58], the number
of solutions grows to infinite as ε → 0. In the final sections we describe the behavior of the
energies of such solutions. More precise statements of our results can be found later on this
Introduction.

For some other semilinear elliptic equations results like these have been proven. This is
a vast subject, we refer the reader to the surveys by Ambrosetti [3], Ekeland–Ghoussoub
[20], Rabinowitz [55] and the references therein. However, we should not expect some of
these methods to work for equations with potentials of the type we consider in this work. We
discuss this on Remark 2 at the end of this Introduction.

In this respect and in a general sense, it is on the intent of this work to show with concrete
examples that the analogy with the theory of minimal hypersurfaces can help to answer some
of these questions as well as provide directions for what the answers should be in other cases.

The analogy with minimal hypersurfaces

Connections between the theories of phase transitions and minimal hypersurfaces have
brought the attention of many mathematicians since the works of Modica [46] and Sternberg
[60] in the 80’s.

The analogy we have in mind begins, informally, with the observation that solutions to
(1) have the remarkable property that its level sets u−1(s) accumulate, as ε → 0, around
a minimal hypersurface on M , i.e. a critical point of the area functional. Several formal
instances of this statement exist in the literature depending on the variational characteristics
of the solutions, e.g. see [33,46,49,60,63].
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To state a particular case which is in the interest of the present work, remember that
solutions to the equation above are variational objects in the sense that they are critical points
of the energy functional

Eε(u) =
∫

M

ε

2
|∇u|2 + W (u)

ε
, u ∈ H1(M),

i.e. E ′ε(u) ≡ 0. In this way, properties such as stability or finite Morse index of a solution u
are defined as usual, i.e. with respect to the bilinear form corresponding to E ′′ε (u)(·, ·), the
second derivative of the energy in H1(M).

In [29], based on the recent works [33,63], the following theorem was proved.

Theorem A Let M be a n-dimensional closed Riemannian manifold and uk a sequence
of solutions to (1) in M, with ε = εk → 0. Assume that their Morse indices, supM |uk |
and Eεk (uk) are bounded sequences. Then, as εk → 0, its level sets accumulate around
a minimal hypersurface, i.e. a critical point of the area functional, smooth and embedded
outside a set of Hausdorff dimension at most n − 8.

In the same work this theorem was applied to a sequence of solutions obtained by a single
parameter min–max construction. Such solutions have Morse index less than or equal to 1.
As a corollary one concludes the celebrated Almgren–Pitts existence theorem for minimal
hypersurfaces.

This approach to Almgren–Pitts theorem can be interpreted as a converse of the results of
Pacard and Ritoré [48]. They proved that given a non-degenerated oriented separating minimal
hypersurface on M , there exists a sequence of solutions to the Allen–Cahn equations, with
ε → 0, whose energy accumulates around this minimal hypersurface.

For more references on this analogy we refer the reader to the works [34,45,47,52,62].

List of results and organization

In Sect. 2 we discuss properties of solutions to (1) with least positive energy. These are
solutions with energy equal to

iε = inf{Eε(u) : u ∈ H1(M), E ′ε(u) ≡ 0 and Eε(u) > 0}.
This section is motivated by the work of Mazet–Rosenberg on the minimal hypersurfaces of
least area [43]. We show (see Theorem 2.1)

Theorem 1 iε is attained by solutions which are either stable or obtained by min–max and
have index 1. Moreover,∞ > lim infε→0 iε > 0 and, by Theorem A, the limit-interface of a
sequence of such solutions is a smooth embedded minimal hypersurface. For generic metrics
on M with RicM > 0 this limit-interface is a minimal hypersurface of least area as defined
by Mazet–Rosenberg.

We end Sect. 2 by improving a result proved in [58] by a bifurcation analysis (see Propo-
sition 2.4).

Proposition 2 If ε > 0 is big enough, then the only solutions to (1) are the constants where
the potential is critical.

Our proof is different and uses only geometric inequalities. The result is improved in the
sense that we provide an estimate for how big ε must be in terms of the Cheeger constant of
M .
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Concerning the number of solutions to Eq. (1), G. Smith [58] recently proved that for
generic metrics on a closed manifold M there are only finitely many solutions for a fixed
ε > 0. On the other hand, even if an infinite number of solutions cannot be expected in
general, standard min–max methods can be applied to show that the number of solutions
always grows to infinity as ε → 0. In the case of compact domains of Rn such a construction
was carried out by Passaseo [51] and by Pagliardini [50] for fractional equations.

In Sect. 3 we apply these methods for constructing of solutions to Eq. (1) on closed
manifolds. More precisely, using the Fadell–Rabinowitz cohomological index IndZ/2 we
define a sequence of families Fp of compact subsets of H1(M), for p ∈ N, in the following
way. An element A ∈ Fp is defined as a symmetric compact subset with a topological
complexity given by IndZ/2(A) ≥ p + 1. Since the families Fp are decreasing on p, the
min–max energy values

cε(p) = inf
A∈Fp

sup
x∈A

Eε(x)

form an increasing sequence.
Denote by Ka the critical points of Eε with energy equal to a. An application of standard

min–max methods yields (see Theorem 3.3)

Theorem 3 Fix ε > 0. Then

(1) For every p ∈ N, it holds cε(p) ≤ Eε(0) = Vol(M)
ε

W (0).
(2) If cε(p) < Eε(0), then there exists a solution u ∈ Kcε(p) with |u| ≤ 1 and Morse index

less or equal than p. Moreover, if cε(p) = cε(p + k) < Eε(0) for some k ∈ N, then
there are infinitely many solutions with the same energy and index bound.

(3) cε(p) = Eε(0), for p large enough (depending on ε > 0 and M).

This result does not rule out the possibility that cε(p) = Eε(0) for a fixed p and every
ε small. So it still does not follows that the number of solutions must grow as ε → 0.
However, since Eε(0) = Vol(M)W (0)/ε →∞ it is enough to show that for every p it holds
lim supε→0 cε(p) < ∞.

Sections 4 and 5 contain the proofs of the following upper and lower sublinear bounds for
the energy values of these min–max solutions, respectively.

Theorem 4 There exists a constant C = C(M, W ) > 1 such that the min–max values cε(p)

satisfy the following sublinear bounds

C−1 p
1
n ≤ lim inf

ε→0
cε(p) ≤ lim sup

ε→0
cε(p) ≤ Cp

1
n

for all p ∈ N.

The proofs of these sublinear bounds are inspired by similar computations by Gromov
[28], Guth [30] and Marques–Neves [40] for sweepouts of the area functional. In this sense,
our work brings the analogy between phase transitions and minimal hypersurfaces to a high
parameter global variational context. The same ideas can be applied to obtain sublinear
bounds for the growth of the solutions obtained by Passaseo [51] on bounded domains of Rn .

Combining Theorem 3 with the upper bound from Theorem 4, we obtain

Corollary 5 On any closed Riemanian manifold the number of solutions to the elliptic Allen–
Cahn Eq. (1) goes to infinity as ε → 0. Moreover, for every p, Theorem A implies that the
min–max solutions at the level cε(p) have a limit-interface that is a smooth embedded minimal
hypersurface.
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This article ends in Sect. 6, where we compare the sequence of values lim infε→0 cε(p)

with the widths ωp(M) of the area functional on M , as defined by Marques–Neves [40].
These widths form a sequence of real values which Gromov [28] proposed to consider as a
nonlinear spectrum of M , by analogy with the min–max construction of the eigenvalues of the
Laplacian. In the same way, the sequence l p(M) = 2σ−1 lim infε→0 cε(p) can be considered
as phase transition nonlinear spectrum of M , where σ is an energy renormalization constant
that depends only on W (see Notation below). We show

Theorem 6

ωp(M) ≤ l p(M) = 2σ−1 lim inf
ε→0

cε(p),

for every p ∈ N.

In [42], Marques and Neves showed that ωp(M) is achieved by the area, with multiplicity,
of a minimal hypersurface Vp ⊂ M with Morse index ≤ p. Theorem 6 implies that the area
of Vp is not larger than the area of the minimal hypersurface obtained by applying Theorem A
to the solutions given by Theorem 3, whose area with multiplicity is l p(M).

Remark 1

In light of the analogy with minimal hypersurfaces, we have chosen to work with coho-
mological families. The sets A ∈ Fp may be seen as the analogue of Gromov–Guth and
Marques–Neves [28,30,40] high-parameter cohomological sweepouts in the context of phase
transitions. However, there are other natural candidates for the families Fp of the min–max
construction.

The topological complexity of these families may be described in terms of other topo-
logical invariants such as homotopy, homology, and Lusterik–Schnirelmann category. This
approach is reminiscent of Lusternik–Schnirelmann theory of critical points, see [38]. Some
examples of such families are considered in the works of Krasnoselskii [37], Ambrosetti-
Rabinowitz [4], Bahri–Berestycki [6] and Bahri–Lions [7], and a general account of a
min–max theory in this setting is developed by N. Ghoussoub in [26,27]. The techniques
we employ can be applied to these other families to obtain existence results and sublinear
bounds for the min–max values of these other for families.

Remark 2

For certain potentials the Morse index of a solution gives a lower bound for its energy. This
observation has been used, e.g. Bahri-Lions [7], to prove sublinear bounds for the energy of
min–max solutions in some cases. We should not expect such a thing to hold for solutions to
Eq. (1) in view of the analogy with the theory of minimal hypersurfaces. In fact, remember
that in this analogy the area of a surface corresponds to the energy of a solution and there
are examples of minimal surfaces showing that the index and the area are not related. It
was shown in [15,17,36] that there is an open set of metrics on S

3, for which there exists
stable surfaces with area going to infinity. Conversely, there also exist examples of sequences
of surfaces for which the Morse Index is unbounded while the area remains bounded (see
[5,12]). It makes sense to expect the existence of similar examples for solutions to (1).

Notation

Along this work we will use the following notation
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W a double-well potential (see Sect. 2)
σ the energy constant σ = ∫ 1

−1
√

W (s)/2 ds
Inj(M) the injectivity radius of M
H1(M) the Sobolev space of L2(M) functions with weak derivatives also in L2(M)

Hρ the Riemannian ρ-dimensional Hausdorff measure in M
H j (X;Z/2) the p-th Alexander–Spanier cohomology group of X with coefficients in

Z/2
IndZ/2 the Fadell–Rabinowitz cohomological Z/2-index (see Sect. 3)
distK (·, A) the distance function from a closed set A ⊂ K
Ik (M,Z/2) the space of k-dimensional integral currents modulo 2 in M (see [25,

4.2.26])
Zk (M,Z/2) the space of integral currents T ∈ Ik (M,Z/2) with ∂T = 0
M the mass of a current T ∈ Ik (M,Z/2)

F(T ) the flat norm of a current T ∈ Ik (M,Z/2)

BF
r (T ) the ball centered at T with radius r in Zk (M,Z/2), in the flat norm

�U� the integral n-dimensional mod 2 current associated with an open set of
finite perimeter U ⊂ M .

We will use also the following notation concerning cubical complexes. Given m ∈ N, we
will write Qm = [−1, 1]m . We regard this space as a cubical complex whose cells are given
by α = α1⊗ · · · ⊗ αm where αi is either [−1],[0], [1], [−1, 0], or [0, 1]. Following [41,53],
we consider the 1-dimensional cubical complex Q(1, k) on Q1 whose 0-cells and 1-cells are

{
[i · 3−k]

}3k

i=−3k
and

{
[i3−k, (i + 1)3−k]

}3k−1

i=−3k
,

respectively, and the m-dimensional cubical complex on Qm

Q(m, k) = Q(1, k)⊗ · · · ⊗ Q(1, k) (m times)

Given a subcomplex X of some Q(m, k), we denote by X ( j) the cubical subcomplex of
Q(m, k + j) obtained by further subdividing the 1-cells of X in 3 j intervals, that is, X ( j) is
the union of all cells of Q(m, k + j) whose support is contained in some cell of X . Given
q ∈ N, X ( j)q will denote the set of q-cells of X ( j). We say that two vertices x, y ∈ X ( j)0

are adjacent if they are vertices of a common 1-cell in X ( j)1. Similarly, we denote by
I (m, k) and I0(m, k) the usual cubical complexes in I m = [0, 1]m and in its boundary ∂ I m ,
respectively. Moreover, given j, j ′ ∈ N, we denote by n( j, j ′) : X ( j)0 → X ( j ′)0 the map
defined by requiring that n( j, j ′)(x) is the closest vertex of X ( j ′)0 to x ∈ X ( j)0.

2 Low energy levels of Eε

In this section, we present a variational study of the lowest critical levels of Eε(u) =∫
M

ε
2 |∇u|2 + W (u)

ε
, u ∈ H1(M), where W is assumed to be a double-well potential as

in [29]:

A. W ≥ 0, with exactly three critical points, two of which are non-degenerated minima at
±1, with W (±1) = 0 and W ′′(±1) > 0, and the third a local maximum γ ∈ (−1, 1).

More precisely, we are concerned with the existence and variational properties of least positive
energy solutions to the Allen–Cahn equation:

− ε�u + 1

ε
W ′(u) = 0. (2)
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By restricting our description to solutions with positive energy we immediately exclude out
the trivial solutions ±1, whose energy is zero. Of course, for large values of ε, the least
positive energy solution might be the constant γ , which is a critical point of W . In fact, as it
follows from Proposition 2.4, this is the case whenever ε > ε0 = 2

√
C/h(M), where C is a

positive constant depending only on W and h(M) is the Cheeger constant of M .
However, by [29], we already know that for small values of ε, non-constant solutions with

energy less than Eε(γ ) always exist. Because of this, we are also interested in describing
the limit behavior of the least positive energy solutions as ε → 0, in terms of the minimal
hypersurface that arises as its limit-interface. In some cases, we are able to conclude that this
limit-interface is in fact a minimal hypersurface with least energy, in the sense of Rosenberg–
Mazet [43].

The main result of this section is the following:

Theorem 2.1 (1) For every ε > 0, there exists a solution uε of (2) with least positive energy,
i.e.

Eε(uε) = min{Eε(u) : u ∈ H1(M), E ′ε(u) = 0 and Eε(u) > 0}.
(2) The least energy solution uε is either stable or it is obtained by a one-parameter min–max

and has Morse index 1. In that case

Eε(uε) = cε = inf
h∈


sup
t∈[−1,1]

Eε(h(t)),

where 
 = {h ∈ C([−1, 1] : H1(M)) : h(±1) ≡ ±1}.
(3) lim infε→0 Eε(uε) > 0. In particular, there is a rectifiable integral varifold V such that

(i) ‖V ‖ = 1
2σ

lim infε→0 Eε(uε);
(ii) V is stationary in M;

(iii) Hn−8+γ (sing(V )) = 0, for every γ > 0;
(iv) reg(V ) is an embedded minimal hypersurface.

(4) If in addition, 3 ≤ n ≤ 7 and the metric on M is bumpy with RicM > 0, then supp‖V ‖ is a
smooth minimal hypersurface of least area among all minimal hypersurfaces, as studied
by Mazet–Rosenberg in [43]. In particular, V has multiplicity one and it is realized by a
connected orientable smooth hypersurface of index one.

We prove each item of Theorem 2.1 separately. We will need the following two technical
lemmas in which we point out other properties of Eε . The proof of the first lemma can be
found at the end of this section while the second lemma, concerning the semilinear heat flow
for the equation, follows from the standard theory of semilinear parabolic equations [13].

Define

eε(u) = ε|∇u|2
2

+ W (u)

ε

and the discrepancy function

ξε(u) = ε|∇u|2
2

− W (u)

ε
.

Lemma 2.2 (1) If u is a critical point of Eε different from the constants ±1 or γ , then
|u| < 1 and the function u − γ does not have a sign.
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(2) Palais–Smale condition: Let uk be a sequence of functions in H1(M) such that |u| ≤ 1,
supk Eε(uk) <∞ and E ′ε(uk)→ 0. Then, there is a subsequence converging to a critical
point of Eε in the H1(M)-norm.

(3) Bounded discrepancy: there exists ε1 > 0 and c1 ∈ R such that for all ε ∈ (0, ε1) we
have

sup
M

ξε ≤ c1.

(4) Monotonicity formula: there exist ρ1 > 0 and m > 0 such that for all ε > 0, 0 < ρ < ρ1

and p ∈ M we have

d

dρ

(
emρρ−n+1

∫
Bρ(p)

eε(u)

)
≥ emρρ−n+1

∫
Bρ(p)

(−ξε)(u).

(5) Lower bound for the potential: there exists ε2 > 0 and c2 > 0 such that for every
u ∈ H1(M) that is a critical point of Eε, i.e. E ′ε(u) = 0, with ε ∈ (0, ε2) and every
p ∈ M with u(p) = γ , it holds

W (u)
∣∣

Bε/2(p)
≥ c2.

Consider the parabolic Allen–Cahn equation given by

∂t u −�u +W ′(u)/ε2 = 0. (3)

Define

S = {u ∈ C3(M) : |u| ≤ 1}
Lemma 2.3

(1) For each u ∈ S, there is a unique solution �t (u) of Eq. (3) which exists for all t > 0.
(2) For each t > 0, �t : S → S.
(3) For each u ∈ S, Eε(�

t (u)) ≤ Eε(�
s(u)) if t > s ≥ 0 and equality holds if and only if

u is a critical point of Eε . In that case �t (u) = u for all t > 0.
(4) For each u, v ∈ S, such that u < v, it holds �t (u) < �t (u) for all t > 0.
(5) For each u ∈ S, there exist �∞(u) ∈ S which is critical point of Eε and a sequence

tk →∞, such that �tk (u)→ �∞(u) in H1(M).

Proof of Theorem 2.1—Item (1) The set

{u ∈ H1(M) : E ′ε(u) = 0 and Eε(u) > 0}
is non-empty since γ is always a critical point of Eε with positive energy. Since every u in
this set is bounded, i.e. |u| < 1 by Lemma 2.2 (1), every minimizing sequence for Eε is
precompact in H1(M) by the Palais–Smale condition, Lemma 2.2 (2). Then, it suffices to
prove that ±1 are isolated solutions of (2). This follows from the Morse Lemma (see e.g.
[27, Section 9.2]) provided we show that d2 Eε(±1) are isomorphisms, where we denote by
d2 Eε(u) : H1(M)→ H1(M) the linear operator associated to the bilinear form E ′′ε (u)(·, ·).
Recall that d2 Eε(u) is given by (see [29, Prop. 4.4]):

〈
d2 Eε(u)v,w

〉 = ε

∫
M
∇v · ∇w + 1

ε

∫
M

W ′′(u)vw.

Since W ′′(±1) > 0, by Hypothesis A, we see that
〈
d2 Eε(±1)v, v

〉
is always nonzero when

v �= 0. Hence, d2 Eε(±1) is an isomorphism. ��
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Proof of Theorem 2.1—Item (2) Assume that uε is not stable. We will construct a sweepout
hε ∈ 
 having uε = hε(0) as a unique point of maximum for the energy. If uε = γ , then
we can join ±1 ∈ H1(M) linearly to construct such a sweepout. Thus, we may assume
uε �= γ . By Lemma 2.2—Item (1), there are x± ∈ M such that uε(x−) < γ < uε(x+).
Let v ∈ H1(M) be a positive eigenfunction associated to the first eigenvalue of the stability
operator of E ′′ε (uε). There exists t0 ∈ (0, 1) such that

Eε(u ± tv) < Eε(uε), whenever 0 < t ≤ t0.

We will now describe how to join uε ± t0v and ±1 using Lemma 2.3. First, we observe that
u ∈ S, by Lemma 2.2 (1). From Lemma 2.3 (5), we can find a sequence {ti } of positive real
numbers such that �ti (uε + t0v) converges in H1(M) to a solution of (2) when i → ∞.
Moreover, the energy of �t (uε + t0v) is decreasing in t . Hence, �ti (uε + t0v) converges
either to+1 or−1 in H1(M). We claim that �ti (uε + t0v) → 1, as i →∞. In fact, notice
that u < u + t0v and, from Lemma 2.3 (4), u = �t (u) < �t (u + t0v), for all t ≥ 0. In
particular, there exists a neighborhood V ⊂ M of x+ such that �t (u + t0v) > γ in V for all
t ≥ 0. Therefore, �ti (u + t0v) → 1. Since the functions±1 are isolated points of minimum
for Eε , we can find δ > 0 such that

Eε(uε) > Eε(w), for all w ∈ Bδ(1) ∪ Bδ(−1) ⊂ H1(M).

Choose i ∈ N such that ||�ti (u + t0v) − 1|| < δ and join �ti (u + t0v) to 1 by a segment
contained in Bδ(1). It follows that the energy remains strictly below Eε(uε) along this path.
We can now concatenate the paths t ∈ [0, t0] �→ u + tv, t ∈ [0, ti ] �→ �t (u ± t0v) and this
segment to obtain a continuous path hε : [0, 1] → H1(M) with hε(0) = uε and Eε(hε(t)) <

Eε(uε) for t > 0. A similar construction shows that we can define hε : [−1, 0] → H1(M)

so that hε(−1) = −1, hε(0) = uε and Eε(hε(t)) < Eε(t) for t < 0. This completes the
construction of the claimed sweepout.

We will now show that Eε(uε) = cε and that uε has Morse index m(uε) = 1. Clearly,
cε ≤ Eε(uε). It follows from [29] that cε > 0 and that there exists vε ∈ Kcε , which Eε(uε) ≤
Eε(vε) = cε, since uε is the solutions of least positive energy. Therefore cε = Eε(uε) and
uε is a min–max solution. To see that uε has Morse index m(uε) = 1, we proceed as in [39,
Prop. 3.1]. By definition, uε has Morse index m(uε) ≥ 1. If this inequality is strict, then we
would be able to find linearly independent eigenfunctions v = v1, v2 ∈ H1(M) associated
to negative eigenvalues of d2 Eε(uε) such that

E ′′ε (uε)(v1, v1) < 0, E ′′ε (uε)(v2, v2) < 0, and E ′′ε (uε)(v1, v2) = 0.

Choose also a function ρ ∈ C∞(R) such that ρ(t) = 1 for |t | ≤ 1/3, and ρ(t) = 0, for
|t | ≤ 1/2. Define γε : R× [−1, 1] → H1(M) by

γε(s, t) := hε(t)+ sρ(t)v3, (s, t) ∈ R× [−1, 1].
We have γε(s, ·) ∈ 
, γε(0, 0) = hε(0) = uε and:

∂

∂t
γε(0, 0) = h′ε(0) = v1,

∂

∂s
γε(0, 0) = v3.

Hence,

∂2

∂t2 (Eε ◦ γε)(0, 0) < 0,
∂2

∂s∂t
(Eε ◦ γε)(0, 0) = 0,

∂2

∂s2 (Eε ◦ γε)(0, 0) < 0.

Since Eε ◦ hε has an unique maximum point in t = 0, we can find δ1 > 0 such that

Eε(γε(δ1, t)) < Eε(γε(0, 0)) = Eε(uε)

123



101 Page 10 of 42 P. Gaspar, M. A. M. Guaraco

for all t ∈ [−1, 1]. But γε(δ1, ·) ∈ 
 and Eε(ue) = cε, which leads to a contradiction.
Therefore, uε has index 1. The last claim follows from [29, Theorem 3.7]. ��
Proof of Theorem 2.1—Item (3) We will use the Monotonicity formula from Lemma 2.2 (4),
to show that lim inf Eε(uε) > 0.

Choose 0 < ρ̃ < min{Inj(M), ρ1}, where ρ1 is as in Lemma 2.2, and such that ωnρn/2 ≤
Vol(Bρ(q)) ≤ 2ωnρn for every q ∈ M and every ρ ∈ (0, ρ̃). This is possible given that M
is compact. Fix ε > 0 so that ε < min{ε1, ε2, ρ̃}, with ε1 and ε2 as in Lemma 2.2.

Choose p ∈ M such that uε(p) = γ , by Lemma 2.2 (1). By Lemma 2.2 (4), we have

emρ̃ (ρ̃)−n+1
∫

Bρ̃ (p)

eε(u)

≥ emε/2(ε/2)−n+1
∫

Bε/2(p)

eε(u)+
∫ ρ̃

ε/2
emρρ−n+1

∫
Bρ(p)

(−ξε) (u)

Notice that, by the choice of ε, and by items (3) and (5) of Lemma 2.2, we have−ξε(u) ≥
−c1 everywhere on M and eε(u) ≥ W (u)/ε ≥ c2/ε on Bε/2(p). Then, complementing with
the inequality above it follows

emρ̃ (ρ̃)−n+1
∫

Bρ̃ (p)

eε(u) ≥ emε/2c2ωn

4
− 2c1ρ̃ωnemρ̃

We can choose ρ̃ > 0 small enough (and independently of ε) so that emρ̃ ≤ 2, then

Eε(uε) ≥
∫

Bρ̃ (p)

eε(u) ≥
(

c2

8
− 2c1ρ̃

)
ωn ρ̃n−1.

To finish the argument, we can choose ρ̃ small enough if necessary, and independently
of ε > 0, in such a way that c2

16 − 2c1ρ̃ is positive. In particular, there is a positive constant
C > 0 such that Eε(uε) ≥ C for every ε > 0 small enough.

The rest of the conclusions follow from the fact that the index of uε is bounded by 1 (by
Item (2)) and Theorem A from [29]. ��
Proof of Theorem 2.1—Item (4) Let �̃ ⊂ M be a minimal hypersurface of least area. It
follows from Propositions 10 and 13 in [43], combined with the recent catenoid estimate
[35] to rule out the case unoriented surfaces, that �̃ is separating and orientable. Theorem
1.1 in [47] allows one to obtain ε0 > 0 such that, for every ε ∈ (0, ε0), there exists vε ∈ K
such that Eε(vε) → 1

2σ
|�̃| as ε → 0. Since Eε(vε) ≥ Eε(uε), we have |�̃| ≥ |�|. Using

that �̃ has least area, we conclude that |�| = |�̃|. ��
The following proposition shows that, provided ε > 0 is big enough, the only solutions

to the Allen–Cahn equation are constants. Another way of saying this is that if a domain
is not big enough in terms of the potential, then there are not interesting solutions, an idea
also found in [8]. This result has been previously stated in [58] for a more general class of
potentials. However, our proof still works in those cases, and is fairly different as we use only
geometric inequalities. In addition, it provides an estimate on how big ε must be in terms of
the Cheeger constant of the manifold.

Proposition 2.4 The constants±1 andγ are the only solutions of Eq. (2), whenever ε > ε0 =
2
√

C/h(M). Here h(M) is the Cheeger constant of M and C = maxs∈[−1,1] W ′(s)/(s − γ )

is a positive constant depending only on W .
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Proof Let u be a non-constant solution of −ε2�u +W ′(u) = 0. Without loss of generality,
we can assume that � = {u > γ } is such that Vol(�) ≤ Vol(M)/2, otherwise we would
simply choose {u < γ } and the arguments would follow in the same way. Notice that both
sets are non-empty by Lemma 2.2—Item (1).

The argument is by contradiction. Our goal is to prove that if ε > 0 is big enough, �

cannot support u − γ ∈ H1
0 (�) satisfying −ε2�u + W ′(u) = 0 and u − γ > 0 on the

interior, as it does.
The set � does not necessarily have a nice boundary, so we are not able to define the

first eigenvalue of the Dirichlet problem. However, we can still define the following quantity,
known as its fundamental tone (see [14])

λ∗(�) = inf
v∈H1

0 (�)

∫
�
|∇v|2∫
�

v2
.

Motivated by some computations in [8], take u − γ as a test function and substitute the
equation after integrating by parts (by approximation, since the domain is not necessarily
smooth, as in [14] pp. 21–22). We obtain

λ∗(�) ≤
∫
�
|∇(u − γ )|2∫
�
(u − γ )2

= − 1

ε2

∫
�
(u − γ )W ′(u)∫
�
(u − γ )2

≤ C/ε2,

where C = C(W ) = maxs∈[−1,1] −W ′(s)/(s−γ ), which is positive and finite since W ′(γ ) =
0.

On the other hand, Cheeger’s inequality gives a lower bound on λ∗(�) in terms of the
Cheeger constant of � which is defined as

h(�) = inf Area(∂ A)/Vol(A),

where the infimum its taken over all open sets A ⊂⊂ � with smooth boundary.
Cheeger’s inequality asserts

h(�)2

4
≤ λ∗(�).

In fact, the proof of this inequality for smooth boundaries (as found, for example, in [14],
Theorem 3, pag. 95) also applies to our case. Moreover, the Cheeger’s constant of M is
defined as

h(M) = inf
Area(∂ A)

Vol(A)
,

where this time the infimum ranges over all open sets A ⊂ M with smooth boundary and
such that Vol(A) ≤ Vol(M)/2. This bound on the volume of A is necessary whenever M is
a closed manifold, otherwise the constant would be trivially zero.

Finally,

0 <
h(M)2

4
≤ h(�)2

4
≤ λ∗(�) ≤ C

ε2 ,

which yields a contradiction provided ε > ε0 = 2
√

C/h(M). ��
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2.1 Proof of the technical lemma

Proof of Lemma 2.2 To see (1) first notice that, by the form of the potential (i.e, Hypothesis
A) if there is a point p of maximum of u, with u(p) > 1, then W ′(u) > 0 in a small
neighborhood U around p. In particular,−�u > 0 on U . Taking a non-negative test function
ϕ, with non-empty support on U we conclude

E ′ε(u)(ϕ) =
∫

U
ϕ(−ε�u +W ′(u)/ε) > 0,

which contradicts that u is a critical point of Eε . Thus |u| ≤ 1. However, if max u = 1 then
u would be identically 1 by the maximum principle.

For the second part of (1), observe that if u − γ is non-negative and not identically zero,
then

E ′ε(u)(1) = 1

ε

∫
M

W ′(u) < 0

since W ′(u) < 0 whenever γ < u < 1, contradicting the fact that u is a solution. In the
same way, u − γ cannot be non-positive.

For the proof of (2) and (4) see [29]. The proof of (3) is presented in [33] for M = R
n .

The proof is local, and the same arguments work for general metrics.
To see (4), fix p ∈ M and ε > 0. Choose any 0 < δ < Inj(M) and consider the function

on B1(0) ⊂ Tp M given by ũ(x) = u ◦ expp(δ · x). In these dilated normal coordinates the
equation −�u +W ′(u)/ε2 = 0 has the form

−ai j · ∂i j ũ − δ · bi · ∂i ũ + (δ/ε)2 ·W ′(ũ) = 0,

where, given that M is compact, the coefficients are such that there exists C = C(M)

satisfying ‖ai j − δi j‖C1(B1(0)) + ‖δ · bk‖C1(B1(0)) < Cδ2 for every i, j, k and δ < δ̃, for

some δ̃ < Inj(M) small enough and independent of p. Since we already know that |u| ≤ 1,
choosing δ < δ̃ so that δ/ε ≤ 1, standard gradient estimates (see Proposition 2.19 of [31])
guarantee the existence of a positive constant C̃ = C̃(δ̃, W ) such that supB1/2(0) |∇ũ| ≤ C̃ .

Whenever ε < δ̃ we can simply choose δ = ε.
Assume now that ũ(0) = u(p) = γ . By the observations made above, for every ξ > 0

there exists ρ = ρ(ξ, δ̃, W ) ∈ (0, 1/2) such that |ũ − γ | < ξ in the ball Bρδ(0) ⊂ Tp M . In
particular, we can choose ρ = ρ(δ̃, W ) > 0 so that W (u) > 1

2 max[−1,1] W in Bρδ(p) ⊂ M ,
independently of p. ��

3 Multiparameter min–max for the energy functional

In this section, we employ min–max methods to find solutions for the Eq. (2) using higher
dimensional families.

Hypothesis on the potential W

Besides from Hypothesis A from the last section, from now on we will assume that W is an
even function. In particular, γ = 0.

Since Eε is an even functional, we can use families of symmetric, compact and topo-
logically non-trivial sets in H1(M) to detect critical points of Eε . These families can be
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seen as the analogue of the Gromov–Guth high-parameter families [30,40] in the context of
phase transitions. The non-triviality of these sets will be expressed in terms of a topological
Z/2-index, in the sense of [26] (see also [27]).

3.1 A topological Z/2-index

By aZ/2-space we will mean a paracompact Hausdorff space X with a given homeomorphism
T : X → X such that T 2 = idX . We will say that a Z/2-space is free if T has no fixed points.

Definition 3.1 Let C be a class of paracompact Z/2-spaces and assume that (A, T |A) ∈ C
whenever A is an invariant paracompact subset of X and (X, T ) ∈ C. Assume also that C
contains S∞. A function Ind : C → N ∪ {0,+∞} is called a topological Z/2-index if it
satisfies the following properties:

(I1) (Normalization) Ind(A) = 0 if, and only if, A = ∅.
(I2) (Monotonicity) If A1, A2 ∈ C and there exists an equivariant continuous map A1 →

A2, then Ind(A1) ≤ Ind(A2).
(I3) (Continuity) If X ∈ C and A ⊂ X is an invariant closed subset of X , there exists an

invariant neighborhood V ⊂ X of A such that Ind(A) = Ind(V ).
(I4) (Subaditivity) If X ∈ C and A1, A2 ⊂ X are invariant closed subsets, then Ind(A1 ∪

A2) ≤ Ind(A1)+ Ind(A2).
(I5) For every compact free Z/2-space X ∈ C, if Ind(X) ≥ n, then the orbit space X̃ has at

least n elements.
(I6) It holds Ind(X) < +∞ for all compact free Z/2-space X ∈ C.

In order to obtain solutions to (2) with bounded Morse index, we have chosen to work
with cohomological families of subsets of H1(M) which can be described in terms of the
cohomological index of E. Fadell and P. Rabinowitz [22,23].

Given a paracompact free Z/2-space (X, T ), one can see that there exists a continuous
map f : X → S∞ which is equivariant, that is f (T x) = − f (x) for all x ∈ X . Here,
S∞ = ⋃

n Sn is the infinite dimensional sphere, with the topology given by the direct
limit of {Sn}n∈N ordered by the inclusions Sn ↪→ Sm , for n ≤ m. Denote by f̃ : X̃ →
RP

∞ the induced continuous map, where X̃ and RP
∞ are the orbit spaces X/{x ∼ T x}

and S∞/{x ∼ −x}, respectively. The Alexander–Spanier cohomology ring of the infinite
dimensional projective space RP

∞ with Z/2-coefficients is isomorphic to Z/2[w], with
a generator w ∈ H1(RP∞;Z/2) (see [59, p. 264]). The map f is also unique modulo
equivariant homotopy, so we define the cohomological index of (X, T ) by

IndZ/2(X, T ) = sup
{

k : f̃ ∗(wk−1) �= 0 ∈ Hk−1(X̃;Z/2)
}

.

We set w0 = 1 ∈ H0(RP∞;Z/2) and adopt the convention IndZ/2(∅, T ) = 0, so that
IndZ/2(X, T ) ≥ 1 iff X is non-empty. If (X, T ) is a Z/2-space which is not free, we set
IndZ/2(X, T ) = ∞. We will write IndZ/2(X) = IndZ/2(X, T ) whenever the action of Z/2
is clear from the context. For subsets of Banach spaces, we will assume this action is the
antipodal map x �→ −x , unless otherwise stated.

In the “Appendix B”, we give some details about the construction of the cohomological
index IndZ/2, which defines a topological Z/2-index in the class of all paracompact Z/2
spaces.
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3.2 Setting for the multiparameter min–max

In this subsection we briefly describe the general min–max procedure we will apply to the
Energy functional.

Let X be a C2 Hilbert manifold which is also a free Z/2-space. For each p ∈ N, consider
the family

Fp =
{

A ⊂ H1(M) : A compact, symmetric, IndZ/2(A) ≥ p + 1
}
. (4)

One easily verifies that Fp is a p-dimensional Z/2-cohomological family, in the sense
defined in [26, §3].

Given an equivariant functional ϕ : X → R, we define the min–max values

cp = c(ϕ,Fp) := inf
A∈Fp

sup
x∈A

ϕ(x), for p ∈ N.

Since Fp+1 ⊂ Fp , we have cp ≤ cp+1 for all p ∈ N. A sequence {An} ⊂ Fp is called a
minimizing sequence if

sup
x∈An

ϕ(x)→ cp as n →∞.

Given such a sequence, we say that {xn} ⊂ X is a min–max sequence for {An} if

d(xn, An) → 0 and ϕ(xn)→ cp, as n →∞.

In order to deal with the lack of compactness of the domain, we restrict ourselves with a
certain class of functionals: we say that ϕ satisfies the Palais–Smale condition along {An} if
every min–max sequence {xn} for {An}with ϕ′(xn)→ 0 contains a convergent subsequence.
This is the key condition that allow us to find a critical point of ϕ at each min–max level cp .

For each c ∈ R, we denote by Kc the set of all x ∈ X such that ϕ′(x) = 0 and ϕ(x) = c.
If ϕ′(x) = 0, we write m(x) and m∗(x) for the Morse index and the augmented Morse index
of x , that is, m(x) and m∗(x) are the maximal dimensions of subspaces of Tx X such that
ϕ′′(x) is negative definite and negative semidefinite, respectively. Given c ∈ R and � ∈ N,
we denote by Kc(�) the set of critical points of x ∈ Kc of ϕ such that m(x) ≤ � ≤ m∗(x).

3.3 A min–max theorem

In the setting above, whenever X is a complete Z/2-free space, the results of [26] imply the
existence of a critical point x ∈ Kcp (p), for every value of p. Unfortunately, the space in
which we would like to apply the min–max construction is not complete.

More precisely, let (Mn, g) be a closed Riemannian manifold. Define X = H1(M)\{0}
and let Fp be the cohomological family defined as above. Clearly, X is a Z/2-free space
which is not complete. However, for each ε > 0, we still have min–max values cε(p) defined
as above, with Eε in the place of ϕ:

cε(p) = c(Eε,Fp) := inf
A∈Fp

sup
x∈A

Eε(x), for p ∈ N.

We also have that Eε : X → R satisfies the Palais–Smale condition along every minimizing
sequence which is bounded away from 0 (see [29, Proposition 4.4]).

In such a situation we still can apply the results from [26] to minimizing sequences that are
bounded away from zero, e.g. when cε(p) < Eε(0) = Vol(M)W (0)/ε, that goes to infinity
as ε → 0. The following theorem states that the limit behavior of the min–max values cε(p),
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as ε → 0, is bounded from above and from below by functions with sublinear growth on p.
In particular, for any fixed p, cε(p) < Eε(0) will hold provided ε is small enough.

Theorem 3.2 Let Mn be a compact Riemannian manifold. There exists a constant C(M) > 1
such that the min–max values cε(p) satisfy

C(M)−1 p
1
n ≤ lim inf

ε→0+
cε(p) ≤ lim sup

ε→0+
cε(p) ≤ C(M)p

1
n

for all p ∈ N.

The proof of Theorem 3.2 is motivated by Guth-Gromov bend-and-cancel arguments and
we postpone it to the next two sections.

Now we can state the main result of this section.

Theorem 3.3 Fix ε > 0.

(1) For every p ∈ N, it holds cε(p) ≤ Eε(0) = Vol(M)
ε

W (0).
(2) If cε(p) < Eε(0), then there exists a solution u ∈ Kcε(p) with |u| ≤ 1 and m(u) ≤ p ≤

m∗(u). Moreover, if cε(p) = cε(p + k) < Eε(0) for some k ∈ N, then

Ind(Kcε(p)(p + k)) ≥ k + 1.

(3) cε(p) = Eε(0), for p large enough (depending on ε > 0 and M).

Proof Item (1) follows from the fact that given any A ∈ Fp , its image, δA, by an homothety
of factor δ > 0, also belongs to Fp . In addition, supδA Eε → Eε(0) as δ → 0, which implies
that cε(p) = c(Eε,Fp) ≤ Eε(0), by the definition of cε(p).

As we mentioned before, (2) follows from the min–max theorems for cohomological
families from [26].

To prove (3), choose p such that the (p + 1)-th eigenvalue of the Laplace operator on M
satisfies λp+1 ≥ 2C/ε2, where C = maxu∈[−1,1] u−2(W (0) − W (u)). Notice that a simple
application of L’Hospital’s rule, when u → 0, yields that C is a finite positive constant.

Let { f1, . . . , f p} be the corresponding first p eigenfunctions. From the min–max charac-
terization of the eigenvalues, it follows that

∫
M |∇u|2/ ∫M |u|2 ≥ λp+1 ≥ 2C/ε2, whenever

u ∈ H1(M) is such that
∫

M u fi = 0 for i = 1, . . . , p. Given A ∈ Fp , we can always find
u ∈ A with this property, otherwise the map

u ∈ A �→
(∫

M
u f1, . . . ,

∫
M

u f p

)
∈ R

p

would induce a continuous equivariant map A → R
p \ {0} → S p−1, contradicting A ∈ Fp

(see Lemma 5.3 below).
Observe that the truncation map τ : H1(M) → H1(M) given by τ(u) =

max{−1, min{1, u}} is continuous (by Lemma A.1) and odd, hence τ(A) ∈ Fp and
Eε(u) ≥ Eε(τ (u)), for every u ∈ H1(M). Then

sup Eε(A) ≥ sup Eε(τ (A)) ≥ Eε(u) ≥ 1

ε

∫
M

Cu2 +W (u) ≥ 1

ε

∫
M

W (0),

by the definition of C . Minimizing over all A ∈ Fp , we obtain cε(p) ≥ Eε(0) whenever
λp+1 ≥ 2C/ε2. ��
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Combining Theorems 3.2 and 3.3, we have that for every p there exist a sequence εk → 0
and sequence of uk ∈ C3(M) satisfiying−ε2�uk+W ′(uk) = 0, with bounded Morse index
and such that Eεk (uk) → lim infε→0 cε(p) = c(p), which is a finite positive constant for
every p (from Theorem 3.2). Finally, applying, Theorem A from [29] we conclude.

Corollary 3.4 In every n-dimensional closed Riemannian manifold there exists an integral
varifold Vp such that

(i) ‖Vp‖ = 1
2σ

c(p);
(ii) V is stationary in M;

(iii) Hn−8+γ (sing(V )) = 0, for every γ > 0;
(iv) reg(V ) is an embedded minimal hypersurface.

We conclude with some remarks concerning the results from this section.

Remark 3.5 If W (u) is the canonical potential (u2 − 1)2/4, we can show that 0 ∈ H1(M)

is the only critical point of Eε with energy ≥ Eε(0). In fact, given u ∈ H1(M) such that
E ′ε(u) = 0, we have |u| < 1 and thus

Eε(u) = ε

2

∫
M
|∇u|2 + 1

ε

∫
M

W (u) = − 1

2ε

∫
M

W ′(u)u + 1

ε

∫
M

(1− u2)2

4

= 1

ε

∫
M

(
1− 2u2 + u4

4
− u4 − u2

2

)
= 1

4ε

(
Vol(M)−

∫
M

u4
)

.

Hence, Eε(u) ≥ Eε(0) implies u = 0.

Remark 3.6 We can compare the one-parameter min–max solutions given by [29, Prop. 4.4]
with the one given by Theorem 3.3 with p = 1, in the following way. Let


 = {h ∈ C([−1, 1], H1(M)) : h(±1) = ±1}.
Given h ∈ 
, we define fh : S1 → H1(M) by

fh(x) =
{

h(x1), if x2 ≥ 0,

−h(−x1), if x2 ≤ 0
,

for x = (x1, x2) ∈ S1. Since h(±1) = ±1, we see that fh is well defined and continuous.
Moreover, fh is equivariant and by the monotonicity of the cohomological index it follows
that

Ah := fh(S1) = h([−1, 1]) ∪ (−h([−1, 1])) ∈ F1.

Hence

cε(1) ≤ inf
h∈


max
u∈Ah

Eε(u) = inf
h∈


max
t∈[−1,1] Eε(h(t)) = cε

If the critical point of Eε with least positive energy is not stable—e.g., if M has positive
Ricci curvature (see [24])—then by Theorem 2.1 we get

cε = Eε(uε) ≤ cε(1) ≤ cε.

Hence, in this case, the min–max values obtained using 1-sweepouts [29] and invariant
families with cohomological index ≥ 2 coincide.
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Remark 3.7 Some of the conclusions of the min–max Theorem 3.3, as well as the upper and
lower bounds for the min–max values of Sects. 4 and 5, hold for other well known families
of compact symmetric subsets of H1(M). Consider, for example, the family Mp given by
all the images of continuous odd maps S p → H1(M) \ {0}. A similar family was used by
A. Bahri and H. Berestycki in [6]—attributed to Krasnoselskii [37]—to prove the existence
of infinitely many solutions for a class of semilinear equations. One easily verifies that Mp

is a homotopic family in the sense of [27]. Then, it is possible to obtain a corresponding
min–max theorem for Mp that proves the existence of solutions to (2) with Morse index
bounded above by p and energy c(Eε,Mp) = inf A∈Mp sup Eε(A).

Another option is to replace the cohomological index IndZ/2 in (4) with other topological
Z/2-indexes. There is a natural choice which gives the largest possible families defined in
these terms: it consists of all symmetric compact sets A ⊂ H1(M) for which there exists a
continuous odd map A → Sk−1 for k ≥ p, but not for k = p−1. This defines a cohomotopic
family Cp , and its sets are characterized by having a orbit space with Lusternik–Schnirelmann
category ≥ p + 1 (see “Appendix B”). This family was employed by A. Bahri and P. Lions
in [7] to improve the results of [6]. The corresponding min–max theorem gives the existence
of critical points for Eε with augmented Morse index ≥ p, and also a lower bound on the
size of the set of such solutions in terms of this topological index.

Using the monotonicity of the cohomological index, one verifies that these families satisfy
the following inclusions Mp ⊂ Fp ⊂ Cp . Furthermore, the proofs in Sects. 5 and 4 give
sublinear bounds from above and from below for the min–max energy values associated
to Mp and Cp , respectively. Hence, these values have the same asymptotic behavior with
respect to p as ε → 0+.

4 Upper bound

In the next sections we study the asymptotic behavior of lim infε→0 cε(p), the limit of p-th
min–max value of Eε with respect to the families Fp , as p →∞.

The asymptotic behavior of the min–max widths for the area functional has been studied
previously by Gromov [28], Guth [30] and Marques–Neves [40]. The bounds obtained, in this
section and the next, may be seen as the analogue of Gromov–Guth bounds for the p-widths
of M in the context of phase transitions. Our proof is an adaptation to the Sobolev space
context of the one presented in [40].

In this section we prove the following sublinear upper bound for the min–max values
cε(p).

Theorem 4.1 For each ε > 0 and p ∈ N, there is a continuous odd map

ĥ : S p → H1(M) \ {0}
such that

1

2σ
sup
S p

Eε ◦ ĥ ≤ Cp1/n,

with C = C(M) > 0. Notice that by the monotonicity of IndZ/2 we have ĥa(S p) ∈ Fp. In
particular, for every p ∈ N,

1

2σ
cε(p) ≤ Cp1/n .
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To prove this result we adapt Guth’s bend-and-cancel procedure [30] to the context of
phase transitions. In doing so, we follow ideas from [40], where Marques–Neves adapted
Guth’s argument to construct p-sweepouts of hypersurfaces in a general closed manifold
with controlled area.

Motivated by [29], we consider the composition of the one-dimensional solution to the
Allen–Cahn equation with distance functions to slices of a p-sweepout with low waist. These
new functions take values close to ±1 in a large set and have jumps along the slices of the
p-sweepout. Moreover, it is possible to compute its energies in terms of the areas of the
slices.

Two technical points are worth discussing here before going into the details. Both arise
from the nature of the p-sweepouts in [40]. The first one concerns the fact that the continuity
of these sweepouts is measured with respect to coefficients modulo 2. In this way, two
slices cancel out as they coincide. In such a situation, simply composing with a signed
distance function wont produce a continuous family in H1(M). We account for this by
considering modified distance functions that smooth out the cancelation of the leaves. The
second observation is that computations to estimate the energy of the functions produced do
not fit well the p-sweepouts presented in [40]. So, we modify their construction to get slightly
simpler sweepouts for which computations are easier. More precisely, after identifying M
with a cubical complex K , we construct p-sweepouts over K with linear slices. Then, roughly
speaking, we construct our sweepouts for the energy functional on H1(K ), which can be
identified with H1(M).

Construction of a linear 1-sweepout on K and modified distance functions

First, remember that any compact smooth manifold can be triangulated. Hence, by [9], Chap-
ter 4, there exists a n-dimensional cubical subcomplex K of I m for some m, and a bi-Lipschitz
homeomorphism G : K → M . For each k ∈ N, denote by c(k) the center of the cubes
α ∈ K (k)n .

We need a few preliminary lemmas. The first one is simple and we leave its proof to the
reader.

Lemma 4.2 For almost every direction v ∈ Sm−1 = {x ∈ R
m : |x | = 1} we have:

(1) v is not orthogonal to any cube α ∈ K (k)n.
(2) 〈v, x〉 �= 〈v, y〉, for x �= y in c(k).

Define f (x) = 〈x, v〉, with v satisfying (1) and (2). Then,

(3) The level sets of f are sections of parallel (n − 1)-planes on each cube α ∈ K (k)n.
(4) There exists a small ρ > 0 such that every level set f −1(s) intersects at most one of the

open n-cubes centered at points in c(k) with side of length ρ.

The idea behind Guth’s bend-and-cancel argument is to deform a sweepout using a map
that projects the complement of a small neighborhood of c(k) onto the (n − 1)-skeleton
K (k)n−1. We do this in a way that allow us to control the shape of the new sweepout in every
cube α ∈ K (k)n .

If x is the center of a cube α ∈ K (k)n , define αr (x) ⊂ α as the n-cube centered at x with
sides of length r and parallel to α, i.e. αr (x) = r · (α − x)+ x .

Lemma 4.3 For every 0 < r < 1 there exists a Lipschitz map Fr : K → K such that

(1) Fr (K \ ∪x∈c(k)αr (x)) ⊂ K (k)n−1.
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(2) If π ⊂ α is a piece of a (n − 1)-plane contained in α, its image under F is contained in
the union of another (n − 1)-plane with the (n − 1)-skeleton. More precisely, F(π) ⊂
π̃ ∪ K (k)n−1, where π̃ is a piece of a (n − 1)-plane contained in α.

Proof Consider the cubes αr = [−r, r ]n , for 0 < r ≤ 1, and define Pr : [−1, 1]n →
[−1, 1]n as

Pr (x) =
{

x
r if x ∈ αr

x
‖x‖∞ if x ∈ α \ αr

,

where ‖x‖∞ = max{|x1|, . . . , |xn |} for x = (x1, . . . , xn) ∈ R
n . Notice that the restriction

of Pr to αr to is an homothety. In particular, it sends pieces of hyperplanes into pieces of
hyperplanes.

For each α ∈ K (k)n we pick a linear homomorphism Lα : α1 → α such that Lα(0) = cα ,
where cα is the center of α, and define

Pr,α : α → α, Pr,α = Lα ◦ Pr ◦ L−1
α .

Finally, we define Fr : K → K by Fr (x) = Pr,α(x) whenever x ∈ α. The map is well
defined and satisfies the desired properties. ��

Let f (x) = 〈x, v〉 where v is one of the directions given by Lemma 4.2. The level
sets f −1(s) are piecewise linear closed hypersurfaces. These sets do not necessarily vary
continuously on s with respect to the Hausdorff distance in K because they might become
empty near vertices that are local maxima or minima. To rule out this possibility it is enough
to add a fixed compact set containing K0 in the definition of the sweepouts. We choose to
add K (k)n−1 because it will simplify other arguments below. Consider the family:

�s = Fρ( f −1(s) ∪ K (k)n−1), for s ∈ R.

Claim 1 Let ρ > 0 given by Lemma 4.2. The family {�s}s∈R varies continuously in the
Hausdorff distance.

We omit the proof of this claim. This finish the construction of an uniparametric linear
sweepout on K . From this sweepout we will construct our piecewise linear p-sweepouts
by combining slices parametrized by the roots of polynomials of degree at most p, as in
[40]. However, in contrast to [40], we consider complex roots of the polynomials in order
to smooth out the cancellation of the slices. All this information will be enclosed in the
following modified distance functions.

Given z ∈ C, consider the distance function

dz : K → R≥0, dz(x) = distK (x, �Re(z))+ distC(z, f (K )).

This function is the building block of our p-sweepouts which we construct in the following
way.

For each a = (a0, . . . , ap) ∈ S p , consider the polynomial Pa(z) = ∑p
i=0 ai zi and let

C(a) be the set of its roots in the complex plane. We then define the functions

da(x) =
{

min{dz(x) : z ∈ C(a)} if C(a) �= ∅
+∞ if C(a) = ∅ .

Finally, define

ha(x) = sgna(x)da(x),
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where sgna(x) = sgn(Pa ◦ f (y)) for any y ∈ F−1
ρ (x), whenever da(x) > 0. In Step 1 of

Claim 3 we show that sgna is well defined. Notice that ha is simply an signed version of da

which is equivariant on a.
In the following two claims we establish several properties of dz and ha , before presenting

the proof of the main result.
Applying Proposition 9.2 from [29] in every cube α ∈ K (k)n , we obtain:

Claim 2 dz is a Lipschitz function with Lipschitz constant 1. Also

(1) |∇dz | = 1 a.e. on K .
(2) If zn → z, then dzn → dz and ∇dzn → ∇dz a.e. on K .

Claim 3 Let ψε be the 1-dimensional solution to the Allen–Cahn equation. Then ĥa =
ψε ◦ ha ◦ G−1 is a p-sweepout.

Proof of Claim 3 We divide the proof of this claim into the 4 steps below.
Step 1. ha(x) is well defined for every x .

If da(x) = 0, there is nothing to check since ha(x) = 0. Then, assume da(x) > 0 and
that there are y, w ∈ F−1

ρ (x) such that Pa( f (y)) and Pa( f (w)) have different signs. Since
the set F−1

ρ (x) is path connected, this implies there is a q ∈ K such that Fρ(q) = x and
Pa( f (q)) = 0. In particular, f (q) ∈ C(a) and x ∈ � f (q). Then da(x) = 0 which is a
contradiction.
Step 2. ha is a Lipschitz function for every a ∈ S p .

The fact that da is a Lipschitz function follows immediately from the definition. We assert
that sgna is constant in every connected component of {x : da(x) > 0}. In fact, take x ∈ K
such that da(x) > 0 and assume Pa ◦ f (y) > 0 for every y ∈ F−1

ρ (x). If the same does not
hold for every point in a neighborhood of x , there would be a sequence xn → x in K such
that

• d(xn) > 0
• yn ∈ F−1

ρ (xn) such that Pa ◦ f (yn) < 0
• yn → y ∈ F−1

ρ (x).

Therefore, Pa ◦ f (y) ≤ 0 which is a contradiction.
Since sgna is constant in every connected component of {x : da(x) > 0}, it is easy to

see that ha = sgna · da is Lipschitz. In fact, take x and y ∈ K . If sgna(x) = sgna(y) then
|ha(x)− ha(y)| ≤ |da(x)− da(y)| ≤ distK (x, y). On the other hand, if sgna(x) �= sgna(y)

they must belong to different connected components of {x : da(x) > 0}. In this case, there
exists z ∈ K such that distK (x, y) = distK (x, z) + distK (z, y) and such that da(z) = 0.
Then |ha(x)−ha(y)| ≤ |da(x)+da(y)| ≤ |da(x)−da(z)+da(y)−da(z)| ≤ distK (x, z)+
distK (z, y) = distK (x, y).
Step 3. Let an → a ∈ S p . Then ψε ◦ han → ψε ◦ ha and ∇ψε ◦ han → ∇ψε ◦ ha a.e. on K .

We can assume C(a) �= ∅. In fact, this happens only if a = (±1, 0, . . . , 0) and Lemma A.3
implies that dan → +∞ uniformly in that case. Therefore, ψε ◦ han → ψε ◦ ha = ±1 and
∇ψε ◦ han = ψ ′ε(han )∇han → 0 a.e. on K , by the properties of ψε.

By Claim 2, we know that the function dz satisfies |∇dz | = 1 a.e. on K and if zn → z,
then dzn → dz and ∇dzn → ∇dz a.e. on K . The idea is to use Lemmas A.1, A.3 and A.2
from the appendix to conclude that a similar statement holds for da .

Let D ∈ C be an open disc such that

(1) f (K ) ∪ C(a) ⊂ D
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(2) distC(w, f (K )) > diam(M)+ distC(C(a), f (K )) for every w ∈ C \ D.

Take any sequence an → a in S p . By Lemma A.3 we know C(an) ∩ D → C(a)

in the Hausdorff distance. This and (2) implies that, for n big enough, distC(w, f (K )) >

diam(M)+distC(C(an)∩D, f (K )) for every w ∈ C\D. In particular, there is z ∈ C(an)∩D
such that dz < dw for every w ∈ C \ D. More precisely, let z ∈ C(an) ∩ D be such that
distC(z, f (K )) is minimum. Then, for every x ∈ K ,

dz(x) = dist(x, �Re(z))+ distC(z, f (K ))

≤ diam(M)+ distC(C(an) ∩ D, f (K ))

< distC(w, f (K )) ≤ dw(x).

Therefore, to compute dan it is enough to take the minimum among the roots C(an) ∩ D,
i.e. dan (x) = min{dz(x) : z ∈ C(an) ∩ D}. By Lemma A.3 we can label these roots
as ξn = (z1(n), . . . , z j (n)) and the roots of C(a) as ξ = (z1, . . . , z j ), in such a way that
ξn → ξ . By Claim 2, Lemma A.1 and Item (3) from Lemma A.2 we conclude that if an → a,
then dan → da and ∇dan → ∇da a.e. on K .

Now, choose x such that da(x) > 0 and choose y ∈ F−1
ρ (x). For n big dan (x) > 0 and

since Pan ( f (y)) → Pa( f (y)) we must have sgnan
(x) → sgna(x). Therefore,∇han → ∇ha

a.e. on K and the statement of Step 3 holds because ψε is a smooth function.
Step 4. The function ĥa : S p → H1(M) is odd, follows from sgna(x) = −sgn−a(x)

whenever da(x) > 0. Finally, that ĥa is continuous follows from (2) of Lemma A.2. ��

Combining the results above we can prove the main theorem of this section.

Proof of Theorem 4.1 We can estimate the energy of ĥa using (1) from Lemma A.2.
First, observe that since |∇ha | ≡ 1 a.e. we can use the coarea formula to estimate the

energies of ψε ◦ ha in each cube α ∈ K (k)n .

Eε|α(ψε ◦ ha) =
∫

α

ε

2
|∇ψε ◦ ha |2 + 1

ε
W (ψε ◦ ha) dHn

=
∫ ∞

−∞

[
ε
ψ ′ε(s)2

2
+ W (ψε(s))

ε

]
·Hn−1({ha = s} ∩ α) ds

By (1) from Lemma A.2, there is a constant C > 0 such that

Eε(ĥa) = Eε(ψε ◦ ha ◦ G−1) ≤ C
∑

α∈K (k)n

∫
α

ε

2
|∇ψε ◦ ha |2 + 1

ε
W (ψε ◦ ha) dHn

And by the computation above we have

Eε(ĥa) ≤ 2C
∫ ∞

−∞

[
ε
ψ ′ε(s)2

2
+ W (ψε(s))

ε

]
·Hn−1({x : ha(x) = s}) ds,

since
∑

α∈K (k)n
Hn−1({ha = s} ∩ α) ≤ 2Hn−1({ha = s}), because we might be counting

areas in K (k)n−1 twice.
To estimate the area Hn−1({x : ha(x) = s}), notice that by definition

{x : ha(x) = s} ⊂ {x : min
z∈C(a)

dz(x) = |s|}.
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The geometry of �Re(z) is simple: by Lemma 4.2 it consist of (Hz ∩ αz) ∪ K (k)n−1, where
Hz ∩ αz is the transversal intersection (perhaps empty) of a hyperplane with some n-cell
αz ∈ K (k)n . It follows that {x : ha(x) = |s|} is contained in the union of the sets⋃

z∈C(a)

{x ∈ αz : d(x, Hz ∩ αz) = |s|}

and

{x ∈ K : d(x, K (k)n−1) = |s| − min
z∈C(a)

d(z, f (K ))}.

Now,

Hn−1(∪z∈C(a){x : d(x, Hz ∩ αz) = s} ≤ 2pC13−k(n−1)

and

Hn−1({x : d(x, K (k)n−1) = |s|}) ≤ Hn−1(K (k)n−1) ≤ C23kHn−1(∂ I n)

where C1 is the maximum area of the intersection of a (n − 1)-plane with the cube I n and
C2 is the number of n-cells in K .

Choosing 3k ≤ p1/n ≤ 3k+1, we have for some constant C = C(M) > 0

Hn−1({x : ha(x) = s}) ≤ 2pC13−k(n−1) + C23kHn−1(∂ I n) ≤ Cp1/n .

Finally, we have

Eε(ĥa) ≤ Cp1/n ·
∫ ∞

−∞

[
ε
ψ ′ε(s)2

2
+ W (ψε(s))

ε

]
ds ≤ 2σCp1/n .

Therefore,

cε(p) ≤ 2σCp1/n .

��

5 Lower bound

The main theorem of this section is the following sublinear lower bound for the limit min–max
values.

Theorem 5.1 Let Mn be a compact Riemannian manifold. There exists a constant C =
C(M) such that the min–max values cε(p) satisfy:

Cp
1
n ≤ lim inf

ε→0+
cε(p)

for all p ∈ N.

The following lemma will be a key ingredient in the proof. Roughly speaking, it asserts that
the energy Eε of a function with zero average in a geodesic ball Br (x) ⊂ M , is comparable
to rn−1. In what follows Eε|A(u) = ∫A ε|∇u|2/2+W (u)/ε, for A ⊂ M measurable.

Lemma 5.2 There exist r0 = r0(M) > 0 and c1 = c1(M, W ) > 0 such that

Eε|Br (u) ≥ c1rn−1,

whenever ε ≤ r ≤ r0, Br = Br (x) for some x ∈ M, |u| ≤ 1 and
∫

Br
u = 0.
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Let us show first how Lemma 5.2 implies Theorem 5.1 and postpone its proof to the end
of the section.

Proof of Theorem 5.1 Recall the following fact: there is a positive constant ν = ν(M) > 0
such that, for all p ∈ N, we can find p disjoint closed geodesic balls B1, . . . , Bp ⊂ M of

radius rp = νp− 1
n (compare with [30, §3]). Here Bi = Bi (xi ) for some xi ∈ M and we

assume ν is smaller than the r0 given by Lemma 5.2, in particular rp ≤ r0.
The following version of the Borsuk-Ulam property for the cohomological index, implies

that for every A ∈ Fp , there exists u ∈ A such that
∫

Bi
u = 0, for every i = 1, . . . , p. ��

Lemma 5.3 Given a paracompact Z/2-space A with IndZ/2(A) ≥ p+ 1, every continuous
equivariant function f : A → R

p has a zero, i.e., f −1(0) �= ∅.

Proof Suppose, by contradiction, that we can find f : A → R
p continuous, equivariant

and such that f −1(0) = ∅. Define ϕ : A → S p−1 by ϕ(x) = x
||x || , for x ∈ A. Then ϕ is a

continuous equivariant map, and thus

p + 1 ≤ IndZ/2(A) ≤ IndZ/2(S p−1) = p,

which is a contradiction. ��
Remark The previous lemma holds more generally for any topological Z/2-index, for it
holds IndZ/2(S p) ≤ p + 1 for every such index. See the “Appendix B” for more details.

By replacing A with τ(A) if necessary (where τ : H1(M) → H1(M) is the truncation
map defined in the proof of Theorem 3.3 ) we might assume that |u| ≤ 1, for every u ∈ A,
since τ(A) ∈ Fp and sup Eε(A) ≥ sup Eε(τ (A)).

Now choose ε so that 0 < ε ≤ rp ≤ r0. Lemma 5.3 implies the existence of u ∈ A with∫
Bi

u = 0. Finally, Lemma 5.2 implies

Eε(u) ≥
p∑

i=1

Eε|Bi (u) ≥ c1 prn−1
p = c1ν

n−1 p1/n .

Hence, we have maxu∈A Eε(u) ≥ Cp1/n , for every A ∈ Fp and ε ∈ (0, rp), where C =
c1ν

n−1. In particular, for every ε ∈ (0, rp) we have

Cp1/n ≤ cε(p).

This proves Theorem 3.2.

Proof of Lemma 5.2 By the compactness of M and a comparison argument, we may assume
that r0 = r0(M) is such that we can find a constant c = c(M) > 1 such that

1

c
rn ≤ Hn(Br (x)) ≤ crn, for all x ∈ M, r ∈ (0, r0). (5)

Denote |A| = Hn(A) for A ⊂ M and, for a fixed a ∈ (0, 1),

A+ = {x ∈ Br : a ≤ u}
A0 = {x ∈ Br : −a < u < a}

A− = {x ∈ Br : u ≤ −a}
.

��
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The lemma is a consequence of the interplay between two inequalities. The first one is an
isoperimetric inequality due to De Giorgi (see [10, Lemma 1.4]). Roughly speaking, it states
that functions in H1(M) cannot have jump singularities.

Lemma 5.4 There exist c0 = c0(M) > 0 and r0 = r0(M) > 0 such that for every u ∈
H1(M), for all real numbers a0 < b0, for every r ∈ (0, r0), and for all x ∈ M, we have

|{u ≤ a0} ∩ Br (x)| · |{u ≥ b0} ∩ Br (x)|1− 1
n ≤ c0rn

b0 − a0

∫
{a0<u<b0}∩Br (x)

|∇u|. (6)

The second inequality (which proof we omit since it is obtained as in [29, §6]) is

|A±| ≥ a

2
|Br | −W (a)−1εEε|Br (u) ≥ a

2c
rn −W−1(a)εEε|Br (u). (7)

It is a consequence of W (a)|A0| ≤ εEε|Br (u) (which follows directly from the definitions of
W and Eε), the fact that |u| ≤ 1 with

∫
Br

u = 0 and (5). Notice that we can assume a
2c rn −

W−1(a)εEε|Br (u) ≥ 0. Otherwise ε < r and (5) would imply Eε|Br (u) > aW (a)(2c)−1 ·
rn−1, which is what we want to prove.

Combining (6) and Lemma 5.4 (with −a0 = b0 = a) we obtain
∣∣∣∣ a

2c
rn −W (a)−1εEε|Br (u)

∣∣∣∣
2−1/n

≤ c0

2a
rn
∫

A0

|∇u|.

Moreover,
∫

A0

|∇u| ≤ |A0|1/2
(∫

Br

|∇u|2
)1/2

≤
(

W (a)−1εEε|Br (u)

)1/2 (2

ε
Eε|Br (u)

)1/2

≤
(

2

W (a)

)1/2

Eε|Br (x)(u). (8)

Now (8) and (5) imply
∣∣∣∣ a

2c
rn −W (a)−1εEε|Br (u)

∣∣∣∣
2−1/n

≤ c2rn Eε|Br (u),

where c2 = c0(a
√

2W (a))−1 and since ε/r ≤ 1 by hypothesis, we conclude
∣∣∣∣ a

2c
−W (a)−1 Eε|Br (u)

rn−1

∣∣∣∣
2−1/n

≤ c2
Eε|Br (u)

rn−1 .

This inequality is of the form |A − Bs|2−1/n ≤ Cs, where s = Eε|Br (u)/rn−1 and
A, B and C are positive constants depending only on M and W . Since it does not hold
true when s = 0, it implies that s cannot be arbitrarily small. In particular, there exists
c1 = c1(A, B, C) > 0 such that s ≥ c1, and the lemma follows. ��

6 Comparison with Marques–Neves p-widths

In this section, we show that the min–max values for the energy functional and cohomological
families are bounded below, as ε → 0+, by the corresponding p-widths ωp(M) of Almgren–
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Pitts min–max theory, defined in terms of high-parameter families of sweepouts in [40]. More
precisely we prove

Theorem 6.1 For every p ∈ N, it holds

ωp(M) ≤ 1

2σ
lim inf
ε→0+

cε(p).

As we will see later, the p-widths, ωp(M), are defined in [40] in terms of maps � :
X → Zn−1(M,Z/2) where X is a cubical complex and Zn−1(M,Z/2) is the space of mod
2 integral (n − 1)-cycles in M with zero boundary. However, the min–max values cε(p) are
defined in terms of the elements of Fp which can be very different from continuous images of
cubical complexes. Because of this, in order to prove Theorem 6.1 we will first approximate
a set A ∈ Fp which is almost optimal (in the sense that its energy is close to cε(p)) by the
image of an odd map h from a p-dimensional cubical complex into H1(M).

In what follows, we will use the notation for cubical complexes discussed in the Notation
section of the Introduction.

6.1 Cubical subcomplexes and min–max values

Initially, we need to show that the min–max value cε(p) can be obtained by restricting
ourselves to sets which are the image of certain p-dimensional subcomplexes of Q(m, k) by
odd maps into H1(M).

Fix p ∈ N and denote by Cp the family of all X that are p-dimensional symmetric cubical
subcomplexes of Q(m, k), for some m, k ∈ N, with IndZ/2(X) ≥ p + 1. For every such X ,
we consider also the family 
(X) of all continuous odd maps h : X → H1(M)/{0} and its
associated min–max values

cε(X) = inf
h∈
(X)

sup
h(X)

Eε.

By the monotonicity property of the index, we have h(X) ∈ Fp for all h ∈ 
(X), thus
cε(p) ≤ cε(X). Moreover, we have (compare with [40, Lemma 4.7] and [42, §1.5])

Lemma 6.2 For all p ∈ N, it holds

cε(p) = inf
X∈Cp

cε(X).

Proof Given δ > 0, let A0 ∈ Fp be such that sup Eε(A0) ≤ cε(p) + δ/2. Given an
arbitrary neighborhood U of A0 in H1(M) \ {0}, we can find a subspace E ⊂ H1(M) with
m := dim E < +∞ and A ⊂ U∩E such that IndZ/2(A) = IndZ/2(A0) (see [18, Proposition
3.1]). We identify E with R

m by a linear isomorphism T : Rm → E such that T (Qm) is
a cube in H1(M) containing A in its interior. Under this identification, choose k ∈ N such
that α ⊂ U for every m-cell α ∈ Q(m, k)m with α ∩ A �= ∅. If Xm is the union of all such
cells, then A ⊂ Xm ⊂ U and thus IndZ/2(Xm) ≥ p + 1, provided we choose U so that
IndZ/2(U ) = IndZ/2(A). Let X be the p skeleton of Xm , that is, the union of all p-cells of
Xm . We claim that X ∈ Cp . If U also satisfies sup Eε(U ) ≤ sup Eε(A0) + δ/2, then it will
follow that

cε(X) ≤ sup Eε(U ) ≤ sup Eε(A0)+ δ

2
≤ cε(p)+ δ.

Hence, inf X∈Cp cε(X) ≤ cε(p). In order to show that X has index ≥ p + 1, it suffices
to observe that H p(Xm, X;Z/2) = 0. The exactness of the cohomology sequence of
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the pair (Xm, X) implies then that the inclusion X ↪→ Xm induces an injective morphism
H p(Xm,Z/2) → H p(X,Z/2). Therefore, we have IndZ/2(X) ≥ IndZ/2(Xm) ≥ p+ 1 and
X ∈ Cp . ��
6.2 p-widths

Now we are ready to present the definitions of p-sweepouts and the p-widths, ωp(M),
following [40].

Let X be a cubical subcomplex of Q(m, k) and � : X → Zn−1(M,Z/2) be a continuous
map in the flat metric. We say that � is a p-sweepout if

�∗(β p) �= 0 in H p(X,Z/2)

for some non-trivial cohomology class β ∈ H1(Zn−1(M,Z/2),Z/2).
We recall that the first cohomology group of each connected component ofZn−1(M,Z/2),

withZ/2-coefficients, is isomorphic toZ/2. In fact, in the next subsection we present the more
complete description of the cohomology groups of Zn−1(M,Z/2) with Z/2-coefficients, as
discovered by Almgren [2].

A cubical subcomplex X of Q(m, k) is said to be p-admissible if there exists a p-sweepout
� : X → Zn−1(M,Z/2) that has no concentration of mass, i.e.

lim
r→0+

sup {||�(x)||(Br (p)) : x ∈ dmn(�), p ∈ M} = 0.

We remark that a map into Zn−1(M,Z/2) which is continuous in the mass norm has no
concentration of mass (see [40, Lemma 3.8]). The set of all p-sweepouts with no concentration
of mass will be denoted by Pp .

Define the p-width of M as

ωp(M) = inf
�∈Pp

sup
x∈dmn(�)

M(�(x)).

Arguing as in [42, §1.5] (or as in the proof of Lemma 6.2) we see that it suffices to consider
p-sweepouts defined in p-dimensional cubical complexes, i.e.

ωp(M) = inf

{
sup

x∈dmn(�)

M(�(x)) : � ∈ Pp, dim dmn(�) = p

}
.

6.3 Proof of Theorem 6.1

Theorem 6.1 is a direct consequence of the following approximation result:

Theorem 6.3 Fix σ̃ ∈ (0, σ/2). There exist positive constants C = C(p, M) and δ0 =
δ0(p, M) with the following property. Given δ1 ∈ (0, δ0), we can find ε0 = ε0(δ1) ∈ (0, δ1)

such that for all ε ∈ (0, ε0) and every X ∈ Cp with cε(X) ≤ cε(p) + ε, there exists an
even map � : X → Zn−1(M,Z/2) which is continuous with respect to the mass norm and
satisfies

sup
x∈X

M(�(x)) ≤ cε(p)+ ε

4σ̃
+ Cδ1.

Moreover, the map �̃ : X̃ → Zn−1(M,Z/2) induced by � in the orbit space X̃ = X/{x ∼
−x}, is a p-sweepout.
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Let us show now how this result implies Theorem 6.1.

Proof of Theorem 6.1 Observe that

ωp(M) ≤ cε(p)+ ε

4σ̃
+ (p + c0(p, M)bp)δ1.

for all δ1 ∈ (0, min{νM , c(p, M)}), ε ∈ (0, ε0(δ1)) and σ̃ ∈ (0, σ/2). Hence, making δ1 ↓ 0
(which implies ε0(δ1) ↓ 0), we obtain

ωp(M) ≤ lim infε→0+ cε(p)

4σ̃
,

and finally, as σ̃ ↑ σ/2,

ωp(M) ≤ 1

2σ
lim inf
ε→0+

cε(p).

��
The following subsections comprise the proof of Theorem 6.3, which follows ideas from

[29]. Here we present a sketch of its proof.
Let X ∈ Cp with cε(X) ≤ cε(p)+ε. Ideally, given h ∈ 
(X), we would like to select a level

set of h(x) ∈ H1(M) for each x ∈ X , in such a way that they form a map X → Zn−1(M,Z/2)

continuous in the mass norm, with no concentration of mass and with mass controlled by
cε(p)+ ε. The problem with this is that continuity in H1(M) does not even imply continuity
in the mass norm for the level sets. However, we can still show that, roughly speaking, the
level sets of h(x) vary continuously with respect to the flat norm. In [40], in order to pass
from maps which are continuous in the flat norm to maps that are continuous in the mass
norm, the additional condition of no concentration of mass is required. In the same article
they conjecture that such additional condition might not be necessary. Fortunately to us, this
has been recently proved in X. Zhou [65].

We apply a result from [65] in a discrete setting. More precisely, Theorem 6.12 allow us
to interpolate a discrete map defined only on the vertices of X (k)0 (for some k) which is fine
in the flat norm, to a map on X (l)0 (for some bigger l) which is fine in the mass norm. Then
we can apply another interpolation result from [40] that allow us to construct a continuous
extension of this map to the whole cubical complex X , with controlled mass.

Finally, to verify that the map obtained after the interpolations is topologically non-trivial,
we relate the cohomological index IndZ/2 with the cohomology of Zn−1(M,Z/2). We do
this by realizing the set of integral flat chains modulo 2 as an orbit space of a free Z2-space.
To this end, we rely on the fact that the homotopy groups of Zn−1(M,Z/2) are the same of
the infinite dimensional projective space RP

∞, as proven by Almgren in [2].

6.4 Interpolation: discrete to continuous

Recall that the fineness of a map φ : X ( j)0 → Zn−1(M,Z/2) is defined by

f(φ) = sup {M(φ(x)− φ(y)) : x, y ∈ X ( j)0 adjacent vertices} .
This notion can be thought as the discrete counterpart of the modulus of continuity of a map
into Zn−1(M,Z/2) with respect to the mass norm. Similarly, we can consider the fineness of
a discrete map with respect to the flat metric by replacing the mass with F in the definition
above.
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The next theorem, which follows from [41, Theorem 14.1] (see also [40]) allows us to
obtain maps into Zn−1(M,Z/2) which are continuous in the mass norm from a discrete map
with small fineness.

Theorem 6.4 Given p ∈ N, there exist constants C0 = C0(p, M) > 0 and δ0 = δ0(M) > 0
with the following property: given a p-dimensional cubical subcomplex X of some Q(m, k)

and a discrete map φ : X0 → Zn−1(M,Z/2) with f(φ) < δ0, there exists a map � : X →
Zn−1(M,Z/2) which is continuous with respect to the mass norm satisfying:

(1) � extends φ, that is, �|X0 = φ.
(2) For every j and every α ∈ X j , the restriction of � to α depends only on the values of

φ(x) for x ∈ α0.
(3) For all x, y ∈ X which lie in a common p-cell of X, it holds

M(�(x)−�(y)) ≤ C0 f(φ).

Following [40], the map � given by the theorem above will be called the Almgren extension
of φ. We emphasize that the constant C above depends only on the dimension of the cubical
complex X , and not on m.

6.5 Almgren’s isomorphism

In the seminal paper [2], F. Almgren proved that the i-th homotopy group of the space of mod
2 k-dimensional integral flat chains in M , Zk(M,Z/2), with the flat topology is isomorphic
to the (k + i)-th homology group of M , with Z/2 coefficients, i.e.

πi (Zk(M,Z/2), {0}) � Hk+i (M,Z/2),

for all i . We denote by

FA : π1(Zn−1(M,Z/2), {0}) → Hn(M,Z/2)

the corresponding isomorphism for k = n−1 and i = 1. Since Hn(M,Z/2) is isomorphic to
Z/2, and Hn+i (M,Z/2) are trivial for i ≥ 1, Almgren’s result shows that the path connected
component of Zn−1(M,Z/2) containing 0 has the same homotopy groups of the infinite
dimensional real projective space RP

∞.

Remark 6.5 For i = 0, we get a bijection between π0(Zn−1(M,Z/2)), which can be iden-
tified with the set of path connected components of Zn−1(M,Z/2), and Hn−1(M,Z/2). In
particular, if this homology group is non-trivial, then Zn−1(M,Z/2) is not path connected.
Nevertheless, all path connected components of the space of chains are isometric, since it
is a topological group with respect to the flat metric and the translations are isometries.
Furthermore, from the description of Almgren’s isomorphism given below, we see that it is
possible to extend FA to the fundamental group of Zn−1(M,Z/2) with base point in any path
connected component. Hence, we can omit the reference to the base point in the fundamental
group of Zn−1(M,Z/2), keeping in mind that it refers to the fundamental group of a certain
path connected component.

The isomorphism FA can be explicitly described as follows. There are constants νM > 0
and ρM > 0 such that for every cycle T ∈ Zn−1(M,Z/2) with F(T ) < νM , there exists
an integral Z/2 current S ∈ In(M) such that ∂S = T and M(S) ≤ ρMF(T ). Such current
S is called an isoperimetric choice for T . It is possible to show that, if we choose νM small
enough, this choice is actually unique (see [40]).
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Given a map φ : S1 → Zn−1(M,Z/2) continuous in the flat topology, we choose k ∈ N

so that

F(φ(x j+1)− φ(x j )) ≤ νM for j = 0, . . . , 3k − 1,

where x j = e2π i · j3−k
. If A j is the isoperimetric choice for φ(x j+1)− φ(x j ), then Almgren

defines

FA([φ]) =
⎡
⎣3k−1∑

j=0

A j

⎤
⎦ ∈ Hn(M,Z/2).

We say that φ is a sweepout if this homology class is non-trivial, which amounts to φ being
a homotopically non-trivial path in Zn−1(M,Z/2).

If Z is a path connected component of Zn−1(M,Z/2), then by Hurewicz Theorem and
Remark 6.5 we see that the first homology group (with integer coefficients) of Z is isomorphic
to Z/2. By the Universal Coefficient Theorem for cohomology, it follows that

H1(Z ,Z/2) � Z/2, for all Z ∈ π0(Zn−1(M,Z/2)).

Remark 6.6 As pointed in [40], a continuous map � : X → Zn−1(M,Z/2) defined on
a cubical complex X is a p-sweepout if and only if we can find a cohomolgy class β ∈
H1(X,Z/2) with β p �= 0 and the following property: given a cycle γ : S1 → X , we have
β[γ ] �= 0 iff � ◦ γ is a sweepout. By Remark 6.5 and the description of FA given above, we
see that this fact holds for the other connected components of Zn−1(M,Z/2) as well.

Remark 6.7 The lower bound in Theorem 6.1 may be described more precisely in terms
of sweepouts which detect the non-trivial cohomology class λ ∈ H1(Zn−1(M,Z/2),Z/2)

of the path component of 0 in Zn−1(M,Z/2). In other terms, we will prove that cε(p) is
bounded below by 2σ · ω(λp, M), as ε → 0+, where ω(λp, M) ≥ ωp(M) is the min–max
value associated to the family of sweepouts which detect λp .

6.6 IndZ/2 and non-trivially of p-sweepouts

In this subsection we establish a relation between the cohomological index IndZ/2 and the
notion of p-sweepout, which will serve as a criterion for checking the non-triviality of the
p-sweepouts.

For this purpose, we compare non-trivial cohomology classes in H1(RP∞,Z/2)

and H1(Zn−1(M,Z/2),Z/2). We do this in terms of equivariant maps by realizing
Zn−1(M,Z/2) as the orbit space of a free Z/2-space. From the discussion presented after
the definition of Almgren’s Isomorphism, we observe that the path connected components of
Zn−1(M,Z/2) are Eilenberg-Mac Lane spaces of type K (Z/2, 1), which means its homo-
topy groups are null except the first which is isomorphic to Z/2 (see [59]). Hence a natural
candidate for this Z/2-space is the universal covering space of one of the connected com-
ponents of Zn−1(M,Z/2). To guarantee that this covering space exists, we need to verify
that Zn−1(M,Z/2) is locally path connected and semi-locally simply connected. The latter
follows directly from [40, Corollary 3.6], while the former is a consequence of the results of
[2], as we state below.

Lemma 6.8 The space Zn−1(M,Z/2) is locally path connected with respect to the flat
topology, that is, the path connected components of every open set U ⊂ Zn−1(M,Z/2) in
the flat topology are open.
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Proof It suffices to verify the result for the open balls U = BF
r (T ) in the flat metric, for

every T ∈ Zn−1(M,Z/2) and r > 0. Let C ⊂ U be a path connected component of U and
let S ∈ C . It follows from [2, Theorem 8.2] that we can find a r1 > 0 with the following
property: for every S′ ∈ BF

r1
(S), there exists a continuous path α : [0, 1] → BF

r (T ) such
that α(0) = S α(1) = S′. This shows that S and all S′ ∈ BF

r1
(S) belong to the same path

connected component of U , that is, BF
r1

(S) ⊂ C . Since S ∈ C is arbitrary, this shows that C
is open. ��

We can now state and prove the main result of this subsection.

Proposition 6.9 Let X be a symmetric cubical subcomplex of Q(m, k) with IndZ/2(X) ≥
p + 1, for some m, k ∈ N, and � : X → Zn−1(M,Z/2) be a continuous map in the flat
topology. Suppose that � is even and consider the induced map �̃ : X̃ → Zn−1(M,Z/2)

such that �̃ = p ◦ �, where p : X → X̃ = X/{x ∼ −x} is the orbit map. If the induced
homomorphism �̃∗ : π1(X̃)→ π1(Zn−1(M,Z/2)), satisfies ker �̃∗ = p∗π1(A), then �̃ is
a p-sweepout.

Proof We can assume that X is path connected, since one of its path connected components
must have cohomological index ≥ p + 1. Denote by Z the path connected component of
Zn−1(M,Z/2) containing �(X). From the previous lemma and Corollary 14 of [59, §2.5],
we see that there exists a covering map π : E → Z with π1(E) = 0. Since the morphism

�∗ = �̃∗ ◦ p∗ : π1(X̃)→ π1(Z)

is trivial, we can lift � to a continuous map F : X → E , so that π ◦ F = �. We regard E
as a Z/2-space with the natural action of π1(Z) � Z/2.

We assert that the map F is equivariant. In fact, choose a path α : [0, 1] → X such
that α(1) = −α(0). Then [p ◦ α] is non-trivial in π1(X̃ , p ◦ α(0)) and does not belong
to p∗π1(X, α(0)), which shows that �̃∗[p ◦ α] = [� ◦ α] is nonzero in π1(Z). We will
prove that the action of [p ◦ α] on X induced by the action of π1(X̃) on X agrees with the
antipodal map. In fact, let x ∈ X and choose a path γ : [0, 1] → X joining x to α(0). We
write γ̃ = p ◦ γ and β̃ = γ̃−1 ∗ (p ◦ α) ∗ γ̃ . The lift β of β̃ with respect to p satisfies
β(1) ∈ p−1(p(β(1))) = {x,−x} and β(1) = [p ◦ α] · x . Noting that the action of π1(X̃) on
X is free, we get [p ◦ α] = −x . To conclude that F is equivariant, we observe that F ◦ β is
a lift of �̃(β̃) = (π ◦ F ◦ γ )−1 ∗ (� ◦ α) ∗ (π ◦ F ◦ γ ) and therefore

F(−x) = F(β(1)) = [� ◦ α] · F(γ (0)) = [� ◦ α] · x .

Now let ξ : E → S∞ be a continuous equivariant map, so that ξ̃ : Z → RP
∞ is a

classifying map for the Z/2-bundle E → Z . From the claim above, we see that the map
f̃ = ξ̃ ◦ �̃ is a classifying map for X → X̃ . If w is the non-trivial cohomology class in
H1(RP∞,Z/2), then λ := f̃ ∗w ∈ H1(X̃ ,Z/2) satisfies λp �= 0. We will show that given a
path γ : S1 → X̃ , we have λ[γ ] �= 0 if, and only if, �̃ ◦ γ is a sweepout. By Remark 6.6,
this proves that �̃ is a p-sweepout.

Given such a path, we have

f̃ ∗(w)[γ ] = λ[γ ] �= 0 ⇐⇒ w(ξ̃∗[�̃ ◦ γ ]) �= 0 ⇐⇒ ξ̃∗[�̃ ◦ γ ] �= 0 in H1(RP
∞).

Using Hurewicz Theorem, one easily verifies that ξ̃ induces an isomorphism H1(Z) →
H1(RP

∞) and

λ[γ ] �= 0 ⇐⇒ [�̃ ◦ γ ] �= 0 in H1(Z) ⇐⇒ [�̃ ◦ γ ] �= 0 in π1(Z),

This shows that λ[γ ] �= 0 if, and only if, � ◦ γ is a sweepout, and the claimed result. ��
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6.7 Construction of a discrete map fine in the flat norm

In this subsection we show how to obtain discrete even maps into Zn−1(M,Z/2) which are
fine in the flat metric, from maps in 
(X). We do this for sufficiently small ε > 0 and almost
optimal complexes X ∈ Cp . More precisely, we choose finite perimeter sets {h(x) > sx } for
each vertex x ∈ X (k)0, in a sufficiently fine subdivision of X , in such a way that for each
pair of adjacent vertices the perimeter of these sets are close in the flat metric. This gives us
a first discrete approximation of a p-sweepout.

Fix σ̃ ∈ (0, σ/2), where σ = ∫ 1
−1

√
W (s)/2 ds, and let h ∈ 
(X) for some X ∈ Cp which

is a cubical subcomplex of Q(m, k), with m, k ∈ N. For each x ∈ X write hx = h(x) ∈
H1(M) and consider its normalization given by h̃x = � ◦ hx , where � : R → R is the
function

�(t) =
∫ t

0

√
W (s)/2 ds.

Notice that � takes values in the interval [−σ/2, σ/2]. This normalization is intended so that
the BV -norm of h̃x is bounded by the energy of hx . More precisely we have

|∇h̃x | =
√

W (hx )/2 · |∇hx | ≤ 1

2

(
ε|∇hx |2

2
+ W (hx )

ε

)
. (9)

For every x ∈ X , there exists s̃x ∈ [−σ̃ , σ̃ ] for which {h̃x > s̃x } is a set of finite perimeter
satisfying

2σ̃M(∂�{h̃x > s̃x }�) = 2σ̃ ||∂{h̃x > s̃x }||(M) ≤
∫ σ̃

−σ̃

||∂{h̃x > s}||(M) ds,

where ||∂ E || denotes the total variation measure of 1E for a set E ⊂ M of locally finite
perimeter and �U� denotes the mod 2 flat n-current associated to an open set U ⊂ M . The
equality on the left follows from [57, Remark 27.7]. Furthermore, by (9) and the coarea
formula for BV functions (see [21, §5.5]),

∫ σ̃

−σ̃

||∂{h̃x > s}||(M) ds ≤ ||Dh̃x ||(M) =
∫

M
|∇h̃x | ≤ Eε(hx )/2.

Which implies

M(∂�{h̃x > s̃x }�) ≤ Eε(hx )/4σ̃ .

By the symmetry of h, we see that s̃x may be chosen so that s̃−x = −s̃x . Since for every
x ∈ X the set of all s ∈ [−σ̃ , σ̃ ] for which the set {h̃x = s} has positive Hn measure is at
most countable, we can also assume that Hn({h̃x = s̃x }) = 0. This implies

�{h̃x > s̃x }�− �{h̃−x > s̃−x }� = �M \ {h̃x = s̃x }� = �M�, for all x ∈ X.

Since � is odd and strictly increasing, we can choose δ ∈ (0, 1) depending only on
σ̃ , so that sx := �−1(s̃x ) ∈ (−1 + δ, 1 − δ) for all x ∈ X . Now, for j ∈ N we define
φ0 : X ( j)0 → Zn−1(M,Z/2) as

φ0(x) = ∂�{hx > sx }�.
This is a good discrete approximation of a p-sweepout since, as we saw above, we have a
control for its mass in terms of the energies Eε(hx ). It is left to show that φ0 is arbitrarily fine
with respect to the flat metric provided we we pick j ∈ N sufficiently large. To obtain this
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control of the fineness in the flat norm we use the following lemma, which is a restatement
of [29, Lemma 8.11], to construct auxiliary currents �x which vary finely with respect to x
and are close to φ0(x) in the flat norm.

Lemma 6.10 Let δ ∈ (0, 1) and α ∈ (−1+ δ, 1− δ). For every h ∈ 
(X), write

�x = {hx > α}.
Given ε > 0, there exists ζ = ζ(δ, h, α, ε) > 0 such that

Hn(�x \�y) ≤ 2C−1
δ ε sup

h(X)

Eε,

for all x, y ∈ X such that |x − y| < ζ , where Cδ = W (1− δ) > 0.

Choose α ∈ (−1+ δ, 1− δ) such that, for all x ∈ X ∩Q
m , the open sets �x = {hx > α}

have finite perimeter and consider the positive number ζ = ζ(δ, h, α, ε) given by the previous
lemma. Choosing j ∈ N such that |x− y| < ζ whenever x and y are vertices of X ( j)0 which
lie in a common p-cell of X ( j).

For such x, y ∈ X ( j)0, if we write �x = ∂��x � then

F(�x , �y) ≤ M(��x �− ��y�) ≤ Hn(�x \�y)+Hn(�y \�x ).

In particular, by the lemma above, for x, y in a common p-cell we have F(�x , �y) ≤
4C−1

δ ε suph(X) Eε .
On the other hand

F(φ0(x),�x ) ≤ M
(
�{hx > sx }�− ��x �

)
≤ Hn ({sx < hx ≤ α})+Hn ({α < hx ≤ sx })
≤ Hn ({|hx | ≤ 1− δ}) ≤ C−1

δ εEε(hx ).

Where the last inequality follows directly from the definition of Eε and the hypothesis on W
([29, Lemma 8.10]).

Finally, we obtain, for every such pair of vertices,

F(φ0(x), φ0(y)) ≤ 6C−1
δ ε · sup

x∈X
(Eε ◦ hx ).

Given ρ̃ > 0, we choose ε > 0 such that 6ε(cε(p) + ε) < ρ̃Cδ , a complex X ∈ Cp and
h ∈ 
(X) such that sup(Eε ◦h) ≤ cε(p)+ ε (note that δ depends only on σ̃ ). For this choice
of X , the map φ0 satisfies

F(φ0(x), φ0(y)) < ρ̃,

for every pair of vertices x, y ∈ X ( j)0 which lie in a common p-cell of X ( j)0 (in particular,
for adjacent vertices). Furthermore,

sup
x∈X ( j)0

M(φ0(x)) ≤ sup
x∈X ( j)0

Eε(hx )

4σ̃
≤ cε(p)+ ε

4σ̃
.

Remark 6.11 The calculations above are essentially the reason why the discrete map φ0 will
give rise to a p-sweepout when interpolated. They show that φ0 = ∂� for a discrete map
� : X ( j)0 → In(M,Z/2) with small fineness in the mass norm satisfying �(x)+�(−x) =
�M� for all x ∈ X ( j)0. It follows that the image of every closed discrete path in X ( j)0 under
φ0 is the image of a closed discrete path in In(M,Z/2) under the boundary operator and
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hence it must be in the kernel of Almgren’s isomorphism. Similarly, a discrete path α in
X ( j)0 joining a pair of antipodal points is mapped by φ0 to the boundary of a discrete path
in In(M,Z/2) with the property that the sum of its extremes equals �M�; this shows that
FA([α]) is non-trivial. See the following Remark 6.13 for more details.

6.8 Construction of a p-sweepout: interpolation from the flat to the mass norm

The discrete map φ0 : X ( j)0 → Zn−1(M,Z/2) constructed in the last subsection can be
interpolated to produce a new discrete map with small fineness and such that its Almgren
extension induces a p-sweepout defined on the orbit space X̃ . We will now describe this
interpolation procedure.

The fundamental result we will need is the following theorem, which is a consequence of
[65, Proposition 5.8] and the compactness, with respect to the flat topology, of the space of
sets of finite perimeter and perimeter bounded above by a constant L > 0.

Theorem 6.12 Let δ, L > 0. There exist η = η(δ, L) ∈ (0, δ), � = �(δ, L) ∈ N, and a
function ξ = ξ(δ,L) : (0,+∞) → (0,+∞) such that ξ(s) → 0 as s → 0+ with the following
property. Given i, j0 ∈ N with i ≤ p, s ∈ (0, η) and a discrete map φ : I0(i, j0)0 →
Zn−1(M,Z/2) such that:

(1) F(φ(x), φ(y)) < s for all x, y ∈ I0(i, j0)0;
(2) supx∈I0(i, j0)0

M(φ(x)) ≤ L;
(3) for each x ∈ I0(i, j0)0, there exists a set Ux ⊂ M of finite perimeter such that φ(x) =

∂�Ux �,

there exists φ̃ : I (i, j0 + �)0 → Zn−1(M,Z/2) satisfying:

(1) F(φ̃(x), φ̃(y)) < ξ(s) for all x, y ∈ I (i, j0 + �)0;
(2) supx∈I (i, j0+�)0

M(φ̃(x)) ≤ supI0(i, j0)0
M(φ)+ δ

(3) φ̃ = φ ◦ n( j0 + �, j0) on I0(i, j0 + �)0;
(4) for each x ∈ I (i, j0 + �)0, there exists a set Vx ⊂ M of finite perimeter such that

φ̃(x) = ∂�Vx �, and Vx = Ux if x ∈ I0(i, j0)0.
(5) f(φ̃) ≤ δ, if i = 1, and f(φ̃) ≤ b(f(φ) + δ) if i > 1, where b = b(p) is a positive

constant;
(6) if i = 1 and δ < νM then the sum of the isoperimetric choices for (φ̃((v+1)3−( j0+�))−

φ̃(v3−( j0+�))), for v = 0, . . . , 3 j0+�−1, equals T = �U[1]�− �U[0]�, provided M(T ) <

Vol(M)/2.

We will apply this result inductively to the cells of X ( j) to obtain, for each small δ1 > 0,
an ε0 = ε0(δ1) ∈ (0, δ1) satisfying the conclusion of Theorem 6.3. In particular, for every
ε ∈ (0, ε0) and every h ∈ 
(X) such that supX (Eε ◦ h) ≤ cε(p)+ ε, we will be able to find
a discrete map φp : X ( jp)0 → Zn−1(M,Z/2), jp ≥ j , with the following properties:

(1) M(φp(x)) ≤ 1
4δ̃

(cε(p) + C0δ1) for all x ∈ X ( jp)0, for a constant C0 > 0 depending
only on p and M ;

(2) φp = φ0 ◦ n( jp, j) on X ( j)0;
(3) f(φ̃p) ≤ c · δ1, for a constant c = c(p) > 0;
(4) For each 1-cell τ ∈ X ( j)1, if ατ : [0, 1] → τ is an affine homeomorphism, then

Qτ = �{hατ (1) > sατ (1)}�− �{hατ (0) > sατ (0)}�,
where Qτ is the sum of the isoperimetric choices for the currents (φp◦ατ )((v+1)3−�p )−
(φp ◦ ατ )(v3−�p ) for v = 0, . . . , 3�p − 1 and �p = jp − j .
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Remark 6.13 The last item above will guarantee that if τ1, . . . , τa ∈ X ( j)1 are such that we
can choose the corresponding homeomorphisms ατv in a way that ατv (1) = ατv+1(0), for
v = 1, . . . , a − 1, then

a∑
v=1

Qτv =
a∑

v=1

(
�{hατv (1) > sατv (1)}�− �{hατv (0) > sατv (0)}�

)

= �{hατa (1) > sατa (1)}�− �{hατ1 (0) > sατ1 (0)}�.
In particular, if ατa (1) = ατ1(0), we have

∑a
v=1 Qτv = 0, while ατa (1) = −ατ1(0) implies

a∑
v=1

Qτv = �{hατa (1) > sατa (1)}�− �{hατ1 (0) > sατ1 (0)}� = �M�.

These facts will be used to verify the topological non-triviality of the Almgren extension of
φp .

Let δ1 ∈ (0, min{νM , c(p, M)}), where c(p, M) is a constant depending only on p and
M to be chosen later, and

L1 =
supε∈(0,1] cε(p)+ 1

4δ̃
.

For each i = 1, . . . , p, let Li = L1 + (i − 1)δ1, �i =∑p
v=1 �(δ1, Lv) and ξi = ξ(δ1,Li ). We

choose s1 ∈ (0, η(δ1, L1)/4) such that s1 < Vol(M)/2 and

2(i + 1)(ξi ◦ ξi−1 ◦ · · · ◦ ξ1)(s1) < η(δ1, Li+1), for i = 1, . . . , p − 1.

There exists ε0 = ε0(δ1) ∈ (0, δ1) such that for all ε ∈ (0, ε0)we have 6ε(cε(p)+ ε) < s1Cδ .
For such ε, choose h ∈ 
(X) for some X ∈ Cp such that sup(Eε ◦ h) < cε(p)+ ε. Then the
construction of the last subsection gives a map φ0 : X ( j)0 → Zn−1(M,Z/2) satisfying

F(φ0(x), φ0(y)) ≤ M
(
�{hx > sx }�− �{hy > sy}�

)

≤ 6ε(cε(p)+ ε)

Cδ

< s1 < η(δ1, L1)

for every pair of vertices x, y ∈ X ( j)0 which lie in a p-cell of X ( j)p , and

sup
x∈X ( j)0

M(φ0(x)) ≤ cε(p)+ ε

4σ̃
≤ L1.

For each i = 1, . . . , p, denote by Vi the set of vertices of X ( j+�i ) which lie in the i skeleton
of X ( j), i.e.

Vi =
⋃

τ∈X ( j)i

τ(�i )0 =
⋃

γ∈X ( j)i+1

(γ0(�i ))0.

Note that Vp = X ( j+�p)0, since X has dimension p. Applying Theorem 6.12 to each 1-cell
of X ( j), we get a map

φ1 : V1 → Zn−1(M,Z/2),

such that, for each τ ∈ X ( j)1,

F(φ1(x), φ1(y)) ≤ ξ1(s1) < η(δ1, L2)
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for x, y ∈ τ(�1)0, and

sup
x∈V1

M(φ1(x)) ≤ sup
x∈X ( j)0

M(φ0(x))+ δ1 ≤ cε(p)+ ε

4σ̃
+ δ1 ≤ L2.

Moreover, φ1 is given by the boundary currents induced by subsets of M of finite perimeter,
agrees with φ0 on the domain of φ0 and satisfies f(φ1) ≤ δ1. Finally, since φ0 is even, we
may assume that the map φ1 is also even, after possibly redefining φ1 in half of the cells of
X ( j)1.

Inductively, given an even map

φi−1 : Vi−1 → Zn−1(M,Z/2)

satisfying:

(1) F(φi−1(x), φi−1(y)) ≤ (ξi−1 ◦ · · · ξ1)(s1) < η(δ1, Li ) for every pair of vertices x, y ∈
τ(�i−1)0 for some τ ∈ X ( j)i−1,

(2) supx∈Vi−1
M(φi−1(x)) ≤ (cε(p)+ ε)/4σ̃ + (i − 1)δ1 ≤ Li ,

(3) for every x ∈ Vi−1, we have φi−1(x) = ∂�Ex � for some Ex ⊂ M of finite perimeter,
and

(4) f(φi−1) ≤ bi−1δ1, for some bi−1 = bi−1(p) > 0,

we apply Theorem 6.12 on each i-cell of X ( j) to obtain a new even map

φi : Vi → Zn−1(M,Z/2)

such that:

(1) F(φi (x), φi (y)) < (ξi ◦ · · · ξ1)(s1), for all x, y ∈ τ(�i )0,
(2) supx∈Vi

M(φi (x)) ≤ supx∈Vi−1
M(φi−1(x))+ δ1 ≤ (cε(p)+ ε)/4σ̃ + iδ1 ≤ Li+1;

(3) φi = φi−1 ◦ n( j + �i , j + �i−1) on the vertices of the (i − 1) skeleton of Vi ;
(4) φi (x) is the boundary of a chain induced by a set of finite perimeter, for all x ∈ Vi ; and
(5) f(φi ) ≤ b(f(φi−1)+ δ1) ≤ biδ1, for bi = b(bi−1 + 1).

For i = p, we obtain a discrete map φi : Vp = X ( j + �p)0 → Zn−1(M,Z/2) with fine-
ness f(φp) ≤ bpδ1 < bpc(p, M). If c(p, M) > 0 is sufficiently small, then we can apply
Theorem 6.4 to obtain the Almgren extension � : X → Zn−1(M,Z/2) of φp . Since

M(�(x)−�(y)) ≤ C0(p, M)f(φp),

whenever x, y ∈ X lie in a common p-cell of X ( j + �p), we get

sup
x∈X

M(�(x)) ≤ sup
x∈Vp

M(φp(x))+ C0(p, M)bpδ1

≤ cε(p)+ ε

4σ̃
+ (p + C0(p, M)bp)δ1.

From the fact that for each cell α of X ( j + �p) the map �|α depends only on the values of
φ(x) for x ∈ α0 it follows that � may be assumed to be an odd map.

6.9 Construction of a p-sweepout: non-triviality

In order to conclude the proof of Theorem 6.3, it remains to show that the map � induces a
p-sweepout �̃ : X̃ → Zn−1(M,Z/2). By Proposition 6.9, it suffices to show that ker �̃∗ =
p∗π1(X), where p : X → X̃ is the orbit map. This is accomplished by the following
observations. Let α : [0, 1] → X be a path such that, for some v ∈ N, the restriction of α
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to each interval [ti , ti+1] for i = 0, . . . , 3v − 1 is an affine homeomorphism onto a 1-cell
τi ∈ X ( j)1, where ti = i3−v . Fix i and let ti, j = ti + j3−(v+�p) for j = 0, . . . , 3�p . It
follows from the Remark 6.13 that if Qi, j is the isoperimetric choice for

�(α(ti, j+1))−�(α(ti, j )) = (φp ◦ α)(ti, j+1)− (φp ◦ α)(ti, j )

then

3v−1∑
i=0

3�p−1∑
j=0

Qi, j =
3v−1∑
i=0

(
�{hα(ti+1) > sα(ti+1)}�− �{hα(ti+1) > sα(ti+1)}�

)

= �{hα(1) > sα(1)}�− �{hα(0) > sα(0)}�.
If α is a closed path, then

FA([� ◦ α]) =
⎡
⎣3v−1∑

i=0

3�p−1∑
j=0

Qi, j

⎤
⎦ = 0.

Noting that FA is an isomorphism and [� ◦ α] = [�̃ ◦ p ◦ α] we get

�̃∗ (p∗[α]) = 0, in π1(Zn−1(M,Z/2)).

This proves that ker �̃∗ ⊃ p∗(π1(X)). On the other hand, if α satisfies α(1) = −α(0), then

FA([� ◦ α]) =
⎡
⎣3v−1∑

i=0

3�m−1∑
j=0

Qi, j

⎤
⎦ = [M]

and [p ◦ α] /∈ ker �̃∗. Since the lift of every closed path α̃ in X̃ with α̃(0) in p(X ( j)0) is
homotopic (with fixed endpoints) to such a poligonal path which is either closed or either
joins antipodal points, this proves that ker �̃ = p∗(π1(X)). Therefore, we conclude that �̃

is a p-sweepout. This completes the proof of Theorem 6.3.

6.10 Min–max values in Sn

We can use the comparison between ωp(M) and the min–max values for the energy to
calculate the value of lim cε(p), when ε ↓ 0, for small p and M = Sn . More precisely, we
will prove that

1

2σ
lim sup
ε→0+

cε(p) ≤ Vol(Sn−1), (10)

for p = 1, . . . , n + 1. Since Sn−1 ⊂ Sn is the minimal surface of least area in Sn , by
[40, Theorem 2.14 and Lemma 4.7] we have ωp(Sn) ≥ Vol(Sn−1). Then, it follows from
Theorem 6.1 and (10) that

1

2σ
lim

ε→0+
cε(p) = ωp(Sn) = Vol(Sn−1), for p = 1, . . . , n + 1.

We will construct an odd continuous map h : S p → H1(M) with

sup
a∈S p

Eε(h(a)) ≤ 2σVol(Sn−1).
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For every a = (a0, . . . , an+1) ∈ Sn+1, define fa : Sn → R by

f (x) = a0 +
n+1∑
i=1

ai xi−1, for x = (x0, . . . , xn) ∈ Sn,

and let Sa = { fa = 0} ⊂ Sn . Denote by da the signed distance function to Sa , that is,

da(x) = (sgn fa(x)) · d(x, Sa), for x ∈ Sn .

Observe that S−a = Sa and d−a = −da for all a ∈ Sn+1. We define va,ε : Sn+1 → R by

va,ε(x) = ψ(da(x)/ε),

where ψ : R→ R is the unique monotone solution to the Allen–Cahn equation with ε = 1
and ψ(0) = 0. Since ψ is odd, we can define an odd continuous map h : Sn+1 → H1(Sn)

by h(a) = va,ε. Thus, h|S p ∈ 
(S p) for all p = 1, . . . , n+ 1. Note also that both Sa and the
level sets for da are geodesic spheres in Sn . Thus,

sup
s∈R

Hn−1({da = s}) ≤ Vol(Sn−1), for all a ∈ Sn+1.

We can proceed as in [29, §7] to shows that

Eε(h(a)) ≤
∫ +∞

−∞
[
ψ ′(s)2 +W (ψ(s))

]Hn−1({da = εs}) ds ≤ 2σ · Vol(Sn−1)

and consequently

cε(p) ≤ cε(S p) ≤ sup
a∈S p

Eε(h(a)) ≤ 2σ · Vol(Sn−1), for p = 1, . . . , n + 1.

This proves the inequality (10).
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Appendix A: Technical Lemmas

We list here three technical lemmas. We omit the proofs of the first two since they follow
from elementary properties of Sobolev spaces and Lipschitz functions.

Lemma A.1 Let U be a bounded open set of a manifold. The function max(·, ·) : H1(U )×
H1(U )→ H1(U ) is continuous. The same holds for min(·, ·).
Lemma A.2 Let G : K → M be a bi-Lipschitz map from a cubical complex K to a compact
manifold M and let h : K → R be a Lipschitz function.

(1) There exists a constant C > 0 such that

C−1
∑

σ∈K ( j)n

‖h‖H1(σ ) ≤ ‖h ◦ G−1‖H1(M) ≤ C
∑

σ∈K ( j)n

‖h‖H1(σ ).

(2) Let hk : K → R, for k ∈ N, be a sequence of Lipschitz functions with bounded Lipschitz
constants. If hk → h and ∇hk → ∇h a.e. on K then hk ◦ G−1 → h ◦ G−1 in H1(M).
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(3) Let hk : K → R, for k ∈ N, be a sequence of Lipschitz functions. If hk → h and
∇hk → ∇h a.e. on K then h+k → h+ and ∇h+k → ∇h+ a.e. on K .

Lemma A.3 Let an → a be a convergent sequence in S p. Assume that C(a) is not empty
and let D ∈ C an open disk containing C(a). Let ξ = (z1, . . . , z j ) be an array of the
roots of pa repeated according to its multiplicities. Then, for any n big enough, there is an
array ξn = (z1(n), . . . , z j (n)) of the roots of pan contained in D, repeated according to its
multiplicities, and such that ξn → ξ . If C(a) is empty, i.e. a = (±1, 0, . . . , 0), then C(an) is
either empty, or goes to infinity uniformly.

Proof Notice that pan → pa uniformly in compact sets. Let D̃ be any disk with ∂ D̃∩C(a) =
∅. Then, for n big enough, we have |pan − pa | < |pa | on ∂ D̃ and by Rouché’s Theorem pa

and pan have the same number of roots in D̃ counted with multiplicities. This already proves
the lemma when a = (±1, 0, . . . , 0).

Let D be as in the statement of the lemma. By the argument above, for n big enough there
are exactly j roots of pan in D, counted with multiplicities. Define Di (δ) = {z : |z− zi | < δ}
for some δ > 0 small enough so that Di (δ) ∩ D j (δ) = ∅ if zi �= z j and Di (δ) ⊂ D. Let
mi be the multiplicity of zi as a root of pa . As before, for n big enough, the number of
roots of pan in Di (δ), counted with multiplicities, is mi . Then, for this fixed δ and every i ,
define ξn(i) = (z1(i), . . . , zmi (i)) as any array of these mi roots, repeated according to its
multiplicity. The set C(an) ∩ Di (δ) → {zi } in the Hausdorff distance, since for every ε > 0
we have that the number of roots with multiplicities in Di (ε) is also mi if n is big enough.
This implies ξn(i) → (zi , . . . , zi ) ∈ C

mi . We can choose n big enough so that the arguments
above carry over all roots zi of pa . Now we define ξn as the juxtaposition of the ξn(i). This
ξn satisfies the conclusions of the lemma.

Appendix B: A cohomological index theory for free Z2 actions

In this Appendix we fill in some details about the topological Z/2-index of Fadell and
Rabinowitz [22]. We follow the general description given in [23], which works for actions
of any compact Lie group, restricting ourselves to the case of Z/2 actions.

Let S∞ be the infinite dimensional unit sphere, that is, the direct limit of the family of
topological spaces {Sn}n∈N∪{0}, directed by the inclusions Sn ↪→ Sm, n ≤ m. This means that
S∞ =⋃n≥0 Sn and a map f : S∞ → Z to an arbitrary topological space Z is continuous if,
and only if, f ◦ ιn : Sn → Z is continuous for all n, where ιn : Sn ↪→ S∞ is the inclusion.
Similarly, we consider the infinite dimensional real projective spaceRP∞ =⋃n RP

n , which
can be seen as the orbit space of S∞ by the free Z/2 action given by the antipodal map
x ∈ Sn �→ −x ∈ Sn . We denote by pr : S∞ → RP

∞ the orbit map.
The cohomology ring of RP∞ with Z/2 coefficients is isomorphic to the polynomial ring

Z/2[w] over Z/2, where w ∈ H1(RP∞;Z/2) (see [32, Theorem 3.12]). In the following,
we will use the Alexander–Spanier cohomology with Z/2 coefficients and refer to [59] for
the definition and basic properties of this cohomology theory. We remark that it agrees with
the singular cohomology for any CW complex, hence for RP∞ (see [59, §6.9] for a more
general statement).

Lets recall the definition of the cohomological index. Denote by F the class of all Z/2-
spaces. For every free (X, T ) ∈ F we can find a continuous equivariant map f : X → S∞,
and then a continuous map f̃ : X̃ = X/{x ∼ T x} → RP

∞ such that pr ◦ f̃ = f ◦ p, where
p : X → X̃ is the orbit map. This map is called a classifying map for the Z/2 action given by
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T . It is possible to show that f̃ is unique up to homotopy, and therefore we have an induced
map f̃ ∗ : H∗(RP∞;Z/2) → H∗(X̃;Z/2) which depends only on (X, T ). We define the
cohomological index of (X, T ) by

IndZ/2(X, T ) = IndZ/2(X) = sup{k ∈ N : f̃ ∗(wk−1) �= 0 ∈ Hk−1(X̃;Z/2)}.
We set w0 = 1 ∈ H0(RP∞;Z/2) and adopt the convention IndZ/2(∅, T ) = 0. We will omit
T in the notation above whenever the action is understood. If (X, T ) ∈ F is not free, we set
IndZ/2(X, T ) = ∞.

Remark B.1 This definition of IndZ/2(X, T ) for non-free (X, T ) ∈ F agrees with the one
given in [23] since (X, T ) ∈ F is free if and only if there are no trivial orbits. More precisely,
if T �= idX and x̄ ∈ X is such that T (x̄) = x̄ then S∞ × {x} with the diagonal action
(y, x) �→ (−y, T (x)) is isomorphic to S∞ as Z/2-spaces. Since IndZ/2(S∞) = ∞ the
monotonicity property (see Theorem B.2 below) implies IndZ/2(S∞ × X) = ∞. We point
out that this fact does not hold for actions of other compact Lie groups, see [23, §6].

The existence and uniqueness of the classifying map can be seen as a direct consequence
of the classification of G-principal bundles (see [19]), since RP

∞ is the classifying space
for Z/2. We can give an explicit construction of this map when X is compact, following
Milnor’s construction of the classifying bundle in [44]. We embed S∞ in a separable Hilbert
space H by choosing a countable orthonormal set {ei }i∈N and identifying Sn with the unit
sphere in the subspace generated by {e1, . . . , en+1}. Choose a finite open cover {Ũi }Ni=1 for
X̃ such that each π−1(Ũi ) is the disjoint union Ui ∪ T (Ui ) for an open set Ui ⊂ X (note that
the orbit map π : X → X̃ is a covering map). We can also choose a partition of the unity
{ρi }Ni=1∪{ζi }Ni=1 subordinated to the open cover {Ui }Ni=1∪{T (Ui )}Ni=1 such that ζi = ρi ◦T .
Hence, there is no x ∈ X such that ρi (x) = ρi (T x) for all i = 1, . . . , N and we can define
a continuous map f : X → S∞ by:

f (x) =
N∑

i=1

ρi (x)− ρi (T x)

ρ(x)
ei , where ρ(x) =

(
N∑

i=1

(ρi (x)− ρi (T x))2

)1/2

.

Since this map satisfies f ◦ T = − f , it induces a continuous map f̃ : X̃ → RP
∞ such

that p ◦ f = f̃ ◦ π , and gives the classifying map for (X, T ). Using partitions of unity
for paracompact spaces, this construction can be adapted for a general (X, T ) ∈ F . For an
elementary proof of the uniqueness of f modulo homotopy, see [61, §14.4].

The fact that IndZ/2 is a topological Z/2-index is a consequence of the following theorem.

Theorem B.2 [23] The cohomological index is a topological Z/2-index, that is, it satisfies
the properties (I1)-(I6) of Definition 3.1 and the following stronger version of (I 5):

(I5)’ For every free Z/2-space (X, T ) ∈ F , the orbit space X̃ is infinite whenever
IndZ/2(X, T ) ≥ 2.

Moreover, we have the following dimension property: if (X, T ) ∈ F and dim X denotes the
covering dimension of X, then IndZ/2(X, T ) ≤ dim X.

We point out that the continuity property (I3) is a consequence of the tautness of the
Alexander–Spanier cohomology [59, §6.1]—the monotonicity and the fact that every invari-
ant closed subset A ⊂ X is contained in a invariant paracompact neighborhood N ⊂ X .
Moreover, the subaditivity (I4) is a restatement of the vanishing property of the cup product
[32, p. 209] (compare with [30], [1]). For a complete proof, see [23, §3].

123



101 Page 40 of 42 P. Gaspar, M. A. M. Guaraco

We conclude our discussion about the Fadell–Rabinowitz topological index Z/2 com-
paring the cohomological index with another well known Z/2-topological index, previously
considered by Yang [64] (where it is referred, up to normalization, as the B-index), Conner-
Floyd [16] (where it is called the co-index) and Krasnoselskii [37]. Given a paracompact Z/2
space (X, T ), we define

γZ/2(X, T ) = inf{k ∈ N : ∃ f ∈ C(X, Sk−1) s.t. f ◦ T = − f }.
We also adopt the convention γZ/2(∅) = 0. The function γZ/2 defines a Z/2-topological
index in the class of all paracompact Z/2 spaces (see e.g [27, §7.3]). It turns out that this
index is the maximal topological Z/2-index, as proven in the following:

Lemma B.3 For every topological Z/2-index Ind : C → N ∪ {0,+∞}, it holds

Ind(X, T ) ≤ γZ/2(X, T ).

for all (X, T ) ∈ C.

Proof Let k = γZ/2(X) < ∞ (if k = ∞, there is nothing to prove). Then, we can find a
continuous equivariant map f : X → Sk−1. For each i = 1, . . . , k, let

Ai = {x ∈ Sk−1 : xi �= 0}, and Bi = f −1(Ai ).

Since we can find equivariant maps Ai → S0 and Ind(S0) = 1 (by Definition 3.1 (I6)), it
follows from the monotonicity property that

Ind(Bi ) ≤ Ind(Ai ) ≤ Ind(S0) = 1, for all i = 1, . . . , k.

Therefore, from the subaditivity of Ind, we get

Ind(X) = Ind

(
k⋃

i=1

Bi

)
≤

k∑
i=1

Ind(Bi ) ≤ k = γZ/2(X).

��
Remark The index γZ/2 has the following important property: for every compact symmetric
X ⊂ E \ {0}, where E is a Banach space, it holds holds γZ/2(X) = cat(X̃), where cat(X̃)

is the Lusternik–Schnirelmann category of X̃ , that is, cat(X̃) is the least k ∈ N such that X̃
can be covered by k closed sets Ai ⊂ X̃ which are contractible to a point in X̃ . See [54,
Theorem 3.7] for a proof of this fact, and [27] for some results about the multiplicity of the
set of critical points of a functional involving the Lusternik–Schnirelmann category.
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