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Abstract We show existence of solutions to the least gradient problem on the plane for
boundary data in BV (∂Ω). We also provide an example of a function f ∈ L1(∂Ω)\
(C(∂Ω) ∪ BV (∂Ω)), for which the solution exists. We also show non-uniqueness of solu-
tions even for smooth boundary data in the anisotropic case for a nonsmooth anisotropy. We
additionally prove a regularity result valid also in higher dimensions.

Mathematics Subject Classification 35J20 · 35J25 · 35J75 · 35J92

1 Introduction

The least gradient problem is a problem of minimalization

min

{∫
Ω

|Du|, u ∈ BV (Ω), u|∂Ω = f

}

arising in the study of convergence of p-Laplace functions with p → 1, see [11], or as a
dimensional reduction in free material design problem, see [7], or (in its anisotropic version)
in the conductivity imaging problem, see [10].

Here, we may impose certain conditions on Ω and the function f and use different
approaches to the boundary condition. In [18] f is assumed to be continuous and the boundary
condition is in the sense of traces. The authors also impose a set of geometrical conditions
on Ω , which are satisfied by strictly convex sets; in fact, in dimension two they are equivalent
to strict convexity. The authors of [10] consider an anisotropic version of the problem and
introduce another geometric condition on Ω called the barrier condition; see Definition 5.8.
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Another approach is presented in [13], where boundary datum belongs to L1(∂Ω), but the
boundary condition is understood in a weaker sense.

Throughout this paper Ω ⊂ R
N shall be an open bounded set with Lipschitz boundary.

When necessary, we will additionally assume convexity or strict convexity of Ω and bounds
on the dimension N . We consider the following minimalization problem called the least
gradient problem:

min

{∫
Ω

|Du|, u ∈ BV (Ω), Tu = f

}
, (1)

where T denotes the trace operator T : BV (Ω) → L1(∂Ω). Unless specified otherwise,
the boundary datum f belongs to L1(∂Ω). Even existence of solutions in this sense is not
obvious, as the functional

F(u) =
{∫

Ω
|Du| if u ∈ BV (Ω) and Tu = f ;

+∞ otherwise

is not lower semicontinuous with respect to L1 convergence. In fact, in [17] the authors have
given an example of a function f without a solution to corresponding two-dimensional least
gradient problem. It was a characteristic function of a certain fat Cantor set; note that it does
not lie in BV (∂Ω).

There are two possible ways to deal with Problem (1). The first is the relaxation of the
functional F . Such reformulation and its relationship with the original statement is considered
in [13] and [12]. Another way is to consider when Problem (1) has a solution in the classical
sense and what is its regularity. This paper uses the latter approach and its main result is
giving a sufficient condition for existence of solutions of the least gradient problem on the
plane:

Theorem 1.1 Let Ω ⊂ R
2 be an open, bounded, strictly convex set with C1 boundary. Then

for every f ∈ BV (∂Ω) there exists a solution of the least gradient problem.

Obviously, this condition is not necessary; the construction given in [18] for continuous
boundary data does not require the boundary data to have finite total variation. We also
provide an example of a function f ∈ L1(∂Ω)\(C(∂Ω)∪ BV (∂Ω)), for which the solution
exists, see Example 4.8.

Another result included in this article provides a certain regularity property. Theorem 1.2
asserts existence of a decomposition of a function of least gradient into a continuous and a
locally constant function. It is not a property shared by all BV functions, see [2, Example
4.1].

Theorem 1.2 Let Ω ⊂ R
N , where N ≤ 7, be an open bounded convex set. Suppose u ∈

BV (Ω) is a function of least gradient. Then there exist functions uc, u j ∈ BV (Ω) such that
u = uc + u j and (Du)c = Duc and (Du) j = Du j , i.e. one can represent u as a sum of a
continuous function and a function with only jump-type derivative. They are of least gradient
in Ω . Moreover this decomposition is unique up to an additive constant.

Let us clarify the notation in the above theorem. Firstly, uc is a continuous function and
u j is a piecewise constant function; in particular, Duc does not consist only of Cantor part
of the derivative, but also the absolutely continuous part. Secondly, Du j is the derivative of
u j , while (Du) j is the jump part of the derivative of u; the same applies to Duc and (Du)c.

The final chapter takes on the subject of anisotropy. As it was proved in [10], for a
uniformly convex anisotropic norm φ on R

N smooth with respect to the Euclidean norm
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there is a unique solution to the anisotropic least gradient problem. I consider l p norms on
the plane for p ∈ [1,∞] to show that for p = 1,∞, when the anisotropy is neither smooth
nor uniformly convex, the solutions need not be unique even for smooth boundary data (see
Examples 5.16 and 5.17), whereas for 1 < p < ∞, when the anisotropy is smooth and
uniformly convex, Theorem 1.3 asserts that the only connected minimal surface with respect
to the l p norm is a line segment, similarly to the isotropic solution.

Theorem 1.3 Let Ω ⊂ R
2 be an open bounded convex set. Let the anisotropy be defined by

the function φ(x, Du) = ‖Du‖p, where 1 < p < ∞. Let E be a φ-minimal set with respect
to Ω , i.e. χE is a function of φ-least gradient in Ω . Then every connected component of ∂E
is a line segment.

Finally, we observe in Corollary 5.18 that if Ω is an open bounded set with Lipschitz
boundary, then Theorem 1.3 implies existence of a unique solution to the anisotropic least
gradient problem for continuous boundary data.

2 Preliminaries

2.1 Least gradient functions

Now we shall briefly recall basic facts about least gradient functions. What we need most in
this paper is the Miranda stability theorem, see [14], and the relationship between functions
of least gradient and minimal surfaces. For more information see [4], [6].

Definition 2.1 Let Ω ⊂ R
N be open. We say that u ∈ BV (Ω) is a function of least gradient,

if for every compactly supported v ∈ BV (Ω) we have
∫

Ω

|Du| ≤
∫

Ω

|D(u + v)|.

If Ω is bounded with Lipschitz boundary, we may instead assume that v ∈ BV0(Ω), i.e. v is
a BV function with zero trace on ∂Ω . This equivalence follows from approximation of v by
functions of the form vn = vχΩn for properly chosen Ωn ; a full proof can be found in [19,
Theorem 2.2].

Definition 2.2 Let Ω ⊂ R
N be an open bounded set with Lipschitz boundary. We say

that u ∈ BV (Ω) is a solution of the least gradient problem in the sense of traces for given
f ∈ L1(∂Ω), if u is a function of least gradient and Tu = f .

To underline the difference between the two notions, we recall a stability theorem by
Miranda:

Theorem 2.3 ([14, Theorem 3]) Let Ω ⊂ R
N be open. Suppose {un} ⊂ BV (Ω) is a

sequence of least gradient functions in Ω convergent in L1
loc(Ω) to u ∈ BV (Ω). Then u is

a function of least gradient in Ω . 	


An identical result for solutions of least gradient problem is impossible, as the trace
operator is not continuous in L1 topology; see Example 4.7. We need an additional assumption
regarding traces. A correct formulation would be:
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Remark 2.4 Let Ω ⊂ R
N be an open bounded set with Lipschitz boundary. Suppose that

fn → f ∈ L1(∂Ω). Let un be a solution of the least gradient problem for fn , i.e. un is a
function of least gradient such that Tun = fn . If un → u in L1(Ω) and Tu = f , then u is a
solution of the least gradient problem for f . 	


To deal with regularity of solutions of the least gradient problem, it is convenient to consider
superlevel sets of u, i.e. sets of the form ∂{u > t} for t ∈ R. The reason for this are the two
subsequent results:

Lemma 2.5 Suppose that u1 ∈ L1(Ω) and u2 is Lebesgue measurable. Then u1 = u2 a.e. if
and only if for every t ∈ R the superlevel sets of u1 and u2 are equal, i.e. {u1 > t} = {u2 > t}
up to a set of measure zero. 	


Theorem 2.6 ([4, Theorem 1])
Suppose that Ω ⊂ R

N is open. Let u be a function of least gradient in Ω . Then for every
t ∈ R the set {u > t} is minimal in Ω , i.e. χ{u>t} is of least gradient. 	


The two above results also hold, with essentially unchanged proofs, if we take {u ≥ t} in
place of {u > t}. We will use Theorem 2.6 for both types of superlevel sets; in Sect. 3 it
is more convenient to work with {u > t}, while in Sect. 4 due to application of variants of
Sternberg–Williams–Ziemer construction, see Sect. 2.2, it is more convenient to work with
{u ≥ t}.

A comprehensive description of the regularity theory for minimal sets can be found in [6].
As sets of bounded perimeter are defined up to a set of measure zero, the regularity results
depend on the representative; here, we employ the standard convention:

x ∈ E if and only if lim sup
r→0

|E ∩ B(x, r)|
|B(x, r)| > 0,

i.e. a set E of bounded perimeter consists of points of positive density. Under this convention,
[6, Theorem 10.11] implies that in dimensions 2 ≤ N ≤ 7 the boundary of a minimal
set E is locally an analytical hypersurface. Now, if u ∈ BV (Ω) is a function of least
gradient, then Theorem 2.6 implies that each set Et = {u ≥ t} is minimal; we change the
representative of each set Et to Ẽt to follow the convention above. This way we define a
function ũ(x) = sup{t : x ∈ Ẽt } satisfying Ẽt = {̃u ≥ t}; but Lemma 2.5 implies that u
and ũ differ on a set of measure zero. Hence, after a change of representative, we get that the
boundary of each superlevel set of u is a union of analytical minimal surfaces; from now on
we assume that we deal with such a representative.

2.2 Sternberg–Williams–Ziemer construction

In [18] the authors have shown existence and uniqueness of solutions to the least gradient
problem for continuous boundary data and strictly convex Ω (or, to be more precise, the
authors assume that ∂Ω has non-negative mean curvature and is not locally area-minimizing).
The proof of existence is constructive and we shall briefly recall it. The main idea is reversing
Theorem 2.6 and constructing almost all level sets of the solution. According to the Lemma
2.5 this uniquely determines the solution.

We fix the boundary data g ∈ C(∂Ω). By Tietze theorem it has an extension G ∈
C(RN\Ω). We may also demand that G has support contained in a ball B(0, R) containing
Ω and that G ∈ BV (RN\Ω). Let Lt = (RN\Ω) ∩ {G ≥ t}. Since G ∈ BV (RN\Ω), then
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for a.e. t ∈ R we have P(Lt ,R
N\Ω) < ∞. For such t , let Et be a set solving the following

problems:

min
{
P(E,RN ) : E\Ω = Lt\Ω

}
, (2)

max {|E ∩ Ω| : E is a minimizer of (2)} .

Let us note that both of these problems have solutions; let m ≥ 0 be the infimum in the
first problem. Let En be a sequence of sets such that P(En,R

N ) → m. By compactness of
unit ball in BV (B(0, R)) and lower semicontinuity of the total variation we obtain on some
subsequence χEnk

→ χE in L1(B(0, R)), where E\Ω = Lt\Ω and

m ≤ P(E,RN ) ≤ P(Enk ,R
N ) → m.

Take M ≤ |Ω| be the supremum in the second problem. Take a sequence of sets En such
that |En ∩ Ω| → M . Then on some subsequence χEnk

→ χE in L1(B(0, R)), and thus

M ≥ |E ∩ Ω| ≥ |Enk ∩ Ω| − |Enk
E | = |Enk ∩ Ω| − ‖χEnk
− χE‖1 → M − 0.

Then we can show existence of a set T of full measure such that for every t ∈ T we have
∂Et ∩∂Ω ⊂ g−1(t) and for every t, s ∈ T , s < t the inclusion Et ⊂ int Es holds. It enables
us to treat Et as superlevel sets of a certain function; we define it on Ω by the following
formula:

u(x) = sup{t ∈ T : x ∈ Et ∩ Ω}.
It turns out that u ∈ C(Ω) ∩ BV (Ω) and u is a solution to the least gradient problem

for g. Moreover |{u ≥ t}
(Et ∩ Ω)| = 0 for a.e. t ∈ R. Uniqueness proof is based on the
following comparison principle:

Theorem 2.7 ([18, Theorem 4.1]) Suppose that Ω ⊂ R
N is an open bounded set with

Lipschitz boundary such that ∂Ω has non-negative mean curvature and is not locally area-
minimizing. Let g1, g2 ∈ C(∂Ω) satisfy g1 ≥ g2 on ∂Ω . Then the corresponding minimizers
to the least gradient problem satisfy u1 ≥ u2 in Ω . 	


In the existence proof in Sect. 4 we are going to use a particularly simple case of the
construction. Suppose that Ω ⊂ R

2 and g ∈ C1(∂Ω). Firstly, notice that we only have
to construct the set Et for almost all t . Secondly, we recall that in dimension two the only
connected minimal surface is a line segment; thus, to find the set Et , let us fix t and look at
the preimage g−1(t). We connect its points using line segments with sum of their lengths as
small as possible. It can cause problems, for example if we take t to be a global maximum
of the function; thus, let us take t to be a regular value (by Sard theorem almost all values
are regular), so the preimage g−1(t) contains finitely many points. As the derivative at every
point p ∈ g−1(t) is nonzero, there is at least one line segment L ⊂ ∂Et ending in p. By
minimality of ∂Et there can be at most one (we prove this rigorously even for discontinuous g
in Proposition 3.5), so there is exactly one line segment L ⊂ ∂Et ending in every p ∈ g−1(t).

A typical example for the construction, attributed to John Brothers, is to let Ω = B(0, 1) ⊂
R

2 and take the boundary data to be (in polar coordinates, for fixed r = 1) the function
g : [0, 2π) → R given by the formula g(θ) = cos(2θ); see [13, Example 2.7] or [20,
Example 3.6].

The proof of existence on numerous occasions relies heavily on the continuity of the
boundary data g: firstly, via Tietze extension theorem; secondly, to prove that ∂Et ∩ ∂Ω ⊂
g−1(t), where for discontinuous g we would have to add to the right hand side the set of
discontinuity points; finally, in order for u to be well-defined we need the fact that Et ⊂ int
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Es for s < t , which does not necessarily hold for discontinuous g. Thus we may not directly
apply the above construction to discontinuous boundary data.

2.3 BV on a one-dimensional compact manifold

Using a partition of unity, one may attempt to define BV spaces on arbitrary compact
manifolds; such approach is presented in [3]. It is not necessary for us; it suffices to consider
one-dimensional case. Let us consider Ω ⊂ R

2 open and bounded with C1 boundary. We
consider functions on ∂Ω integrable with respect to the one-dimensional Hausdorff measure
(which are approximately continuous H 1-a.e.). We recall (see [5, Chapter 5.10]) that the
one-dimensional BV space on the interval (a, b) ⊂ R may be described in the following
way:

f ∈ BV ((a, b)) ⇔
∑

| f (xi ) − f (xi−1)| ≤ M < ∞
for every a < x0 < · · · < xn < b, where xi are points of approximate continuity of f . The
smallest such constant M turns out to be the usual total variation of f .

We may extend this definition to the case where we have a one-dimensional manifold
diffeomorphic to an open interval if it is properly parametrized, i.e. all tangent vectors have
length one. Repeating the proof from [5] we get that this definition coincides with the diver-
gence definition. Then we extend it to the case of a one-dimensional compact connected
manifold in the following way:

Definition 2.8 Let Ω ⊂ R
2 be an open bounded set with C1 boundary. We say that f ∈

BV (∂Ω), if after removing from ∂Ω a point p of approximate continuity of f we have
f ∈ BV (∂Ω\{p}). The norm is defined to be

‖ f ‖BV (∂Ω) = ‖ f ‖BV (∂Ω\{p}).

This definition does not depend on the choice of p, as in dimension one the total variation
on disjoint intervals is additive, thus for different points p1, p2 we get that

‖ f ‖BV (∂Ω\{p1}) = ‖ f ‖BV ((p1,p2)) + ‖ f ‖BV ((p2,p1)) = ‖ f ‖BV (∂Ω\{p2}),

where (p1, p2) is an oriented arc from p1 to p2. Thus all local properties of BV (∂Ω) hold;
we shall recall the most important one for our considerations:

Proposition 2.9 Let Ω ⊂ R
2 be an open bounded set with C1 boundary and let E ⊂ ∂Ω

be a set of finite perimeter, i.e. χE ∈ BV (∂Ω). Then ∂E = ∂∗E = {p1, . . . , p2n} and
P(E, ∂Ω) = 2n. Here ∂∗E denotes the reduced boundary of E, i.e. the set where a measure-
theoretical normal vector exists; see [5, Chapter 5.7]. 	


However, some global properties need not hold. For example, the decomposition theorem
f = fac + f j + fs does not hold; consider Ω = B(0, 1), f = arg(z). The main reason is
that π1(∂Ω) �= 0.

3 Regularity of least gradient functions

In this section we are going to prove several regularity results about functions of least gradient,
valid up to dimension 7. We start with a weak form of the maximum principle and later prove
a result on decomposition of a least gradient function into a continuous and jump-type part;
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this decomposition holds not only at the level derivatives, but also at the level of functions. We
will extensively use the regularity theory for area-minimizing sets, the monotonicity formula
for minimal surfaces and a version of the maximum principle for minimal graphs. Moreover,
as Theorem 2.6 works also for superlevel sets of the form {u ≥ t}, all results in this Section
also hold with {u ≥ t} in place of {u > t}.
Proposition 3.1 ([6, Theorem 10.11]) Suppose that N ≤ 7 and E is a minimal set in
B(x, r) ⊂ R

N . Then ∂E ∩ B(x, r) is an analytic hypersurface. 	

Proposition 3.2 ([18, Theorem 2.2])Suppose E1 ⊂ E2 and let ∂E1, ∂E2 bearea-minimizing
in an open set Ω ⊂ R

N . Further, suppose x ∈ ∂E1 ∩ ∂E2 ∩ Ω . Then ∂E1 and ∂E2 agree in
some neighbourhood of x. 	


A well-known consequence of the monotonicity formula for minimal surfaces, see [16,
Theorem 17.6], is the following:

Proposition 3.3 ([16, Remark 37.9]) Let Ω ⊂ R
N , where N ≤ 7, be open and suppose

that E is area-minimizing in Ω . Then for any compact K ⊂ Ω there are only finitely many
connected components of ∂E intersecting K . 	

The result above is originally stated more generally; this version takes into account the
regularity theory for area-minimizing sets as stated in Proposition 3.1.

Firstly, we provide a reformulation of Theorem 2.6 taking into account the regularity theory
for area-minimizing sets in low dimensions. It is an analogue of the maximum principle for
linear equations; geometrically speaking, the linear weak maximum principle states that
every level set touches the boundary. As by Theorem 2.6 for every t ∈ R the set {u > t} is
area-minimizing in Ω , in view of the above results we obtain

Proposition 3.4 (weak maximum principle) Let Ω ⊂ R
N , where N ≤ 7, be an open set

and suppose u ∈ BV (Ω) is a function of least gradient. Then for every t ∈ R we have
∂{u > t} = ⋃

i∈I St,i , where St,i are smooth minimal surfaces without boundary in Ω and
this union is locally finite. 	


For bounded convex sets on the plane it can be strengthened so that the connected compo-
nents of ∂{u > t} cannot intersect even on the boundary of Ω . We recall that bounded convex
sets in R

N automatically have Lipschitz boundary, so the trace operator is well defined.

Proposition 3.5 (weak maximum principle on the plane) Let Ω ⊂ R
2 be an open bounded

convex set and suppose u ∈ BV (Ω) is a function of least gradient. Then for every t ∈ R we
have ∂{u > t} = ⋃

i∈I Lt,i , where Lt,i are line segments with ends on ∂Ω and this union is
locally finite. Furthermore, Lt,i are pairwise disjoint in Ω .

Proof There is only one thing left to prove: that two connected components of ∂Et = ∂{u >

t} do not intersect on ∂Ω . Suppose we have at least two line segments in ∂Et : xy and xz.
Due to Proposition 3.3, there are at most finitely many line segments of the form xx ′ ⊂ ∂Et

intersecting the triangle �xyz enclosed by the line segments xy, xz, yz (as Ω is convex, we
have �xyz ⊂ Ω); without loss of generality we may assume that xy and xz are adjacent.

Consider the function χEt . In the triangle �xyz we have χEt = 1 and χEt = 0 on the
opposite side of xy, xz (or the opposite situation, which we handle similarly). Now, we see
that the function χ̃Et = χEt − χ�xyz has strictly smaller total variation due to the triangle
inequality. While the difference between χ̃Et and χEt is not compactly supported in Ω , these
functions have the same trace, so in view of the Definition 2.1 we deduce that χEt is not a
function of least gradient. Thus in every point of ∂Ω ends at most one line segment from
∂Et . 	
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The next Corollary is a direct consequence of Proposition 3.4.

Corollary 3.6 Let Ω ⊂ R
N , where N ≤ 7, be an open set and take u ∈ BV (Ω) to be a

least gradient function. Let Et = {u > t}. For each x ∈ Ω and t ∈ R there exists a ball
B(x, r) such that there is at most one connected component of ∂Et intersecting this ball. 	

Remark 3.7 Even in two dimensions the above result may fail for x ∈ ∂Ω . Even though
Proposition 3.5 excludes the possibility of intersection of two connected components of ∂Et

on ∂Ω , there still may be points in the neighbourhood of which there are infinitely many
connected components of ∂Et ; see Examples 4.7 and 4.8.

Now, we recall the definitions of the jump set Ju and the approximate discontinuity set
Su (see [2, Chapter 3]):

Definition 3.8 Let u ∈ BV (Ω). We say that x ∈ Ju , the jump set of u, if there exists a unit
vector ν (called the normal vector) and real numbers a �= b such that

lim
r→0

−
∫
B(x,r)∩{〈y−x,ν〉>0}

|u(y) − a|dy = 0,

lim
r→0

−
∫
B(x,r)∩{〈y−x,ν〉<0}

|u(y) − b|dy = 0.

The triple (a, b, ν) is uniquely determined up to permutation of a, b and the sign of ν.
We say that x ∈ Su , the approximate discontinuity set of u, if the upper and lower

approximate limits of u at x do not coincide, i.e. u∧(x) �= u∨(x).

Proposition 3.9 Let Ω ⊂ R
N , where N ≤ 7, be an open set and let u ∈ BV (Ω) be a

function of least gradient in Ω . Then

Ju = Su =
⋃

s,t∈Q;s �=t

(∂∗{u > s} ∩ ∂∗{u > t}).

As Ju = Su, due to our choice of representative [9, Theorem 4.1] implies that u has only
jump-type discontinuities, i.e. is continuous on Ω\Ju.
Proof The inclusion Ju ⊂ Su is obvious from the definitions. Now, we will prove that Su is
a subset of the right hand side. Let x ∈ Su . By definition of Su for every t ∈ (u∨(x), u∧(x))
the density of {u > t} at x is neither 0 nor 1, so x ∈ ∂M {u > t}, where ∂M denotes a measure-
theoretical boundary of a set. As for N ≤ 7 with our choice of representative the boundary of
{u > t} coincides with its measure-theoretic boundary and its reduced boundary, we obtain
the second inclusion: if x ∈ Su , then x ∈ ∂∗{u > t} for every t in some open interval.

Finally, we will prove that the right hand side is a subset of Ju . Fix x ∈ ∂∗{u > s0}∩∂∗{u >

t0}. Using Corollary 3.6 we choose a ball B = B(x, r0) such that there is one connected
component St0 of ∂{u > t0} and Ss0 of ∂{u > s0} intersecting this ball. Due to Proposition
3.4 they are minimal surfaces and by Proposition 3.2 we have St0 = Ss0 = S. Now we define
two auxiliary functions from S to R:

u+(y) = sup{t : y ∈ ∂∗{u > s0} ∩ ∂∗{u > t}};
u−(y) = inf{t : y ∈ ∂∗{u > s0} ∩ ∂∗{u > t}}.

Using an argument as above, we notice that due to Proposition 3.2 both u+ and u− are
constant along S and for each t ∈ (u−, u+) the connected component St of ∂{u > t} passing
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through x coincides with S. In particular the normal vectors at x coincide, so the normal at
x does not depend on t ∈ (u−, u+).

We introduce again the notation Et = {u > t}. Notice that the set B\S is a union of two
disjoint connected open sets B+ and B−, where B+ = (B\S) ∩ Et0 and B− = (B\S)\Et0 ;
as B is convex, this either can be seen directly or (as it is homeomorphic to R

N ) as a simple
case of the Alexander duality theorem, see [8, Theorem 27.10]. We will show that u+ and
u− coincide with the trace values of u at x along S from B+ and B− respectively. Let T B±

S u

denote the trace of u on S from B±; in this notation, our goal is to show that T B±
S u(x) = u±,

so x ∈ Ju .
We will prove the above equality for u+ (the other case is analogous). Firstly, we use

Corollary 3.6 to notice that for every t ∈ (u−, u+) there exists a smaller ball B(x, r) ⊂
B such that S is the only one connected component of ∂Et intersecting this ball. Again,
B(x, r)\S is a union of two disjoint open sets B(x, r)∩ B± and we have B(x, r)∩ B+ ⊂ Et

and B(x, r) ∩ B− ∩ Et = ∅. As trace is a positive operator, the trace of u on S from
B(x, r) ∩ B+ = (B(x, r)\S) ∩ Et is greater or equal to t ; thus the trace at x is greater or
equal to u+. We have to prove the opposite bound, i.e. T B+

S u(x) ≤ u+.
Suppose that there is no radius r > 0 such that u is constant in B(x, r) ∩ B+ (otherwise

the result is obvious). Let us notice that

u+ = lim inf
r→0

{
s ∈ R, s > u+ : ∂Es ∩ B(x, r) ∩ B+ �= ∅}

. (3)

Let us denote the limit above by s+; it is clearly greater or equal to u+. The other inequality
follows from definition of u+: if s+ > u+, then x ∈ ∂{u > u++s+

2 }, contradiction with
maximality of u+.

Now take s > u+ arbitrarily close to u+. By Corollary 3.6 there is a smaller ball
B(x, ρ) such that there is at most one connected component of ∂Es intersecting this
ball. If no connected component of ∂Es intersects B(x, ρ), then B(x, ρ) ⊂ Ω\Es , so

u+ ≤ T B(x,ρ)∩B+
S u ≤ s and we let s → u+ to obtain that T B+

S u(x) ≤ u+.
If there is a connected component of ∂Es intersecting B(x, ρ), let us denote it by S′.

We have two possibilities: either the subset of B(x, ρ) bounded by S and S′ is a subset of
B+ ∩ Es or it is a subset of B+\Es . We see that the first case is impossible by taking
sufficiently small r in Eq. (3). In the second case we obtain on an even smaller ball B(x, ρ′),
on which u+ < u ≤ s, so again u+ ≤ T B(x,ρ′)∩B+

S u ≤ s and by letting s → u+ we obtain

that T B+
S u(x) ≤ u+. Thus the traces from B(x, r)± are well defined and distinct, so x ∈ Ju .

	

This result is optimal, as it fails for least gradient functions in higher dimensions:

Example 3.10 Let E ⊂ R
8 be an open set, whose boundary is the Simons cone. Then χE is

a function of least gradient, 0 /∈ Ju and 0 ∈ Su . Also χE is not continuous at 0. 	

Corollary 3.11 Let Ω ⊂ R

N , where N ≤ 7, be an open set and let u ∈ BV (Ω) be a
least gradient function in Ω . Then Ju = ⋃

k∈J Sk, where Sk are pairwise disjoint minimal
surfaces and J is at most countable.

Proof We follow the characterisation of Ju from Proposition 3.9. For every t the set ∂∗{u > t}
is a minimal surface. Proposition 3.2 ensures that if ∂∗{u > s} ∩ ∂∗{u > t} �= ∅, then their
intersecting connected components Ss,i , St, j coincide. Thus connected components of Ju
coincide with connected components of ∂∗{u > t} for some t , so by weak maximum principle
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they are minimal surfaces non-intersecting in Ω without boundary in Ω . From Proposition
3.9 it is clear that this union is at most countable (but not necessarily locally finite). 	

Corollary 3.12 Let Ω ⊂ R

N , where N ≤ 7, be an open set and let u ∈ BV (Ω) be a least
gradient function in Ω . Let Et = {u > t} and denote by Sk the connected components of
∂Et . Then the trace of u from both sides is constant along each Sk.

Proof Take x ∈ ∂Et . Let S be the (unique) connected component of ∂Et passing through x .
Using Proposition 3.9 we notice that either S ∩ Ju = ∅ or S ⊂ Ju . In the former case u is
continuous at every point of S, so by our choice of representative the trace of u is constant
along S. Thus we only have to consider the latter case, i.e. S ⊂ Ju . Now, we define u+ and
u− as in Proposition 3.9; they are constant along S and they coincide with trace of u from
both sides of S. 	


Now we have all the tools to prove Theorem 1.2. The notation in the theorem and its proof
is described in the introductory chapter after the Theorem is formulated.

Proof of Theorem 1.2 1. From Corollary 3.11 Ju = ⋃
k∈J Sk , where Sk are pairwise dis-

joint minimal surfaces without boundary in Ω and J is at most countable. Fix any
x0 ∈ Ω\Ju . As Ω is convex, each of the surfaces Sk divides Ω into two open connected
sets. While these two sets do not depend on the choice of x0, we denote them Ω ′

k(x0)

and Ω ′′
k (x0); this numbering is chosen so that x0 ∈ Ω ′

k(x0). To such an edge we ascribe a
weight ak(x0) in the following way: from Corollary 3.12 the trace of u from Ω ′

k(x0) (and
Ω ′′

k (x0)) along Sk is constant. Now, to each surface Sk we assign the constant (signed)

jump ak(x0) = T
Ω ′′

k (x0)

Si j
u − T

Ω ′
k (x0)

Si j
u.

2. Let x ∈ Ω\Ju . Let P denote the set of such k that x ∈ Ω ′′
k (x0), i.e. such that x0 and x

lie on the opposite sides of Sk . We define u j (·, p, x0) by the formula

u j (x, x0) =
∑
k∈P

ak(x0) =
∑
k

ak(x0)χΩ ′′
k (x0)(x). (4)

Heuristically, this is the function that counts all the jumps of u along a path P going from
x0 to x with appropriate signs; see also Remark 3.15.

3. The function u j (x) = u j (x, x0) does not depend on the choice of x0 up to an additive
constant: choose instead some x1 ∈ Ω\Ju . For each k, we either have x1 ∈ Ω ′

k(x1) =
Ω ′

k(x0) or x1 ∈ Ω ′
k(x1) = Ω ′′

k (x0). Take any x ∈ Ω\Ju and let P ′ denote the set of
such k that x ∈ Ω ′′

k (x1).
We notice that if k ∈ P ∩ P ′, then Ω ′

k(x1) = Ω ′
k(x0), so Sk does not separate x0 and

x1. By the definition of the jump function ak we also have ak(x1) = ak(x0). Moreover,
k ∈ P�P ′ if and only if Ω ′

k(x1) = Ω ′′
k (x0), i.e. Sk separates x0 and x1; in this

case the traces in the definitions of ak(x0) and ak(x1) appear in opposite order and
ak(x1) = −ak(x0). We calculate

u j (x, x0) =
∑
k∈P

ak(x0) =
∑

k∈P∩P ′
ak(x0) +

∑
k∈P \P ′

ak(x0) =
∑

k∈P∩P ′
ak(x1)

+
∑

k∈P \P ′
ak(x0) +

∑
k∈P ′\P

ak(x1) −
∑

k∈P ′\P
ak(x1) =

∑
k∈P ′

ak(x1) +
∑

k∈P \P ′
ak(x0)

−
∑

k∈P ′\P
ak(x1) = u j (x, x1) +

∑
k∈P \P ′

ak(x0) +
∑

k∈P ′\P
ak(x0)

= u j (x, x1) +
∑

k∈P�P ′
ak(x0) = u j (x, x1) + u j (x1, x0),
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as P�P ′ is precisely the set of such k that Sk separates x0 and x1. Thus, if we chose
some x1 in place of x0, the function u j would change by a summand u j (x1, x0). We see
that u j ∈ L1(Ω) and that it takes at most countably many values.

4. We notice that Du j = (Du) j : as u j = ∑
k ak(x0)χΩ ′′

k (x0), the distributional derivative
of u j is concentrated on Ju = ⋃

k Sk = ⋃
k ∂Ω ′′

k (x0). We notice that Ju j = Ju and
the jumps along connected components of Ju have the same magnitude. We define
uc = u − u j and see that (Duc) j = 0.

5. The uc, u j defined above are functions of least gradient.
Suppose that u j is not a a function of least gradient, i.e. there exists v ∈ BV (Ω) with
compact support such that

∫
Ω

|D(u j + v)| <
∫
Ω

|Du j |. Then we would get
∫

Ω

|Du| ≤
∫

Ω

|D(u + v)| =
∫

Ω

|D(uc + u j + v)|

≤
∫

Ω

|Duc| +
∫

Ω

|D(u j + v)| <

∫
Ω

|Duc| +
∫

Ω

|Du j | =
∫

Ω

|Du|,

where the first inequality follows from u being a function of least gradient, and the
last equality from measures Duc and Du j being mutually singular. The proof for uc is
analogous.

6. The function uc is continuous. As uc is of least gradient, then if it isn’t continuous at
x ∈ Ω , then by Proposition 3.9 a certain set of the form ∂{uc > t} passes through x .
Let S be a connected component of ∂{uc > t} containing x . Again, as uc is of least
gradient, by Corollary 3.12 uc has a constant nonzero jump along S, which is impossible
as (Duc) j = 0.

7. What is left is to prove uniqueness of such a decomposition. Let u = u1
c +u1

j = u2
c +u2

j .
Changing the order of summands we obtain

u1
c − u2

c = u2
j − u1

j ,

but the distributional derivative of the left hand side is a continuous measure, and the distri-
butional derivative of the right hand side is supported on the set of zero measure with respect
to H N−1, so both of them are zero measures. But the condition Dv = 0 implies v = const,
so the functions u1

c , u2
c differ by an additive constant. 	


Example 3.13 In this decomposition uc is not necessarily continuous up to the boundary. Let
us use the complex numbers notation for the plane. We take Ω = B(1, 1). Let the boundary
values be given by the formula f (z) = arg(z). Then u = uc = arg(z) ∈ BV (Ω) ∩C∞(Ω),
but u isn’t continuous at (0, 0) ∈ ∂Ω . 	

Remark 3.14 If Ju is closed relative to Ω , for example ifH N−1(Ju) < ∞ (it suffices as each
connected component of Ju is a smooth hypersurface, closed relative to Ω), then Ω\Ju is
open, each of its connected componentsUi is open and the function u j is piecewise constant:
from Eq. (4) we see that it is constant on Ui .

Remark 3.15 In two dimensions, we may give a clear geometrical meaning to the function
u j . Take a path P , which parametrizes a (finite) polygonal chain with vertices in Ω\Ju such
that P(0) = x0, P(1) = x (for example we may take P to parametrize the line segment
x0x). The path P intersects an at most countable family of the line segments Sk . If P passes
through Sk from Ω ′

k(x0) to Ω ′′
k (x0), then we add to u j the summand ak(x0); if in the opposite

direction, then we add the summand −ak(x0). As we see, some of the summands may cancel
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out. Then we may prove that this definition does not depend on the choice of P and on the
choice of x0 up to an additive constant.

Using this line of reasoning in higher dimensions we run into geometric difficulties, such
as the fact that even if P parametrizes a line segment, it may intersect Sk multiple times and
these intersections might be not transversal, in which case we do not know how to assign the
sign of ak(x0). The proof of Theorem 1.2 as presented above defines the same function u j

and avoids these geometric difficulties.

4 Existence of solutions on the plane

We will prove existence of solutions on the plane for boundary data in BV (∂Ω). We are
going to use approximations of the solution in strict topology: firstly, in Proposition 4.1 we
will ensure that existence of convergent sequences of approximations in L1(Ω) topology is
not a problem; then, we will upgrade it to strict convergence in Theorem 4.6 and use the
Miranda stability theorem (Theorem 2.3) to end the proof. Later, we will see an example of a
discontinuous function f of infinite total variation such that the solution to the corresponding
least gradient problem exists.

Proposition 4.1 Let Ω ⊂ R
N be an open bounded set with Lipschitz boundary. Suppose

that un ∈ BV (Ω) are functions of least gradient with traces fn, which converge to f in
L1(∂Ω). Then un has a convergent subsequence unk → u in L1(Ω).

Note that this does not imply that Tu = f , as the Proposition only provides convergence
in L1(Ω).

Proof As the trace operator is a surjection, by the Open Mapping Theorem it is open. Let us
fix f̃ ∈ BV (Ω) such that T f̃ = f and a sequence of positive numbers εn → 0. Then by
continuity and openness of T the image of a ball B( f̃ , εn) contains a smaller ball B(T f̃ , δn)
for another sequence of positive numbers δn → 0. As fn → f in L1(∂Ω), there exists a
subsequence fnk such that fnk ∈ B( f, δn) = B(T f̃ , δn), so the set T−1( fnk ) is non-empty;
there exists a preimage of fnk by T in B( f̃ , εn). Let us call it f̃n . Obviously f̃n → f̃ in
BV (Ω).

Thus, after possibly passing to a subsequence, there exist functions f̃n, f̃ such that f̃n → f̃
in BV (Ω) and T f̃n = fn, T f̃ = f . Now we may proceed as in [9, Proposition 3.3]. Let us
estimate from above the norm of ‖un − f̃n‖BV :

‖un − f̃n‖BV = ‖un − f̃n‖1 +
∫

Ω

|D(un − f̃n)| ≤ (C + 1)

∫
Ω

|D(un − f̃n)|

≤ (C + 1)(

∫
Ω

|Dun | +
∫

Ω

|D f̃n |) ≤ 2(C + 1)

∫
Ω

|D f̃n | ≤ M < ∞
where the inequalities follow from Poincaré inequality (as un − fn has trace zero), triangle
inequality and the fact that un is solution of the least gradient problem for fn . The common
bound follows from convergence of f̃n .

Thus, by compactness of the unit ball of BV (Ω) in L1(Ω) we get a convergent sub-
sequence unk − f̃nk → v in L1(Ω). But f̃n → f̃ in BV (Ω), so as well in L1(Ω); thus
unk → v + f̃ = u in L1(Ω). 	


We are going to need three lemmas. The first two are straightforward and their proofs can
be found as a step in the proof of co-area formula, see [5, Section 5.5]. The third one is a
convenient version of Fatou lemma.
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Lemma 4.2 Let fn → f in L1(Ω). Then there exists a subsequence fnk such thatχ{ fnk ≥t} →
χ{ f ≥t} in L1(Ω) for a.e. t ∈ R. 	

Lemma 4.3 Let f, fn ∈ L∞(Ω) and suppose that f, fn form a bounded family in L∞(Ω).
If χ{ fn≥t} → χ{ f ≥t} in L1(Ω) for a.e. t ∈ R, then fn → f in L1(Ω). 	

Lemma 4.4 Suppose that g, gn : Ω → R are nonnegative. If additionally for a.e. x ∈ Ω

we have g(x) ≤ lim infn→∞ gn(x) and limn→∞
∫
Ω
gn dx = ∫

Ω
g dx < ∞, then gn → g in

L1(Ω).

Proof Let f+ = max( f, 0) and f− = max(− f, 0). Let us note that∫
Ω

|g − gn |dx =
∫

Ω

(g − gn)+dx +
∫

Ω

(g − gn)−dx

and

0 ←
∫

Ω

(g − gn)dx =
∫

Ω

(g − gn)+dx −
∫

Ω

(g − gn)−dx,

so it suffices to prove that
∫
Ω

(g − gn)+dx → 0 to show that gn → g in L1(Ω). Now let us
see what happens to (well defined) upper limit of the sequence

∫
Ω

(g − gn)+dx :

0 ≤ lim sup
n→∞

∫
Ω

(g − gn)+dx ≤
∫

Ω

lim sup
n→∞

(g − gn)+dx =
∫

Ω

lim sup
n→∞

max(g − gn, 0)dx

=
∫

Ω

max(g + lim sup
n→∞

(−gn), 0)dx =
∫

Ω

max(g − lim inf
n→∞ gn, 0)dx =

∫
Ω

0 dx = 0.

where inequality follows from the (inverse) Fatou lemma: by definition 0 ≤ (g − gn)+ ≤ g,
and g is integrable, so we can apply the Fatou lemma. To prove equalities we use the fact
that lim supn→∞(−gn) = − lim infn→∞ gn and the assumption that g ≤ lim infn→∞ gn a.e.
Thus

∫
Ω

(g − gn)+dx → 0, so gn → g in L1(Ω). 	

We recall the definition of strict convergence in BV (Ω).

Definition 4.5 Let Ω ⊂ R
N be an open set. We say that a sequence un ∈ BV (Ω) converges

strictly to a function u ∈ BV (Ω), if un → u in L1(Ω) and total variations of un converge
to the total variation of u, i.e. ∫

Ω

|Dun | →
∫

Ω

|Du|.

We are going to use two properties of strict convergence: firstly, for any function u ∈ BV (Ω)

we can find a sequence un ∈ C∞(Ω)∩ BV (Ω) converging to u in strict topology. Secondly,
the trace operator is continuous with respect to strict convergence.

Theorem 4.6 Let Ω ⊂ R
2 be an open, bounded, strictly convex set with C1 boundary and

suppose f ∈ BV (∂Ω). Let fn → f strictly in BV (∂Ω), where fn are smooth. Denote the
unique solution of the least gradient problem for fn by un. Then on some subsequence unk
we have strict convergence in BV (Ω) to a function u ∈ BV (Ω). In particular T u = f .

Proof 1. As we have fn → f strictly in BV (∂Ω), we by definition also convergence in
L1(∂Ω). Thus, by Lemma 4.2, after possibly passing to a subsequence we have conver-
gence χ{ fn≥t} → χ{ f ≥t} for a.e. t .
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2. Let Et = { f ≥ t} and En
t = { fn ≥ t}. By co-area formula∫

∂Ω

|Dfn | =
∫
R

P(En
t , ∂Ω) dt →

∫
R

P(Et , ∂Ω) dt =
∫

∂Ω

|Df |.

Lower semicontinuity of the total variation gives us P(Et , ∂Ω)≤ lim infn→∞P(En
t , ∂Ω)

< ∞ for a.e. t . We observe that the conditions in Lemma 4.4 are fulfilled and we obtain
convergence P(En

t , ∂Ω) → P(Et , ∂Ω) in L1(R), so after possibly passing to a sub-
sequence we have pointwise convergence for a.e. t . Consequently χ{ fn≥t} → χ{ f ≥t}
strictly in BV (∂Ω).

3. As ∂Ω ∈ C1 and fn ∈ C1(∂Ω), then by Sard theorem the set T of such t , which are
regular values for all fn , is of full measure. From now on it is necessary that we are in
dimension N = 2. Recalling the Sternberg–Williams–Ziemer construction we get that
for every t ∈ T every point of ∂En

t ∩ ∂Ω is an end of at least one line segment; by
Proposition 3.5 it is an end of exactly one line segment.

4. Let t ∈ T . As ∂Ω is one-dimensional, then P(En
t , ∂Ω) ∈ N and Dχ{ fn≥t} is a sum∑M

i=1 ±δxi . Furthermore, by Proposition 2.9 and our convention of choosing the repre-
sentative the set Et is a union of closed arcs between consecutive points xi . Similarly En

t
is a union of closed arcs between consecutive points xni (however, this is obvious as fn
are smooth functions).

5. As χ{ fn≥t} → χ{ f ≥t} strictly, then for sufficiently large n we have P(En
t , ∂Ω) =

P(Et , ∂Ω). What is more, their derivatives converge in weak* topology; but we have an
exact representation of those derivatives. This gives us convergence xni → xi for every
i .

6. Now, take the sequence un of unique solutions to the least gradient problem for fn given
by the Sternberg–Williams–Ziemer construction. By Proposition 4.1 it has a subsequence
(still denoted by un) convergent in L1(Ω) to u ∈ BV (Ω). This gives us convergence
χ{un≥t} → χ{u≥t} in L1(Ω) for a.e. t ∈ R. Let us fix t ∈ T such that the above
convergence holds. Let Ft = {u ≥ t} and Fn

t = {un ≥ t}. As by Theorem 2.6 χFn
t

are
functions of least gradient in Ω , by Theorem 2.3 χFt is a also function of least gradient in
Ω . By Proposition 3.5 each of the sets ∂Fn

t (and ∂Ft ) is a finite union of line segments,
pairwise disjoint in Ω , connecting certain pairs of points among xni (xi ). By definition
of T every point of ∂Fn

t ∩ ∂Ω (and ∂Ft ∩ ∂Ω) is an end of exactly one line segment.
7. Let A be the set of pairs (i, j), where i < j , such that the line segment xi x j is a subset

of ∂Ft . We notice that as χFn
t

→ χFt in L1(Ω), then for sufficiently big n also the line

segment xni x
n
j is a subset of ∂Fn

t and only such line segments are connected components
of ∂Fn

t . Thus

P(Fn
t ,Ω) =

∑
(i, j)∈A

‖xni − xnj ‖ →
∑

(i, j)∈A
‖xi − x j‖ = P(Ft ,Ω).

8. Let us see that P(Fn
t ,Ω) ≤ P(Ω,RN ). Indeed, ∂Fn

t is a finite union of line segments,
pairwise disjoint in Ω , connecting certain pairs of points among xni . If we choose a
different connection between them, for example by drawing a full convex polygon with
vertices in xni , by minimality of ∂Fn

t the polygon has a larger perimeter. If we use arcs on
∂Ω instead, the perimeter would be even larger, as line segments are minimal surfaces
in R

2.
9. Since the functions χ{un≥t} converge in L1(Ω) for a.e. t to χ{u≥t}, then by Lemma 4.3

we have convergence un → u in L1(Ω). Furthermore in Step 7 we proved convergence
P(Fn

t ,Ω) → P(Ft ,Ω) for a.e. t , so by dominated convergence theorem (by Step 8
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this sequence is bounded) we have convergence P(Fn
t ,Ω) → P(Ft ,Ω) in L1(R). By

co-area formula
∫
Ω

|Dun | → ∫
Ω

|Du|, which gives that un → u strictly in BV (Ω).
	


From the above Theorem we immediately obtain Theorem 1.1.

Proof of Theorem 1.1 For each f ∈ BV (∂Ω) we can find a sequence fn of class C∞(∂Ω)

strictly convergent to f . Let un be solutions of the least gradient problem for fn . Then after
possibly passing to subsequence we have that un → u strictly in BV (Ω); but the trace is
continuous in the strict topology, so Tu = f . Thus by Miranda stability theorem (Theorem
2.3) u is a function of least gradient, so it is a solution of the least gradient problem for f . 	

Example 4.7 Take Ω = B(0, 1) ⊂ R

2. As we know from [17], when f is a characteristic
function of a certain fat Cantor set, then the least gradient problem has no solution. Thus, we
would expect that if we approximated the boundary function and constructed solutions of the
least gradient problem for the approximation, then the trace of the limit would be incorrect.
To settle this, let fn be a function of the n-th stage of the Cantor set construction and un be
the corresponding solution to the least gradient problem; it exists by Theorem 1.1. We will
see that un → 0 in L1(Ω).

Let f̃0(θ) = χ[0,1]. We construct f̃1 by removing from the middle of [0, 1] an interval of
length 2−2, i.e. f̃1 = χ[0,3/8] + χ[5/8,1]. In the second stage we remove from the middle of
both intervals an interval of length 2−4 and obtain f̃2 = χ[0,5/32] +χ[7/32,3/8] +χ[5/8,25/32] +
χ[27/32,1]. During the n-th stage of construction we remove an interval of length bn = 2−2n

from the middle of all existing 2n−1 intervals.
Let us see what is the length of all such intervals. Let an be the length of an interval at the

n-th stage of construction. Then an = an−1
2 − 1

22n+1 . As a0 = 1, we obtain a direct formula

an = 2n+1
22n+1 .

We map the interval [0, 1] to an arc of length 1 on the circle symmetric with respect to the
y axis, i.e. g(x) = (cos( π+1

2 − x), sin( π+1
2 − x)). This way our Cantor set is on the circle

and we define fn = f̃n ◦ g−1 : im g → R. We extend each of the functions f , fi to the
whole ∂B(0, 1) by 0. This situation for n = 1 is presented on Fig. 1.

Consider the function f1. In order to check whether ∂{u ≥ t} consists of two bases of
the trapezoid or two sides, we compare the sums of lengths. We directly compute the sum of
lengths of the bases to be (cos( π

2 − 1
2 )−cos( π

2 + 1
2 ))+(cos( π

2 − 1
8 )−cos( π

2 + 1
8 )) ≈ 1.21, while

the length of the sides equals 2(cos( π
2 − 1

2 )−cos( π
2 − 1

8 ))2+(sin( π
2 − 1

2 )−sin( π
2 − 1

8 ))2)1/2 ≈
0.75. Hence the sides of the trapezoid minimize P(Et , B(0, 1)) for t ∈ (0, 1) and u1, solution
of the least gradient problem for f1, takes value 0 on the trapezoid and takes value 1 only on
flaps cut off by the sides of the trapezoid (shown in grey on Fig. 1).

Now, we will repeat the above reasoning at every stage of construction of the Cantor set.
At every stage of construction there appear 2n−1 identical trapezoids in the flaps on which
the value of un−1 was constant and equal to 1; we have to compare the sum of lengths of
the sides of these trapezoid versus their bases. We use the law of cosines to notice that for
a circle of radius one te length of the chord corresponding to angle α equals

√
2 − 2 cos α;

thus we have to check the following inequality:√
1 − cos(an) + √

1 − cos(bn) > 2
√

1 − cos(an+1). (5)

On the left hand side is the (rescaled by 1√
2

) sum of lengths of the two bases and on the

right hand side is the (rescaled) sum of lengths of the sides. Substitute x = 2−n , recall that
bn = 2−2n and use the direct formula for an . It changes to the inequality
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Fig. 1 Solution of the least
gradient problem for the first
stage of construction

√
1 − cos

(
x(x + 1)

2

)
+

√
1 − cos(x2) > 2

√
1 − cos

(
x(x + 2)

8

)
.

Actually, we may prove a stronger inequality: let us omit the second summand and square
both sides of the resulting inequality. Then it changes to

g(x) = 1 − cos

(
x(x + 1)

2

)
− 4 + 4 cos

(
x(x + 2)

8

)
> 0.

But g satisfies g(0) = 0 and its derivative is positive on (0, 1), so g > 0 on (0, 1), thus the
inequality holds for all x ∈ (0, 1); hence inequality (5) holds for all n. Thus on every stage
of construction the sides of the trapezoids are shorter than the bases.

Now it is easy to determine the solution un . We proceed as in the proof of Theorem 4.6.
Let us take a sequence of smooth functions f k1 approximating f1 in the strict topology on ∂Ω

and another sequence f k2 approximating f2 in the same topology; we additionally require
that f k1 ≥ f k2 for each k. We denote the solutions to the approximating problems by uk1 and
uk2. Thus, by Theorem 2.7, i.e. the comparison principle for continuous boundary data, we
have that uk1 ≥ uk2; we pass to the limit with k → ∞ to obtain that u1 ≥ u2. Thus, while
determining u2, we only have to take into account two possible configurations: in the two
flaps in which u1 = 1 we have to compare the sum of lengths of the sides of the resulting
trapezoid versus its bases. As the sides of the trapezoid are shorter, u2 is nonzero only in four
smaller flaps enclosed by an arc on which f2 = 1 and a line segment.

We repeat the above argument at every level of the construction. It follows that the solution
un equals zero on each trapezoid in this construction and will be nonzero only on 2n flaps
enclosed by arcs on which fn equals 1 and line segments. In particular, the sequence un is
nonincreasing and for every point x inside the circle at a sufficiently large stage of construction
we would have un(x) = 0. Thus un → 0 a.e.; but it is bounded from above by 1, so the
convergence holds also in L1(Ω).
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Example 4.8 Let us make a slight change to the previous example: consider another fat
Cantor set on the circle. More precisely, take a sequence bn converging very rapidly to
zero, so the inequality (5) holds in the opposite direction; it is possible due to the triangle
inequality. This results in a Cantor set C of almost full measure.

Let us look again at Fig. 1. As inequality (5) holds in the opposite direction, at the first level
of the construction it is more efficient to fix u1 = 1 in both the grey flaps and the trapezoid
than to follow the construction in the previous example. Arguing as in the previous example,
we see that every stage of construction it is more efficient to remove 2n−1 curvilinear flaps
bounded by a line segment and an arc on ∂Ω corresponding to a connected component
of { fn = 0} from the set {un−1 = 1} than to repeat the construction from the previous
example, i.e. add trapezoids to the set {un−1 = 0}. Thus the set Fn = {un = 1} is a union
of trapezoids arising in all the previous steps and flaps bounded by a line segment and an arc
on ∂Ω corresponding to a connected component of { fn = 1}.

The sequence un = χFn converges to u = χF a.e. and in L1(Ω); by Theorem 2.3 u is a
function of least gradient. We have to check that Tu = f . Firstly, let us notice that the trace
of χA, a characteristic function of a set of bounded perimeter A ⊂ R

2 is again a characteristic
function of some set: by [5, Theorem 5.3.2] for H 1-almost all x ∈ ∂Ω we write

lim
r→0

−
∫
B(x,r)∩Ω

|χA(y) − TχA(x)|dy = lim
r→0

(|1 − TχA(x)| |B(x, r) ∩ A|
|B(x, r) ∩ Ω|

+ |TχA(x)| |B(x, r) ∩ (Ω\A)|
|B(x, r) ∩ Ω| ) = 0,

but as |B(x, r) ∩ A| + |B(x, r) ∩ (Ω\A)| = |B(x, r) ∩ Ω| we see that it is only possible for
TχA(x) = 0 or TχA(x) = 1.

Now, let us see that by the construction above for every x ∈ C except for the two extreme
points there is a circular sector centered at x such that it lies entirely inside each Fn , so also
entirely inside F : as bn is small, then in every step of construction (except for the first) the
angle between ∂Ω and every line segment cutting off a flap in which un = 0 is bounded from
above by some small α0. Hence at every point of C (except for the two extreme points) for
sufficiently small r > 0 there is a circular sector, bounded by two rays such that the angle
between them and ∂Ω equals α0, in which u = 1.

However, it implies that the mean integral −
∫
B(x,r)∩Ω

|χF (y)|dy is bounded from below, so

Tu = TχF cannot equal 0 on the Cantor set. By the previous paragraph Tu equals one H 1-
a.e. on the Cantor set. We also see that for each x ∈ ∂Ω\C there is an open neighbourhood
of x in which un = 0 for sufficiently large n, so Tu equals zero on ∂Ω\C . We obtained that
there exists a solution to the least gradient problem for a certain discontinuous f /∈ BV (∂Ω).

5 Anisotropic case

This section is devoted to the anisotropic least gradient problem. We discuss l p norms on the
plane for p ∈ [1,∞]. We prove a non-uniqueness result for p = 1,∞ and discuss how the
solutions look like for p ∈ (1,∞). We will use the notation introduced in [12].

Definition 5.1 Let Ω ⊂ R
N be an open bounded set with Lipschitz boundary. A continuous

function φ : Ω × R
N → [0,∞) is called a metric integrand, if it satisfies the following

conditions:

1. φ is convex with respect to the second variable for a.e. x ∈ Ω;
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2. φ is homogeneous with respect to the second variable, i.e.

∀ x ∈ Ω, ∀ ξ ∈ R
N , ∀ t ∈ R φ(x, tξ) = |t |φ(x, ξ);

3. φ is bounded in Ω , i.e.

∃ � > 0 ∀ x ∈ Ω, ∀ ξ ∈ R
N 0 ≤ φ(x, ξ) ≤ �|ξ |.

In order to introduce the anisotropic total variation and recover some properties of the
classical total variation, we will additionally assume that

4. φ is elliptic in Ω , i.e.

∃ λ > 0 ∀ x ∈ Ω, ∀ ξ ∈ R
N λ|ξ | ≤ φ(x, ξ).

Remark 5.2 These conditions are sufficient for most of the cases considered in scientific
work: they are satisfied for the classical least gradient problem, i.e. φ(x, ξ) = |ξ |, as well
as for the l p norms, p ∈ [1,∞] and for weighted least gradient problem considered in [10]:
a function φ(x, ξ) = g(x)|ξ |, where g ≥ c > 0.

Definition 5.3 The polar function of φ is φ0 : Ω × R
N → [0,∞) defined as

φ0(x, ξ∗) = sup
{
〈ξ∗, ξ 〉 : ξ ∈ R

N , φ(x, ξ) ≤ 1
}

.

While the definition of the anisotropic total variation as introduced in [1] is slightly more
general, we will only consider metric integrands φ which are elliptic and continuous in Ω . As
proved in [1, Chapter 3], in that case we may introduce the following equivalent definition:

Definition 5.4 Let φ be a metric integrand continuous and elliptic in Ω . For a given function
u ∈ L1(Ω) we define its φ-total variation in Ω by the formula (another notation used in the
literature is

∫
Ω

φ(x, Du)):∫
Ω

|Du|φ = sup

{∫
Ω

u div z dx : φ0(x, z(x)) ≤ 1 a.e., z ∈ C1
c (Ω)

}
.

If
∫
Ω

|Du|φ < ∞, we say that u ∈ BVφ(Ω). Note that by properties (3) and (4) we have that
λ

∫
Ω

|Du| ≤ ∫
Ω

|Du|φ ≤ �
∫
Ω

|Du|, so BVφ(Ω) = BV (Ω) as sets, but they are equipped
with different norms. We also define the φ-perimeter of a set E to be

Pφ(E,Ω) =
∫

Ω

|DχE |φ.

Similarly to the classical case, we say that E is a set of bounded φ-perimeter in Ω , if
Pφ(E,Ω) < ∞.

Remark 5.5 When φ is continuous and elliptic in Ω , then similarly to the classical case ( [1,
Chapter 4]) we recover lower semicontinuity of the φ-total variation and the co-area formula.
We also recover the approximation by C∞ functions in the strict topology, even in a stronger
form proved by Giusti in [6, Corollaries 1.17, 2.10]: let v ∈ BVφ(Ω), T v = f . Then there
exists a sequence ofC∞ functions vn such that vn → v strictly in BVφ(Ω) such that T v = f .

The approximation by smooth functions in the strict topology entails that we may approx-
imate sets of bounded φ-perimeter both in the Lebesgue measure and in φ-perimeter by open
sets with smooth boundary (also with respect to some given boundary conditions); in the
isotropic case, see [2, Theorem 3.42]. The tools used there include the isoperimetric inequal-
ity, lower semicontinuity of the total variation and the co-area formula, all of which are valid
also in the anisotropic case. 	
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For an explicit use we shall need the following integral representation ([1,10]):

Proposition 5.6 Let ϕ : Ω × R
N → R be a metric integrand. Then we have an integral

representation: ∫
Ω

|Du|φ =
∫

Ω

φ(x, νu(x)) |Du|,

where νu is the Radon–Nikodym derivative νu = dDu
d|Du| . In particular, if E ⊂ Ω and ∂E is

sufficiently smooth (at least C1), then we have a representation

Pφ(E,Ω) =
∫

Ω

φ(x, νE ) dH n−1,

where νE is the external normal to E. 	

We are interested in the anisotropic version of the least gradient problem. We state it

similarly to the isotropic version:

Definition 5.7 Let Ω ⊂ R
N be an open bounded set with Lipschitz boundary. We say that

u ∈ BVφ(Ω) is a function of φ-least gradient, if for every compactly supported v ∈ BVφ(Ω)

we have ∫
Ω

|Du|φ ≤
∫

Ω

|D(u + v)|φ.

Again, if φ is a metric integrand with continuous extension to R
N , we may instead assume

that v is a BVφ function with zero trace on ∂Ω; see [12, Proposition 3.16]. Furthermore, we
say that u is a solution to the anisotropic least gradient problem with boundary data f if u is
a function of φ-least gradient and Tu = f .

In the anisotropic case, existence and uniqueness of minimizers in the least gradient
problem for continuous boundary data depend not only on the geometry of Ω , but also on
the regularity of φ. The uniqueness proof is based on a maximum principle and requires
uniform convexity and a condition slightly weaker than W 3,∞ regularity of an elliptic metric
integrand away from {ξ = 0}; for a precise assumption, see [10, Theorem 1.2]. The existence
proof requires ellipticity of the metric integrand φ and a barrier condition:

Definition 5.8 ([10, Definition 3]) Let Ω ⊂ R
N be an open bounded set with Lipschitz

boundary. Suppose that φ is an elliptic metric integrand. We say that Ω satisfies the barrier
condition if for every x0 ∈ ∂Ω and sufficiently small ε > 0, if V minimizes Pφ(·, p;RN ) in

{W ⊂ Ω : W\B(x0, ε) = Ω\B(x0, ε)}
then

∂V ∩ ∂Ω ∩ B(x0, ε) = ∅.

In the isotropic case φ(x, ξ) = ‖ξ‖2 this is equivalent, at least for sets with C2 boundary, to
the condition slightly weaker than strict convexity introduced in [18].

Before we proceed, we need one additional result that relates functions of φ-least gradient
and φ-minimal sets, i.e. sets, the characteristic functions of which are of φ-least gradient. Its
proof in one direction follows the lines of the proof of Theorem 2.6 and in the other direction
it is a simple application of the co-area formula.
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Proposition 5.9 ([12, Theorem 3.19]) Let Ω ⊂ R
N be an open bounded set with Lipschitz

boundary. Assume that the metric integrand φ has a continuous extension to R
N . Then

u ∈ BVφ(Ω) is a function of φ-least gradient in Ω if and only if χEt is a function of φ-least
gradient for almost all t ∈ R. 	

Definition 5.10 For p ∈ [1,∞) we define the l p norm of a vector on the plane by the formula
‖(x, y)‖p = (|x |p + |y|p)1/p . For p = ∞ it is defined as ‖(x, y)‖∞ = sup(|x |, |y|).

We will discuss the φ-least gradient function with respect to an anisotropy generated by
the l p norms, i.e. φ(x, ξ) = ‖ξ‖p. Firstly, let us see that for p = 1 or p = ∞ does not
satisfy the regularity assumptions of [10, Theorem 1.2], so if the solution to the anisotropic
least gradient problem exists, it need not be unique; indeed, we will provide an example of
nonuniqueness in Example 5.16. Unfortunately, as Corollary 5.13 clearly shows, the barrier
condition is not satisfied and we have to prove existence of minimizers using another means.

We aim to prove that for nonsmooth anisotropy, i.e. for p = 1 or p = ∞, the solutions in
general are not unique; in order to achieve this goal, we will study how do minimal surfaces
with respect to the l p norm look like. The next result is stated for sets with C1 boundary for
two reasons. Firstly, together with approximation by smooth functions in strict topology it
is enough to consider sets with C1 boundary to construct an example with nonuniqueness of
minimizers. Secondly, minimal sets with respect to l1 anisotropy may have singularities on
the boundary and an analogue of the next Proposition would be false; see the end of Example
5.16.

Proposition 5.11 LetΩ ⊂ R
2 be an open bounded convex set. Let the anisotropy be defined

by the function φ(x, Du) = ‖Du‖1. Let E be a 1-minimal set with respect to Ω , i.e. χE is a
function of 1-least gradient in Ω . Suppose that ∂E ∈ C1. Then every connected component
of ∂E is a graph of a monotone function (possibly including vertical line segments in the
same direction).

Proof 1. Firstly, want to show that if two points p1 = (x0, y1) and p2 = (x0, y2) with the
same first coordinate belong to ∂E , then they are connected by a vertical line segment
p1 p2 ⊂ ∂E .
Suppose otherwise. Denote by ∂E(p1, p2) the part of ∂E between p1 and p2; without loss
of generality we may assume there it contains no other points with first coordinate x0. As
∂E is C1, at the point (x, y) ∈ ∂E the Radon–Nikodym derivative νχE is perpendicular
to the level set, so it is a vector (− sin θ, cos θ). Thus φ(x, νχE ) = | sin θ | + | cos θ |. We
also recall that |DχE | = H 1|∂E . Using the representation introduced by Proposition 5.6
we calculate

Pφ(E,Ω) =
∫

Ω

φ(x, νχE )|DχE | =
∫

∂E
(| sin θ | + | cos θ |)dH 1

=
∫

∂E\∂E(p1,p2)

(| sin θ | + | cos θ |)dH 1 +
∫

∂E(p1,p2)

(| sin θ | + | cos θ |)dH 1

>

∫
∂E\∂E(p1,p2)

(| sin θ | + | cos θ |)dH 1 +
∫

∂E(p1,p2)

1dH 1

>

∫
∂E\∂E(p1,p2)

(| sin θ | + | cos θ |)dH 1 +
∫
p1 p2

1dH 1 = Pφ(F,Ω),

where F is a set with C1 boundary (possibly except for p1 and p2) such that E�F is the
set enclosed by ∂E(p1, p2) and p1 p2. Thus E was not a 1-minimal set, contradiction.
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2. Let (x0, y0) and (x1, y1) be two points on the same connected component of ∂E . Let us
suppose additionally that ∂E does not contain any vertical line segments, i.e. we may
represent a level set from the point (x0, y0) to (x1, y1) as a graph of a C1 function g.
Like before, let us note that at the point (s, g(s)) the Radon–Nikodym derivative νχEt

is a vector (− sin θ, cos θ), where g′(s) = tan θ . We have to minimize the integral (we
may assume that x0 < x1):

Pφ(E,Ω) =
∫

Ω

φ(x, νχE )|DχE |

=
∫

∂E
(| sin θ | + | cos θ |)dH 1

=
∫ x1

x0

(| sin θ | + | cos θ |)
√

1 + (tan θ)2dx =
∫ x1

x0

(| sin θ | + | cos θ |) 1

| cos θ |dx

=
∫ x1

x0

(1 + | tan θ |)dx = |x1 − x0| +
∫ x1

x0

|g′|dx ≥ |x1 − x0| + |y1 − y0|,

As we assumed g to be C1, the inequality becomes equality if and only if g is monotone.
In particular there are multiple functions minimizing this integral.

3. Now we allow ∂E to contain vertical line segments. The difference is purely technical, as
we have to divide our integral into two parts. Let us suppose that the (orientated) length
of i-th vertical line segment equals λi , then we have

∫
graph part of ∂E

(| sin θ | + | cos θ |)dH 1 +
∫

vertical part of ∂E
(1 + 0)dH 1

=
∫ x1

x0

(1 + |g′|)dx +
∞∑
i=1

|λi | =
∫ x1

x0

|g′|dx + |x1 − x0| +
∞∑
i=1

|λi |

≥ |y1 − y0 −
∞∑
i=1

λi | + |x1 − x0| +
∞∑
i=1

|λi | ≥ |x1 − x0| + |y1 − y0|,

where the inequality becomes equality if and only if g is monotone and all the vertical
line segments are orientated in the same direction as g′. Again, there are multiple functions
minimizing this integral. 	


Corollary 5.12 Let E be a set such that ∂E is a C1 Jordan curve, which is a graph of a
monotone function (possibly including vertical line segments). Then E is a 1-minimal set: by
Remark 5.5 the infimum of P1(E,Ω)with respect to some boundary conditions is the same in
the class of smooth sets as in the class of sets of bounded 1-perimeter; but due to Proposition
5.11 the infimum is achieved in the class of smooth functions. Thus we may consider only
smooth competitors and the calculation in Proposition 5.11 shows that E is a 1-minimal set.

Corollary 5.13 Notice that if E is a set such that ∂E = xy ∪ xz, where one of the line
segments is horizontal and the other is vertical, then E is also a 1-minimal set: let En be a
set with C1 boundary such that En ⊂ E, ∂En = ∂E in Ω\B(x, 2−n) and ∂En is a circle arc
in B(x, 2−n). Then χEn → χE in L1(Ω), so by lower semicontinuity of the 1-total variation
E is a 1-minimal set. In particular, if we take the intersection point x to be on ∂Ω , we see
that the barrier condition fails for p = 1 and we cannot expect existence of minimizers to
the anisotropic least gradient problem for arbitrary continuous boundary data.
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Fig. 2 Solution of this anisotropic least gradient problem for l1 norm is unique

The next Proposition estabilishes a criterion for existence and uniqueness of minimizers
with respect to l1 norm. Then, in Example 5.16, we provide an example when minimizers
exist and are not unique.

Proposition 5.14 Let Ω ⊂ R
2 be an open, bounded, strictly convex set. Take φ(x, Du) =

‖Du‖1. Let f ∈ C(∂Ω). Denote by u the solution to the isotropic least gradient problem for
f . Then, if the boundaries of superlevel sets of u are parallel to the axes of the coordinate
system, then u is a unique solution of the anisotropic least gradient problem with respect to
the l1 norm.

Proof Let v ∈ BV (Ω), T v = f . Denote by u the solution to the isotropic problem. Then∫
Ω

|Dv|1 ≥
∫

Ω

|Dv|2 ≥
∫

Ω

|Du|2 =
∫

Ω

|Du|1.

As ‖ · p‖p is nonincreasing in p, we have the first inequality. The second follows from the
definition of the Euclidean solution; by its uniqueness the second inequality is strict, if only
u �= v. As the boundaries of superlevel sets of u are parallel to the axes of the coordinate
system, we have the final equality. It follows that u is a unique solution to the anisotropic
least gradient problem. 	

Example 5.15 Let Ω = B(0, 1) ⊂ R

2. Take φ(x, Du) = ‖Du‖1. Let f (θ) = cos(2θ).
We construct the isotropic solution u0 using Sternberg–Williams–Ziemer construction. We
notice, as shown on Fig. 2, that the boundaries of superlevel sets of u0 are parallel to the axes
of the coordinate system. By Proposition 5.14 the solution to the anisotropic least gradient
problem is unique. 	


As the barrier condition fails for p = 1, we cannot expect existence of solutions for
arbitrary continuous boundary data. However, we may show an example of nonuniqueness
of solutions even for the unit ball in the class of smooth boundary data.

123



Planar least gradient problem: existence, regularity and… Page 23 of 27 98

Example 5.16 Let Ω = B(0, 1) ⊂ R
2. Take φ(x, Du) = ‖Du‖1 and let f ∈ C∞(∂Ω) be

given by the formula f = sin(2θ), i.e. the boundary datum is a rotation of the boundary
datum from Example 5.15 by π

4 . Then the solution to the anisotropic least gradient problem
exists and is not unique.

According to Proposition 5.9, it is sufficient to construct superlevel sets of v such that
P1(Et ,Ω) is minimal for almost all t ∈ R; then

∫
Ω

|Dv|1 would be minimal as well. We
observe that every t ∈ (0, 1) is regular and its preimage consists of four points of the form
p1 = (a, b), p2 = (b, a), p3 = (−a,−b), p4 = (−b,−a), where a > b > 0.

We want to construct a 1-minimal set Et with boundary value χ{ f >t}. Arguing as in
Corollary 5.12 we see that we only need to consider competitors with smooth boundary.
By Proposition 5.11 every connected component of ∂Et is a graph of a monotone function
(possibly including vertical line segments); hence there are two types of competitors: sets,
whose boundary is a union of two monotone Jordan curves p1 p2 and p3 p4 or the union of
two monotone Jordan curves p1 p4 and p2 p3.

Now we recall the calculation in Proposition 5.11. Thus the l1 length of every monotone
Jordan curve p1 p2 equals 2|a − b| (and the same for p3 p4), while the l1 length of every
monotone Jordan curve p1 p4 equals 2|a + b| (and the same for p2 p3). Thus, if we choose
p1 p2 and p3 p4 as the boundary of a set Et , we obtain that Et is 1-minimal. We may perform
an analogous calculation for t ∈ (−1, 0).

We construct a function v ∈ BV1(Ω) in the following way: let Et = {v > t} be as above.
We additionally require that Et ⊂ int Es and define v(x) = sup{t : x ∈ Et }. Then v is well
defined and by Proposition 5.9 it is a function of 1-least gradient.

Obviously this construction leads to multiple solutions. Firstly, we may take ∂Et to be
a union of two line segments; then v coincides with the isotropic solution. Secondly, in the
first quadrant ({x, y > 0}) we may define ∂Et to be an arc of the circle with centre (1, 1)

and passing through p1 and p2; we extend this definition similarly to other quadrants. This
minimizer is presented on Fig. 3.

Finally, we may take ∂Et to be the union of a vertical and horizontal line segment: in the
first quadrant we define q = (a, a) and take ∂Et = p1q ∪qp2 and proceed similarly in other
quadrants. While ∂Et is not C1, we argue as in Corollary 5.13 to see that Et is a 1-minimal
set. Then the zero level set of v has a singularity: ∂E0 = {(x, y) ∈ Ω : x = 0 ∨ y = 0}. It is
a union of two monotone Jordan curves intersecting at (0, 0). 	


Example 5.17 Now let p = ∞. If we make a similar calculation, we obtain that the perimeter
of a level set connecting points (x0, y0) with (x1, y1) equals∫

∂Et

max(| sin θ |, | cos θ |)dH n−1 =
∫ x1

x0

max(| sin θ |, | cos θ |)
√

1 + (tan θ)2dx

=
∫ x1

x0

max(| sin θ |, | cos θ |) 1

| cos θ |dx =
∫ x1

x0

max(1, | tan θ |)dx

=
∫ x1

x0

max(1, |g′|)dx ≥ max(|x1 − x0|, |y1 − y0|),

where the inequality becomes equality if and only if |g′| − 1 has constant sign; in other
words, the angle between the level set and the x coordinate axis is always not greater (or not
smaller) than π

4 . Thus, if we take the function f (θ) = cos(2θ), the solution is not unique; we
apply this result for t ∈ (−1, 0) and then apply it again for t ∈ (0, 1) considering the level
set as a function of y. A solution different than the Euclidean one is presented on Fig. 4.

123



98 Page 24 of 27 W. Górny

Fig. 3 Solution of this
anisotropic least gradient
problem with respect to l1 norm
is not unique

Fig. 4 Solutions of anisotropic least gradient problem may be not unique for l∞ norm

Nevertheless, it may still happen that the solution is unique: it is the case if we take such f
that the Euclidean solution has all level sets at an angle π

4 to the coordinate axes. For example
we can take f (θ) = sin(2θ). 	


Now we fix p ∈ (1,∞). Let Ω ⊂ R
2 be an open, bounded, strictly convex set. Take

f ∈ C(∂Ω). The l p norm is uniformly convex and smooth away from {ξ = 0}, so by [10,
Theorem 1.2] there is at most one solution to the anisotropic least gradient problem with
boundary data f . Regarding the barrier condition, if ∂Ω is additionally C2, we may use a
version of the barrier condition in local coordinates, see [10, Remark 3.2] to check that it
is satisfied and that in view of [10, Theorem 1.1] a solution to the anisotropic least gradient
problem with boundary data f exists.
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Our main goal is Theorem 1.3. Apart from its value as a structure theorem for φ-least
gradient functions, it shows that the barrier condition as stated in Definition 5.8 is satisfied
also without the additional assumption that ∂Ω is C2: as the connected minimal surfaces
with respect to l p norms for p ∈ (1,∞) are the same as in the isotropic case, the barrier
condition for a l p norm for given p is satisfied for the same sets Ω as it is for p = 2, i.e. if
Ω is an open, bounded, strictly convex set.

Proof of Theorem 1.3 Let (x0, y0) and (x1, y1) be two points on the same connected com-
ponent of ∂E . We have to minimize an integral analogous to the previous one (notation stays
the same):

L(x, g, g′) =
∫

∂Et

(| sin θ |p + | cos θ |p) 1
p dH n−1

=
∫ x1

x0

(| sin θ |p + | cos θ |p) 1
p
√

1 + (tan θ)2dx

=
∫ x1

x0

(| sin θ |p + | cos θ |p) 1
p

1

| cos θ |dx =
∫ x1

x0

(1 + | tan θ |p) 1
p dx

=
∫ x1

x0

(1 + |g′|p) 1
p dx .

As we are in dimension two, due to regularity results from [15, Theorem I.3.1] every connected
component of the boundary of a φ-minimal set is a C2 manifold, thus we may use the Euler–
Lagrange equation for the functional L , which takes form

0 = ∂L

∂g
= d

dx
(
∂L

∂g′ ) = d

dx
(sgn(g′)(|g′|)p−1(1 + |g′|p) 1

p −1
)

sgn(g′)(|g′|)p−1(1 + |g′|p) 1
p −1 = const.

Taking absolute value and raising both sides to power p
p−1 we obtain

|g′|p
1 + |g′|p = const = C,

thus g′ = const. Thus the anisotropic minimal surface connecting points (x0, y0) and (x1, y1)

is a line segment. 	

We conclude by stating a consequence of Theorem 1.3 for the existence theory of

anisotropic least gradient functions. In view of [10, Theorems 1.1–1.2] we obtain

Corollary 5.18 If Ω ⊂ R
2 is an open, bounded, strictly convex set and f ∈ C(∂Ω), then

the corresponding anisotropic least gradient problem has a unique solution. 	

However, Theorem 1.3 does not imply that the solution to the anisotropic problem coin-

cides with the isotropic solution. A comment from the referee report has inspired the
following example:

Example 5.19 Let Ω ⊂ R
2 be an open, bounded, strictly convex set such that points p1 =

(1, 0), p2 = (11, 0), p3 = (0, 11) and p4 = (0, 1) lie on ∂Ω . Take f ∈ C(∂Ω) such that
f > 0 on the arcs p1 p2 ⊂ ∂Ω and p3 p4 ⊂ ∂Ω and f < 0 on the two other arcs. We are
interested in the zero superlevel set for p ∈ (1,∞). We easily see that ∂{u ≥ 0} is the union
of two line segments; either ∂{u ≥ 0} = p1 p2 ∪ p3 p4 or ∂{u ≥ 0} = p2 p3 ∪ p4 p1.
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We compare the sums of lengths of these line segments with respect to l p norms. The sum
of lengths of p1 p2 and p3 p4 is independent of p and equals 20. The sum of lengths of p2 p3

and p4 p1 equals (1p + 1p)1/p + (11p + 11p)1/p = 12 · 21/p . Let p0 = log(2)

log( 5
3 )

. Then for

p > p0 it is smaller than 20, so the trapezoid p1 p2 p3 p4 ⊂ {u ≥ 0}; if p < p0, then it is
greater than 20, so p1 p2 p3 p4 ⊂ {u < 0}. Finally, for p = p0 the trapezoid p1 p2 p3 p4 is a
zero level set of positive measure; this is the only p with this property. In particular, solutions
to the anisotropic least gradient problem for the same boundary data can vary with p.
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