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Abstract This manuscript extends a study initiated in Dacorogna et al. (C R Math Acad
Sci Paris Ser I 353:1099–1104, 2015) to incorporate non-homogeneous cost functions. The
problems studied here are convex optimization problems, but the subdifferential of the actions
we consider, are not easily characterized except when we deal with smooth cost functions
with polynomial growth at infinity. We study minimization problems on the paths of k-forms,
which involves dual maximization problems with constraints on the co-differential of the k-
forms. When k < n, only some directional derivatives of a vector field are controlled. This
is in contrast with prior studies of optimal transportation of volume forms (k = n), where
the full gradient of a scalar function is controlled. An additional complication emerges due
to the fact that our dual maximization problem cannot avoid the use of k-currents.

Mathematics Subject Classification 35 · 49

1 Introduction

This work continues our program on the theory of transportation of closed differential forms.
The current manuscript studies actions defined on paths of closed differential forms, intro-
duces various distances and improves on the study in [9] (for related work more centered on
the symplectic case where k = 2, see [10]). We denote by �k or �k(Rn), the set of exterior
k-forms over Rn (k-covectors of Rn).
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Consider a convex (in fact contractible will be sufficient) open bounded set � ⊂ R
n and

denote by ν the unit outward vector to the boundary ∂�. Let d denote the exterior derivative
operator on the set of differential forms on � and let δ denote the adjoint (or co-differential)
of d. Let f̄0, f̄1 be two-closed k-forms on � (i.e. their distributional differential d f̄0 and d f̄1
are null) and the compatibility condition

( f̄1 − f̄0) ∧ ν = 0 on ∂� (1.1)

is satisfied when 1 ≤ k ≤ n − 1 while we impose that
∫

�

( f̄1 − f̄0)dx = 0 (1.2)

when k = n. Accordingly, we denote by H, the set of k-forms h ∈ L1(�;�k), which are
closed in the weak sense, and such that when 1 ≤ k ≤ n − 1 then

(h − f̄0) ∧ ν = 0 on ∂�

while when k = n it is rather required that
∫

�

(h − f̄0)dx = 0.

This is a subspace of the separable Banach L1(�;�k). If s → fs is a path in H, since on
contractible domain every closed form is exact and s → −∂s fs remains a path of closed
forms, there exists a path s → As of (k − 1)-forms such that −∂s f = d A. Let p ∈ (1,∞).
In fact, we are interested in pairs ( f, A) such that

A ∈ L p
(
(0, 1) × �;�k−1

)
, f ∈ L p

(
(0, 1) × �;�k

)
, ( f0, f1) = ( f̄0, f̄1) (1.3)

and
∂s f + d A = 0 in (0, 1) × � and A ∧ ν = 0 on [0, 1] × ∂� (1.4)

in the weak sense (cf. Definition 2.2). The variable s has, a priori, no physical meaning and
only serves as an interpolation variable between two prescribed closed forms. Let us denote
by P p( f̄0, f̄1) the set of pairs ( f, A) such that (1.3) and (1.4) holds.

Let c : �k ×�k−1 → [0,∞] be a lower semicontinuous function such that when ω ∈ �k ,
ξ ∈ �k−1 and c(ω, ξ) < ∞ then

c(ω, ξ) = 0 if and only if ξ = 0. (1.5)

In order for c to induce a Riemannian or Finsler type metric, we further assume that

c(ω, λξ) = |λ|pc(ω, ξ). (1.6)

For f ∈ L1(�;�k) and A ∈ L1(�;�k−1) we set

||A|| f =
(∫

�

c ( f, A) dx

) 1
p

(1.7)

and define Finsler type metrics

Mp( f̄0, f̄1) := inf
( f,A)

{∫ 1

0
||As || fs ds

∣∣∣ ( f, A) ∈ P p( f̄0, f̄1)

}
. (1.8)
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By Jensen’s inequality
(∫ 1

0
||As || fs ds

)p

≤
∫ 1

0
||As ||pfs ds.

But using the standard “reparametrization of constant length” (cf. Lemma 5.2), one shows
that in fact

Mp
p ( f̄0, f̄1) = inf

( f,A)

{∫ 1

0
||As ||pfs ds

∣∣∣ ( f, A) ∈ P p( f̄0, f̄1)

}
. (1.9)

When c( f, A) = |A|p , p ∈ [1,∞) and rp = r + p then a sufficient condition for ( f, A)

to minimize (1.8) is (cf. [9])

fs = (1 − s) f̄0 + s f̄1, f̄1 − f̄0 + d A = 0, As ≡ δg|δg|r−2, g ∈ W 1,r (�;�k), dg ≡ 0
(1.10)

and so in this case, A is time independent. Further restricting p to (1,∞) turns (1.10) into a
necessary condition, which uniquely characterizes the minimizers.

By Sect. B.3, any convex function c : �k × �k−1 → [0,∞) (hence assuming only finite
values) satisfying (1.5) and (1.6) must be independent of ω. This is precisely the case already
studied in [9]. This motivates our desire to study cost functions which take on infinite values.
What matters the most in the choice of our cost function is the scaling condition (1.6), which
is necessary to induce a metric.

An example of c(ω, ξ) = G(|ω|, ξ) taking infinite value and studied in Sect. B.1 is

c(ω, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

|ξ |p
p (1−|ω|2)

p−1
2

if |ω| < 1

0 if ξ = 0 and |ω| = 1
∞ if (ξ 	= 0 and |ω| = 1) or (|ω| > 1).

(1.11)

We can also consider cost functions of the form G(|ω|, ξ) + H(ξ),obtained by adding to the
c in (1.11) a smooth function H . One could replace the denominator in the cost in (1.11) by

p (M − |ω|2) p−1
2 , where M is a positive parameter. In this case, any minimizing path ( f, A)

in (1.9) must satisfy the requirement | f | ≤ M.

Let us for a moment keep our focus on the case k = 2. Given a non-degenerate closed
smooth 2-form f , there exists a 1-form w such that

A = w � f and so d A = Lw f, (1.12)

where Lw is the Lie derivative acting on the set of 1-form (w has been identified with a vector
field). A variant of (1.9) is

inf
( f,w)

{∫ 1

0
||w � f ||pfs ds

∣∣∣ ∂s f + Lw f = 0

}
, (1.13)

where the infimum is performed over the set of ( f, w) such that w : (0, 1) × � → �1 is
smooth and s → fs are paths in H that start at f̄0 and end at f̄1. Unlike (1.9), (1.13) is
not a convex minimization problem and so, it is not known to have minimizers. However,
if a minimizer ( f, A) of problem (1.9) is such that fs is non-degenerate for almost every
s ∈ (0, 1), then ( f, v) := ( f, A � f −1) is a minimizer in (1.13).

There is a sharp contrast between the search of optimal paths in the set of closed k-forms,
when 1 ≤ k ≤ n − 1, and that of the case k = n. This, can well be illustrated by comparing
the case k = 2, expressed in terms of electro-magnetism, to the case k = n, expressed as a
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mass transport problem. Consider a bounded open convex (or contractible) set O ⊂ R
3 and

set

� := (0, T ) × O.

Define S to be the set of pairs of electro/magnetic time dependent vector fields

(B, E) : (0, T ) × O → R
6

which are integrable, satisfy a certain boundary conditions [omitted now but formulated in
Subsection E to match (1.1)] and satisfy Gauss’s law for magnetism and the Maxwell–Faraday
induction equations

∇ · B = 0, ∂t B + ∇ × E = 0. (1.14)

When k = 2, (1.8) is equivalent to the search of paths of minimal actions on S (cf. Subsec-
tion E). Any starting (resp. ending) point (B̄0, Ē0) (resp. (B̄1, Ē1)) in S is identified with
a starting (resp. ending) point f̄0 (resp. f̄1) in the set of closed 2-forms. Similarly, a path
s ∈ [0, 1] → (B(s), E(s)) which interpolates between (B0, E0) and (B1, E1), corresponds
to a path s ∈ [0, 1] → f (s), lying in the set of closed 2-forms H, which interpolates
between f̄0 and f̄1. If f (s) is not degenerate then there exists w : (0, 1) × � → �1 such
that ∂s f + Lw f = 0. Here, it is worth stressing that in contrast with the study of n-forms
(i.e. volume forms), intensively studied in the past few years in the theory of optimal trans-
portation, s does not represent a time variable. In the theory of optimal transportation, given
two volume forms μ̄0 and μ̄1 of same mass, we want to minimize an action over the set
of paths t → μ(t) which interpolate between μ̄0 and μ̄1. For each path t → μ(t), there
exists a velocity vector field v such that the continuity equation ∂tμ + Lvμ = 0 is satisfied.
The action to minimize is an integral over the set of time of an expression either written
in terms of (μ(t), v(t)) or equivalently in terms of (μ(t), A(t)) = (μ(t), μ(t)v(t)). In the
case of 2-forms, the time t appears in (1.14) to ensure that f (s) is a closed form for each
s, but w is not the physical velocity. Now, the action to be minimized is an integral over
the set of parameters s, of an expression which depends on either ( f (s), w(s)) (cf. 1.13) or
equivalently ( f (s), A(s)) = ( f (s), w(s) � f (s)) (cf. 1.9).

This manuscript contributes to the identification of a non-trivial class of metrics on set
of closed k-differential forms, with potential impacts on the study of evolutive equations on
the set of closed k-differential forms. The non-homogeneous costs allow for a much richer
class of metrics, but come at the expense of yielding transportation problems for which
the subdifferentials of the actions are not easily characterized. We then face the study of
dual problems which involve k-differential forms, whose differential are not a-priory locally
summable. This means that unlike the case when k = n, a difficulty we have to deal with
when k < n, is to face a dual problem involving functions for which not all partial derivatives
are summable. This means we cannot rely on any classical Sobolev type inequality and need
to prove a result such as Lemma 4.7. In this Lemma, we show that up to a translation in
one-dimensional interpolation variables, any path on the set of measures of k-differential
forms, is controlled by its derivative with respect to the interpolation variable and the Lr -
norm of its co-differential. The point is that we obtain an inequality which does not need
to involve the Lr -norms of both the differential and the co-differential of our k-forms. The
proof of the Lemma relies on the use of a subtle Gaffney type inequality and the result is
central to obtain needed coercitivity properties of a functional we study in a dual problem.
An extremely challenging problem we leave open and which we hope to be the purpose of
future investigations, is the regularity properties of geodesics of minimal length. Problem A.2
comments on a systems of PDEs induced by these geodesics.
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This manuscript is divided into two parts, the first one containing our central results. The
second part is an appendix consisting of examples and technical regularization Lemmas,
needed to circumvent the lack of smoothness property of the functions we are dealing with.
The appendix ends with a section alluding to the interpretation of our work in the context of
electromagnetism.

In Sect. 3, we consider cost functions c on �k × �k−1 which assume only finite values,
are smooth, strictly convex, with a polynomial growth at infinity. We do not impose that
c(ω, ·) is p-homogeneous and use standard methods to characterize the subdifferential of
the actions along paths of minimal length. This Section will later be useful when studying
cost functions which take infinite value. Section 4 is a preliminary section which deals with
paths of bounded variations on metric spaces, the metric space in our case being the set
of k-currents. We later use these to study Finsler type metrics on the set of k-forms. In
Sect. 5 not only the set where c assumes the value +∞) is not empty but also c∗, the dual
of c, is assumed to have a lower bound which may be linear: c∗(b, B) ≥ γ6 (|b| + |B|r ).
This creates a difficulty, usually not faced in the optimal transportation theory, which led to
incorporating the two lengthy Sections C and D. We identify and exploit a dual maximization
problem to characterize the paths minimizing our action. When k = n, in the dual problem,
all the partial derivatives of a scalar function are controlled. When k < n we face serious
technical difficulties since the control of the co-differential of a (k + 1)-forms is equivalent
to the control of some directional derivatives. We anticipate that the level of complications
will substantially increase if we extend the class of cost functions c to include those which
are polyconvex or even quasiconvex in a sense to be specified. These considerations, which
constitute a new type of challenges, will be addressed in a forthcoming paper [8]. We close
our description by drawing the attention of the reader to a recent paper by Brenier and Duan
[1], one of the very few related to our context, which considers gradient flows of entropy
functionals on the set of differential forms.

Throughout the manuscript, it would have been sufficient to assume that � is a contractible
domain of smooth boundary and not necessarily a convex set. In order to reduce the level of
technicality, we chose not to state some of our results under the sharpest assumptions.

2 Preliminaries for the smooth case

For simplicity, throughout the manuscript, � ⊂ R
n is assumed to be an open bounded convex

set and ν denote the outward unit normal to ∂�. Let 1 ≤ k ≤ n be an integer. We assume
that r, p ∈ (1,∞) are conjugate of each other in the sense that r + p = rp.

Definition 2.1 Let f ∈ L1
(
�;�k

)
, let A ∈ L1

(
�;�k−1

)
and B ∈ L1

(
�;�k+1

)
.

(i) We write −d f = A (resp. −δ f = B) in � in the weak sense if for any h ∈ C∞
c

(
�;�k

)

∫
�

〈 f ; h〉 =
∫

�

〈A; δh〉
(

resp.
∫

�

〈 f ; h〉 =
∫

�

〈B; dh〉
)

.

(ii) Similarly if we want to express in the weak sense

(i)

{−d A = f in �

ν ∧ A = 0 on ∂�

(
resp. (i i)

{−δB = g in �

ν � B = 0 on ∂�

)
, (2.1)
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we impose that for any h ∈ C∞ (
�̄;�k

)
∫

�

〈 f ; h〉 =
∫

�

〈A; δh〉
(

resp.
∫

�

〈 f ; h〉 =
∫

�

〈B; dh〉
)

.

(iii) We say that f is in the weak sense a closed (resp. co-closed) differential form if d f = 0
(resp. δ f = 0) in �.

We consider k-forms f̄0, f̄1 ∈ L p
(
�;�k

)
such that, if 1 ≤ k ≤ n − 1,

{
d( f̄1 − f̄0) ≡ 0 in the weak sense of in �

( f̄1 − f̄0) ∧ ν = 0 in the weak sense on ∂�
(2.2)

and, if k = n, ∫
�

( f̄1 − f̄0)dx = 0. (2.3)

Definition 2.2 We say that ( f, A) ∈ P p( f̄0, f̄1) if

f ∈ L p
(
(0, 1) × �;�k

)
, A ∈ L p

(
(0, 1) × �;�k−1

)

and ∫ 1

0
ds
∫

�

(〈∂sh; f 〉 + 〈δh; A〉) dx =
∫

�

(〈h1; f̄1〉 − 〈h0; f̄0〉
)
dx (2.4)

for all h ∈ C1
([0, 1] × �̄;�k

)
.

Remark 2.3 Assume (2.2) holds when 1 ≤ k ≤ n − 1 and (2.3) holds when k = n.

(i) By Theorem 7.2 [7], there exists in the weak sense, Ā ∈ W 1,p
(
�;�k−1

)
satisfying

{
d Ā + f̄1 − f̄0 = 0 δ Ā = 0 in �

ν ∧ Ā = 0 on ∂�

and there exists a constant C = C (�, p, k) such that

|| Ā||W 1,p(�;�k−1) ≤ C || f ||L p .

(ii) We have ( f̄s, S̄s) := (
(1 − s) f̄0 + s f̄1, Ā

) ∈ P p( f̄0, f̄1).

Definition 2.4 We define Br
(
(0, 1) × �;�k

)
to be the set of h such that

h, ∂sh ∈ Lr
(
(0, 1) × �;�k

)

and there exists

B ∈ Lr
(
(0, 1) × �;�k−1

)

such that
∫ 1

0
ds
∫

�

〈h; dψ〉dx = −
∫ 1

0
ds
∫

�

〈B;ψ〉dx ∀ ψ ∈ C1
c

(
(0, 1) × �;�k−1

)
. (2.5)

Here, ∂sh is the distributional derivative of h with respect to s.
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2.1 A weak time continuity property for P p( f̄0, f̄1)

Let ( f, A) ∈ P p( f̄0, f̄1). By Fubini’s theorem, the function s → ∫
�

| f (s, x)|pdx is in
L1(0, 1) and so, its Lebesgue points are of full measure in (0, 1). If φ ∈ C1(�̄) we set

L(s, f, φ) =
∫

�

〈 f (s, x);φ(x)〉dx .

Using h(s, x) = α(s)φ(x) in (2.4) for arbitrary α ∈ C1([0, 1]), we obtain that there is a set
Nφ of null Lebesgue measure such that L(·, f, φ) coincides on (0, 1)\Nφ with a function
L(·, f, φ) ∈ W 1,p(0, 1). More precisely,

L(·, f, φ)(s) = lim
δ→0+

1

δ

∫ s+δ

s
L(τ, f, φ)dτ.

The distributional derivative of L(·, f, φ) is

∂s L(·, f, φ) =
∫

�

〈A(s, x); δφ(x)〉dx (2.6)

We have the following Lemma.

Lemma 2.5 There exists a function f̃ ∈ L p
(
(0, 1) × �;�k

)
such that the following hold.

(i) f̃ = f for almost every (0, 1) × �

(ii) For any φ ∈ C1
c (�;�k), L(·, f, φ) = L(·, f̃ , φ) everywhere on (0, 1). In particular,

L(·, f̃ , φ) ∈ W 1,p(0, 1) is continuous.

Remark 2.6 Thanks to Lemma 2.5, we will always tacitly assume that given ( f, A) ∈
P p( f̄0, f̄1) then for any φ ∈ C1

c (�;�k), L(·, f, φ) ∈ W 1,p(0, 1) is continuous.

2.2 Properties of Br (
(0, 1) × �;�k)

Lemma 2.7 If h ∈ Br
(
(0, 1) × �;�k

)
, then for L1-almost every s ∈ (0, 1) we have

B(s, ·) ∈ Lr (�) and B(s, ·) = δh(s, ·) is the weak sense.
Proof Observe first that by Fubini’s theorem,

B ∈ Lr
(
(0, 1) × �;�k−1

)
�⇒ B(s, ·) ∈ Lr (�;�k−1) L1 − a. e. on (0, 1).

Let {gi }∞i=1 ⊂ C1
c (�) be a dense subset of L p(�). If for w ∈ C1

c (0, 1) we set ψ(s, x) =
w(s)gi (x) then (2.5) reads off

∫ 1

0
w(s)ds

∫
�

〈h; dgi 〉dx = −
∫ 1

0
w(s)ds

∫
�

〈B(s, ·); gi 〉dx .

Thus, there exists a set Ni ⊂ (0, 1) of L1-null measure such that∫
�

〈h; dgi 〉dx = −
∫

�

〈B(s, ·); gi 〉dx (2.7)

for any s ∈ (0, 1)\Ni . Thus, (2.7) hold for all s ∈ (0, 1)\N if N is the union of the Ni ’s. We
conclude that ∫

�

〈h; dg〉dx = −
∫

�

〈B(s, ·); g〉dx

for any s ∈ (0, 1)\N and any g ∈ C1
c (�). This concludes the proof of the Lemma. ��

123



108 Page 8 of 44 B. Dacorogna, W. Gangbo

Remark 2.8 By standard approximation results, it is enough to assume that � is an open
bounded contractible set of locally Lipschitz boundary ∂� to obtain that if ( f, A) ∈
P p( f̄0, f̄1) then (2.4) holds for h ∈ W 1,r

(
(0, 1) × �;�k

)
. The proof of the following

Lemma, which extends (2.4) to h ∈ Br
(
(0, 1) × �;�k

)
, can be obtained by standard meth-

ods.

Lemma 2.9 If ( f, A) ∈ P p( f̄0, f̄1) and h ∈ Br
(
(0, 1) × �;�k

)
, then (2.4) holds.

Corollary 2.10 (An invariant) If ( f, A) ∈ P p( f̄0, f̄1) and h ∈ Br
(
(0, 1) × �;�k

)
, then

∫ 1

0
ds
∫

�

(〈∂sh; f 〉 + 〈δh; A〉) dx =
∫ 1

0
ds
∫

�

(〈∂sh; f̄ 〉 + 〈δh; Ā〉) dx .
Indeed, by Lemma 2.9 these expressions depend only on the initial and final values of h and
f .

3 Duality results for smooth superlinear integrands of finite values

Let p, r ∈ (1,∞) be such that rp = r + p and let f̄0, f̄1 ∈ L p
(
�;�k

)
be two k-forms such

that, in the weak sense (2.2) holds when 1 ≤ k ≤ n − 1 and (2.3) holds when k = n. Let

c : �k × �k−1 → R, c∗ : �k × �k−1 → (−∞,∞]
where c is convex and c∗ is the Legendre transform of c,

inf c > −∞ (3.1)

and
c∗(b, B) ≥ γ1

(|b|r + |B|r )− γ2 =: E(b, B) (3.2)

for any b ∈ �k and B ∈ �k−1. Here, γ1, γ2 > 0 are prescribed constants.

Remark 3.1 Since the Legendre transform reverses order, the following hold.

(i) If c∗ satisfies (3.2) then for any ω ∈ �k and ξ ∈ �k−1

c(ω, ξ) ≤ E∗(ω, ξ) = γ2 + γ1(r − 1)
|ω|p + |ξ |p

(rγ1)p
.

(ii) Similarly, assume there are constants γ6, γ7 > 0 such that for any (ω, ξ) ∈ �k × �k−1

we have
c(ω, ξ) ≥ γ6(|ω|p + |ξ |p) − γ7. (3.3)

Then for any b ∈ �k and B ∈ �k−1

c∗(b, B) ≤ γ7 + γ6(p − 1)
|b|r + |B|r

(pγ6)r
.

(iii) If (3.1) holds then c∗(0, 0) = − inf c is a finite real number.

We define C : �k × �k−1 → (−∞,∞] by

C( f, A) =
∫

(0,1)×�

c( f, A)dsdx
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for

( f, A) ∈ L p
(
(0, 1) × �;�k

)
× L p

(
(0, 1) × �;�k−1

)

The following proposition is obtained using standard techniques of the direct methods of
the calculus of variations.

Proposition 3.2 Suppose f̄0, f̄1 ∈ L p
(
�;�k

)
are k-forms such that (2.2) holds when 1 ≤

k ≤ n − 1 and (2.3) holds when k = n. Suppose c : �k × �k−1 → (−∞,∞] is convex,
lower semicontinuous and satisfies (3.3). Then there exists ( f ∗, A∗) that minimizes C over
P p( f̄0, f̄1).

For h ∈ Br
(
(0, 1) × �;�k

)
we set

D(h) :=
∫

�

(〈
f̄1; h1

〉− 〈
f̄0; h0

〉)
dx −

∫
(0,1)×�

c∗ (∂sh, δh) dsdx,

and for s ∈ [0, 1] set

f̄s = (1 − s) f̄0 + s f̄1, Ās := Ā,

where Ā is given by Remark 2.3 (i). By Remark 2.3 (ii), ( f̄ , Ā) ∈ P p( f̄0, f̄1) and so,

D(h) =
∫

(0,1)×�

(〈
Ā; δh

〉+ 〈
f̄ ; ∂sh

〉− c∗ (∂sh, δh)
)
dsdx . (3.4)

Thus, D(h) depends only on ∂sh and δh.

Remark 3.3 Assume c∗ satisfies (3.2). Then

(i) There exist constant γ4, γ5 > 0 which depends only on �, || f̄0||p , || f̄1||p γ1, γ2, s and
r such that

D(h) ≤ γ5 − γ4
(||δh||rr + ||∂sh||rr

)
. (3.5)

(ii) There exists a constant C depending only on �, k and r such that for any h ∈
Br
(
(0, 1) × �;�k

)
there is h̄ ∈ Br

(
(0, 1) × �;�k

)
such that D(h) = D(h̄) and

||h̄(s, ·)||Lr (�) ≤ C ||δh̄||r + ||∂s h̄||r L1 − a.e. on (0, 1).

(iii) If c satisfies (3.1) then D(0) > −∞.

Proof (i) Using the expression of D in (3.4), we have

D(h) ≤ || Ā||p||δh||r + || f̄ ||p||∂sh||r + γ2 + γ1

(
Ld(�) − ||∂sh||rr − ||δh||rr

)
.

This, yields (i).
(ii) By Lemma 2.7 there exists t0 ∈ (0, 1) such that

δh(t0, ·) = B(t0, ·), ||δh(t0, ·)||rLr (�) ≤ ||δh||rr
Ld(�)

. (3.6)

By Theorems 7.2 and 7.4 [7] (written for r ∈ [2,∞) but extendable to r ∈ (1, 2)) there is
h̄t0 ∈ W 1,r (�;�k) such that

{
δh̄t0 = δh(t0, ·), dh̄t0 = 0 in �

ν ∧ h̄t0 = 0 on ∂�.
(3.7)
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108 Page 10 of 44 B. Dacorogna, W. Gangbo

Furthermore, there is a constant C which depends only on �, k and r such that

‖h̄t0‖W 1,r ≤ C(Ld(�))
1
r ‖δh(t0, ·)‖Lr (�).

This, together with (3.6) implies

‖h̄t0‖W 1,r ≤ C ||δh||r . (3.8)

Define

h̄(s, x) = h(s, x) − h(t0, x) + h̄t0(x).

We have

h̄(s, ·) = h̄t0 +
∫ s

t0
∂s h̄(τ, ·)dτ = h̄t0 +

∫ s

t0
∂sh(τ, ·)dτ.

Thus,

||h̄(s, ·) − h̄t0 ||rLr (�) =
∫

�

∣∣∣∣
∫ s

t0
∂sh(τ, x)dτ

∣∣∣∣
r

dx ≤ ||∂sh||rr .

This, together with (3.8) yields

||h̄(s, ·)||Lr (�) ≤ ||h̄t0 ||Lr (�) + ||∂sh||r ≤ C ||δh||r + ||∂sh||r .
Note that ∂sh = ∂s h̄, δh = δh̄ to conclude the proof of (ii).

(iii) Since D(0) = −Ld(�)c∗(0, 0) and by Remark 3.1, c∗(0, 0) is finite we obtain (iii).
��

We will often refer to the following proposition, which can be obtained using standard
techniques of the direct methods of the calculus of variations.

Proposition 3.4 Assume c satisfies (3.1), c∗ satisfies (3.2), ( f, A) ∈ P p( f̄0, f̄1) and h ∈
Br
(
(0, 1) × �;�k

)
. Then

(i) C( f, A) ≥ D(h).

(ii) C( f, A) = D(h) if and only if ( f, A) ∈ ∂·c∗(∂sh, δh) for almost every (s, x) ∈ (0, 1) ×
�.

Set

cε( f, A) := c( f, A) + ε

p
(| f |p + |A|p), ∀ ( f, A) ∈ �k × �k−1.

Set

Dε(h) :=
∫

(0,1)×�

(〈
Ā; δh

〉+ 〈
f̄ ; ∂sh

〉− c∗
ε (∂sh, δh)

)
dsdx (3.9)

and

Cε( f, A) :=
∫

(0,1)×�

cε ( f, A))dsdx .

We now record a remark on convex analysis, which is found in classical literature on the
topic.

Remark 3.5 Suppose c∗ satisfies (3.2) and ε ∈ (0, 1).
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(i) There exist γ ∗
1 , γ ∗

2 > 0 independent of ε such that

c∗
ε (b, B) ≥ γ ∗

1

(|b|r + |B|r )− γ ∗
2

(ii) We have that c∗
ε is of class C1 and its domain is �k × �k−1 and

c∗
ε ∈ C1

(
�k × �k−1

)
.

(iii) There exists a constant Cε such that

|∇c∗
ε (b, B)| ≤ Cε

(|b|r−1 + |B|r−1 + 1
)
.

Lemma 3.6 (Relying on the smoothness of cε to compute the differential of the action)
Assume c∗ satisfies (3.2) and ε ∈ (0, 1). Let h∗, h ∈ Br

(
(0, 1) × �;�k

)
and set N (u) =

Dε(h∗ + uh). Then,

N ′(0) =
∫

(0,1)×�

〈
Ā − Aε; δh

〉
dsdx +

∫
(0,1)×�

〈
f̄ − fε; ∂sh

〉
dsdx

where

fε := ∇ac
∗
ε

(
∂sh

∗, δh∗) , Aε := ∇Bc
∗
ε

(
∂sh

∗, δh∗) .
Proof The continuity of ∇c∗ and Remark 3.5 (iii) allow to directly compute N ′(0). ��
Proposition 3.7 (Smoothness of cε yields a standard duality result) Suppose c is convex,
lower semicontinuous, satisfies (3.1) and c∗ satisfies (3.2). Then

(i) there exists h∗ that maximizes D over Br
(
(0, 1) × �;�k

)
.

(ii) there exists hε that maximizes Dε over Br
(
(0, 1) × �;�k

)
.

(iii) For any h ∈ Br
(
(0, 1) × �;�k

)
∫

(0,1)×�

〈
Ā − Aε; δh

〉
dsdx +

∫
(0,1)×�

〈
f̄ − fε; ∂sh

〉
dsdx = 0.

where
fε := ∇ac

∗
ε (∂shε, δhε) , Aε := ∇Bc

∗
ε (∂shε, δhε) . (3.10)

(iv) We may assume without loss of generality that there is a constant C independent of ε

such that we can choose hε such that

‖hε(s, ·)‖Lr (�) ≤ C ||δhε ||r + ||∂hε ||r
Proof (i) Let Ā be given by Remark 2.3 and set

f̄ (s, x) = (1 − s) f̄0(x) + s f̄1(x).

We have ( f̄ , Ā) ∈ P p( f̄0, f̄1). The bounds in that Remarks 2.3 (i) and 3.1 (i) imply

C( f̄ , Ā) < ∞.

This, together with Proposition 3.4 implies

D := sup
h

{
D(h) | h ∈ Br

(
(0, 1) × �;�k

)}
≤ C( f̄ , Ā) < ∞.
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By Remark 3.3 (iii) D > −∞ and by (i) of the same remark, if γ is a real number then
the upper level sets of D satisfy

{
h ∈ Br

(
(0, 1) × �;�k

)
| D(h) ≥ γ

}

⊂
{
h ∈ Br

(
(0, 1) × �;�k

) ∣∣∣ ||δh||rr + ||∂sh||rr ≤ γ5 − γ

γ4

}
.

Combining this with Remark 3.3 (ii) we obtain a maximizing sequence {hi }i of D over
Br
(
(0, 1) × �;�k

)
satisfying

sup
i

||hi ||rr + ||δhi ||rr + ||∂shi ||rr < ∞.

Hence, we may extract from {hi }i a subsequence which converges weakly to some h∗ in
Lr
(
(0, 1) × �;�k

)
and such that {δhi }i (resp. {∂shi }i ) converges weakly to δh∗ (resp. ∂sh∗)

in Lr
(
(0, 1) × �;�k

)
. We have h∗ ∈ Br

(
(0, 1) × �;�k

)
.

Recall that by (3.4), −D(hi ) can be expressed as a convex function of ∂shi and δhi .
Therefore, by standard results of convex analysis

−D = lim inf
i→∞ −D(hi ) ≥ −D(h∗).

This proves that h∗ maximizes D over Br
(
(0, 1) × �;�k

)
.

(ii) By Remark 3.5 we have all the properties needed to replace c∗ by c∗
ε in the above

proof. The proof of (ii) repeats the arguments used in that of (i) but it is even easier.
(iii) Let h ∈ Br

(
(0, 1) × �;�k

)
. The real valued function u ∈ R → Nε(u) = Dε(hε +

uh) achieves its minimum at 0. Since by Lemma 3.6 N is differentiable at 0, we have
N ′

ε(0) = 0. This is exactly the identity in (iii).
(iv) Is a direct consequence of Remark 3.3 (ii). ��

Theorem 3.8 (A duality result not requiring smoothness of c) Suppose c is convex, lower
semicontinuous, it satisfies (3.1) and c∗ satisfies (3.2). Further assume there are constants
γ6, γ7 > 0 such that c satisfies (3.3). Then

(i) there exists ( f ∗, A∗) which minimizes C over P p( f̄0, f̄1).
(ii) For any h∗ that maximizes D over Br

(
(0, 1) × �;�k

)
we have C( f ∗, A∗) = D(h∗).

(iii) Let ( f, A) ∈ P p( f̄0, f̄1). Then ( f, A) minimizes A over P p( f̄0, f̄1) if and only if
there exists h ∈ Br

(
(0, 1) × �;�k

)
such that ( f, A) ∈ ∂·c∗(∂sh, δh) for almost every

(s, x) ∈ (0, 1) × �.

Proof (i) and (ii) Let hε be a maximizer of Dε as provided in Proposition 3.7 and let

( fε, Aε) := ∇c∗
ε (∂shε, δhε).

We combine (iii) of the same proposition with the fact that ( f̄ , Ā) ∈ P p( f̄0, f̄1) (cf.
Remark 2.3 (ii)) to obtain that ( fε, Aε) ∈ P p( f̄0, f̄1). Proposition 3.4 (ii) implies

C( fε, Aε) = Dε(hε).

We then use Proposition 3.4 (i) to conclude that ( fε, Aε) minimizes Cε over P p( f̄0, f̄1).
Since for ε ∈ (0, 1)

γ6

(
|| fε ||pp + ||Aε ||pp − γ7Ld(�)

)
≤ Cε( fε, Aε) ≤ Cε( f̄ , Ā) ≤ C1( f̄ , Ā),
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we have
S := sup

ε∈(0,1)

|| fε ||pp + ||Aε ||pp < ∞. (3.11)

Also, by Remark 3.5 (i) and the maximality property of hε

γ ∗
2 Ln(�) ≥ −c∗(0, 0)Ln(�) = −Dε(0) ≥ −Dε(hε).

Thus, using (3.4) we have

γ ∗
2 Ln(�) ≥

∫
(0,1)×�

(
c∗(∂shε, δhε) − 〈

Ā; δhε

〉− 〈
f̄ ; ∂shε

〉)
dsdx .

We again use Remark 3.5 (i) to obtain

γ ∗
2 Ln(�) ≥ γ ∗

1

(||∂shε ||rr + ||δhε ||rr
)− ||∂shε ||r || f̄ ||p − ||δhε ||r || Ā||p

and so,

sup
ε∈(0,1)

||δhε ||rr + ||∂shε ||rr < ∞.

Thus by Remark 3.3 (ii), we may assume without loss of generality that

S̄ := sup
ε∈(0,1)

||hε ||rr + ||δhε ||rr + ||∂shε ||rr < ∞ (3.12)

By (3.11) there exists a subsequence of ( fεl , Aεl )l which converges weakly to some ( f ∗, A∗)
in L p

(
(0, 1) × �;�k

)× L p
(
(0, 1) × �;�k−1

)
as l tends to ∞. Passing to another subse-

quence if necessary, thanks to (3.12), we may assume without loss of generality that (hεl )l
converges weakly in Lr to some h∗ ∈ Br

(
(0, 1) × �;�k

)
. Thus, (δhεl )l converges weakly in

Lr to δh∗ and (∂shεl )l converges weakly in Lr to ∂sh∗. Letting εl tend to 0 in Proposition 3.7
(iii) we obtain for any h ∈ W 1,r

(
(0, 1) × �;�k

)
∫

(0,1)×�

〈
Ā − A∗; δh

〉
dsdx +

∫
(0,1)×�

〈
f̄ − f ∗; ∂sh

〉
dsdx = 0.

We use the the fact that by Remark 2.3 (ii), ( f̄ , Ā) ∈ P p( f̄0, f̄1) to conclude that∫
�

(〈 f̄1; h1〉 − 〈 f̄0; h0〉
)
dx −

∫
(0,1)×�

(〈
A∗; δh

〉− 〈
f ∗; ∂sh

〉)
dsdx = 0.

and so, ( f ∗, A∗) ∈ P p( f̄0, f̄1).
We first use the fact that ( fε, Aε) ∈ ∂c∗

ε (∂shε, δhε) and then use the fact that cε ≥ c to
obtain

〈Aε; δhε〉 + 〈 fε; ∂shε〉 = cε ( fε, Aε) + c∗
ε (∂shε, δhε) ≥ c ( fε, Aε) + c∗

ε (∂shε, δhε) .

(3.13)
Also

c∗
ε (∂shε, δhε) = 〈Aε; δhε〉 + 〈 fε; ∂shε〉 − c ( fε, Aε) − ε

p

(| fε |p + |Aε |p
)

≥ c∗ (∂shε, δhε) − ε

p

(| fε |p + |Aε |p
)
.

We combine this with (3.13) to conclude that∫
(0,1)×�

(〈Aε; δhε〉+〈 fε; ∂shε〉) dsdx ≥
∫

(0,1)×�

(
c∗ (∂shε, δhε)+c ( fε, Aε)

)
dsdx − εS

p
.
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Since ( fε, Aε) ∈ P p( f̄0, f̄1), we may use Remark 2.10 in the previous inequality to obtain∫
(0,1)×�

(〈
Ā; δhε

〉+ 〈
f̄ ; ∂shε

〉)
dsdx ≥

∫
(0,1)×�

(
c∗ (∂shε, δhε) + c ( fε, Aε)

)
dsdx − εS

p
(3.14)

One lets εl tend to 0 to derive the inequality∫
(0,1)×�

(〈
Ā; δh

〉+ 〈
f̄ ; ∂sh

〉)
dsdx ≥

∫
(0,1)×�

(〈
Ā; δh

〉+ 〈
f̄ ; ∂sh

〉)
dsdx .

This proves that∫
(0,1)×�

(〈
Ā; δh

〉+ 〈
f̄ ; ∂sh

〉)
dsdx =

∫
(0,1)×�

(
c∗ (∂sh∗, δh∗)+ c( f ∗, A∗)

)
dsdx .

(3.15)
Rearranging, and using the expression of D in (3.4), we have D(h∗) = C( f ∗, A∗). By
Proposition 3.4 (i), ( f ∗, A∗) minimizes C over P p( f̄0, f̄1) and h∗ maximizes D over
Br
(
(0, 1) × �;�k

)
.

(iii) Let ( f, A) ∈ P p( f̄0, f̄1) and h ∈ Br
(
(0, 1) × �;�k

)
. Since c(ω, ξ) ≥ γ6(|ω|p +

|ξ |p) − γ7 for all ω ∈ �k and ξ ∈ �k−1, there is a constant γ ∗
6 > 0 such that c∗(b, B) ≤

γ ∗
6 (|b|r +|B|r )+γ7 for all b ∈ �k and B ∈ �k−1. This together with the fact that c∗ satisfies

(3.2) implies D(h) < ∞.

By Proposition 3.4, ( f, A) ∈ ∂c∗(∂sh, δh) for almost every (s, x) ∈ (0, 1) × � if and
only if h maximizes D over Br

(
(0, 1) × �;�k

)
and ( f, A) minimizes A over P p( f̄0, f̄1).

��

4 The set of k-forms: approximations of k-currents

4.1 Notation

Throughout this subsection H is a finite dimensional Hilbert space and C : H → (−∞,∞]
is a proper lower semicontinuous convex function. We fix a non empty open bounded convex
set � ⊂ R

n and p ∈ (1,∞).

We denote by M(�) the set of signed measure of finite total variations. The upper and
lower variations g+ and g− are finite measures and the Jordan decomposition g = g+ − g−
holds (cf. e.g. [11]). The total mass of |g| := g+ + g− is

||g||M(�) = sup
f ∈C(�̄)

{∫
�

f (x)g(dx) | | f | ≤ 1

}
= sup

f ∈Cc(�)

{∫
�

f (x)g(dx) | | f | ≤ 1

}
,

(4.1)
(M(�), || · ||) is a normed space and by the Banach–Alaoglu Theorem, every bounded subset
is pre-compact. Thus, (M(�), || · ||) is a complete space.
Let C be a countable dense subset of Cc(�), contained in C1

c (�) and which does not contain
the null function. If we denote by Ĉ the set of f/|| f ||∞ such that f ∈ C then

||g||M(�) = sup
f ∈Ĉ

∫
�

f (x)g(dx). (4.2)

The set of Borel measures with values into �k , of finite total mass, will be denoted by
M(�;�k). This is the set of k-currents of finite mass. For any F ∈ M(�;�k), we define
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the norm

||F ||M(�) = sup
G∈C(�̄;�k)

{∫
�

〈G(x); F(dx)〉 | |G(x)| ≤ 1 ∀x ∈ �

}
. (4.3)

Definition 4.1 Given a metric space (S, dist) the total variation of h : [0, 1] → S is

TV(h) := sup
m∈N

sup
0≤t0<···<tm≤1

{
m−1∑
i=0

dist (h(ti ), h(ti+1))

}
.

Definition 4.2 The following definitions can be found respectively in [12,14]. The recession
function of C is C̄ : H → (−∞,∞] given by

C̄(v) = lim
t→∞

C(v0 + tv)

t
v ∈ H where v0 ∈ H is arbitrary.

One checks that the definition is independent of v0.

Set

O := (0, 1) × �, z := (s, x), dz := dsdx .

Here, we skip the proof of the following elementary Lemma.

Lemma 4.3 Assume g ∈ L p(O) and η be a singular measure. Set η∗ := η + Ln+1
O and let

E ⊂ O be a Borel set such that

η(O\E) = Ln+1(E) = 0. (4.4)

Then for any α ∈ R, gα := g(1 − χE ) + α χE ∈ L p(O, η∗) and Ln+1{gα 	= g} = 0.

Remark 4.4 Assume c : �k × �k−1 → (−∞,∞] is convex, lower semicontinuous and
satisfies (5.3). We assume the Legendre transform c∗ : �k × �k−1 → R satisfies (5.4). Let

b ∈ M(O;�k), B ∈ Lr
(
O;�k−1

)
.

Let bs be the singular part of b, set η := |bs | and let E ⊂ O be a Borel set satisfying (4.4).
Consider the Radon–Nikodym derivatives F := db/dLn+1 and G := dbs/dη. Let

f̄ ∈ L p
(
O;�k

)
, A ∈ L p

(
O;�k−1

)

be such that ∫
O
c( f̄ , A)dz < ∞.

Note c( f̄ , A) is finite except may be on a Borel set F ⊂ O such that Ln+1(F) = 0. Let d∗
be in dom(c). According to Lemma 4.3,

f := (1 − χE ) f̄ + d∗χE ∈ L p
(
O;�k, η∗

)

where η∗ := η + Ln+1|O . Furthermore, f = f̄ Ln+1-almost everywhere
Assume that f : O → �k is a Borel map which we are free to modify on a set of null

(Ln+1 + |b|)-measure. We have

c( f, A) + c∗(F, B) ≥ 〈 f ; F〉 + 〈A; B〉
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and so, if c( f, A) + c∗(F, B) ∈ L1(O) then the positive part of 〈 f ; F〉 + 〈A; B〉 is of finite
Lebesgue integral. In that case, in terms of C̄ , the recession function of C := c∗, we have∫

O
c( f, A)dz +

∫
O
c∗(b, B) =

∫
O

(
c( f, A) + c∗(F, B)

)
dz +

∫
O
c∗(G, 0)dη

Since c( f, A) < ∞ η∗—a.e., we use Lemma C.1 (i) to infer∫
O
c( f, A)dz +

∫
O
c∗(b, B) ≥

∫
O

(〈 f ; F〉 + 〈A; B〉) dz +
∫
O
〈 f ;G〉dη

=
∫
O
〈 f ; b〉 +

∫
O
〈A; B〉dz.

Equality holds if and only if

( f, A) ∈ ∂·c∗(F, B) Ln+1 − a.e. and c∗(G, 0) = 〈 f ;G〉 η − a.e. (4.5)

4.2 Paths of bounded variations on M(�;�k)

Below, we list results on the trace operator of BV
(
(0, 1);M(�;�k)

)
functions, needed in

the manuscript.

Remark 4.5 There exists a linear bounded trace (explicitely written below as the left/right
limits) operator T : BV ((0, 1);M(�;�k)

) → L∞ ({0, 1};M(�;�k)
)

such that the fol-
lowing hold for any h ∈ BV

(
(0, 1);M(�;�k)

)
.

(i) If h and ∂sh are continuous on [0, 1] × �̄ then

Th = h|{0,1}×�

(ii) We have the integration by parts formula
∫ 1

0
ds
∫

�

〈h(s, dx); ∂s g(s, x)〉 +
∫

(0,1)×�

〈∂sh(ds, dx); g(s, x)〉 = u

for any g ∈ C1
([0, 1] × �̄;�k

)
. Here, we have set

u :=
∫

�

〈Th(1, dx); g(1, x)〉 −
∫

�

〈Th(0, dx); g(0, x)〉

(iii) If h ∈ BV
(
(0, 1);M(�;�k)

)
is such that s → h(s, ·) is left continuous at 1 and right

continuous at 0 then

Th(0, ·) = lim
s→0+ h(s, ·), Th(1, ·) = lim

s→1− h(s, ·)

4.3 Special paths of bounded variations on M(�;�k)

Let h ∈ L1
(
(0, 1);M(�;�k)

)
be such that there exists b ∈ M

(
(0, 1) × �;�k

)
such that

∫ 1

0
ds
∫

�

〈∂sψ(s, x); h(s, dx)〉 = −
∫

(0,1)×�

〈ψ(s, x); b(ds, dx)〉 (4.6)

for all ψ ∈ C1
c

(
(0, 1) × �;�k

)
. Modifying if necessary, h(s, ·) on a subset of (0, 1) of null

Lebesgue (cf. [13]), we always assume without loss of generality that h satisfies the following
Lemma.
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Lemma 4.6 (A non smooth variant of Remark 3.3(ii)) If (4.6) holds, then for any 0 ≤ t1 <

t2 < 1 and F ∈ Cc(�;�k), we have the following.

(i) ∫
�

〈F(x); h(t2, dx)〉 −
∫

�

〈F(x); h(t1, dx)〉 =
∫

(t1,t2]×�

〈F(x); b(ds, dx)〉

(ii) ∫
�

〈F(x); h(1, dx)〉 −
∫

�

〈F(x); h(t1, dx)〉 =
∫

(t1,1)×�

〈F(x); b(ds, dx)〉

(iii) Using the definition of TV(h) in Definition 4.1 we have

TV(h) ≤ |b| ((0, 1) × �) .

Lemma 4.7 Further assume there exists B ∈ Lr
(
(0, 1); Lr (�;�k−1)

)
such that

∫
(0,1)×�

〈dg; h〉dsdx = −
∫

(0,1)×�

〈g; B〉dsdx (4.7)

for all g ∈ C1
c

(
(0, 1) × �;�k−1

)
, we say δh = B in the weak sense and say that δφ

belongs to Lr
(
(0, 1); Lr (�;�k−1)

)
. There exists h̄t0 ∈ W 1,r (�;�k) such that if we set

[h̄(s, ·) := h(s, ·) − h(t0, ·) + h̄t0 then, the following hold.

(i) Replacing h by h̄, (4.11) holds for any s ∈ T and any H ∈ C1
c (�;�k−1). In other

words, for any s ∈ T , we have δh̄(s, ·) = B(s, ·).
(ii) There exists a constant C� depending only on �, r and k such that for all s ∈ (0, 1)

||h̄(s, ·)|| ≤ |b| ((0, 1) × �) + C�Ln(�)
1
r

(∫
(0,1)×�

|B(τ, x)|r dτdx

) 1
r

.

(iii) We have ∂s h̄ = b and δh̄ = B in the sense that we may substitute h̄ with h in (4.6) and
(4.7).

Proof By Lemma 4.6, for each F ∈ C1(�;�k), the real value function

t →
∫

�

〈F(x); h(s, dx)〉

it is defined everywhere on [0, 1], it is in BV(0, 1), right continuous on [0, 1) and left con-
tinuous at 1. We use (i) of the same Lemma to obtain

∫
�

|h|(s, dx) ≤
∫ 1

0
||h(s, ·)||M(�)ds + |b| ((0, 1) × �) . (4.8)

Let T 1 be the set of full Lebesgue measure in (0, 1) such that for all s ∈ T 1

∫
�

|B(s, x)|r dx < ∞. (4.9)

The set of T 0 which consists of the set of s ∈ (0, 1) such that
∫

�

|B(s, x)|r dx ≤ ēr :=
∫ 1

0
ds
∫

�

|B(s, x)|r dx (4.10)

is of positive Lebesgue measure.
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We use (4.7) to obtain that for any H ∈ C1
c (�;�k−1), the existence of a set T H ⊂ T 1 of

full Lebesgue measure in (0, 1) such that∫
�

〈dH(x); h(s, dx)〉 = −
∫

�

〈H(x); B(s, x)〉dx (4.11)

for any s ∈ T H .

Let {Fn}∞n=1 ⊂ C1
c (�;�k−1) be a dense of C1

c (�;�k−1) for the || · ||C1(�)-norm. Set

T := ∩∞
n=1T Fn .

The set T ∩ T 0 has the same measure as T 0. Let t0 ∈ T ∩ T 0. By Theorems 7.2 and 7.4
[7] (written for r ∈ [2,∞) but extendable to r ∈ (1, 2)), there is h̄t0 ∈ W 1,r (�;�k) such
that {

δh̄t0 = B(t0, ·), dh̄t0 = 0 in �

ν ∧ h̄t0 = 0 on ∂�.

Furthermore, there is a constant C which depends only on �, k and r such that
∥∥h̄t0

∥∥
W 1,r ≤ C(Ld(�))

1
r ‖B(t0, ·)‖Lr (�). (4.12)

Set

h̄(s, ·) := h(s, ·) − h(t0, ·) + h̄t0 .

(i) Observe that (4.11) holds for any s ∈ T and any H which is a point of accumulation
on {Fn}. Using the fact that {Fn}∞n=1 is dense in C1

c (�;�k−1) we conclude the proof of (i).
(ii) We exploit Corollary 4.6 and to obtain

||h̄(s, ·)|| ≤ ||h(s, ·) − h(t0, ·)|| + ||h̄t0 || ≤ |b| ((0, 1) × �) + ||h̄t0 ||.
This, together with (4.12) yields the desired inequality.

(iii) Observe that if g ∈ C1
c

(
(0, 1) × �;�k

)
then

∫ 1

0
ds
∫

�

〈∂sg(s, x); h̄t0(x)〉dx −
∫ 1

0
ds
∫

�

〈∂s g(s, x); h(t0, dx)〉

=
∫

�

〈
h̄t0(x);

∫ 1

0
∂s g(s, x)ds

〉
dx −

∫
�

〈
h(t0, dx);

∫ 1

0
∂s g(s, x)ds

〉
dx = 0. (4.13)

That all is needed to conclude that we may substitute h̄ with h in (4.6). By (i) δh(t0, ·) =
B(t0, ·). Using the definition of h̄t0 we conclude that we may substitute h̄ with h in (4.7). ��
Definition 4.8 We define BV r∗ (0, 1;�) to be the set of h ∈ L1

(
(0, 1);M(�;�k)

)
such that

δh ∈ Lr
(
(0, 1); Lr (�;�k−1)

)
, and there exists b ∈ M

(
(0, 1) × �;�k

)
such that (4.6)

holds. We write b = ∂sh.

Lemma 4.9 Let (hε)ε∈(0,1) ⊂ BV r∗ (0, 1;�) such that that

sup
ε∈(0,1)

||∂shε ||1 + ||δhε ||rr < ∞ (4.14)

and
m0 := sup

ε∈(0,1)

sup
s∈(0,1)

||hε(s, ·)||1 < ∞. (4.15)

Then there exists h0 ∈ BV r∗ (0, 1;�) such that up to a subsequence the following hold.
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(i) (δhε)ε converges to δh0 weakly in Lr
(
(0, 1) × �;�k−1

)
.

(ii) (∂shε)ε converges weak ∗ to ∂sh0 on (0, 1) × �.
(iii) Except for countably many s ∈ (0, 1), (hε(s, ·))ε converges weak ∗ to h0(s, ·) on �

Proof There are

b ∈ M
(
(0, 1) × �;�k

)
, B ∈ Lr

(
(0, 1); Lr (�;�k−1)

)
, β ∈ M ((0, 1) × �) , β ≥ 0

and a sequence {εm}m decreasing to 0 such that the following hold:

(a) (δhε)ε converges to B weakly in Lr
(
(0, 1) × �;�k−1

)
(b) (∂shε)ε converges weak ∗ to b on (0, 1) × �

(c) (|∂shε |)ε converges weak ∗ to β on R × R
n .

Write (0, 1) ∩ Q = {ti }∞i=1. Since

||hεm (ti , ·)|| ≤ m0

we use a diagonal sequence argument to obtain a subsequence of (εm)m , which we continuous
to label (εm)m , such that for each i ∈ N there exists h̄i ∈ M(�;�k) such that (hεm (ti , ·))m
converges weak ∗ to h̄i on �.

Let D be the set of s ∈ (0, 1) such that β({s} × R
n) > 0. Since b is a finite measure, D

is at most countable. Let s ∈ (0, 1)\D and let (ti j ) j be a subsequence of (ti )i that converges
to s. By Lemma 4.6

||hεm (s, ·) − hεm (ti j , ·)|| ≤ |∂shεm | ([min{s, ti j }, max{s, ti j }
]× �

)
. (4.16)

Because ||hεm (s, ·)|| ≤ m0, the set {hεm (s, ·)}m admits points of accumulation for the weak
∗ topology. Let h0(s, ·) be one of these points of accumulation. Letting m tend to ∞ in (4.16)
we have ∥∥h0(s, ·) − hi j

∥∥ ≤ β
([

min{s, ti j }, max{s, ti j }
]× �

)
and so,

lim sup
j→∞

∥∥h0(s, ·) − hi j
∥∥ ≤ β

({s} × �̄
) = 0

Thus, {hεm (s, ·)}m admits only one points of accumulation and (hi j ) j converges weak ∗ to
h0(s, ·). We extend s → h0(s, ·) to (0, 1) by setting h0(s, ·) ≡ 0 for s ∈ D.

Let g ∈ C1
c

(
(0, 1) × �;�k

)
. Since

lim
m→∞

∫
�

〈hεm (s, x); ∂s g(s, x)〉dx =
∫

�

〈h0(s, dx); ∂s g(s, x)〉
and ∣∣∣∣

∫
�

〈hεm (s, dx); g(s, x)〉
∣∣∣∣ ≤ m0||∂s g||∞

for every s ∈ (0, 1)\D, we use the dominated convergence theorem to conclude that∫
(0,1)×�

〈b(ds, dx); ∂s g(s, x)〉 = − lim
m→∞

∫
(0,1)×�

〈hεm (s, x); ∂s g(s, x)〉dsdx

= −
∫ 1

0
ds
∫

�

〈h0(s, dx); ∂s g(s, x)〉.

Thus, b = ∂h0. Similarly, we show that δh0 = B and so, modifying h0 on a subset of (0, 1)

of null Lebesgue measure h0 ∈ BVr∗ (0, 1;�). ��
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5 Finsler type metrics

Assume � ⊂ R
n is an open bounded convex set, p ∈ (1,∞) and rp = r + p. Motivated by

examples of cost functions c such as the one in Sect. B.1, we relax the condition imposed on
the lower bound of c∗ in Sect. 3 (cf. 3.2). This allows to extend Theorem 3.8 to cost functions
which take on infinite values. Throughout this section,

c : �k × �k−1 → [0,∞]
is lower semicontinuous convex function. We assume that when c(ω, ξ) < ∞ then

c(ω, ξ) = 0 if and only if ξ = 0 (5.1)

and for any λ > 0 we have
c(ω, λξ) = λpc(ω, ξ). (5.2)

We assume that there are constants γ1, γ2, γ6, γ7 > 0 such that

c(ω, ξ) ≥ γ6
(|ω|p + |ξ |p)− γ7 (5.3)

and
∞ > c∗(b, B) ≥ γ1

(|b| + |B|r )− γ2 (5.4)

for any ω, b ∈ �k and ξ, B ∈ �k−1. Note that we may have

{(ω, ξ) ∈ �k × �k−1 | c(ω, ξ) = ∞} 	= ∅. (5.5)

Let || · || f and Mp(·, ·) be defined as in (1.7) and (1.8).

Remark 5.1 Observe the following.

(i) In case (5.5) does not hold, then by Lemma B.4 there exists a norm ‖ · ‖norm such that
c(ω, A) ≡ ‖A‖p

norm is independent of ω. According to [9] the solutions of (1.10) are
minimizers of (1.8) and the only minimizers if we further impose that ‖ · ‖p

norm is strictly
convex.

(ii) When k = n, which is the case of volume forms, in the current literature, most work
studying geodesics of length, deal with either the case when c assumes only finite values
(as in Sect. 3) or the case when c∗(b, B) ∈ {0,∞} for all (b, B) ∈ �k × �k−1. It
seems obvious that when c∗(b, B) ∈ {0,∞} (see Remark B.1 for such an example when
k = 2), the study of geodesics of optimal length in the set of k-form will only mimic the
well-known theory of n-forms. Therefore, in the current manuscript, we keep or focus
on the case where (5.4) is satisfied (cf. Sect. B.1 for an example).

For any Borel map f : � → �k , we define

c∞( f ) := ess sup
x,ξ

{
|c ( f (x), ξ) | | ξ ∈ �k−1), |ξ | ≤ 1, x ∈ �

}

Let
f̄0, f̄1 : � → �k (5.6)

be Borel maps. When 1 ≤ k ≤ n − 1, we assume that⎧⎨
⎩
c∞( f̄0), c∞( f̄1) < ∞
d f̄0 = d f̄1 ≡ 0 in the weak sense in �

( f̄1 − f̄0) ∧ ν = 0 in the weak sense on ∂�.

(5.7)
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However when k = n, we assume that

c∞( f̄0), c∞( f̄1) < ∞ and
∫

�

( f̄0(x) − f̄1(x))dx = 0 (5.8)

By (5.2) and (5.3)

λ6| f |p ≤ (
λ7 + c∞( f )

)
,

and so, (5.7) implies that | f̄0|, | f̄1| are bounded functions. Let ( f̄ , Ā) be as in Remark 2.3.
The same Remark provides us with a constant Cp,� independent of f̄0, f̄1 such that

|| Ā||W 1,p ≤ Cp,�|| f̄1 − f̄0||L p . (5.9)

By the convexity property of c,

c
(
(1 − s) f̄0 + s f̄1, Ā

) ≤ (1 − s)c( f̄0, Ā) + sc( f̄1, Ā)

and so, by the homogeneity with respect to the second variables

c
(
(1 − s) f̄0 + s f̄1, Ā

) ≤ (
(1 − s)c∞( f̄0) + sc∞( f̄1)

) | Ā|p (5.10)

Recall that P p( f̄0, f̄1) is a set of paths connecting f̄0 to f̄1 as given in Definition 2.2. In
other words, if ( f, A) ∈ P p( f̄0, f̄1) then in the weak sense⎧⎨

⎩
∂s f + d A ≡ 0 in (0, 1) × �

A ∧ ν = 0 on (0, 1) × ∂�

f (0, ·) = f̄0, f (1, ·) = f̄1 on ∂�

(5.11)

5.1 A metric on a subset of the set of differential forms

Lemma 5.2 (Reparametrization by arc lengths) Suppose c : �k × �k−1 → [0,∞] is a
lower semicontinuous convex function that satisfies (5.1) and (5.2). If f̄0 and f̄1 are such that
(5.6) and (5.7–5.8) hold then

M p
p ( f̄0, f̄1) = inf

( f,A)

{
C( f, A) | ( f, A) ∈ P p( f̄0, f̄1)

}
.

Proof For any ( f, A) ∈ P p( f̄0, f̄1) we use Jensen’s inequality to conclude that
(∫ 1

0
ds||As || fs ds

)p

≤ C( f, A).

Thus,

Mp
p ( f̄0, f̄1) ≤ inf

( f,A)

{
C( f, A) | ( f, A) ∈ P p( f̄0, f̄1)

}
.

It remains to prove the reverse inequality. Assume without loss of generality that
Mp

p ( f̄0, f̄1) < ∞ otherwise, there will be nothing to prove. Let ε > 0 and let ( f ε, Aε) ∈
P p( f̄0, f̄1) be such that

(∫ 1

0
ds
∫

�

||Aε
s || f ε

s
ds

)p

< Mp
p ( f̄0, f̄1) + ε. (5.12)

Define

Lε :=
∫ 1

0
(ε + ||Aε

s || f ε
s
)ds, Sε(s) := 1

Lε

∫ s

0

(
ε + ||Aε

l || f ε
l

)
dl.
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Observe that Sε : [0, 1] → [0, 1] is a bijection and so has an inverse Tε : [0, 1] → [0, 1]
such that

Ṫε = 1

Ṡε ◦ Tε

= Lε

ε + ||Aε
Tε

|| fTε
. (5.13)

Define

f̃ (τ, x) = f ε(Tε(τ ), x), Ã(τ, x) = Ṫε(τ )Aε(Tε(τ ), x).

We have ( f̃ , Ã) ∈ P p( f̄0, f̄1) and

|| Ãτ ||pf̃τ =
∫

�

c
(
f̃ (τ, x), Ã(τ, x)

)
dx = |Ṫε(τ )|p

∫
�

c
(
f ε (Tε(τ ), x) , Aε (Tε(τ ), x)

)
dx .

Thus, using (5.13) we obtain that

|| Ãτ ||pf̃τ = |Ṫε(τ )|p ||Aε
Tε (τ )||pf ε

Tε (τ )
=

L p
ε ||Aε

Tε (τ )||pf ε
Tε (τ )

(ε + ||Aε
Tε (τ )|| f ε

Tε (τ )
)p

≤ L p
ε .

After an integration over (0, 1) we use (5.12) to conclude that

inf
( f,A)

{
C( f, A) | ( f, A) ∈ P p( f̄0, f̄1)

} ≤
(∫ 1

0
(ε + ||Aε

s || f ε
s
)ds

)p

≤
((

Mp
p ( f̄0, f̄1) + ε

) 1
p + ε

)p

Letting ε tend to 0 we have

inf
( f,A)

{
C( f, A) | ( f, A) ∈ P p( f̄0, f̄1)

} ≤ Mp
p ( f̄0, f̄1).

��
Lemma 5.3 Suppose c : �k × �k−1 → [0,∞] is a lower semicontinuous convex function
that satisfies (5.1) and (5.2). There exists a constant C̄� which depends only on � and s such
that if f̄0 and f̄1 are such that (5.6) and (5.7–5.8) hold then

M p
p ( f̄0, f̄1) ≤ C̄�|| f̄1 − f̄0||pp.

Proof Define ( f̄ , Ā) is as in Remark 2.3 (i) and recall that by (ii) of the same Remark,
( f̄ , Ā) ∈ P p( f̄0, f̄1). We integrate the expressions in (5.10) to obtain

C( f̄ , Ā) ≤ c∞( f̄0) + c∞( f̄1)

2
|| Ā||pp

We first use Lemma 5.2 and then (5.9) to conclude that

Mp
p ( f̄0, f̄1) ≤ C( f̄ , Ā) ≤ C̄�|| f̄1 − f̄0||pp,

which completes the proof. ��
Denote by Hp the set of k-forms f ∈ L p

(
�;�k

)
such that

{
d f ≡ 0 in the weak sense on �̄

( f − f̄0) ∧ ν = 0 in the weak sense on ∂� if 1 ≤ k ≤ n − 1

and {
d f ≡ 0 in the weak sense on �̄∫
�
( f − f̄0)dx = 0 if k = n
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Theorem 5.4 Suppose c : �k ×�k−1 → [0,∞] is a lower semicontinuous convex function
that satisfies (5.1), (5.2) and (5.3). Then the following hold.

(i) If f̄0 and f̄1 satisfy (5.6) and (5.7) then there exists ( f ∗, A∗) that minimizes C and∫ 1
0 ||As || fs ds over P p( f̄0, f̄1).

(ii) The function Mp in (1.8) is a metric on the set { f ∈ Hp | c∞( f ) < ∞}.

Proof (i) follows from Proposition 3.2 and Lemma 5.2.
(ii) Let f̃0, f̃1, f̃2 ∈ Hp. By (i) and Lemma 5.2 there are ( f 0, A0) ∈ P p(ω̄0, ω̄1) and

( f 1, A1) ∈ P p(ω̄1, ω̄2) such that

∫ 1

0
||A0

s ||pf 0
s
ds = C( f 0, A0) = Mp

p ( f̃0, f̃1) =
(∫ 1

0
||A0

s || f 0
s
ds

)p

(5.14)

and ∫ 1

0
||A1

s ||pf 1
s
ds = C( f 1, A1) = Mp

p ( f̃1, f̃2) =
(∫ 1

0
||A1

s || f 1
s
ds

)p

(5.15)

By Lemma 5.3, if f̃0 = f̃1 then Mp( f̃0, f̃1) = 0. Conversely, Mp( f̃0, f̃1) = 0 means

∫ 1

0
ds
∫

�

c( f 0
s (x), A0

s (x))dx = 0,

and so, c( f 0, A0) = 0 almost everywhere on (0, 1)×�. By (5.1) A0 = 0 almost everywhere
on (0, 1) × �. This means ( f 0, 0) ∈ P p( f̃0, f̃1) and so, f̃1 = f̃0.

Setting

f̃ (s, x) = f 0(1 − s, x), Ã(s, x) = −A0(1 − s, x),

we have ( f̃ , Ã) ∈ P p( f̃1, f̃0) and so,

Mp
p ( f̃1, f̃0) ≤ C( f̃ , Ã) = C( f 0, A0) = Mp

p ( f̃0, f̃1)

By symmetry, the reverse inequality holds and so, Mp
p ( f̃1, f̃0) = Mp

p ( f̃0, f̃1).
Set

f (s, x) =
{

f 0(2s, x) if 0 ≤ s ≤ 1
2

f 1(2s − 1, x) if 1
2 ≤ s ≤ 1

A(s, x) =
{

2A0(2s, x) if 0 ≤ s ≤ 1
2

2A1(2s − 1, x) if 1
2 ≤ s ≤ 1

We have ( f, A) ∈ P p( f̃0, f̃2) and

||As || fs =
⎧⎨
⎩

2||A0
2s || f 0

2s
if 0 ≤ t ≤ 1

2

2||A1
2s−1|| f 1

2s−1
if 1

2 ≤ s ≤ 1

Hence

Mp( f̃0, f̃2) ≤
∫ 1

0
||As || fs ds =

∫ 1
2

0
2||A0

2s || f 0
2s
ds +

∫ 1

1
2

2||A1
2s−1|| f 1

2s−1
ds

= Mp( f̃0, f̃1) + Mp( f̃1, f̃2)

This concludes the proof of (ii). ��
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5.2 A duality result for non-finite cost function

Remark 5.5 The following hold.

(i) By the convexity and lower semicontinuity properties of

(b, B) → cε(b, B) := c∗(b, B) + ε

p
(|b|p + |B|p),

setting cε := (cε)
∗, we have c∗

ε = cε .

(ii) Observe that since c∗ is convex, c∗
ε is strictly convex. Furthermore,

c∗
ε ≥ c∗ and cε ≤ c.

(iii) By (5.4) there is a constant γ ε
3 > 0 depending on ε > 0 such that

−γ2 + ε

p
(|b|p + |B|p) ≤ c∗

ε (b, B) ≤ γ7 + γ ε
3

(|b| + |B|r )

(iv) By (5.3) there are constants γ ∗
6 > 0 and γ ∗

7 ≥ 0 independent of ε ∈ (0, 1) such that

cε(ω, ξ) ≥ γ ∗
6

(|ω|p + |ξ |p)− γ ∗
7 .

(v) Using the notation of Sect. 3, since c∗ satisfies (iii), Proposition 3.7 asserts the existence
ofhε that maximizesDε overBr

(
(0, 1) × �;�k

)
. By Theorem 3.8 there exists ( f ε, Aε)

which minimizes Cε over P p( f̄0, f̄1). Furthermore, Dε(hε) = Cε( f ε, Aε). Since c∗
ε is

strictly convex, cε is continuously differentiable and so, Theorem 3.8 gives

( f ε, Aε) ∈ ∂c∗
ε (∂shε, δhε) i.e. (∂shε, δhε) = ∇cε( f

ε, Aε).

Theorem 5.6 Assume c satisfies (5.1), (5.2) and (5.3) and c∗ satisfies (5.4). We assume
that f̄0, f̄1 ∈ C0(�,�k) are such that (5.6), (5.7) hold and there exists ε0 > 0 such that
| f̄0|, | f̄1| ≤ γ1 − ε0.Then

max
h∈BVr∗ (0,1;�)

D(h) = min
( f,A)∈P p( f̄0, f̄1)

C( f, A). (5.16)

Proof 1. Let ( f ε, Aε) and hε be the optima in Remark 5.5. We first use the minimality
property of ( f ε, Aε) and then use Remark 5.5 (ii) to conclude that

Cε( f
ε, Aε) ≤ Cε( f̄ , Ā) ≤ C( f̄ , Ā) < ∞.

This, together with Remark 5.5 (iv) implies

sup
ε∈(0,1)

|| f ε ||p + ||Aε ||p < ∞.

Thus, up to a subsequence ( f ε)ε converges weakly in L p((0, 1) × �;�k) to some f 0 and
(Aε)ε converges weakly in L p((0, 1)×�;�k−1) to some A0. For any b ∈ C0((0, 1)×�;�k)

and B ∈ C0((0, 1) × �;�k−1) we have

lim inf
ε→0+ Cε( f

ε, Aε) ≥ lim inf
ε→0+

∫
(0,1)×�

(〈 f ε; b〉 + 〈Aε; B〉 − c∗
ε (b, B)

)
dsdx

=
∫

(0,1)×�

(〈 f 0; b〉 + 〈A0; B〉 − c∗(b, B)
)
dsdx .
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Thus, since c∗ takes on only finite values, maximizing over (b, B), we can use Proposition C.5
(iii) to conclude that

lim inf
ε→0+ Cε( f

ε, Aε) ≥ C( f 0, A0). (5.17)

Recall the expression of Dε in (3.9), use the maximality property of hε and (5.4) to obtain
that

γ2Ln(�) ≥ −Dε(0) ≥ −Dε(h
ε) ≥ ε0||∂shε ||1 + γ1||δhε ||rr − || Ā||p ||δhε ||r − γ2Ld(�).

Thus, (4.14) holds. Thanks to Lemma 4.7, we may assume without loss of generality that
(4.14) holds. We use Lemma 4.9 to conclude that there exists h0 ∈ BVr∗ (0, 1;�) such that
up to a subsequence

(i) (δhεm )m converges to δh0 weakly in Lr
(
(0, 1) × �;�k−1

)
.

(ii) (∂shεm )m converges weak ∗ to ∂sh0 on (0, 1) × �).
(iii) For L1-almost every s ∈ (0, 1), (hεm (s, ·))m converges weak ∗ to h0(s, ·) on �

Since c∗
ε ≥ c∗,

lim inf
ε→0+

∫
(0,1)×�

c∗
ε (∂sh

ε, δhε)dsdx ≥ lim inf
ε→0+

∫
(0,1)×�

c∗(∂shε, δhε)dx . (5.18)

By Theorem 3.3.1 [5] and the convergence in (i) and (ii), we have

lim inf
ε→0+

∫
(0,1)×�

c∗(∂shε, δhε)dsdx ≥
∫

(0,1)×�

c∗(∂sh0, δh0) (5.19)

The integral of c∗(∂sh0, δh0) needs to be interpreted as in Definition 4.2 which involves the
recession function c̄∗. Combining (5.18) and (5.19) we obtain

lim inf
ε→0+

∫
(0,1)×�

c∗
ε (∂sh

ε, δhε)dsdx ≥
∫

(0,1)×�

c∗(∂sh0, δh0). (5.20)

Recall that we can assume without loss of generality that s → h0(s, ·) is left continuous at
1 and right continuous at 0. We use the trace operator in Sect. 4.2, and combine (4.14) with
(4.15) to obtain that

lim
m→∞

∫
�

〈 f̄1(x); hεm (1, x)〉dx −
∫

�

〈 f̄0(x); hεm (0, x)〉dx

=
∫

�

〈 f̄1(x); h0(1, dx)〉 −
∫

�

〈 f̄0(x); h0(0, dx)〉. (5.21)

Rearranging the expressions in the identify Cε( f ε, Aε) = Dε(hε) we have∫
(0,1)×�

(
cε( f

ε, Aε) + c∗
ε (∂sh

ε, δhε)
)
dsdx

=
∫

�

〈 f̄1(x); hε(1, dx)〉 −
∫

�

〈 f̄0(x); hε(0, dx)〉 (5.22)

Thus, using (5.17), (5.20) and (5.21), together with the fact that

lim inf
ε→0+

∫ 1

0
ds
∫

�

(
cε( f

ε, Aε)dx + lim inf
ε→0+

∫ 1

0
ds
∫

�

c∗
ε (∂sh

ε, δhε)

)
dx

≤ lim inf
ε→0+

(∫ 1

0
ds
∫

�

(
cε( f

ε, Aε)dx +
∫ 1

0
ds
∫

�

c∗
ε (∂sh

ε, δhε)

)
dx

)
,
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we obtain

C( f 0, A0) +
∫

(0,1)×�̄

c∗(∂sh0, δh0) ≤
∫

�

〈 f̄1(x); h0(1, dx)〉 −
∫

�

〈 f̄0(x); h0(0, dx)〉.
(5.23)

This means
C( f 0, A0) ≤ D(h0). (5.24)

2. We claim that C( f, A) ≥ D(h) for any ( f, A) ∈ P p( f̄0, f̄1) and any h ∈ BV r∗ (0, 1;�).
Observe that (5.3) and (5.4) imply that C := c∗ satisfies (C.1) and (C.2). By the assumption
on c, we have C∗ ≥ C∗(0) = 0. Let hε

l ∈ C∞(�;�k) and hl ∈ BV r∗ (0, 1;�l) be the
approximations of h as defined by (D.2) in Section D. Here, �l is the l-neighborhood of �.

We have

C( f, A) ≥
∫
O

(〈 f ; ∂sh
ε
l 〉 + 〈A; δhε

l 〉dx
)−

∫
O
c∗(∂shε

l , δh
ε
l )dsdx

=
∫

�

(〈 f1(x); hε
l (1, x)〉 − 〈 f0(x); hε

l (0, x)〉) dx −
∫
O
c∗(∂shε

l , δh
ε
l )dsdx .

Letting ε tend to 0 in Lemmas D.3 and D.4 we obtain

C( f, A) ≥
∫

�

(〈 f1(x); hl(1, x)〉 − 〈 f0(x); hl(0, x)〉) dx −
∫
Ol

c∗(∂shl , δhl).

Letting l tend to 0 in Lemmas D.3 and D.4 we obtain C( f, A) ≥ D(h). This, together with
(5.24) concludes the proof of the Theorem. ��
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Appendix A. Open problems

Throughout this section, we use the same notation as in Sect. 5.2. To alleviate the notation,
we denote by ( f, A) the pair ( f 0, A0) in Remark 4.4 and write h instead of h0. Let (∂sh)a
denote the absolutely continuous part of ∂sh. By abuse of notation, we don’t distinguish
between (∂sh)a and its Radon Nikodym derivative with respect to Ln+1.

Remark A.1 According Remark 4.4

C( f, A) ≥
∫
O

(〈 f ; ∂sh(ds, dx)〉 + 〈A; δh〉dsdx) −
∫
O
c∗(∂sh, δh)

and if equality holds

( f, A) ∈ ∂c∗ ((∂sh)a, δh) Ln+1 a.e.. (A.1)

We next list few open problems, sources of future investigations.
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Problem A.2 These problems are stated under the hypotheses of Sect. 5.

(i) What are the regularity properties of the minimizing geodesics in (5.16), or equivalently,
thanks to (A.1), what are the regularity properties of the maximizer h in (5.16)?

(ii) For the sake of illustration, let c be given by (1.11) so that

c∗(b, B) =
√

|b|2 + |B|2r
r2 .

Hence, formally at least, using (A.1) and expressing the fact that ( f, A) ∈ P p( f̄0, f̄1),
we have

∂s

(
(∂sh)a√

|(∂sh)a |2 + r−2|δh|2r

)
+ d

(
δh|δh|2(r−1)

r
√

|(∂t h)a |2 + r−2|δh|2r

)
= 0 (A.2)

in the sense of distribution in the interior of U where

U := {|(∂sh)a |2 + r−2|δh|2r > 0
}

Observe (A.2) is a type of system of elliptic PDEs. What can we show about the set U?
(iii) Continuing with c given by (1.11), what are the regularity properties of ((∂t h)a, δh)

or equivalently, since the regularity properties of h transfer to those of ( f, A) through
(A.1), what are the regularity properties of ( f, A)?

Appendix B. Convex functions

Throughout this section, we assume that � ⊂ R
n is an open bounded convex set, p, r ∈

(1,∞) and rp = r + p.

B.1 Examples

A prototype cost is
c(ω, A) = U (−θ(ω), A) (B.1)

where

U (ρ, A) =

⎧⎪⎨
⎪⎩

|A|p
p ρ p−1 if ρ ∈ (0,∞)

0 if (A = �0 and ρ = 0) or (ρ = ∞)

∞ if (A 	= �0 and ρ = 0) or (ρ ∈ [−∞, 0))

(B.2)

and

θ(w) =
{−√1 − |w|2 if |w| ≤ 1

∞ if |w| > 1.
(B.3)

In this case, the Legendre transform of θ is the strictly convex function θ∗ : �k → [1,∞)

of class C1 given by

θ∗(z) =
√

1 + |z|2, z ∈ �k .

The Legendre transform of U is U∗ and

U∗(−λ, B) =
{

0 if |B|r ′
r ′ ≤ λ,

∞ if |B|r ′
r ′ > λ

(B.4)
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If b ∈ �k and B ∈ �k−1 then

c∗(b, B) := min
α>0

[
αθ∗

(
b

α

)
+U∗(−α, B)

]
=
√

|b|2 + |B|2r
r2 .

For B 	= 0, the minimum is achieved at 0 < α0 := |B|r/r.
Remark B.1 As mentioned in Remark 5.1, we have chosen not to include cases such as

c(ω, ξ) := U

⎛
⎝∑

i< j

ωi j , ξ

⎞
⎠ ,

which satisfy c(λω, λξ) = λc(ω, ξ) for any λ ∈ R. Indeed, in this case, c∗(b, B) ∈ {0,∞}
for all (b, B) ∈ �2 × �1.

B.2 Bounds on gradients of convex functions

Let H be a finite dimensional Hilbert space and assume c, c∗ : H → (−∞,∞] Legendre
transform of each other and γ6, γ7, γ8 > 0.

Remark B.2 The following hold.

(i) Suppose c(w) ≥ −γ8 and c∗(z) ≥ γ6|z|r − γ7 for any w, z ∈ H. Then there exists a
constant C̄γ depending only on s, γ6, γ7 and γ8 such that

sup
z∈∂·c(w)

|z| ≤ C̄γ (|w|p−1 + 1), ∀ w ∈ H. (B.5)

(ii) Similarly, suppose c(w) ≥ γ6|w|p − γ7 and c∗(z) ≥ −γ8 for any w, z ∈ H. Then there
exists a constant C̃γ depending only on r , γ6, γ7 and γ8 such that

sup
w∈∂·c∗(z)

|w| ≤ C̃γ (|z|r−1 + 1), ∀ p ∈ H. (B.6)

B.3 A class of convex functions

Assume that c : �k × �k−1 → (−∞,∞] is lower semicontinuous and for each if ω ∈ �k

and A ∈ �k−1 are such that c(ω, A) < ∞ then

c(ω, λA) = |λ|pc(ω, A) (B.7)

and
c(ω, A) = 0 if and only if A = 0. (B.8)

For ξ ∈ �k we define

Gc(ξ) = inf
ω

c(ω, ξ).

We set

λc := inf
ξ

{
Gc(ξ),

∣∣ |ξ | = 1
}
.

Denote by � : �k × �k−1 → �k the projection operator. We assume that

∀ b ∈ �k\{0} ∃ (ωm)m ⊂ �(domc) | lim
m→∞〈ωm, b〉 = ∞. (B.9)

Obviously, if c takes on only finite values, then (B.9) holds.
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Lemma B.3 Suppose c satisfies (B.9).

(i) We have

c∗(b, B) = sup
ω

{〈b;ω〉 + (cω)∗(B)
} =

{∞ if b 	= 0
supω∈�k (cω)∗(B) if b = 0.

(ii) For any (ω, ξ) ∈ �k × �k−1 we have

c∗∗(ω, ξ) ≤ inf
w∈�k

(cw)∗∗(ξ) ≤ Gc(ξ).

(iii) Because c is lower semicontinuous and (B.8) holds, we have λc > 0. Defining s > 0
by s p = pλc we have

c∗(0, B) ≤ |B|r
rsr

.

Proof We only comment on the proof of (iii).
Let (ω, ξ), (b, B) ∈ �k × �k−1. If ξ 	= 0 then by Young’s inequality

〈B; ξ 〉 ≤ s p|ξ |p
p

+ |B|r
rsr

≤ |ξ |pc
(

ω,
ξ

|ξ |
)

+ |B|r
rsr

= c(ω, ξ) + |B|r
rsr

.

Rearranging and maximizing the subsequent inequality over ξ we obtain

(cω)∗(B) = sup
ξ

{
〈B; ξ 〉 − cω(ξ) | ξ ∈ �k−1

}
≤ |B|r

rsr
,

which, together with (i) implies (iii). ��
Lemma B.4 Suppose c takes on only finite values.

(i) If c is upper semicontinuous, so is Gc.

(ii) If Gc is lower semicontinuous and convex then for any we have

c∗∗(ω, ξ) = Gc(ξ) ∀ (ω, ξ) ∈ �k × �k−1.

(iii) If c is convex so is Gc. If in addition c is bounded below, then Gc is locally Lipschitz
and c(ω, ξ) ≡ Gc(ξ).

Proof We shall only comment on the last statement of (iii) and leave it to the reader to show (i),
(ii) and that if c is convex so is Gc. Assume we know Gc is convex. Since it takes on only finite
values, it is locally Lipschitz. By the convexity of c and (ii), c(ω, ξ) = c∗∗(ω, ξ) ≡ Gc(ξ).

��

Appendix C. Representation formulas for
∫
O C(F) when F is a measure

Let H be either the Hilbert space �k × �k−1 or RN . We assume that

C : H → (−∞,∞). (C.1)

and denote by C∗ the Legendre transform of C. Set D := dom (C∗) and let int(D) be the
interior of D. Note that if 0 ∈ D then C(u) ≥ 〈0; u〉 − C∗(0) = −C∗(0) and so, C is
bounded below. We sometimes make the stronger assumption that

0 ∈ int(D). (C.2)
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C.1 Basic properties of recession function

Consider the Minkowski function of D̄ and its polar

�D̄(u) := inf
t>0

{
t | u

t
∈ D̄

}
, �0

D̄
(v) := sup

u∈H
{〈u; v〉 | u ∈ D̄

}
. (C.3)

Recall that C̄ is the recession function ofC as given by Definition 4.2. We recall the following
two Lemmas from Convex Analysis.

Lemma C.1 Assume C is convex and (C.1) holds. Then,

(ii) C̄ = �0
D̄
.

(iii) (C̄)∗(u) =
{

0 if u ∈ D̄
∞ if u /∈ D̄

Lemma C.2 Assume C is convex and (C.1) and (C.2) hold. Then,

(i) �D̄ is Lipschitz and there exists ε > 0 such that �0
D̄

≥ ε‖ · ‖.
(ii)

D̄ = {�D̄ ≤ 1}, int(D) = {�D̄ < 1}. (C.4)

C.2 Integral of functions of measures in terms of Legendre transform

Let O ⊂ R
n+1 be a bounded open set and assume that C is convex and (C.1) holds and

0 ∈ D. For each l > 0 we define C∗
l

C∗
l (w) =

{
C∗(w) if |w| ≤ l
∞ if |w| > l

w ∈ H.

Because is lower semicontinuous and does not achieve the value −∞, Cl , the Legendre
transform of C∗

l is l-Lipschitz and convex. Furthermore, by the fact that C = (C∗)∗ and
C∗
l ≥ C∗,

lim
l→∞Cl(v) = C(v), and Cl(v) ≤ C(v) (C.5)

for all v ∈ H. Note that
Cl ≥ 〈v, 0〉 − C∗(0) = −C∗(0). (C.6)

Identify H with R
N . For N signed Borel measures F1, · · · , FN on O of finite total mass,

we write Radon–Nikodym decomposition

F = FaLN + Fsη.

Here, η is a finite Borel measure onRN such thatLN and η are mutually singular, Fa ∈ L1(O)

is a Borel map and Fs ∈ L1(RN , η) is a Borel map. We set

K1(F) :=
∫
O
C(Fa)dx +

∫
O
C̄(Fs)dη,

where C̄ is the recession function of C. By Lemma C.1, since 0 ∈ D, 0 = C̄(0) ≤ C̄ and
−C∗(0) ≤ C. Hence,

∫
O C(Fa)dx and

∫
O C̄(Fs)dη exist although they may be ∞. Observe

that because C̄ is 1-homogeneous, if g1 and g2 are two finite Borel measures on O which
are absolutely continuous with respect to each other then∫

O
C̄

(
dF

dg1

)
dg1 =

∫
O
C̄

(
dF

dg2

)
dg2.
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Hence, even if the pair (Fs, η) is not uniquely determined, by the fact that the product Fsη
is uniquely determined, it is well-understood that

∫
O C̄(Fs)dη is well defined. Similarly,

(C.6) implies that
∫
O Cl(F)dz makes sense. Thanks to (C.5) and (C.6) we can apply Fatou’s

Lemma to obtain that

lim
l→∞

∫
O
Cl(Fa)dx =

∫
O
C(Fa)dx (C.7)

Remark C.3 Assume G1 : O → H is a bounded Borel map. If |G1| ≤ l, then∫
0

(〈Fa;G1〉 − C∗
l (G1)

)
dx =

∫
0

(〈Fa;G1〉 − C∗(G)
)
dν

makes sense although it may be −∞. It is not −∞ if and only if C∗(G1),C∗
l (G1) ∈ L1(O).

Proof Since Fa ∈ L1(O), if |G1| ≤ l, using the definition of C∗
l , Young’s inequality and

eventually (C.5 ), we have

〈Fa;G1〉 − C∗(G) = 〈Fa;G1〉 − C∗
l (G1) ≤ Cl(Fa) ≤ l|Fa | + Cl(0)

≤ l|Fa | + C(0) ∈ L1(O).

This allows to conclude the proof of the remark. ��
Thanks to Remark C.3 it makes sense to define

J (G1,G2) :=
∫
O

(〈Fa;G1〉 − C∗(G1)
)
dx +

∫
O
〈Fs;G2〉dη

K2(F) = sup
G1,G2

{J (G1,G2) | (G1,G2) ∈ B2} .

Here, B2 is the set of pairs (G1,G2) such that G1,G2 : O → H are Borel and bounded,
G1 ∈ dom(C∗) Ln+1—a.e. and G2 ∈ dom(C∗) η—a.e.

Lemma C.4 Assume C is convex, (C.1) holds and 0 ∈ D. Then K1(F) = K2(F).

Proof If (G1,G2) ∈ B2 then except on a set of Ln+1-null measure

〈Fa;G1〉 − C∗(G1) ≤ C(Fa) (C.8)

By Lemma C.1 (i), except on a set of η-null measure

〈Fs;G2〉 ≤ C̄(Fs) (C.9)

We integrate the two terms in (C.8) with respect to Ln+1 and those in (C.9) with respect to
η and add up the subsequent inequalities to conclude that K1(F) ≥ K2(F).

Suppose first that K1(G) < ∞ and fix ε > 0 arbitrary. Since Cl assumes only finite
values, for any v ∈ H, the subdifferential ∂·Cl(v) is not empty. Because, Cl is l-Lipschitz,
∂·Cl(v) is a compact set contained in the ball of radius l. The theory of multifunctions [6]
ensures existence of a Borel map Ml : H → H such that for any v ∈ H, Ml(v) ∈ ∂·Cl(v)

and |Ml(v)| ≤ l. The map Gl := Ml ◦ Fa is a Borel map such that |Gl | ≤ l and

C∗
l (Gl(z)) + Cl (F(z))) = 〈F(z);Gl(z)〉 (C.10)

for any z ∈ O. Thus, ∫
O
Cl(Fa)dz =

∫
O

(〈Fa;Gl〉 − C∗
l (Gl)

)
dz. (C.11)
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In light of (C.7) there exists l such that∫
O
Cl(Fa)dz ≥

∫
O
C(Fa)dz − ε.

We combine this, together with (C.11) and use the fact that C∗
l ≥ C∗ to conclude that

∫
O

(〈Fa;Gl〉 − C∗(Gl)
)
dz ≥

∫
O
C(Fa)dz − ε. (C.12)

Since
∫
O C(Fa)dx is finite and C∗ is bounded below, (C.12) implies

∫
O

(〈Fa;Gl〉 − C∗(Gl)
)
dz ≥

∫
O
C(Fa)dz − ε, Gl(z) ∈ D = dom

(
C∗) Ln+1 − a.e.

(C.13)
Observe that C̄ : H → (−∞,∞) is a convex function that is bounded below. We apply

(C.12) after replacing C by C̄ , Ln+1 by η and Fa by Fs to conclude that we can choose l
large enough so that there exists a Borel map Ḡl : O → H such that |Ḡl | ≤ l and∫

O

(〈Fs; Ḡl〉 − (C̄)∗(Ḡl)
)
dη ≥

∫
O
C̄(Fs)dν − ε. (C.14)

By Lemma C.1 (ii), (C̄)∗ takes the value 0 in D̄ otherwise takes the value ∞. Since we have
assumed that

∫
O C̄(Fs)dν is finite, (C.14) is equivalent to

∫
O
〈Fs;Gl〉dη ≥ −ε, Ḡl(z) ∈ D̄ η − a.e. (C.15)

We combine (C.13) and (C.15) to obtain that K1(F) ≤ K2(F)+2ε and then use the fact that
ε > 0 is arbitrary to that K1(F) ≤ K2(F).

Assume that K1(G) = ∞ and so, for instance,
∫
O C(Fa)dx = ∞. We are to show that

for every ε > 0, K2(G) ≥ ε−1. In light of (C.7) there exists l such that∫
O
Cl(Fa)dx ≥ ε−1.

We use (C.11) to obtain a bounded Borel map Gl : O → H such that

ε−1 ≤
∫
O
Cl(Fa)dz =

∫
O

(〈Fa;Gl〉 − C∗
l (Gl)

)
dz ≤

∫
O

(〈Fa;Gl〉 − C∗(Gl)
)
dz.

Observe that since Cl is l-Lipschitz and Fa ∈ L1(O). Hence, C∗(Gl) ∈ L1(O) and so,
Gl(z) ∈ D Ln+1—a.e. This proves that K2(F) ≥ ε−1 and so, K2(F) = ∞. ��

Define

K3(F) = sup
G1,G2

{J (G1,G2) | (G1,G2) ∈ B3} .

Here, B3 is the set of pairs (G1,G2) in B2 such that there exists a compact set K ⊂ O such
that G1 ∈ K Ln+1—a.e. and G2 ∈ K η—a.e. Define

K4(F) = sup
G1,G2

{J (G1,G2) | (G1,G2) ∈ B4} .

Here, B4 is the set of pairs (G1,G2) in B3 that are continuous and of compact supports such
that G1 = G2 and the range of G1 is contained in a compact subset of the interior of D.
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Proposition C.5 As in Lemma C.4, we suppose that C is convex, (C.1) holds and 0 ∈ D.
Then

K1(F) = K2(F) = K3(F).

If we further assume that (C.2) holds then

K1(F) = K2(F) = K4(F).

Proof Replacing C∗ by C∗ − C∗(0) if necessary, let us assume without loss of generality
that C∗(0) = 0. What is obvious is

K1(F) ≥ K2(F) ≥ K3(F) ≥ K4(F),

and by Lemma C.4 K1(F) = K2(F). It remains to show the reverse inequalities.
Part 1. To show that K2(F) ≤ K3(F) it suffices to show that for any ε > 0 and (G1.G2) ∈

B2,

J (G1,G2) ≤ 2ε + K3(F).

We can assume that C∗(G1) ∈ L1(O) and C∗(G2) ∈ L1(η) otherwise, there is nothing to
prove. For each m positive integer, we define

Sm :=
{
x ∈ O | dist(z, ∂O) >

1

m

}

and let χSm be the indicator function of Sm . The dominated convergence theorem allows to
choose m large enough so that∫

O
(1 − χSm )

(|〈Fa;G1〉| + ∣∣C∗(G1)
∣∣) dz < ε. (C.16)

We have

spt(χSmG1) ⊂
{
x ∈ O | dist(z, ∂O) ≥ 1

m

}
⊂ O. (C.17)

Since C∗(0) = 0, by convexity

C∗ (χSmG1
) = C∗ (χSmG1 + (1 − χSm )0

) ≤ χSmC
∗(G1)

Thus

〈χSmG1; Fa〉 − C∗ (χSmG1
) ≥ χSm

(〈Fa;G1〉 − C∗(G1)
)

= 〈Fa;G1〉 − C∗(G1) + (1 − χSm )
(〈Fa;G1〉 − C∗(G1)

)
and so,

〈Fa;G1〉 − C∗(G1) ≤ −(1 − χSm )
(〈Fa;G1〉 − C∗(G1)

)+ 〈χSmG1; Fa〉 − C∗ (χSmG1
)

Integrating over O and using (C.16), we have∫
O

(〈Fa;G1〉 − C∗(G1)
)
dx ≤ ε +

∫
O

(〈Fa;χSmG1〉 − C∗(χSmG1)
)
dx, (C.18)

and so, C∗(χSmG1) ∈ L1(O). Replace (Fa,G1,Ln+1,C) by (Fs,G2, η, C̄) in (C.18) to
obtain for m large enough,∫

O

(〈Fs;G2〉 − (C̄)∗(G2)
)
dη ≤ ε +

∫
O

(〈Fs;χSmG2〉 − (C̄)∗(χSmG2)
)
dη
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and so (C̄)∗(χSmG2) ∈ L1(η). As in the proof of Lemma C.4, use the fact that (C̄)∗ takes
the value 0 in D̄ otherwise it takes the value ∞ to conclude that∫

O
〈Fs;G2〉dx ≤ ε +

∫
O
〈Fs;χSmG2〉dx . (C.19)

Note that (C̄)∗(χSmG2) ∈ L1(η) is equivalent to (C̄)∗(χSmG2) = 0 η—a.e., which means
that χSmG2 ∈ D̄ η—a.e. By (C.18) and (C.19)

J (G1,G2) ≤ 2ε + J
(
χSmG1, χSmG2

)
. (C.20)

Since (χSmG1, χSmG2) ∈ B3, we obtain

J (G1,G2) ≤ 2ε + K3(F).

We use the fact that (G1,G2) ∈ B2 and ε > 0 are arbitrary to conclude thatK2(F) ≤ K3(F),

and so, K2(F) = K3(F).

Part 2. Further assume that 0 is in the interior of D. To show that K3(F) ≤ K4(F), it
suffices to show that for any arbitrary ε > 0, if (G1,G2) ∈ B3 then

J (G1,G2) ≤ ε + K4(F). (C.21)

Fix such a (G1,G2) and assume without loss of generality that C∗(G1) ∈ L1(O) and
(C̄)∗(G2) ∈ L1(η). Extend G1 by setting it to be null outside O . Let m0 be such that
Ln+1—a.e, G1 is supported by Sm0 and η—a.e, G2 is supported by Sm0 and

(η + Ln+1)
(
O\Sm0

) ≤ ε

16
(
(η + Ln+1)(O)

) . (C.22)

Consider a standard mollifier � ∈ C∞
c (Rn+1) which is a probability density supported by

the unit ball centered at the origin. Define

Gl = �l ∗ Gl; �l(z) = 1

ln+1 �
( z
l

)
.

By Jensen’s inequality
C∗(Gl) ≤ �l ∗ C∗(G1). (C.23)

Similarly, since G1 is supported by D̄ Ln+1—a.e. and the latter is a convex set, by Jensen’s
inequality, the range of Gl is contained in D̄. By the fact that both G1 and C∗(G1) are in
L1(O), standard arguments show that

lim
l→0+ ||Gl − G1||L1(O) = lim

l→0+ ||�l ∗ C∗(G1) − C∗(G1)||L1(O) = 0. (C.24)

Thus, for l small enough∫
O

(〈Fa;G1〉 − C∗(G)
)
dz ≤ ε

8
+
∫
O

(〈Fa;Gl〉 − �l ∗ C∗(G1)
)
dz.

This, together with (C.23) implies∫
O

(〈Fa;G1〉 − C∗(G1)
)
dz ≤ ε

8
+
∫
O

(〈Fa;Gl〉 − C∗(Gl)
)
dz. (C.25)

By Lusin’s theorem theorem there exists for each positive l, there exists a continuous
function Ḡl such that

η
{
Ḡl(z) 	= G2

}
< l. (C.26)
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Since G2 is bounded and has its support in O , we may assume without loss of generality that

|Ḡl | ≤ ||G2||L∞(η). (C.27)

Furthermore, we may assume without loss of generality that Ḡl is supported by S2m0 .Consider
the function A ∈ C(R) defined

A(t) :=
{

1 if t ≤ 1
1
t if t > 1.

The function Gl
0 := Ḡl A(�D̄ ◦ Ḡl) is continuous, supported by S2m0 and its range is

contained in D̄. We have {
Gl

0 	= G2

}
⊂
{
Ḡl 	= G2

}

and so, by (C.26)

η
{
Gl

0 	= G2

}
< l. (C.28)

By (C.27)
|Gl

0| ≤ ||G2||L∞(η). (C.29)

Since Fs ∈ L1(η) there exists e > 0 such that if S ⊂ O and η(S) ≤ e then
∫
O

|Fs |dη <
ε

16(||G2||L∞(η))+1)
.

Thus, if l ∈ (0, e), using (C.27) we have

∣∣∣∣
∫
O
〈Fs;G2 − Gl

0〉dη

∣∣∣∣ =
∣∣∣∣∣
∫

{G2 	=Gl
0}

〈Fs;G2 − Gl
0〉dη

∣∣∣∣∣ <
ε

8
.

If ē ∈ (0, 1) is closed enough to 1 we conclude that setting Gl := ēGl
0 then

∫
O
〈Fs;G2〉dη ≤

∫
O
〈Fs;Gl〉dη <

ε

8
. (C.30)

Observe that �D̄(Gl) = ē�D̄(Gl
0) ≤ ē < 1 and so, by Lemma C.2, Gl belongs to int(D).

We combine (C.25) and (C.30) to conclude that

J (G1,G2) ≤ ε

2
+ J (Gl ,G

l). (C.31)

Let E ⊂ O be a Borel set such that

Ln+1(E) = η(O\E) = 0.

By Lusin’s theorem, we may find a sequence {χ j } j ⊂ C(Ō, [0, 1]) that converges (Ln+1 +
η)—a.e. to χE . Set

g j := (1 − χ j )Gl + χ j G
l .

We have that g j ∈ Cc(O,H) is bounded and so, since the ranges of both Gl and Gl are
contained in D̄ we have

�D̄(g j ) ≤ (1 − χ j )�D̄(Gl) + χ j�D̄(Gl) ≤ ē. (C.32)
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By Lemma C.2, {�D̄ ≤ ē} is a compact set contained in int(D), while (C.32) ensures that
the range of g j is contained in {�D̄ ≤ ē}. We use the convexity of C∗ to conclude that

χ j

(
C∗(Gl) − C∗(Gl)

)
≤ C∗(Gl) − C∗(g j ) (C.33)

We have

J (g j , g j ) = J (Gl ,G
l)

+
∫
O
(1 − χ j )〈Fs;Gl − Gl〉dη +

∫
O

χ j 〈Fa;Gl − Gl〉dx

+
∫
O
(C∗(Gl) − C∗(g j ))dx .

and so, by (C.33)

J (g j , g j ) ≥ J (Gl ,G
l)

+
∫
O
(1 − χ j )〈Fs;Gl − Gl〉dη +

∫
O

χ j 〈Fa;Gl − Gl〉dx

+
∫
O

χ j

(
C∗(Gl) − C∗(Gl)

)
dx . (C.34)

Since C∗ is continuous in int(D) and Gl ∈ Cc(O,H) has its range contained in int(D), we
conclude that C∗(Gl) ∈ C(Ō). In fact, since we have assumed that C∗(0) = 0, C∗(Gl) ∈
Cc(O). What matters is the conclusion that C∗(Gl) ∈ L1(O) and so,

C∗(Gl) − C∗(Gl) ∈ L1(O), 〈Fs;Gl − Gl〉 ∈ L1(η), 〈Fa;Gl − Gl〉 ∈ L1(O).

We apply the dominated convergence theorem to conclude that since η(O\E) = 0 then

lim
j→∞

∫
O
(1 − χ j )〈Fs;Gl − Gl〉dη =

∫
O
(1 − χE )〈Fs;Gl − Gl〉dη = 0. (C.35)

Similarly, since Ln+1(E) = 0 then

lim
j→∞

∫
O

χ j 〈Fa;Gl − Gl〉dx =
∫
O

χE 〈Fa;Gl − Gl〉dx = 0. (C.36)

Finally, since Ln+1(E) = 0 then

lim
j→∞

∫
O

χ j

(
C∗(Gl) − C∗(Gl)

)
dx =

∫
O

χE

(
C∗(Gl) − C∗(Gl)

)
dx = 0. (C.37)

We combine (C.34–C.37) to conclude that for j large enough

J (g j , g j ) ≥ J (Gl ,G
l) − ε

2
. (C.38)

This, together with (C.31) and the fact that (g j , g j ) ∈ B4 yields that

J (G1,G2) ≤ ε + J (g j , g j ) ≤ ε + K4(F).

Since (G1,G2) is an arbitrary element of B3 and ε > 0 is arbitrary, we conclude that
K3(F) ≤ K4(F) and so, K3(F) = K4(F). ��
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Appendix D. Approximation of k-currents by smooth currents

Throughout this section, we assume that � ⊂ R
n is an open bounded convex set. We assume

without loss of generality that � contains the origin and denote by ��̄ the Minkowski function
of � (cf. (C.3)). Recall that (cf. Lemma C.2)

�̄ = {��̄ ≤ 1}, int(�) = {��̄ < 1}. (D.1)

For 0 < l < 1, we use the notation

O := (0, 1) × �, �l := {��̄ < 1 + l}, Il :=
(

− l

2
, 1 + l

2

)
Ol = Il × �l .

and

z := (s, x) ∈ O, w := (τ, y) ∈ Ol .

We define Tl , Sl : Rn+1 → R
n+1 by

Tl(τ, y) =
(

τ + l
2

1 + l
,

y

1 + l

)
, Sl(s, x) =

(
(1 + l)s − l

2
, (1 + l)x

)
.

Fix h ∈ BV r∗ (0, 1;�) (cf. Definition 4.8) and define hl ∈ BVr∗ (Il ;�l) by
∫
Ol

〈hl(τ, dy);φ(τ, y)〉dτ :=
∫
O
〈h(s, dx);φ (Sl(s, x))〉ds ∀ φ ∈ C(Ōl;�k). (D.2)

For instance if H ∈ C(Ō) and h(z) = H(z)e1 ∧ · · · ∧ ek then hl(w) = Hl(w)e1 ∧ · · · ∧ ek

where

Hl(w) = det ∇wTl(w)H(Tlw).

Reminder D.1 By Lemma 4.6 (iii), t → h(t, ·) ∈ M(�,�k) is of bounded variations
and so, it is continuous except may be at countably many t. Furthermore, by (ii) of the
same Remark, we may tacitly choose an appropriate representative such that t → h(t, ·) ∈
M(�,�k) is right continuous at any t ∈ [0, 1). (iii) of the Remark will ensure left continuity
at 1 and so, h(t, ·) is well-defined for every t ∈ [0, 1]. Since |∂sh| is a finite measure, ||h(t, ·)||
is bounded by a constant independent of t.

Remark D.2 For any φ ∈ C(Ōl ;�k), the following hold.

(i) ∫
Ol

〈∂τhl(dw);φ(w)〉 = 1

1 + l

∫
O

〈∂sh(dz);φ(Sl z)〉 .

(ii) ∫
Ol

〈δhl(w);φ(w)〉 dw = 1

1 + l

∫
�

〈δh(z);φ(Sl z)〉 dz.

(iii) For any ψ ∈ C(�̄l ;�k)

∫
�l

〈hl(τ, dy);ψ(y)〉 = 1

1 + l

∫
�

〈
h

(
τ + l

2

1 + l
, dx

)
;ψ ((1 + l)x)

〉
, ∀ τ ∈ Il .
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(iv) Since |∂sh| ((0, 1) × �) < ∞, the set of t ∈ (0, 1) such that |∂sh| ({t} × �) > 0 is at
most countable. This implies, the set T of l ∈ (0, 1) such that

|∂sh|
({

1 + l
2

1 + l

}
× �

)
> 0

is at most countable.

Proof Thanks to (D.2), the proof of (i) and (ii) is direct. To prove (iii), we need to show that
for any β ∈ Cc(Il) and ψ ∈ Cc(�̄l ;�k) we have
∫
Ol

〈hl(τ, dy);ψ(y)〉 β(τ)dτ = 1

1 + l

∫
Il

β(τ)dτ

∫
�

〈
h

(
τ + l

2

1 + l
, dx

)
;ψ ((1 + l)x)

〉
.

We first use the change of variables s(1 + l) − l/2 = τ in the second integral and then use
(D.2) with φ(τ, y) = β(t)ψ(y) to conclude. ��
Lemma D.3 Suppose that C is a convex function on H := �k,×�k−1 such that (C.1) and
(C.2) hold. Let Fl := (∂τhl , δhl) and F = (∂sh, δh) let K1 and K4 be as in Section C. We
have (1 + l)K1(Fl) ≤ K1(F).

Proof ReplacingC byC(0) if necessary, we assume without loss of generality thatC(0) = 0,

which yields C∗ ≥ 0. By Proposition C.5, K1(Fl) = K4(Fl). Hence, for any ε > 0, there
exist a compact set S contained in the interior of D and

g ∈ Cc

(
O;�k

)
, g∗ ∈ Cc

(
O;�k−1

)

such that the range of (g, g∗)(Ol) is contained in S and

K1(Fl) ≤ ε +
∫
Ol

〈∂τhl(dw); g(w)〉 + 〈δhl(w); g∗(w)〉dw −
∫
Ol

C∗(g(w), g∗(w))dw.

We use the change of variables provided by Remark D.2 to infer

K1(Fl) ≤ ε + 1

1 + l

∫
O
〈∂sh(dz); g(Sl z)〉 + 〈δh̄(z); g(Sl z)〉dz

−
∫
O
C∗(g(Sl z), g∗(Sl z))(1 + l)n+1dz.

Using that C∗ ≥ 0 we conclude that, we obtain

K1(Fl) ≤ ε + 1

1 + l

(∫
O
〈∂sh(dz); g(Sl z)〉 + 〈δh̄(z); g(Sl z)〉dz

−
∫
O
C∗(g(Sl z), g∗(Sl z))dz

)
.

Thus,

K1(Fl) ≤ ε + 1

1 + l
K4(F),

which, together with Proposition C.5, proves the Lemma. ��
Lemma D.4 Suppose that C is a convex function on H := �k,×�k−1 such that (C.1) and
(C.2) hold. Suppose C achieves its minimum at 0. Assume f0, f1 ∈ C0(�̄) in the sense that
their restriction to the boundary is the null function. Then,
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(i)

lim
l→0+

∫
�

〈hl(1, x); f1(x)〉dx =
∫

�

〈h(1, x); f1(x)〉dx

(ii)

lim
l→0+

∫
�

〈hl(0, x); f0(x)〉dx =
∫

�

〈h(0, x); f0(x)〉dx

Proof By Lemma 4.6 (ii) and Remark D.2 (iii)

∫
�

〈hl(1, x); f1(x)〉dx= 1

1+l

∫
�

χ� ((1+l)x)

〈
f1((1 + l)x); h

(
1 + l

2

1 + l
, dx

)〉
= al + bl

1 + l
(D.3)

where

al :=
∫

�

χ� ((1 + l)x)

〈
f1((1 + l)x); h

(
1 + l

2

1 + l
, dx

)
− h(1, dx)

〉

and

bl :=
∫

�

χ� ((1 + l)x) 〈 f1((1 + l)x); h(1, dx)〉

Since |h|(1, ·) is a finite measure, he Lebesgue dominated convergence theorem ensures that

lim
l→0+ bl =

∫
�

〈 f1(x); h(1, dx)〉 . (D.4)

By Lemma 4.6 (ii)

|al | ≤ || f1||∞|∂sh|
((

1 + l
2

1 + l
, 1

)
× �

)
.

Hence,

lim sup
l→0+

|al | ≤ || f1||∞|b| (∅ × �) = 0.

This with (D.3) and (D.4) proves (i). The proof of (ii) is obtained in a similar way. ��
Let �1 ∈ C∞

c (R) and �n ∈ C∞
c (Rn) be nonnegative symmetric probability density

functions. Suppose �n is positive on the open ball of radius 1 and null outside the closed ball
of radius 1 and �1 satisfies the analogous condition. We set

�ε
1(s) = 1

ε
�1

( s
ε

)
, �ε

n(x) = 1

εn
�n

( x
ε

)
, �ε(s, x) := �ε

1(s)�
ε
n(x).

For

ψ =
∑

1≤i1<···<ik≤n

ψi1···ik ei1 ∧ · · · ∧ eik ∈ C(�̄;�k)

we define

ψε(y) =
∑

1≤i1<···<ik≤n

ei1 ∧ · · · ∧ eik
∫

�

ψi1···ik (x)�ε
n(x − y)dx .
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Similarly, for

φ =
∑

1≤i1<···<ik≤n

ψi1···ik ei1 ∧ · · · ∧ eik ∈ C(Ō;�k)

we define

φε(w) =
∑

1≤i1<···<ik≤n

ei1 ∧ · · · ∧ eik
∫
O

ψi1···ik (z)�ε
n(z − w)dz.

In the remaining of this section, we fix f0, f1 ∈ C(�̄;�k).

f ε
0 (y) :=

∫
�

�ε
n(x − y) f0(x)dx, f ε

1 (y) :=
∫

�

�ε
n(x − y) f1(x)dx .

Since hl ∈ BVr∗ (Il ;�l) and for ε ∈ (0, l/2) we define can hε
l ∈ BV r∗ (0, 1;�) by∫

O
〈hε

l (s, dx);φ(s, x)〉ds :=
∫
Oε

〈hl(τ, dy);φε(w)〉dτ ∀ φ ∈ Cc(O;�k). (D.5)

For instance, if

hl(s, ·) =
∑

1≤i1<···<ik≤n

hi1···ik (s, dx)ei1 ∧ · · · ∧ eik

then

hε
l (z) =

∑
1≤i1<···<ik≤n

ei1 ∧ · · · ∧ eik
∫
Oε

�ε(z − w)hi1···ik (s, dy)ds ∀ z ∈ Oε .

Thus, hε
l ∈ C∞(Ō;�k).

Remark D.5 Let φ ∈ C(Ō;�k) and ψ ∈ C(�̄;�k). Then the following hold.

(i) ∫
O
〈∂shε

l (dz);φ(z)〉 =
∫
Oε

〈∂shl(dw); �ε ∗ φ(w)〉.

(ii) ∫
O
〈δhε

l (z);φ(z)〉dz =
∫
Oε

〈δhl(w); �ε ∗ φ(w)〉dw.

Proof The proof of the Remark is straightforward to obtain. ��
Lemma D.6 Suppose that C is a convex function on H := �k,×�k−1 such that (C.1) and
(C.2) hold. Suppose C achieves its minimum at 0. Let Fε

l := (∂shε
l , δh

ε
l ) and Fl = (∂shl , δhl)

let K1 and K4 be as in Section C. We have K1(Fε
l ) ≤ K1(Fl).

Proof Replacing C by C(0) if necessary, we assume without loss of generality that 0 =
C(0) ≤ C, which yields C∗ ≥ 0 = C∗(0). By Proposition C.5 K1(Fε

l ) = K4(Fε
l ). Hence,

for any ε̄ > 0, there exist a compact set S contained in the interior of D and

g ∈ Cc(O;�k), g∗ ∈ Cc(O;�k−1)

such that the range of (g, g∗)(O) is contained in S and

K1(F
ε
l ) ≤ ε̄ +

∫
O

(〈∂shε
l (z); g(z)〉 + 〈δhε

l (z); g∗(z)〉
)
dz −

∫
O
C∗(g(z), g∗(z))dw.
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We use the change of variables provided by Remark D.5 to infer

K1(F
ε
l ) ≤ ε̄+

∫
Oε

(〈∂shl(dz); �ε ∗ g(z)〉 + 〈δhl(z); �ε ∗ g(z)〉dz)−
∫
O
C∗(g(z), g∗(z))dz.

(D.6)
By Jensen’s inequality∫

Rn+1
C∗ (�ε ∗ g(z), �ε ∗ g∗(z)

)
dz ≤

∫
Rn+1

dz
∫
Rn+1

�ε(z − w)C∗ (g(w), g∗(w)) dw

=
∫
Rn+1

C∗ (g(w), g∗(w)) dw..

Since C∗ ≥ 0 = C∗(0) and (g, g∗) is supported by O , we obtain∫
Oε

C∗ (�ε ∗ g(z), �ε ∗ g∗(z)
)
dz ≤

∫
O
C∗ (g(w), g∗(w)) dw,

which together with (D.6) yields

K1(F
ε
l ) ≤ ε̄ +

∫
Oε

(〈∂shl(dz); �ε ∗ g(z)〉 + 〈δh(z); �ε ∗ g(z)〉dz)

−
∫
Oε

C∗ (�ε ∗ g(z), �ε ∗ g∗(z)
)
dz.

Thus, K1(Fε
l ) ≤ ε̄ + K4(Fl). Since ε̄ > 0 is arbitrary, we use Proposition C.5, to conclude

the proof. ��
Lemma D.7 Suppose that C is a convex function on H := �k,×�k−1 such that (C.1) and
(C.2) hold. Suppose C achieves its minimum at 0. Assume f0, f1 ∈ C0(�̄) in the sense that
their restriction to the boundary is the null function. Then, for almost every l ∈ (0, 1)

(i)

lim
ε→0+

∫
�

〈hε
l (1, x); f1(x)〉dx =

∫
�

〈hl(1, x); f1(x)〉dx

(ii)

lim
ε→0+

∫
�

〈hε
l (0, x); f0(x)〉dx =

∫
�

〈hl(0, x); f0(x)〉dx

Proof We shall only show (i) as the proof of (ii) follows the same lines of arguments. We
have∫

�

〈hε
l (1, x); f1(x)〉dx =

∫
�

dx

〈
f1(x);

∫
Iε
aε
l (τ, x)dτ

〉
dx +

∫
�ε

〈hl(1, dy); f ε
1 (y)〉,

(D.7)
where,

aε
l (τ, x) :=

∫
�ε

�ε(1 − τ, x − y) (hl(τ, dy) − hl(1, dy)) .

Part 1. Since f1 vanishes on ∂�, we can extend it by setting its value to be 0 outside �̄,
and obtain a function Cc(R

n). Consequently, ( f ε
1 )ε converges uniformly to f1 on R

n . Since
(χ�ε )ε converges pointwise to χ�̄, ( f ε

1 χ�ε )ε converges pointwise to f1χ�̄ = f1χ�. Thus,

lim
ε→0+

∫
�ε

〈hl(1, dy); f ε
1 (y)〉 =

∫
�

〈hl(1, dy); f1(y)〉. (D.8)
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Part 2. We use Remark D.2 (iii) to obtain

aε
l (τ, x) =

⎧⎪⎪⎨
⎪⎪⎩

−1
1+l

∫(
τ+ l

2
1+l ,

1+ l
2

1+l

]
×�

χ�ε ((1 + l)y) �ε (1 − τ, x − (1 + l)y)) ∂sh(ds, dy) if τ ≤ 1

1
1+l

∫(
1+ l

2
1+l ,

τ+ l
2

1+l

]
×�

χ�ε ((1 + l)y) �ε (1 − τ, x − (1 + l)y)) ∂sh(ds, dy) if τ > 1
w ∈ H.

Since

�ε (1 − τ, x − (1 + l)y)) = �ε
1(1 − τ)�ε

n (x − (1 + l)y))

vanishes outside [1 − ε, 1 + ε], we conclude that∣∣∣∣
∫

�

〈
f1(x);

∫
Iε
aε
l (τ, x)dτ

〉
dx

∣∣∣∣ ≤ || f1||∞
1 + l

∫
Iε×�

eε
l (τ, x)dτdx (D.9)

with

eε
l (τ, x) = �ε

1(1 − τ)

∫
(

1−ε+ l
2

1+l ,
1+ε+ l

2
1+l

)
×�

�ε
n (x − (1 + l)y)) |∂sh|(ds, dy)

We have∫
Iε×�

eε
l (τ, x)dτdx =

∫
Iε

�ε
1(1 − τ)dτ

∫
(

1−ε+ l
2

1+l ,
1+ε+ l

2
1+l

)
×�

|∂sh|(ds, dy)

×
∫

�

�ε
n (x − (1 + l)z)) dx

≤
∫
Iε

�ε
1(1 − τ)|∂sh|

((
1 − ε + l

2

1 + l
,

1 + ε + l
2

1 + l

)
× �

)
dτ

= |∂sh|
((

1 − ε + l
2

1 + l
,

1 + ε + l
2

1 + l

)
× �

)
(D.10)

We combine (D.9) and (D.10) to conclude that for any l ∈ (0, 1)\T (cf. Remark D.2 (iv) )

lim
ε→0+

∣∣∣∣
∫

�

〈
f1(x);

∫
Iε
aε
l (τ, x)dτ

〉
dx

∣∣∣∣ = 0. (D.11)

We combine (D.8) and (D.11) to conclude the proof of (i). ��

Appendix E. Closed differential 2-forms and electromagnetism

The search of optimal k-forms can be put in the context of electro-magnetism. Indeed,
consider a contractible open bounded convex set O ⊂ R

3, denote by n the unit outward
vector to ∂O and suppose

� := (0, T ) × O.

Define S to be the set of pairs of magnetic/electric vector fields

(B, E) : � → R
6

which are integrable and satisfy (in the weak sense) Gauss’s law for magnetism

∇x · B = 0, (E.1)
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and the Maxwell–Faraday induction equations

∂t B + ∇x × E = �0. (E.2)

The well-known correspondence between S and the set of closed differential 2-forms on � is
given by the isometry M which associates to (B, E) the 2-differential form M(B, E) defined
by

M(B, E) := − E1dt ∧ dx1 − E2dt ∧ dx2 − E3dt ∧ dx3 + B1dx2 ∧ dx3 − B2dx1 ∧ dx3

+ B3dx1 ∧ dx2.

One identifies the differential form M(B, E) with the skew-symmetric matrix

M(B, E) =

⎡
⎢⎢⎣

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎤
⎥⎥⎦ . (E.3)

If we set f = M(B, E), direct computations reveal that

d f = (∇ · B) dx1 ∧ dx2 ∧ dx3 + (∂t B3 + (∇ × E)3) dt ∧ dx1 ∧ dx2

+ (∂t B2 + (∇ × E)2) dt ∧ dx1 ∧ dx3 + (∂t B1 + (∇ × E)1) dt ∧ dx2 ∧ dx3 (E.4)

and so, f is closed if and only if both (E.1) and (E.2) hold. Furthermore,

detM(B, E) = (E · B)2 (E.5)

and so, f is symplectic if and only if (E · B)2 > 0.

Let w = (w0, w1, w2, w3) = (w0,w) : (0, T ) × O → R
4 be a vector field. Let

A ∈ �1
(
R

4
)

be written as

A = A0dt + Adx = A0dt + A1dx1 + A2dx2 + A3dx3.

When we write A = w� f we mean that

A =
⎡
⎣A0

A

⎤
⎦ =

⎡
⎣E · w

−F

⎤
⎦ (E.6)

where

F = w0E + w × B.

Therefore in terms of (B, E, w) the system of equations ∂s f + d A = 0 is equivalent to

∂s B = ∇x × A; ∂s E = ∇xA0 − ∂tA (E.7)

This means

∂s B = −∇x × (w0E + w × B); ∂s E = ∇x(E · w) + ∂t (w
0E + w × B) (E.8)

Using the identity

∇x · (B ⊗ w − w ⊗ B) = ∇x × B × w

we equivalently write

∂s B+∇x×(w0E) = ∇x ·(B⊗w−w⊗B); ∂s E = ∇x(E ·w)+∂t (w
0E+w×B) (E.9)
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Therefore, considering action of the form
∫ 1

0
ds
∫

�

c( f, A)dxdt

under the conditions that

∂s f + d A = 0, d f = 0

amounts to considering actions of the form
∫ 1

0
ds
∫

�

c(B, E, E · v, w0E + w × B)dxdt

under the conditions that (E.1), (E.2) and (E.9) hold. The boundary condition A ∧ ν = 0 is
equivalent to

E ·w = (w0E+w×B)×n = 0 on (0, T )×∂O and w0E+w×B = 0 on {0, T }×O.

(E.10)
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