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Abstract We show that viscosity solutions to the normalized p(x)-Laplace equation coincide
with distributional weak solutions to the strong p(x)-Laplace equation when p is Lipschitz
and inf p > 1. This yields C1,α regularity for the viscosity solutions of the normalized
p(x)-Laplace equation. As an additional application, we prove a Radó-type removability
theorem.
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1 Introduction

In this paper, we study viscosity solutions to the normalized p(x)-Laplace equation which
is defined by

− �N
p(x)u := −�u − p(x) − 2

|Du|2 �∞u = 0, (1.1)

where

�∞u := 〈
D2uDu, Du

〉
.

There has been recent interest in normalized equations, see e.g. [5,9,15]. We are partly
motivated by the connection to stochastic tug-of-war games [23,24] as the case of space
dependent probabilities leads to (1.1) [3].

The objective of this work is to show that viscosity solutions to (1.1) coincide with solutions
in the distributional weak sense, when the equation is rewritten in an appropriate divergence
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formulation. One approach to this kind of equivalence results [10,13] is based on the unique-
ness of solutions. However, it seems difficult to use uniqueness in our case because the
uniqueness of solutions is an open problem for the Eq. (1.1) as pointed out in [14]. The
equation (1.1) is in non-divergence form. In order to find the appropriate weak formulation,
we note that for u ∈ C2(�) with non-vanishing gradient it holds that

− |Du|p(x)−2 �N
p(x)u =−div

(
|Du|p(x)−2 Du

)
+ |Du|p(x)−2 log (|Du|) Du · Dp.

Thus the weak formulation of (1.1) should be the strong p(x)-Laplace equation

− �S
p(x)u := −div(|Du|p(x)−2 Du) + |Du|p(x)−2 log |Du| Du · Dp = 0. (1.2)

Our main result, Theorem 5.9, is that viscosity solutions to (1.1) coincide with weak
solutions to (1.2) when the function p is Lipschitz with inf p > 1. With these assumptions
weak solutions to (1.2) in a domain are locally C1,α continuous [25]. Thus our equivalence
result yields local C1,α regularity also for viscosity solutions to (1.1). As an application, we
prove a Radó-type removability theorem for the strong p(x)-Laplacian. The theorem follows
from the equivalence result since in the definition of a viscosity solution we may ignore the
test functions whose gradient vanishes. The equivalence result also implies that the equation
(1.2) is homogeneous: if u is a solution, so is λu. This is not completely obvious and was
established in [1].

That viscosity solutions to (1.1) are weak solutions to (1.2) is proven by applying the
method of [11]. The idea is to approximate a viscosity solution through a sequence of inf-
convolutions, show that the inf-convolutions are essentially weak supersolutions, and then
pass to the limit.

First, in Lemma 5.3 we show that the inf-convolution uε of a viscosity supersolution u to
(1.1) is still, in essence, a viscosity supersolution up to some error. This fact is a key part of
our proof. If there was no x-dependence in (1.1), it would be straightforward to see that the
inf-convolution of a viscosity supersolution is still a viscosity supersolution. This is because
a test function that touches the inf-convolution from below also touches the original function
from below at a nearby point once we add some constant to it. From this it would follow
that the inf-convolution is a supersolution to the original equation. However, the Eq. (1.1)
has x-dependence caused by p(x). Thus the inf-convolution no longer satisfies the original
equation.

In Lemma 5.5 we use the standard mollification on uε and p to deduce from Lemma 5.3
that uε is “almost” a weak solution to −�S

p(x)uε ≥ 0. Applying Caccioppoli type estimates
and vector inequalities we are then able to deduce that the sequence of inf-convolutions
converges to the viscosity supersolution in W 1,p(·)

loc (�) as ε → 0. This allows us to pass to
the limit and conclude that the function u satisfies −�S

p(x)u ≥ 0 in the weak sense.
Due to the variable exponent, the operator �S

p(x) can be singular in some subsets and
degenerate in others. Therefore we apply different arguments in the cases p(x) < 2 and
p(x) ≥ 2, and finally need to be able to combine them.

The equivalence of weak and viscosity solutions to the usual p-Laplace equation was first
proven by Juutinen, Lindqvist and Manfredi [13]. Later Julin and Juutinen [11] presented a
more direct way to show that viscosity solutions to −�pu = f are also weak solutions. This
proof was adapted in [4] to show that viscosity solutions to −�N

p u = f coincide with weak
solutions to −�pu = |Du|p−2 f when p ≥ 2. Similar arguments were also used in [20] to
study the equivalence of solutions to −�pu = f (x, u, Du). The variable exponent case was
explored in [14] where the equivalence of weak and viscosity solutions was proven for the
p(x)-Laplace equation using techniques of [13].
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As mentioned, the Eq. (1.1) appears in stochastic tug-of-war games. Let us illustrate this in
the case where p > 2 is a constant by considering the following two-player, zero-sum game
from [21]. A step size ε > 0 is fixed and a token is placed at x0 in a domain �. The players
toss a biased coin that is heads with the probability α = p−2

p+N and tails with the probability
β = 1 − α. If the outcome is heads, the following tug-of-war step is played: a fair coin is
tossed and the winning player is allowed to move the token to any position x1 ∈ Bε(x0). If
the outcome is tails, the token moves to a random position in x1 ∈ Bε(x0). Once the token
exits the domain, the game ends and player I pays player II according to the final location
of the token. When the players optimize over their strategies, we obtain a value of the game.
Then, as the step-size approaches zero, the value function converges uniformly to a viscosity
solution of −�N

p u = 0 in �. This result can be extended to the general case 1 < p(x) < ∞,
see [3,23].

The Eq. (1.2) was introduced by Adamowicz and Hästö [1] in connection with mappings
of finite distortion. Unlike the standard p(x)-Laplace equation, the Eq. (1.2) is homogeneous
and its solutions satisfy a classical Harnack inequality [2]. The Eq. (1.2) has been further
studied for example in [22,25,26].

The paper is organized as follows: in Sect. 2 we recall the variable exponent Lebesgue and
Sobolev spaces. Section 3 contains the rigorous definitions of solutions to equations (1.1)
and (1.2). In Sect. 4 we show that weak solutions of (1.2) are viscosity solutions to (1.1)
and the converse statement is proven in Sect. 5. Finally, in Sect. 6 we formulate and prove a
Radó-type removability theorem for weak solutions of (1.2).

2 Variable exponent lebesgue and sobolev spaces

We briefly recall basic facts about these spaces. For general reference see e.g. [7]. Let � ⊂ R
N

be an open and bounded set and let p : � → (1,∞) be a measurable function. We denote

pmax := ess sup
x∈�

p(x) and pmin := ess inf p(x).
x∈�

The variable exponent Lebesgue space L p(·)(�) is defined as the set of measurable functions
u : � → R for which the p(·)-modular

�p(·)(u) :=
∫

�

|u|p(x) dx

is finite. It is a Banach space equipped with the Luxemburg norm

‖u‖L p(·)(�) := inf

{
λ > 0 :

∫

�

∣∣∣
u

λ

∣∣∣
p(x)

dx ≤ 1

}
.

Given that pmax < ∞ or �p(·)(u) > 0, the norm and the modular satisfy the inequality (see
[7, p75])

min

{
�p(·)(u)

1
pmin , �p(·)(u)

1
pmax

}
≤ ‖u‖L p(·)(�)

≤ max

{
�p(·)(u)

1
pmin , �p(·)(u)

1
pmax

}
. (2.1)
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A version of Hölder’s inequality holds [7, p81]: if u ∈ L p(·)(�) and v ∈ L p′(·)(�), where
1

p(x) + 1
p′(x) = 1 for a.e. x ∈ �, then

∫

�

|u| |v| dx ≤ 2 ‖u‖L p(·)(�) ‖v‖L p′(·)(�)
.

As a consequence of the Hölder’s inequality we have that

‖u‖Lq(·)(�) ≤ 2 (1 + |�|) ‖u‖L p(·)(�)

for all u ∈ L p(·)(�) if q(x) ≤ p(x) for a.e. x ∈ �.
If 1 < pmin ≤ pmax < ∞, then L p(·)(�) is reflexive and the dual of L p(·)(�) is L p′(·)(�).
The variable exponent Sobolev space W 1,p(·)(�) is the set of functions in u ∈ L p(·)(�)

for which the weak gradient Du belongs in L p(·)(�). It is a Banach space equipped with the
norm

‖u‖W 1,p(·)(�) := ‖u‖L p(·)(�) + ‖Du‖L p(·)(�) .

The space W 1,p
0 (�) is the closure of compactly supported Sobolev functions in the space

W 1,p(·)(�). A function belongs to the the local Lebesgue space L p(·)
loc (�) if it belongs to

L p(·)(�′) for all �′ � �. The space W 1,p(·)
loc (�) is defined analogically.

3 The strong and normalized p(x)-Laplace equations

In this section, we define weak solutions to the strong p(x)-Laplace equation and viscosity
solutions to the normalized p(x)-Laplace equation.

From now on we assume that p is Lipschitz continuous and pmin > 1.

Definition 3.1 A function u ∈ W 1,p(·)
loc (�) is a weak supersolution to −�S

p(x)u ≥ 0 in � if
∫

�

|Du|p(x)−2 Du · Dϕ + |Du|p(x)−2 log (|Du|) Du · Dp ϕ dx ≥ 0

for all non-negative ϕ ∈ W 1,p(·)(�) with compact support. We say thatu is aweak subsolution
to −�S

p(x)u ≤ 0 if −u is a supersolution and that u is a weak solution to −�S
p(x)u = 0 if u

is both supersolution and subsolution.

Lemma 3.2 It is enough to consider C∞
0 (�) test functions in the previous definition.

Proof Assume that ϕ ∈ W 1,p(·)(�) has a compact support in an open set �′ � �. Since p is
log-Hölder continuous and bounded as a Lipschitz function, there is a sequence of functions
ϕ j ∈ C∞

0 (�′) such that ϕ j → ϕ in W 1,p(·)(�′) (see [7, p347]). We set ψ j := ϕ − ϕ j . Then
it is enough to show that

∫

�′
|Du|p(x)−2 Du · Dψ j dx +

∫

�′
|Du|p(x)−2 log (|Du|) Du · Dpψ j dx → 0

as j → ∞. The first integral convergences to zero by Hölder’s inequality so we focus on the
second integral. We may assume that N > 1. We set q(x) := p(x)

p(x)−1+ 1
N

. Using the inequality
as log a ≤ Nas+ 1

N + 1
s for a, s > 0 we get

∫

�′
|Du|p(x)−1 |log |Du|| |Dp| ∣∣ψ j

∣∣ dx
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≤ ‖Dp‖L∞(�′)

(∫

�′

∣∣ψ j
∣∣

p(x) − 1
dx + N

∫

�′
|Du|p(x)−1+ 1

N
∣∣ψ j

∣∣ dx

)

≤ C(p,�)

(∥∥ψ j
∥∥
L p(·)(�′) +

∥∥∥|Du|p(x)−1+ 1
N

∥∥∥
Lq(·)(�′)

∥∥ψ j
∥∥
Lq′(·)(�′)

)
.

We take r ∈ (1, N ) such that q ′+ ≤ r∗ := Nr
N−r . Then we have q ′(x) = Np(x)

N−1 ≤
min(p∗(x), r∗), where p∗(x) := Np(x)

N−p(x) . Therefore
∥∥ψ j

∥∥
Lq′(·)(�′) ≤ 2 (1 + |�|) ∥∥ψ j

∥∥
Lmin(p∗(·),r∗)(�′) .

Since ψ j ∈ W 1,min(p(·),r)
0 (�′), we have by a variable exponent version of the Sobolev inequal-

ity (see e.g. [7, p265])
∥∥ψ j

∥∥
Lmin(p∗(·),r∗)(�′) ≤ C

∥∥Dψ j
∥∥
Lmin(p(·),r)(�′) ≤ 2C(1 + |�|) ∥∥Dψ j

∥∥
L p(·)(�′) .

These estimates imply the claim since
∥∥ψ j

∥∥
W 1,p(�′) → 0 as j → ∞. ��

In order to define viscosity solutions to −�N
p(x)u = 0, we set

F(x, η, X) := −
(

trX + p(x) − 2

|η|2 〈Xη, η〉
)

for all (x, η, X) ∈ � × (
R

N \ {0}) × SN where SN is the set of symmetric N × N matrices.
We also recall the concept of semi-jets. The subjet of a function u : � → R at x is defined
by setting (η, X) ∈ J 2,−u(x) if

u(y) ≥ u(x) + η · (y − x) + 1

2
〈X (y − x), (y − x)〉 + o(|y − x |2) as y → x . (3.1)

The closure of a subjet is defined by setting (η, X) ∈ J
2,−

u(x) if there is a sequence
(ηi , Xi ) ∈ J 2,−u(xi ) such that (xi , ηi , Xi ) → (x, η, X). The superjet J 2,+u(x) and its
closure J

2,+
u(x) are defined in the same manner except that the inequality (3.1) is reversed.

Definition 3.3 A lower semicontinuous function u : � → R is a viscosity supersolution to
−�N

p(x)u ≥ 0 in � if, whenever (η, X) ∈ J 2,−u(x) with x ∈ � and η �= 0, then

F(x, η, X) ≥ 0.

A function u is a viscosity subsolution to −�N
p(x)u ≤ 0 if −u is a viscosity supersolution,

and a viscosity solution to −�N
p(x)u = 0 if it is both viscosity super- and subsolution.

Remark Observe that in the previous definition we require nothing in the case (0, X) ∈
J 2,−u(x).

Viscosity solutions may be equivalently defined using the jet-closures or test functions. The
next proposition follows easily from the proof of Proposition 2.6 in [18].

Proposition 3.4 Let u : � → R be lower semicontinuous. Then the following conditions
are equivalent.

(i) The function u is a viscosity supersolution to −�N
p(x)u ≥ 0 in �.

(ii) Whenever (η, X) ∈ J
2,−

u(x) with x ∈ �, η �= 0, we have F(x, η, X) ≥ 0.
(iii) Whenever ϕ ∈ C2(�) is such that ϕ(x) = u(x), Dϕ(x) �= 0 and ϕ(y) < u(y) for all

y �= x, it holds F(x, Dϕ(x), D2ϕ(x)) ≥ 0.

When ϕ is as in the third condition above, we say that ϕ touches u from below at x .
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4 Weak solutions are viscosity solutions

We show that if u is a weak solution to −�S
p(x)u = 0, then it is a viscosity solution to

−�N
p(x)u = 0.

Juutinen, Lukkari and Parviainen [14] showed that weak solutions to the standard p(x)-
Laplace equation are also viscosity solutions. This was accomplished with the help of the
comparison principle. For if u is a weak supersolution to −�p(x)u ≥ 0 that is not a viscosity
supersolution, then there is a test function ϕ ∈ C2 touching u from below at x so that
−�p(x)ϕ < 0 in some ball B(x). Lifting ϕ slightly produces a new function ϕ̃ still satisfying
−�p(x)ϕ̃ < 0 in B(x) and ϕ̃ ≤ u in ∂B(x). Comparison principle now implies that ϕ̃ ≤ u
in B(x) which is a contradiction since ϕ̃(x) > ϕ(x) = u(x).

Our difficulty is that, to the best of our knowledge, the comparison principle is an open
problem for the strong p(x)-Laplacian. Our strategy is therefore to consider a ball so small
that the gradient of the test function does not vanish. Then the comparison principle holds
and we arrive at a contradiction.

Theorem 4.1 If u ∈ W 1,p(·)
loc (�) is a weak solution to −�S

p(x)u = 0, then it is a viscosity
solution to −�N

p(x)u = 0 in �.

Proof Zhang and Zhou [25] showed that weak solutions of −�S
p(x)u = 0 are in C1(�).

Therefore it suffices to show that if u ∈ C1(�) is a weak supersolution to −�S
p(x)u ≥ 0,

then it is also a viscosity supersolution to −�N
p(x)u ≥ 0. Assume on the contrary that there

is ϕ ∈ C2(�) touching u from below at x0 ∈ �, Dϕ(x0) �= 0 and

0 > −h > F(x0, Dϕ(x0), D
2ϕ(x0)).

Then by continuity there is r > 0 such that in Br (x0) it holds

−h |Dϕ|p(x)−2 ≥ − |Dϕ|p(x)−2
(

�ϕ + p(x) − 2

|Dϕ|2 �∞ϕ

)
. (4.1)

Since Du(x0) = Dϕ(x0) �= 0, we may also assume that there is m > 0 such that

inf
x∈Br (x0)

|Dϕ|p(x)−2 ≥ m (4.2)

and

ess sup
x∈Br (x0)

|Dp|
∣∣∣|Dϕ|p(x)−2 log (|Dϕ|) Dϕ − |Du|p(x)−2 log (|Du|) Du

∣∣∣ ≤ hm

2
. (4.3)

Let l := minx∈∂Br (x0) (u − ϕ) > 0 and set ψ(x) := max (ϕ(x) + l − u(x), 0) . Then ψ ∈
W 1,2

0 (Br (x0)) so there are ψ j ∈ C∞
0 (Br (x0)) such that ψ j → ψ in W 1,2(Br (x0)). Let p j

be the standard mollification of p. Multiplying (4.1) by ψ and integrating over Br (x0) yields

− h
∫

Br (x0)

|Dϕ|p(x)−2 ψ dx

≥
∫

Br (x0)

− |Dϕ|p(x)−2
(

�ϕ + p(x) − 2

|Dϕ|2 �∞ϕ

)
ψ dx

= lim
j→∞

∫

Br (x0)

− |Dϕ|p j (x)−2
(

�ϕ + p j (x) − 2

|Dϕ|2 �∞ϕ

)
ψ j dx, (4.4)
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where the last equality holds because ψ j → ψ in W 1,2(Br (x0)) and p j → p uniformly in
Br (x0). Calculating the divergence of |Dϕ|p j (x)−2 Dϕ and integrating by parts we get

∫

Br (x0)

− |Dϕ|p j (x)−2
(

�ϕ + p j (x) − 2

|Dϕ|2 �∞ϕ

)
ψ j dx

=
∫

Br (x0)

−div
(
|Dϕ|p j (x)−2 Dϕ

)
ψ j + |Dϕ|p j (x)−2 log (|Dϕ|) Dϕ · Dp j ψ j dx

=
∫

Br (x0)

|Dϕ|p j (x)−2 Dϕ · (
Dψ j + log (|Dϕ|) Dp j ψ j

)
dx . (4.5)

By the convergence of ψ j and p j , it follows from (4.4) and (4.5) that

−h
∫

Br (x0)

|Dϕ|p(x)−2 ψ dx ≥
∫

Br (x0)

|Dϕ|p(x)−2 Dϕ · (Dψ + log (|Dϕ|) Dpψ) dx .

(4.6)

Since u is a weak supersolution to �S
p(x)u = 0 and ψ ∈ W 1,p(·)(�) has a compact support

in �, we have
∫

Br (x0)

|Du|p(x)−2 Du · (Dψ + log |Du| Dpψ) dx ≥ 0. (4.7)

Denoting A := {x ∈ Br (x0) : ψ(x) > 0} and combining (4.6) and (4.7) we arrive at
∫

A

(
|Dϕ|p(x)−2 Dϕ − |Du|p(x)−2 Du

)
· (Dϕ − Du) dx

≤
∫

A

∣∣∣|Du|p(x)−2 log (|Du|) Du − |Dϕ|p(x)−2 log (|Dϕ|) Dϕ

∣∣∣ |Dp| ψ dx

− h
∫

A
|Dϕ|p(x)−2 ψ dx

≤ −hm

2

∫

A
ψ dx, (4.8)

where the last inequality follows from (4.2) and (4.3). Since
(
|a|p(x)−2 a − |b|p(x)−2 b

)
· (a − b) ≥ 0

for any two vectors a, b ∈ R
N when p(x) > 1, it follows from (4.8) that |A| = 0. But this

is impossible since ϕ(x0) = u(x0) and l > 0. ��

5 Viscosity solutions are weak solutions

We show that if u is a viscosity supersolution to −�N
p(x)u ≥ 0, then it is a weak supersolution

to −�S
p(x)u ≥ 0. The same statement for subsolutions then follows by analogy.

We recall the usual partial ordering for symmetric N × N matrices by setting
X ≤ Y if 〈Xξ, ξ 〉 ≤ 〈Y ξ, ξ 〉 for all ξ ∈ R

N . For a matrix X we also set ‖X‖ :=
max {|λ| : λ is an eigenvalue of X} and for vectors ξ, η ∈ R

N we use the notation ξ ⊗ η :=
ξη′, i.e. ξ ⊗ η is an N × N matrix whose (i, j) entry is ξiη j .
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Definition 5.1 [Inf-convolution] Let q ≥ 2 and ε > 0. The inf-convolution of a bounded
function u ∈ C(�) is defined by

uε(x) := inf
y∈�

{
u(y) + 1

qεq−1
|x − y|q

}
. (5.1)

The inf-convolution is well known to provide good approximations of viscosity supersolu-
tions and often one only needs to consider it for q = 2 (see e.g. [6]). However, as the authors
in [11] observed, considering large enough q essentially cancels the singularity in the usual
p-Laplace operator when 1 < p < 2. In similar fashion it also cancels the singularity of the
operator �S

p(x). This is due to the property (v) in the next lemma. We also list some other
properties of the inf-convolution.

Lemma 5.2 Let u ∈ C(�) be a bounded function. Then the inf-convolution uε as defined in
(5.1) has the following properties.

(i) We have uε ≤ u in � and uε → u locally uniformly in � as ε → 0.
(ii) There exists r(ε) > 0 such that

uε(x) = inf
y∈Br(ε)(x)∩�

{
u(y) + 1

qεq−1
|x − y|q

}

and r(ε) → 0 as ε → 0. In fact we can choose r(ε) = (
qεq−1osc� u

) 1
q .

(iii) The function uε is semi-concave in �r(ε), that is, the function x �→ uε(x) −
q−1

2εq−1 r(ε)
q−2 |x |2 is concave.

(iv) If x ∈ �r(ε) := {x ∈ � : dist(x, ∂�) > r(ε)}, then there exists a point xε ∈ Br(ε)(x)
such that uε(x) = u(xε) + 1

qεq−1 |x − xε|q .
(v) If (η, X) ∈ J 2,−uε(x) with x ∈ �r(ε), then η = (x−xε)

εq−1 |xε − x |q−2 and X ≤
q−1

ε
|η| q−2

q−1 I , where xε is as in (iv).

These properties are well known, see appendix of [11] and also [17] where more general “flat
inf-convolution” is considered. Regardless, we give a proof of (v) based on [16, p53] due to
its critical role in the proof of Lemma 5.5.

Proof of property (v) in Lemma 5.2 Let (η, X) ∈ J 2,−uε(x). Then there is a function ϕ ∈
C2(RN ) such that it touches uε from below at x and Dϕ(x) = η, D2ϕ(x) = X . Therefore
for all y, z ∈ � we have

u(y) + |y − z|q
qεq−1 − ϕ(z) ≥uε(z) − ϕ(z) ≥ 0.

Choosing y = xε , we obtain

ϕ(z) − |xε − z|q
qεq−1 ≤ u(xε) for all z ∈ �.

Since ϕ(x) = uε(x) = u(xε) + |xε−x |q
qεq−1 , the above inequality means that the function

z �→ ϕ(z) − |xε − z|q
qεq−1 =: ϕ(z) − ψ(z)

has a maximum at x . Thus η = Dψ(x) = (x−xε)

εq−1 |xε − x |q−2 and

X ≤ D2ψ(x) = 1

εq−1
|xε − x |q−4 (

(q − 2) (xε − x) ⊗ (xε − x) + |xε − x |2 I
)
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≤ 1

εq−1
|xε − x |q−4 (

(q − 2) ‖(xε − x) ⊗ (xε − x)‖ I + |xε − x |2 I
)

=q − 1

εq−1
|xε − x |q−2 I

=q − 1

εq−1

(
ε |η| 1

q−1

)q−2
I

=q − 1

ε
|η| q−2

q−1 I.

��
We will show that the inf-convolution provides approximations of viscosity supersolutions
to −�N

p(x)u ≥ 0. If there was no x-dependence in the equation, it would be straightforward
to show that the inf-convolution of a supersolution is still a supersolution. However, the
equation −�N

p(x)u ≥ 0 has x-dependence caused by p(x). Regardless, in [10, Thm 3] it is
shown that with some assumptions on G, the inf-convolution uε of a viscosity supersolution
to G(x, u, Du, D2u) ≥ 0 is still a viscosity supersolution to G(x, uε, Duε, D2uε) ≥ E(ε),
where E(ε) → 0 as ε → 0.

We prove a modified version of this theorem for the solutions of −�N
p(x)u ≥ 0. The

important modification is the term |η|min(p(x)−2,0) in (5.2) as it cancels a singular gradient
term that appears due to the error term in the proof of Lemma 5.5, see (5.14). Another
difference is that we consider inf-convolution with the exponent q ≥ 2.

Lemma 5.3 Assume that u is a uniformly continuous viscosity supersolution to−�N
p(x)u ≥ 0

in �. Then, whenever (η, X) ∈ J 2,−uε(x), η �= 0 and x ∈ �r(ε), it holds

|η|min(p(x)−2,0) F(x, η, X) ≥ E(ε), (5.2)

where E(ε) → 0 as ε → 0. The error function E depends only on p, q and the modulus of
continuity of u.

Proof Fix x ∈ �r(ε) and (η, X) ∈ J 2,−uε(x), η �= 0. Then by Lemma 5.2 there is xε ∈
Br(ε)(x) such that

uε(x) = u(xε) + |xε − x |q
qεq−1 (5.3)

and η = (x−xε)

εq−1 |xε − x |q−2. There exists a function ϕ ∈ C2(RN ) such that it touches uε

from below at x and Dϕ(x) = η, D2ϕ(x) = X . By the definition of inf-convolution

u(y) − ϕ(z)+|y − z|q
qεq−1 ≥ uε(z) − ϕ(z) ≥ 0 for all y, z ∈ �r(ε). (5.4)

Since by (5.3) we have u(xε) = ϕ(x) − |xε−x |q
qεq−1 , it follows from (5.4) that the expression

u(y) − ϕ(z) + |y−z|q
qεq−1 reaches its minimum at (y, z) = (xε, x). Thus

max
(y,z)∈�r(ε)×�r(ε)

−u(y) + ϕ(z) − |y − z|q
qεq−1 = −u(xε) + ϕ(x) − |xε − x |q

qεq−1 .

We denote �(y, z) := 1
qεq−1 |y − z|q and invoke the Theorem of sums (see [6]). There exist

Y, Z ∈ SN such that

(η,−Y ) ∈ J
2,−

u(xε), (η,−Z) ∈ J
2,+

ϕ(x)
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and (
Y 0
0 −Z

)
≤ D2�(xε, x) + εq−1 (

D2�(xε, x)
)2

(5.5)

where

D2�(xε, x) =
(

M −M
−M M

)

with M = 1
εq−1 |xε − x |q−4 (

(q − 2) (xε − x) ⊗ (xε − x) + |xε − x |2 I
)

and

(
D2�(xε, x)

)2 = 2

(
M2 −M2

−M2 M2

)
.

The above implies Y ≤ Z ≤ −D2ϕ(x) = −X . Multiplying (5.5) by the R
2N vector

(
η
|η|

√
p(xε) − 1,

η
|η|

√
p(x) − 1) from both sides yields

(p(xε) − 1)

|η|2 〈Yη, η〉 − (p(x) − 1)

|η|2 〈Zη, η〉 ≤ Λ2
〈(
M + 2εq−1M2) η

|η| ,
η

|η|
〉
, (5.6)

where Λ = √
p(x) − 1 − √

p(xε) − 1. We have

0 ≤F(xε, η,−Y )

=F(x, η, Z) − F(xε, η, Y ) − F(x, η, Z)

= (p(xε) − 1)

〈
Y

η

|η| ,
η

|η|
〉
− (p(x) − 1)

〈
Z

η

|η| ,
η

|η|
〉

+ tr(Y ) −
〈
Y

η

|η| ,
η

|η|
〉
− tr(Z) +

〈
Z

η

|η| ,
η

|η|
〉
+ F(x, η,−Z)

≤Λ2
〈(
M + 2εq−1M2) η

|η| ,
η

|η|
〉
+ F(x, η, X), (5.7)

where we used (5.6) and the fact that Y ≤ Z implies

tr (Y − Z) −
〈
(Y − Z)

η

|η| ,
η

|η|
〉

≤ 0.

We have the estimate

‖M‖ ≤ 1

εq−1
|xε − x |q−4 (

(q − 2) ‖(xε − x) ⊗ (xε − x)‖ + |xε − x |2 ‖I‖)

=q − 1

εq−1
|xε − x |q−2 .

Since p is Lipschitz continuous and pmin > 1, we have also

Λ2 = |p(x) − p(xε)|2
∣∣√p(x) − 1 + √

p(xε) − 1
∣∣2 ≤ C(p) |x − xε|2 .

Combining these with (5.7) we get (we may assume that r(ε) < 1)

−F(x, η, X) ≤Λ2 (‖M‖ + 2εq−1 ‖M‖2)

≤Λ2

(
q − 1

εq−1
|xε − x |q−2 + 2εq−1

(
q − 1

εq−1

)2

|xε − x |2(q−2)

)
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≤3 (q − 1)2

εq−1 Λ2 |xε − x |q−2

≤C(p, q)
1

εq−1
|xε − x |q . (5.8)

Moreover, by uniform continuity of u there is a modulus of continuity ω such that ω(t) → 0
as t → 0 and |u(y) − u(z)| ≤ ω(|y − z|) for all y, z ∈ �. Hence by (5.3)

|xε − x | ≤ (
qεq−1 (u(x) − u(xε))

) 1
q ≤ q

1
q ε

q−1
q ω(r(ε))

1
q . (5.9)

We now consider the situations p(x) ≤ 2 and p(x) > 2 separately.
If p(x) ≤ 2, we multiply (5.8) by |η|p(x)−2 and estimate using (5.9). We get

− |η|p(x)−2 F(x, η, X) ≤C(p, q)
1

εq−1
|xε − x |q |η|p(x)−2

=C(p, q)
1

εq−1
|xε − x |q

∣∣∣∣
1

εq−1 (x − xε) |xε − x |q−2
∣∣∣∣

p(x)−2

=C(p, q)

(
1

ε

)(q−1)(p(x)−1)

|xε − x |q+(q−1)(p(x)−2)

≤C(p, q)

(
1

ε

)(q−1)(p(x)−1) (
q

1
q ε

q−1
q ω(r(ε))

1
q

)q+(q−1)(p(x)−2)

=C(p, q)

(
1

ε

)(
q−1
q

)
(p(x)−2)

ω(r(ε))
q+(q−1)(p(x)−2)

q

≤C(p, q)ω(r(ε))
q+(q−1)(pmin−2)

q ,

where the last inequality is true when ε < 1 is so small that ω(r(ε)) < 1. This proves (5.2)
when p(x) ≤ 2.
If p(x) > 2, we estimate (5.8) directly using (5.9). We get

−F(x, η, X) ≤C(p, q)
1

εq−1

(
q

1
q ε

q−1
q ω(r(ε))

1
q

)q

= C(p, q)ω(r(ε))),

which proves (5.2) when p(x) > 2. ��

Next we will use the previous lemma to show that inf-convolution of a viscosity super-
solution to −�N

p(x)u ≥ 0 in � is a weak supersolution to −�S
p(x)u ≥ 0 in �r(ε) up to some

error term. Before proceeding we make some remarks about the point-wise differentiability
of inf-convolution.

Remark 5.4 It follows from semi-concavity that the inf-convolution uε is locally Lipschitz
in �r(ε) (see [8, p267]). Therefore it belongs in W 1,∞

loc (�r(ε)), is differentiable almost every-
where in �r(ε), and its derivative agrees with its Sobolev derivative almost everywhere in
�r(ε) (see [8, p155 and p265]).

By Lemma 5.2 the function φ(x) := uε(x) − C(q, ε, u) |x |2 is concave in �r(ε). Thus
Alexandrov’s theorem implies that uε is twice differentiable almost everywhere in �r(ε).
Furthermore, the proof of Alexandrov’s theorem in [8, p273] establishes that if φ j is the
standard mollification of φ, then D2φ j → D2φ almost everywhere in �r(ε).
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Lemma 5.5 Assume that u is a uniformly continuous viscosity supersolution to−�N
p(x)u ≥ 0

in �. Let q > 2 be so large that pmin − 2 + q−2
q−1 ≥ 0 and let uε be the inf-convolution of u

as defined in (5.1). Then
∫

�r(ε)

|Duε|p(x)−2 Duε · (Dϕ + log |Duε| Dp ϕ) dx ≥ E(ε)

∫

�r(ε)

|Duε|s(x) ϕ dx

for all non-negative ϕ ∈ W 1,p(·)(�r(ε)) with compact support, where E(ε) → 0 as ε → 0
and s(x) = max(p(x) − 2, 0).

Proof It is enough to consider ϕ ∈ C∞
0 (�r(ε)). This can be proven as Lemma 3.2, but since

uε ∈ W 1,∞
loc (�r(ε)), the proof is even simpler.

(Step 1) We show that uε satisfies the auxiliary inequality (5.11) for all 0 < δ < 1.
As mentioned in Remark 5.4, the function φ(x) := uε(x) − C(q, ε, u) |x |2 is concave
in �r(ε) and therefore we can approximate it by smooth concave functions φ j so that(
φ j , Dφ j , D2φ j

) → (
φ, Dφ, D2φ

)
almost everywhere in �r(ε). We define

uε, j (x) := φ j (x) + C(q, ε, u) |x |2

and denote by p j the standard mollification of p. Since uε, j and p j are smooth, we calculate

∫

�r(ε)

−
(
δ + ∣∣Duε, j

∣∣2
) p j (x)−2

2

(

�uε, j + p j (x) − 2

δ + ∣∣Duε, j
∣∣2 �∞uε, j

)

ϕ dx

=
∫

�r(ε)

−div

((
δ + ∣∣Duε, j

∣∣2
) p j (x)−2

2
Duε, j

)

ϕ

+ 1

2

(
δ + ∣∣Duε, j

∣∣2
) p j (x)−2

2
log

(
δ + ∣∣Duε, j

∣∣2
)
Duε, j · Dp j ϕ dx

=
∫

�r(ε)

(
δ + ∣∣Duε, j

∣∣2
) p j (x)−2

2
Duε, j ·

(
Dϕ + 1

2
log

(
δ + ∣∣Duε, j

∣∣2
)
Dp j ϕ

)
dx .

(5.10)

We let j → ∞ in (5.10) and intend to use Fatou’s lemma at the LHS and the Dominated
convergence theorem at the RHS. This results in the auxiliary inequality

∫

�r(ε)

−
(
δ + |Duε|2

) p(x)−2
2

(
�uε + p(x) − 2

δ + |Duε|2
�∞uε

)
ϕ dx

≤
∫

�r(ε)

(
δ + |Duε|2

) p(x)−2
2 Duε ·

(
Dϕ + 1

2
log

(
δ + |Duε|2

)
Dp ϕ

)
dx, (5.11)

where D2uε is the Hessian of uε in the Alexandrov’s sense. We still need to check that the
assumptions of the Dominated convergence theorem and Fatou’s lemma hold. By Lipschitz
continuity of uε and p there is M ≥ 1 such that

sup
j

∥∥Duε, j
∥∥
L∞(supp ϕ)

, sup
j

∥∥Dp j
∥∥
L∞(supp ϕ)

≤ M.

This justifies our use of the Dominated convergence theorem. In order to justify our use of
Fatou’s lemma, we notice first that by concavity of φ j we have D2uε, j ≤ C(q, ε, u)I . Thus
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the integrand at the LHS of (5.10) is clearly bounded from below by a constant independent
of j if Duε, j = 0. If Duε, j �= 0, we have

(
δ + ∣∣Duε, j

∣∣2
) p j (x)−2

2
(

�uε, j + p j (x) − 2

δ + ∣∣Duε, j
∣∣2 �∞uε, j

)

=
(
δ + ∣∣Duε, j

∣∣2
) p j (x)−2

2

δ + ∣∣Duε, j
∣∣2

(
∣∣Duε, j

∣∣2

(

�uε, j + p j (x) − 2
∣∣Duε, j

∣∣2 �∞uε, j

)

+ δ�uε, j

)

≤ δ
p j (x)−2

2 + (
δ + M2

) p j (x)−2
2

δ + ∣∣Duε, j
∣∣2 C(q, ε, u)

(∣∣Duε, j
∣∣2 (

N + p j (x) − 2
) + δN

)

≤ C(q, ε, u)

(
δ

pmin−2
2 + (

δ + M2) pmax−2
2

)
(2N + pmax − 2) ,

where the first inequality follows like estimate (5.7) since p j ≥ pmin > 1.
(Step 2) We let δ → 0 in the auxiliary inequality (5.11). The RHS becomes

∫

�r(ε)\{Duε=0}
|Duε|p(x)−2 Duε · (Dϕ + log |Duε| Dp ϕ) dx

by the Lebesgue’s dominated convergence theorem. We intend to apply Fatou’s lemma on
the LHS. We have

(
Duε(x), D2uε(x)

) ∈ J 2,−uε(x) for almost every x ∈ �r(ε). Therefore
by Lemma 5.3 it holds that

|Duε|min(p(x)−2,0) F(x, Duε, D
2uε) ≥ E(ε) in

{
x ∈ �r(ε) : Duε �= 0

}
(5.12)

and by the property (v) in Lemma 5.2 we have

D2uε ≤ q − 1

ε
|Duε|

q−2
q−1 I. (5.13)

Observe that since q > 2, the condition (5.13) implies that the Hessian D2uε is negative
semi-definite in the set where the gradient Duε vanishes. Using this fact, Fatou’s lemma and
(5.12) we get

lim inf
δ→0

∫

�r(ε)

− (|Duε|2 + δ
) p(x)−2

2

(
�uε + p(x) − 2

|Duε|2 + δ
�∞uε

)
ϕ dx

≥ lim inf
δ→0

∫

{Duε �=0}
− (|Duε|2 + δ

) p(x)−2
2

(
�uε + p(x) − 2

|Duε|2 + δ
�∞uε

)
ϕ dx

+ lim inf
δ→0

∫

{Duε=0}
−δ

p(x)−2
2 �uεϕ dx

≥
∫

{Duε �=0}
− |Duε|p(x)−2

(
�uε + p(x) − 2

|Duε|2
�∞uε

)
ϕ dx

≥ E(ε)

∫

{Duε �=0}
|Duε|max(p(x)−2,0) ϕ dx, (5.14)

and thus we arrive at the desired inequality. Our use of Fatou’s lemma is justified since if
Duε �= 0 and p(x) ≤ 2, we have by (5.13)
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(
|Duε|2 + δ

) p(x)−2
2

(
�uε + p(x) − 2

|Duε|2 + δ
�∞uε

)

=
(|Duε|2 + δ

)

|Duε|2 + δ

p(x)−2
2 (

|Duε|2
(

�uε + p(x) − 2

|Duε|2
�∞uε

)
+ δ�uε

)

≤
(|Duε|2 + δ

)

|Duε|2 + δ

p(x)−2
2 q − 1

ε

(
|Duε|

q−2
q−1 +2

(N + p(x) − 2) + |Duε|
q−2
q−1 δN

)

≤ |Duε|p(x)−2+ q−2
q−1

(
q − 1

ε

)
(2N + p(x) − 2)

≤ (‖Duε‖L∞(supp ϕ) + 1
)pmax−2+ q−2

q−1

(
q − 1

ε

)
(2N + pmax − 2) ,

where the last inequality follows from pmin − 2 + q−2
q−1 ≥ 0. If Duε �= 0 and p(x) > 2, we

have
(

|Duε|2 + δ
) p(x)−2

2
(

�uε + p(x) − 2

|Duε|2 + δ
�∞uε

)

≤
(
‖Duε‖2

L∞(supp ϕ) + 1
) pmax−2

2 + q−2
q−1

(
q − 1

ε

)
(N + pmax − 2) .

In the next two lemmas we use Caccioppoli type estimates and algebraic inequalities to show
that the sequence of inf-convolutions converges to the viscosity supersolution in W 1,p(·)

loc (�).

Lemma 5.6 Under the assumptions of Lemma 5.5, the function u belongs in W 1,p(·)
loc (�) and

for any �′ � � we have Duε → Du weakly in L p(·)(�′) for some subsequence.

Proof Take a cut-off function ξ ∈ C∞
0 (�′) such that 0 ≤ ξ ≤ 1 in � and ξ ≡ 1 in

�′. Then assume that ε is so small that supp ξ =: K ⊂ �r(ε). We define a test function
ϕ := (L − uε)ξ

pmax where L := supε,x∈�′ |uε(x)| is finite since uε → u locally uniformly.
We have

Dϕ = −Duε ξ pmax + (L − uε)p
+ξ pmax−1Dξ

and therefore by Lemma 5.5
∫

�r(ε)

|Duε|p(x) ξ pmax dx ≤
∫

�r(ε)

|Duε|p(x)−1 ξ pmax−1 (L − uε) pmax |Dξ | dx

+
∫

�r(ε)

|Duε|p(x)−1 |log |Duε|| |Dp| (L − uε) ξ pmax dx

+ |E(ε)|
∫

�r(ε)

|Duε|max(p(x)−2,0) (L − uε) ξ pmax dx

=:I1 + I2 + I3.

We estimate these integrals using Young’s inequality. The first integral is estimated by the
facts p(x)(pmax−1)

p(x)−1 ≥ pmax and ξ ≤ 1 as follows

I1 ≤
∫

�r(ε)

δ |Duε|p(x) ξ
p(x)(pmax−1)

p(x)−1 +
(

2

δ
Lpmax |Dξ |

)p(x)

dx
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≤δ

∫

�r(ε)

|Duε|p(x) ξ pmax dx + C(δ, p, L , Dξ).

To estimate I2, we also use the inequality as |log a| ≤ as+ 1
2 + 1

s for a > 0 and s > 0,

I2 ≤
∫

�r(ε)

(
|Duε|p(x)− 1

2 + 1

p(x) − 1

)
ξ pmax |Dp| 2L dx

≤
∫

�r(ε)

δ |Duε|p(x) ξ

pmax p(x)

p(x)− 1
2 +

(
2

δ
|Dp| L

)2p(x)

+ 2L |Dp| ξ pmax

pmin − 1
dx

≤δ

∫

�r(ε)

|Duε|p(x) ξ pmax dx + C(δ, p, Dp, L).

The last integral is estimated by the two alternatives in max(p(x)−2, 0) as follows (we may
assume that |E(ε)| ≤ 1)

I3 ≤
∫

�r(ε)∩{p(x)>2}
|Duε|p(x)−2 ξ pmax 2L dx +

∫

�r(ε)∩{p(x)≤2}
2Lξ pmax dx

≤
∫

�r(ε)∩{p(x)>2}
δ |Duε|p(x) ξ

pmax p(x)
p(x)−2 +

(
2

δ
L

) p(x)
2

dx + C(p, L)

≤δ

∫

�r(ε)

|Duε|p(x) ξ pmax dx + C(δ, p, L).

Taking small δ we conclude that Duε is bounded in L p(·)(�′) with respect to ε. Since
L p(·)(�′) is a reflexive Banach space [7, p76 and p89], it follows that there is a function Du ∈
L p(·)(�′) such that Duε → Du weakly in L p(·)(�′) for some subsequence. Consequently
u ∈ W 1,p(·)(�′) with Du as its weak derivative. ��
Lemma 5.7 Under the assumptions of Lemma 5.5, for any �′ � � we have Duε → Du in
L p(·)(�′) for some subsequence.

Proof Take a cut-off function ξ ∈ C∞
0 (�) such that ξ ≡ 1 in �′ and define a test function

ϕ := (u − uε)ξ . Then assume that ε is so small that supp ξ =: K ⊂ �r(ε). Since ϕ ∈
W 1,p(·)(�r(ε)) with compact support it follows from Lemma 5.5 that∫

�r(ε)

(
|Du|p(x)−2 Du − |Duε|p(x)−2 Duε

)
· (Du − Duε) ξ dx

≤
∫

�r(ε)

|Duε|p(x)−2 Duε · Dξ (u − uε) dx

+
∫

�r(ε)

|Duε|p(x)−2 log (|Duε|) Duε · Dp (u − uε)ξ dx

+ |E(ε)|
∫

�r(ε)

|Duε|max(p(x)−2,0) (u − uε)ξ dx

+
∫

�r(ε)

|Du|p(x)−2 Du · (Du − Duε) ξ dx

≤ ‖u − uε‖L∞(K )

∫

K

(
C(pmin) + |Duε|p(x)

)
(Dξ + |Dp| + |E(ε)|) dx

+
∫

K
|Du|p(x)−2 Du · (Du − Duε) ξ dx . (5.15)
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According to Lemma 5.6 we have uε → u locally uniformly and Duε → Du weakly in
L p(·)(K ) for a subsequence. Thus by passing to a subsequence we may assume that the right
hand side of (5.15) converges to zero. The claim now follows from the inequalities (see e.g.
[19, Chapter 12])

( |a|p(x)−2 a − |b|p(x)−2 b
) · (a − b)

≥
{

(p(x) − 1) |a − b|2 (
1 + |a|2 + |b|2)

p(x)−2
2 p(x) < 2

22−p(x) |a − b|p(x) p(x) ≥ 2

for a, b ∈ R
N . Indeed, we immediately get that

∫
�′∩{p(x)≥2} |Du − Duε|p(x) dx → 0. To

deal with the set {p(x) < 2}, we first apply the above algebraic inequality and then estimate
using Hölder’s inequality, the modular inequality (2.1) and the definition of the ‖·‖L p(·) -norm.
We get

∫

�′∩{p(x)<2}
|Du − Duε|p(x) dx

≤
∫

�′∩{p(x)<2}

((
|Du|p(x)−2 Du − |Duε|p(x)−2 Duε

)
· (Du − Duε)

) p(x)
2

·
(

1

p(x) − 1

) p(x)
2 (

1 + |Du|2 + |Duε|2
) p(x)(2−p(x))

4 dx

≤
∥∥∥∥∥

((
|Du|p(x)−2 Du − |Duε|p(x)−2 Duε

)
· (Du − Duε)

) p(x)
2

∥∥∥∥∥
L

2
p(·) (�′∩{p(x)<2})

· 2

pmin − 1

∥∥∥∥
(
1 + |Du|2 + |Duε|2

) p(x)(2−p(x))
4

∥∥∥∥
L

2
2−p(·) (�′∩{p(x)<2})

≤
(∫

�r(ε)

(
|Du|p(x)−2 Du − |Duε|p(x)−2 Duε

)
· (Du − Duε) ξ dx

)s

· 2

pmin − 1

(
1 +

∫

�′∩{p(x)<2}
(
1 + |Du|2 + |Duε|2

) p(x)
2 dx

)
,

where s ∈ { pmax
2 ,

pmin
2

}
. The last integral is bounded since the sequence Duε is bounded in

L p(·)(�′) by its weak convergence. The RHS therefore converges to zero by (5.15). ��
Next, we use the previous convergence result to pass to the limit in the inequality of Lemma
5.5 and conclude that viscosity supersolutions to −�N

p(x)u ≥ 0 are weak supersolutions to
−�S

p(x)u ≥ 0.

Theorem 5.8 If u ∈ C(�) is a viscosity supersolution to −�N
p(x)u ≥ 0 in �, then u is a

weak supersolution to −�S
p(x)u ≥ 0 in �.

Proof It is clear from the definition of weak supersolutions to −�S
p(x)u ≥ 0 that we can

without loss of generality assume that u is uniformly continuous in � by restricting to a
smaller domain. Fix a non-negative test function ϕ ∈ C∞

0 (�) and take an open �′ � �

such that supp ϕ ⊂ �′. Let q and uε be as in Lemma 5.5 and assume that ε is so small that
�′ ⊂ �r(ε). Then the claim follows from Lemma 5.5 if we show that

lim
ε→0

∫

�′
|Duε|p(x)−2 Duε · Dϕ dx =

∫

�′
|Du|p(x)−2 Du · Dϕ dx (5.16)
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and

lim
ε→0

∫

�′
|Duε|p(x)−2 log (|Duε|) Duε · Dp ϕ dx

=
∫

�′
|Du|p(x)−2 log (|Du|) Du · Dp ϕ dx (5.17)

as well as

lim
ε→0

E(ε)

∫

�′
|Duε|max(p(x)−2,0) ϕ dx = 0. (5.18)

By Lemma 5.7 we have that uε → u in W 1,p(·)(�′).
Claim Equation (5.16) follows from the inequalities (see e.g. [19, Chapter 12])

∣∣∣|a|p(x)−2 a − |b|p(x)−2 b
∣∣∣ ≤

{
22−p(x) |a − b|p(x)−1 p(x) < 2

2−1
(|a|p(x)−2 + |b|p(x)−2) |a − b| p(x) ≥ 2

(5.19)

for a, b ∈ R
N . Indeed, when ε is so small that

∫
�′ |Duε − Du|p(x) dx < 1 we have by

Hölder’s inequality and the modular inequality
∫

�′

∣∣∣|Duε|p(x)−2 Duε − |Du|p(x)−2 Du
∣∣∣ dx

≤ 2
∫

�′∩{p(x)<2}
|Duε − Du|p(x)−1 dx

+ 2−1
∫

�′∩{p(x)≥2}

(
|Duε|p(x)−2 + |Du|p(x)−2

)
|Duε − Du| dx

≤ C(p,�)

(∫

�′
|Duε − Du|p(x) dx

) 1
pmax

+ C(p,�)

(
1 +

∫

�′
|Duε|p(x) + |Du|p(x) dx

)
‖Duε − Du‖L p(·)(�′) .

Claim Equation (5.18) holds since
∫
�′ |Duε|p(x) dx is bounded and E(ε) → 0.

Claim Equation (5.17) follows if we show that

lim
ε→0

∫

�′

∣∣∣|Duε|p(x)−2 log (|Duε|) Duε − |Du|p(x)−2 log (|Du|) Du
∣∣∣ dx = 0. (5.20)

To this end, fix 0 < ε < 1. The mapping (a, x) �→ |a|p(x)−2 log (|a|) a is uniformly
continuous in bounded sets of RN × �′. Hence there exists δ = δ(ε) < ε such that whenever
x ∈ �′ and a, b ∈ B(0, 3) satisfy |a − b| < δ, it holds

∣∣∣|a|p(x)−2 log (|a|) a − |b|p(x)−2 log (|b|) b
∣∣∣ ≤ ε. (5.21)

If |a| , |b| ≥ 1 and |a − b| < δ, then we use (5.19) to get the estimate
∣∣∣ |a|p(x)−2 log (|a|) a − |b|p(x)−2 log (|b|) b

∣∣∣

≤ |b|p(x)−1 |log |a| − log |b|| + |log |a||
∣∣∣|a|p(x)−2 a − |b|p(x)−2 b

∣∣∣

≤ |b|p(x) |a − b| + |a| ·
{

22−p(x) |a − b|p(x)−1 , p(x) < 2

2−1
(|a|p(x)−2 + |b|p(x)−2) |a − b| , p(x) ≥ 2
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≤ (1 + 2−1)
(
|a|p(x) + |b|p(x)

)
|a − b| + 2 |a| |a − b|p(x)−1

≤ C
(
|a|p(x) + |b|p(x)

)
εmin(pmin−1,1). (5.22)

We denote

Fε = {
x ∈ �′ : |Duε(x) − Du(x)| ≥ δ

}
.

The strong convergence of Duε to Du in L p(·)(�′) implies that Duε → Du in measure in �′
(see [7, Lemma 3.2.10]). Thus there is ε0 = ε0(δ) such that for all ε < ε0 it holds |Fε| ≤ δ.
Using the inequality as |log a| ≤ as+ 1

2 + 1
s for a, s > 0, we get for all ε < ε0

∫

Fε

∣∣∣|Duε|p(x)−2 log (|Duε|) Duε − |Du|p(x)−2 log (|Du|) Du
∣∣∣ dx

≤
∫

Fε

2

p(x) − 1
+ |Duε|p(x)− 1

2 + |Du|p(x)− 1
2 dx

≤ C(pmin) |Fε| + ‖1‖L2p(·)(Fε)

(

‖Duε‖
L

p(·)
p(·)− 1

2 (Fε)

+ ‖Du‖
L

p(·)
p(·)− 1

2 (Fε)

)

≤ C(pmin) |Fε| + |Fε|
1

2pmax

(
2 +

∫

Fε

|Duε|p(x) + |Du|p(x) dx
)

≤ C(pmin)

(
1 +

∫

�′
|Duε|p(x) + |Du|p(x) dx

)
ε

1
2pmax . (5.23)

If x ∈ �′ \ Fε, then either |Duε| , |Du| ≤ 3 or |Duε| , |Du| ≥ 1. Hence by (5.21) and (5.22)
we have

∫

�′\Fε

∣∣∣|Duε|p(x)−2 log (|Duε|) Duε − |Du|p(x)−2 log (|Du|) Du
∣∣∣ dx

≤C

(∫

�′
|Duε|p(x) + |Du|p(x) + 1 dx

)
εmin(pmin−1,1). (5.24)

Combining (5.24) and (5.23) proves (5.20) since ε was arbitrary. ��
Merging Theorems 4.1 and 5.8 yields the following equivalence result.

Theorem 5.9 A function u is a viscosity solution to −�N
p(x)u = 0 in � if and only if it is a

weak solution to −�S
p(x)u = 0 in �.

Since the weak solutions to the strong p(x)-Laplace equation are locally C1,α continuous
[25], our equivalence result yields local C1,α regularity also for viscosity solutions of the
normalized p(x)-Laplace equation.

Corollary 5.10 If u is a viscosity solution to −�N
p(x)u = 0 in a bounded domain �, then

u ∈ C1,α(�) with α ∈ (0, 1).

6 An application: a Radó-type removability theorem

The classical theorem of Radó says that if a continuous complex-valued function f defined
on a domain � ⊂ C is holomorphic in � \ { f = 0}, then it is holomorphic in the whole �.
Similar results have been proven for solutions of partial differential equations. We prove a
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Radó-type removability theorem for the strong p(x)-Laplace equation. It is worth pointing
out that it could be difficult to show this kind of result without appealing to viscosity solutions
whereas it is straightforward to do so with the help of the equivalence result. The theorem
follows by observing that weak solutions to �S

p(x)u = 0 coincide with viscosity solutions of
an equation that satisfies the assumptions of a Radó-type removability theorem in [12].

Recall that we ignore the test functions whose gradient vanishes at the point of touching
in the Definition 3.3 of viscosity solutions to −�N

p(x)u = 0. Sometimes this kind of solutions
are called feeble viscosity solutions (e.g. [12,17]). We will observe that these feeble viscosity
solutions to −�N

p(x)u = 0 are exactly the usual viscosity solutions to

− tr(A(x, Du)D2u) = 0, (6.1)

where A(x, Du) := |Du|2 I + (p(x) − 2) Du ⊗ Du. To be precise, we define the viscosity
solutions to (6.1).

Definition 6.1 A lower semicontinuous function u is a viscosity supersolution to (6.1) in �

if, whenever (η, X) ∈ J 2,−u(x) with x ∈ �, then

−tr(A(x, η)X) ≥ 0.

A function u is a viscosity subsolution to (6.1) if −u is a supersolution, and a viscosity solution
if it is both viscosity super- and subsolution.

Lemma 6.2 A function u is a viscosity solution to−�N
p(x)u = 0 if and only if it is a viscosity

solution to (6.1).

Proof It is enough to consider supersolutions. Take (η, X) ∈ J 2,−u(x) with x ∈ �. If η = 0,
then the conditions for both definitions are satisfied, so we may assume that η �= 0. Then we
have

F(x, η, X) ≥ 0

if and only if

−( |η|2 tr(X) + (p(x) − 2) 〈Xη, η〉 ) ≥ 0,

where

|η|2 tr(X) + (p(x) − 2) 〈Xη, η〉 = |η|2 tr(X) + (p(x) − 2) tr(η ⊗ ηX)

=tr
(( |η|2 I + (p(x) − 2) η ⊗ η

)
X

)
.

Hence the definitions are equivalent. ��
Theorem 6.3 (A Radó-type removability theorem) Let u ∈ C1(�) be a weak solution to
−�S

p(x)u = 0 in � \ {u = 0}. Then u is a weak solution to −�S
p(x)u = 0 in the whole �.

Proof By Lemma 6.2 and our equivalence result weak solutions to −�S
p(x)u = 0 coincide

with viscosity solutions to (6.1). Therefore it suffices to show that if u is a viscosity solution
to (6.1) in � \ {u = 0}, it is a viscosity solution to (6.1) in the whole �. This on the other
hand follows from [12, Theorem 2.2]. The matrix A satisfies the assumptions of the theorem
as it is symmetric, has continuous entries and A(x, 0, 0) = 0 for all x ∈ �. It is also positive
semi-definite since for all ξ ∈ R

N we have

ξ ′ (|η|2 I + (p(x) − 2) η ⊗ η
)
ξ ≥ξ ′ (|η|2 I − η ⊗ η

)
ξ

≥ |ξ |2 (|η|2 − ‖η ⊗ η‖) = 0.

��
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