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Abstract We study the existence of at least one conformal metric of prescribed Gaussian
curvature on a closed surface � admitting conical singularities of orders αi ’s at points pi ’s. In
particular, we are concerned with the case where the prescribed Gaussian curvature is sign-
changing. Such a geometrical problem reduces to solving a singular Liouville equation. By
employing a min–max scheme jointly with a finite dimensional reduction method, we deduce
new perturbative results providing existence when the quantity χ(�) + ∑

i αi approaches a
positive even integer, where χ(�) is the Euler characteristic of the surface �.
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1 Introduction

Let (�, g) be a compact orientable surface without boundary endowed with metric g and
Gauss curvature κg . Given a Lipschitz function K defined on �, a classical problem in
differential geometry is the question on the existence of a metric g̃ on � conformal to g:

g̃ = eu g

(with u a smooth function on �) of prescribed Gauss curvature K . In particular, in the case of
constant K the above question is referred to as classical Uniformization problem, whereas for
general functions this is known as the Kazdan–Warner problem (or the Nirenberg problem
in the case of the standard sphere). The problem of finding a conformal metric of prescribed
Gauss curvature K amounts to solving the equation

− �gu + 2κg = 2K eu . (1.1)

Here �g is the Laplace–Beltrami operator. The solvability of this problem so far has not
been completely settled, aside from the case of surfaces with zero Euler characteristic [26].
In particular, both in the case of a topological sphere and in the case when � has negative
Euler characteristic only partial results are known [1,6,7,10–14,19].

In this paper we will focus on a singular version of the problem (1.1). Following the
pioneering work of Troyanov [31], we say that (�, g̃) defines a punctured Riemann surface
�\{p1, . . . , pm} that admits a conical singularity of order αi > −1 at the point pi , for any
i = 1, . . . , m, if in a coordinate system z = z(p) around pi with z(pi ) = 0 we have

g̃(z) = |z|2αi ew|dz|2

with w a smooth function. In other words, � admits a tangent cone with vertex at pi and
total angle θi = 2π(1 + αi ) for any i . The Gauss curvature at any vertex is a Dirac mass
with magnitude −2παi . Clearly we can assume αi �= 0, indeed for the round angle θi = 2π ,
corresponding to αi = 0, we would have no singular part either.

For a given smooth function K defined on �, we address the question of finding a metric
g̃ conformal to g in �\{p1, . . . , pm}, namely

g̃ = eu g in �\{p1, . . . , pm}

(with u a smooth function on the punctured surface), admitting conical singularities of orders
αi ’s at the points pi ’s and having K as the associated Gaussian curvature in �\{p1, . . . , pm}.
Similarly to the regular case (1.1), the question reduces to solving a singular Lioville-type
equation on �:
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Prescribed Gauss curvature problem on singular surfaces Page 3 of 36 99

− �gu + 2κg = 2K eu − 4π

m∑

i=1

αiδpi in �. (1.2)

A first information is given by the Gauss–Bonnet formula: indeed, integrating (1.2) one
immediately obtains

2
∫

�

K eudVg = 2
∫

�

κgdVg + 4π

m∑

i=1

αi = 4π
(
χ(�) +

m∑

i=1

αi

)
, (1.3)

where dVg denotes the area element in (�, g) and χ(�) is the Euler characteristic of the
surface. Analogously to what happens for the regular case, the solvability of (1.2) depends
crucially on the value of the generalized Euler characteristic for singular surfaces defined as
follows

χ(�, α) = χ(�) +
m∑

i=1

αi . (1.4)

When χ(�, α) ≤ 0 Troyanov [31] obtained existence results analogous to the ones for the
regular case [6,26].

Whereas if χ(�, α) > 0, then (1.3) implies that the function K has to be posi-
tive somewhere to allow the solvability of (1.2). In [31] it is proved that if χ(�, α) ∈
(0, 2(1 + min{0, α1, . . . , αm})), this necessary condition is also sufficient to guarantee exis-
tence of a solution.

Let us transform equation (1.2) into another one which admits a variational structure. Let
G(x, p) be the Green’s function of −�g over � with singularity at p, namely G satisfies

⎧
⎪⎪⎨

⎪⎪⎩

− �gG(x, p) = δp − 1

|�| on �

∫

�

G(x, p)dVg = 0

where |�| is the area of �, that is |�| = ∫
�

dVg . Next, having 4πχ(�)
|�| − 2κg(x) zero mean

value, we define fg to be the (unique) solution of
⎧
⎪⎪⎨

⎪⎪⎩

− �g fg(x) = 4πχ(�)

|�| − 2κg(x) on �

∫

�

fg(x)dVg = 0.

(1.5)

By the change of variable

v = u + 4π

m∑

i=1

αi G(x, pi ) − fg, (1.6)

problem (1.2) is then equivalent to solving the following (regular) problem
⎧
⎪⎨

⎪⎩

− �gv = ρgeo

(
K̃ (x)ev

∫
�

K̃ (x)ev dVg
− 1

|�|
)

on �

ρgeo = 4πχ(�, α)

(∗)ρgeo

where K̃ (x) is the function

K̃ (x) = K (x)e fg(x)−4π
∑m

i=1 αi G(x,pi ). (1.7)
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Notice that, since G(x, p) can be decomposed as

G(x, p) = 1

2π
log

1

dg(x, p)
+ h(x, p) h ∈ C1(�2), (1.8)

where dg is the distance induced on � by g, we have

K̃ (x) � K (x)dg(x, pi )
2αi eγi (x) for x close to pi (1.9)

for some functions γi ∈ C1(�).
It is worth to observe that more generally one could replace the function fg appearing in

(1.6) and (1.7) by any regular function ag having zero mean value, obtaining (with minor
changes) analogous results, but for the sake of simplicity we will not comment on this issue
any further.

A possible strategy to solve problem (∗)ρgeo is to study the following Liouville problem

−�gv = ρ

(
K̃ (x)ev

∫
�

K̃ (x)ev dVg
− 1

|�|
)

on � (∗)ρ

for ρ positive independent of � and αi , and to deduce a posteriori the answer to the geometric
question taking ρ = ρgeo.

Since problem (∗)ρ has a variational structure, its solutions can be found as critical points
of the associated energy functional

Jρ(v) := 1

2

∫

�

|∇gv|2dVg + ρ

|�|
∫

�

v dVg − ρ log

( ∫

�

K̃ (x)evdVg

)

,

defined in the domain

X =
{

v ∈ H1(�)

∣
∣
∣
∣

∫

�

K̃ (x)evdVg > 0

}

.

Problem (∗)ρgeo has been widely investigated in literature in the case χ(�, α) > 0 when
K is a strictly positive function and even more results are available on (∗)ρ for ρ > 0 when K
is positive, which is a relevant question also from the physical point of view, see for example
[29] and the references therein.

In [5] (see also [4]), under the hypothesis K > 0, it is shown that a sequence uρn of
solutions to (∗)ρn may blow up only if ρn → ρ with ρ belonging to the following discrete
set of values

�(αm) =
{

8πn + 8π
∑

i∈I

(1 + αi )

∣
∣
∣
∣ n ∈ N ∪ {0}, I ⊂ {1, . . . , m}

}

. (1.10)

Using this compactness result, in [2] it is proved via a Morse theoretical approach that if
αi > 0 and χ(�) ≤ 0 then (∗)ρ is solvable for all ρ /∈ �(αm). In the case of surfaces with
positive Euler characteristic (which is the most delicate), under some extra hypotheses on
the αi ’s, in [27] the solvability of (∗)ρ for ρ ∈ (8π, 16π) \ �(αm) is established. Still for K
strictly positive, the case when the α′

i s are negative has been considered in [8,9].
The special case of prescribing positive constant curvature on S2 with m = 2 is considered

first in [30], where it is shown that (∗)ρgeo admits a solution only if α1 = α2 and this implies
(taking α2 = 0) that no solution exists for m = 1. Furthermore, necessary and sufficient
conditions on the αi ’s for the solvability are determined in [22] for m = 3 and in [28] for
generic m ≥ 2.
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More recently, in [15] the Leray–Schauder degree of (∗)ρ has been computed for ρ /∈
�(αm), recovering some of the previous existence results and obtaining new ones in the case
χ(�) > 0. Anyway on the sphere there are still different situations in which the degree
vanishes and the solvability is an open problem.

All the above results are concerned with the case K > 0. Up to our knowledge the singular
problem (∗)ρgeo with K sign-changing has been considered only in [20] when the surface is
the standard sphere (S2, g0) and in [21] for a general surface under mild assumptions on the
nodal set of K (see Remarks 1.3 and 1.6).

In this paper we will mainly consider the problem (∗)ρgeo with K sign-changing, obtaining
new existence results via a perturbative approach already applied in [17] to deal with (∗)ρ
in the case K positive, and in [16,18] for the corresponding Liouville-type equation in a
Euclidean context.

We define the set

�+ :=
{
ξ ∈ �

∣
∣
∣ K (ξ) > 0

}
,

and in order to state our results we introduce the following hypotheses on K and on the pi ’s:

(H1) K sign-changing, namely K (ξ)K (η) < 0 for some ξ, η ∈ �;
(H2) K ∈ C2(�);
(H3) ∇K (ξ) �= 0 for all ξ ∈ ∂�+;
(H4) pi ∈ � \ ∂�+ for all i ∈ {1, . . . , m}.

In virtue of (H4) we may assume, up to reordering, that

pi ∈ �+ for i ∈ {1, . . . , �} and pi ∈ � \ �+ for i ∈ {� + 1, . . . , m} (1.11)

for some 0 ≤ � ≤ m. We are now ready to present our main perturbative results which
provide existence when the quantity

∑m
i=1 αi + χ(�) approaches an even integer from the

left hand side.

Theorem 1.1 Let N+ ∈ N. Assume that �+ has N+ connected components, N ≤ N+,
hypotheses (H1),(H2) hold and

�g(log K (x)) ≤ −β < 0 ∀x ∈ �+

for some β > 0. Then for any α� > −1 there exists δ ∈ (0, β|�|) such that if α1, . . . , αm > α�

satisfy

αi > 0 ∀i = 1, . . . , �,
m∑

i=1

αi = 2N − χ(�) − ε

4π
for some ε ∈ (0, δ),

then (∗)ρgeo admits a solution vε with ρgeo = 8π N − ε, i.e., K is the Gaussian curvature
of at least one metric conformal to g and having a conical singularity at pi with order αi .
Moreover there exist distinct points ξ∗

1 , . . . , ξ∗
N ∈ �+\{p1, . . . , p�} such that

ρ
K̃ (x)evε

∫
�

K̃ (x)evε dVg
→ 8π

N∑

j=1

δξ∗
j

as ε → 0+ (1.12)

in the measure sense.
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Theorem 1.2 Let N ∈ N. Assume that �+ has a non contractible connected component,
hypotheses (H1), (H2), (H3), (H4) hold and

�g(log K (x)) ≤ −β < 0 ∀x ∈ �+

for some β > 0. Then for any α� > −1 there exists δ ∈ (0, β|�|) such that if α1, . . . , αm > α�

satisfy

αi �= 0, 1, 2, . . . , N − 1 ∀i = 1, . . . , �,
m∑

i=1

αi = 2N − χ(�) − ε

4π
for some ε ∈ (0, δ),

then (∗)ρgeo admits a solution with ρgeo = 8π N − ε. Moreover there exist distinct points
ξ∗

1 , . . . , ξ∗
N ∈ �+\{p1, . . . , p�} such that (1.12) holds.

Remark 1.3 The previous two results are a sort of perturbative counterpart of the global
existence result established in [21, Theorem 2.2] for a general surface. Indeed, in [20, Theo-
rem 1.2] and in [21, Theorem 2.2] it has been shown that if ρgeo /∈ �(α�) [where � is defined
in (1.11)] and the positive nodal region of K has a non contractible connected component or
a sufficiently large number of connected components (precisely, a number of connected com-
ponents greater than ρgeo

8π
) then (∗)ρgeo admits a solution. Nevertheless, in [21] the behaviour

of the solutions as ρ → 8π N− is unknown, whereas the solutions constructed in Theorems
1.1 and 1.2 exhibit a blow-up phenomena, a property that has a definite interest in its own.

When all the connected components of �+ are simply connected or their number is not
sufficiently large, then the solvability issue is more delicate and it is treated in the following
theorem.

Hereafter for any α > −1, the square bracket [α] stands for its integer part and

[α]− := lim
ε→0+[α − ε] = max{n | n ∈ Z, n < α}.

Theorem 1.4 Let N ∈ N. Assume that hypotheses (H1), (H2), (H3), (H4) hold and

�g(log K (x)) ≤ −β < 0 ∀x ∈ �+

for some β > 0. Then for any α� > −1 there exists δ ∈ (0, β|�|) such that if α1, . . . , αm > α�

satisfy

αi �= 0, 1, 2, . . . , N − 1 ∀i = 1, . . . , �,

N ≤ � +
�∑

i=1

[αi ]−, (1.13)

m∑

i=1

αi = 2N − χ(�) − ε

4π
for some ε ∈ (0, δ), (1.14)

then (∗)ρgeo admits a solution with ρgeo = 8π N − ε. Moreover there exist distinct points
ξ∗

1 , . . . , ξ∗
N ∈ �+ \ {p1, . . . , p�} such that (1.12) holds.

Remark 1.5 Let us observe that the inequality (1.13) is consistent with the condition (1.14)
provided that

m∑

i=1

αi < 2� − χ(�) + 2
�∑

i=1

[αi ]−.
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Σ+

Σ−

α1 α2

α3

Σ+

Σ−

α1 α2

� = m = 2
α1 = α2 = 1 − ε

8π

� = 2, m = 3
α1 = α2 = 1

2 − ε
16π , α3 = 1 − ε

8π

Fig. 1 (S2, g0), �+ contractible, ρgeo = 16π − ε

Roughly speaking, this requires that the total multiplicity
∑m

i=1 αi has to be controlled by
the first � orders αi .

Remark 1.6 In [20,21] also the case when �+ has only contractible connected components
is addressed, deriving both existence results (under extra assumptions on ρgeo, on the αi ’s
and on the location of the pi ’s) and non existence results: in particular the condition ρgeo <

8π maxi=1,...,�(1 + αi ) is required to get existence. By Theorem 1.4 we get new existence
results for any (�, g): indeed if �+ is contractible and the following conditions hold:

α1, . . . , α� ∈ (0, 1], ρgeo ∈ (8π, 16π), ρgeo ≥ 8π(1 + αi ) ∀i = 1, . . . , �,

then the variational approach of [21] breaks down not for technical reasons but being the
low sublevels of the Euler Lagrange functional contractible. On the other hand Theorem
1.4 allows to produce a wide class of examples in which (∗)ρgeo admits a solution even
in such situations (see for instance Example 1.7). In particular this provides existence in a
perturbative regime allowing larger values of ρgeo with respect to the ones in- [21].

Example 1.7 (Existence results for ρgeo ∈ (16π−δ, 16π)) If K verifies (H1), (H2), (H3) and
�+ is contractible (consider for example on (S2, g0) the function K (φ) = cos(φ), defined
in spherical coordinates, where φ is the polar angle), then, via Theorem 1.4 (with N = 2),
we can exhibit many configurations

p1, . . . , pm ∈ �\∂�+, α1, . . . , αm (even with α1, . . . , α� ∈ (0, 1)), m ≥ � ≥ 2

such that

ρgeo ≥ 8π(1 + αi ) ∀i = 1, . . . , �, ρgeo ∈ (16π − δ, 16π)

for a sufficiently small δ > 0 and (∗)ρgeo admits a solution (see Figure 1 below). For instance,
the case when m ≥ � ≥ 2 and αi = α for all i = 1, . . . , m with α in a small left neighborhood
of 2

m satisfies the above conditions together with (1.13) and (1.14), so solvability is assured
by Theorem 1.4.

It is worth to notice that none of the situations described above was covered by the results
in [20].

Example 1.8 (Existence results for ρgeo > 16π ) Still by Theorem 1.4, it is also possible to
derive a wide class of existence results for K and p1, . . . , pm satisfying (H1), (H2), (H3),
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Σ+

Σ−
Σ+

Σ−

Σ+

Σ−

χ(Σ) = 0 χ(Σ) = −2 χ(Σ) = 2

α1 = N − 1 + ε
4π , αi = N+1−χ(Σ)− ε

2π
m−1 , i = 2, . . . , m

α1

α2 αm

α1

α2 αm

α1

α2 αm

� = 1, m ≥ 2

Σ+

Σ−
Σ+

Σ−

Σ+

Σ−

αi = 1 − ε
4Nπ , i = 1, . . . , N , αN+1 = N − χ(Σ)

α1

α1

αN+1

αNα1

αN+1

αN αN

αN+1

� = N , m = N + 1

Σ+

Σ−

Σ+

Σ−

Σ+

Σ−

� = m = 2N − χ(Σ)

α1

α1α1 α� α� α�

αi = 1 − ε
4�π , i = 1, . . . , �

Fig. 2 �+ contractible, ρgeo = 8π N − ε, N ≥ 3

(H4) with �+ contractible and ρgeo > 16π and this is completely new. We just present some
concrete examples in Figure 2 above (where K is assumed to be a fixed function satisfying
the assumptions in Theorem 1.4).
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At last, as a direct byproduct of the perturbative approach already applied in [23] to deal
with the Liouville equation (∗)ρ , we can provide class of functions K (positive or sign-
changing) for which (∗)ρgeo is solvable, even in cases in which general existence results are
not available. In particular we can also deal with situations when the degree of the equation
(computed in [15]) is zero so that solvability is not known in general, or when there are
examples of K for which (∗)ρgeo does not admit solutions.

We recall, for instance, that on (S2, g0), if m = 1 and α1 > 0:

• it is proved in [31] that (∗)ρgeo is not solvable with K ≡ 1, namely the tear drop conical
singularity on S

2 does not admit constant curvature (see also [3] for a more general non
existence result);

• in the sign-changing case, if � = 0, in [20] it is shown that for a class of axially symmetric
functions K , satisfying (H1), (H2), (H3) and (H4) and such that �+ is contractible,
equation (∗)ρgeo is not solvable.

Whereas on (S2, g0), if m = 3, α1 = α2 ∈ (− 1
3 , 0), α3 > 2:

• according to the degree-formula in [15], if K is positive, the Leray–Schauder degree of
the equation (∗)ρ vanishes for ρ ∈ (16π, 8π(3 + 2α1)).

Here considering functions K having sufficiently convex local minima or sufficiently concave
local maxima, as a counterpart of the above three non existence statements we can prove the
following three existence results Theorems 1.9, 1.10 and 1.11, see Sect. 5 for further details
and further examples.

Theorem 1.9 On the standard sphere (S2, g0) with m = 1 the following holds:

(i) for any N ∈ N there exists a class of positive functions K such that if

(0 <) α1 = 2(N − 1) + ε

4π
for ε > 0 small enough,

then (∗)ρgeo admits a solution with ρgeo = 8π N + ε;
(ii) for any N ∈ N, N ≥ 2, there exists a class of positive functions K such that if

(0 <) α1 = 2(N − 1) − ε

4π
for ε > 0 small enough,

then (∗)ρgeo admits a solution with ρgeo = 8π N − ε;

Theorem 1.10 On the standard sphere (S2, g0) with m = 1 and � = 0 the following holds:

(i) for any N ∈ N there exists a class of functions K , satisfying (H1), (H2), (H3), (H4) and
with (S2)+ contractible, such that if

(0 <) α1 = 2(N − 1) + ε

4π
for ε > 0 small enough,

then (∗)ρgeo admits a solution with ρgeo = 8π N + ε;
(ii) for any N ∈ N, N ≥ 2, there exists a class of functions K , satisfying (H1), (H2), (H3),

(H4) and with (S2)+ contractible, such that if

(0 <) α1 = 2(N − 1) − ε

4π
for ε > 0 small enough,

then (∗)ρgeo admits a solution with ρgeo = 8π N − ε;
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Theorem 1.11 On the standard sphere (S2, g0) with m = 3 there exists a class of positive
functions K such that if

{
α1 = α2 ∈ (− 1

3 , 0)

α3 = 2 − 2α1 + ε
4π

for some ε > 0 small enough,

then (∗)ρgeo admits a solution with ρgeo = 16π + ε.

The paper is organized as follows. In Sect. 2 we recall the finite-dimensional reduction
developed in [23] for the equation (∗)ρ , which is the starting point of our analysis. In particular
in the reduction procedure the crucial role of stable critical points of the reduced energy arises
in the existence of solutions for (∗)ρ . Then we state three general existence results for such
critical points, which are contained in Propositions 2.5, 2.6 and 2.7. In Sect. 3 we employ
the reduction approach in order to derive solutions for the more general equation (∗)ρ , by
which we deduce Theorems 1.1, 1.2 and 1.4 as corollaries. Sect. 4 is devoted to the proof
of Propositions 2.6, 2.7 (the proof of Proposition 2.5 is instead immediate), which are at the
core of this paper, by carrying out a min–max scheme. At last in Sect. 5 we focus on the
problem (∗)ρgeo and we provide several examples of solvability.

2 The finite dimension problem

The starting point for the proofs of Theorems 1.1, 1.2 and 1.4 is the finite dimension variational
reduction which has been carried out for the equation (∗)ρ in the paper [23], and reduces the
problem of finding families of solutions for (∗)ρ to the problem of finding critical points of
a functional �(ξ) defined on a finite dimensional domain.

For ξ = (ξ1, . . . , ξN ) let us introduce the functional

�(ξ) :=
N∑

j=1

h(ξ j , ξ j ) + 1

4π

N∑

j=1

log K̃ (ξ j ) +
N∑

j,k=1
j �=k

G(ξ j , ξk) (2.1)

where K̃ is defined in (1.7), G denotes the Green function of −�g over � and h its regular
part as in (1.8). � is well defined in the set

M+ := (�+\{p1, . . . , p�})N \�, � :=
{
ξ ∈ �N

∣
∣
∣ ξ j = ξk for some j �= k

}
. (2.2)

The definition of � depends on the particular α = (α1, . . . , αm) owing to (1.7). To
emphasize this fact sometimes we will write �α(ξ) in the place of �(ξ).

In order to state the relation between the critical points of � and the solutions of (∗)ρ let
us recall the notion of stable critical point, which was introduced in [24] in the analysis of
concentration phenomena in nonlinear Schrödinger equations.

Definition 2.1 A critical point ξ ∈ M+ of � is stable if for any neighborhood U of ξ in
M+ there exists δ > 0 such that if ‖F − �‖C1(U ) ≤ δ, then F has at least one critical point
in U . In particular, any (possibly degenerate) local minimum or maximum point is stable, as
well as any non degenerate critical point and any isolated critical point with non-trivial local
degree.
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Next, for ξ = (ξ1, . . . , ξN ) ∈ M+ we introduce the function

A(ξ) := 4π

N∑

j=1

K̃ (ξ j )e
8πh(ξ j ,ξ j )+8π

∑
k �= j G(ξ j ,ξk )

[

�g log K̃ (ξ j ) + 8π N

|�| − 2κg(ξ j )

]

= 4π

N∑

j=1

K̃ (ξ j )e
8πh(ξ j ,ξ j )+8π

∑
k �= j G(ξ j ,ξk )

[

�g log K (ξ j ) + 8π N −4πχ(�, α)

|�|
]

.

(2.3)
Then, the variational reduction method developed in [23] gives the following result, where

the role of stable critical points of � arises in the existence of solutions of (∗)ρ . Even though
in [23] only the case of positive orders is considered, one can easily check that the proof
continue to hold also for αi > −1.

Proposition 2.2 ([23]) Let N , m ∈ N. Assume that K : � → R is a C2 function and pi ∈ �

for i = 1, . . . , m. Then for any −1 < α� < α� there exists δ = δ(α�, α�) > 0 such that if:

(a) α� ≤ αi ≤ α� for any i = 1, . . . , m,
(b) ξ∗ ∈ M+ is such that A(ξ∗) > 0 (resp. < 0),
(c) ξ∗ is a stable critical point of �α ,

then for all ρ ∈ (8π N , 8π N + δ) [resp. ρ ∈ (8π N − δ, 8π N )] there is a solution vρ of
(∗)ρ .

Moreover

ρ
K̃ (x)evρ

∫
�

K̃ (x)evρ dVg
→ 8π

N∑

j=1

δξ∗
j

as ρ → 8π N (2.4)

in the measure sense.

We point out that the above proposition is stated here in a slightly more general way than in
[23, Theorem 1.1]; precisely in our formulation we stress that the number δ can be chosen
uniformly for bounded values of αi away from −1.

Remark 2.3 (Condition b)) If the function K and the orders α1, . . . , αm satisfy

sup
ξ∈�+

(�g log K (ξ)) <
(4πχ(�, α) − 8π N )

|�| , (2.5)

then we have A(ξ) < 0 for all ξ ∈ M+, and, consequently, condition b) in Proposition 2.2
is satisfied. In particular (2.5) holds if there exists β > 0 such that

sup
ξ∈�+

(�g log K (ξ)) ≤ −β & χ(�, α) > 2N − β|�|
4π

. (2.6)

Observe that these two conditions are indeed assumed in Theorems 1.1, 1.2, and 1.4. In Sect. 5
we will also prove other existence results for (∗)ρ without assuming (2.6) but exhibiting
classes of functions K , sign-changing or also positive, (and values of αi ’s) for which A < ′
in suitable subsets of M+ where one can find a local maximum of �α (see Theorem 5.2).

Remark 2.4 We notice that, since K > 0 on �+ and K = 0 on ∂�+, one cannot have
�g K > 0 on �+, so it is not possible to find a general reasonable explicit sufficient condition
to guarantee A(ξ) > 0 for all ξ ∈ M+ similar to (2.6) above. Nevertheless in Sect. 5 we
will provide examples of functions K for which a stable critical point ξ∗ exists for �α and
satisfies condition A(ξ∗) > 0, yielding solvability of problem (∗)ρ thanks to Proposition 2.2
(see Theorem 5.1).
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We discuss now sufficient conditions for assumption c) in Proposition 2.2 to hold. The
following first result is immediate and deals with the case when �+ has a sufficiently large
number of connected components.

Proposition 2.5 Let N+ ∈ N and α1, . . . , αm > −1. Assume that �+ consists of N+
connected components, N ≤ N+, hypotheses (H1), (H2) hold and, in addition,

αi > 0 ∀i = 1, . . . , �. (2.7)

Then the functional � admits a local maximum ξ∗ = (ξ∗
1 , . . . , ξ∗

N ) ∈ M+ with each point
ξ∗

j belonging to a separate connected component of �+.

The proofs of the next two results are quite involved and will be postponed in Sect. 4.

Proposition 2.6 Let N ∈ N and α1, . . . , αm > −1. Suppose that �+ has a non contractible
connected component, hypotheses (H1), (H2), (H3), (H4) hold and, in addition,

αi �= 0, 1, . . . , N − 1 ∀i = 1, . . . , �. (2.8)

Then � has a stable critical point ξ∗ ∈ M+.

Proposition 2.7 Let N ∈ N and α1, . . . , αm > −1. Suppose that hypotheses (H1), (H2),
(H3), (H4) hold and, in addition,

αi �= 0, 1, . . . , N − 1 ∀i = 1, . . . , �, (2.9)

N ≤ � +
�∑

i=1

[αi ]−. (2.10)

Then � has a stable critical point ξ∗ ∈ M+.

Propositions 2.5, 2.6, and 2.7 are at the core of this work, indeed by combining them with
Proposition 2.2 we get all our existence results and in particular Theorems 1.1, 1.2 and 1.4,
as we will see in the next section.

3 Existence results for the general Liouville problem (∗)ρ

In this section we provide the three main existence results for the Liouville equation (∗)ρ ,
from which we will deduce Theorems 1.1, 1.2 and 1.4 by choosing

ρ = ρgeo = 4πχ(�, α).

Let us begin with the first result which is a combination of Propositions 2.2 and 2.5.

Theorem 3.1 Let N+ ∈ N. Assume that �+ consists of N+ connected components, N ≤ N+
and hypotheses (H1), (H2) hold. Then for any −1 < α� < α� there exists δ = δ(α�, α�) > 0
such that, if α1, . . . , αm verify (2.7) and

(i) α� ≤ αi ≤ α� for any i = 1, . . . , m,
(ii) A > 0 (resp. < 0) in the set of local maxima of �,

then for all ρ ∈ (8π N , 8π N + δ) [resp. ρ ∈ (8π N − δ, 8π N )] there is a solution vρ of
(∗)ρ . Moreover there exists ξ∗ ∈ M+ such that (2.4) holds.

Taking into account of Remark 2.3, Theorem 3.1 can be reformulated as follows.
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Corollary 3.2 Let N+ ∈ N. Assume that �+ consists of N+ connected components, N ≤
N+, hypotheses (H1), (H2) hold and

sup
ξ∈�+

(�g log K (ξ)) ≤ −β

for some β > 0. Then for any −1 < α� < α� there exists δ = δ(α�, α�) > 0 such that, if
α1, . . . , αm verify (2.7) and:

(i) α� ≤ αi ≤ α� for any i = 1, . . . , m,
(ii) χ(�, α) > 2N − β|�|

4π
,

then for all ρ ∈ (8π N − δ, 8π N ) there is a solution vρ of (∗)ρ . Moreover there exists
ξ∗ ∈ M+ such that (2.4) holds.

Similarly, combining Propositions 2.2 and 2.6 we get the following.

Theorem 3.3 Let N ∈ N. Suppose that �+ has a non contractible connected component
and hypotheses (H1), (H2), (H3), (H4) hold. Then for any −1 < α� < α� there exists
δ = δ(α�, α�) > 0 such that, if α1, . . . , αm verify (2.8) and

(i) α� ≤ αi ≤ α� for any i = 1, . . . , m,
(ii) A > 0 (resp. < 0) in the set of critical points of �,

then for all ρ ∈ (8π N , 8π N + δ) [resp. ρ ∈ (8π N − δ, 8π N )] there is a solution vρ of
(∗)ρ . Moreover there exists ξ∗ ∈ M+ such that (2.4) holds.

Proceeding similarly as above, using Remark 2.3 we also have:

Corollary 3.4 Let N ∈ N. Suppose that �+ has a non contractible connected component,
hypotheses (H1), (H2), (H3), (H4) hold and

sup
ξ∈�+

(�g log K (ξ)) ≤ −β

for some β > 0. Then for any −1 < α� < α� there exists δ = δ(α�, α�) > 0 such that, if
α1, . . . , αm verify (2.8) and:

(i) α� ≤ αi ≤ α� for any i = 1, . . . , m,
(ii) χ(�, α) > 2N − β|�|

4π
,

then for all ρ ∈ (8π N − δ, 8π N ) there is a solution vρ of (∗)ρ . Moreover there exists
ξ∗ ∈ M+ such that (2.4) holds.

Last, combining Propositions 2.2 and 2.7 we obtain:

Theorem 3.5 Let N ∈ N. Suppose that hypotheses (H1), (H2), (H3), (H4) hold. Then for
any −1 < α� < α� there exists δ = δ(α�, α�) > 0 such that, if α1, . . . , αm verify (2.9),
(2.10) and

(i) α� ≤ αi ≤ α� for any i = 1, . . . , m,
(ii) A > 0 (resp. < 0) in the set of critical points of �,

then for all ρ ∈ (8π N , 8π N + δ) [resp. ρ ∈ (8π N − δ, 8π N )] there is a solution vρ of
(∗)ρ . Moreover there exists ξ∗ ∈ M+ such that (2.4) holds.

Once more, using Remark 2.3 we also have:
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Corollary 3.6 Let N ∈ N. Suppose that hypotheses (H1), (H2), (H3), (H4) hold and

sup
ξ∈�+

(�g log K (ξ)) ≤ −β

for some β > 0. Then for any −1 < α� < α� there exists δ = δ(α�, α�) > 0 such that, if
α1, . . . , αm verify (2.9), (2.10) and

(i) α� ≤ αi ≤ α� for any i = 1, . . . , m,
(ii) χ(�, α) > 2N − β|�|

4π
,

then for all ρ ∈ (8π N − δ, 8π N ) there is a solution vρ of (∗)ρ . Moreover there exists
ξ∗ ∈ M+ such that (2.4) holds.

Observe that Theorems 1.1, 1.2 and 1.4 follow immediately from Corollaries 3.2, 3.4 and
3.6, respectively, by taking α� = 2N − χ(�) + m and ρ = ρgeo.

Thus in order to achieve the existence results for problem (∗)ρgeo such as the ones stated in
Theorem 1.1, 1.2 and 1.4, it remains to prove Propositions 2.6–2.7 (the proof of Proposition
2.5 is immediate). This will be accomplished in the next section.

4 The min–max scheme

The discussion in the previous section implies that our problem reduces now to investigate
the existence of stable critical points for the reduced energy � in order to prove Propositions
2.6 and 2.7. In this section we will apply a max-min argument to characterize a topologically
nontrivial critical value of the function � in the set M+. Since K̃ is defined by (1.7), �

actually becomes

�(ξ) = H(ξ) + 1

4π

N∑

j=1

log K (ξ j ) −
�∑

i=1

αi

N∑

j=1

G(ξ j , pi ) +
N∑

j,k=1
j �=k

G(ξ j , ξk).

where H is a smooth term on (�+)N , precisely

H(ξ) :=
N∑

j=1

h(ξ j , ξ j ) −
m∑

i=�+1

αi

N∑

j=1

G(ξ j , pi ) ∈ C1((�+)N ).

Let us briefly outline the variational argument we are going to set up, which consists of
two parts.

First we will construct sets B, B0, D ⊂ M+ satisfying the following two properties:

(P1) D is open, B and B0 are compact, B is connected and

B0 ⊂ B ⊂ D ⊂ D ⊂ M+;
(P2) let us set F to be the class of all continuos maps γ : B → D with the property that

there exists a continuos homotopy � : [0, 1] × B → D such that:

�(0, ·) = idB, �(1, ·) = γ, �(t, ξ) = ξ ∀t ∈ [0, 1], ∀ξ ∈ B0;
then

�∗ := sup
γ∈F

min
ξ∈B �(γ (ξ)) < min

ξ∈B0
�(ξ); (4.1)
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Secondly, we need to exclude the possibility that the critical point is placed on the boundary
of our domain, and precisely we need that:

(P3) for every ξ ∈ ∂D such that �(ξ) = �∗, ∂D is smooth at ξ and there exists a vector τξ

tangent to ∂D at ξ so that τξ · ∇�(ξ) �= 0.

Under these assumptions a critical point ξ ∈ D of � with �(ξ) = �∗ exists, as a standard
deformation argument involving the gradient flow of � shows. Moreover, since properties
(P2)–(P3) continue to hold also for a functional which is C1-close to �, then such critical
point will survive small C1-perturbations and, consequently, will be stable in the sense of
Definition 2.1.

Hence, once properties (P1)–(P2)–(P3) are established, for suitable sets B, B0 and D,
Propositions 2.6 and 2.7 would follow. We will prove (P1)–(P2)–(P3) in Sects. 4.1, 4.2 and
4.3 respectively.

4.1 Definition of B, B0, and proof of (P1)

To establish property (P1), we define

D = {
ξ ∈ M+ ∣

∣ �(ξ) > −M
}

(4.2)

where M > 0 is a sufficiently large number yet to be chosen and

�(ξ) : = H(ξ) + 1

4π

N∑

j=1

log K (ξ j ) −
�∑

i=1

αi

N∑

j=1

G(ξ j , pi ) −
N∑

j,k=1
j �=k

G(ξ j , ξk).

By using the properties of the functions K , G it is easy to check that � satisfies

�(ξ) → −∞ as ξ → ∂M+, (4.3)

and this implies that D is compactly contained in M+. In order to define B, we fix

σ1, . . . , σN ⊂ �+\{p1, . . . , p�} (4.4)

N (not necessarily distinct) simple, closed curves in �+ which do not intersect any of the
singular sources pi . Next we fix

ξ0 = (ξ0
1 , . . . , ξ0

N ) ∈ σ1 × · · · × σN , ξ0
j �= ξ0

k ∀ j �= k

a N -tuple of N distinct points. The exact choice of curves σ j and points ξ0
j will be specified

later and will depend on the topology of �+. We introduce the set
{
ξ ∈ (�+)N

∣
∣
∣ ξ j ∈ σ j & dg(ξ j , ξk) > M−1 ∀ j �= k

}
. (4.5)

In principle, we do not know whether (4.5) is connected or not, so we will choose a convenient
connected component W . Since ξ0

j �= ξ0
k for j �= k, then ξ0 belongs to the set in (4.5) provided

that M is sufficiently large. Now we are in conditions of defining B and B0:

W := the connected component of (4.5) containing ξ0,

B := W , B0 =
{
ξ ∈ B

∣
∣
∣ min

j �=k
dg(ξ j , ξk) = M−1

}
.
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B is clearly connected and B0 ⊂ B. Moreover, by construction, we get that the N -tuple of
points in (4.5) are uniformly distant from the sources pi and as well as from the boundary
∂�+ thanks to (4.4), therefore

N∑

j=1

log K (ξ j ) = O(1),

�∑

i=1

αi

N∑

j=1

G(ξ j , pi ) = O(1) in B (4.6)

with the above quantity O(1) uniformly bounded independently of M . On the other hand in
the set B we also have G(ξ j , ξk) ≤ log M + C for j �= k by (1.8). Consequently for large M
we also have B ⊂ D. We have thus proved property (P1).

4.2 Proof of (P2)

Throughout this section we assume that assumptions (H1), (H2), (H3), (H4) hold.
We begin by providing the following crucial intersection property which is an easy con-

sequence of a topological degree argument.

Lemma 4.1 For any j = 1, . . . , N let P j be a retraction of �+ \ {p1, . . . , p�} onto σ j , i.e.
P j : �+ \{p1, . . . , p�} → σ j is a continuous map so that P j

∣
∣
σ j

= idσ j . Then for any γ ∈ F
there exists ξ∗

γ ∈ B such that

P j (γ j (ξ
∗
γ )) = ξ0

j ∀ j = 1, . . . , N .

Proof Let γ ∈ F, namely γ : B → D is a continuous map such that there exists a continuous
homotopy � : [0, 1] × B → D satisfying:

�(0, ·) = idB, �(1, ·) = γ, �(t, ξ) = ξ ∀t ∈ [0, 1], ∀ξ ∈ B0.

Extend � continuously from B to σ := σ1 × · · ·× σN as �̃ : [0, 1]× σ → D defined simply
as

�̃(t, ξ) = �(t, ξ) if ξ ∈ B, �̃(t, ξ) = ξ if ξ ∈ σ\B.

Notice that B0 is the topological boundary of B relative to σ , then �̃ is a continuos map and

�̃(0, ·) = idσ , �̃(t, ·)∣∣B0
= idB0 , �̃(t, ·)∣∣

σ\B = idσ\B ∀t ∈ [0, 1].

Set γ = (γ1, . . . , γN ) and �̃ = (�̃1, . . . , �̃N ) with γ j : B → �+ and �̃ j : [0, 1]×σ → �+.
Then the map S : [0, 1] × σ → σ with components

S j (t, ξ) = (P j ◦ �̃ j )(t, ξ), j = 1, . . . , N ,

is continuous and satisfies

S(0, ·) = idσ , S(t, ·)∣∣
σ\B = idσ\B ∀t ∈ [0, 1]. (4.7)

In order to apply a degree argument, we can identify each σ j , j = 1, . . . , N , with S
1 through

a suitable homeomorphism, and then regard S as a map [0, 1] × (S1)N → (S1)N with
S(0, ·) = id(S1)N . We consider the annulus in R

2

U :=
{

u ∈ R
2
∣
∣
∣

1

2
< |u| < 2

}

.
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Then we extend S from (S1)N to U
N

as S̃ having components

S̃ j (t, u) = |u j |S j

(
t,

u1

|u1| , . . . ,
uN

|uN |
)
, ∀u = (u1, . . . , uN ) ∈ U

N
.

Notice that
u j
|u j | ∈ S

1 for u j ∈ U , so S̃ j is well defined. Clearly S̃ is a continuous map by
construction and

S̃(0, ·) = id
U

N .

Moreover the definition of S̃ yields

|S̃ j (t, u)| = |u j | ∀t ∈ [0, 1],∀u ∈ U
N

(4.8)

and, consequently,

S̃(
t, U N ) ⊂ U N ∀t ∈ [0, 1]

and

S̃(
t, ∂

(
U N )) ⊂ ∂

(
U N ) ∀t ∈ [0, 1].

Once we have proved the crucial property that S̃ maps the boundary ∂
(
U N

)
into itself, now we

are in the position to apply a topological degree argument: indeed, the homotopy invariance
gives that if u ∈ U N then deg(S̃(1, ·), U N , u) = deg(S̃(0, ·), U N , u) = deg(id, U N , u) =
1. In particular

deg(S̃(1, ·), U N , ξ0) = 1

where ξ0 ∈ (S1)N corresponds to the original ξ0 ∈ σ through the identifications of each σ j

with S
1. Then, there exists u∗ = (u∗

1, . . . , u∗
N ) ∈ U N so that

S̃(1, u∗) = ξ0.

Thanks to (4.8) we get u∗ ∈ (S1)N , which, in turn, implies

S(1, u∗) = S̃(1, u∗) = ξ0.

Getting back to σ again by the isomorphism σ ≈ (S1)N , we deduce the existence of ξ∗ =
(ξ∗

1 , . . . , ξ∗
N ) ∈ σ such that

S(1, ξ∗) = ξ0.

We claim that ξ∗ ∈ B: otherwise, if ξ∗ ∈ σ\B, then S(1, ξ∗) = ξ∗ by (4.7), which would
lead to ξ∗ = ξ0, and this provides a contradiction to ξ0 ∈ B. So, ξ∗ ∈ B and

P j (γ j (ξ
∗)) = P j (� j (1, ξ∗)) = S j (1, ξ∗) = ξ0

j ∀ j = 1, . . . , N .

��
Now we are going to prove (P2). The definition of the max-min value �∗ in (4.1) depends

on the particular M > 0 chosen in (4.2). To emphasize this fact we denote this max-min
value by �∗

M . In the remaining part of this section we will prove that (P2) holds for M
sufficiently large. To this aim we need the estimate for �∗

M provided by the following two
propositions which prove the uniform boundedness (with respect to M) under the assumptions
of Propositions 2.6 and 2.7, respectively.
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For the sake of simplicity, in the proofs we will use the additional assumption that

�+ is connected.

This assumption is made without loss of generality in this framework: indeed, if �+ is not
connected, then it is sufficient to replace �+ by one of its connected components in the
definition of the set M+ in (2.2), and then confining the search of a critical point for � to
such a component.

Remark 4.2 Anyway let us stress that if �+ is not connected, then the results of Propositions
2.6 and 2.7 may possibly be improved (allowing larger values of N in Proposition 2.7, for
instance) by suitably gluing the construction in each connected components. Anyway the
optimal results for non-connected surface would require some more technicality and we will
not comment on this issue any further.

Proposition 4.3 Assume that �+ is connected and non contractible. Then the quantity �∗
M

is bounded independently of the number M used to define D, namely there exist two constants
c, C independent of M such that

c ≤ �∗
M ≤ C. (4.9)

Proof To prove the lower boundedness it is sufficient to take γ = idB in the definition (4.1):

�∗
M ≥ min

ξ∈B �(ξ) ≥ min
ξ∈B

(
1

4π

N∑

j=1

log K (ξ j ) −
�∑

i=1

αi

N∑

j=1

G(ξ j , pi ) − C

)

. (4.10)

As we have already observed in (4.6), the function in the bracket is uniformly bounded in
the set B independently of M .

To get an upper estimate for the max-min value we need that a crucial intersection property
is accomplished, and this will follow from Lemma 4.1 for a suitable choice of curves σ j and
points ξ0

j . Since such a choice depends on the topological properties of �, in order to perform
the geometrical construction it is convenient to distinguish the two cases

G(�) = 0 and G(�) > 0,

where G(�) denotes the genus of �.
Before going on we observe that the conclusion of the proposition is invariant under

diffeomorphism: more precisely, assume that ω : �+ → ω(�+) is a diffemomorphism and
suppose that we have proved the thesis for the functional � ◦ω−1(ξ ′) defined for ξ ′ ∈ ω(�+)

with the corresponding sets ω(D), ω(B), ω(B0); then, denoting by g′ the metric on ω(�+)

and setting ξ ′ := ω(ξ), we have

cdg′(ξ ′
j , ξ

′
k) ≤ dg(ξ j , ξk) ≤ Cdg′(ξ ′

j , ξ
′
k). (4.11)

Since the unbounded terms in the definition of � just involve the logarithm of the distance
function or the logarithm of K , then thanks to (4.11) the thesis continues to hold for our
original functional �.

So, in the remaining part of the proof without loss of generality we may replace �+ with
a topologically equivalent surface.
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Case I: G(�) = 0.

The case of genus zero corresponds to a surface � which is a topological sphere. Then �+
turns out to be diffeomorphic to a planar domain which is non contractible. So let us assume
that �+ coincides with a planar domain with a spherical hole of radius 1: more precisely

�+ ≡ � ⊂ R
2,

and

B1 := {x2 + y2 < 1} is a connected component of R2\�.

In this case the construction we are going to set up is based on a similar argument carried
out in [18] in a Euclidean context.

Let us fix a radius ρ > 1 sufficiently close to 1 in such a way that the circle centered at 0
with radius ρ is contained in �:

σ := {x2 + y2 = ρ2} ⊂ �,

and σ does not intersect any of the singular points pi :

pi /∈ σ ∀i = 1, . . . , �.

We construct a retraction of �+ ≡ � onto σ by simply projecting along rays starting from
0:

P(ξ) = ρ
ξ

|ξ | ∀ξ ∈ �.

Then we apply Lemma 4.1 by taking

σ j = σ, P j = P ∀ j = 1, . . . , N ,

and we find that for any γ ∈ F there exists ξ∗
γ ∈ B such that

γ j (ξ
∗
γ ) ∈ P−1(ξ0

j ) ∀ j = 1, . . . , N .

By construction the fibers of P are half-lines emanating from zero and are well-separated
thanks to the presence of the hole B1, then, since ξ0

j �= ξ0
k for j �= k, there exists μ > 0 such

that
disteucl(P−1(ξ0

j ), P−1(ξ0
k )) ≥ μ ∀ j �= k (4.12)

which implies

G(γ j (ξ
∗
γ ), γk(ξ

∗
γ )) = O(1) ∀ j �= k

with the above quantity O(1) uniformly bounded independently of γ . So an upper bound on
�∗

M is obtained by evaluating on γ (ξ∗
γ ) as follows:

min
ξ∈B �(γ (ξ)) ≤ �(γ (ξ∗

γ )) ≤
N∑

j,k=1
j �=k

G(γ j (ξ
∗
γ ), γk(ξ

∗
γ )) + C ≤ C.

Hence, by taking the supremum for all the maps γ ∈ F , we conclude that the max-min value
�∗

M is bounded above independently of M , as desired.
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Case II: G(�) > 0.

According to the classification of compact connected orientable surfaces (see [25, Theorem
3.7, page 217]) we have that �+ is diffeomorphic to the surface obtained from an orientable
closed surface by removing the interiors of k disjoints disks. So let us assume that

�\�+ is the disjoint union of k open disks.

Moreover, since the genus of � is positive, up to a new diffeomorphism we can also assume
that � is embedded in R

3 and satisfies

σ := {x2 + y2 = 1, z = 0} ⊂ �, � ∩ {x2 + y2 < 1} = ∅, (4.13)

σ ⊂ �+, σ ∩ {p1, . . . , p�} = ∅. (4.14)

This is quite obvious when G(�) = 1: indeed, in this case � is diffeomorphic to the torus

{
(

x, y, z) ∈ R
3 |

(√

x2 + y2 − 2

)2

+ z2 = 1

}

(4.15)

which satisfies (4.13); moreover, possibly slightly perturbing the diffeomorphism, we can
always assume that the singular sources pi (i = 1, . . . , �) in �+ do not belong to σ and that
σ does not intersect the k disks of � \ �+, so that (4.14) holds. When G(�) = m ≥ 2, � is
diffeomorphic to the connected sum of m tori, obtained by gluing in a smooth way the torus
(4.15) with other m −1 torii outside the cylinder {x2 + y2 ≤ 2}. Also in this case, � satisfies
properties (4.13)–(4.14).

In what follows we adapt some argument used in [17] for K positive. Notice that the above
assumptions (4.13)–(4.14) are crucial to define a retraction of �+ onto σ as

P(x, y, z) =
(

x

x2 + y2 ,
y

x2 + y2 , 0

)

. (4.16)

Indeed, by (4.13)–(4.14) the map P : �+ → σ is well-defined and continuous with P
∣
∣
σ

=
idσ . Then we apply Lemma 4.1 by taking

σ j = σ, P j = P ∀ j = 1, . . . , N ,

and we find that for any γ ∈ F there exists ξ∗
γ ∈ B such that

γ j (ξ
∗
γ ) ∈ P−1(ξ0

j ) ∀ j = 1, . . . , N .

Let us investigate the structure of the fibers of P in this case: the fibers of P lie on vertical
half-planes starting from the z-axis and their (euclidean) distance from the z-axis is greater
than 1 in view of (4.13). Then they are well-separated, so (4.12) is satisfied and we conclude
as in the previous case. ��
Proposition 4.4 Assume that �+ is connected and contractible and that the inequality (2.10)
is satisfied. Then the same thesis of Proposition 4.3 holds.

Proof �+ turns out to be diffeomorphic to a two dimensional domain. So, since the thesis
of the proposition is invariant under diffeomorphism as we have observed at the beginning
of the proof of Proposition 4.3, from now on let us assume

�+ ≡ � ⊂ R
2.

We are in position to adapt the arguments in [16] for the following geometrical construction.
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A lower bound on �∗
M follows by taking γ = idB and reasoning exactly as in (4.10).

Let us focus on finding an upper estimate for �∗
M . Hereafter we will often use the complex

numbers to identify the points in R
2 and we will denote by i the imaginary unit. First of all

let us fix angles θi (i = 1, . . . , �) and a number δ ∈ (0, π
2 ) sufficiently small such that the

cones {
pi + ρei(θi +θ)

∣
∣ ρ ≥ 0, θ ∈ [−δ, δ]}, i = 1, . . . , � (4.17)

are disjoint from one another. We point out that such choice of angles always exists since the
set of singular sources p1, . . . , p� is finite. Possibly decreasing δ, we may also assume

Sδ(pi ) ⊂ �, |pi − pr | > 2δ ∀i, r = 1, . . . , �, i �= r. (4.18)

where Sδ(pi ) denotes the circle in R
2 with center pi and radius δ. According to assumption

(2.10) we may split N as N1 + N2 + · · · + N� with Ni ∈ N satisfying

0 ≤ Ni ≤ 1 + [αi ]− ∀i. (4.19)

Next we split {1, . . . , N } as I1 ∪ . . . ∪ I� where

I1 = {1, 2, . . . , N1},
I2 = {N1 + 1, N1 + 2, . . . , N1 + N2},
. . .

Ii = {N1 + · · · + Ni−1 + 1, . . . , N1 + · · · + Ni },
. . .

I� = {N1 + · · · + N�−1 + 1, . . . , N }.
Then we set

σ j := Sδ(pi ), P j (ξ) = pi + δ
ξ − pi

|ξ − pi | ∀ j ∈ Ii , i = 1, . . . , �.

Now we fix N -tuple

ξ0 = (ξ0
1 , . . . , ξ0

N )

by

ξ0
j = pi + δe

i
(
θi + j δ

N

)

∈ σ j ∀ j ∈ Ii , i = 1, . . . , �. (4.20)

Clearly P j : �\{pi } → σ j defines a retraction onto σ j . Then Lemma 4.1 applies with this
choice of ξ0

j , σ j , P j and gives that for any γ ∈ F there exists ξ∗
γ ∈ B such that, setting

z j = γ j (ξ
∗
γ ),

P j (z j ) = ξ0
j ∀ j = 1, . . . , N ,

which implies

z j − pi

|z j − pi | = e
i
(
θi + j δ

N

)

∀ j ∈ Ii , i = 1, . . . , �.

Let us observe that in this case the fibers of P j are half-lines emanating from pi and the
assumption (2.10) is required to get a control on the energy when two or more components of
z = (z1, . . . , zN ) collapse onto pi , which represents a crucial point to establish the uniform
boundedness from above of �∗

M . Indeed, by construction we obtain

|z j − zk | ≥ |z j − pi | sin
δ

2N
∀ j, k ∈ Ii , j �= k (i = 1, . . . , �).
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Moreover, for any j ∈ Ii we have that ξ j belongs to the cone (4.17). This implies that

|z j − zk | ≥ μ ∀ j ∈ Ii , k ∈ Ir , i �= r

where the value μ depends only on the choice of the angles θi and the number δ. Combining
these facts with (1.8) we may estimate

�(z) ≤ −
�∑

i=1

αi

2π

N∑

j=1

log
1

|z j − pi | + 1

2π

N∑

j,k=1
j �=k

log
1

|z j − zk | + C

≤ − 1

2π

�∑

i=1

αi

N∑

j=1

log
1

|z j − pi | + 1

2π

�∑

i=1

∑

j,k∈Ii
j �=k

log
1

|z j − zk | + C.

(4.21)

For a fixed i ∈ {1, . . . , �} and j ∈ Ii we have

− αi log
1

|z j − pi | +
∑

k∈Ii
k �= j

log
1

|z j − zk |

≤ −αi log
1

|z j − pi | + (Ni − 1) log
1

|z j − pi | − (Ni − 1) log sin
δ

2N
.

Since αi > Ni − 1 by (4.19), the above quantity is uniformly bounded above. Combining
this with (4.21) we deduce a uniform upper bound for � on the range of γ :

min
ξ∈B �(γ (ξ)) ≤ �(γ (ξ∗

γ )) = �(z) ≤ C

with the constant C independent of γ. By taking the supremum for all the maps γ ∈ F we
obtain the thesis. ��

Then taking into account of Propositions 4.3 and 4.4 the max-min inequality (P2) will
follow once we have proved the next result.

Proposition 4.5 The following holds:

min
ξ∈B0

�(ξ) = min

{

�(ξ)

∣
∣
∣ ξ ∈ B, min

j �=k
dg(ξ j , ξk) = M−1

}

→ +∞ as M → +∞. (4.22)

Proof Let ξn = (ξn
1 , . . . , ξn

N ) ∈ B be such that min j �=k dg(ξ
n
j , ξ

n
k ) → 0 as n → +∞.

Possibly passing to a subsequence, we may assume

dg(ξ
n
j0 , ξ

n
k0

) → 0 as n → +∞ (4.23)

for some j0 �= k0. So, by using (4.6), we may estimate

�(ξn) = 1

2π

N∑

j,k=1
j �=k

log
1

dg(ξ
n
j , ξ

n
k )

+ O(1) ≥ 1

π
log

1

dg(ξ
n
j0
, ξn

k0
)

+ O(1) → +∞.

��
Hence, the proof of property (P3) carried out in the next section allows us to conclude the

proof of Propositions 2.6 and 2.7.
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4.3 Proof of (P3)

We shall show that the compactness property (P3) holds provided that M is sufficiently large
and assumptions (H1), (H2), (H3), (H4), (2.8)–(2.9) hold.

By Propositions 4.3 and 4.4 we get �∗ = �∗
M = O(1) as M → +∞. Then (P3) will

follow once we have proved the assertion of tangential derivative being non-zero over the
boundary of D for uniformly bounded values of � provided that M is large enough. We point
out that we will follow some argument of [17], where an analogous compactness property is
proved for positive K ; however, unlike [17], here we have also to rule out the possibility that
some critical point occurs on the boundary ∂�+ and this is a delicate situation that needs to
be handled carefully.

We proceed by contradiction: assume that there exist ξn = (ξn
1 , . . . , ξn

N ) ∈ M+ and
(βn

1 , βn
2 ) �= (0, 0) such that

�(ξn) → −∞, �(ξn) = O(1), (4.24)

βn
1 ∇�(ξn) + βn

2 ∇�(ξn) = 0. (4.25)

The last expression implies that ∇�(ξn) and ∇�(ξn) are linearly dependent. Observe that,
according to the Lagrange multiplier Theorem, this contradicts either the smoothness of
∂D or the nondegeneracy of ∇�(ξn) on the tangent space at the level �∗. Without loss of
generality we may assume

(βn
1 )2 + (βn

2 )2 = 1 and βn
1 + βn

2 ≥ 0. (4.26)

Observe that by (4.24)

2
N∑

j,k=1
j �=k

G(ξn
j , ξ

n
k ) = �(ξn) − �(ξn) → +∞,

which implies
min
j �=k

dg(ξ
n
j , ξ

n
k ) = o(1). (4.27)

Identity (4.25) can be rewritten as

βn
1 + βn

2

4π

∇K (ξ j )

K (ξ j )
− (βn

1 + βn
2 )

�∑

i=1

αi∇ξ j G(ξn
j , pi )

+2(βn
1 − βn

2 )

N∑

k=1
k �= j

∇ξ j G(ξn
j , ξ

n
k ) = O(1) ∀ j. (4.28)

The object of the remaining part of the section is to expand the left hand side of (4.25) and to
prove that the leading term is not zero, so that the contradiction arises. Before going on we
fix some notation. For every ξ ∈ � we introduce normal coordinates yξ from a neighborhood
of ξ onto Br0(0) (the choice of r0 is independent of ξ ) which depend smoothly on ξ ∈ �.
Since yξ (ξ) = 0 and dg(x, ξ) = |yξ (x)| for all x ∈ y−1

ξ (Br0(0)), we have that

dg(ξ1, ξ2) = |yξ (ξ1) − yξ (ξ2)|(1 + o(1))
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and

∇ξ1 log dg(ξ1, ξ2) = yξ2(ξ1)

|yξ2(ξ1)|2 = yξ (ξ1) − yξ (ξ2) + o(|yξ (ξ1) − yξ (ξ2)|)
|yξ (ξ1) − yξ (ξ2)|2 (4.29)

as ξ1, ξ2 → ξ .
Hereafter we might pass to subsequences without further notice.
Let us split {1, . . . , N } as Z̃ ∪ Z0 ∪ Z1 ∪ . . . ∪ Z� where

Z̃ = { j | dg(ξ
n
j , ∂�+) ≥ c & dg(ξ

n
j , pi ) ≥ c for all i},

Z0 = { j | dg(ξ
n
j , ∂�+) → 0}, Zi = { j | ξn

j → pi }, i = 1, . . . , �.

We begin with the following three lemmas.

Lemma 4.6 dg(ξ
n
j , ξ

n
k ) ≥ c for all j, k ∈ Z0, j �= k.

Proof Suppose by contradiction that there exists a point ξ0 ∈ ∂�+ which is the limit of more
than one sequence ξn

j ; then define the subset Y0 ⊂ Z0 corresponding to such sequences:

Y0 := { j | ξn
j → ξ0}, dg(ξ

n
j , ξ0) ≥ c ∀ j ∈ Z0\Y0.

Let us choose two indices j0, k0 ∈ Y0, j0 �= k0 in such a way that we may split Y0 as
I ∪ (Y0\I ) with1

j0, k0 ∈ I, dg(ξ
n
j , ξ

n
k ) ∼ dg(ξ

n
j0 , ξ

n
k0

) ∀ j, k ∈ I, j �= k.

and
dg(ξ

n
j0 , ξ

n
k0

) = o(dg(ξ j , ξk)) ∀ j ∈ I,∀k ∈ Y0\I. (4.30)

Moreover, without loss of generality we may assume

dg(ξ
n
j , ∂�+) ≥ dg(ξ

n
j0 , ∂�+) ∀ j ∈ I. (4.31)

By (4.30) we have

∇ξ j G(ξn
j , ξ

n
k ) = o

(
1

dg(ξ
n
j0
, ξn

k0
)

)

∀ j ∈ I, k ∈ Y0\I.

Recalling assumption (H2)–(H3), by (4.31) we derive

|∇K (ξn
j )|

K (ξn
j )

∼ 1

dg(ξ
n
j , ∂�+)

≤ C
1

dg(ξ
n
j0
, ∂�+)

∀ j ∈ I. (4.32)

Using the local chart yξn
j0

, and recalling (4.29), the identities (4.28) give

βn
1 + βn

2

4π

∇K (ξn
j )

K (ξn
j )

+2(βn
1 − βn

2 )
∑

k∈I
k �= j

yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )

|yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )|2 = o

(
βn

1 − βn
2

dg(ξ
n
j0
, ξn

k0
)

)

+ O(1) ∀ j ∈ I.

(4.33)

1 Here we use the notation ∼ to denote sequences which in the limit n → +∞ are of the same order.

123



Prescribed Gauss curvature problem on singular surfaces Page 25 of 36 99

Let us multiply the above identity by yξn
j0
(ξn

j ) and next sum in j ∈ I ; taking into account the

following general relation

∑

j,k∈I
j �=k

(z j − zk)(z j − z)

|z j − zk |2 =
∑

j,k∈I
j<k

1 = #I (#I − 1)

2
∀z j , z ∈ R

2 (4.34)

we obtain

βn
1 + βn

2

4π

∑

j∈I

∇K (ξn
j )

K (ξn
j )

yξn
j0
(ξn

j ) + (βn
1 − βn

2 )#I (#I − 1) = o(βn
1 − βn

2 ) + O(dg(ξ
n
j0 , ξ

n
k0

))

by which, recalling that #I ≥ 2 (since j0, k0 ∈ I ) and using (4.32), we get

βn
1 − βn

2 = (βn
1 + βn

2 )O

(
dg(ξ

n
j0
, ξn

k0
)

dg(ξ
n
j0
, ∂�+)

)

+ O
(

dg

(
ξn

j0 , ξ
n
k0

))
. (4.35)

Next let us multiply (4.33) by νn
j := ∇K (ξn

j )

|∇K (ξn
j )| and sum in j ∈ I :

βn
1 + βn

2

4π

∑

j∈I

|∇K (ξn
j )|

K (ξn
j )

+2(βn
1 − βn

2 )
∑

j,k∈I
k �= j

yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )

|yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )|2 νn
j = o

(
βn

1 − βn
2

dg(ξ
n
j0
, ξn

k0
)

)

+ O(1). (4.36)

Since K is of class C2(�) according to assumption (H2), we deduce

νn
j − νn

k = O(dg(ξ
n
j , ξ

n
k ))

by which we can write

∑

j,k∈I
k �= j

yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )

|yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )|2 νn
j =

∑

j,k∈I
j<k

yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )

|yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )|2
(
νn

j − νn
k

)
= O(1).

By inserting the above estimate into (4.36) and recalling (4.32) we arrive at

βn
1 + βn

2

4π

1

dg(ξ
n
j0
, ∂�+)

= o

(
βn

1 − βn
2

dg(ξ
n
j0
, ξn

k0
)

)

+ O(1)

or, equivalently,

βn
1 + βn

2 = (βn
1 − βn

2 )o

(dg(ξ
n
j0
, ∂�+)

dg(ξ
n
j0
, ξn

k0
)

)

+ O(dg(ξ
n
j0 , ∂�+)). (4.37)

Combining (4.35) and (4.37) we get βn
1 − βn

2 = o(1), βn
1 + βn

2 = o(1), in contradiction to
(4.26). ��
Lemma 4.7 The following holds:

(a) if #Zi = 1 for some i = 1, . . . , �, then βn
1 + βn

2 → 0;
(b) if Z0 �= ∅, then βn

1 + βn
2 → 0;
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(c) if dg(ξ
n
j , ξ

n
k ) = o(1) for some j, k ∈ Z̃ , j �= k, then βn

1 − βn
2 → 0;

(d) there exists i ∈ {1, . . . , �} such that #Zi ≥ 2.

Proof Assume that i = 1, . . . , � is such that #Zi = 1, say Zi = { j0}. Then, using the local
chart ypi , the identities (4.28) give

(βn
1 + βn

2 )αi
ypi (ξ

n
j0
)

|ypi (ξ
n
j0
)|2 = O(1)

which implies βn
1 + βn

2 = o(1), then a) follows.
Similarly, assume that Z0 �= ∅ and let j0 ∈ Z0. According to Lemma 4.6 we have

dg(ξ
n
j0
, ξ j ) ≥ c for all j �= j0. In this case the identity (4.28) with j = j0 becomes

(βn
1 + βn

2 )
∇K (ξn

j0
)

K (ξn
j0
)

= O(1).

According to assumption (H2)–(H3) we have
|∇K (ξn

j0
)|

K (ξn
j0

)
∼ 1

dg(ξn
j0

,∂�+)
, and (b) is thus estab-

lished.
Next, suppose that j0, k0 ∈ Z̃ with j0 �= k0 are such that dg(ξ

n
j0
, ξn

k0
) = o(1). We may

assume

dg(ξ
n
j0 , ξ

n
k0

) = min
j,k∈Z̃ , j �=k

dg(ξ
n
j , ξ

n
k ) ∀n ∈ N.

So we can split Z̃ as I ∪ J where

I = {
j ∈ Z̃

∣
∣ dg(ξ

n
j , ξ

n
j0) ∼ dg(ξ

n
j0 , ξ

n
k0

)
} ∪ { j0},

J = {
j ∈ Z̃

∣
∣ dg(ξ

n
j0 , ξ

n
k0

) = o(dg(ξ
n
j , ξ

n
j0))

}
.

We observe that by construction

dg(ξ
n
j0 , ξ

n
k0

) ∼ dg(ξ
n
j , ξ

n
k ) ∀ j, k ∈ I, j �= k

and dg(ξ
n
j0
, ξn

k0
) = o(dg(ξ

n
j , ξ

n
k )) for all j ∈ I and k ∈ J , by which

∇ξ j G(ξn
j , ξ

n
k ) = o

(
1

dg(ξ
n
j0
, ξn

k0
)

)

∀ j ∈ I, k ∈ J.

Then for any j ∈ I , using the local chart yξn
j0

the identities (4.28) give

(βn
1 − βn

2 )
∑

k∈I
k �= j

yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )

|yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )|2 = o

(
1

dg(ξ
n
j0
, ξn

k0
)

)

∀ j ∈ I. (4.38)

So we multiply (4.38) by yξn
j0
(ξn

j ) and sum in j ∈ I : by using (4.34) we arrive at

(βn
1 − βn

2 )#I (#I − 1) = o(1).

Taking into account that I has at least two elements, since j0, k0 ∈ I , we deduce βn
1 −βn

2 =
o(1), and c) follows.

Finally assume by contradiction that Zi consists of at most one index for every i =
1, . . . , �. Then, combining this with Lemma 4.6 and (4.27) we find that dg(ξ

n
j , ξ

n
k ) = o(1)

for some j, k ∈ Z̃ , j �= k. Then part (c) gives βn
1 − βn

2 = o(1); consequently βn
1 + βn

2 ≥ c
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by (4.26), and part (b) implies Z0 = ∅, that is K (ξn
j ) = O(1) for all j . So, thanks to (4.24)

we deduce

2
�∑

i=1

αi

N∑

j=1

G(ξ j , pi ) = −�(ξn) − �(ξn) + O(1) → +∞.

which implies

min
i, j

dg(ξ
n
j , pi ) = o(1).

Then Zi is nonempty for some i = 1, . . . , �, so #Zi = 1 for such i . Then, by (a) we derive
βn

1 + βn
2 = o(1), and the contradiction arises. ��

Lemma 4.8 If i = 1, . . . , � is such that #Zi ≥ 2, then dg(ξ
n
j , pi ) = O(dg(ξ

n
j , ξ

n
k )) for all

j, k ∈ Zi , j �= k.

Proof Fix i = 1, . . . , � with #Zi ≥ 2. We proceed by contradiction assuming that there exist
indices j0, k0 ∈ Zi , j0 �= k0, such that

dg(ξ
n
j0
, ξn

k0
)

dg(ξ
n
j0
, pi )

= min
i, j∈Zi , j �= j

dg(ξ
n
j , ξ

n
k )

dg(ξ
n
j , pi )

→ 0. (4.39)

According to (4.39) we can split Zi as I ∪ J where

I = {
j ∈ Zi

∣
∣ dg(ξ

n
j , ξ

n
j0) ∼ dg(ξ

n
j0 , ξ

n
k0

)
} ∪ { j0},

J = {
j ∈ Zi

∣
∣ dg(ξ

n
j0 , ξ

n
k0

) = o(dg(ξ
n
j , ξ

n
j0))

}
.

Clearly j0, k0 ∈ I , so #I ≥ 2. We observe that by construction

dg(ξ
n
j , pi ) ∼ dg(ξ

n
j0 , pi ) ∀ j ∈ I

and

dg(ξ
n
j , ξ

n
k ) ∼ dg(ξ

n
j0 , ξ

n
k0

) ∀ j, k ∈ I, j �= k.

Moreover dg(ξ
n
j0
, ξn

k0
) = o(dg(ξ

n
j , ξ

n
k )) for all j ∈ I and k ∈ J , by which

∇ξ j G(ξn
j , ξ

n
k ) = o

(
1

dg(ξ
n
j0
, ξn

k0
)

)

∀ j ∈ I, k ∈ J.

Using the local chart yξn
j0

, and recalling (4.29), the identities (4.28) give

(βn
1 + βn

2 )αi

yξn
j0
(ξn

j ) − yξn
j0
(pi )

|yξn
j0
(ξn

j ) − yξn
j0
(pi )|2 − 2(βn

1 − βn
2 )

∑

k∈I
k �= j

yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )

|yξn
j0
(ξn

j ) − yξn
j0
(ξn

k )|2

= o
( βn

1 + βn
2

dg(ξ
n
j0
, pi )

)
+ o

(
βn

1 − βn
2

dg(ξ
n
j0
, ξn

k0
)

)

+ O(1) ∀ j ∈ I.

(4.40)

Let us multiply the above identity by yξn
j0
(ξn

j ) and next sum in j ∈ I ; using (4.34) we obtain

(βn
1 − βn

2 )#I (#I − 1) = (βn
1 + βn

2 )O

(
dg(ξ

n
j0
, ξn

k0
)

dg(ξ
n
j0
, pi )

)

+ o(βn
1 − βn

2 ) + O(dg(ξ
n
j0 , ξ

n
k0

)).
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by which we get

βn
1 − βn

2 = O

(
dg(ξ

n
j0
, ξn

k0
)

dg(ξ
n
j0
, pi )

)

= o(1). (4.41)

Next we multiply identity (4.40) by yξn
j0
(ξn

j ) − yξn
j0
(pi ) and sum in j ∈ I ; by using again

the relation (4.34) we get

(βn
1 + βn

2 )αi #I = (βn
1 − βn

2 )#I (#I − 1)

+o(βn
1 + βn

2 ) + (βn
1 − βn

2 )o

(
dg(ξ

n
j0
, pi )

dg(ξ
n
j0
, ξn

k0
)

)

+ O(dg(ξ
n
j0 , pi )).

Taking (4.41) into account we obtain that βn
1 + βn

2 = o(1), in contradiction to (4.26). ��
Let us sum up all the previous information contained in Lemmas 4.6, 4.7 and 4.8 in order

to finally get the conclusion. According to (d) of Lemma 4.7, there exists i = 1, . . . , � be
such that #Zi ≥ 2. Let us split Zi as Y1 ∪ · · · ∪ Yl , l ≥ 1, in such a way that

dg(ξ
n
j , pi ) ∼ dg(ξ

n
k , pi ) ∀ j, k ∈ Yr

and
dg(ξ

n
j , pi ) = o(dg(ξ

n
k , pi )) ∀ j ∈ Yr , ∀k ∈ Yr+1 ∪ · · · ∪ Yl . (4.42)

Notice that by construction dg(ξ
n
j , ξ

n
k ) ∼ dg(ξ

n
k , pi ) for all j ∈ Yr , k ∈ Yr+1 ∪ · · · ∪ Yl , and

by Lemma 4.8 dg(ξ
n
j , ξ

n
k ) ∼ dg(ξ

n
k , pi ) for all j, k ∈ Yr , j �= k, yielding

dg(ξ
n
j , ξ

n
k ) ∼ dg(ξ

n
k , pi ) ∀ j ∈ Yr , ∀k ∈ Yr ∪ · · · ∪ Yl , j �= k. (4.43)

Combining (4.42)–(4.43) we get

∇ξ j G(ξn
j , ξ

n
k ) = o

(
1

dg(ξ
n
j , pi )

)

∀ j ∈ Yr , ∀k ∈ Yr+1 ∪ · · · ∪ Yl .

Next consider r ∈ {1, . . . , l} and write (4.28) for j ∈ Yr in the local chart ypi :

2(βn
1 − βn

2 )
∑

k∈Y1∪···∪Yr
k �= j

ypi (ξ
n
j ) − ypi (ξ

n
k )

|ypi (ξ
n
j ) − ypi (ξ

n
k )|2 = (βn

1 + βn
2 )αi

ypi (ξ
n
j )

|ypi (ξ
n
j )|2

+ o

(
1

dg(ξ
n
j , pi )

)

(4.44)
for all j ∈ Yr . By (4.42) and (4.43) we find |ypi (ξ

n
j )| = o(|ypi (ξ

n
j ) − ypi (ξ

n
k )|) for all

j ∈ Y1 ∪ · · · ∪ Yr−1, k ∈ Yr , and we can compute

〈ypi (ξ
n
j ) − ypi (ξ

n
k ), ypi (ξ

n
j )〉

|ypi (ξ
n
j ) − ypi (ξ

n
k )|2 = 1 + 〈ypi (ξ

n
j ) − ypi (ξ

n
k ), ypi (ξ

n
k )〉

|ypi (ξ
n
j ) − ypi (ξ

n
k )|2 = 1 + o(1)

for all j ∈Yr and k ∈Y1 ∪ · · ·∪Yr−1. Combining this with identity (4.34), by taking the inner
product of (4.44) with ypi (ξ

n
j ) and summing up in j ∈ Yr we get that

2(βn
1 −βn

2 )

(
#Yr (#Yr − 1)

2
+#Yr (#Y1 +· · ·+#Yr−1)

)

= (βn
1 +βn

2 )αi #Yr +o(1) ∀r ≥ 1.

(4.45)
Since #Zi ≥ 2, notice that the coefficient in brackets on the left hand side of (4.45) is positive
when r = l, and then 1

αi
(βn

1 −βn
2 ) and βn

1 +βn
2 are positively proportional up to higher order
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terms. So, by (4.26) and (4.45) (with r = l) we deduce that

βn
1 − βn

2

αi
, βn

1 + βn
2 ≥ c > 0. (4.46)

By (4.45) we also have
|βn

2 | ≥ c > 0. (4.47)

Indeed, if βn
2 = o(1) we would obtain βn

1 = 1 + o(1) and, consequently, #Y1 − 1 = αi in
view of (4.45) (with r = 1), contradicting the compactness assumption (2.8)–(2.9). Let us
evaluate the different summands of the energy as follows:

∑

j,k∈Zi
j �=k

G(ξn
j , ξ

n
k ) − αi

∑

j∈Zi

G(ξn
j , pi )

=
l∑

r=1

∑

j,k∈Yr
j �=k

G(ξn
j , ξ

n
k ) + 2

l∑

r=1

∑

j∈Yr
k∈Y1∪···∪Yr−1

G(ξn
j , ξ

n
k ) − αi

l∑

r=1

∑

j∈Yr

G(ξn
j , pi )

= − 1

2π

l∑

r=1

[ ∑

j,k∈Yr
j �=k

log dg(ξ
n
j , ξ

n
k ) + 2

∑

j∈Yr
k∈Y1∪···∪Yr−1

log dg(ξ
n
j , ξ

n
k )

− αi

∑

j∈Yr

log dg(ξ
n
j , pi )

]

+ O(1).

Since dg(ξ
n
j , ξ

n
k ) ∼ dg(ξ

n
j , pi ) for all j ∈ Yr and k ∈ Y1 ∪ · · · ∪ Yr with j �= k thanks to

(4.43), fixed jr ∈ Yr we have that

∑

j,k∈Yr
j �=k

log dg(ξ
n
j , ξ

n
k ) + 2

∑

j∈Yr
k∈Y1∪···∪Yr−1

log dg(ξ
n
j , ξ

n
k ) − αi

∑

j∈Yr

log dg(ξ
n
j , pi )

=
( ∑

j,k∈Yr
j �=k

1 + 2
∑

j∈Yr
k∈Y1∪···∪Yr−1

1 − αi

∑

j∈Yr

1

)

log dg(ξ
n
jr , pi ) + O(1)

= #Yr

(
#Yr − 1 + 2(#Y1 + · · · + #Yr−1) − αi

)
log dg(ξ

n
jr , pi ) + O(1)

= 2βn
2 + o(1)

βn
1 − βn

2
αi #Yr log dg(ξ

n
jr , pi ) + O(1)

where in the last identity we have used (4.45). Recalling (4.46)–(4.47), we have thus proved
that

1

βn
2

( ∑

j,k∈Zi //j �=k

G(ξn
j , ξ

n
k ) − αi

∑

j∈Zi

G(ξn
j , pi )

)

→ +∞ (4.48)

for all Zi with #Zi ≥ 2. On the other hand by (4.46) and part (a) of Lemma 4.7 we have that
for any i = 1, . . . , � either Zi = ∅ or #Zi ≥ 2. Moreover part (b) and (c) give K (ξn

j ) = O(1)

for all j and G(ξn
j , ξ

n
k ) = O(1) for all ( j, k) /∈ ⋃�

i=1(Zi × Zi ). Then we conclude
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1

βn
2
�(ξn) = 1

βn
2

[ N∑

j,k=1//j �=k

G(ξn
j , ξ

n
k ) −

�∑

i=1

αi

N∑

j=1

G(ξn
j , pi )

]

+ O(1)

= 1

βn
2

�∑

i=1

[ ∑

j,k∈Zi
j �=k

G(ξn
j , ξ

n
k ) − αi

∑

j∈Zi

G(ξn
j , pi )

]

+ O(1) → +∞

in view of (4.48), in contradiction to (4.24) and (4.47).

5 More existence results

In this section we get other existence results for solutions to (∗)ρgeo , using Proposition 2.2.
In general it is hard to guarantee the validity of condition b) of Proposition 2.2 and in all

our previous results we got it for K sign-changing and satisfying in particular condition (2.6)
discussed in Remark 2.3, which implies A(ξ) < 0 for all ξ ∈ M; in such a case condition
b) is satisfied and this led then to solutions to (∗)ρgeo , for ρgeo close to integer multiples of
8π from the left hand side.

As noticed in Remark 2.4 it is not possible to impose on K a simple condition like (2.6)
and have instead A(ξ) > 0 for all ξ ∈ M, which would lead then to solutions to (∗)ρgeo ,
for ρgeo close to integer multiples of 8π from the right hand side. And this holds both for K
sign-changing or positive.

Moreover observe that if we consider functions K > 0 then, since �g log K changes sign
on �, it is not even possible to impose on it the simple condition (2.6) in Remark 2.3 and
have A(ξ) < 0 for all ξ ∈ M. Namely for K positive it is hard to get solutions to (∗)ρgeo via
Proposition 2.2 even for ρgeo close to integer multiples of 8π from the left hand side.

Nevertheless in this section we exhibit classes of functions K , sign-changing or also
positive, (and values of αi ’s) for which we are able to produce a stable critical point ξ∗

α of �α

fulfilling conditions b) and c) of Proposition 2.2, obtaining in this way solutions to (∗)ρgeo ,
for ρgeo close to an integer multiple of 8π both from the right and from the left.

Let us first state rigorously these results on any compact orientable surface without bound-
ary (�, g). Next we will deduce from them Theorems 1.9, 1.10 and 1.11 in the introduction
which are related to the case of the standard sphere and to situations for which general
existence results are not available in the literature.

Let m, N ∈ N, p1, . . . , pm ∈ � and −1 < α� ≤ α� be fixed. For any s = (s1, . . . , sm),
α∗ ≤ si ≤ α∗, we define the functional

Ds(ξ) :=
N∑

j=1

h(ξ j , ξ j ) + 1

4π

N∑

j=1

fg(ξ j ) −
m∑

i=1

si

N∑

j=1

G(ξ j , pi ) +
N∑

j,k=1
j �=k

G(ξ j , ξk), (5.1)

which is well defined in the set

M := (�\{p1, . . . , pm})N \�, � :=
{
ξ ∈ �N

∣
∣
∣ ξ j = ξk for some j �= k

}
(5.2)

where G(x, p) is the Green’s function of −�g over � with singularity at p, the function h
denotes its regular part as in (1.8), and fg is defined by (1.5). Next we fix ξ̄ ∈ M and we
consider a radius r = r(ξ̄) > 0 such that

B2r (ξ̄) := {ξ ∈ �N | dg(ξ̄ , ξ) < 2r} ⊂ M, (5.3)
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where in the above brackets with a small abuse of notation we have continued to denote by
dg the distance on �N . Let us set

M+
ξ̄ ,α∗,α∗ := max

α∗ ≤ si ≤ α∗
i = 1, . . . , m

max
ξ∈B r

2
(ξ̄)

Ds(ξ) and m+
ξ̄ ,α∗,α∗ := min

α∗ ≤ si ≤ α∗
i = 1, . . . , m

min
ξ∈∂ Br (ξ̄)

Ds(ξ).

Let K ∈ C2(�) be either a positive function or a sign-changing function satisfying the
following

inf
ξ∈Br (ξ̄)

min
j=1,...,N

K (ξ j ) > 0, (5.4)

max
ξ∈B r

2
(ξ̄)

( 1

4π

N∑

j=1

log K (ξ j )
)

< min
ξ∈∂ Br (ξ̄)

( 1

4π

N∑

j=1

log K (ξ j )
)

+ m+
ξ̄ ,α∗,α∗ − M+

ξ̄ ,α∗,α∗ (5.5)

and

inf
ξ∈Br (ξ̄)

min
j∈1,...,N

�g log K (ξ j ) ≥ 1

|�| . (5.6)

Finally let us define the class of functions

K+
ξ̄ ,α∗,α∗ := {

K ∈ C2(�) : K satisfies (5.4), (5.5) and (5.6)
}

(5.7)

It is clear that for any fixed ξ̄ , α∗, α∗ we can exhibit plenty of functions K , both positive
or sign-changing, belonging to the class K+

ξ̄ ,α∗,α∗ . Roughly speaking, (5.4), (5.5) and (5.6)

are satisfied if K has sufficiently convex local minima at points ξ̄1, . . . , ξ̄N , where ξ̄ =
(ξ̄1, . . . , ξ̄N ).

Theorem 5.1 For any K ∈ K+
ξ̄ ,α∗,α∗ there exists δ = δ(α∗, α∗, K ) > 0 such that if

m∑

i=1

αi = 2N − χ(�) + ε

4π
for ε ∈ (0, δ) (5.8)

and
α∗ ≤ αi ≤ α∗ for all i = 1, . . . , m (5.9)

then (∗)ρgeo admits a solution with ρgeo = 8π N + ε.

Proof By (5.3) and (5.4) we deduce

Br (ξ̄) ⊂ M+ = (�+\{p1, . . . , pm})N \�

and hence the functional �α , introduced in (2.1), is well defined in Br (ξ̄).
We rewrite �α as

�α(ξ) = Dα(ξ) + 1

4π

N∑

j=1

log K (ξ j ), (5.10)

where Dα is defined in (5.1) with s = α = (α1, . . . , αm). For the sake of clarity we split the
remaining part of the proof into three steps.

STEP 1. We show that assumptions (5.5) and (5.9) imply the existence of a local minimum
point (and so a stable critical point) ξ∗

α ∈ Br (ξ̄) of �α .
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In order to prove this step it is enough to show that

max
ξ∈B r

2
(ξ̄)

�α(ξ) < min
ξ∈∂ Br (ξ̄)

�α(ξ).

Indeed, by virtue of (5.5) and assumption (5.9) on the αi ’s we compute

max
ξ∈B r

2
(ξ̄)

�α(ξ)
(5.10)≤ max

ξ∈B r
2
(ξ̄)

Dα(ξ) + 1

4π
max

ξ∈B r
2
(ξ̄)

( N∑

j=1

log K (ξ j )
)

(5.9)≤ M+
ξ̄ ,α∗,α∗ + 1

4π
max

ξ∈B r
2
(ξ̄)

( N∑

j=1

log K (ξ j )
)

(5.5)
< m+

ξ̄ ,α∗,α∗ + 1

4π
min

ξ∈∂ Br (ξ̄)

( N∑

j=1

log K (ξ j )
)

(5.9)≤ min
ξ∈∂ Br (ξ̄)

Dα(ξ) + 1

4π
min

ξ∈∂ Br (ξ̄)

( N∑

j=1

log K (ξ j )
)

(5.10)≤ min
ξ∈∂ Br (ξ̄)

�α(ξ).

STEP 2. We show that if

0 <

m∑

i=1

αi − 2N + χ(�) <
1

4π
(5.11)

then A(ξ∗
α) > 0, where A is the function defined in (2.3).

By definition of A it will be enough to prove that for any j = 1, . . . , N

�g log K (ξ∗
j ) + 8π N − 4πχ(�, α)

|�| > 0

where ξ∗
α = (ξ∗

1 , . . . , ξ∗
N ). This holds true by (5.11) and the condition (5.6), since

�g log K (ξ∗
j ) + 8π N − 4πχ(�, α)

|�| = �g log K (ξ∗
j ) + 8π N − 4π

(
χ(�) + ∑m

i=1 αi
)

|�|
(5.11)
> �g log K (ξ∗

j ) − 1

|�|
(5.6)≥ 0.

STEP 3. Conclusion.
By (5.9), Step 2 and Step 1 we get that the assumptions (a), (b) and (c) respectively of

Proposition 2.2 are all satisfied if (5.11) holds. As a consequence (∗)ρ admits a solution for
all ρ ∈ (8π N , 8π N + δ) under the assumption (5.11), where δ = δ(α∗, α∗, K ) ∈ (0, 1) is
provided in Proposition 2.2. The conclusion follows observing that (5.8) implies (5.11) and

ρgeo = 4π
(
χ(�) +

m∑

i=1

αi

)
∈ (8π N , 8π N + δ).

��
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Similarly one can define the class of functions

K−
ξ̄ ,α∗,α∗ := {

K ∈ C2(�) : K satisfies (5.4), (5.13) and (5.14)
}

(5.12)

where

max
ξ∈∂ Br (ξ̄)

( 1

4π

N∑

j=1

log K (ξ j )
)

< min
ξ∈B r

2
(ξ̄)

( 1

4π

N∑

j=1

log K (ξ j )
)
+m−

ξ̄ ,α∗,α∗ − M−
ξ̄ ,α∗,α∗ (5.13)

for

M−
ξ̄ ,α∗,α∗ := max

α∗ ≤ si ≤ α∗
i = 1, . . . , m

max
ξ∈∂ Br (ξ̄)

Ds(ξ) and m−
ξ̄ ,α∗,α∗ := min

α∗ ≤ si ≤ α∗
i = 1, . . . , m

min
ξ∈B r

2
(ξ̄)

Ds(ξ),

and

sup
ξ∈Br (ξ̄)

max
j=1,...,N

�g log K (ξ j ) ≤ − 1

|�| , (5.14)

and prove the following result.

Theorem 5.2 For any K ∈ K−
ξ̄ ,α∗,α∗ there exists δ = δ(α∗, α∗, K ) > 0 such that if

m∑

i=1

αi = 2N − χ(�) − ε

4π
for ε ∈ (0, δ) (5.15)

and
α∗ ≤ αi ≤ α∗ for all i = 1, . . . , m (5.16)

then (∗)ρgeo admits a solution with ρgeo = 8π N − ε.

Proof The proof can be obtained following the same strategy of the proof of Theorem 5.1.
Indeed first we show that the assumptions (5.13) and (5.16) imply the existence of a local

maximum point ξ∗
α for �α (instead of a local minimum point).

Then we prove that A(ξ∗
α) < 0 (instead of A(ξ∗

α) > 0) if

0 < 2N − χ(�) −
m∑

i=1

αi <
1

4π
,

using the assumption (5.14).
Last we apply again Proposition 2.2 to deduce that (∗)ρ admits a solution for all ρ ∈

(8π N − δ, 8π N ), where δ = δ(α∗, α∗, K ) ∈ (0, 1) is as in Proposition 2.2. The conclusion
follows observing that

ρgeo = 4π
(
χ(�) +

m∑

i=1

αi

)
∈ (8π N − δ, 8π N )

thanks to assumption (5.15). ��
We point out that also in this case for any fixed ξ̄ , α∗, α∗, considering functions K having

sufficiently concave local maxima at points ξ̄1, . . . , ξ̄N , where ξ̄ = (ξ̄1, . . . , ξ̄N ), we can find
plenty of functions K , both positive or sign-changing, in the class K−

ξ̄ ,α∗,α∗ .

123



99 Page 34 of 36 T. D’Aprile et al.

5.1 Examples in the case of the standard sphere

Now we will easily deduce Theorems 1.9, 1.10 and 1.11 in the introduction by the above
Theorems 5.1 and 5.2 if (�, g) = (S2, g0). Indeed when (�, g) = (S2, g0) and m = 1, by
Theorems 5.1 and 5.2 we immediately get the following.

Corollary 5.3 Let N ∈ N, p1 ∈ S
2 and ξ̄ ∈ (S2\{p1})N \�. Then for any K ∈ K±

ξ̄ ,− 1
2 ,2N

there exists δ = δ(K ) > 0 such that if

α1 = 2(N − 1) ± ε

4π
for ε ∈ (0, δ) (5.17)

then (∗)ρgeo admits a solution with ρgeo = 8π N ± ε.

Proof of Theorem 1.9 Theorem 1.9 follows by Corollary 5.3 by taking K in the subset of
K+

ξ̄ ,− 1
2 ,2N

made of positive functions. ��

Remark 5.4 We emphasize that Theorem 1.9 provides existence of a solution for (∗)ρgeo for
special classes of functions K , whereas according to the result in [31] if K ≡ 1 then (∗)ρgeo

does not admit solutions on the standard sphere.

Proof of Theorem 1.10 Theorem 1.10 follows by Corollary 5.3 by taking � = 0 and con-
sidering functions K in the class K+

ξ̄ ,− 1
2 ,2N

satisfying (H1), (H2), (H3), (H4) with (S2)+

contractible. It is easy to see that such functions exist (see Remark 5.5 below).

Remark 5.5 Observe that it is possible to find examples of functions K in the class considered
in Theorem 1.10 which are also axially symmetric. For instance, if m = 1, � = 0, N = 1,
such an example is described by the first picture in Figure 3: by locating p1 in the south
pole and ξ̄ in the north pole we can construct an axially symmetric function K with (S2)+
coinciding with the upper hemisphere and having in ξ̄ a sufficiently convex local minimum
such that (∗)ρgeo admits a solution if α1 > 0 is sufficiently small.

This is particularly interesting because in [20] the authors exhibit a class of axially sym-
metric functions K satisfying (H1), (H2), (H3), (H4) and with (S2)+ contractible for which
(∗)ρgeo does not admit solutions if m = 1, � = 0 and α1 > 0 (see the second picture in Figure
3). Of course this class of functions is different from the one considered in Theorem 1.10.

Again for (�, g) = (S2, g0), when m = 3 and N = 2 we obtain the following special
case from Theorem 5.1.

Corollary 5.6 Let p1, p2, p3 ∈ S
2, ξ̄ ∈ (S2\{p1, p2, p3})2\� and −1 < α� ≤ α�. Then

for any K ∈ K+
ξ̄ ,α∗,α∗ there exists δ = δ(α∗, α∗, K ) > 0 such that if

3∑

i=1

αi = 2 + ε

4π
for ε ∈ (0, δ) (5.18)

and moreover
α∗ ≤ αi ≤ α∗ for all i = 1, 2, 3 (5.19)

then (∗)ρgeo admits a solution with ρgeo = 16π + ε.

Proof of Theorem 1.11 We just apply Corollary 5.6 for α∗ = − 1
2 , α∗ = 3 and fixing α1 =

α2 ∈ (− 1
3 , 0), so that α3 = 2 − 2α1 + ε

4π
. ��
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Σ−

α1

Σ−

α1

m = 1, � = 0
α1 = ε

4π > 0

Σ+

ξ̄

Σ+

ξ̄

existence (Theorem 1.10) non-existence ([20])

N = 1, ξ̄ = −p1, K axially symmetric

K K

Fig. 3 (S2, g0), �+ contractible, ρgeo = 8π + ε

Remark 5.7 We emphasize that Theorem 1.11 assures the existence of a solution for (∗)ρgeo

in a case when, if K is also positive, the Leray–Schauder degree of the equation (∗)ρgeo

vanishes according to the formula in [15].
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