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Abstract We establish uniqueness and radial symmetry of ground states for higher-order
nonlinear Schrödinger and Hartree equations whose higher-order differentials have small
coefficients. As an application, we obtain error estimates for higher-order approximations to
the pseudo-relativistic ground state. Our proof adapts the strategy of Lenzmann (Anal PDE
2:1–27, 2009) using local uniqueness near the limit of ground states in a variational problem.
However, in order to bypass difficulties from lack of symmetrization tools for higher-order
differential operators, we employ the contraction mapping argument in our earlier work (Choi
et al. 2017. arXiv:1705.09068) to construct radially symmetric real-valued solutions, as well
as improving local uniqueness near the limit.

Mathematics Subject Classification 35G20 · 35J35 · 35Q55 · 35Q85 · 35B06

1 Introduction

Higher-order elliptic equations, whose higher-order differentials have small coefficients, arise
in various physical contexts. For instance, in nonlinear optics, the envelope dynamics of wave
trains in a weakly nonlinear medium is given by the equation
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iε2∂tψ = ω(ε∂)ψ − ε2|ψ |2ψ,

where ε > 0, ψ = ψ(t, x) : R×R
d → C and ω(∂) denotes the Fourier multiplier operator

with a symbol a = a(ξ) : Rd → R. Looking for a stationary solution, inserting the ansatz
ψ(t, x) = eiμt u(x) with μ > 0, we obtain the time-independent equation

ω(ε∂)u + ε2μu = ε2|u|2u.

When high-frequency dispersion is negligible and the medium is isotropic,1 the above equa-
tion can be approximated by the second-order equation

−�u + μu = |u|2u
(see [15]). However, if high frequency dispersion is weak but not negligible, one should
consider a higher-order equation whose differential operator is a Taylor polynomial of ω(ε∂).
Here, higher-order terms have small coefficients.

In astrophysics, the mean-field limit of stationary boson stars is described by the pseudo-
relativistic nonlinear Hartree equation

(√
−c2� + m2c4 − mc2

)
u + μu = (|x |−1 ∗ |u|2) in R

3, (1.1)

where u = u(x) : R3 → C, m > 0 is the particle mass and c > 0 stands for the speed of
light. In applications, taking the formal Taylor polynomial of the pseudo-relativistic operator

(√
−c2� + m2c4 − mc2

)
= mc2

(√
1 − �

m2c2 − 1

)
= 1

2m
(−�)− 1

8m3c2 (−�)2+· · · ,

(1.2)
the higher-order model

⎛
⎝

J∑
j=1

(−1) j−1α j

m2 j−1c2 j−2 (−�) j

⎞
⎠ u + μu = (|x |−1 ∗ |u|2) u in R

3, (1.3)

where α j = (2 j−2)!
j !( j−1)!22 j−1 , is employed to avoid possible complication from having a non-local

operator (see [4,5] and the references therein).
Moreover, given a previously known second-order model

−�u + μu = f (|u|2)u,

a higher-order equation is sometimes introduced as a refinement taking additional physi-
cal effects in account. In this case, it is natural to put small coefficients on higher-order
differentials, like

−�u + ε�2u + μu = f (|u|2)u,

for consistency with the second-order model.
The purpose of this paper is to provide a general strategy to prove uniqueness and radial

symmetry of ground states for a certain class of higher-order elliptic equations including the
above examples.

Before proceeding, it should be pointed out that proving uniqueness and symmetry of
ground states for higher-order equations is in general quite challenging. That is because
some of useful tools, such as the diamagnetic inequality, the Pólya–Szegö inequality, the

1 With ω(0) = ∇ξ j ω(0) = 0 and ∂ξ j ∂ξkω(0) = δ jk by a suitable change of variables.
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moving plane method and the shooting game argument, might not be available. Recall that for
second-order equations, the standard variational approach employs the diamagnetic inequal-
ity ‖∇(|u|)‖L2 ≤ ‖∇u‖L2 in the first step in order to obtain a non-negative ground state from
a hypothetical possibly sign-changing ground state, and then symmetrization tools are applied
to prove symmetry and uniqueness. When the symbol of a pseudo-differential operator is a
Bernstein function, e.g., the pseudo-relativistic operator (1.2), the diamagnetic inequality as
well as symmetrization tools can be recovered by a beautiful argument in [6,13] involving
the Bernstein’s theorem. However, this method does not work for higher-order operators.

In fact, some of analytic tools have been developed for higher-order operators e.g., for
polyharmonic operators, and there might be a way to apply them for uniqueness and symme-
try. For a comprehensive overview, we refer to the book by Gazzola et al. [7]. Nevertheless,
they cannot be directly applied to the above examples. Even worse, the desired diamagnetic
inequality does not seem to hold for higher-order differential operators, because even if u is
smooth, its second derivative ∇2

x j (|u|) could be very singular near the set {x : u(x) = 0}. In
this paper, we go around the lack of the analytic tools rather than making an effort to build
them up, by taking the advantage of higher-order differentials having small coefficients.

From now on, for concreteness of exposition, we restrict ourselves to the higher-order
nonlinear Schrödinger equation (NLS)

Pεu + u = |u|2ku in R
d , (1.4)

where k ∈ N and u = u(x) : Rd → C, and the three-dimensional higher-order nonlinear
Hartree equation (NLH)

Pεu + u = (|x |−1 ∗ |u|2) u in R
3, (1.5)

where u = u(x) : R3 → C. For an even integer J and ε ≥ 0 (including zero), the higher-
order differential operator Pε is defined by

Pε = P J
ε =: −� +

J∑
|α|=3

cαε|α|−2(i∇)α,

where α = (α1, . . . , αd) ∈ (Z≥0)
d denotes a multi-index and (i∇)α = i |α|∇α1

x1 . . . ∇αd
xd . We

assume that the family of operators {Pε}0≤ε≤1 is uniformly elliptic in the sense that there
exists γ > 0, independent of ε ≥ 0, such that

1 + Pε ≥ γ (1 − �). (1.6)

For NLS (1.4), we further assume that 1 ≤ d ≤ 3 and
{
k ∈ N if d = 1, 2,

k = 1 if d = 3
(1.7)

so that the odd-power nonlinearity is H1-subcritical. We remark that as ε → 0, the higher-
order NLS (1.4) formally converges to the standard second-order NLS

− �u + u = |u|2ku, (1.8)

while the higher-order NLH (1.5) converges to the second-order NLH

− �u + u = (|x |−1 ∗ |u|2) u. (1.9)
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A solution to the higher-order NLS (1.4) (resp., the higher-order NLH (1.5)) is called a
ground state if it is a minimizer for the action functional

Iε(u) :=

⎧⎪⎪⎨
⎪⎪⎩

1

2

∫

Rd
(Pε + 1)uū dx − 1

2k + 2

∫

Rd
|u|2k+2dx (for NLS (1.4))

1

2

∫

R3
(Pε + 1)uū dx − 1

4

∫

R3

(|x |−1 ∗ |u|2) |u|2dx (for NLH (1.5)).

restricted to the constraint

〈I ′
ε(u), u〉L2 = 0 and u �= 0,

where I ′
ε is the Frechét derivative of Iε . When ε = 0, it is known that the second-order NLS

(1.8) (resp., the second-order NLH (1.9)) has a smooth radially symmetric positive ground
state, denoted by Q0, and it is unique up to translation and phase shift2 (see [1,8,10] for
NLS, and [12] for NLH). Moreover, the ground state Q0 is non-degenerate (see [10] for NLS
and [11] for NLH). Indeed, linearizing the equation near the ground state Q0, we obtain the

linearized operator L =
(

L+
0 0

0 L−
0

)
with the identification a + bi ↔ ( a

b

)
, where the linear

operators L±
0 : H2(Rd ;R) → L2(Rd ;R) are defined by

L+
0 h :=

{ − �h + h − (2k + 1)Q2k
0 h (for NLS (1.8))

− �h + h − 2
(|x |−1 ∗ (Q0h)

)
Q0 − (|x |−1 ∗ Q2

0

)
h (for NLH (1.9))

and

L−
0 h :=

{ − �h + h − Q2k
0 h (for NLS (1.8))

− �h + h − (|x |−1 ∗ Q2
0

)
h (for NLH (1.9)),

By non-degeneracy, we mean that the kernels of L±
0 are explicitly given by

{
KerL+

0 = span
{
∂x1 Q0, . . . , ∂xd Q0

}
,

KerL−
0 = span {Q0} .

When ε > 0, by standard variational arguments, one can show that the higher-order NLS
(1.4) (resp., the higher-order NLH (1.5)) possesses a ground state QJ

ε and that it converges
to Q0 as ε → 0 (see Proposition 2.1).

Our main theorem establishes uniqueness and radial symmetry of ground states for the
higher-order equations (1.4) and (1.5). We recall we only care the case 1 ≤ d ≤ 3 and

{
k ∈ N if d = 1, 2,

k = 1 if d = 3

for NLS, and d = 3 for NLH.

Theorem 1.1 (Uniqueness and symmetry) Suppose that (1.6), as well as (1.7) for NLS and
d = 3 for NLH), holds. Then, there exists ε0 > 0 such that for each 0 < ε ≤ ε0, there
exists a smooth radially symmetric and real-valued ground state QJ

ε for the higher-order
NLS (1.4) (resp., the higher-order NLH (1.5)), and it is unique up to translation and phase
shift. Moreover, the ground state QJ

ε is non-degenerate in the sense of Proposition 3.2 below.

2 We say that Q is a unique solution up to translation and phase shift if for any solution u, there exist x0 ∈ R
d

and θ ∈ R such that u(x) = eiθ Q(x − x0).
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Remark 1.2 An alternative concept of ground states to the higher order equations (1.4) or
(1.5) can be given by a minimizer of the physical energy Eε(u) given by Iε(u) − 1

2‖u‖2
L2

subject to the fixed mass ‖u‖2
L2 = N , provided the minimizer exists. In second order case

ε = 0, a simple scaling argument says that this concept of ground states to (1.4) or (1.5)
coincides with our one in Theorem 1.1. It is worth mentioning here that it is not known yet
whether this also happens or not for the higher order case ε > 0.

For the proof, we follow the roadmap in the important work by Lenzmann [11], where
uniqueness of ground states for the pseudo-relativistic NLH (1.1) is established. The robust
approach of Lenzmann [11] can be summarized in two steps.

Step 1 Construct a ground state for the pseudo-relativistic NLH (1.1), and prove its
convergence to the ground state Q0 for the second-order NLH (1.9) as c → ∞
up to translation and phase shift. Here, by construction (involving variational
techniques), a pseudo-relativistic ground state must be positive and radially sym-
metric.

Step 2 Prove uniqueness of a radially symmetric real-valued solution to the pseudo-
relativistic NLH near the ground state Q0. The proof of this local uniqueness
relies on the non-degeneracy of the ground state Q0, which is indeed one of the
main contributions of Lenzmann [11].

Conclusion If c ≥ 1 is large enough, then a pseudo-relativistic ground state is close to Q0,
so it is unique up to translation and phase shift.

As for higher-order equations, however, we cannot make use of radial symmetry of a
ground state for the proof of uniqueness, but we have to prove it instead, since we do not
have symmetrization tools at hand. In order to overcome these obstacles, we employ several
new ingredients, including the contraction mapping argument in our earlier work [3] and
the improved local uniqueness near the ground state Q0. Our proof can be summarized as
follows.

Step 1 Construct a ground state QJ
ε for the higher-order equation (1.4) (resp., (1.5)),

and prove its convergence to the ground state Q0 for the second-order equation
(1.8) (resp., (1.9)) as ε → 0 up to translation and phase shift. We remark that
contrary to Step 1 in [11], due to lack of symmetrization tools, it is not known
that QJ

ε is radially symmetric and real-valued.
Step 2 Construct a radially symmetric real-valued solution uε for the higher-order equa-

tion converging to the ground state Q0 by the contraction mapping argument. By
construction, the solution uε does not have any variational character as a ground
state.

Step 3 Prove uniqueness (up to translation and phase shift) for the higher-order equation
near the ground state Q0 without assuming that solutions are radially symmetric
or real-valued.

Conclusion If ε > 0 is small enough, then two solutions QJ
ε and uε are close to the ground

state Q0. Thus, identifying them by uniqueness, we conclude that QJ
ε is a unique

radially symmetric real-valued ground state.

For the proof of local uniqueness in Step 2, we assume that there is a solution ũε , and then
modify it by translation and phase shift to be perpendicular to the kernel of the linearized
operator around uε . Then, we prove that the modified ũε is indeed uε itself. This argument,
choosing the best modulation parameters, seems quite natural in the context of orbital stability
[16]. However, to the best of authors’ knowledge, such a local uniqueness and its proof seem
new.
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Next, we consider the pseudo-relativistic NLH (1.1) and the higher-order NLH (1.3) in the
non-relativistic regime (c � 1). In this case, it is shown in Lenzmann [11] that the pseudo-
relativistic NLH (1.1) has a radially symmetric positive ground state Qc, which is unique
up to translation and phase shift. On the other hand, by the main theorem of this paper, the
higher-order NLH (1.3) also has a radially symmetric and real-valued ground state QJ

c , and
it is unique up to translation and phase shift. Then, the contraction mapping argument in [3]
can be applied to compare two ground states. As a consequence, we obtain the following
error estimates for the higher-order approximations to the pseudo-relativistic ground state.

Theorem 1.3 (Higher-order approximations to a pseudo-relativistic ground state) Let J be
an odd number, and c > 0 be a sufficiently large number. We denote by Qc (resp., QJ

c ) the
unique radially symmetric, real-valued ground state for the pseudo-relativistic NLH (1.1)
(resp., the higher-order NLH (1.3)). Then,

‖QJ
c − Qc‖H1 � 1

c2J .

Remark 1.4 The higher-order Schrödinger operator in (1.3) is introduced as a higher-order
approximation to the pseudo-relativistic operator

√−c2� + m2c4−mc2, provided that high-
frequencies are not dominant. In [4,5], the error estimates for the higher-order approximation
to the linear evolution has been discussed. Theorem 1.3 first provides a precise error estimate
for the higher-order approximation to the pseudo-relativistic ground state, which the simplest
nonlinear object.

1.1 Notations

We denote the potential energy functional by

N (u) :=

⎧⎪⎪⎨
⎪⎪⎩

1

2k + 2

∫

Rd
|u|2k+2dx (for NLS)

1

4

∫

R3

(|x |−1 ∗ |u|2) |u|2dx (for NLH).

Then, the nonlinearity of the equation is given as its Frechét derivative

N ′(u) :=
{ |u|2ku (for NLS)(|x |−1 ∗ |u|2) u (for NLH).

We denote by H1
Pε

= H1
Pε

(R3;C) the Hilbert space equipped with the inner product

〈 f, g〉H1
Pε

:=
∫

R3
(Pε + 1) f (x)g(x)dx,

1.2 Organization of the paper

In Sect. 2, we prove existence of ground states QJ
ε ’s for the higher-order NLS (resp., the

higher-order NLH) and their convergence to the ground state Q0 for the second-order equa-
tion. In Sect. 3, we provide the non-degeneracy estimates, which are the key analytic tools in
this paper. Using them, in Section 4, we construct radially symmetric real-valued solutions
uε’s converging to the ground state Q0 for the second-order equation. In Sect. 5, we establish
local uniqueness for higher-order equations near the ground state Q0, and then identifying
QJ

ε and uε , we prove the main theorem (Theorem 1.1). Finally, in Sect. 6, we prove the
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error estimates for the higher-order approximation to the pseudo-relativistic ground state
(Theorem 1.3).

2 Construction of ground states, and their limit

By the standard variational method, we construct ground states for higher-order equations
(Proposition 2.1), and show their convergence to the ground state for the second-order equa-
tion (Proposition 2.3). In addition, we prove that in general, convergence to the ground state
for the second-order equation in a low regularity norm can be upgraded to that in high
regularity norms (Proposition 2.5).

Proposition 2.1 (Existence of a ground state) Suppose that (1.6) (as well as (1.7) for NLS)
holds. Then, for any ε > 0, the higher-order equation (1.4) (resp., (1.5)) possesses a ground
state QJ

ε ∈ H1
Pε
.

Throughout this section, we denote the order of nonlinearity by

p =
{

2k + 1 for NLS (1.4)

3 for NLH (1.5).

We observe that by algebra,

〈N ′(u), u〉L2 = (p + 1)N (u).

Hence, if u is admissible for the variational problem (2.3), equivalently

0 = 〈I ′
ε(u), u〉L2 = ‖u‖2

H1
Pε

− (p + 1)N (u)

(
⇔ ‖u‖2

H1
Pε

= (p + 1)N (u)

)
, (2.1)

then the action functional can be written as

Iε(u) = 1

2
‖u‖2

H1
Pε

− N (u) = p − 1

2(p + 1)
‖u‖2

H1
Pε

= p − 1

2
N (u). (2.2)

For each ε ≥ 0 (including ε = 0), the ground state energy level is defined by

Cε := inf
{
Iε(u) | u ∈ H1

Pε
\{0} and 〈I ′

ε(u), u〉L2 = 0
}
. (2.3)

The following lemma is useful to prove the proposition.

Lemma 2.2 Suppose that (1.6) (as well as (1.7) for NLS) holds. Then, Cε is strictly positive,
and

lim sup
ε→0

Cε ≤ C0. (2.4)

Proof For NLS (1.4), by the Sobolev inequality with (1.6), we have

N (u) = 1

2k + 2
‖u‖2k+2

L2k+2 ≤ C ′‖u‖2k+2
H1
Pε

, (2.5)

while for NLH (1.5), by the Hardy–Littlewood–Sobolev inequality and the Sobolev inequality
with (1.6),

N (u) ≤ 1

4

∥∥∥∥
1

|x | ∗ |u|2
∥∥∥∥
L6

∥∥|u|2∥∥L6/5 ≤ C
∥∥|u|2∥∥2

L6/5 = C‖u‖4
L12/5 ≤ C ′‖u‖4

H1
Pε

. (2.6)
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Then, inserting the above inequality to the constraint (2.1), we get

0 ≥ ‖u‖2
H1
Pε

(
1 − (p + 1)C ′‖u‖p−2

H1
Pε

) (
⇔ ‖u‖2

H1
Pε

≥ ((p + 1)C ′)−
2

p−2

)

Thus, by (2.2), I (uε) = p−1
2(p+1)

‖u‖2
H1
Pε

≥ p−1
2(p+1)

((p + 1)C ′)−
2

p−2 . Taking the infimum, we

prove the lower bound on Cε .
To show (2.4), we observe that the ground state Q0 for the limit equation (1.8) (resp.,

(1.9)) is almost admissible for the variational problem (2.3) for sufficiently small ε > 0,
because

〈I ′
ε(Q0), Q0〉L2 = 〈(Pε + 1)Q0 − N ′(Q0), Q0〉L2

= 〈(−� + 1)Q0 − N ′(Q0), Q0〉L2 + 〈(Pε − (−�))Q0, Q0〉L2

= 0 + oε(1) = oε(1),

where in the third identity, we used that Q0 ∈ H 
 for all 
 ∈ N. Hence, for each ε > 0, there
exists tε = 1 + oε(1) such that tεQ0 is admissible. Then, it follows from the definition of the
level set Cε and (2.2) that

Cε ≤ Iε(tεQ0) = p − 1

2
N (tεQ0) = t p+1

ε · p − 1

2
N (Q0) = (1 + oε(1)) · I0(Q0).

Thus, taking lim supε→0, we prove (2.4). ��
Proof of Proposition 2.1 Let {un}∞n=1 ⊂ H1

Pε
be a minimizing sequence for Iε(u) subject to

the constraint 〈I ′
ε(u), u〉L2 = 0 with u �= 0, which is, by (2.2), bounded in H1

Pε
. We consider

the Levy concentration function of un (see [14])

Mn(r) := sup
x∈Rd

∫

Br (x)
|un |2 dx,

where Br (x) denotes the Euclidean ball of the radius r centered at x .
Suppose that there exists some r > 0 such that Mn(r) → 0 as n → ∞. It is shown in [14]

that {un}∞n=1 converges to zero in L p(Rd) for every 2 < p < 2∗, where 1
2∗ = max{ d−2

2d , 0}.
Thus, by (2.2) and (2.5) (resp., (2.6)), it follows that Iε(un) = p−1

2 N (un) → 0 as n → ∞,
but this contradicts to that Cε > 0 (see Lemma 2.2).

Now, passing to a subsequence, we assume that

M0 := lim
n→∞ M(1) > 0.

Then, there exists a sequence {xn}∞n=1 ⊂ R
d such that for sufficiently large n,

∫

B1(xn)
|un |2 dx >

M0

2
. (2.7)

Translating the sequence, we introduce another minimizing sequence {vn}∞n=1 given by
vn(x) = un(x + xn), which is bounded in H1

Pε
. Let v0 be the weak subsequential limit

of {vn}∞n=1 in H1
Pε

as n → ∞. Note that v0 �= 0, since {vn}∞n=1 is locally compact in L2(Rd)

and it satisfies (2.7).
We claim that v0 is admissible for the minimization problem (2.3), i.e.,

〈I ′
ε(v0), v0〉L2 = 0.
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In order to prove the claim by contradiction, we assume that

δ := 〈I ′
ε(v0), v0〉L2 > 0,

and then applying the well-known Brezis-Lieb lemma, we decompose vn = v0 + wn such
that

‖vn‖2
H1
Pε

= ‖v0‖2
H1
Pε

+ ‖wn‖2
H1
Pε

+ on(1),

N (vn) = N (v0) + N (wn) + on(1), (2.8)

and consequently,

〈I ′
ε(wn), wn〉L2 = 〈I ′

ε(vn), vn〉L2 − 〈I ′
ε(v0), v0〉L2 + on(1) = −δ + on(1).

We observe that fn(t) := 〈I ′
ε(twn), twn〉L2 is a polynomial of the form ant2 − bnt p+1

with an, bn > 0, and that fn(1) ≤ − δ
2 for large n. Hence, there exist a small η ∈ (0, 1)

and a sequence {tn}∞n=1, with 0 < tn ≤ 1 − η, such that {tnwn}∞n=1 is admissible, i.e.,
〈I ′

ε(tnwn), tnwn〉L2 = 0. Then, by (2.2) and (2.8), we prove that

Iε(tnwn) = p − 1

2(p + 1)
‖tnwn‖2

H1
Pε

= t2
n · p − 1

2(p + 1)
‖wn‖2

H1
Pε

≤ (1 − η)2 · p − 1

2(p + 1)
‖vn‖2

H1
Pε

+ on(1)

= (1 − η)2 Iε(vn) + on(1) = (1 − η)2Cε + on(1).

However, this contradicts to minimality of Cε . If δ := 〈I ′
ε(v0), v0〉L2 < 0, repeating the

same argument but switching the role of v0 with wn , we can again deduce a contradiction.
Therefore, the claim is proved.

Finally, by the lower semi-continuity of the norm ‖ · ‖H1
Pε

, we show that v0 achieves the

minimal energy,

Iε(v0) = p − 1

2(p + 1)
‖v0‖H1

Pε
≤ p − 1

2(p + 1)
lim
n→∞ ‖vn‖H1

Pε
= lim

n→∞ Iε(vn) = Cε .

This completes the proof by setting QJ
ε := v0. ��

Proposition 2.3 (Convergence of ground states) Suppose that (1.6) (as well as (1.7) for NLS)
holds. Let {QJ

ε }ε>0 be the family of ground states for the higher-order equation (1.4) (resp.,
(1.5)) given by Proposition 2.1. Then,

lim
ε→0

‖QJ
ε − Q̃0‖H1

Pε
= 0,

where Q̃0 is a ground state to the second-order equation (1.8) (resp., (1.9)).

Proof By (1.6), (2.2) and Lemma 2.3, we see that {QJ
ε }ε>0 is bounded in H1,

γ ‖QJ
ε ‖2

H1 ≤ ‖QJ
ε ‖2

H1
Pε

= 2(p + 1)

p − 1
Iε(Q

J
ε ) = 2(p + 1)

p − 1
Cε = 2(p + 1)

p − 1
C0 + oε(1).

Hence, QJ
ε weakly subsequentially converges to Q̃0 in H1 as ε → 0. As in the proof of

Proposition 2.1, one can show that
∫

B1(0)

|QJ
ε |2 dx ≥ M0

2
,
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which implies Q̃0 is nontrivial.
We claim that Q̃0 is a smooth solution to (1.8) (resp., (1.9)). To show the claim, we recall

that for any φ ∈ C∞
c ,

〈(Pε + 1)QJ
ε − N ′(QJ

ε ), φ〉L2 = 0.

However, by the weak convergence of QJ
ε , up to a subsequence, we have

lim
ε→0

〈(Pε + 1)QJ
ε , φ〉L2 = lim

ε→0
〈QJ

ε , (Pε + 1)φ〉L2

= lim
ε→0

〈QJ
ε , (−� + 1)φ〉L2 = 〈Q̃0, (−� + 1)φ〉L2

and

lim
ε→0

〈N ′(Qε), φ〉L2 = 〈N ′(Q̃0), φ〉L2 .

Thus, sending ε → 0, we show that

〈(−� + 1)Q̃0 − N ′(Q̃0), φ〉L2 = 0.

In other words, Q̃0 is a weak solution to (1.8) (resp., (1.9)). Then, by the elliptic regularity
(see [9], one can show that Q̃0 ∈ H 
 for every 
 ∈ N.

Next, using (2.2), we write

C0 ≤ I0(Q̃0) = p − 1

2(p + 1)
‖Q̃0‖2

H1

≤ p − 1

2(p + 1)

(
‖Q̃0‖2

H1
Pε

+ ‖QJ
ε − Q̃0‖2

H1
Pε

)

= p − 1

2(p + 1)
‖QJ

ε ‖2
H1
Pε

− p − 1

p + 1
· Re〈Q̃0, Q

J
ε − Q̃0〉H1

Pε

= Iε(Q
J
ε ) − p − 1

p + 1
· Re〈Q̃0, Q

J
ε − Q̃0〉H1

Pε
.

(2.9)

However, since Q̃0 is smooth and QJ
ε ⇀ Q̃0 in H1 as ε → 0, we have

〈Q̃0, Q
J
ε − Q̃0〉H1

Pε
= 〈Q̃0, Q

J
ε − Q̃0〉H1 + 〈(Pε − (−�))Q̃0, Q

J
ε − Q̃0〉L2 → 0

as ε → 0. Thus, by (2.2) again and Lemma 2.2, we get

C0 ≤ Cε + oε(1) ≤ C0 + oε(1).

Sending ε → 0 in (2.9), we conclude that Q̃0 achieves the minimum value C0 of the action
functional I0 and that ‖QJ

ε − Q̃0‖H1
Pε

→ 0 as ε → 0. ��

Remark 2.4 Let Q0 be the radially symmetric positive ground state for (1.8) (resp., (1.9)).
By uniqueness of a ground state to the second-order equation, there exist θ ∈ R and x0 ∈ R

d

such that Q0(x) = eiθ Q̃0(x − x0). Then, the modified profile eiθ QJ
ε (· − x0), which is also

a ground state, converges to Q0 as ε → 0.

Proposition 2.5 (Upgraded convergence) Suppose that (1.6) (as well as (1.7) for NLS) holds.
For ε > 0, let uε ∈ H1

Pε
be a solution to the higher-order equation (1.4) (resp., (1.5)), which

is not necessarily a ground state. Let Q0 be the unique ground state to the second-order
equation (1.8) (resp., (1.9)).
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(1) If uε → Q0 in H1 as ε → 0, then uε → Q0 in H 
 as ε → 0 for all 
 ∈ N.
(2) As a consequence, for all 
 ∈ N, ‖uε‖H
 is bounded uniformly in 0 < ε ≤ 1.

Proof We prove the proposition by induction. Let rε = uε − Q0 be the difference between
two solutions. Suppose that ‖rε‖H
 → 0 for some 
 ∈ N. Then, by the equations, we have

(Pε + 1)rε = (−� − Pε)Q0 + (Pε + 1)uε − (−� + 1)Q0

= (−� − Pε)Q0 + N ′(uε) − N ′(Q0).

Thus, it follows from (1.6) that

γ ‖rε‖H
+1 ≤ ‖(Pε + 1)rε‖H
−1

≤ ‖(−� − Pε)Q0‖H
−1 + ‖N ′(Q0 + rε) − N ′(Q0)‖H
−1 .

For the first term on the right hand side, by smoothness of Q0, ‖(−� − Pε)Q0‖H
−1 → 0.
For the second term, distributing derivatives and then applying Lemma A.2, one can show
that

‖N ′(Q0 + rε) − N ′(Q0)‖H
−1 �
{
‖Q0‖H
 + ‖rε‖H


}p−1‖rε‖H
 → 0,

where p = 2k+1 for (1.4) (resp., p = 3 for (1.5)). Therefore, we conclude that ‖rε‖H
+1 →
0. ��

3 Non-degeneracy estimates

Let {uε}ε>0 be a family of real-valued solutions to the higher-order equation such that uε →
Q0 in H1 (as well as in H 
 for all 
 ∈ N by Proposition 2.5) as ε → 0, where Q0 is the
unique radially symmetric positive ground state for the second-order equation (1.8) (resp.,
(1.9)). For notational convenience, we denote u0 := Q0. For 0 ≤ ε ≤ ε0 (including 0), we
consider the linear operators L±

ε : H1
Pε

→ H−1
Pε

, defined by
{
L+

ε : = Pε + 1 − N+
uε

L−
ε : = Pε + 1 − N−

uε
,

(3.1)

where

N+
u (g) :=

{
(2k + 1)u2kg (for NLS)

2(|x |−1 ∗ (ug))u + (|x |−1 ∗ u2)g (for NLH)
(3.2)

and

N−
u (g) :=

{
u2kg (for NLS)

(|x |−1 ∗ u2)g (for NLH).
(3.3)

These linear operators naturally appear as the real and the imaginary parts of the linearized
operator at the solution uε . Factorizing out the differential operator (1 + Pε) in a symmetric
form, we write

L±
ε = √1 + Pε(Id − A±

ε )
√

1 + Pε, (3.4)

where ⎧⎪⎪⎨
⎪⎪⎩

A+
ε : = 1√

1 + Pε

N+
uε

1√
1 + Pε

A−
ε : = 1√

1 + Pε

N−
uε

1√
1 + Pε

.

123



77 Page 12 of 23 W. Choi et al.

In this section, we prove non-degeneracy of the solution uε , and obtain uniform lower bounds
for the linear operators (Id − A±

ε ), which are our main analytic tools.
To begin with, we consider the base case ε = 0. By the non-degeneracy of the ground

state Q0 and the relation (3.4) (see [10] for NLS and [11] for NLH), we have

Ker(Id − A+
0 ) = span

{
∂x1

√
1 − � Q0, · · · , ∂xd

√
1 − � Q0

}

and

Ker(Id − A−
0 ) = span

{√
1 − � Q0

}
.

By the equation, the operator A±
0 sends an element of Ker(Id−A±

0 ) to the same function, and
thus (Id − A±

0 ) maps (Ker(Id − A±
0 ))⊥ ⊂ L2(Rd ;R) to itself, where A⊥ ⊂ H denotes the

subspace orthogonal to A in the Hilbert space H . Moreover, the operator (Id −A±
0 ) satisfies

the following lower bounds.

Proposition 3.1 (Non-degeneracy estimates; base case) There exists β0 > 0 such that

‖(Id − A±
0 )g‖L2(Rd ;R) ≥ β0‖g‖L2(Rd ;R)

for all g ∈ (Ker(Id − A±
0 ))⊥ ⊂ L2(Rd ;R).

Proof We claim that both 1√
1−�

N+
Q0

1√
1−�

and 1√
1−�

N−
Q0

1√
1−�

are compact on L2. Indeed,

for NLS, the integral kernel of N+
Q0

1√
1−�

(or N−
Q0

1√
1−�

, respectively) is given by

(2k + 1)Q0(x)
2kG−1(x − y)

(
or Q0(x)

2kG−1(x − y), respectively
)
,

where G−1(x) = ((1 + |ξ |2)−1)∨(x) is the Bessel potential. For NLH, it is given by

2
∫

R3

Q0(x)Q0(z)

|x − z| G−1(z − y)dz + (|x |−1 ∗ Q2
0)(x)G−1(x − y)

(
or (|x |−1 ∗ Q2

0)(x)G−1(x − y), respectively
)
.

All of the above kernels are contained in L2(Rd
x × R

d
y), because Q0 is smooth and rapidly

decaying. Therefore, the associated operators are Hilbert–Schmidt (so, compact on L2(Rd)).
Since composition of a compact operator and a bounded operator is compact, this proves the
claim. As a consequence, by the Fredholm alternative, the proposition is proved. ��

Next, we show that the non-degeneracy of the ground state Q0 is stable along the family
of solutions which converges to the ground state Q0.

Proposition 3.2 (Stability of non-degeneracy) Let {uε}ε>0 be a family of real-valued solu-
tions to the higher-order equation (1.4) (resp., (1.5)) such that uε → Q0 in H1 as ε → 0.
Then, there exists ε0 > 0 such that

KerL+
ε = span

{
∂x1uε, . . . , ∂xd uε

}
and KerL−

ε = span
{
uε

}

for 0 < ε ≤ ε0. Equivalently, we have

Ker(Id − A+
ε ) = span

{
∂x1

√
1 + Pε uε, . . . , ∂xd

√
1 + Pε uε

}
(3.5)

and
Ker(Id − A−

ε ) = span
{√

1 + Pε uε

}
. (3.6)
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Proof Following the argument in the proof of [11, Theorem 3], we prove (3.5) only, because
(3.6) can be proved by the same way.

By the equation, it is easy to see that each ∂x j
√

1 + Pεuε is contained in the kernel of
(Id − A+

ε ). Therefore, it suffices to show that the dimension of Ker(Id − A+
ε ) is ≤ d . We

recall that Ker(Id − A+
ε ) = Im(Pε), where Pε is the projection operator given by

Pε := 1

2π i

∮

|z|=c
(Id − A+

ε − zId)−1dz

for some sufficiently small c > 0. We observe that by Lemma A.2,

‖A+
ε − A+

0 ‖L2→L2 =
∥∥∥∥

1√
1 + Pε

N+
uε

1√
1 + Pε

− 1√
1 − �

N+
Q0

1√
1 − �

∥∥∥∥
L2→L2

≤
∥∥∥∥
(

1√
1 + Pε

− 1√
1 − �

)
N+

uε

1√
1 + Pε

∥∥∥∥
L2→L2

+
∥∥∥∥

1√
1 − �

(N+
uε

− N+
Q0

)
1√

1 + Pε

∥∥∥∥
L2→L2

+
∥∥∥∥

1√
1 − �

N+
Q0

(
1√

1 + Pε

− 1√
1 − �

)∥∥∥∥
L2→L2

→ 0,

(3.7)

and consequently, ‖Pε − P0‖L2→L2 → 0 as ε → 0. Suppose that Rank(Pε) > Rank(P0).
Then, there exist L2-orthonormal vectors v1, . . . , vd+1 such that Pεv j = v j . Hence,
P0v1, . . . ,P0vd+1 are almost orthogonal, and they are linearly independent, which con-
tradicts to the assumption. Therefore, we conclude that Rank(Pε) ≤ Rank(P0) = d . ��

Using the non-degeneracy, we prove the inequality analogous to Proposition 3.1.

Proposition 3.3 (Non-degeneracy estimates; general case) Let {uε}ε>0 be a family of real-
valued solutions to the higher-order equation (1.4) (resp., (1.5)) such that uε → Q0 in H1

as ε → 0. Then, there exist ε0 > 0 and β > 0 such that if 0 < ε ≤ ε0, then

‖(Id − A±
ε )g‖L2(Rd ;R) ≥ β‖g‖L2(Rd ;R)

for all g ∈ (Ker(Id − A±
ε ))⊥ ⊂ L2(Rd ;R), which is equivalent to

‖L±
ε g‖H−1

Pε
(Rd ;R)

≥ β‖g‖H1
Pε

(Rd ;R)

for all g ∈ (KerL±
ε )⊥ ⊂ H1

Pε
(Rd ;R).

Proof We show the proposition only for A+
ε , since the other inequality can be proved exactly

by the same way.
Let β = β0

4 > 0, where β0 is given in Proposition 3.1. For g ∈ L2(Rd ;R) and ε ≥ 0, we
denote by g⊥

ε the orthogonal projection of g to (Ker(Id − A+
ε ))⊥ ⊂ L2(Rd ;R), precisely

g⊥
ε := g −

d∑
j=1

〈g, e j;ε〉L2e j;ε,

where e j;ε := ∂x j

√
1+Pεuε

‖∂x j
√

1+Pεuε‖2
L2

. We fix g ∈ (Ker(Id − A+
ε ))⊥. Then, we decompose

(Id − A+
ε )g = (Id − A+

0 )g + (A+
0 − A+

ε )g
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= (Id − A+
0 )g⊥

0 + (Id − A+
0 )(g − g⊥

0 ) + (A+
0 − A+

ε )g.

By the triangle inequalities and Proposition 3.1, we get

‖(Id − A+
ε )g‖L2 ≥ ‖(Id − A+

0 )g⊥
0 ‖L2 − ‖(Id − A+

0 )(g − g⊥
0 )‖L2 − ‖(A+

0 − A+
ε )g‖L2

≥ 4β‖g⊥
0 ‖L2 − ‖g − g⊥

0 ‖L2 − ‖A+
0 (g − g⊥

0 )‖L2 − ‖(A+
0 − A+

ε )g‖L2

≥ 4β‖g‖L2 − (4β + 1 + ‖A+
0 ‖L2→L2)‖g⊥

ε − g⊥
0 ‖L2 (by g⊥

ε = g)

− ‖A+
0 − A+

ε ‖L2→L2‖g‖L2 .

(3.8)
On the other hand, we have

‖g⊥
ε − g⊥

0 ‖L2 ≤
d∑
j=1

∥∥〈g, e j;ε〉L2e j;ε − 〈g, e j;0〉L2e j;0
∥∥
L2

≤
d∑
j=1

|〈g, e j;ε − e j;0〉L2 | + |〈g, e j;0〉L2 | ∥∥e j;ε − e j;0
∥∥
L2

≤ 2‖g‖L2

d∑
j=1

∥∥e j;ε − e j;0
∥∥
L2 ≤ oε(1)‖g‖L2 ,

because by Proposition 2.5,
∥∥∥∂x j

√
1 + Pεuε − ∂x j

√
1 − �u0

∥∥∥
L2

≤
∥∥∥(
√

1 + Pε − √
1 − �)∂x j uε

∥∥∥
L2

+
∥∥∥∂x j

√
1 − �(uε − u0)

∥∥∥
L2

→ 0

as ε → 0 and it implies ‖e j;ε − e j;0‖L2 → 0. Moreover, by (3.7), ‖A+
0 − A+

ε ‖L2→L2 → 0
as ε → 0. Inserting these to (3.8), we prove the proposition. ��

By a little modification, we can also show the following inequality.

Lemma 3.4 There exists ε0 > 0 such that if 0 < ε ≤ ε0, then

Id − 1√
1 + Pε

N+
Q0

1√
1 + Pε

is invertible on L2
rad(R

d ;R). Moreover, its inverse is uniformly bounded,
∥∥∥∥∥
(
Id − 1√

1 + Pε

N+
Q0

1√
1 + Pε

)−1
∥∥∥∥∥
L2
rad (Rd ;R)→L2

rad (Rd ;R)

≤ 2

β0
,

where β0 > 0 is given by Proposition 3.1.

Proof By Proposition 3.1, the operator (Id − 1√
1−�

N+
Q0

1√
1−�

) is invertible, because its

kernel in L2
rad is empty (∂x j Q0’s are not radially symmetric). On the other hand, repeating

the proof of (3.7), one can show that the difference

1√
1 + Pε

N+
Q0

1√
1 + Pε

− 1√
1 − �

N+
Q0

1√
1 − �

=
(

1√
1 + Pε

− 1√
1 − �

)
N+

Q0

1√
1 + Pε

+ 1√
1 − �

N+
Q0

(
1√

1 + Pε

− 1√
1 − �

)
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can be arbitrarily small in the operator norm on L2
rad(R

d ;R), provided that ε > 0 is small
enough. Therefore, we conclude that if 0 < ε ≤ ε0, then (Id− 1√

1+Pε
N+

Q0

1√
1+Pε

) is invertible,
and its inverse is uniformly bounded. ��

4 Construction of a solution by contraction

In this section, by the contraction mapping argument in [3] which relies on the non-degeneracy
estimates in the previous section, we construct a radially symmetric real-valued solution uε to
the higher-order equation, with small ε > 0, that converges to the ground state Q0 as ε → 0,
where Q0 is the unique radially symmetric real-valued ground state for the second-order
equation.

Proposition 4.1 (Construction of a solution by contraction) Suppose that (1.6) (as well as
(1.7) for NLS) holds. Then, there exists ε0 > 0 such that a sequence of radially symmetric
real-valued solutions {uε}0<ε≤ε0 to the higher-order NLS (1.4) (resp., the higher-order NLH
(1.5)) exists, with the convergence

lim
ε→0

‖uε − Q0‖H1
Pε

= 0.

Proof Step 1. Reformulation of the equation Let ε > 0 be sufficiently small. Suppose that uε

is a radially symmetric real-valued solution to the higher-order equation. Then, the difference

rε := uε − Q0

solves the equation

(Pε + 1)rε = (Pε + 1)uε − (Pε + 1)Q0

= (−� − Pε)Q0 + (Pε + 1)uε − (−� + 1)Q0

= (−� − Pε)Q0 + N ′(uε) − N ′(Q0)

= (−� − Pε)Q0 + N ′(Q0 + rε) − N ′(Q0).

Moving the linear terms with respect to rε on the right hand side to the left, we write
(
Pε + 1 − N+

Q0

)
rε = (−� − Pε)Q0 + N ′(Q0 + rε) − N ′(Q0) − N+

Q0
(rε)

(see (3.2) for the definition of N+
Q0

). Then, inverting the operator

(
Pε + 1 − N+

Q0

)
= √1 + Pε

(
Id − 1√

1 + Pε

N+
Q0

1√
1 + Pε

)√
1 + Pε

by Lemma 3.4, we reformulate the higher-order equation as

rε =
(
Pε + 1 − N+

Q0

)−1 {
(−� − Pε)Q0 + N ′(Q0 + rε) − N ′(Q0) − N+

Q0
(rε)
}

=: �(rε).

Step 2. Construction of a solution We set

δε := 4

β0
‖(−� − Pε)u0‖H−1

Pε

,
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where β0 > 0 is the constant given in Lemma 3.4. Then, by (1.6), we have

δε ≤ 4

β0

J∑
|α|=3

|cα|ε|α|−2‖∇αQ0‖H−1
Pε

≤ 4

β0γ

J∑
|α|=3

|cα|ε|α|−2‖∇αQ0‖H−2 → 0

as ε → 0. Let ε0 be a sufficiently small number to be chosen so that all of the follow-
ing estimates hold. Suppose that 0 < ε ≤ ε0 (and thus δε > 0 is also small enough). If
‖r‖H1

Pε
, ‖r̃‖H1

Pε
≤ δε , then by Lemma 3.4 and Lemma A.2,

‖�(r)‖H1
Pε

=
∥∥∥∥
(

Id − 1√
1 + Pε

N+
Q0

1√
1 + Pε

)−1 1√
1 + Pε

{
(−� − Pε)Q0 + N ′(Q0 + r) − N ′(Q0) − N+

Q0
(r)
}∥∥∥∥

L2

≤ 2

β0
‖(−� − Pε)Q0‖H−1

Pε

+ 2

β0

∥∥∥N ′(Q0 + r) − N ′(Q0) − N+
Q0

(r)
∥∥∥
H−1
Pε

≤ 2

β0
‖(−� − Pε)u0‖H−1

Pε

+ 1

2
‖r‖H1

Pε
≤ δε

and similarly,

‖�(r) − �(r̃)‖H1
Pε

≤ 2

β0

∥∥∥
(
N ′(Q0 + r) − N ′(Q0) − N+

Q0
(r)
)

−
(
N ′(Q0 + r̃) − N ′(Q0) − N+

Q0
(r̃)
) ∥∥∥

H−1
Pε

≤ 1

2
‖r − r̃‖H1

Pε
.

Therefore, we conclude that � is contractive, and it has a unique fixed point, denoted by rε ,
on the ball of radius δε centered at 0 in H1

Pε
. As a consequence, uε = Q0 + rε solves the

higher-order equation, and ‖uε − Q0‖H1
Pε

= ‖rε‖H1
Pε

→ 0 as ε → 0. ��

5 Local uniqueness

The solution uε , given by Proposition 4.1, is unique in a small ball of radially symmetric
real-valued functions whose radius may depend on ε > 0. In this section, we upgrade this
uniqueness to that in a small ball of all complex-valued functions whose radius is independent
of ε > 0.

Proposition 5.1 (Uniqueness) Suppose that (1.6) (as well as (1.7) for NLS) holds. Then,
there exist δ > 0 and ε0 > 0 such that if 0 < ε ≤ ε0, then the solution uε to the higher-order
equation (1.4) (resp., (1.5)), constructed in Proposition 4.1, is unique in a δ-ball centered at
u0 in H1

Pε
(Rd ;C) up to translation and phase shift.

Proof We prove the proposition only for the higher-order NLH, because the proof for the
higher-order NLS follows similarly. Let ε0 > 0 be a small number given in Proposition 3.3,
and let δ > 0 be sufficiently small numbers to be chosen later. Suppose that 0 < ε ≤ ε0 and
ũε is another solution to the higher-order equation in a δ-ball centered at u0 in H1

Pε
(R3;C).
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First, we aim to show that the imaginary part of ũε is orthogonal to uε up to phase shift.
To this end, we consider

Ũε =
〈ũε, uε〉H1

Pε

|〈ũε, uε〉H1
Pε

| ũε,

which also solves the higher-order equation. Here, since uε and ũε are assumed to be suffi-
ciently close to u0, the denominator 〈ũε, uε〉H1

Pε
�= 0. Note that ũε �→ Ũε is a natural action,

because if ũε is simply a rotated uε on the complex plane, then this action rotates it back to
uε . Moreover, we have

∥∥∥Ũε − uε

∥∥∥
2

H1
Pε

= ‖Ũε‖2
H1
Pε

+ ‖uε‖2
H1
Pε

− 2Re〈Ũε, uε〉H1
Pε

= ‖ũε‖2
H1
Pε

+ ‖uε‖2
H1
Pε

− 2|〈ũε, uε〉H1
Pε

|

≤
∣∣∣∣‖ũε‖2

H1
Pε

+ ‖uε‖2
H1
Pε

− 2Re〈ũε, uε〉H1
Pε

∣∣∣∣ = ‖ũε − uε‖2
H1
Pε

≤
{
‖ũε − u0‖H1

Pε
+ ‖uε − u0‖H1

Pε

}2 ≤ 4δ2

and

〈Im(Ũε), uε〉H1
Pε

= Im

⎧⎨
⎩

〈ũε, uε〉H1
Pε

|〈ũε, uε〉H1
Pε

| 〈ũε, uε〉H1
Pε

⎫⎬
⎭ = Im

{
|〈ũε, uε〉H1

Pε
|
}

= 0.

Therefore, replacing ũε by Ũε and δ by δ
2 , we may assume that the imaginary part of ũε is

orthogonal to uε in H1
Pε

.
We denote the difference between two solutions by

rε := ũε − uε = vε + iwε (⇔ ũε = (uε + vε) + iwε) ,

where vε and wε are real-valued, and 〈wε, uε〉H1
Pε

= 0. When uε and ũε are solutions to the

higher-order NLH, then the difference rε satisfies

(Pε + 1)rε = (|x |−1 ∗ |ũε |2
)
ũε − (|x |−1 ∗ |uε |2

)
uε

=
(
|x |−1 ∗ (u2

ε + 2uεvε + |rε |2
) )

((uε + vε) + iwε) − (|x |−1 ∗ |uε |2
)
uε

=
(
|x |−1 ∗ (2uεvε + |rε |2

) )
uε +

(
|x |−1 ∗ (u2

ε + 2uεvε + |rε |2
) )

(vε + iwε).

Moving the linear terms on the right hand side to the left then using (3.4), the imaginary part
of the equation (for wε) can be written as

L−
ε wε =

(
|x |−1 ∗ (2uεvε + |rε |2

) )
wε.

Then, by Proposition 3.3 and the nonlinear estimate (Lemma A.2), we prove that

β‖wε‖H1
Pε

≤ ‖L−
ε wε‖H−1

Pε

=
∥∥∥
(
|x |−1 ∗ (2uεvε + |rε |2

) )
wε

∥∥∥
H−1
Pε

≤ C
(
‖uε‖H1

Pε
+ ‖rε‖H1

Pε

)
‖rε‖H1

Pε
‖wε‖H1

Pε

≤ C
(
‖u0‖H1

Pε
+ 2δ

)
δ‖wε‖H1

Pε
.
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Therefore, choosing small δ such that C(‖u0‖H1
Pε

+ 2δ)δ < β, we conclude that wε = 0.

By a suitable phase shift, we may assume that ũε is real-valued. Furthermore, by translating
ũε so that ‖ũε(· − a) − uε‖H1

Pε
= ‖ũε − uε(· + a)‖H1

Pε
is minimized, equivalently

∂

∂x j

∣∣∣∣
a=0

‖ũε − uε(· + a)‖2
H1
Pε

= 0,

we may assume that ũε is orthogonal to ∂x j uε in H1
Pε

for all j = 1, 2, 3. Now, we write the
equation for the difference rε = ũε − uε ,

(Pε + 1)rε = N ′(ũε) − N ′(uε) = N ′(uε + rε) − N ′(uε)

⇒ L+
ε rε = N ′(uε + rε) − N ′(uε) − N+

uε
(rε),

whereN+
uε

is defined in (3.2). Since rε = ũε−uε is orthogonal to ∂x j uε in H1
Pε

, by Proposition
3.3 and the nonlinear estimate (Lemma A.2) again, we obtain

β‖rε‖H1
Pε

≤ ‖L+
ε rε‖H−1

Pε

=
∥∥∥(|x |−1 ∗ r2

ε

)
uε +

(
|x |−1 ∗ (2uεrε + r2

ε

) )
rε
∥∥∥
H−1
Pε

≤ C̃
(
‖uε‖H1

Pε
+ ‖rε‖H1

Pε

)
‖rε‖2

H1
Pε

≤ C̃
(
‖u0‖H1

Pε
+ 2δ

)
δ‖rε‖H1

Pε
.

Choosing even smaller δ > 0 such that C̃(‖u0‖H1
Pε

+ 2δ)δ < β if necessary, we prove that

rε = 0. Therefore, we conclude that ũε = uε up to translation and phase shift. ��

Now, we are ready to prove the main theorem.

Proof of Theorem 1.1 By Proposition 2.3, if ε > 0 is small enough, then ground states QJ
ε ’s

are close to the reference ground state Q0 in H1
Pε

(modifying the sequence by translation and

phase shift if necessary). However, by uniqueness in Proposition 5.1, QJ
ε is identified with

the radially symmetric real-valued solution uε , constructed in Proposition 4.1. Moreover, by
Proposition 3.2, it is non-degenerate. Therefore, we prove the main theorem. ��

6 Proof of Theorem 1.3

We proceed exactly as in the proof of Proposition 4.1. We denote by

r Jc := QJ
c − Qc

the difference between two solutions. Then, it satisfies

(P J
c + 1)r Jc = (P J

c + 1)QJ
c − (P J

c + 1)Qc

=
(
Pc − P J

c

)
Qc + (P J

c + 1)QJ
c − (Pc + 1)Qc

=
(
Pc − P J

c

)
Qc + N ′(QJ

c ) − N ′(Qc)

=
(
Pc − P J

c

)
Qc + N ′(Qc + rc)

′ − N ′(Qc),
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where Pc = ∑J
j=1

(−1) j−1α j

m2 j−1c2 j−2 and α j = (2 j−2)!
j !( j−1)!22 j−1 . Moving the linear terms on the right

hand side to the left as above, we write

LJ,+
c r Jc =

(
Pc − P J

c

)
Qc + N ′(Qc + rc)

′ − N ′(Qc) − N+
Qc

(rc), (6.1)

where

LJ,+
c = P J

c + 1 − N+
Qc

=
√

1 + P J
c

(
Id − 1√

1 + P J
c

N+
Qc

1√
1 + P J

c

)√
1 + P J

c .

Repeating the proof of Lemma 3.4 together with Qc → Q0 in H1 as c → ∞, one can show
that

Id − 1√
1 + P J

c

N+
Qc

1√
1 + P J

c

=
(

Id − 1√
1 − �

N+
Q0

1√
1 − �

)
+
⎛
⎝ 1√

1 − �
N+

Q0

1√
1 − �

− 1√
1 + P J

c

N+
Qc

1√
1 + P J

c

⎞
⎠

is invertible on L2
rad(R

d ;R) and its inverse is uniformly bounded for sufficiently large c ≥
1. Hence, applying the trivial embedding H1

P J
c

↪→ H1 (from Lemma B.1) and its dual

embedding, we obtain

‖r Jc ‖H1 � ‖r Jc ‖H1
P J
c

=
∥∥∥∥(LJ,+

c )−1
{(

Pc − P J
c

)
Qc + N ′(Qc + rc)

′ − N ′(Qc) − N+
Qc

(rc)

}∥∥∥∥
H1
P J
c

�
∥∥∥
(
Pc − P J

c

)
Qc + N ′(Qc + rc)

′ − N ′(Qc) − N+
Qc

(rc)
∥∥∥
H−1
P J
c

�
∥∥∥
(
Pc − P J

c

)
Qc

∥∥∥
H−1

+
∥∥∥N ′(Qc + rc)

′ − N ′(Qc) − N+
Qc

(rc)
∥∥∥
H−1

,

where the implicit constants do not depend on c ≥ 1. Therefore, it follows from the nonlinear
estimates (Lemma A.2) that for sufficiently large c ≥ 1,

‖r Jc ‖H1 �
∥∥∥
(
Pc − P J

c

)
Qc

∥∥∥
H−1

� 1

c2J ‖Qc‖H2J+1 ,

because by Taylor’s theorem,
∣∣∣∣∣∣
(√

c2s + m2c4 − mc2
)

−
J∑

j=1

(−1) j−1α j

m2 j−1c2 j−2 s
j

∣∣∣∣∣∣
� s J+1

c2J .

Finally, by the uniform bound on high Sobolev norm of Qc (see Proposition 2.5 or [2]), we
conclude that ‖QJ

c − Qc‖H1 = ‖r Jc ‖H1 �J c−2J .
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Appendix A: Nonlinear estimates

We show the nonlinear estimates which are used in the contraction mapping argument.

Lemma A.1 (Nonlinear estimates) Let u ∈ H1 be real-valued. For any η > 0, there exists
δ0 > 0, depending on ‖u‖H1(Rd ;R) and η, such that if 0 < δ ≤ δ0 and

‖r‖H1(Rd ;R), ‖r̃‖H1(Rd ;R) ≤ δ,

then
∥∥N ′(u + r) − N ′(u) − N+

u (r)
∥∥
L2(Rd ;R)

≤ η‖r‖H1(Rd ;R)

and

∥∥(N ′(u + r) − N ′(u) − N+
u (r)

)− (N ′(u + r̃) − N ′(u) − N+
u (r̃)

)∥∥
L2(Rd ;R)

≤ η‖r − r̃‖H1(Rd ;R).

The above lemma follows from the multilinear estimates.

Lemma A.2 (Multilinear estimates) We have

∥∥∥∥
(

1

|x | ∗ (φ1φ2)

)
φ3

∥∥∥∥
L2(R3;R)

�
3∏
j=1

‖φ j‖H1(R3;R).

Moreover, if d = 1, 2 and k ∈ N or if d = 3 and k = 1, then
∥∥∥∥∥∥

2k+1∏
j=1

φ j

∥∥∥∥∥∥
L2(Rd ;R)

�
2k+1∏
j=1

‖φ j‖H1(Rd ;R).

Proof By the Hölder, Young’s and Sobolev inequalities, we prove that
∥∥∥∥
(

1

|x | ∗ (φ1φ2)

)
φ3

∥∥∥∥
L2(R3;R)

≤
∥∥∥∥
(

1

|x | ∗ (φ1φ2)

)∥∥∥∥
L9(R3;R)

‖φ3‖L18/7(R3;R)

� ‖φ1φ2‖L9/7(R3;R)‖φ3‖L18/7(R3;R)

�
3∏
j=1

‖φ j‖L18/7(R3;R) �
3∏
j=1

‖φ j‖H1(R3;R)

and similarly,
∥∥∥∥∥∥

2k+1∏
j=1

φ j

∥∥∥∥∥∥
L2(Rd ;R)

≤
2k+1∏
j=1

‖φ j‖L2(2k+1)(Rd ;R) �
2k+1∏
j=1

‖φ j‖H1(Rd ;R).

Proof of Lemma A.1 Suppose that ‖r‖H1 , ‖r̃‖H1 ≤ ‖u‖H1 . For the Hartree nonlinearity, by
algebra, we write

N ′(u + r) − N ′(u) − N+
u (r) =

(
1

|x | ∗ r2
)
u + 2

(
1

|x | ∗ (ur)

)
r +

(
1

|x | ∗ r2
)
r

and
(N ′(u + r) − N ′(u) − N+

u (r)
)− (N ′(u + r̃) − N ′(u) − N+

u (r̃)
)
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=
(

1

|x | ∗ ((r + r̃)(r − r̃))

)
u + 2

(
1

|x | ∗ (u(r − r̃))

)
r + 2

(
1

|x | ∗ (ur̃)

)
(r − r̃)

+
(

1

|x | ∗ ((r + r̃)(r − r̃))

)
r +

(
1

|x | ∗ r̃2
)

(r − r̃)

Thus, by the multilinear estimate (Lemma A.2),

∥∥N ′(u + r) − N ′(u) − N+
u (r)

∥∥
L2 ≤ C

(
‖u‖H1 + ‖r‖H1

)
‖r‖2

H1 ≤ 2Cδ‖u‖H1‖r‖H1

and

∥∥(N ′(u + r) − N ′(u) − N+
u (r)

)− (N ′(u + r̃) − N ′(u) − N+
u (r̃)

)∥∥
L2

≤ C
(
‖u‖H1 + ‖r‖H1 + ‖r̃‖H1

)(
‖r‖H1 + ‖r̃‖H1

)
‖r − r̃‖H1

≤ 6Cδ‖u‖H1‖r − r̃‖H1 .

Then, taking δ0 = η min{ 1
6C‖u‖H1

, ‖u‖H1}, we prove the lemma for the Hartree nonlinearity.

Similarly, for the polynomial nonlinearity, by the multilinear estimate (Lemma A.2),

∥∥N ′(u + r) − N ′(u) − N+
u (r)

∥∥
L2 =

∥∥∥∥∥∥
2k+1∑
j=2

(
2k + 1

j

)
u2k+1− j r j

∥∥∥∥∥∥
L2

≤
2k+1∑
j=2

(
2k + 1

j

)∥∥∥u2k+1− j r j
∥∥∥
L2

≤ C
2k+1∑
j=2

(
2k + 1

j

)
‖u‖2k+1− j

H1 ‖r‖ j
H1

≤ Ckδ‖u‖2k−1
H1 ‖r‖H1

and

∥∥(N ′(u + r) − N ′(u) − N+
u (r)

)− (N ′(u + r̃) − N ′(u) − N+
u (r̃)

)∥∥
L2

=
∥∥∥∥∥∥

2k+1∑
j=3

(
2k + 1

j

)
u2k+1− j (r − r̃)(r j−1 + r j−2r̃ + · · · + r̃ j−1)

∥∥∥∥∥∥
L2

≤
2k+1∑
j=3

(
2k + 1

j

)∥∥∥u2k+1− j (r − r̃)(r j−1 + r j−2r̃ + · · · + r̃ j−1)

∥∥∥
L2

≤ C
2k+1∑
j=3

(
2k + 1

j

)
‖u‖2k+1− j

H1 ‖r − r̃‖H1

(
‖r‖ j−1

H1 + ‖r‖ j−2
H1 ‖r̃‖H1 + · · · + ‖r̃‖ j−1

H1

)

≤ Ckδ‖u‖2k−1
H1 ‖r − r̃‖H1

for some constant Ck > 0. Then, taking δ0 = η min{ 1
2Ck‖u‖2k−1

H1
, ‖u‖H1}, we complete the

proof of the lemma for the polynomial nonlinearity. ��
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Appendix B: Uniform lower bound for higher-order operators in (1.3)

Lemma B.1 (Uniform lower bound for higher-order operators in (1.3)) For any ξ ∈ R
3, we

have
2k−1∑
j=1

(−1) j−1α j

m2 j−1c2 j−2 |ξ |2 j ≥ |ξ |2
2m

,

where a j = (2 j−2)!
j !( j−1)!22 j−1 .

Proof By change of variables ξ
m �→ ξ , it suffices to prove the lemma assuming m = 1. The

inequality is trivial when k = 1. Suppose that k ≥ 2. Splitting the positive and the negative
terms and then applying the Cauchy–Schwarz inequality for the negative terms, we obtain

2k−1∑
j=1

(−1) j−1α j

c2 j−2 |ξ |2 j =
k∑
j=1

α2 j−1

c4 j−4 |ξ |4 j−2 −
k−1∑
j=1

α2 j

c4 j−2 |ξ |4 j

≥
k∑
j=1

α2 j−1

c4 j−4 |ξ |4 j−2

− 1

2

k−1∑
j=1

{
(α2 j )

2

α2 j−1α2 j+1

α2 j−1

c4 j−4 |ξ |4 j−2 + α2 j+1

c4 j |ξ |4 j+2
}

.

Since
(α2 j )

2

α2 j−1α2 j+1
= · · · = (4 j−3)(2 j+1)

(4 j−1)2 j ≤ 1 for all j ≥ 1, it is bounded below from

k∑
j=1

α2 j−1

c4 j−4 |ξ |4 j−2 − 1

2

k−1∑
j=1

{α2 j−1

c4 j−4 |ξ |4 j−2 + α2 j+1

c4 j |ξ |4 j+2
}

=
k∑
j=1

α2 j−1

c4 j−4 |ξ |4 j−2 − 1

2

k−1∑
j=1

α2 j−1

c4 j−4 |ξ |4 j−2 − 1

2

k∑
j=2

α2 j−1

c4 j−4 |ξ |4 j−2

= 1

2
|ξ |2 + α2k−1

2c4k−4 |ξ |4k−2 ≥ 1

2
|ξ |2.

��
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